St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Graph directed self-conformal multifractals

Thumbnail
View/Open
JulianColePhDThesis.pdf (18.97Mb)
Date
1999
Author
Cole, Julian
Supervisor
Olsen, Lars
Funder
Carnegie Trust for the Universities of Scotland
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
In this thesis we study the multifractal structure of graph directed self-conformal measures. We begin by introducing a number of notions from geometric measure theory. In particular, several notions of dimension, graph directed iterated function schemes, and the thermodynamic formalism. We then give an historical introduction to multifractal analysis. Finally, we develop our own contribution to multifractal analysis. Our own contribution to multifractal analysis can be broken into three parts; the proof of two multifractal density theorems, the calculation of the multifractal spectrum of self-conformal measures coded by graph directed iterated function schemes, and the introduction of a relative multifractal formalism together with an investigation of the relative multifractal structure of one graph directed self-conformal measure with respect to another. Specifically, in Chapter 5 we show that by interpreting the multifractal Hausdorff and packing measures Olsen introduced in [0195] as Henstock-Thomson variation measures we are able to obtain two stronger density theorems than those obtained by Olsen. In Chapter 6 we give full details of the calculation of the multifractal spectrum of graph directed self-conformal measures satisfying the strong open set condition and show that the multifractal Hausdorff and packing measures introduced by Olsen in [0195] take positive and finite values at the critical dimension provided that the self-conformal measures satisfy the strong separation condition. In Chapter 7 we formalise the idea of performing multifractal analysis with respect to an arbitrary reference measure by developing a formalism for the multifractal analysis of one measure with respect to another. This formalism is based on the ideas of the 'multifractal formalism' as first introduced by Halsey et. al. [HJKPS86] and closely parallels Olsen's formal treatment of this formalism in [0195]. In Chapter 8 we illustrate our relative multifractal formalism by investigating the relative multifractal structure of one graph directed self-conformal measure with respect to another where the two measures are based on the same graph directed self-conformal iterated function scheme which satisfies the strong open set condition.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/13903

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter