St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

On a family of semigroup congruences

Thumbnail
View/Open
SamuelKopamuPhDThesis.pdf (39.58Mb)
Date
1996
Author
Kopamu, Samuel Joseph Lyambian
Supervisor
Howie, John M. (John Mackintosh)
Funder
Association of Commonwealth Universities
Metadata
Show full item record
Abstract
We introduce in this thesis a new family of semigroup congruences, and we set out to prove that it is worth studying them for the following very important reasons: (a) that it provides an alternative way of studying algebraic structures of semigroups, thus shedding new light over semigroup structures already known, and it also provides new information about other structures not formerly understood; (b) that it is useful for constructing new semigroups, hence producing new and interesting classes of semigroups from known classes; and (c) that it is useful for classifying semigroups, particularly in describing lattices formed by semigroup species such as varieties, pseudovarieties, existence varieties etc. This interesting family of congruences is described as follows: for any semigroup S, and any ordered pair (n,m) of non-negative integers, define ⦵(n,m) = {(a,b): uav = ubv, for all ⋿Sn and v ⋿Sm}, and we make the convention that S¹ = S and that S0 denotes the set containing only the empty word. The particular cases ⦵(0,1), ⦵(1,0) and ⦵(0,0) were considered by the author in his M.Sc. thesis (1991). In fact, one can recognise ⦵(1,0) to be the well known kernel of the right regular representation of S. It turns out that if S is reductive (for example, if S is a monoid), then ⦵(i,j) is equal to ⦵(0,0) - the identity relation on S, for every (i,j). After developing the tools required for the latter part of the thesis in Chapters 0-2, in Chapter 3 we introduce a new class of semigroups - the class of all structurally regular semigroups. Making use of a new Mal'tsev-type product, in Chapters 4,5,6 and 7, we describe the lattices formed by certain varieties of structurally regular semigroups. Many interesting open problems are posed throughout the thesis, and brief literature reviews are inserted in the text where appropriate.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/13699

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter