St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approximate methods in high speed flow

Thumbnail
View/Open
RobertBurnsidePhDThesis.pdf (42.59Mb)
Date
1962
Author
Burnside, Robert R.
Supervisor
Mackie, A. G. (Andrew George)
Funder
Department of Scientific and Industrial Research (DSIR)
Metadata
Show full item record
Abstract
In many problems arising in the theory of compressible flow, the equations characterising the solution of the system are so intractable that recourse must be made to some approximate method which allows the essential features of the flow to be preserved, whilst to some degree, simplifying the mathematics. It is with certain methods of this type that this thesis is concerned. In the subsequent work, we shall assume that the effects due to viscosity and heat conduction are so small as to be negligible. These assumptions may be shown to be largely valid except in those domains of the flow-field where the modified system of equations predicts regions in which the solution is in general multivalued. In the modified system, however, such ‘regions’ are avoided by the introduction of mathematical discontinuities and, assuming that the jump conditions across them can be determines, are sufficient to provide single-valued solutions valid everywhere, except at the discontinuity. The methods to be presented are formulated in the plane consisting of one space variable and one time variable.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/13931

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter