St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Instability and wave-growth within some oscillatory fluid flows

Thumbnail
View/Open
GrahamForsterPhDThesis.pdf (24.04Mb)
Date
1996
Author
Forster, Graham Keith
Supervisor
Craik, Alex D. D.
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Oscillatory fluid flows arise naturally in many systems. Whether or not these systems are stable is an important question and external periodic forcing of the flow may result in rich and complicated behaviours. Here three distinct oscillatory fluid flows are examined in detail, with the stability of each being established using a range of analytical and computational methods. The first system comprises standing surface capillary-gravity waves in second-harmonic resonance subject to Faraday excitation. Using the perturbation technique of multiple scales, the amplitude equations for the system are derived. At exact resonance, and with the absence of damping, the only fixed point of the equations is found to be the origin. A computational approach reveals that the amplitudes of the two waves remain either bounded or grow to infinity depending on initial data. With the introduction of detuning and damping into the system families of fixed points now exist and some special cases are considered. The second class of flows are unbounded time-periodic flows with fixed ellipsoidal stream surfaces, and having spatially uniform but time-periodic strain rates. Using a recently developed method based on theoretical study of the Schrodinger equation with quasi-periodic potential, a computational approach is adopted which determines the stability of the flow to three-dimensional plane wave disturbances. Results for the growth rate and winding number of the disturbance clearly reveal the regions of instability. It is found that almost all these flows are highly unstable. The third class is another set of three-dimensional time-periodic flows with spatially uniform strain rates. These flows are non-axisymmetric and have sinusoidally-fluctuating rates of strain directed along the fixed coordinate axes. The same computational method is employed and it is found that instability increases along with the non-axisymmetric nature of the flow.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/14087

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter