St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algorithms for subgroup presentations: computer implementation and applications

Thumbnail
View/Open
PatriciaHeggiePhDThesis.pdf (37.34Mb)
Date
1991
Author
Heggie, Patricia, M.
Supervisor
Robertson, E. F.
Funder
Science and Engineering Research Council (SERC)
Metadata
Show full item record
Abstract
One of the main algorithms of computational group theory is the Todd-Coxeter coset enumeration algorithm, which provides a systematic method for finding the index of a subgroup of a finitely presented group. This has been extended in various ways to provide not only the index of a subgroup, but also a presentation for the subgroup. These methods tie in with a technique introduced by Reidemeister in the 1920's and later improved by Schreier, now known as the Reidemeister-Schreier algorithm. In this thesis we discuss some of these variants of the Todd-Coxeter algorithm and their inter-relation, and also look at existing computer implementations of these different techniques. We then go on to describe a new package for coset methods which incorporates various types of coset enumeration, including modified Todd- Coxeter methods and the Reidemeister-Schreier process. This also has the capability of carrying out Tietze transformation simplification. Statistics obtained from running the new package on a collection of test examples are given, and the various techniques compared. Finally, we use these algorithms, both theoretically and as computer implementations, to investigate a particular class of finitely presented groups defined by the presentation: < a, b | aⁿ = b² = (ab-1) ß =1, ab² = ba²>. Some interesting results have been discovered about these groups for various values of β and n. For example, if n is odd, the groups turn out to be finite and metabelian, and if β= 3 or β= 4 the derived group has an order which is dependent on the values of n (mod 8) and n (mod 12) respectively.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/13684

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter