Research@StAndrews
 
The University of St Andrews

Research@StAndrews:FullText >
Mathematics & Statistics (School of) >
Applied Mathematics >
Applied Mathematics Theses >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/265
This item has been viewed 10 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
thesis.pdf8.65 MBAdobe PDFView/Open
Title: Effect of structuring on coronal loop oscillations
Authors: McEwan, Michael P.
Supervisors: Roberts, Bernard
Keywords: Corona
Oscillations
Coronal seismology
Sun
Issue Date: Jun-2007
Abstract: In this Thesis the theoretical understanding of oscillations in coronal structures is developed. In particular, coronal loops are modelled as magnetic slabs of plasma. The effect of introducing inhomogeneities on the frequency of oscillation is studied. Current observations indicate the existence of magnetohydrodynamic (MHD) modes in the corona, so there is room for improved modelling of these modes to understand the physical processes more completely. One application of the oscillations, on which this Thesis concentrates, is coronal seismology. Here, the improved theoretical models are applied to observed instances of coronal MHD waves with the aim of determining information regarding the medium in which these waves propagate. In Chapter two, the effect of gravity on the frequency of the longitudinal slow MHD mode is considered. A thin, vertical coronal slab of magnetised plasma, with gravity acting along the longitudinal axis of the slab is studied, and the effect on the frequency of oscillation for the uniform, stratified and structured cases is addressed. In particular, an isothermal plasma, a two-layer plasma and a plasma with a linear temperature profile are studied. Here, a thin coronal loop, with its footpoints embedded in the chromosphere-photosphere is modelled, and the effects introduced by both gravity and the structuring of density at the footpoint layers are studied. In this case, gravity increases the frequency of oscillation and causes amplification of the eigenfunctions by stratification. Furthermore, density enhancements at the footpoints cause a decrease in the oscillating frequency, and can inhibit wave propagation, depending on the parameter regime. In Chapter three, the effects introduced to the transverse fast MHD mode when gravity acts across a thin coronal slab of magnetised plasma are considered. This study concentrates on the modification of the frequency due to the dynamical effect of gravity in the equation of motion, neglecting the effect of stratification. Here, gravity causes a reduction of the oscillating frequency of the fundamental fast mode, and increases the lower cutoff frequency. In effect, for this configuration, gravity allows the transition between body and surface modes, in a slab geometry. It is found, in these two studies, that each harmonic is affected in a unique manner due to structuring or stratification of density. With this knowledge, in Chapter four, a new parameter is derived; P1/2P2, the ratio of the period of the fundamental harmonic of oscillation to twice the period of its first harmonic. This parameter is shown to be a measure of the longitudinal structuring of density along a coronal loop, and the departure of this ratio from unity can yield information regarding the lengthscales of the structure. This process is highlighted using the known observations, indicating that P1/2P2 may prove to be a useful diagnostic tool for coronal seismology. Finally, in Chapter five, outwardly propagating coronal slow MHD modes are observed and are used to infer coronal parameters. The possibility of using these oscillations to infer near-resolution lengthscales in coronal loops -- fine-scale strands -- is also discussed. TRACE observations are used to determine the average period, phase speed, detection length, amplitude and energy flux for the propagating slow MHD mode. The indication is that the source of these oscillations appears very localised in space, and the driver only acts for a few periods, suggesting the perturbations are driven by leaky p-modes (solar surface modes).
URI: http://hdl.handle.net/10023/265
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Applied Mathematics Theses



This item is protected by original copyright

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: Digital-Repository@st-andrews.ac.uk | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)