St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Two parameter integral methods in laminar boundary layer theory

Thumbnail
View/Open
WilliamListerPhDThesis.pdf (28.71Mb)
Date
1971
Author
Lister, William Macrae
Supervisor
Curle, S. N.
Funder
Science Research Council (Great Britain)
Metadata
Show full item record
Abstract
The work of this thesis is concerned, with the investigation and attempted improvement of an integral method for solving the two dimensional, incompressible laminar boundary layer equations of fluid dynamics. The method which is based on a theoretical two parameter representation of well-known boundary layer properties was first produced by Professor S. N. Curle. Its range of application, reliability and accuracy rely on four universal functions which have been derived from known exact solutions to the boundary layer equations, and are given tabulated in terms of a pressure gradient parameter 𝞴. This thesis seeks to improve these properties by making adjustments to the tabulated functions and also considers the extension of the method to certain compressible boundary layer problems. The first chapter contains the development of, and background to the method and gives a critical assessment of the existing functions. This analysis indicates that the method may be improved by supplying more data for certain ranges of 𝞴 from which the functions may be calculated; by improving the fitting process; and by the provision for small values of 𝞴 of an analytic form for a shape parameter H which the method involves. To supply more data two new solutions for the flows u₁ = Uā‚€ (1+𝜉) and u₁ = uā‚€ (𝜉+𝜉³) where 𝜉 is a non-dimensional co-ordinate in the direction of the flow, are investigated. The resulting work produces some interesting examples of the use of series expansions in boundary layer theory and these, and the results produced, are given in the second chapter. The fitting of the functions is carried out in chapter three. Polynomial models in terms of 𝞴 are fitted by least squares techniques to data from seven solutions and are adjusted to ensure an analytic form for H for small values of 𝞴. A comparison of results using new and old tables Indicates that an improvement has been made. The transformation relating certain compressible and incompressible flows is next examined and the extension of the method to such problems considered. An idea due to Stewartson for assessing the relative accuracies of methods under such circumstances indicates that the method should be highly accurate, a result confirmed by the calculation of the compressible flow u₁ = uā‚€ (1-𝜉) at a leading edge Mach number of four. The thesis is concluded with a review of the work carried out and the results obtained.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/13944

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter