St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Steady models for magnetic reconnection

Thumbnail
View/Open
MoiraJardinePhDThesis.pdf (12.41Mb)
Date
1989
Author
Jardine, Moira
Supervisor
Priest, E. R. (Eric Ronald)
Metadata
Show full item record
Abstract
Magnetic reconnection is a fundamental physical process by which stored magnetic energy may be released. It is already known that different reconnection regimes result from changes in the nature of the plasma inflow towards the reconnection site. In this thesis, we examine both how the outflow region responds to changes both in the inflow and outflow boundary conditions and also how introducing compressibility affects the results. We find that if the inflow is converging, the outflow velocity is least, the width of the outflow region is greatest and the ratio of outflowing thermal to kinetic energy is greatest. Also, there is one free outflow parameter which would naturally be specified by the velocity of plasma leaving the reconnection site. We suggest that reverse currents seen in numerical simulations may result from the specification of an extra boundary condition. In addition, we find that the main effects of including compressibility are: to enhance convergence or divergence of the inflow; to increase the maximum reconnection rate where the inflow is converging; to increase the flow speed near the reconnection site where the inflow is diverging; to give faster, narrower outflow jets; to increase variations between regimes in the energy conversion and to increase the ratio of thermal to kinetic energy in the outflow jet.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/13985

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter