St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

An algebraic formulation of asmptotically separable quantum mechanics

Thumbnail
View/Open
DerekMcLeanPhDThesis.pdf (18.21Mb)
Date
1984
Author
McLean, R. G. Derek
Supervisor
Wan, Kong K.
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
This thesis explores the possibility of an algebraic formulation of non-relativistic quantum theory in which certain paradoxes associated with non-locality may be resolved. It is shown that the localisation of a free quantum mechanical wave function at large time coincides approximately with the localisation of an ensemble of classical particles having the same momentum range. This result is used to give a formal definition of spatially separating states and spatially separating particles. We then study certain C*-algebras on which expectation values converge in an infinite time limit. By considering such algebras which contain local observables it is possible to introduce states at infinity as limits of states described by wave functions. In such a state at infinity there is zero probability of a position measurement finding the system in any bounded region in configuration space. It is shown that a C*-algebra exists on which any coherent superposition of spatially separating states will converge in an infinite time limit to a mixture of disjoint states. This allows us to obtain an asymptotic resolution of de Broglie's paradox and the Einstein, Podolsy and Rosen paradox. These results are obtained for the simplest types of quantum systems i.e. a one particle system without spin having configuration space IRⁿ and a system consisting of two such particles which may be distinguished from each other.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/13909

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter