Show simple item record

Files in this item


Item metadata

dc.contributor.advisorMackie, A. G. (Andrew George)
dc.contributor.authorWeir, David Gordon
dc.coverage.spatial119 p.en_US
dc.description.abstractIn this thesis, we present certain exact solutions of the mathematical equations governing the one-dimensional unsteady flow of a compressible fluid. In Chapter 2 we introduce the well-known simplification of the equations (1.1.10), (1.1.11) and (1.1.12) which occurs when the entropy is assumed to be constant, and conditions for parching solutions of the equations along characteristics are obtained. These results are used to generalise a problem solved by Mackie. In chapter 3 we meet the concept of a shook, and exact solutions are obtained for two problems in which shocks occur in non-uniform flows. In chapter 4 the case of waves in shallow water which has differential equations similar to those of gas flow is discussed. The results of the previous section are applied to this case and a problem attacked which permits a comparison to be made of the results obtained by this theory and a simpler linearized theory. Finally in chapter 5 we examine a method introduced by Martin for dealing with certain non-isentropic flows. Some new exact solutions of non-isentropic flows are thus obtained.en_US
dc.publisherUniversity of St Andrewsen
dc.titleSome exact solutions in the one-dimensional unsteady motion of a gasen_US
dc.contributor.sponsorCaird Trusten_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US
dc.publisher.departmentRoyal College of Science and Technology, Glasgowen_US

This item appears in the following Collection(s)

Show simple item record