St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The magnetohydrostatic equilibrium of quiescent solar prominences

Thumbnail
View/Open
ChristopherRidgwayPhDThesis.pdf (28.23Mb)
Date
1992
Author
Ridgway, Christopher
Supervisor
Priest, E. R. (Eric Ronald)
Funder
Science and Engineering Research Council (SERC)
Metadata
Show full item record
Abstract
Since the mid 1900's it has been supposed that the global magnetic field surrounding a quiescent prominence provides the force required to prevent its collapse under the influence of the Sun's gravitational field. Many theoretical models of this magnetic field have been produced in which it is assumed that the prominence plasma is supported in a dip in the field lines by the associated magnetic tension force. It is the aim of this thesis to propose further models of the magnetic field in order to extend our knowledge and understanding of prominences. In doing so we present three distinct models. The first is an extension of the twisted flux tube model for prominences proposed by Priest et al. (1989). Here we present analytical solutions to the magnetohydrostatic equilibrium equation within the tube using the so- called generating function method in which we select two distinct functional forms of the longitudinal field component. Unlike the solutions found by Priest et al., we allow for large deviations of the field from cylindrical symmetry. The prominence is represented by a finite vertical sheet of mass and current and we show that it is possible for such a sheet to be in static equilibrium everywhere along its vertical extent. Next we consider the model of van Ballegooijen and Martens in which photospheric motions drive a reconnection process leading to the formation of a helical magnetic structure capable of supporting dense prominence plasma in the low points of the helical windings. Under the assumption of cylindrical symmetry we analyse two methods of solving the magnetohydrostatic equilibrium equation in which the positions of the field line footpoints at the photosphere are imposed. Using a combination of analytical and numerical techniques, we study the quasi-static evolution of the model as the height of the helical axis increases. Unlike the numerical analysis of van Ballegooijen and Martens we are able to produce inverse polarity configurations without the problem of singular field components at the helical axis. Lastly we present an analysis of the interaction of a finite, vertical sheet of mass and current (representing a prominence) with an external constant-current force-free field. We formalise two distinct boundary-value problems in which the distribution of the normal magnetic field component along the photosphere is imposed along with the distribution of either the normal magnetic field component across the prominence or the prominence surface current. In both cases we demonstrate for particular boundary conditions that it is possible for equilibrium solutions to exist of both normal and inverse polarity in which dense material is supported everywhere along the prominence sheet. In particular we are, for the first time, able to produce an inverse polarity equilibrium configuration in which the field components are locally bounded and closed field lines exist above the prominence sheet while an X-type neutral point lies below it.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/14239

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter