St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computing with simple groups: maximal subgroups and presentations

Thumbnail
View/Open
Ali-RezaJamaliPhDThesis.pdf (35.90Mb)
Date
1989
Author
Jamali, Ali-Reza
Supervisor
Robertson, E. F.
Funder
Teacher Training University (Tehran, Iran)
Iran. Ministry of Culture and Higher Education
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
For the non-abelian simple groups G of order up to 10⁶ , excluding the groups PSL(2,q), q > 9, the presentations in terms of an involution a and an element b of minimal order (with respect to a) such that G=<a,b> are well known. The presentations are complete in the sense that any pair (x,y) of generators of G satisfying x²=yᵐ=1, with m minimal, will satisfy the defining relations of just one presentation in the list. There are 106 such presentations. Using a computer, we give generators for each maximal subgroup of the groups G. For each presentation of G, the generators of maximal subgroups are given as words in the group generators. Similarly generators for a Sylow p-subgroup of G, for each p, are given. For each group G, we give a representative for each conjugacy class of the group as a word in the group generators. Minimal presentations for each Sylow p-subgroup of the groups G, and for most of the maximal subgroups of G are constructed. To obtain such presentations, the Schur multipliers of the underlying groups are calculated. The same tasks are carried out for those groups PSL(2,q) of order less than 10⁶ which are included in the "ATLAS of finite groups". For these groups we consider a presentation on two generators x, y with x²=y³=1. A finite group G is said to be efficient if it has a presentation on d generators and d+rank(M(G)) relations (for some d) where M(G) is the Schur multiplier of G. We show that the simple groups J₁, PSU(3,5) and M₂₂ are efficient. We also give efficient presentations for the direct products A₅xA₆, A₅xA₆,A₆xA₇ where Ĥ denotes the covering group of H.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/13692

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter