St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Mathematics & Statistics Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Magnetohydrodynamic waves and instabilities in solar magnetic structures

Thumbnail
View/Open
DavidBoddiePhDThesis.pdf (99.60Mb)
Date
06/2001
Author
Boddie, David
Supervisor
Roberts, Bernie
Funder
Particle Physics and Astronomy Research Council (PPARC)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Motions of plasma in magnetic structures in the solar atmosphere may be successfully modelled using the theory of magnetohydrodynamics (MHD) describing oscillatory motion, in the form of standing and propagating waves, and unstable behaviour. In this thesis we consider two forms of magnetic structuring, the current sheet and the thin magnetic flux tube. The current sheet finds particular application in the solar corona and solar wind; the thin flux tube is of particular importance in solar photospheric magnetism. A model of a current sheet with a continuous magnetic field profile is studied as a waveguide. The equation of motion for small perturbations to a current sheet equilibrium is obtained from the equations of ideal linear MHD and solved numerically to determine the nature of magnetoacoustic waves propagating parallel to the applied magnetic field. A number of approximation methods are used to shed light on the significance of the numerical results. We consider a variation of this model, applicable to the solar corona, and examine the possibility of impulsively generated magnetohydro dynamic waves in the sheet. Such waves exhibit wavepacket properties, similar to those found in slab models of magnetic structures. The process of convective collapse in a vertical magnetic flux tube located in the solar photospheric network is treated using the thin flux tube equations of ideal linear MED. We consider the critical stability of a thin flux tube embedded in convection zone models of varying complexity, taking into account the effects of an overlying chromospheric atmosphere and temperature imbalance between the flux tube and its environment. The dependence of the instability on various sets of boundary conditions is discussed; the choice of boundary conditions is a subject of some debate in the current literature. Possible future directions for work which extends the description of dynamic phenomena in both the current sheet and thin flux tube structure is discussed and ideas for linking these areas of research are presented.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Mathematics & Statistics Theses
URI
http://hdl.handle.net/10023/11308

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter