St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigations on classical symmetries theory of quantization

Thumbnail
View/Open
PaulGuestPhDThesis.pdf (21.23Mb)
Date
1972
Author
Guest, P. B.
Metadata
Show full item record
Abstract
The thesis divides naturally into two parts. Part I raises, and in some cases answers, questions concerning symmetry in classical mechanics. The main result (Theorem 6.4) shows that the assumption of the existence of a realization puts an upper limit on the rank of the algebra. The heart of the thesis (covering three-quarters of the volume) is section II on the quantization of classical systems. §1 lists axioms desirable in any quantization rule for the 'functions of the q's'. The momentum observables are introduced in §2 prior to their quantization in §4. §5 essentially shows how conventional quantum mechanics fits into this scheme of things. By progressive specialization from a general manifold to a vector space, from a general quantization scheme to one which is linear on the linear momentum functions, and finally to an entirely well-behaved (admissible) quantization rule, into which conventional quantum mechanics fits nicely, we obtain in §7-§9 results which become progressively more and more powerful. The final theorem (Theorem 9.2) is perhaps the most significant of all. This result states that there exists a class of functions, which contains all functions of the q's and functions of the p's and all momentum observables and which is closed with respect to any linear canonical transformation L; a rule A assigning a unique self-adjoint operator to each such function f; a unitary operator WL corresponding to L and an equation 𝛬(𝑓 ∘ 𝐿) = 𝑊[sub]𝐿⁻ 𝛬 𝑓 𝑊[sub]𝐿
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/13913

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter