St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hysteresis and mode competition in Faraday waves

Thumbnail
View/Open
StephenDecentPhDThesis.pdf (34.94Mb)
Date
1996
Author
Decent, Stephen Paul
Supervisor
Craik, Alex D. D.
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Faraday waves arise on the surface of a liquid in a container that is undergoing vertical periodic oscillations. We investigate two-dimensional Faraday waves in a long rectangular container, both theoretically and experimentally. Hysteresis occurs when both finite amplitude solutions and the flat surface solution are available. We derive a nonlinear model of a standing wave, extending the Lagrangian method of Miles (1976). The model is used to investigate hysteresis. It is found necessary to retain cubic damping, cubic forcing and the fifth-order conservative term in order to achieve agreement with experiments. The fifth-order conservative term was omitted from all previous studies of Faraday waves. Stable limit cycles are found to arise from this single-mode equation. We examine the structure of this new solution in detail, both analytically and numerically. We describe local bifurcations using a multiple time scales analysis and global bifurcations using Melnikov's method. The coefficients of linear and cubic damping are derived for a standing wave in a rectangular container by considering energy dissipation in the main body of the fluid (due to potential flow and streaming) and in boundary layers at the sidewalls and at the surface. Surface contamination, due to the presence of a thin viscoelastic surface film, creates a boundary layer at the surface which causes enhanced dissipation comparable to, or greater than, that caused by the boundary layers at the walls of the container. Three-mode interaction equations are used to model intermittency and complex modulations which are found to arise from a sideband instability mechanism similar to that of Eckhaus (1963) and Benjamin & Feir (1967). The role of cubic and fifth-order nonlinear terms on this instability mechanism is examined. Theoretical results are found to compare quite favourably with experimental data.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/14054

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter