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Abstract

In this Thesis the theoretical understanding of oscillations in coronal structures is developed. In partic-
ular, coronal loops are modelled as magnetic slabs of plasma. The effect of introducing inhomogeneities
on the frequency of oscillation is studied. Current observations indicate the existence of magnetohydro-
dynamic (MHD) modes in the corona, so there is room for improved modelling of these modes to under-
stand the physical processes more completely. One application of the oscillations, on which this Thesis
concentrates, is coronal seismology. Here, the improved theoretical models are applied to observed in-
stances of coronal MHD waves with the aim of determining information regarding the medium in which
these waves propagate.

In Chapter 2, the effect of gravity on the frequency of the longitudinal slow MHD mode is considered. A
thin, vertical coronal slab of magnetised plasma, with gravity acting along the longitudinal axis of the slab
is studied, and the effect on the frequency of oscillation for the uniform, stratified and structured cases is ad-
dressed. In particular, an isothermal plasma, a two-layer plasma and a plasma with a linear temperature pro-
file are studied. Here, a thin coronal loop, with its footpoints embedded in the chromosphere-photosphere
is modelled, and the effects introduced by both gravity and the structuring of density at the footpoint layers
are studied. In this case, gravity increases the frequency of oscillation and causes amplification of the ei-
genfunctions by stratification. Furthermore, density enhancements at the footpoints cause a decrease in the
oscillating frequency, and can inhibit wave propagation, depending on the parameter regime.

In Chapter 3, the effects introduced to the transverse fast MHD mode when gravity acts across a thin
coronal slab of magnetised plasma are considered. This study concentrates on the modification of the
frequency due to the dynamical effect of gravity in the equation of motion, neglecting the effect of strat-
ification. Here, gravity causes a reduction of the oscillating frequency of the fundamental fast mode, and
increases the lower cutoff frequency. In effect, for this configuration, gravity allows the transition between
body and surface modes, in a slab geometry.

It is found, in these two studies, that each harmonic is affected in a unique manner due to structuring
or stratification of density. With this knowledge, in Chapter 4, a new parameter is derived; P1/2P2, the
ratio of the period of the fundamental harmonic of oscillation to twice the period of its first harmonic.
This parameter is shown to be a measure of the longitudinal structuring of density along a coronal loop,
and the departure of this ratio from unity can yield information regarding the lengthscales of the structure.
This process is highlighted using the known observations, indicating that P1/2P2 may prove to be a useful
diagnostic tool for coronal seismology.

Finally, in Chapter 5, outwardly propagating coronal slow MHD modes are observed and are used to
infer coronal parameters. The possibility of using these oscillations to infer near-resolution lengthscales
in coronal loops – fine-scale strands – is also discussed. TRACE observations are used to determine the
average period, phase speed, detection length, amplitude and energy flux for the propagating slow MHD
mode. The indication is that the source of these oscillations appears very localised in space, and the driver
only acts for a few periods, suggesting the perturbations are driven by leaky p-modes (solar surface modes).
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Chapter 1

Introduction

“Many Bothans died to bring us this information.”, Mon Mothma

1.1 Overview of The Corona

1.1.1 Solar Interior and Lower Atmosphere

The Sun is a gaseous body of plasma, onion-like in structure, with near concentric layers defining regions
of similar properties; see Fig. 1.1. In the solar core, which extends to about 0.25R�, where R� is the solar
radius, nuclear fusion of hydrogen provides the massive amount of energy required to power a star, around
99% of the Sun’s total energy. This nuclear fusion is possible as the pressure inside the core is so great,
under the massive pull of its own gravity. The energy is slowly leaking outwards, by radiative diffusion;
however, the solar interior is so opaque that a photon leaking outwards would take 107 million years to
reach the surface (Priest, 1982; Lang, 2001). This region of radiative diffusion is called the radiative zone,
which extends to about 0.7R�.

The temperature and density within the solar interior decrease rapidly as one moves away from the solar
core, from a core temperature of around 1.6 × 107 K and density of 1.6 × 105 kg m−3 to around 2 × 106

K and 200 kg m−3 at the top of the radiative zone. Above the radiative zone the temperature and density
gradients becomes so large that the material can no longer be in static equilibrium, and convective motions
begin to dominate the plasma. The region where this happens is called the convection zone, which extends
to the solar surface. The temperature drops to around 6600 K and the density drops to around 4 × 10−4

kg m−3 in this region. The temperature is now low enough that atomic recombination can occur, and the
photons, generated in the core by fusion, are absorbed by the plasma, leaving convection as the primary
process for energy transportation. The base of the convection zone is believed to be a very important part
of the Sun, called the tachocline (Spiegel and Weiss, 1980). The tachocline is thought to be the source
of the dynamo process which generates the solar magnetic field. Above the convection zone lies the solar
atmosphere, consisting of the photosphere, the chromosphere and the corona.

The photosphere is a thin, opaque layer of plasma, around 0.5 Mm in thickness, and it is this region that
emits most of the Sun’s light; see Fig. 1.2. The temperature at the top of the photosphere drops to around
4300 K and the density decreases to around 8 × 10−5 kg m−3. The photosphere displays the granular
pattern of the solar surface, representing the top of the convective cells below, with diameters of around
1 Mm and lifetimes of around 8 minutes. Another photospheric structure is the sunspot, an area of such

1



1.1 Overview of The Corona 2

Figure 1.1: Cartoon showing the solar interior (Lee, 2004), from the nuclear reactor that is the core, to the
convective cells appearing on the solar surface, the photosphere.

high magnetic field that the temperature is decreased (Bray and Loughhead, 1964). These areas appear
dark as they are cooler than the surrounding region. Sunspots have three parts, an inner dark umbra, a
surrounding, brighter strand-like penumbra, and the superpenumbra, first discovered by Loughhead (1968).
They typically appear in pairs, one spot is flux emerging and the other is flux submerging. The east-west
orientation of the submerging-emerging sunspot pair is opposite in the northern and southern hemispheres,
and switches every solar magnetic cycle. This phenomenon is known as Hale’s polarity law.

Above the photosphere lies a narrow layer, around 2.5 Mm thick, called the chromosphere. The temper-
ature of the chromosphere begins to rise steadily, to around 50000 K. Above this is the region where the
most dramatic change in temperature takes place, the transition region. Fig. 1.3 shows this dramatic change.
Around 1 Mm in depth, the transition region lies between the chromosphere and the outer atmosphere of
the Sun, the corona. This regions sees the temperature increasing dramatically to several million degrees
Kelvin. The density drops to around 10−10 kg m−3. The corona, chromosphere and transition region are
areas of great interest in current solar studies, with The Coronal And Transition Region Explorer (TRACE),
Solar and Heliospheric Observatory (SOHO), Hinode and STEREO satellites giving new insights into the
solar atmosphere.
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Figure 1.2: Image showing the granulation of the photosphere surrounding a sunspot (TRACE, 2003). Note
the umbra and penumbra on the sunspot.

1.1.2 Solar Corona

During an eclipse the solar corona is observed as the faint halo surrounding the Sun. Fig. 1.4(a) shows an
x-ray image of the corona and Fig. 1.4(b) shows the corona during an eclipse. The overall shape of the
corona varies with the solar magnetic cycle, with few coronal holes present during sunspot minimum, as in
Fig. 1.4(b). The corona itself extends out into deep space, far from the solar surface, to Earth and beyond.
It interacts with the interplanetary gas and magnetic field. Parker (1958) described this constant streaming
of solar plasma into interplanetary space as the Solar Wind. He discovered two solar wind solutions; the
fast and slow solar wind. The wind is driven by the pressure difference between the solar plasma and the
interplanetary gas (Kivelson and Russell, 1995). The coronal magnetic field can also be associated with
the solar wind. The magnetic field can be defined by one of two categories: open field and closed field
(Aschwanden, 2004). The open field is associated with the fast solar wind and the closed field is associated
with the slow solar wind.

The corona is extremely hot and rare with temperatures well over 1 MK and densities of around 10−12 kg
m−3. The density can be enhanced in some coronal structures, for example; loops, streamers or arcades, or
it can be reduced in coronal holes. The corona is a plasma dominated by the magnetic field, which emerges
continuously from the photosphere and changes on timescales from minutes to days. The appearance of
the corona and its structures gives an indication of the spatial nature of the magnetic field, and can yield
information about the strength of the field. Fig. 1.5(a) shows an example of a large coronal loop, observed
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Figure 1.3: Plot of the temperature change in the solar atmosphere (MSU, 2002). Note the shallow transition
region, in which the temperature increases at a great rate.

(a) (b)

Figure 1.4: (a) X-ray image taken by the Yohkoh satellite in 1992 (from Phillips (2000)). Large scale
coronal holes, active regions, bright points and coronal loops can all be seen. (b) Image of the corona taken
during a total eclipse (from NASA (2006)).

using the TRACE satellite, showing the loop structure of the magnetic field.

The corona is so hot that the hydrogen and helium that make up the majority of the plasma are stripped
of their electrons. Heavier ions, such as iron and oxygen, are not fully ionised, and these elements produce
the spectral emission lines through which much of the corona is observed today. In fact, the total coronal
emission is typically only a few percent compared to the photospheric emission. Satellite telescopes such
as SOHO (the Solar and Heliospheric Observatory), and TRACE image the corona in these Extreme Ultra-
Violet (EUV) emission lines (onboard SOHO the Extreme ultraviolet Imaging Telescope (EIT) uses EUV
filters). Other instruments such as Yohkoh image the corona in the x-ray wavelengths. Since the corona
is only observed in the visible wavelengths during eclipses, coronographs construct false eclipses to image



1.1 Overview of The Corona 5

Figure 1.5: (a) Typical example of a flaring coronal loop (TRACE, 1999), observed using TRACE. Flaring
loops are highly dynamical and are often observed to rise out of a flare site, with plasma draining down to
the footpoints as the plasma cools. (b) MDI magnetogram of the solar disk (SOHO, 2005), black areas are
regions of positive magnetic flux and white areas are negative flux.

the corona in white light (see Fig. 1.4(b)).

Active regions, areas of enhanced magnetic activity and strength, are known to be the source of many of
the coronal structures, such as the loops observed in Fig. 1.5(a). They appear as areas of complicated mag-
netic fields in, for example, MDI magnetograms, an instrument onboard the SOHO satellite (see Fig. 1.5(b)
for a typical full disk magnetogram). Active regions generally exist in two belts, within ±30 degrees of the
solar equator. In general they are bipolar (hence the black and white on the magnetogram). Some may exist
for lifetimes of several tens of days, especially if they are associated with a sunspot. However, smaller act-
ive regions may exist for only a few days. Active regions are not always directly associated with sunspots.
Indeed, an active region can exist as a more diffuse region well after the sunspot has disappeared.

The temperature above active regions is generally enhanced compared to the surrounding plasma. In-
deed, the corona above the active region can contain many different coronal loops, each at a different tem-
perature. Observations in different wavelengths yield images of these various coronal loops, with typical
temperatures between 1 and 6 MK. These loops are generally small in length and have lifetimes of typically
a few hours. They link areas within an active region. Large coronal loops may transcend active regions,
and can be many 100 Mm in length, connecting regions of opposite polarity. Coronal loops are anchored
by the magnetic field at the tachocline, and motions from below could be a source of one of the phenomena
associated with coronal loops, namely loop oscillations. The dimensions of coronal loops are an area of
great study. Length is relatively easy to determine: a loop lies between one footpoint and the other, typically
50 to several 100 Mm. The width of a loop is somewhat debated (for example Schmelz (2002); Schmelz
et al. (2003); Aschwanden and Nightingale (2005) and Aschwanden (2005) give recent discussions). Many
observations yield widths of around 8 to 10 Mm; see Wang (2004) for example. However other findings
indicate that some coronal loops consist of a finer filamentary structure, with each filament having a width
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of order 2 to 3 Mm; see, for example, McEwan and De Moortel (2006). This topic is returned to in Chapter
5.

Other coronal structures are also frequently observed. For example, many coronal loops, all placed one
after the other, in near parallel alignment, are known as a coronal arcade. They form a tunnel of hot loops,
formed by plasma where the dominant magnetic field is reconnecting (Sweet, 1958; Parker, 1963; Priest
and Forbes, 1986), releasing great energy, and heating the coronal arcade. This reconnecting field causes
an outward moving eruption, or flare, of hot plasma, where electrons are accelerated to great energies. The
hot corona represents a great problem in solar physics. It seems counter-intuitive that the corona, so far
from the Sun’s nuclear powered core, should be so hot. In fact, the corona and its structures are continually
heated, for example, if the heating mechanism was removed then a coronal loop would cool in a matter
of only a few minutes. Theories other than magnetic reconnection have been proposed to explain coronal
heating. For example, Heyvaerts and Priest (1983) proposed the corona may be heated by the phase mixing
of Alfvén waves in regions of non-uniform Alfvén velocity and Porter et al. (1994a,b) studied the role of
magnetoacoustic wave motions heating both the quiet corona and active regions. There exists extensive
literature regarding the coronal heating problem, however, it is not a topic for this Thesis. For further
information the reader is referred to recent reviews (and references therein) discussing many aspects of the
coronal heating problem, for example, Erdélyi et al. (2003) and Klimchuk (2006).

One can also observe structures, called prominences, that are similar to clouds in the Earth’s atmosphere.
These are cool, dense clouds of plasma, several hundred times cooler than the surrounding atmosphere
(Tandberg-Hanssen, 1974). They are buoyant due to the magnetic field providing a tension force that is
balanced against gravity. Prominences are long lived structures, that lie above the polarity inversion line
– the line that divides regions of opposite magnetic polarities in the photosphere. They lie above coronal
arcades, which connect the two regions of polarity. As with flares, prominences can also erupt spectacularly,
with dramatic consequences on the surrounding plasma (Hirayama, 1974).

All coronal structures are governed by the magnetic field and its interaction with the plasma. One method
of study of this interaction is magnetohydrodynamics, or MHD for short. This branch of mathematics
and physics models the interactions and provides the necessary means to further the understanding of the
processes involved. Key problems of MHD include the coronal heating problem, evolution of the magnetic
field, and modelling coronal structures accurately. Throughout this Thesis the third of these problems is
addressed, and particular motions within the plasma are utilised: oscillations and wave motions.

1.2 The MHD Equations

In the magnetohydrodynamic approximation an ionised gas can be treated as a single continuous plasma.
This plasma is governed by Maxwell’s equations, Ohm’s Law and the fluid equations. The plasma can be
considered as a collection of positive and negative ions and electrons (two fluid approach) as is the approach
in Boyd and Sanderson (1969), where the MHD equations follow from taking moments of the Boltzmann
equations for electrons and protons. However, here, the equations of MHD are introduced using the single
fluid approach (Cowling, 1976; Priest, 1982).
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1.2.1 Maxwell’s Equations

Maxwell’s equations describe the change of the electric field E and the magnetic field B due to the presence
of electric currents of density j and electric charges of density ρc. The equations are

∇× B = µj +
1

c2
∂E

∂t
, (1.1)

∇× E = −∂B
∂t
, (1.2)

∇.B = 0, (1.3)

∇.E =
1

ε
ρc, (1.4)

where ε is the permittivity of free space and µ is the permeability of free space. Eq. (1.1) is known as
Ampére’s Law, Eq. (1.2) is known as Faraday’s Law of Induction, Eq. (1.3) is the solenoidal condition,
stating that there are no magnetic monopoles, and Eq. (1.4) is Gauss’s Law implying that charge is con-
served; c is the speed of light in a vacuum.

Studying Eqs. (1.1) to (1.4) dimensionally, and considering l to be a typical lengthscale for plasma
variations, over a typical timescale τ , then a typical plasma velocity will be v = l/τ . Next, using Eq. (1.2),

∇× E ∼ E

l
, (1.5)

and also

∂B

∂t
∼ B

τ
. (1.6)

Substituting these two estimates into Faraday’s Law of Induction (1.2) gives

E =
l

τ
B = vB. (1.7)

Using these estimates in Ampére’s Law (1.1), then one obtains the relation

1

c2
∂E

∂t
∼ 1

c2
E

τ
=

1

c2
v

τ
B =

vl

c2τ l
B =

v2

c2
B

l
. (1.8)

Eq. (1.8) states that if plasma motions where v � c are considered then the displacement current term
∂E/∂t can be neglected from Ampére’s Law, i.e. consider non-relativistic motions, usually the case in the
corona.

The final electromagnetic equation to complete the set is Ohm’s Law,

j = σ (E + v × B) , (1.9)

where σ is the electrical conductivity. Ohm’s Law introduces the plasma velocity, v, and provides the bridge
between the electromagnetic equations and the fluid equations. Using Eq. (1.9), together with Ampére’s
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Law (1.1) to eliminate E and j between Eqs. (1.1) and (1.4), gives

∂B

∂t
= ∇× (v × B) + η∇2B, (1.10)

where η = 1/ (µσ) is the magnetic diffusivity (here assumed to be a constant). Eq. (1.10) is the MHD
induction equation. Comparing the first term of the right-hand side of Eq. (1.10) to the second gives the
magnetic Reynolds number Rm = (vl) /η. Typically, in the corona, Rm � 1 as v and l are so large,
so one can consider the plasma to be perfectly conducting, or ideal. This condition describes the frozen
flux theorem of Alfvén (Alfvén, 1943a): the magnetic field lines are frozen into the plasma, and as such
they move with the plasma as it moves. In regions where Rm � 1 then the diffusive term of Eq. (1.10)
dominates, however, this limit mainly applies in regions with small typical lengthscales. In MHD the
plasma velocity and the magnetic field are generally regarded as the primary variables, and the current and
electric field are secondary.

1.2.2 Fluid Equations

The behaviour of the magnetic field described in the induction equation (1.10) is coupled to the behaviour
of the plasma by Ohm’s Law (1.9). The motion of the continuous plasma is governed by the equations
of continuity, motion and energy: the Navier-Stokes fluid equations. These equations can be deduced by
taking moments of the Boltzmann equations for charged particles; however, as before, a continuous fluid
is considered. Consider a typical lengthscale l and a timescale τ over which the plasma varies, then the
plasma can be considered continuous if

l � RL, (1.11)

that is, the length l over which the plasma varies macroscopically is very much greater than the ion gyrora-
dius, RL. Also, another requirement is the lengthscale l is very much greater than the mean free path of
an ion in the plasma, so that the plasma is contained by collisions of particles with neighbouring particles.
If these conditions are satisfied then the plasma can be described using the hydrodynamic fluid equations.
Firstly, the mass continuity equation for a fluid of density ρ is,

∂ρ

∂t
+ ∇. (ρv) = 0. (1.12)

The equation of motion is

ρ
Dv

Dt
= −∇p+ F, (1.13)

where

D

Dt
≡ ∂

∂t
+ v · ∇. (1.14)

Here p is the plasma pressure and F represents the sum of all external forces. Typical external forces
considered in MHD are the Lorentz force, j × B, a viscous force Fν , given by the Braginskii stress tensor
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(Braginskii, 1965), and gravity Fg = −ρg.

The energy equation is given by (Priest, 1982)

ργ

γ − 1

D

Dt

(

p

ργ

)

= −L, (1.15)

where p is the plasma pressure, γ is the ratio of specific heats (generally taken to be 5/3 in the corona)
and L is the energy loss function. In this Thesis an energy loss function which is adiabatic is considered,
i.e. L = 0 and energy is conserved. This has a consequence on Eq. (1.15) which becomes

D

Dt

(

p

ργ

)

= 0. (1.16)

Finally, to complete the set of equations, an equation of state is required, the ideal gas law

p =
R

µ̃
ρT, (1.17)

where R is the gas constant and µ̃ is the mean atomic weight. In hydrogen µ̃ = 0.5 (the value used in this
Thesis), however µ̃ = 0.6 is also an acceptable value for the ionised solar corona.

1.2.3 Summary of the MHD Equations and Approximations

∂ρ

∂t
+ ∇ · (ρv) = 0, (1.18)

ρ
Dv

Dt
= −∇p+ F, (1.19)

∂p

∂t
+ v · ∇p = −γp∇.v, (1.20)

p =
R

µ̃
ρT, (1.21)

j =
1

µ
∇× B, (1.22)

∇ · B = 0, (1.23)

∂B

∂t
= ∇× (v × B) + η∇2B. (1.24)

Eqs. (1.18) to (1.24) are valid under the assumptions (Boyd and Sanderson, 1969; Priest, 1982):

1. charge neutrality is satisfied, i.e. ni −Ne � n, where n is the total number density, ni is the number
density of the ions and Ne is the electron number density,

2. the lengthscales of macroscopic plasma variations are much greater than the gyrosynchotron radius
of the charged particles,

3. the lengthscales are very much greater than the mean free path, λc, of the particles (in the solar
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corona, with a typical plasma number density n = 1012 m−1 and temperature T = 106 K, then
λc = 104 m (Benz, 2002)),

4. the velocity of the macroscopic plasma motion is not relativistic,

5. the timescale of the relaxation of the particle distribution function to a Maxwellian takes place on a
timescale of order the time between particle collisions.

Although MHD requires the plasma to be collisional, the corona is so rare that many structures are con-
sidered collisionless. However, MHD actually provides reasonable descriptions of solar processes. In
particular, for wave phenomena, the typical period of observed MHD waves is of the order of minutes but
the collisional timescale of the plasma is of the order of a fraction of a second, so the plasma can be regarded
as collisional in this case (see Schindler (2007) for a recent discussion of collisional and collisionless plas-
mas). Other solar structures, or processes, satisfy this last assumption less rigorously, however, they are not
discussed in detail in this Thesis.

1.3 MHD Waves

In a plasma, rarefactions and compressions result in variations of density, pressure and temperature, but
also influence the magnetic field. In a perfectly conducting ideal plasma, the magnetic field and the plasma
are frozen together (Alfvén, 1943a), so any propagation of waves will result in variation of the magnetic
field. Consider, briefly, the Lorentz force in the equation of motion (1.13),

j × B = (∇× B) × B/µ = (B · ∇)B/µ−∇
(

B2/ (2µ)
)

, (1.25)

where B = |B| is the magnitude of the magnetic field B. In the presence of a magnetic field, together with
the plasma pressure gradient then there are three restoring forces: magnetic tension given by the first term
on the right-hand side of Eq. (1.25); magnetic pressure given by the second term on the right-hand side of
Eq. (1.25); and the plasma pressure. It is common to group together the plasma pressure and the magnetic
pressure, producing the total pressure, pT .

In MHD three main types of wave motion are studied, all driven by different combinations of the restor-
ing forces. The magnetic tension drives the Alfvén wave, first reported by Alfvén (1943b) and the plasma
pressure and magnetic pressure drive compressional magnetoacoustic waves (Cowling, 1976). When these
restoring forces combine then the three modes of oscillation become apparent: Alfvén waves and two mag-
netoacoustic waves. The magnetoacoustic waves become acoustic waves in the absence of magnetic field.
The presence of gravity further complicates these descriptions.

To study the motion of these waves, in the presence of a magnetic field, an equilibrium state is perturbed
and the effects on the surrounding plasma and magnetic field are noted. This perturbation is studied to see if
the disturbance propagates as a wave. The ideal MHD equations are the starting point. The MHD equations
are linearised about the equilibrium, and the aim is to discover the dispersion relation linking the frequency
of the disturbance, ω, to the wave vector k. Full discussions of the theory of MHD waves can be found in,
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for example, Cowling (1976), Priest (1982) and Roberts (1991). Their detection in the Sun’s atmosphere
has recently been discussed in Erdélyi et al. (2003), Aschwanden (2004), Wang (2004) and Nakariakov and
Verwichte (2005).

1.3.1 Wave Speeds and Plasma-β

There are several intrinsic speeds associated with the MHD wave modes. Each speed is particular to a
specific mode of oscillation and as such they define the modes themselves. The local sound speed cs is
defined through

c2s =
γp0

ρ0
(1.26)

where p0 and ρ0 are the equilibrium pressure and densities of the plasma. Typically, in the solar corona the
sound speed is 100−200 km s−1, and it is at this speed that acoustic waves, driven by pressure perturbations,
propagate.

The local Alfvén speed cA is defined through

c2A =
B2

0

µρ0
(1.27)

where B0 is the equilibrium magnetic field strength and µ is the magnetic permeability of free space.
Magnetic tension drives the Alfvén waves along the magnetic field lines at this speed, typically 1000−2000

km s−1 in the corona.

The tube speed cT (see Roberts and Webb (1978)) is defined through

c2T =
c2sc

2
A

c2s + c2A
; (1.28)

cT is less than both the sound speed and the Alfvén speed. The MHD slow mode, driven by magnetic
tension and pressure perturbations, propagates roughly along magnetic field lines at this speed.

The fast speed cf is defined through the sum of the squares of the Alfvén and sound speeds,

c2f = c2s + c2A; (1.29)

cf is associated with the propagation speed of the fast MHD mode, driven by both magnetic tension and
pressure forces. cf is the highest wave speed from all the MHD modes.

Another important speed is the kink speed ck given by (Ryutov and Ryutova, 1976; Spruit, 1981; Edwin
and Roberts, 1983; Roberts, 2000)

ck =

(

ρ0c
2
A + ρec

2
Ae

ρ0 + ρe

)1/2

(1.30)
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where ρe is the environment density and cAe is the environment Alfvén speed.

These speeds can be compared in magnitude to give simple reductions in the set of MHD equations. One
such comparison is the plasma-β, the ratio of plasma pressure to magnetic pressure, given by

β =
p0

B2
0/2µ

=
2c2s
γc2A

. (1.31)

In much of the corona cs � cA, as the plasma pressure is so small, this is a low-β plasma. Effectively
the plasma pressure terms can be neglected as the magnetic pressure is the dominant force here. A greater
simplification is the cold plasma approximation, where β = 0. In effect the sound speed has been set to
zero, and as a consequence there are no plasma pressure perturbations and the acoustic and slow modes
vanish. In the solar interior β � 1 and so the wave properties are switched. The effect of the magnetic
pressure is very small compared to the plasma pressure. In the outer corona the magnetic field strength is
reduced, causing a reduction in magnetic pressure; thus the plasma-β can rise again, to values of β > 1,
discussed in Gary (2001). Therefore, most of the corona is a low-β plasma, sandwiched between regions
of high-β. In this Thesis low-β plasmas are considered in general.

1.3.2 Linearised MHD Equations

Consider the equation of motion, containing the Lorentz force but neglecting gravity, then the governing
non-linear momentum equation is

ρ
Dv

Dt
= −∇p+ (B · ∇)B/µ−∇

(

B2/ (2µ)
)

. (1.32)

This equation, together with the mass continuity equation (1.18), the induction equation (1.24), with η = 0,
and the adiabatic energy equation (1.20) form the basis for this analysis.

Assume that there exists an equilibrium solution, where ∂/∂t = 0, with no flows (i. e. v0 = 0) so that
the density and magnetic field only vary spatially. In full, this equilibrium is given by

B0 = B0ẑ, v0 = 0, p0 = constant, ρ0 = constant, (1.33)

where B0 is also a constant. All equilibrium quantities are denoted by a subscript 0.

Consider small perturbations about the equilibrium (1.33), with the perturbed quantities denoted by a
subscript 1,

B = B0 + B1 (z, t) , v = 0 + v1 (z, t) , p = p0 + p1 (z, t) , ρ = ρ0 + ρ1 (z, t) . (1.34)

Linearising the equations of MHD gives insight into the behaviour of the system under small amplitude
perturbations. This is done by substituting the total perturbed quantities given in Eq. (1.34) into the ideal
MHD equations (1.32), (1.18), (1.24) with η = 0 and (1.20). Subtracting the equilibrium solution (1.33)
and neglecting squares and products of the perturbed terms (denoted with a subscript 1) yields the linearised
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ideal MHD equations in a uniform medium:

∂ρ1

∂t
+ ρ0∇ · v1 = 0, (1.35)

ρ0
∂v1

∂t
= −∇p1 +

1

µ
(∇× B1) × B0, (1.36)

∂B1

∂t
= ∇× (v1 × B0) , (1.37)

∇ · B1 = 0, (1.38)

∂p1

∂t
= −c2sρ0 (∇ · v1) . (1.39)

Consider a uniform magnetic field, B0 = (0, 0, B0), with an Alfvén speed

cA =
B0√
µρ0

. (1.40)

Differentiating Eq. (1.36) with respect to t and eliminating ∂B1/∂t using Eq. (1.37) gives

∂2v1

∂t2
= − 1

ρ0
∇∂p1

∂t
+

1

µ
(∇× (∇× (v1 × B0))) × B0. (1.41)

Substituting for ∂p1/∂t, using the linearised energy equation (1.39), results in a single equation for the
velocity perturbation, v1:

∂2v1

∂t2
= c2s∇ (∇ · v1) + c2A

(

∇2vx +
∂ωz

∂y
,∇2vy − ∂ωz

∂x
, 0

)

, (1.42)

where v1 = (vx, vy, vz) and ωz is the z-component of the vorticity (∇× v1) given by

ωz =
∂vy

∂x
− ∂vx

∂y
. (1.43)

The z-component of the curl of Eq. (1.42) reduces to the one dimensional wave equation

∂2ωz

∂t2
= c2A

∂2ωz

∂z2
. (1.44)

Consider a Fourier component in time, taking a plane wave of the form

ωz(x, y, z, t) = ωz0 exp (i (ωt+ kxx+ kyy + kzz)) (1.45)

then the dispersion relation for the Alfvén wave is obtained:

ω2 = k2
zc

2
A, (1.46)

that is,

ω2 = k2c2A cos2 θ, (1.47)
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where ω is the frequency and θ is the angle between the propagation vector k = (kx, ky, kz) and the
direction of the applied magnetic field (θ = 0 indicates propagation along the field lines). The wave vector
k is of magnitude k =

(

k2
x + k2

y + k2
z

)1/2. The motions in the Alfvén wave are perpendicular (transverse)
to the magnetic field B and involve no compression of the plasma.

Now introduce some notation for clarity (Lighthill, 1960, 1978),

∆ = ∇ · v1, (1.48)

Γ =
∂vz

∂z
. (1.49)

Eq. (1.42) reduces by taking its z-component together with the divergence of Eq. (1.48). This gives the
linear equations for the MHD modes of oscillation in an unbounded, uniform plasma (Lighthill, 1960;
Roberts, 1981a), namely

∂2vz

∂t2
= c2s

∂∆

∂z
⇒ ∂2Γ

∂t2
= c2s

∂∆2

∂z2
, (1.50)

∂2∆

∂t2
=
(

c2s + c2A
)

∇2∆ − c2A∇2Γ. (1.51)

Eqs. (1.50) and (1.51), coupled with Eq. (1.44), allows v1 = (vx, vy, vz) to be fully defined in space
(Lighthill, 1960).

Eqs. (1.50) and (1.51) can be combined to give the single partial differential equation

∂4∆

∂t4
−
(

c2s + c2A
) ∂2

∂t2
∇2∆ + c2sc

2
A

∂2

∂z2
∇2∆ = 0, (1.52)

with the same equation satisfied by Γ (Lighthill, 1960). In the absence of a magnetic field, c2A = 0, so
integrating Eq. (1.52) twice with respect to t and once with respect to z gives

∂2vz

∂z2
− c2s

∂2vz

∂z2
= 0. (1.53)

Eq. (1.53) highlights that in the absence of a magnetic field then Eq. (1.52) describes the acoustic wave.

Roberts (1981a) showed that by considering a Fourier component in time, taking a plane wave of the
form

∆(x, y, z, t) = ∆0 exp (i (ωt+ kx + kyy + kzz)) . (1.54)

then Eq. (1.52) could be written in the form

k2
x + k2

y +m2
0 = 0, (1.55)

where

m2
0 =

(

k2
zc

2
s − ω2

) (

k2
zc

2
A − ω2

)

(c2s + c2A) (k2
zc

2
T − ω2)

, (1.56)
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and cT is the tube speed, defined earlier in Eq. (1.28).

From Eq. (1.52) the dispersion relation for magnetoacoustic waves can be derived:

ω4 − ω2k2
(

c2s + c2A
)

+ k2
zk

2c2sc
2
A = 0. (1.57)

This relation has two solutions (it is a quadratic in ω2), namely

ω2 =
k2

2

(

(

c2s + c2A
)

±
[

(

c2s + c2A
)2 − 4c2sc

2
A cos2 θ

]1/2
)

. (1.58)

The positive sign gives the fast magnetoacoustic wave; the negative sign is the slow magnetoacoustic wave.
In the absence of a magnetic field, cA = 0 and the slow wave disappears (ω2 = 0), with the fast wave
becoming a pure sound wave (ω2 = k2c2s ). When cs = 0, the slow wave disappears, and the fast wave
speed becomes identical to the Alfvén wave speed (ω2 = k2c2A). From either Eq. (1.47) or Eq. (1.58) the
phase speed cph = ω/k of a mode can be obtained.

(a) (b)

Figure 1.6: Polar diagram of the phase speed cph = ω/k of the magnetoacoustic waves and the Alfvén
wave. The phase speed cph is a function of the angle θ between the wave vector k and the unperturbed
magnetic field, B0 (aligned parallel to the horizontal axis). (a) cA > cs, (b) cs > cA.

Fig. 1.6(a) shows the phase speed of the three modes, where cT ≤ cs < cA ≤ cf . It indicates that
the fast mode is not restricted to travelling along the magnetic field, but can propagate both parallel and
perpendicular to the magnetic field or indeed at any angle to it; the fast wave is roughly isotropic. The
slow and Alfvén waves are field guided modes. They have their maximum speed when propagating exactly
parallel to the field. In a low-β plasma, like the corona, the slow wave behaves like a field guided acoustic
wave.

Further discussion of the wave modes, concerning the effect of structure and of geometry can be found
in substantial reviews; see, for example, Roberts (1991) , Aschwanden (2004) and Nakariakov and Ver-
wichte (2005). In this Thesis the effects of introducing structure and stratification on the propagation of
magnetoacoustic waves in the solar corona is addressed.
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1.4 Coronal Oscillations

It is now widely accepted, and indeed commonly observed, that MHD waves occur in the solar corona. With
the advent of the SOHO and TRACE missions, these observations have become increasingly common, and
increasingly useful in testing theoretical and numerical models. Indeed it was TRACE that brought about
the first estimate of the magnetic field in a coronal loop (Nakariakov and Ofman, 2001), using a technique
called coronal seismology, first proposed using Moreton waves by Uchida (1968), extended by Roberts
et al. (1984) on theoretical grounds and illustrated using data from the radio band of observations. Prior
to TRACE and SOHO there were no imaging satellites with a high enough temporal and spatial resolution
to successfully identify oscillations in the corona. Observations were restricted mostly to the radio band;
see Aschwanden (1987, 2004) for extensive reviews of radio observations of coronal oscillations. Several
techniques have been used to look for coronal oscillations; for example, Wikstol et al. (1997) used the
correlation between perturbed density, plasma pressure and plasma temperature together with the Doppler
shift to look for signatures of wave propagation instead of the wave itself. By studying the Doppler shift
it was possible to identify whether the wave was upward or downward propagating. Wave activity can
also be observed by using UV line spectra, for example the method reported in McClements et al. (1991).
Furthermore, the variation of the spectral line broadening from disk centre to the limb can be used to detect
the dominant oscillations in coronal loops. Erdélyi et al. (1998) found that if Alfvén waves are dominant in
a coronal loop then the line broadening from the centre to the limb increases, however, if magnetoacoustic
waves dominate then the line broadening decreases. In this overview of observations of coronal oscillations
the emphasis is on the post-TRACE/SOHO period, since which there has been an enormous increase in
the number of oscillation observations. The literature surrounding the observations of coronal oscillations
could fill many hundreds of pages; for further information, the reader is referred to various reviews, for
example, see Erdélyi et al. (2003), Roberts (2004), Wang (2004), Aschwanden (2004), Nakariakov and
Verwichte (2005) and De Moortel (2006).

1.4.1 Observations of Fast MHD Modes

Propagating fast MHD waves have proved difficult to observe, even with high temporal cadence telescopes
such as TRACE. Typically the wavelength of a propagating wave will be much shorter than the structure
guiding them; this implies very short periods. The time resolution of TRACE is normally around 30 s, but
it can be as little as 4 s (Handy et al., 1999). For a normal TRACE observing programme, the temporal
cadence will be around 20 to 30 s, allowing for observations of intensity oscillations with a period of around
2 to 3 minutes (Nakariakov and Verwichte, 2005), far too long for the expected periods of propagating fast
waves. So the current generation of EUV imaging telescopes are inadequate in this respect. Better temporal
resolution can be obtained by using ground-based coronographs, such as the SECIS (Solar EClipse Imaging
System) instrument.

The SECIS instrument was used by Williams et al. (2001, 2002), during a solar eclipse, to observe very
rapid compressible wave trains, propagating along coronal loops on the solar limb. The waves travelled with
a speed of around 2100 km s−1, a speed indicative of the fast MHD mode. The periodicity associated with
these oscillations was measured to be around 6 s, a further indication that propagating fast MHD modes
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were being observed. The observations were unable to determine whether the waves were fast sausage or
fast kink modes (as theoretical models suggest; see Section 1.4.3); however, the fact that the propagating
fast mode was observed at all is remarkable.

Propagating fast kink modes have also been identified. Verwichte et al. (2005) found evidence of fast
magnetoacoustic wavetrains in the plume structures above a post flare supra-arcade. These wavetrains are
transverse in nature, and have periods of around 90 to 220 s and speeds of 700 to 1200 km s−1.

Standing fast kink modes will typically have a longer period than the timescale associated with propagat-
ing waves, hence they are often easier to identify. In fact, the periods can be of such a length that the current
generation of satellite telescopes have suitable time cadence to observe them. Due to this there have been
many more observations of this type of MHD oscillation. Aschwanden et al. (1999) and Nakariakov et al.
(1999) discovered, and studied in detail, standing kink oscillations in coronal loops using TRACE (see
also Schrijver and Brown (2000); Brown et al. (2002)). The typical period of these standing oscillations
was observed to be around 250 s, and after determining a typical loop length it was found that the phase
speed of these waves was 1020 ± 132 km s−1. Using similar kink oscillation data, Nakariakov and Ofman
(2001) determined an approximate magnetic field strength of 13± 9 G after calculating the kink speed and
estimating the plasma density.

The standing (fast) sausage modes have also been detected in a flaring coronal loop using a ground
based instrument, the Nobeyama Radioheliograph (Nakajima, 1994). Periodic pulsations with 14-17 s
quasi-periodicities were observed using the microwave band by Melnikov et al. (2002). These observations
were analysed in detail in Melnikov et al. (2005b) and were found to show that the magnetic field perturb-
ation was symmetric about the loop apex. This had earlier been reported in Nakariakov et al. (2003) and
interpreted as the standing global sausage mode of the flaring loop.

1.4.2 Observations of Slow MHD Modes

Propagating slow MHD waves have been heavily reported since the advent of TRACE and SOHO, as they
have periods and propagation speeds of an order that can be observed fairly easily with these satellite in-
struments. Nightingale et al. (1999) found propagating intensity disturbances using TRACE near coronal
loop footpoints. Ofman et al. (1997) and DeForest and Gurman (1998) used SOHO to find evidence of
compressive waves in plumes, which Ofman et al. (2000) interpreted as the MHD slow mode. Berghmans
and Clette (1999) used EIT to observe propagating intensity disturbances travelling in the corona at around
150 km s−1. De Moortel et al. (2000) and Robbrecht et al. (2001) found similar outwardly propagating
waves in coronal loops using TRACE data and interpreted them as coronal sound waves. De Moortel et al.
(2002a) selected 38 examples of outwardly propagating slow magnetoacoustic modes above the footpoints
of coronal loops, using TRACE 171 Å and 195 Å data. They found that oscillations along footpoints
anchored in sunspot regions have a period of around 3 minutes and that oscillations along footpoints above
regions of plage had periods of around 5 minutes. This suggested that both the 3 and 5 minute solar oscil-
lations may propagate up into the corona. Evidence for the propagation of the 3 minute umbral oscillations
throughout the solar atmosphere was studied previously in Maltby et al. (1999, 2001). A model suggesting
the 5 minute global p-modes may leak up into the corona, exciting the 5 minute coronal oscillations, is given
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by De Pontieu et al. (2003, 2005). Joint studies have been performed using data from the TRACE instru-
ment and SOHO/CDS by Marsh et al. (2003), observing an oscillation through chromospheric, transition
region and coronal temperatures. Further studies of the possible role of p-modes driving these 5 minute loop
oscillations have been conducted by McEwan and De Moortel (2006) (see Chapter 5) in which the spatial
and temporal constraint of the oscillations is indicative of the dimensions associated with quasi-periodic
p-mode driven moss oscillations.

Standing slow (acoustic) modes have proved a little more difficult to observe, mainly due to the large
periods associated with them. Typically this period will be of the order 30 minutes, too high to obtain a time
series in TRACE data for example. The direct imaging of these waves has proved difficult; however, other
instruments such as the spectral imaging instrument SUMER (Solar Ultra-violet Measurements of Emitted
Radiation), onboard SOHO can be employed to observe these oscillations (Kliem et al., 2002; Wang et al.,
2002, 2003, 2004, 2006). In particular Wang et al. (2004) analyzed 54 Doppler shift oscillations, with
periods in the range 7 to 31 minutes, and decay times of a similar order (5.5 to 37.3 minutes). The phase
speed of the oscillations was found to be similar to the local sound speed associated with the instrument’s
bandwidth temperature 6 MK. The final piece of evidence was that the Doppler velocity lagged the intensity
variation by a quarter period phase shift (see Sakurai et al. 2002 and Ofman and Wang 2002), leaving the
conclusion that these oscillations were indeed standing slow magnetoacoustic oscillations.

1.4.3 Theory of Coronal Oscillations

In general, the solar atmosphere has a complicated structure, due to the magnetic field, temperature gradi-
ents and density variations. In fact it is highly unlike the uniform, unbounded medium described in Section
1.3. The case of an infinite, uniform plasma in a uniform magnetic field provides a guide to the behaviour
of MHD modes. However, the modes actual behaviour in the corona may be very different. Figs. 1.6(a) and
1.6(b) show the properties of the MHD waves are highly dependent on the angle between the wave vector
and the magnetic field. Consequently the MHD modes are strongly affected by plasma structuring. The
theory of coronal oscillations has been developed to include this dependence on structure, the initial step
being to include a boundary in the plasma.

Roberts (1981a) considered the case of an interface in the plasma brought about by the structuring of a
straight magnetic field. The basis of the study an infinite homogeneous plasma, as described by Eq. (1.52),
and the effects introduced by the magnetic interface are addressed. Consider a magnetic field B0ẑ and an
equilibrium where p0 = p0(x), ρ0 = ρ0(x) such that

d

dx

(

p0 +
B2

0

2µ

)

= 0. (1.59)

Now consider linear perturbations about the equilibrium (1.59) using continuity, momentum, induction and
isentropic energy equations:

∂ρ1

∂t
+ ∇ · (ρ0(x)v1) = 0, (1.60)
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ρ0(x)
∂v1

∂t
= −∇

(

p1 +
B0 · B1

µ

)

+ (B0 · ∇)
B1

µ
, (1.61)

∂B1

∂t
= −B0 (∇ · v1) + (B0 · ∇)v1, (1.62)

∇ · B1 = 0, (1.63)

∂p1

∂t
+ v1 · ∇p0 = c2s

(

∂ρ1

∂t
+ v1 · ∇ρ0

)

, (1.64)

where c2s = γp0/ρ0 is the sound speed squared, and ρ1, p1, v1 = (vx, vy, vz) and B1 = (Bx, By, Bz)

denote the perturbations. Reintroducing the variables ∆ = ∇ · v1 and Γ = ∂vz/∂z and defining pT =

p1 +B0Bz/µ, then Eqs. (1.61)–(1.64) can be rearranged to give the following:

ρ0

(

∂2

∂t2
− c2A

∂2

∂z2

)

vx =
∂

∂x

(

ρ0c
2
f ∆ − ρ0c

2
AΓ
)

, (1.65)

ρ0

(

∂2

∂t2
− c2A

∂2

∂z2

)

vy =
∂

∂y

(

ρ0c
2
f ∆ − ρ0c

2
AΓ
)

, (1.66)

∂2vz

∂t2
= c2s

∂Γ

∂z
. (1.67)

Next, consider Fourier components such that

vx = v̂x(x) exp (i (ωt± kyy ± kzz)) , px = p̂x(x) exp (i (ωt± kyy ± kzz)) (1.68)

then Eqs. (1.65)–(1.67) reduce to the single ordinary differential equation for v̂x(x) (see Roberts 1981a)

d

dx

(

ρ0(x)
(

k2
zc

2
A(x) − ω2

)

(

m2
0(x) + k2

y

)

)

dv̂x

dx

)

− ρ0(x)
(

k2
zc

2
A − ω2

)

v̂x = 0, (1.69)

where

m2
0(x) =

(

k2
zc

2
s (x) − ω2

) (

k2
zc

2
A(x) − ω2

)

c2f (x) (k2
zc

2
T(x) − ω2)

(1.70)

and cT(x) is given by Eq. (1.28). The differential operator in Eq. (1.69) is singular when kzcA(x) = ω. The
singularity depends on the Alfvén speed profile cA(x) and leads to a continuum of Alfvén modes instead
of discrete wavenumbers kz .

In a uniform medium where ρ0, p0 are constants, then m2
0, cT, cA and cs are also constant. Eq. (1.69)

reduces to

(

k2
zc

2
A − ω2

)

(

∂2v̂x

∂x2
−
(

m2
0 + k2

y

)

v̂x

)

= 0. (1.71)

Eq. (1.71) is satisfied when ω = kzcA, the Alfvén wave solution for arbitrary v̂x, or when

∂2v̂x

∂x2
−
(

m2
0 + k2

y

)

v̂x = 0, (1.72)
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with ω 6= kzcA. The second case governs the magnetoacoustic waves in a uniform medium.

Single Interface

Consider the special case of a step function in the magnetic field, i. e. a magnetic interface:

B0(x) =







Be, x > 0

B0, x < 0,
(1.73)

withBe andB0 both constants. Effectively there are two uniform regions, denoted by subscripts ‘e’ and ‘0’,
separated by the interface at x = 0 and each region is governed by Eq. (1.71). Total pressure is conserved
across the interface, so in equilibrium

pe +
B2

e

2µ
= p0 +

B2
0

2µ
. (1.74)

The second boundary condition is the continuity of the displacement. In a medium in which there are no
flows (v0 = 0) then this simplifies to the continuity of velocity across the interface.

Again, one solution is the Alfvén wave, ω = kzcA, with v̂x and v̂y both arbitrary. The magnetoacoustic
modes are also governed by Eq. (1.72). However, there are two regions:

∂2v̂x

∂x2
−
(

m2
0 + k2

y

)

v̂x = 0, x < 0, (1.75)

∂2v̂x

∂x2
−
(

m2
e + k2

y

)

v̂x = 0, x > 0. (1.76)

The signs of (k2
y +m2

0) and (k2
y +m2

e) gives rise to either exponential or oscillatory solutions (Roberts,
1981a,b; Edwin and Roberts, 1982). For trapped solutions, in which no energy leaks away from the system,
the requirement is (m2

e + k2
y) > 0. These are surface waves. This enforces the velocity perturbation is zero

at x = ±∞. If (k2
y +m2

0) > 0 then Eqs. (1.75) and (1.76) give rise to the solutions

v̂(x) =







αe exp
(

−x
(

m2
e + k2

y

)1/2
)

, x > 0

α0 exp
(

x
(

m2
0 + k2

y

)1/2
)

, x < 0,
(1.77)

and pT is given by

p̂T =
iρ0

ω
c2f
k2

zc
2
T − ω2

k2
zc

2
s − ω2

dv̂x

dx
. (1.78)

At the interface itself the continuity of velocity and total pressure is required, so αe = α0. The continuity
of total pressure pT leads to the dispersion relation for surface modes across a magnetic interface (Roberts,
1981a)

ρ0

(

k2
zc

2
A − ω2

) (

m2
e + k2

y

)1/2
+ ρe

(

k2
zc

2
Ae − ω2

) (

m2
0 + k2

y

)1/2
= 0, (1.79)
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where c2Ae = B2
e/µρe is the Alfvén speed squared in x > 0.

This solution gives rise to the fact that only surface waves exist at a single magnetic interface. Depending
on the parameter regime, both fast and slow surface waves can exist on the interface. Eq. (1.79) was studied
in detail in Roberts (1981a). He found that in a low-β plasma, such as the corona, with l = 0, there are no
(two-sided) surface waves, as both m2

0 and m2
e cannot remain greater than zero. However, the introduction

of a second interface, a slab geometry, has further consequences on the behaviour of the modes.

Magnetic Slab

The slab geometry case was considered in Roberts (1981b). Suppose the equilibrium state of the plasma
is one in which the magnetic field is uniform within the slab but zero outside:

B0(x) =







B0, |x| < x0

0, |x| > x0.
(1.80)

The boundary conditions across the slab interfaces are the continuity of total pressure and the continuity of
the displacement. Inside the magnetic slab the plasma pressure is p0 and density is ρ0, and outside they are
denoted by a subscript ‘e’. The two regions are related by

pe = p0 +
B2

0

2µ
, ρe =

(

c20 + 1
2γc

2
A

c2e

)

ρ0, (1.81)

where ce is the sound speed outside the magnetic slab.

Eq. (1.72) with ky = 0 reduces to

d2v̂x

dx2
−m2

0v̂x = 0, |x| < x0, (1.82)

where

m2
0 =

(

k2
zc

2
0 − ω2

) (

k2
zc

2
A − ω2

)

(c20 + c2A) (k2
zc

2
T − ω2)

. (1.83)

A similar equation applies for the region outside the slab. Again consider the trapped solutions, so m2
e > 0.

However, now both cases when m2
0 is either positive or negative must be considered.

Eq. (1.82) has solution inside the slab of the form

v̂(x) = α0 cosh (m0x) + β0 sinh (m0x) , |x| < x0, (1.84)

and outside the slab it is

v̂(x) =







αe exp (−me (x− x0)) , x > x0

α0 exp (me (x− x0)) , x < x0.
(1.85)

Applying the boundary conditions of constant velocity and total plasma pressure across x = ±x0, where
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pT is again given by

p̂T =
iρ0

ω
c2f
k2

zc
2
T − ω2

k2
zc

2
s − ω2

dv̂x

dx
, (1.86)

gives rise to the general dispersion relation for the magnetoacoustic modes of oscillation in a uniform
magnetic slab embedded in a non-magnetic environment (Roberts, 1981b)

(

k2
zc

2
A − ω2

)

me =
ρe

ρ0
ω2m0

(

tanh

coth

)

m0x0. (1.87)

Note m2
e is positive but m2

0 may be either positive or negative. In a low-β plasma like the corona, m2
0 > 0

describes the surface modes, of which there are none. The fast surface modes do propagate in a high-β
plasma such as the solar photosphere or interior (Roberts, 1981b). Conversely, m2

0 < 0 describes the body
modes of oscillation, and Eq. (1.87) becomes

(

k2
zc

2
A − ω2

)

me =
ρe

ρ0
ω2m0

(

− tan

cot

)

m0x0. (1.88)
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Figure 1.7: Sketch of the spatial structure of the surface and body waves in either a slab or a cylinder. Here
both the symmetric (sausage) modes and the antisymmetric (kink) modes (after Roberts (1985)) are shown.

The dispersion relations (1.87) and (1.88) lead to the discovery of the sausage and kink body modes for
the fast and slow magnetoacoustic modes. The kink modes are the antisymmetric (odd) modes, whereas
the sausage modes are the symmetric (even) modes of oscillation. Also present are the surface modes, for
both the fast and slow modes. The reader is referred to Roberts (1981a,b) for a full discussion on this topic.
Fig. 1.7 shows the spatial structure of the surface and body modes of oscillation in both a slab or a cylinder.

The nature of the MHD modes in a Cartesian geometry has been studied. However, many coronal
features are better described as structured by the magnetic flux tube, a cylinder. Edwin and Roberts (1983)
considered the propagation of the magnetoacoustic waves in a magnetic cylinder embedded in a magnetic
environment in the absence of gravity. Consider a uniform cylinder of magnetic field B0ẑ confined to a



1.4 Coronal Oscillations 23

radius a and surrounded by a magnetic field Beẑ. The pressure balance condition defined in Eq. (1.74)
holds and the relative densities are related by the equation

ρe

ρ0
=

2c20 + γc2A
2c2e + γc2Ae

. (1.89)

Taking the divergence of the velocity v1 to be of the form

∇ · v1 = R(r) exp (i (ωt+ nθ + kzz)) , (1.90)

where n = 0, 1, 2, . . ., then Eqs. (1.50) and (1.51) give the result that R(r) satisfies Bessel’s equation

d2R

dr2
+

1

r

dR

dr
−
(

m2
0 +

n2

r2

)

R = 0. (1.91)

The same modifications as before arise when considering the external region. Accordingly Eq. (1.91) has
solutions of the form

R(r) =







A0In (m0r) , m2
0 > 0,

A0Jn (m0r) , m2
0 < 0

(1.92)

for the region inside the cylinder (r < a). In the external region (r > a) the solution (assuming no
propagation of energy away from, or towards, the cylinder) is,

R(r) = A1Kn (mer) , r > a. (1.93)

This requires that m2
e > 0. These solutions lead to the dispersion relations for the magnetoacoustic modes

in a magnetic cylinder (Edwin and Roberts, 1983)

ρ0
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zc

2
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)
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n (mea)

Kn (mea)
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(
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zc

2
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)
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′
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In (m0a)
(1.94)

for surface waves (m2
0 > 0), and

ρ0

(

k2
zc

2
A − ω2

)

me
K

′

n (mea)

Kn (mea)
= ρe

(

k2
zc

2
Ae − ω2

)

n0
J

′

n (m0a)

Jn (m0a)
(1.95)

for body waves and m2
0 = −n2

0 < 0.

The solution of these dispersion relations gives the dispersion diagram displayed in Fig. 1.8, first found
by Edwin and Roberts (1983) and applied in Roberts et al. (1984). It was found that the presence of the
radial structure causes dispersion in the fast modes. However, the slow modes are almost non-dispersive.
Also, the radial structure introduces a cutoff frequency for the modes, as in the slab geometry (but not
present in the uniform case).

A number of effects have been neglected in this basic model, including gravity, loop curvature, viscous
terms, resistivity, flows, twisted magnetic fields and non-linear effects. The effect of plasma flows (v0 6= 0)
on the modes of oscillation has been considered in Erdélyi and Goossens (1996), Erdélyi and Taroyan
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Figure 1.8: Dispersion diagram for the phase speed cph = ω/k of the magnetoacoustic waves in a coronal
flux tube of radius a (after Edwin and Roberts 1983). The dispersive fast kink mode is shown, propagating
at speed ck, a speed which varies as ka increases. Also the slow sausage mode is shown, cT; which is only
very weakly dispersive. In this diagram cAe = 2cAi and ci = 0.2cAi with ce = 0.1cAi. The solid lines
represent the anti-symmetric kink modes and the dashed lines represent the symmetric sausage modes.

(2001) and Terra-Homem et al. (2003). The influence of a twisted magnetic field was considered in Bennett
et al. (1999), Erdélyi and Carter (2006) and Erdélyi and Fedun (2006). Further calculations, investigating
the effect of the inclusion of gravity and loop curvature, can be found in Mendoza-Briceno et al. (2004)
and in van Doorsselaere et al. (2004). The inclusion of curvature was found to have a negligible effect on
any measured parameters, typically 5% (van Doorsselaere et al., 2004). The inclusion of gravity in a hot
loop has negligible effect on the period of slow modes (Roberts, 2006). However, it introduces a cutoff
frequency to the system. The effect of gravity on coronal loop oscillations is explored in Chapters 2 and 3.

The study of coronal MHD oscillations is developed here by considering new and more realistic inhomo-
geneities in the plasma. The above effects were among the first developments from the infinite unbounded
regime, and it is now strongly accepted that geometry plays an important role in the behaviour of the wave
modes. Elements of this Thesis concentrate on the role of stratification under gravity (see Chapters 2 and
3).
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1.5 Outline of Thesis

Coronal oscillations is a topic of great interest, both theoretically and observationally. This is a subject
with large potential for expanding current theoretical models and understanding, alongside improving both
observations and the interpretation of observations. In this Thesis the main study regards structural in-
homogeneities within oscillating structures, in particular within coronal loops. The effects of adding these
inhomogeneities is studied analytically: plasma interfaces, temperature profiles and stratification of density
by gravity or otherwise. To be specific, the effect of density stratification and structure in coronal loops
is addressed. Furthermore, TRACE observations are used to find evidence of propagating slow modes in
coronal loops. In particular, TRACE observations are used to infer the dimensions of oscillating strands
close to the TRACE spatial resolution.

In Chapter 2 role of stratification on longitudinal oscillations in a coronal loop is studied. Initially the
Klein-Gordon equation is derived for the slow mode in a gravitationally stratified atmosphere, it is noted that
in the limit of a strong magnetic field the slow mode becomes a field aligned acoustic wave. Furthermore,
the effect of introducing new footpoint boundary conditions is studied, simulating a lower layer such as
the chromosphere or a transition region. Also, the effect of including a linear temperature gradient on the
frequency of oscillation is addressed.

In Chapter 3 the effect of stratification by gravity on the transverse components of oscillation is analysed.
The governing equations are derived, similar to Roberts (1981a,b) and also in Dı́az (2004). However,
a gravity term is introduced, acting perpendicular to the applied magnetic field. The dynamical effect of
gravity on the fast surface and body modes of oscillation in a flux tube embedded in a magnetic environment
is identified. Finally, the new equation derived for the longitudinal modes, containing a gravity term,
reduces to the equations derived in Chapter 2, providing a new alternative method for deriving the slow
mode Klein-Gordon equation in terms of the total plasma pressure pT.

In Chapter 4 it is highlighted that inhomogeneities in a plasma affect each of the harmonics of oscillation
in a different way. This introduces the possibility of measuring the ratio of the fundamental period P1

to twice the period of its first harmonic P2 to infer information regarding the longitudinal structure or
stratification of a plasma. Furthermore, it is shown that the ratio P1/2P2 can be used as a tool for coronal
seismology which does not require any input parameters that cannot be directly measured using current
instruments.

In Chapter 5 TRACE data is used to observe propagating slow modes in coronal loops. This data is stud-
ied using Fourier and wavelet analysis. Several oscillations are observed and some evidence of simultaneous
multiple wavelength oscillations is presented. Furthermore, this data is used to discuss the possibility of
fine-scale structure of wide coronal loops. This fine-scale structure is inferred to be only a few times the
TRACE spatial resolution, highlighting the need for future high resolution instruments. Various coronal
parameters are determined and presented for use in coronal seismology.

Finally Chapter 6 highlights all the discoveries in this Thesis along with suggestions for future develop-
ment of this work. Appendix A contains the statistical information reported in Chapter 5 and Appendix B
contains the numerical scheme used to produce some of the plots contained within Chapter 2.



Chapter 2

Slow Mode Oscillations in the Corona

2.1 Introduction

In Chapter 1 is was shown that the magnetoacoustic oscillations can be classified into two families: those
that propagate at the kink speed, cAi ≤ ck ≤ cAe and those that propagate at the tube speed cT. The Edwin
& Roberts dispersion diagram – see Fig. 1.8 – displays the modes. The first set, with high phase speeds,
are called the fast MHD modes and the second, with lower speeds, are called the slow MHD modes. In
the long wavelength limit, for which kza � 1 in a tube of radius a with longitudinal wavenumber kz , the
slow magnetoacoustic mode propagates at the speed cT, which is very close to the sound speed cs in the
corona (Roberts et al., 1984; Roberts, 2004; Aschwanden, 2004). The speed cT is given in terms of the
sound speed cs and the Alfvén speed cA by

cT =

(

c2s c
2
A

c2s + c2A

)1/2

. (2.1)

For example, if cs = cA then from Eq. (2.1) cT = 0.707cs. If cs = 0.1cA (which is the case where
β � 1) then cT = 0.995cs ' cs. The slow mode is also very weakly dispersive in the low-β corona,
with cph (= ω/kz) rising from cT to cs as kza increases. Thus the phase speed of the slow mode can be
approximated as cph = ω(k)/k ≈ cs. From the polar plot in Fig. 1.6(a) it is clear that the slow mode is
essentially field aligned, and hence guided within the plasma as a longitudinal, compressive wave.

Recently, with the increased observational power of SOHO (in particular an instrument onboard called
SUMER (Solar Ultra-violet Measurements of Emitted Radiation)) and TRACE (see Chapter 5 for a detailed
discussion of observations by TRACE), the standing slow mode has been observed more abundantly; see
for example, Kliem et al. (2002), Wang et al. (2002, 2003) and Wang (2004). SUMER has been used to
identify 54 standing slow mode oscillations in hot (> 6MK) coronal loops (Wang et al., 2004). The slow
mode was identified to oscillate with a period of 7−31 min, and with a similar decay rate. The observations
show a phase shift of π/4 between the density and the Doppler oscillation (which is, in fact, a characteristic
of standing oscillations (Sakurai et al., 2002)).

Here, the standing slow magnetoacoustic oscillations in a coronal loop are studied. In particular, the
aim is to identify the effect of structuring along the coronal loop on the period of oscillation of the mode.
Initially, this structuring is introduced through density stratification under gravity, and then this structure is
modified by introducing various sound speed profiles simulating a chromosphere and ultimately a transition
region. Fig. 2.1 indicates the geometry of a coronal loop. This geometry can be simplified in one of two
ways: either the half-loop can be considered as mostly vertical, and hence aligned either parallel or anti-

26
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2a

hg

Figure 2.1: Cartoon of a coronal loop of internal radius a and height h. The vertical z-axis points up-
wards, opposite to gravity (with gravitational acceleration g). The vertical dashed line indicates the axis of
symmetry.

parallel with gravity, or the loop can be considered as mostly horizontal with gravity acting perpendicular
to the loop. In this Chapter the effect of longitudinal structuring on the modes of oscillation is considered,
hence a vertical structure is studied. The effect of gravity on the transverse oscillations of a horizontal
coronal loop is considered in Chapter 3.

The propagation of acoustic waves propagating vertically in an atmosphere, stratified under gravity, was
first discussed by Lamb (1909, 1932). The acoustic oscillations were found to obey the Klein-Gordon
equation, which appears in other areas of physics such as quantum field theory (see, for example, Kittel
(1963)). The Klein-Gordon equation for some variable ψ is

∂2ψ

∂t2
− c2

∂2ψ

∂z2
+ Ω2ψ = 0, (2.2)

where c is the propagation speed of the wave and Ω is a cutoff frequency.

In this Chapter the properties of the slow MHD mode in a low-β plasma are utilised. In the low-β case,
cT ' cs and Ω ' Ωacoustic, so the slow mode is described in terms of the Klein-Gordon equation for
acoustic waves (Roberts, 2006). In the corona, the magnetic field is crucial in the structuring of the plasma.
However, the β � 1 limit is considered as an appropriate approximation for describing slow modes in the
corona.

This Chapter is an extension of the work first presented in James (2003) who studied the acoustic Klein-
Gordon equation, modelling the slow mode in a straight coronal slab. James (2003) derived a model de-
scribing a coronal slab as a two layer structure; a coronal part embedded in a finite depth of chromosphere.
This model was then extended to include a linear gradient of the squared sound speed, modelling the rapid
increase of temperature in the transition region. However, the model only considered the odd global stand-
ing modes. Here, that work is extended to include the even global standing modes and the effect of the
footpoint boundary condition is also addressed in more detail. Furthermore, the two models are combined
to obtain a more realistic description of a straightened coronal loop embedded in a finite depth of transition
region plasma.
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2.2 The Klein-Gordon Equation

The derivations in this Section closely follow the work of Ferraro and Plumpton (1958) and Roberts (2006).
Here, the z-axis of a Cartesian system of coordinates (x, y, z) is chosen to be vertically downwards. Con-
sider a fully ionised plasma in the presence of a uniform vertical magnetic field B0ẑ, then the system of
MHD equations (Eq. (1.18) – Eq. (1.24)) is:

∂ρ

∂t
+ ∇ · ρv = 0, (2.3)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+
1

µ
(∇× B) × B + ρg, (2.4)

∂p

∂t
+ v · ∇p =

γp

ρ

(

∂ρ

∂t
+ v · ∇ρ

)

, (2.5)

p =
R

µ̂
ρT, (2.6)

j =
1

µ
(∇× B) , (2.7)

∂B

∂t
= ∇× (v × B) , (2.8)

∇ · B = 0, (2.9)

where p is the plasma pressure, ρ is the plasma density and T is the plasma temperature. The gravitational
acceleration is g = gẑ.

Equilibrium

Consider the equilibrium state. The equilibrium pressure p0(z) and density ρ0(z) are related by

−∇
(

p0 +
B2

0

2µ

)

+ ρ0gẑ = 0. (2.10)

As the magnetic field B0ẑ is uniform, Eq. (2.10) reduces to hydrostatic pressure balance:

dp0

dz
= ρ0 (z) g. (2.11)

Eq. (2.11) together with the ideal gas law (2.6) yields

p0(z) = p0(0) exp (n(z)) , (2.12)

where

n(z) =

∫ z

0

ds

Λ0(s)
(2.13)
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and

Λ0(z) =
p0(z)

gρ0(z)
. (2.14)

Here Λ0 (z) is the pressure scale height.

The plasma density ρ0 (z) follows from Eqs. (2.6) and (2.12),

ρ0(z) = ρ0(0)
Λ0(0)

Λ0(z)
exp (n(z)) . (2.15)

Eqs. (2.12) and (2.15) show that the equilibrium pressure and density increase, exponentially, as z in-
creases. The rate of increase is due to gravity, and is measured in terms of the pressure scale height Λ0 (z).

Perturbations

Consider small perturbations of the plasma pressure p = p0 + p1(z, t) and density ρ = ρ0 + ρ1(z, t),
about the equilibrium (2.11), producing a perturbed flow v. Neglecting squares and products of perturbed
quantities, denoted by a subscript 1, gives the linearised MHD equations for a plasma stratified under
gravity:

∂ρ1

∂t
+ ∇ · ρ0v = 0, (2.16)

ρ0
∂v

∂t
= −∇p1 +

1

µ
(∇× B1) × B0 + ρ1g, (2.17)

∂p1

∂t
+ v · ∇p0 = c2s

(

∂ρ1

∂t
+ v · ∇ρ0

)

, (2.18)

∂B1

∂t
= ∇× (v × B0) , (2.19)

∇ · B1 = 0, (2.20)

where cs = (γp0/ρ0)
1/2 defines the sound speed.

Taking time derivative of Eq. (2.17) and substituting for ∂B1/∂t, ∂p1/∂t and ∂ρ1/∂t from Eqs. (2.19),
(2.18) and (2.16), respectively, gives

ρ0
∂2v

∂t2
= −∇

[

γp0

ρ0
[(v · ∇) ρ0 −∇ · (ρ0v)] − (v · ∇) p0

]

(2.21)

+
1

µ

[

∇× [∇× (v × B0)]
]

× B0 − g∇ · (ρ0v) .

Consider, now, the special case when motions v are two dimensional, v = (vx, 0, vz) and ∂/∂y = 0. Also,
note the following useful vector identity involving the equilibrium field B0 = B0ẑ,

[

∇× [∇× (v × B0)]
]

× B0 = (B2
0∇2vx, 0, 0). (2.22)
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Substituting Eq. (2.22) into Eq. (2.21) and noting that c2s = γp0/ρ0 yields

ρ0
∂2v

∂t2
= −∇

[

−ρ0c
2
s (∇ · v) − vz

dp0

dz

]

+
B2

0

µ

(

∇2vx

)

x̂ − g

[

ρ0 (∇ · v) + vz
dρ0

dz

]

. (2.23)

Using the equilibrium condition (2.11), collecting together the vector components x̂ and also for the com-
ponent ẑ and noting that the square of the Alfvén speed is c2A = B2

0/µρ0 and g = gẑ, then Eq. (2.23) can
be rewritten as

∂2v

∂t2
=

[

c2s
∂

∂x
(∇ · v) + c2A∇2vx + g

∂vz

∂x

]

x̂ +

[

c2s
∂

∂z
(∇ · v) +

(

ρ0c
2
s

)′

ρ0
(∇ · v) − g

∂vx

∂x

]

ẑ. (2.24)

Consider the term (ρ0c
2
s )

′:

(

ρ0c
2
s

)′
= ρ′0c

2
s + ρ0

(

c2s
)′

= ρ′0
γp0

ρ0
+ ρ0γ

(

ρ0p
′
0 − ρ′0p0

ρ2
0

)

. (2.25)

Using the equilibrium condition (2.11) that p′0 = gρ0, then this can be written in the form;

ρ′0
γp0

ρ0
+ ρ0γ

(

ρ0p
′
0 − ρ′0p0

ρ2
0

)

= γgρ0, (2.26)

and so
(

ρ0c
2
s

)′

ρ0
= γg. (2.27)

Separating Eq. (2.24) into two coupled differential equations and using the result (2.27), then the differential
equations describing two dimensional perturbations in a vertically stratified plasma, in a uniform magnetic
field B0ẑ, given first by Ferraro and Plumpton (1958), are:
(

c2A (z)
∂2

∂z2
+ c2f (z)

∂2

∂x2
− ∂2

∂t2

)

vx +

(

c2s (z)
∂

∂z
+ g

)

∂vz

∂x
= 0, (2.28)

(

c2s (z)
∂

∂z
+ (γ − 1) g

)

∂vx

∂x
+

(

c2s (z)
∂2

∂z2
+ γg

∂

∂z
− ∂2

∂t2

)

vz = 0, (2.29)

where c2f (z) = c2s (z)+c2A (z). When g = 0 then Eqs. (2.28) and (2.29) combine to give the single ordinary
differential equation (1.52) discussed in Chapter 1.

Stretching

In this study the longitudinal wave motions are crucial. The longitudinal motions are associated with
the slow magnetoacoustic mode (Cowling, 1976) so with this in mind a coordinate scaling is introduced.
Following Roberts (2006), the scaling is

x = εX, z = Z, t = T, vx = εux, vz = uz. (2.30)

Under the scaling, given by Eq. (2.30), the longitudinal motions are dominant over the transverse motions
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for ε� 1, hence |vx| � |vz |. Under the scaling (2.30) the differential operators become

∂

∂x
=

1

ε

∂

∂X
,

∂2

∂x2
=

1

ε2
∂2

∂X2
. (2.31)

Substituting this scaling into Eqs. (2.28) and (2.29) then the form of Eq. (2.29) is unchanged, but Eq. (2.28)
becomes

c2f
∂2ux

∂X2
+

[

c2s
∂

∂z
+ g

]

∂uz

∂X
= ε2

[

∂2

∂T 2
− c2A

∂2

∂Z2

]

ux. (2.32)

For ε� 1 (making the z-direction dominant) then

c2f
∂2ux

∂X2
+

[

c2s
∂

∂z
+ g

]

∂uz

∂X
= 0. (2.33)

Integrating Eq. (2.33) with respect to X and return to the original variables the rescaled equation is:

c2f
∂vx

∂x
+

(

c2s
∂

∂z
+ g

)

vz = 0. (2.34)

Finally, eliminating ∂vx/∂x between Eqs. (2.29) and (2.34) yields the single ordinary differential equa-
tion

∂2vz

∂t2
+

[

c4s
c2f

− c2s

]

∂2vz

∂z2
+

[

c2s

(

c2s
c2f

)′

− γg

(

1 − c2s
c2f

)

]

∂vz

∂z
(2.35)

+

[

(γ − 1)
g2

c2f
− c4s
c4f

g

Λ0
− c2s
c2f
g
ρ′0
ρ0

]

vz = 0.

Consider each coefficient of Eq. (2.35) in turn. The second derivative of vz with respect to z has the
coefficient:

c4s
c2f

− c2s = −c
2
s c

2
A

c2f
= −c2T. (2.36)

The ∂vz/∂z term can be simplified by considering c2f /c2s in the following form.

c2f
c2s

= 1 +
B2

0

µγp0
, (2.37)

so the derivative is
(

c2f
c2s

)′

= −B
2
0

µγ

(

p′0
p2
0

)

. (2.38)

Furthermore, this derivative simplifies using the equilibrium condition, Eq. (2.11), to give

(

c2f
c2s

)′

= −ρ0
c2A
c2s

g

p0
= −γg c

2
A

c4s
. (2.39)
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From Eq. (2.39) the following derivative is obtained

(

c2s
c2f

)′

= −
(

c2f /c
2
s

)′

c4f /c
2
s

= γg
c2A
c4f
. (2.40)

Substituting the result (2.40) into the coefficient for ∂vz/∂z the coefficient of the first derivative term in
Eq. (2.35) gives:

c2sγg
c2A
c4f

+ γg
c2s
c2f

− γg = γg
c2A
c2f

(

1 − c2s
c2f

)

= −γg c
4
T

c4s
. (2.41)

The coefficient of the vz term is

−c
2
sg

c4f

(

c2f
)′

+ (γ − 1)
g2

c2f
. (2.42)

Consider (c2f )
′:

(

c2f
)′

=
(

c2s
)′

+
(

c2A
)′

=
γρ0p

′
0

ρ2
0

− γρ′0p0

ρ2
0

− B2
0

µρ0

ρ′0
ρ0
. (2.43)

Using the equilibrium condition (2.11), this simplifies to give

γρ0p
′
0

ρ2
0

− γρ′0p0

ρ2
0

− B2
0

µρ0

ρ′0
ρ0

= γg − c2s
ρ′0
ρ0

− c2A
ρ′0
ρ0

=
c2s
Λ0

− c2f
ρ′0
ρ0
. (2.44)

Substituting Eq. (2.44) into the coefficient for vz given by Eq. (2.42) gives

c2T
c2A

(

ω2
g +

c2T
c2s

g

Λ0

)

, (2.45)

with ωg being the Brunt-Väisälä buoyancy frequency given by

ω2
g = g

(

ρ′0
ρ0

− g

c2s

)

. (2.46)

Putting all the coefficients together the single ordinary differential equation describing the motion of vz

along the z-axis is derived (Roberts, 2006):

∂2vz

∂t2
− c2T

∂2vz

∂z2
− γg

c4T
c4s

∂vz

∂z
+

[

c2T
c2A

(

ω2
g +

c2T
c2s

g

Λ0

)]

vz = 0. (2.47)

Transformation

At this point it is convenient to consider a transformation

vz(z, t) = f(z)Q(z, t), (2.48)

with the aim of casting Eq. (2.47) into the Klein-Gordon form; i. e. f(z) is chosen such that the sum of all
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the first derivatives in Q(z, t) is zero. The differential operators (with respect to z) become

∂vz

∂z
= f ′Q+

∂Q

∂z
f,

∂2vz

∂z2
= f ′′Q+

∂2Q

∂z2
+ 2f ′

∂Q

∂z
. (2.49)

Substituting the transformation (2.48) into Eq. (2.47) gives

f
∂2Q

∂t2
− c2T

[

f ′′Q+ f
∂2Q

∂z2
+ 2f ′

∂Q

∂z

]

− γg
c4T
c4s

[

f ′Q+
∂Q

∂z
f

]

(2.50)

+

[

c2T
c2A

(

ω2
g +

c2T
c2s

g

Λ0

)]

fQ = 0.

From Eq. (2.50), the sum of all first derivatives in Q(z, t) is zero if f(z) is chosen such that

−2c2Tf
′(z) − γg

c4T
c4s
f(z) = 0. (2.51)

Rewriting this equation for f(z), the first order separable differential equation is obtained:

f ′(z) = − γg

2c2T

c4T
c4s
f(z) = −1

2
γg

c2T
c2sγgΛ0

f(z) = − c2T
2Λ0c2s

f(z). (2.52)

In the acoustic case (Lamb, 1932), cT = cs so

f ′ =
1

2Λ0
f, (2.53)

with solution f(z) = f(0)e(n(z)/2), with n(z) defined in Eq. (2.13). Hence,

f2(z) = f2(0)
p0(z)

p0(0)
= f2(0)

ρ0(0)c
2
s (0)

ρ0(z)c2s (z)
, (2.54)

and so

f(z) =

(

ρ0(0)c
2
s (0)

ρ0(z)c2s (z)

)1/2

. (2.55)

This suggests for the slow mode case considered here, the transformation function is expected to be of the
form (Roberts, 2006)

f(z) =

(

ρ0(0)c
2
T(0)

ρ0(z)c2T(z)

)1/2

. (2.56)

In fact Eq. (2.56) may be verified as a solution of Eq. (2.52). Consider f 2(z),

f2(z) =

(

ρ0(0)c
2
T(0)

ρ0(z)c2T(z)

)

⇒ 2f ′f = −
(

ρ0(0)c
2
T(0)

ρ0(z)c2T(z)

)

[

ρ′0c
2
T + ρ0

(

c2T
)′
]

; (2.57)
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after some rearranging the equation for f 2(z) becomes

2f ′

f
= −

[

ρ′0
ρ0

+

(

c2T
)′

c2T

]

. (2.58)

Consider, now, each term in Eq. (2.58) individually.

ρ′0/ρ0 follows directly from Eq. (2.27):

(

ρ0c
2
s

)′

ρ0
= γg, (2.59)

that is,

(ρ′0/ρ0) c
2
s +

(

c2s
)′

= γg. (2.60)

Since c2s = γgΛ0, then
(

c2s
)′

= γgΛ′
0 and so

ρ′0
ρ0

=
γg − γgΛ′

0

γgΛ0
=

1 − Λ′
0

Λ0
. (2.61)

Also, the term
(

c2T
)′
/c4T can be calculated by writing

1

c2T
=

1

c2s
+

1

c2A
=

1

γgΛ0
+
ρ0µ

B2
0

, (2.62)

thus,

(

1

c2T

)′

= −
(

c2T
)′

c4T
= −

(

c2s
)′

c4s
−
(

c2A
)′

c4A
= − Λ′

0

Λ0c2s
+
ρ′0
ρ0

1

c2A
. (2.63)

This gives

(

c2T
)′

c2T
=

(

ρ′0
ρ0

1

c2A
− Λ′

0

Λ0c2s

)

c2T. (2.64)

Putting all the terms of Eq. (2.58) together gives

f ′

f
= −

[

c2s
c2A

(1 − Λ′
0) + Λ′

0 −
c2s
c2A

(1 − Λ′
0)

]

c2T
2Λ0c2s

= − c2T
2Λ0c2s

. (2.65)

Hence, Eq. (2.56) has been verified as a solution of Eq. (2.52).

By substituting Eq. (2.56) into Eq. (2.50) then

∂2Q

∂t2
− c2T

∂2Q

∂z2
+ c2T

[

c4T
4Λ2

0c
4
s

+

(

c2T
2Λ0c2s

)′

+
1

c2A

(

ω2
g +

c2T
c2s

g

Λ0

)

]

Q = 0. (2.66)

This is the Klein-Gordon equation for slow modes propagating in a vertically stratified atmosphere, embed-
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ded in a uniform vertical magnetic field; it may be written in the form

∂2Q

∂t2
− c2

∂2Q

∂z2
+ Ω2Q = 0, (2.67)

where c = cT and

Ω2 = c2T

[

1

4Λ2
0

(

cT
cs

)4

+
1

2
γg

(

c2T
c4s

)′

+
1

c2A

(

ω2
g +

g

Λ0

c2T
c2s

)

]

, (2.68)

with ω2
g given by Eq. (2.46). Eq. (2.67) was first obtained by Roberts (2006).

Now consider the case of a strong magnetic field, cA � cs, which is equivalent to the low-β plasma of
the corona. In this limit

c2T =
c2sc

2
A

c2f
' c2s c

2
A

c2A
= c2s , (2.69)

and so the consequence of this on Eq. (2.68) is

Ω2 ' c2s

[

1

4Λ2
0

+
1

2
γg

(

1

c2s

)′
]

=
c2s

4Λ2
0

(1 − 2Λ′
0) (2.70)

which is the squared acoustic cutoff frequency first derived by Lamb (1909, 1932) for a medium with no
magnetic field. So in the limit of a strong magnetic field, the slow wave equation becomes the acoustic
Klein-Gordon equation

∂2Q

∂t2
− c2s

∂2Q

∂z2
+ Ω2Q = 0, (2.71)

with the cutoff term Ω2 given by Eq. (2.70).

In the limit of zero gravity then the scale height Λ0 becomes infinite. It is clear that in this limit the cutoff
term is identically zero. The zero gravity case simply gives the one-dimensional wave equation. Therefore,
one can conclude that the significant effects due to the inclusion of gravity are the presence of the cutoff
term, Ω, and the amplitude factor f(z) which relates vz and Q. These effects are considered in the next
Section for the simple case when cs and Ω are constants.

2.2.1 Acoustic Oscillations in an Isothermal Coronal Loop

The simplest way to illustrate the effect of stratification under gravity is to consider a uniform medium for
which the propagation speed c and the cutoff frequency Ω are constants. The acoustic case of an isothermal
medium with constant temperature T0 and scale height Λ0 is such an example. In the acoustic case, the
density profile ρ0(z) has an exponential profile. By writingQ (z, t) = Q (z) exp(iωt), for a general Fourier
component ω, then the Klein-Gordon equation (2.67) reduces to

d2Q

dz2
+

(

ω2 − Ω2

c2

)

Q = 0. (2.72)
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Eq. (2.72) has the simple solution

Q(z) = A sin(kz) +B cos(kz), (2.73)

where

ω2 = k2c2 + Ω2. (2.74)

Consider a coronal loop, of length l = 2L that is symmetric about its apex at z = 0 and the loop
footpoints are at z = ±L. Using symmetry about the loop apex to consider just half of the loop, from
z = 0 at the apex to z = L at the footpoint, stabilises the loop model as there is no heavier, more dense
plasma lying above lighter plasma (Rayleigh-Taylor instability). The standing waves have vz = 0 at the
footpoint of the loop (z = L) and as f 6= 0 this is equivalent to satisfyingQ = 0. It is convenient to discuss
the odd and even modes separately. The even (standing) modes of oscillation satisfy Q = 0 at the loop
footpoint, z = L, and also dQ/dz = 0 at the loop apex z = 0. The even modes of oscillation are of the
form

Q(z) = C cos(kz). (2.75)

The footpoint condition Q(z = L) = 0 gives kL =
(

n+ 1
2

)

π, where n = 0, 1, 2, . . .. Through Eq. (2.74),
this gives the even mode frequencies ω = ω2n+1 satisfying

ω2
2n+1 = Ω2 +

(2n+ 1)
2
π2c2

l2
= Ω2 +

(

n+ 1
2

)2
π2c2

L2
. (2.76)

The case n = 0 gives the fundamental mode of oscillation of the loop, n = 1 produces the harmonic ω3

etc.

Now consider the odd modes of oscillation, which have a node at the loop apex, so Q = 0 at the apex
z = 0 and also at the footpoint z = L. This gives

Q(z) = D sin(kz) (2.77)

with kL = nπ. The odd modes have frequency ω = ω2n given by

ω2
2n = Ω2 +

4n2π2c2

l2
= Ω2 +

n2π2c2

L2
. (2.78)

The case n = 1 gives the frequency ω2, or the first harmonic of the fundamental mode of the loop as a
whole.

The solutions of dimensionless frequency (ω/Ω) for the dispersion relations, given in Eqs. (2.76) and
(2.78), are shown in Fig. 2.2 as a function of dimensionless length (L/Λ0). The frequency of all the modes
tend to the acoustic cutoff frequency as L/Λ0 → ∞, the main consequence of the inclusion of gravity.
This is dispersion, introduced by the non-zero gravity term. The coronal loop oscillates at some frequency
ω > Ω for any loop half-length L. If gravity were not present then ω > 0. The effect of gravity, therefore,
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Figure 2.2: Dispersion diagram for the standing acoustic modes in an isothermal atmosphere. Here ω is
the frequency of the acoustic mode, measured in units of the coronal cutoff frequency Ω = Ω0 = Ωc, and
L/Λ0 is the dimensionless half-length of the loop in units of the pressure scale height Λ0. The dashed
curves are the odd modes given by Eq. (2.78) and the solid curves are the even modes given by Eq. (2.76).

Figure 2.3: First four eigenfunctions of vz(z, t = 0). The loop apex is at z = 0 and the loop footpoint here
is at z/Λ0 = 5. Here, cs = 150 km s−1 and g = 274 m s−2.
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introduces a natural timescale to the system, determined by Ω.

Figure 2.4: The solid line indicates the period of the ω1 mode (the even mode with n = 1), measured
in units of the acoustic cutoff period Pg = 2π/Ω, varying with increasing loop half-length, L/Λ0 in a
stratified atmosphere (given by Eq. (2.81)). Here, cs = 150 km s−1 and g = 274 m s−2. The dashed line
indicates the equivalent dimensionless period in a uniform atmosphere for which g = 0 and Ω = 0 (given
by Eq. (2.80)).

A further consequence of gravity is amplification by stratification. This effect is illustrated by giving
a plot, in Fig. 2.3, of the first four eigenfunctions for vz suppressing the factor eiωt. The presence of
gravity causes acoustic waves to decrease exponentially in amplitude with increasing z which equates to
an increase in amplitude with actual height. This amplitude factor can be derived from the transformation
function given in Eq. (2.56):

f(z) = exp

(

− z

2Λ0

)

, (2.79)

where Λ0 is the isothermal coronal pressure scale height.

Also, the presence of gravity causes a reduction in the period of an oscillation, that varies as loop half-
length. Consider the mode ω2, with period P2. The period of an oscillation is given by

P =
2π

ω
, (2.80)

so using the dispersion relation for the odd modes, given in Eq. (2.78), an expression for the period is
derived:

P =
2πL

√

Ω2L2 + n2π2c2s
, (2.81)

where cs is the isothermal coronal sound speed, a constant. Allowing the acoustic cutoff term to vanish,
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effectively letting g → 0, then the expression for the period given in Eq. (2.81) reduces to

P =
2L

ncs
. (2.82)

It is clear, from Eq. (2.81) and Fig. 2.4, that the period of an acoustic oscillation in an atmosphere stratified
under gravity is less than the same oscillation occurring in an atmosphere in the absence of gravity. This
is shown by plotting the period of the fundamental mode (n = 0), shown in Fig. 2.4, compared to the case
when g → 0.

2.3 Effect of a Lower Layer

Having studied the basic effect of the inclusion of gravity in acoustic coronal loop oscillations, it is conveni-
ent to progress to study the effect of including additional structure along the stratified loop model. Consider
a loop of coronal extent l = 2L, with footpoints embedded in a cool, dense chromospheric layer each of
extent h (see Fig. 2.5). The total length of the loop is 2(L + h). The loop is symmetric about its apex, at
z = 0, so only half the loop needs to be considered. Furthermore, as gravity is assumed to be constant, the
loop, and its embedded footpoints can be straightened, with the z-axis along the loop.

z=0z=−L z=+L

h h

Figure 2.5: The two layer model for a straightened coronal loop, with a lower dense and cool chromospheric
layer. The coronal part of the loop is of total extent 2L, below which is a chromospheric base of extent h.
The total loop length is 2(L+ h).

Consider acoustic waves propagating vertically to investigate the role of the longitudinal structuring. The
structure is defined by modelling the coronal sound speed cs(z). By defining two regions, each of different
sound speed, a model corona with cs(z) = cc(z) and a cool, dense photosphere-chromosphere region with
cs(z) = cch(z) are created. This has consequences on the acoustic cutoff term Ω(z), which will differ in
each region, depending on the form of cs(z) and the pressure scale height Λ0(z).

The Klein-Gordon equation for a two layer system (see Fig. 2.5) is formulated by the following:

cs(z) =







cc(z), corona

cch(z), chromosphere.
(2.83)

The pressure scale height has the form
(

Λ0(z) = c2s (z)/ (γg)
)

Λ0(z) =







Λc(z), corona

Λch(z), chromosphere,
(2.84)
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and the acoustic cutoff becomes

Ωs(z) =







Ωc(z), corona

Ωch(z), chromosphere,
(2.85)

with the particular form following from Eq. (2.70) and the exact form of the sound speed. Eq. (2.72) for
Q(z) may be written in the form

d2Q

dz2
+ k2(z)Q = 0, (2.86)

where

k2(z) =















k2
c (z) =

ω2 − Ω2
c(z)

c2c(z)
, corona

k2
ch(z) =

ω2 − Ω2
ch(z)

c2ch(z)
, chromosphere.

(2.87)

To begin the study, consider the simplifications applied in Section 2.2.1, namely an isothermal coronal
loop, of temperature Tc, with a chromospheric base layer of temperature Tch. This makes the forms of
cs(z), Λ0(z) and Ω(z) step functions, where cc, cch, Λc, Λch, Ωc and Ωch are all constants.

2.3.1 Finite Lower Layer: The Chromosphere

The first case for consideration is that of a finite depth of chromosphere, of extent h (see Fig. 2.5). The
coronal extent of the loop is 2L with two chromospheric footpoints each of extent h. The total loop length
is therefore 2(L+ h). However, this can be simplified by considering only half the loop, as it is symmetric
about its apex at z = 0 (this condition also stabilises the structure, as mentioned before). So the loop
half-length is L+ h and the footpoint end lies at z = L+ h.

Eq. (2.86) is solved for Q(z) with k2(z) given by Eq. (2.87). The function k(z) has two values, kc in the
coronal region and kch in the chromospheric layer. The general solution for Q(z) in this two layer model is

Q(z) =







ac sin(kcz) + bc cos(kcz), 0 ≤ z ≤ L,

ach sin(kchz) + bch cos(kchz), L < z ≤ L+ h.
(2.88)

For typical parameters, coronal temperature Tc = 1 MK and a chromospheric temperature Tch = 10000

K, then the sound speeds are cc = 150 km s−1 and cch = 15 km s−1. Consequently, Λc = 50 Mm and
Λch = 500 km, giving the acoustic cutoff period for the corona to be Pc = 2π/Ωc ' 70 minutes, and the
chromospheric cutoff period to be Pch = 2π/Ωch ' 7 minutes. Observations by Wang et al. (2006) have
shown that the slow mode in hot coronal loops, excited by an internal nanoflare, oscillates with a period
around 10−30 minutes, so the modes would be evanescent in the chromosphere, though propagating in the
corona.

Consider, now, the appropriate boundary conditions. There are four constants, ac, bc, ach, bch. This
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means that four boundary conditions are required. The line-tying conditions are,

Q(0) = 0, Q(L+ h) = 0. (2.89)

These two conditions enforce nodes at the loop apex z = 0 and at its footpoint z = L+ h. This models the
odd standing modes of oscillation of the loop as a whole. For the even modes the first of the conditions in
Eq. (2.89) is altered to become

∂Q

∂z
(z = 0) = 0. (2.90)

The first two conditions have simple consequences on Eq. (2.88):

Q(z) =







ac sin (kcz) , corona,

ach sin
[

kch(z − (L+ h))
]

, chromosphere,
(2.91)

for the odd modes, and

Q(z) =







bc cos (kcz) , corona,

ach sin
[

kch(z − (L+ h))
]

, chromosphere,
(2.92)

for the even modes.

The third condition requires that the velocity perpendicular to the interface is conserved across the inter-
face,

n̂ · [v] = 0. (2.93)

As the model is one dimensional with no flows (v0 = 0), this translates to the conservation of velocity vz

across z = L; all motion is perpendicular to the interface. Also, as f(z) is continuous (because equilibrium
pressure p0 is continuous) then this condition is simply Q continuous across z = L. Considering the odd
modes then the condition is

ac sin(kcz) = ach sin(kch(z − (L+ h))), z = L.

Thus, for the odd modes

ac sin(kcL) + ach sin(kchh) = 0. (2.94)

The equivalent condition for the even modes is

bc cos(kcL) + ach sin(kchh) = 0. (2.95)

The final condition is the conservation of total plasma pressure across the interface z = L. Recall the
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differential equation (2.86), rewriting this using Eq. (2.87) gives

d2Q

dz2
= − ω2

c2s(z)
Q(z) +

Ω2(z)

c2s(z)
Q(z). (2.96)

Following the analysis of Roberts (1981b) and James (2003) the integral of Eq. (2.96) is considered over
the small neighbourhood of z = L, namely

∫ L+ε

L−ε

d2Q

dz2
dz = −

∫ L+ε

L−ε

ω2

c2s(z)
Q(z)dz +

∫ L+ε

L−ε

Ω2(z)

c2s(z)
Q(z)dz. (2.97)

James (2003) showed that this integral becomes the fourth boundary condition; the continuity of the total
plasma pressure across z = L,
[

dQ

dz
− 1

2Λ(z)
Q

]

z=L

= 0. (2.98)

Consider first the odd modes; note the definition of f(z) and f ′

(z) as being

f(z) = exp

(

− z

2Λ(z)

)

, f
′

(z) = − 1

2Λ(z)
f(z). (2.99)

Continuity of the total plasma pressure perturbation across the interface at z = L, given by Eq. (2.98), gives

ac

(

kc cos(kcL) − 1

2Λc
sin(kcL)

)

− ach

(

1

2Λch
sin(kchh) + kch cos(kchh)

)

= 0. (2.100)

Similarly, for the even modes,

bc

(

− 1

2Λc
cos(kcL) − kc sin(kcL)

)

+ bch

(

− 1

2Λch
sin(kchh) − kch cos(kchh)

)

= 0. (2.101)

This is a system of two equations for ach and ac; Eqs. (2.94) and (2.100) for the odd modes (and a
similar system for the even modes in Eqs. (2.95) and (2.101)). This can be solved by finding the zero of
the determinant of the matrix constructed by this system. This determinant gives the dispersion relation for
the odd modes of oscillation in a thin coronal loop structured in sound speed by a step function with two
distinct isothermal layers:

1

2

(

1

Λc
− 1

Λch

)

sin(kcL) sin(kchh) − kch sin(kcL) cos(kchh) (2.102)

−kc cos(kcL) sin(kchh) = 0.

Similarly, the dispersion relation for the even modes is

1

2

(

1

Λc
− 1

Λch

)

cos(kcL) sin(kchh) − kch cos(kcL) cos(kchh) (2.103)

+kc sin(kcL) sin(kchh) = 0.
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Here, Eqs. (2.102) and (2.103) are solved numerically. On non-dimensionalising the dispersion relations
four dimensionless parameters are apparent: ω/Ωc the dimensionless frequency, L/Λc the dimensionless
loop half-length, h/Λc the dimensionless chromospheric extent of the loop, and Λc/Λch the ratio of the
density scale heights in each region. The fourth parameter is effectively the ratio of the acoustic cutoff
frequencies in each region and in these computations it is set equal to 10. Any alteration in this parameter
only changes the upper cutoff value, allowing propagation further into the lower region.

Initially h/Λc is set close to zero to check that the dispersion relations given by Eqs. (2.102) and (2.103)
match the expected single layer model shown in Fig. 2.2. Fig. 2.6 shows the dimensionless frequencies for
the odd and even modes as a function of dimensionless loop half-length when h/Λc = 0.001L compared
to the isothermal case. These curves match exactly; however, they are cutoff by the presence of the lower
layer (not present for the dashed single layer curves).

Now consider the effect of other values of h/Λc. By considering a significant value of h/Λc, for example
h/Λc = 0.1L or h/Λc = 0.25L, then the effect of the inclusion of a lower layer can be investigated directly.
Fig. 2.7 shows that the oscillation is evanescent in the lower region, as L/Λc approaches zero, which is
shown by the frequency cutoff at ω/Ωc = 10. The dispersion introduced due to gravity is still apparent,
and the frequency oscillation tends to the acoustic cutoff frequency as L → ∞. However, comparing
Fig. 2.7 to Fig. 2.8, the inclusion of a lower layer has reduced the frequency of oscillation significantly.
Next, the effect of varying h/Λc is studied by fixing the value of L/Λc on the dimensionless frequency.

Fig. 2.9 shows that as h/Λc increases then the shift of the frequency from the isothermal case also
increases. Fig. 2.10 shows the percentage reduction in frequency (∆ω/ω) due to an increasing depth of
footpoint layer h/L when L/Λc = 2.5. It indicates that the shift is small for h/L � 1. Also, from
Fig. 2.10, the fundamental odd mode suffers a different shift due to the footpoint structure than the first
even mode. It is interesting to note that when h/Λc = 0 then the frequencies of all the modes matches the
frequencies given in Fig. 2.8 for L/Λc = 2.5. A simple structuring in density (by modelling a step function
in the sound speed) causes a shift in the frequency of oscillation in the acoustic (slow) mode.

Another interesting result is apparent in the eigenfunctions of vz , shown in Fig. 2.11. There is ampli-
fication due to stratification; however, there is no wave propagation in the chromospheric region. Also, as
the frequency of oscillation is shifted this suggests that the period is affected by the inclusion of a lower
layer. In particular, loops of length similar to the pressure scale height suffer a difference of almost 10%
in period in comparison to the single layer case. This model has assumed that the solution is propagating
in the lower, chromospheric region. However, typical parameters suggest that the frequency there is below
the acoustic cutoff, so it is now convenient to consider the case where evanescent solutions occur in the
chromospheric footpoints.
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Figure 2.6: Dispersion curves comparing the modes of oscillation of the two layer model (with h = 0.001L)
and the modes of the isothermal model. The modes of the two layer model are given by the solid curves and
the modes of the isothermal single layer model are shown by the dashed curves. Here Λ0 = Λc, Ω0 = Ωc

and Ωch = 10 Ωc.

Figure 2.7: Dispersion curves as a function of L/Λ0 for the two layer model with Λc/Λch = 10 (so the
dimensionless cutoff frequency Ωch in the chromosphere is 10 Ωc), when h/Λc = 0.1L. The solid curves
are the modes of oscillation in the two layer model and the dashed curves are the modes of the single layer
model. In the diagram Λ0 = Λc and Ω0 = Ωc.
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Figure 2.8: As in Fig. 2.7 but with h/Λc = 0.25L.

Figure 2.9: Diagram showing the effect of varying the dimensionless chromospheric extent, h/L, for a
fixed value of L/Λc = 2.5. (Here Λ0 = Λc).
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Figure 2.10: Diagram highlighting how ∆ω/ω = (ωh − ωh=0) /ωh=0 varies with varying footpoint extent
h/L. Here the solid line represents the variation in frequency of the first odd mode and the dashed line
represents the first even mode. L/Λc = 2.5 in this diagram.

Figure 2.11: Global eigenfunctions vz = v(z)eiωt for the two finite isothermal layers, simulating a dense
chromosphere. Here cs = 150 km s−1, cch = 15 km s−1 and h = 0.1L. The loop apex is at z = 0
and the loop footpoint is at z/Λ0 = 5.5. The solid vertical line at z/Λ0 = 5 indicates the extent of the
chromosphere (from z/Λ0 = 5 to z/Λ0 = 5.5).
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2.3.2 Evanescent Lower Layer

Prompted by the previous findings, the model is altered to account for the evanescent lower layer. New
notation is introduced, for convenience, with κ2

ch = −k2
ch, and the solution for Q is rewritten in the form,

Q(z) =







ac sin(kcz) + bc cos(kcz), 0 ≤ z ≤ L,

ach sinh(κchz) + bch cosh(κchz), L < z ≤ L+ h.
(2.104)

If κch is real (k2
ch < 0) then the motion in the chromospheric layer is generally evanescent; the chromo-

sphere is behaving as a ‘brick wall’ to wave motions in comparison to the corona. Implementing the same
boundary conditions as before at the base and apex the solution becomes

Q(z) =







ac sin (kcz) , 0 ≤ z ≤ L

ach sinh (κch (z − (L+ h))) , L < z ≤ L+ h.
(2.105)

Deriving the dispersion relations for the odd and even modes in the same way as before, gives,

1

2

(

1

Λc
− 1

Λch

)

sin(kcL) sinh(κchh) − κch sin(kcL) cosh(κchh) (2.106)

−kc cos(kcL) sinh(κchh) = 0,

and

1

2

(

1

Λc
− 1

Λch

)

cos(kcL) sinh(κchh) − κch cos(kcL) cosh(κchh) (2.107)

+kc sin(kcL) sinh(κchh) = 0.

Solving these relations numerically, determining the dimensionless frequency ω/Ω as a function of L/Λc,
gives the dispersion diagram shown in Fig. 2.12,

Fig. 2.12 together with Fig. 2.13 shows that although the frequency is unaltered by allowing for an
evanescent solution in the chromosphere, the propagation of the wave is. In particular, comparing Fig. 2.13
and Fig. 2.11 it is clear that the wave now propagates a small amount into the dense chromospheric region.
The shift in the frequency is the same as before, but now there is a finite amplitude of wave energy reaching
chromospheric depths. This raises the question of the extent to which the wave reaches in the dense lower
region.

2.3.3 Finite Lower Layer: Analytical Approximation for Small κchh

Dispersion relations (2.106) and (2.107) contain four intrinsic functions, the sin, the cos, the sinh and
the cosh functions. All of these are well known. By considering the reduction in the dispersion relation
for small h these four functions can be easily expanded for small arguments. Using this technique the
dispersion relations are expanded, and solved approximately for kcL when κchh � 1. Hence the allowed
values of ω are calculated for a thin chromospheric layer through Eq. (2.74).
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Figure 2.12: Dispersion diagram for the two layer model with h = 0.1L, allowing for an evanescent lower
layer. The solid curves indicate the real frequencies for the even and odd modes and the dashed curves
indicate the imaginary frequencies. Again the upper dot-dashed line indicates the chromospheric cutoff,
Ωch = 10 Ω0 (with Ω0 = Ωc).

Figure 2.13: As in Fig. 2.11 but with wave leakage allowed for. Notice the wave motion is evanescent in
the chromospheric region.
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The two layer dispersion relation for this model for an isothermal coronal loop, stratified under gravity,
with a thin, dense, cool chromospheric layer of depth h at the base and a rare, hot coronal part of length L
has already been derived. The dispersion relation for the odd and even modes are given in Eqs. (2.106) and
(2.107), respectively. Consider the odd modes, described by Eq. (2.106). This can be written as a function
of ω and h,

f (ω, h) =
1

2

(

1

Λc
− 1

Λch

)

sin(kcL) sinh(κchh) − κch sin(kcL) cosh(κchh)

−kc cos(kcL) sinh(κchh). (2.108)

Consider the terms sinh (κchh) and cosh (κchh). By writing κchh = x and κch(h = 0) = x0, then the
trigonometric terms can be expanded as a Taylor series. In fact, as x0 = 0, then this is the MacLaurin series
for sinh(x) and cosh(x). Thus,

sinh(x) ' x+
x3

3!
+ . . . cosh(x) ' 1 +

x2

2!
+ . . . (2.109)

around x = 0.

By making the assumption that κchh � 1, then Eq. (2.108) is simplified using these series expansions.
Instead of expanding around h = 0, the expansion is around κchh → 0 instead. The series expansions of
sinh and cosh become, to second order,

sinh (κchh) ' κchh

(

1 +
κ2

chh
2

3!

)

, cosh (κchh) ' 1 +
κ2

chh
2

2!
, (2.110)

and as κchh is small, then the squared terms can be neglected. This leaves the dispersion relation approx-
imating to

f (ω, h→ 0) ' 1

2

(

1

Λc
− 1

Λch

)

κchh sin (kcL) − κch sin (kcL) − kcκchh cos (kcL) . (2.111)

Recall the matching condition across z = h: f = 0, where f refers to Eq. (2.108), also recall the single
layer dispersion relation

sin(kcL) = 0, (2.112)

which has solutions kcL = nπ.

In the single layer model, the solution to the dispersion relation is given by Eq. (2.112). In the two layer
model, as h→ 0 it is expected the solutions will be of the form,

kcL ' nπ + Cn, (2.113)

where Cn is some small correction, and dependent on κchh. When solving for kcL, one can represent
Eq. (2.108) implicitly as a function of kcL, multiplying by L throughout to keep any term with kc as a
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product with L,

sin (kcL) ' κchh

κchL

(

L

2

(

1

Λc
− 1

Λch

)

sin (kcL) − kcL cos (kcL)

)

. (2.114)

Notice that if h = 0 then the case (2.112) is returned to. Substituting in Eq. (2.113) for kcL then
Eq. (2.114) can be manipulated to find Cn in terms of h and L. So

sin(nπ + Cn) '
κchh

(

1
2κch

(

1
Λc

− 1
Λch

)

sin(nπ + Cn) − (nπ+Cn)
κchL cos(nπ + Cn)

)

. (2.115)

Using the standard identities for sin(a+ b) and cos(a+ b), and noting Cn → 0, then

sin(nπ + Cn) = sin(nπ) cos(Cn) + cos(nπ) sin(Cn),

sin(Cn) ' Cn,

⇒ sin(nπ + Cn) ' (−1)nCn. (2.116)

Similarly,

cos(nπ + Cn) ' (−1)n. (2.117)

Substituting these expressions into Eq. (2.115) gives,

(−1)nCn ' κchh

(

1

2κch

(

1

Λc
− 1

Λch

)

(−1)nCn − (nπ + Cn)

κchL
(−1)n

)

. (2.118)

Neglecting products of κchhCn, due to the assumptions that both κchh and Cn are small, this simplifies to
obtain

Cn ≈ −nπ h
L
. (2.119)

Putting Eq. (2.119) into Eq. (2.113) then the approximate solution to the dispersion relation is,

kcL = nπ

(

1 − h

L

)

. (2.120)

Using this solution in the dispersion relation for ω = ω/Ωc, where

ω2 =
c2ck

2
c

Ω2
c

+ 1, (2.121)

the corrected dispersion relation in a two layer system for the odd modes is obtained (James, 2003):

ω2 =
c2cπ

2n2

Ω2
cL

2

(

1 − 2h

L

)

+ 1; (2.122)
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similarly, for the even modes:

ω2 =
c2cπ

2
(

n+ 1
2

)2

Ω2
cL

2

(

1 − 2h

L

)

+ 1. (2.123)

Recall that this approximation holds when κchh � 1. Again, note that as h = 0 the original case is re-
covered. Fig. 2.14 compares the analytical approximation, given by Eq. (2.122), and the numerical solution
of the dispersion relations (2.106) and (2.107).

Figure 2.14: Dispersion curves as a function of L/Λ0 for the two layer model with an evanescent lower
region. Here Λc/Λch = 10 and h/L = 0.1 with Λ0 = Λc and Ω0 = Ωc. The solid curves are the numerical
solution of the dispersion relations (2.106) and (2.107) and the dashed curves are the approximate solutions
given by Eqs. (2.122) and (2.123).

The approximation κchh � 1 can be studied a little more in detail. In fact the approximation can be
written as

h

2Λch
' τchω, (2.124)

where τch is the chromospheric travel time of the wave. The condition in Eq. (2.124) indicates the regime
where the analytical approximation holds. Indeed, typical solar values for the chromosphere of T = 10000

K and h = 1 Mm give τchω ≈ O(1), so the assumption holds if h ' 2Λch. That means the depth of
the wave motion into the chromospheric layer is of order 2Λch, explaining the disappearing wave energy
shown by Fig. 2.13; in Fig. 2.13, the value of Λch = 0.01Λc.

2.3.4 Infinite Lower Layer: The Solar Interior

So far, it is apparent that the lower layer, the chromosphere, is evanescent in nature, with regards to the
coronal acoustic oscillations. Is this a consequence of the boundary conditions enforced in the lower layer?
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Consider, now, an infinite lower layer to fully understand the effect of a longitudinal step-like structure in
density.

Consider again an evanescent chromosphere, but now of infinite depth. The loop apex is at z = 0 and
the loop footpoint is at z = L (with 0 ≤ z ≤ L being the coronal extent of the loop); the chromosphere or
solar interior (z > L) now extends to z = ∞. The solution to Eq. (2.86) is:

Q(z) =







ac sin(kcz) + bc cos(kcz), corona,

ach exp(κchz) + bch exp(−κchz), interior.
(2.125)

Using the boundary conditions of zero motion at z = ∞ to model line tying, and the same boundary
conditions at the loop apex for odd and even modes together with the matching conditions across z = L,
the interface between solar interior and the corona (also unchanged from before) then the solution modelling
the global odd modes is

Q(z) =







ac sin (kcz) , corona,

bch exp (−κchz) , interior.
(2.126)

The dispersion relation for the odd modes of oscillation for a two layer system, with an infinite lower
(interior) layer is:

1

2

(

1

Λc
− 1

Λch

)

sin(kcL) − κch sin(kcL) − kc cos(kcL) = 0. (2.127)

Similarly, the dispersion relation for the global even modes is:

1

2

(

1

Λc
− 1

Λch

)

cos(kcL) − κch cos(kcL) − kc sin(kcL) = 0 (2.128)

where Λc is the coronal density scale height, Λch is the interior density scale height, kc is the coronal
wavenumber and κch is the wavenumber in the interior region z > L.

Solving Eqs. (2.127) and (2.128) numerically gives the dimensionless frequency as L/Λc varies. The
dispersion diagram is shown in Fig. 2.15. From this diagram the frequency of an oscillation for a given loop
half-length is found and the eigenfunctions can be plotted. Here, the eigenfunctions of the acoustic modes
of an isothermal coronal loop, embedded in an infinite depth of evanescent chromosphere are displayed in
Fig. 2.16.

Fig. 2.15 indicates that the frequency is further shifted when considering an infinite solar interior. How-
ever, this is to be expected as the shift is proportional to the extent of the lower layer (as shown in Sec-
tion 2.3.3). Fig. 2.16 shows that the coronal extent of the eigenfunctions is affected very little by the extent
of the interior region. Again, this is to be expected as it has already been shown that the wave penetrates to
a depth of around 2Λch, so as long as the interior region has a greater depth than 2Λch then the form of the
eigenfunction remains reasonably consistent with the finite two layer model.
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Figure 2.15: Dispersion diagram for the two layer model, with an infinite lower layer. The solid curves
indicate the propagating modes, or the real frequencies, and the dashed curves indicate the evanescent
frequencies. Again the upper dot-dashed line indicates the solar interior cutoff term, Ωch = 10 Ω0 (with
Ω0 = Ωc).

Figure 2.16: As in Fig. 2.13, but with an infinite depth of chromosphere (interior) plasma.
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2.4 The Effect of Loop Inclination on Wave Propagation

Since the advent of TRACE many observations of propagating slow MHD waves in coronal loops exist (see,
for example, Robbrecht et al. (1999); De Moortel et al. (2000, 2002b); McEwan and De Moortel (2006)).
These propagating disturbances have periods that are significantly smaller than those of the fundamental
standing slow mode. In fact the mean period of propagating slow MHD waves in coronal loops, given in
McEwan and De Moortel (2006), is 284 s, very close to the 5 minute global p-mode period. In regions
of low temperature, where the pressure scale height, Λ, is much smaller than typical coronal values, the
situation of Ω > ω can arise in Eq. (2.72). Wave motions would be evanescent under such circumstances.
However, De Pontieu et al. (2003, 2004, 2005) have shown that the 5 minute coronal loop oscillations can
be driven by the global p-modes, of similar period, which have propagated up from the resonant cavity in
the solar interior along an inclined magnetic field.

In an isothermal medium the cutoff period, due to gravitational stratification, is given by (Lamb, 1909)

Pg =
2π

Ω
=

4csπ

γg (θ)
, (2.129)

where

g (θ) = g0 cos θ, (2.130)

with θ the angle of inclination of the coronal loop to the vertical, and g0 is the gravitational acceleration
in a vertical structure. For slow modes the cutoff period in a typical chromosphere is ≈ 7 minutes (see
Section 2.3.1) when gravity acts parallel to the loop. However, if gravity acts non-parallel then its effect is
reduced (Bel and Leroy, 1977). It has already been shown that some wave energy leaks into the chromo-
spheric region (Section 2.3.2) and it is now interesting to consider if this leakage can drive wave motions
in the upper solar atmosphere.

Inclination of the loop causes a reduction of the significance of gravity. By using a simple numerical
experiment it can be shown that loop inclination allows the propagation of waves, normally evanescent, to
continue propagating into the upper atmosphere. The Klein-Gordon equation (2.72), as before, describes
an isothermal plasma, stratified under gravity, in a region with parameters typical of the photosphere (e. g.
photospheric temperature of around 5000 K, giving a constant sound speed cs = 7.5 km s−1). However, in
this case the cutoff frequency Ω varies with loop inclination:

Ω (θ) =
γg (θ)

2cs
. (2.131)

Here, a predictor/corrector (MacCormack) method is used to solve the Klein-Gordon equation (2.71)
numerically, subject to the condition on the cutoff frequency given by Eq. (2.131). Details of the numerical
scheme are given in Appendix B. Numerically solving these equations, under photospheric conditions
of cs = 7.5 km s−2, γ = 5/3, g0 = 274 m s−2 and varying the inclination angle θ allows the effect
of inclination on the propagation of the waves to be measured. In fact, under photospheric conditions
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Figure 2.17: Time-space diagram for the simulation with cs = 7.5 km s−1, θ = 40 degrees and Pdrive =
300 s. The wave decays before reaching the far side of the box.

Figure 2.18: Time-space diagram for the simulation with cs = 7.5 km s−1, θ = 50 degrees and Pdrive =
300 s. Here, the wave propagates to the far side of the box.
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Eq. (2.129) gives the cutoff period, Pg, in seconds as

Pg =
206

cos θ
seconds. (2.132)

In this simulation waves are driven with a period of Pdrive = 300 s, which would give an angle of θ = 46.5

degrees analytically. This means that with θ around 45 degrees in the simulation, then Pdrive ≤ Pg, so
propagation of the waves into the upper atmosphere should be apparent.

Figs. 2.17 and 2.18 show the critical cases for θ equal to 40 and 50 degrees, respectively. In particular,
Fig. 2.17 indicates that the wave does not propagate when θ = 40 degrees. For this angle of θ, the period
of the driver Pdrive is still above the acoustic cutoff period Pg. However, Fig. 2.18 shows that for θ = 50

degrees, the wave propagates out the far side of the box, which is in agreement with the calculation given
in Eq. (2.132) as θ > 45 degrees.

De Pontieu et al. (2004, 2005) showed that these waves, leaking along inclined field lines, can reach a
resonance higher up in the atmosphere and drive the coronal oscillations that are readily observed using
TRACE. These simulations (similar to De Pontieu et al. (2005)) have indicated the role that gravity has to
play on allowing these oscillations to propagate into the corona, and how its role is significantly affected by
inclination.

2.5 Effect of a Variable Sound Speed, cs(z)

In reality the corona is not at a uniform temperature; in fact, it has a complex structure due to many factors.
An isothermal loop and a two layer isothermal loop have already been modelled. The next step towards a
more realistic loop model is to consider a continuously varying temperature, modelled by a linearly varying
function for the sound speed squared cs(z):

c2s (z) = c2apex (1 − αz) , (2.133)

where the constant α is related to the temperature gradient of the coronal loop. This model was discussed
briefly in James (2003), however, here the discussion is extended to include odd and even modes and the
numerical solutions are presented. The pressure scale height is Λ0(z) = Λ0(0) (1 − αz), and recall that
c2s (z) = γgΛ0(z). From Eq. (2.133), for α > 0, c2s decreases linearly with distance z > 0 from the loop
apex. At the loop apex, z = 0, the sound speed has value capex, decreasing to cbase at the loop base z = L,
with

c2base = c2apex (1 − αL) . (2.134)

Return now to the Klein-Gordon equation in its general form,

∂2Q

∂t2
− c2s (z)

∂2Q

∂z2
+ Ω2

s (z)Q = 0. (2.135)
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In this case of a continuously varying sound speed, given in Eq. (2.133), the form of the cutoff term, Ω2
s (z),

needs to be derived:

Ω2
s (z) =

c2s (z)

4Λ0 (z)
(1 − 2Λ′

0 (z)) =

(

γ2g2

4c2apex

+
γgα

2

)

1

(1 − αz)
, (2.136)

where a dash (′) denotes the derivative with respect to z. By writing u = (1 − αz) then the differential
operators become

d

dz
= −α d

du
,

d2

dz2
= α2 d

2

du2
. (2.137)

Substituting the new operators, given by Eq. (2.137), into Eq. (2.135) and considering a general Fourier
component in time

(

Q = Q(u)eiωt
)

yields

d2Q

du2
+

(

ω2

α2c20

1

u
− M0

α2c2apex

1

u2

)

Q = 0, (2.138)

where

M0 =
α2g2

4c2apex

+
γgα

2
. (2.139)

Using the further substitution s = u1/2, so that

d

du
=

1

2s

d

ds
&

d2

du2
=

1

4s2
d2

ds2
− 1

4s3
dQ

ds
,

then Eq. (2.138) becomes

1

4s2
d2Q

ds2
− 1

4s3
dQ

ds
+

ω2

α2c2apex

1

s2
Q− 4M0

α2c2apex

1

s2
Q = 0. (2.140)

By setting Q = sY (s) then

dQ

ds
= s

dY

ds
+ Y,

d2Q

ds2
= s

d2Y

ds2
+ 2

dY

ds
.

Hence, Eq. (2.140) becomes

d2Y

ds2
+

1

s

dY

ds
+

(

4ω2

α2c2apex

−
(

1 +
4M0

α2c2apex

)

1

s2

)

Y = 0. (2.141)

Finally, setting x = β0s so that

d

ds
= β0

d

dx
,

d2

ds2
= β2

0

d2

dx2
,
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then Eq. (2.141) becomes

d2Y

dx2
+

1

x

dY

dx
+

(

4ω2

α2c2apexβ
2
0

−
(

1 +
4M0

α2c2apex

)

1

x2

)

Y = 0, (2.142)

that is,

d2Y

dx2
+

1

x

dY

dx
+

(

1 − ν2

x2

)

Y = 0, (2.143)

where β0 has been chosen such that

β2
0 =

4ω2

α2c2apex

. (2.144)

Thus, the result is Bessel’s equation

x2 d
2Y

dx2
+ x

dY

dx
+
(

x2 − ν2
)

Y = 0 (2.145)

with

ν2 =
4M0

α2c2apex

+ 1 =

(

1 +
γg

αc2apex

)2

. (2.146)

Eq. (2.139) has been used in the above to simplify the expression for ν2.

Hence, Q(z) may be written in the form

Q(z) = (1 − αz)1/2
Cν

(

2ω

αcapex
(1 − αz)1/2

)

, (2.147)

with

ν = 1 +
γg

αc2apex

. (2.148)

Here Cν denotes a linear combination of the Bessel functions Jν and Yν .

2.5.1 Dispersion Relation For Linear Temperature Gradient Model

Next, consider the dispersion relations for the global odd and even modes. From Eq. (2.133) one can rewrite

α =
λ2 − 1

λ2L
, λ =

capex

cbase
. (2.149)

The general solution (2.147) can be written in the form

Q(z) = A1cs(z)Jν

(

2ω

αcapex

cs(z)

capex

)

+A2cs(z)Yν

(

2ω

αcapex

cs(z)

capex

)

, (2.150)
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where A1 and A2 are constants. The same boundary conditions as Section 2.2.1 are chosen to model the
global odd and even modes. For the odd global modes vz = 0 at the loop apex z = 0 and the loop footpoint
z = L. The first condition is equivalent to Q(0) = 0, and gives

A1Jν

(

2ω

αcapex

)

+A2Yν

(

2ω

αcapex

)

= 0. (2.151)

The second condition Q(L) = 0 gives

A1Jν

(

2ω

αcapex

cbase

capex

)

+A2Yν

(

2ω

αcapex

cbase

capex

)

= 0. (2.152)

These two boundary conditions yield the dispersion relation for acoustic global odd modes propagating in
a coronal loop with a linear temperature gradient (see James (2003)),

Jν (x)Yν (λx) − Yν (x) Jν (λx) = 0, (2.153)

where the arguments of the Bessel functions are:

x =
2ω

αcapex

cbase

capex
& λx =

2ω

αcapex
. (2.154)

In a similar way, the dispersion relation for the even modes, which satisfy Q = 0 at the base z = L and
have dQ/dz = 0 at the apex z = 0, is:

Jν (x)Yν (λx) − Yν (x) Jν (λx) + (λx) (Jν (x)Y ′
ν (λx) − Yν (x) J ′

ν (λx)) = 0, (2.155)

where (′) denotes the derivative of a Bessel function: Jν
′ = dJν(z )/dz, etc. The arguments of the Bessel

functions are again given by Eq. (2.154)

Eqs. (2.153) and (2.155) determine the dimensionless frequency ω/Ω0, measured here in units of the
apex cutoff frequency Ω0 = Ωs(z = 0) (given by Eq. (2.136)), for various values of λ = capex/cbase and
ν. As expected, for λ → 1, the dispersion relations given by Eqs. (2.153) and (2.155) numerically match
the single layer isothermal model, discussed in Section 2.2.1. This comparison is shown in Figs. 2.19 for
the odd and even modes.

Eqs. (2.153) and (2.155) are solved numerically. There is a three dimensional parameter space:

ω/Ω0, L/Λ0, λ, (2.156)

from which ω/Ω0 is determined given values for λ and L/Λ0. Initially, the value of λ = 10 is fixed and
L/Λ0 is varied; see Fig. 2.20. The general behaviour is similar to before, for an isothermal loop stratified
under gravity, with the dimensionless frequency decreasing to a finite value as the dimensionless length
increases. However, other effects are introduced by the presence of a temperature gradient.

The effect of a temperature gradient (λ > 1) is that the frequency is reduced significantly from the
isothermal case (λ = 1). If the value of L/Λ0 is fixed, for example L/Λ0 = 2.5 then the effect of a
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Figure 2.19: Diagram comparing the frequencies satisfying Eqs. (2.153) and (2.155) for the linear tem-
perature gradient model, with λ → 1, to the frequencies given by the isothermal single layer dispersion
relations for the odd and even modes with frequencies given by Eqs. (2.76) and (2.78. The solid curves are
the modes for the temperature gradient model and the dashed curves represent the isothermal model. Here
Λ0 = Λapex and Ω0 = Ωapex.

varying temperature gradient on the frequency of oscillation can be studied directly. Fig. 2.21 shows that a
small temperature gradient λ → 1 produces a sharp decrease in the frequency of oscillation for the higher
harmonics. However, for the first few harmonics, this shift is less pronounced (also apparent in Fig. 2.20),
with the fundamental frequency being increased slightly for small values of λ > 1. This shift, for all
harmonics, reaches a minimum constant value as λ→ ∞.

2.6 Transition Region Model

Consider the case where a fraction of the total coronal loop is governed by a linear temperature gradient,
whilst the remaining loop is isothermal. The linearly varying part is governed by Eq. (2.138) and its solution
Eq. (2.147), and simulates a transition region. The isothermal part is governed by Eq. (2.72) and its solution
Eq. (2.73) and represents the coronal part of the loop. The sound speed squared gives a piecewise function
of the form

c2s (z) =







c2apex, corona,

c2apex (1 − αz) , transition region.
(2.157)

By allowing the linear temperature gradient model to govern the system over, say, ∼ 10 − 20% of the total
loop length 2(m + c)L then a system modelling a coronal loop embedded in a transition region, with a
rapid temperature increase over a relatively short lengthscale is derived. Parameters such as α, λ and capex

have the same meaning as before. However, two new parameters must be introduced; m and c, where m
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Figure 2.20: Dispersion diagram for the frequencies of the standing acoustic modes, as a function of L/Λ0,
in a coronal loop with a linear temperature gradient. The loop apex is 10 times hotter than the base (λ = 10).
Here Λ0 = Λapex and Ω0 = Ωapex.

Figure 2.21: Dispersion diagram as a function of λ (ratio of apex temperature to base temperature) with
L/Λ0 = 2.5. The solid curves represent the odd modes and the dashed curves are the even modes.
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z=0

isothermal region

z=−cL z=+cL

mL mL

Figure 2.22: An illustration of the structure of the two layer model for a straightened coronal loop. The
blue section (transition region) has a linearly increasing temperature, from Tbase to Tapex and the isothermal
region has constant temperature Tapex. The coronal part of the loop is of total extent 2cL, the transition
region extent is mL at either end. The total loop length is 2L(m+ c), where m+ c = 1.

is the fraction of the total loop half-length in the transition region and c is the fraction that is isothermal;
m+ c = 1. See Fig. 2.22.

At the loop apex and footpoint the same boundary conditions as before are chosen, Q(0) = 0 and
Q(L) = 0 for the odd global modes; Q(L) = 0 and dQ/dz = 0 at z = 0 for the even global modes.
The matching condition across the z = cL interface, already derived in the isothermal two layer model in
Section 2.3, is also used. The following relations are derived: for the odd modes,

Q(0) = A1Jν

(

2ω

αcapex

)

+A2Yν

(

2ω

αcapex

)

= 0, (2.158)

Q(cL) =
cbase

capex
A1Jν

(

cbase

capex

2ω

αcapex

)

+
cbase

capex
A2Yν

(

cbase

capex

2ω

αcapex

)

,

Q(cL) = −B1 sin (kcL) ,

Q(L) = B1 sin (k (z − (m+ c)L)) = 0;

and for the even modes (satisfying Q′ (0) = 0),

Q(0) = A1Jν

(

2ω

αcapex

)

+A2Yν

(

2ω

αcapex

)

= 0, (2.159)

Q(cL) =
cbase

capex
A1Jν

(

cbase

capex

2ω

αcapex

)

+
cbase

capex
A2Yν

(

cbase

capex

2ω

αcapex

)

,

Q(cL) = −B2 cos (kcL) ,

Q(L) = B2 cos (k (z − (m+ c)L)) = 0.

Considering the odd modes, the first matching condition across the z = cL interface is that the velocity
is continuous. This is the same as Q(z) being continuous across the interface, giving

cbase

capex
A1Jν

(

cbase

capex

2ω

αcapex

)

+
cbase

capex
A2Yν

(

cbase

capex

2ω

αcapex

)

+B1 sin (kcL) = 0. (2.160)

The second matching condition, given in Section 2.3 by Eq. (2.98), is equivalent to
[

dQ

dz
− Q

2Λ (z)

]

z=cL

. (2.161)
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This gives the condition:
(

1 +
λ2

αΛapex

)(

A1Jν

(

2ω

αcapex

)

+A2Yν

(

2ω

αcapex

))

+ (2.162)
(

λ
2ω

αcapex

)(

Jν

(

2ω

αcapex

)

Y ′
ν

(

λ
2ω

αcapex

)

+ Yν

(

2ω

αcapex

)

J ′
ν

(

λ
2ω

αcapex

))

−

2λk

α
B1 cos (kcL) +

λ

αΛapex
B1 sin (kcL) = 0

From Eqs. (2.160) and (2.162), together with the conditions at z = 0 and z = L, the dispersion relation
for the odd modes travelling in a coronal loop stratified under gravity, with one part of the loop varying
linearly in temperature and the other part isothermal is obtained:

(Jν (x)Yν (λx) − Yν (x) Jν (λx))

(

−2λ2k

α
cos (kcL) − sin (kcL)

)

− (2.163)

(λx) sin (kcL) (Jν (x)Y ′
ν (λx) + Yν (x) J ′

ν (λx)) = 0,

where

x =
2ω

αcapex

cbase

capex
, λ =

capex

cbase
. (2.164)

Similarly, for the even modes,

(Jν (x)Yν (λx) − Yν (x) Jν (λx))

(

cos (kcL) − 2λ2k

α
sin (kcL)

)

+ (2.165)

(λx) cos (kcL) (Jν (x)Y ′
ν (λx) + Yν (x) J ′

ν (λx)) = 0.

Note that the parameter m is contained within α as

α =
λ2 − 1

λ2mL
. (2.166)

The dispersion relations, Eqs. (2.163) and (2.165) are solved numerically for the case when m → 0.
This solution is expected to match the single layer isothermal solution discussed earlier. Fig. 2.23 shows
the dispersion curves for the transition region model with a fully isothermal makeup. Now consider the
case where c → 0 then, effectively, the whole loop is governed by the full linear temperature gradient
model. Fig. 2.24 shows the comparison of the odd and even modes of the transition region model to the
odd and even modes of the linear temperature gradient model. Both comparisons, to isothermal and linear
temperature gradient, show that the two limits of the transition region model described by the dispersion
relations (2.163) and (2.165) behave as expected. Now consider several effects, including varying the
temperature gradient, loop length and extent of the transition region itself.

Fig. 2.25 shows that the frequency is decreased as the extent of the transition region increases. An
increase in the transition region essentially means that the wave is travelling in regions of smaller sound
speed for longer, thus increasing the expected period, as found here. When the temperature gradient is
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Figure 2.23: Diagram comparing the dimensionless solutions, given by the solid curves, of the transition
region dispersion relations, Eqs. (2.163) and (2.165), in the limit of m → 0 - modelling a fully isothermal
corona, with frequencies given by Eqs. (2.76) and (2.78), given by the dashed curves (here, directly under
the solid curves).

Figure 2.24: Diagram comparing the dimensionless solutions, given by the solid curves, of the transition
region dispersion relations, Eqs. (2.163) and (2.165), in the limit of c→ 0 - modelling a loop increasing in
temperature linearly from the base at z = L to the apex at z = 0, with capex/cbase = 10. The frequencies
given by Eqs. (2.153) and (2.155) are denoted by the dashed curves (again, directly under the solid curves).
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varied (λ) for some fixed transition region extent (shown in Fig. 2.26) then the frequency shift is expected
to be to be similar to, although smaller than the shift produced by a temperature gradient alone (shown
in Fig. 2.21). When comparing Fig. 2.26 to Fig. 2.21 it is clear that this is the case. Again, the wave is
propagating in the transition region for only a fraction of the total travel time, so the effect is only a fraction
of the total effect considered earlier, in the full linear temperature gradient model.

Fig. 2.25 shows that an increase in the extent of the loop embedded in the transition region causes a
downward shift in the frequency (with the exception of the fundamental and its first harmonic). However,
this shift is negligible for a small transition region extent, e. g. m < 0.2, which is 10% of the total loop
length. As the transition region is very thin compared to a typical loop length then in reality 0 < m < 0.1

would be more realistic. This shift is also more significant for higher harmonics. In fact, each harmonic
is affected in a unique way: the fundamental suffers a slight frequency increase, and its first harmonic is
relatively unaffected; the frequency of all higher harmonics is reduced. For a large extent of loop embedded
in the transition region, the frequency shift for higher harmonics is significant, with a reduction of around
30% for n > 10 harmonics.

Fig. 2.26 indicates that the shift due to the temperature gradient in the transition region is less pronounced
than that for a loop that is entirely non-uniform, as in Section 2.5. However, the effect is still present. Again,
individual harmonics are affected in individual ways due to the longitudinal structuring.

2.7 Conclusions

The equations describing two dimensional motions in a thin slab of plasma stratified under gravity, with
gravity pointing in the direction of the z-axis (similar to Ferraro and Plumpton (1958)1) have been derived.
Using a stretching coordinate the thin slab is modelled as a one-dimensional waveguide governed by the
Klein-Gordon equation describing the slow MHD mode of oscillation. A similar equation describes the
modes when gravity is antiparallel to the z-axis (Roberts, 2006). The presence of gravity introduces a cutoff
frequency, imposing a natural timescale for the system. In the low-β limit this cutoff frequency becomes
the acoustic cutoff frequency and the governing equation becomes the acoustic Klein-Gordon equation for
waves in a stratified atmosphere, first derived by Lamb (1932). The approximation of a low-β plasma in
the corona models the slow MHD mode as field-guided acoustic waves along coronal loops, governed by
the acoustic Klein-Gordon equation. In particular, the equation for various sound speed profiles (modelling
density structure along the loop) is solved. Initially, it is solved for a loop with constant sound speed cs and
constant cutoff frequency Ω and the effects introduced by gravity are noted.

In the isothermal case stratification by gravity causes a decrease in the oscillation period (increase in
frequency). For long loops, L/Λ0 → ∞, then the frequency of oscillation tends to the acoustic cutoff
frequency. Also, gravity introduces amplification by stratification. However, these effects are typically
small in the corona as L/Λ0 is of order unity. A further consequence is that the frequency shift, introduced
by stratification, is different for each mode - gravity affects the fundamental modes differently to its first
harmonic, etc.

1In Ferraro and Plumpton (1958) the z-axis and gravity are antiparallel.
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Figure 2.25: Diagram showing the effect of increasing the transition region extent h = mL for a fixed ratio
of capex/cbase. Here, (m + c)L/Λc = 2.5 and λ = 5. The solid curves represent the odd modes and the
dashed curves are the even modes.

Figure 2.26: Diagram showing the effect of increasing the ratio of λ = capex/cbase for a fixed extent of
transition region. Here, c = 0.8 and m = 0.2 with (m+ c)L/Λc = 2.5. The solid curves represent the odd
modes and the dashed curves are the even modes.
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This study is extended to consider the role of footpoint density structuring on the acoustic oscillations of
a coronal loop. A lower layer of dense, cool plasma is introduced, modelling the chromospheric footpoints
of the loop, by introducing a step function for the sound speed. The dispersion relations for the even and
odd modes are derived and the inclusion of a dense footpoint region causes a decrease in the frequency
of oscillation (when compared to the isothermal case). Initially, the system is modelled using real val-
ued functions (sin and cos), however, it is found that the system is better modelled using the hyperbolic
functions sinh and cosh as the wave is generally evanescent in the lower region. When considering only
the real valued functions the lower region acts as a ‘brick wall’ to the acoustic oscillations, with no wave
energy penetrating the dense footpoint layer. However, it is noted that using the hyperbolic functions, the
energy is allowed to penetrate a short distance into the lower layer. An analytical solution to the dispersion
relations is derived for the two layer case, when the lower layer is thin. Furthermore, the depth to which the
wave penetrates is approximately twice the density scale height in the footpoint region. These findings are
supported by considering an infinite depth of footpoint region which shows similar results.

Table 2.1: Table indicating the effect of each loop footpoint structure outlined in this Chapter on the period
of oscillation (in seconds). The parameters here assume a coronal loop of length 200 Mm (so L = 100
Mm), with a chromospheric footpoint of extent 10 Mm (where appropriate). The coronal temperature is 1
MK and the chromospheric temperature is 10000 K.

Harmonic Uniform Isothermal Two-layer Linear Temperature Transition Region
Period Period Period Model Period Model Period

g 6= 0 h = 0.1L λ = 10 λ = 10, h = 0.1L
Fundamental 1334 1314 1468 3430 2533

First harmonic 667 665 742 2140 1313

The work first discussed by James (2003) is extended to include the even modes of oscillation. A
stratified coronal loop, with a linear gradient in temperature, decreasing from a maximum at the loop apex
to a minimum at the footpoint end is considered. The dispersion relations for both the even and odd modes
are derived and solved numerically. As the ratio of apex temperature to footpoint temperature decreases
(λ → 1) then this model reduces to the isothermal case, described earlier. As the temperature gradient,
λ, increases the frequency of oscillation decreases (tending to the acoustic cutoff frequency at the loop
apex), with the exception of the fundamental mode which is slightly increased. The density structuring,
introduced by λ > 1, causes the frequency of each mode to be uniquely shifted – the consequences of this
are discussed in detail in Chapter 4. Also, as λ→ ∞ the shift in frequency becomes a constant value.

The final model considers the combined linear temperature gradient model and the isothermal case. A
steep linear gradient in temperature over a thin layer of plasma is a good first approximation to the transition
region. This is combined with an isothermal coronal part to model a coronal loop embedded in the transition
region. The results are similar to the results of each model individually, however, the magnitude is reduced
(as each region models a smaller part of the loop here). It is found that increasing the thickness of the
transition region causes a decrease in the period, proportional to the thickness of the transition region.

Overall, the inclusion of some kind of footpoint density enhancement in a coronal loop causes a decrease
in the frequency of oscillation (see Table 2.7 for details of the effect of structuring on the period of oscilla-



2.7 Conclusions 68

tion). For the most part this modification is small when considering only stratification by gravity. However,
a temperature profile or a transition region may affect the frequency of oscillation significantly. This would
have severe consequences on any results of coronal seismology. In particular, each harmonic of oscilla-
tion may be modified differently to other harmonics. This topic, and its impact for coronal seismology, is
returned to in detail in Chapter 4.



Chapter 3

Fast Mode Oscillations in the Corona

3.1 Introduction

In1 the discussion of coronal oscillations in Chapter 2 the effect of structure and stratification on the slow
magnetoacoustic mode was considered. To complete the magnetoacoustic picture the fast magnetoacoustic
mode is studied. From the polar plot in Fig. 1.6(a) it is clear that the fast mode is roughly isotropic, with
the phase speed being highest when the wave is propagating perpendicular to the magnetic field (Cowling,
1976; Priest, 1982). The fast mode propagates with a speed cf , which has a maximum when the angle, θ,
between the wave vector k and the magnetic field is θ = π/2. Generally, for any angle θ, cf lies in the
range cs < cA ≤ cf for any θ. In the low β plasma of the corona cf → cA.

Using instruments onboard SOHO and TRACE, many observations of the fast modes (both kink and
sausage) have been made in recent years (see Section 1.4.1 for an overview). In this Chapter the intention
is to develop the theory of the fast MHD mode similar to the development for the slow mode in Chapter
2. Theoretical models describing the magnetoacoustic oscillations in a slab geometry were discussed in
Roberts (1981b) and Edwin and Roberts (1982), with an extension to cylindrical magnetic flux tubes in
Edwin and Roberts (1983). More recent discussions have included the presence of a twist in the magnetic
field (Bennett et al., 1999; Erdélyi and Carter, 2006), the effect of a steady flow in Erdélyi and Goossens
(1996), the effect of line-tying the oscillations (Dı́az et al., 2004) and stratification in the vertical direction
of the tube (Nakariakov et al., 2000; James, 2003; Mendoza-Briceno et al., 2004; Roberts, 2006). The aim
here is to study the effect of gravity on the properties of the oscillation, in particular when gravity is acting
across the magnetic field.

Consider the curved geometry of a coronal loop (see Fig. 3.1), with the photosphere-chromosphere mod-
elled as a straight plane; the geometry of the loop can be simplified in one of two ways. Either much of the
loop is vertical, and therefore aligned either parallel or antiparallel with gravity (for example the geometry
considered in Chapter 2), or most of the loop is considered horizontal, thus aligned perpendicular to gravity.
In this Chapter the effects introduced by considering gravity acting perpendicularly to a magnetised slab
of plasma in the low-β corona (the horizontal loop) are studied. A more realistic model would consider
a gravity force whose direction varies along the slab, and so is neither parallel nor perpendicular to the
applied magnetic field. That is a far too difficult problem to tackle analytically, and will not be considered
here.

1Aspects of this Chapter have been published in McEwan and Dı́az (2007, in press): Effect of Gravity on the Fast Modes of a
Horizontal Coronal Slab
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2a

hg

Figure 3.1: Sketch of a coronal loop of height h and width 2a, in the presence of gravity g.

Related studies involving a plasma in a horizontal magnetic field, in the presence of gravity, across an
interface have been carried out. In particular, Campbell and Roberts (1989), Evans and Roberts (1990),
Miles and Roberts (1992) and Miles et al. (1992) have studied the role of gravity on the p, f and g modes
used in helioseismology of the solar interior. Jain and Roberts (1994) studied non-parallel propagation
of the p-modes in a plasma across a horizontal magnetic interface but stratified vertically by gravity and
a similar model was analysed by Erdélyi and Taroyan (2001). A recent review of magnetic effects in
helioseismology has been given in Erdélyi (2006). As far as the author is aware there exists no current
literature regarding this problem with relation to coronal plasmas. Motivated by this, these studies are
extended to a coronal plasma.

3.2 Equilibrium Model and Dispersion Relation

The derivation begins with the ideal MHD equations, as described in Chapter 1. The mass continuity
equation is,

∂ρ

∂t
+ ∇ · (ρv) = 0, (3.1)

the momentum equation with a gravity term is,

ρ
Dv

Dt
= −∇p+ j × B + ρg, (3.2)

the ideal induction equation is,

∂B

∂t
= ∇× (v × B) , ∇ · B = 0, (3.3)

and the adiabatic energy equation is,

∂p

∂t
+ v · ∇p = −γp∇ · v. (3.4)
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Figure 3.2: Horizontal coronal loop model with gravity acting perpendicular to the magnetic field.

Consider a horizontal magnetic slab of plasma of length 2L and width 2a, embedded in a uniform mag-
netic field B0, aligned parallel with the z-axis such that B0 = (0, 0, B0). Gravity is aligned perpendicular
to the z-axis and the slab footpoints are line-tied in the photospheric plane z = ±L. Also, the plasma
density ρ0(x) does not depend on the z-coordinate. Assuming small amplitude perturbations of the form
ρ (x) = ρ0 (x) + ρ1 (x, y, z, t), etc., then the linearised MHD equations for this system are derived, subject
to the equilibrium condition

−∇
(

p0 +
B2

0

2µ

)

+ ρ0gx̂ = 0. (3.5)

However, as B0 is constant, this reduces to the hydrostatic equilibrium condition

dp0

dz
= ρ0g. (3.6)

This equilibrium condition, Eq. (3.5), was discussed for the zero gravity case in Chapter 1, there it is given
by Eq. (1.59) for the MHD modes in a slab geometry.

Using Eqs. (3.1)–(3.4) the linearised MHD equations about the equilibrium (3.6) are:

∂ρ1(x)

∂t
+ ρ0(x) (∇ · v) + (v · ∇) ρ0(x) = 0, (3.7)

∂B1

∂t
= (B0 · ∇)v⊥ − B0 (∇ · v⊥) , (3.8)

ρ0(x)
∂v

∂t
= −∇pT + ρ1(x)g +

1

µ
(B0 · ∇)B1, (3.9)

∂p1(x)

∂t
+ (v · ∇) p0(x) = c2s (x)

(

∂ρ1(x)

∂t
+ (v · ∇) ρ0(x)

)

, (3.10)

where the quantity pT is the total plasma pressure perturbation, gas plus magnetic pressure, and is given by

pT (x, z, t) = p1 (x, z, t) +
1

µ
B0 · B1 (x, z, t) . (3.11)
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Eqs. (3.7)–(3.10) are still fairly complex when considering non-uniform density. Comparing Eqs. (3.7)–
(3.10) to Eqs. (1.60)–(1.64) the new term, representing the effect of gravity, appearing in Eq. (3.9) is
apparent. So far it has been assumed that ρ0(x) is independent of the z-coordinate, but no such assumptions
have been made for the x-dependence. In this study the aim is to discover the dynamical effect of gravity,
not the effect of stratification in the small-scale x-direction, so the assumption that a � Λ(x) is enforced,
i. e. the density scale height, Λ(x), is much larger than the slab half-width a. Therefore, the density
stratification in the x-direction can be ignored yet the dynamical effect of gravity in the momentum equation
is retained. This effectively sets ρ0(x) to a constant value. The assumption of a thin slab, a � Λ, allows
the slab density to be uniform to good approximation, but it does not say anything about the equilibrium
plasma density outside the slab. For simplicity, it is assumed that this too is a constant, ignoring the effect
of stratification in the slab’s environment on the basis that the coronal scale height Λ is large. Only if waves
strongly disturb the slab’s environment out to large distances will this approximation be inappropriate (for
example when considering leaky modes). This is regarded as a first step in the analysis of this problem;
future investigations will need to assess this effect more carefully.

With ρ0 taken to be a constant, Eqs. (3.7)–(3.10) simplify to

∂ρ1

∂t
+ ρ0 (∇ · v) = 0, (3.12)

∂B1

∂t
= (B0 · ∇)v⊥ − B0 (∇ · v⊥) , (3.13)

ρ0
∂v

∂t
= −∇pT + ρ1g +

1

µ
(B0 · ∇)B1, (3.14)

∂p1

∂t
= c2s

(

∂ρ1

∂t

)

. (3.15)

In these equations the gravitational force ρ1g is retained the equilibrium stratification that gravity introduces
is ignored.

Initially, consider the motion perpendicular to the z-axis in Eq. (3.14), this equation becomes

ρ0
∂v⊥

∂t
= −∇⊥pT + ρ1gx̂ +

B0

µ

∂B⊥

∂z
, (3.16)

where x̂ indicates that gravity acts in the direction of the x-axis. Differentiating with respect to time and
noting that from Eq. (3.13) one can make the substitution

∂B⊥

∂t
= B0

∂

∂z
v⊥, (3.17)

Eq. (3.16) becomes

ρ0

(

∂2

∂t2
− c2A

∂2

∂z2

)

v⊥ + ∇⊥
∂pT

∂t
− ∂ρ1

∂t
gx̂ = 0. (3.18)
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Consider now the motion parallel to the z-axis, for which Eq. (3.14) becomes

ρ0
∂vz

∂t
= −∂pT

∂z
+
B0

µ

∂Bz

∂z
. (3.19)

Taking the time derivative and noting that from Eq. (3.8) then

∂Bz

∂t
= −B0(∇⊥ · v⊥), (3.20)

so Eq. (3.19) becomes

ρ0
∂2vz

∂t2
= − ∂

∂z

∂pT

∂t
− ρ0c

2
A

∂

∂z
(∇⊥ · v⊥). (3.21)

Now consider the quantity pT to eliminate the term containing (∇⊥ · v⊥) in Eq. (3.21). Taking the time
derivative of the definition of pT gives

∂pT

∂t
=
∂p1

∂t
+

1

µ
B0 · ∂B1

∂t
. (3.22)

Substituting for the ∂p1/∂t term using Eq. (3.15) and then rearranging for pT yields

∂pT

∂t
= ρ0c

2
A

∂vz

∂z
− ρ0c

2
f (∇ · v) − (v · ∇) p0. (3.23)

Under the assumption that a � Λ(x) p0(x) is approximately constant, so (v · ∇) p0 ' 0. Therefore the
equation for pT becomes

∂pT

∂t
= ρ0c

2
A

∂vz

∂z
− ρ0c

2
f (∇ · v). (3.24)

Eq. (3.24) can be rearranged to get an expression for (∇⊥ · v⊥):

(∇⊥ · v⊥) =
−1

ρ0c2f

∂pT

∂t
− c2s
c2f

∂vz

∂z
. (3.25)

On substituting Eq. (3.25) into Eq. (3.21) the wave equation describing the plasma perturbations parallel to
the z-axis is

ρ0

(

∂2

∂t2
− c2T

∂2

∂z2

)

vz +
c2s
c2f

∂

∂z

(

∂pT

∂t

)

= 0. (3.26)

Writing the three equations together then the system of three coupled partial differential equations de-
scribing the total plasma perturbations in a horizontally stratified plasma with constant equilibrium density
ρ0 is

ρ0

(

∂2

∂t2
− c2A

∂2

∂z2

)

v⊥ + ∇⊥
∂pT

∂t
− ∂ρ1

∂t
gx̂ = 0, (3.27)
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ρ0

(

∂2

∂t2
− c2T

∂2

∂z2

)

vz +
c2s
c2f

∂

∂z

(

∂pT

∂t

)

= 0, (3.28)

∂pT

∂t
= ρ0c

2
A

∂vz

∂z
− ρ0c

2
f (∇ · v). (3.29)

Next, consider a low-β plasma, a reasonable assumption for the solar corona. In this limit cs ' cT ' 0

and cf ' cA. Eq. (3.28) is satisfied by vz = 0 (the slow mode is absent when β = 0). v⊥ can be eliminated
from Eq. (3.27) by taking the divergence in the perpendicular direction and combining with Eq. (3.29) in
the low-β limit, given by

(∇ · v⊥) ' − 1

ρ0c2A

∂pT

∂t
. (3.30)

Also, in the low-β limit, the linearised continuity equation (3.12) becomes

∂ρ1

∂t
= −ρ0 (∇ · v⊥) . (3.31)

Using Eqs. (3.30) and (3.31) then the expression for the total pressure perturbation pT in a horizontal slab,
structured by gravity in the x-direction, in a low-β plasma is given by
(

∂2

∂t2
− c2A∇2

)

∂pT

∂t
+ g

(

x̂ · ∇⊥
∂pT

∂t

)

= 0. (3.32)

The variable pT is coupled to the velocity perturbation v in the low-β limit by Eq. (3.30).

Consider the simple case when g = 0, then Eq. (3.32) becomes
(

∂2

∂t2
− c2A∇2

)

∂pT

∂t
= 0, (3.33)

which is exactly the equation first derived by Dı́az et al. (2002) for a plasma in the absence of gravity. The
case of ∂pT/∂t = 0 in Eq. (3.27) corresponds to the Alfvén mode, otherwise Eq. (3.27) describes the fast
mode. In this second case, relevant to much of this discussion, pT is determined by Eq. (3.32) and the
velocity is then implied using Eq. (3.27).

3.2.1 Dimensional Analysis

Since there is a new term in the x-component of Eq. (3.27), it is useful to estimate the magnitude of it when
the typical values for coronal slabs are considered.

To perform the dimensional analysis a reference scale is taken; the loop Alfvén speed cAi and the length
L of the supporting magnetic structure. Therefore, vx/cAi and pT/(ρ0c

2
Ai) are dimensionless numbers, and

the dimensionless time is tcAi/L. Manipulating the x-component of Eq. (3.27) with the help of Eq. (3.12)
yields:



3.2 Equilibrium Model and Dispersion Relation 75

(

L2

c2Ai

∂2

∂t2
− L2 ∂

2

∂z2

)

vx

cAi
+

(

L2

cAi

∂2

∂x∂t

)

pT

ρ0c2Ai

+
gL

c2Ai

(

L
∂

∂x

)

vx

cAi
= 0, (3.34)

The dimensionless combination gL/c2Ai appears in the new term including gravity, so its typical mag-
nitude compared to other coronal parameters can be investigated. Coronal loops typically have lengths of
order 150 Mm when observed using TRACE, and a fair estimate for the Alfvén speed is of order cAi = 1000

km s−1 (Nakariakov and Verwichte, 2005). The solar gravitational acceleration is approximately g = 274

m s−2, so together with a typical Alfvén speed and loop length we find that gL/c2Ai ' 0.04. Therefore, the
new term is small compared with the ones included in previous calculations and it is not expected to have a
numerically big impact unless unrealistic values are considered.

However, Equation (3.27) indicates that despite being numerically small the new term has other effects,
being associated with a first-order derivative and, thus, breaking the symmetry. These effects can be better
seen by finding the solutions of the equations for the model, but the dimensionless combination gL/c2Ai is
expected to appear again in the solutions.

3.2.2 Dispersion Relations

For simplicity consider the case when vy = 0, so there is no transversal propagation; the y-direction is
independent of any new forces. Using Eq. (3.31) the x-component of Eq. (3.27) becomes

ρ0

(

∂2

∂t2
− c2A

∂2

∂z2

)

vx +
∂

∂x

∂pT

∂t
+ ρ0g

∂vx

∂x
= 0. (3.35)

Eq. (3.35) can be solved for the case of a magnetic slab embedded in a magnetic environment, together
with Eq. (3.32), by using separation of variables. Consider solutions of the form

vx(x, z, t) = f(x)h(z) exp (iωt) , (3.36)

∂pT

∂t
= iωu(x)h(z) exp (iωt) . (3.37)

Consider Eq. (3.32), substituting for pT and using separation of variables gives the eigenvalue equation:

ω2

c2A
+
h′′(z)

h(z)
= −u

′′(x)

u(x)
− g

c2A

u′(x)

u(x)
= ±λ2. (3.38)

By picking the negative sign for the eigenvalue in Eq. (3.38) then the notation here remains consistent with
the notation of Roberts (1981b) who discussed a similar problem in the absence of gravity. Separating the
variables gives the equation describing u(x):

u′′(x) +
g

c2A
u′(x) − λ2u(x) = 0. (3.39)
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This is a second order ordinary differential equation with constant coefficients which is solved by using the
auxiliary equation

m2 +
g

c2A
m− λ2 = 0. (3.40)

Eq. (3.40) is the auxiliary equation for Eq. (3.39) with solution

u(x) = αe exp (m1x) + βe exp (m2x) , (3.41)

where

mj = − g

2c2A
±

√

(

g

2c2A

)2

+ λ2, j = 1, 2; (3.42)

αe and βe are arbitrary constants defined distinctly in each region. Here, m1 is associated with the negative
sign and m2 is associated with the positive sign. The exact form of u(x) is defined by the sign of λ2 in each
region (discussed in the next Section).

Substituting the forms vx and pT into Eq. (3.35) leads to the following eigenvalue equation:

ω2

c2A
+
h′′(z)

h(z)
= − iω

ρ0c2A

u′(x)

f(x)
− g

c2A

f ′(x)

f(x)
= ±λ2. (3.43)

Consider the x-dependence, where Eq. (3.43) gives the relationship between f(x) and u(x) (which allows
the solution for vx to be found),

f ′(x) +
λ2c2A
g

f(x) = − iω

ρ0g
u′(x). (3.44)

Eq. (3.44) is a first order, linear differential equation that can be solved using an integrating factor. The
solution for f(x) in terms of u(x) is given by the integral

exp
(

λ2c2Ax/g
)

f(x) =
iω

gρ0

∫ x

−∞

u′(s) exp
(

λ2c2As/g
)

ds. (3.45)

Eq. (3.45) can be solved for u(s) (where u(s) is given by the solution to Eq. (3.39)) inside and outside
(above and below) the slab.

The z-component of Eq. (3.43) describes the motions in the z-direction of both pT and vx. In Eq. (3.43)
the negative sign for the eigenvalue is chosen to remain consistent with the previous notation.

h′′(z) +

(

ω2

c2A
+ λ2

)

h(z) = 0. (3.46)

This has the simple oscillatory solutions

h(z) = A sin (kz) +B cos (kz) (3.47)
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where

k2 = λ2 + ω2/c2A. (3.48)

Consider the line-tied motions of the coronal slab; the consequence of line-tying is that the wavenumber k
is quantised in the following manner,

k2 =
n2π2

L2
, (3.49)

and also the eigenvalue λ is defined as

λ2 = k2 − ω2

c2A
=
n2π2

L2
− ω2

c2A
. (3.50)

From the model solutions in Eqs. (3.36) and (3.37) and using the solutions of Eq. (3.39) and Eq. (3.45),
defined separately in each region, the solution to the x-component of the total pressure and plasma velocity
perturbations can be found. Together with the solution of Eq. (3.46) then vx and pT are fully defined. By
considering the special case when g = 0 then the work of Roberts (1981b), who studied the trapped body
and surface modes of oscillation of a magnetic slab of plasma embedded in a field-free plasma, is recovered.
Consider, now, the trapped surface modes and body modes of oscillation in a magnetic slab of plasma, in
the presence of gravity, in the next Section.

3.2.2.1 Surface Modes

Following the g = 0 work of Roberts (1981b), the dispersion relations for the surface and body modes
in a magnetic slab in the presence of gravity are derived. Initially, consider the surface modes. Fig. 3.2
indicates that there are three regions, two external regions above and below the slab and one internal region.
For trapped modes of oscillation then decaying solutions are required in the external environment such that
v⊥ = 0 and pT = 0 at x = ±∞. Hence m1e > 0 and m2e < 0, implying that λ2

e > 0 (here a subscript ‘e’
denotes environment quantities). By considering λ2

i > 0 (‘i’ denotes internal (slab) quantities) then this is
similar to the case of surface modes studied in Roberts (1981b), only here gravity has not been neglected.
On substituting in positive values for λ2

e and λ2
i into Eq. (3.40) it is clear that m is real in both regions, and

exponential solutions to Eq. (3.39) are expected. The full solution for u(x) (the x dependence of the total
pressure perturbation pT) under the assumption of trapped surface modes is

u(x) =



















αe exp (m2e (x− a)) , x > a,

Ai exp (m1ix) +Bi exp (m2ix) , |x| < a,

βe exp (m1e (x+ a)) , x < −a.

(3.51)

Here

m1i = − g

2c2Ai

+

√

(

g

2c2Ai

)2

+ λ2
i , m1e = − g

2c2Ae

+

√

(

g

2c2Ae

)2

+ λ2
e, (3.52)
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a subscript 2 denotes the equivalent negative root and αe, βe, Ai and Bi are arbitrary constants.

By using this form for u(x), together with the integral given by Eq. (3.45), the x-dependence of the
velocity perturbation f(x) can be calculated. Solving this integral yields

f(x) =































− iω
ρe

αem2e exp (m2e (x− a))

m2eg + λ2
ec

2
Ae

, x > a,

− iω
ρi

(

Aim1i exp (m1ix)

m1ig + λ2
i c

2
Ai

+
Bim2i exp (m2ix)

m2ig + λ2
i c

2
Ai

)

, |x| < a,

− iω
ρe

βem1e exp (m1e (x+ a))

m1eg + λ2
ec

2
Ae

, x < −a,

(3.53)

where ρi is the slab plasma density and ρe is the environment plasma density.

Finally, the full velocity and pressure perturbations can be written down using Eqs. (3.53) and (3.51),
respectively:

vx =



























iω

ρe

αem2e

m2eg − λ2
ec

2
Ae

exp (m2e (x− a))h(z) exp (iωt) , x > a,

iω

ρi

(

Aim1i exp (m1ix)

m1ig − λ2
i c

2
Ai

+
Bim2i exp (m2ix)

m2ig − λ2
i c

2
Ai

)

h(z) exp (iωt) , |x| < a,

iω

ρe

βem1e

m1eg − λ2
ec

2
Ae

exp (m1e (x+ a))h(z) exp (iωt) , x < −a,

(3.54)

∂pT

∂t
=



















iωαe exp (m2e (x− a))h(z) exp (iωt) , x > a,

iω (Ai exp (m1ix) +Bi exp (m2ix))h(z) exp (iωt) , |x| < a,

iωβe exp (m1e (x+ a))h(z) exp (iωt) , x < −a.

(3.55)

Notice that there is no symmetry with respect to the plane x = 0 (as there is in Roberts (1981b), with
symmetric sausage modes and antisymmetric kink modes, where g = 0), since the inclusion of gravity
introduces a preferred direction.

The coronal slab is line-tied with the footpoints at z = ±L fixed in a dense photosphere. This leads to
the condition that v⊥(z = ±L) = 0. In this model there are two interfaces which cause discontinuities in
the plasma properties. Here, the interfaces are parallel to the equilibrium magnetic field, so the boundary
conditions are (see Roberts 1981a for a discussion of boundary conditions across a magnetic interface and
Dı́az 2004 for a more general discussion)

n̂ · [v]±a = n̂ · [B]±a = 0, (3.56)

[pT]±a = 0. (3.57)

These conditions indicate that only the components of the perturbed velocity and total plasma pressure that
are perpendicular to the applied magnetic field are required are continuous across the interface; in fact, as
h(z) is continuous in each region then the only requirement is u(x) and f(x) to be continuous across the
plasma interface at x = ±a. This set of conditions is also the requirement in the interface models discussed
in Chapter 2.
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For the first condition, n̂ · [v]±a = n̂ · [B]±a
= 0, the two relations for αe and βe in terms of Ai and Bi

are derived to be

αe =
ρe

ρi

m2eg − λ2
ec

2
Ae

m2e

(

Aim1i exp (m1ia)

m1ig − λ2
i c

2
Ai

+
Bim2i exp (m2ia)

m2ig − λ2
i c

2
Ai

)

,

βe =
ρe

ρi

m1eg − λ2
ec

2
Ae

m1e

(

Aim1i exp (−m1ia)

m1ig − λ2
i c

2
Ai

+
Bim2i exp (−m2ia)

m2ig − λ2
i c

2
Ai

)

. (3.58)

The second condition, [pT]±a = 0, gives the two other conditions for αe and βe in terms of Ai and Bi,

αe = Ai exp (m1ia) +Bi exp (m2ia) ,

βe = Ai exp (−m1ia) +Bi exp (−m2ia) . (3.59)

Combining Eqs. (3.58) and (3.59) gives

Ai exp (m1ia)

(

1 − ρe

ρi

m1i

m2e

m2eg + λ2
ec

2
Ae

m1ig + λ2
i c

2
Ai

)

+Bi exp (m2ia)

(

1 − ρe

ρi

m2i

m2e

m2eg + λ2
ec

2
Ae

m2ig + λ2
i c

2
Ai

)

= 0,

Ai exp (−m1ia)

(

1 − ρe

ρi

m1i

m1e

m1eg + λ2
ec

2
Ae

m1ig + λ2
i c

2
Ai

)

+Bi exp (−m2ia)

(

1 − ρe

ρi

m2i

m1e

m1eg + λ2
ec

2
Ae

m2ig + λ2
i c

2
Ai

)

= 0.

These boundary conditions lead to the dispersion relation for the surface modes of oscillation in a low-β
magnetic slab of plasma embedded in a low-β environment with gravity acting in a direction perpendicular
to the z-axis:

exp ((m1i −m2i) a)

[

1 − ρe

ρi

m1i

m2e

m2eg − λ2
ec

2
Ae

m1ig − λ2
i c

2
Ai

] [

1 − ρe

ρi

m2i

m1e

m1eg − λ2
ec

2
Ae

m2ig − λ2
i c

2
Ai

]

(3.60)

− exp ((m2i −m1i) a)

[

1 − ρe

ρi

m2i

m2e

m2eg − λ2
ec

2
Ae

m2ig − λ2
i c

2
Ai

] [

1 − ρe

ρi

m1i

m1e

m1eg − λ2
ec

2
Ae

m1ig − λ2
i c

2
Ai

]

= 0.

3.2.2.2 Body Modes

Again, as for the surface modes, consider the trapped solutions so λ2
e > 0. However, now consider the

case when λ2
i < 0, termed the body modes in Roberts (1981b). Under the assumption that λ2

i < 0 then
Eq. (3.40) has the roots

mi = − g

2c2A
± i

√

|λ2
i | −

(

g

2c2Ai

)2

= −α+ iψ, (3.61)

where α = g/2c2Ai and ψ =
√

|λ2
i | − α2. As λ2

e > 0, then me is unchanged from the surface mode case.
As ψ can be either real or complex then there are two cases of body modes, which is not the case in Roberts
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(1981b).

If α2 > |λ2
i | then mi is real and so there are exponential solutions for u(x) in the internal region, even

though λ2
i < 0. This mode is a body mode, although it has the mathematical form of a surface mode;

this new mode is termed a modified body mode. If α2 < |λ2
i |, then mi is complex and so ui(x) has

oscillatory solutions, as in Roberts (1981b), and these are the standing (pure) body modes. The first case
is mathematically the same as the surface mode case so the second, where mi is complex, is considered in
detail. This alters the solution to Eq. (3.39) which becomes

u(x) =



















Ae exp (m2e (x− a)) , x > a,

Ai exp (−αx) cos (ψx) +Bi exp (−αx) sin (ψx) , |x| < a,

Be exp (m1e (x+ a)) , x < −a,

(3.62)

where α = g/2c2Ai and ψ =
√

|λ2
i | − α2, and m1e and m2e are defined as before and Ai, Ae, Bi and Be

are constants.

By using this form for u(x) together with the integral given by Eq. (3.45) the x-dependence of the
velocity perturbation f(x) can be calculated. Solving this integral gives

f(x) =











































− iω
ρe

Aem2e exp (m2e (x− a))

m2eg + λ2
ec

2
Ae

, x > a,

iω

ρi

exp (−αx)
(αg − λ2

i c
2
Ai)

2
+ ψ2g2

[

Ai

((

α2g − αλ2
i c

2
Ai + ψ2g

)

cos (ψx) − λ2
i c

2
Aiψ sin (ψx)

)

+Bi

((

α2g − αλ2
i c

2
Ai + ψ2g

)

sin (ψx) + λ2
i c

2
Aiψ cos (ψx)

)]

, |x| < a,

− iω
ρe

Bem1e exp (m1e (x− a))

m1eg + λ2
ec

2
Ae

, x < −a.

It is interesting to note that if g = 0 then the problem reduces to the simple result that

f(x) =
iω

ρ0c2Aλ
2
u′(x), (3.63)

which is the result relating pT and vz stated in Dı́az (2004) for the zero gravity case.

Now consider the boundary conditions, given by Eqs. (3.58) and (3.59). From these, two sets of two
equations can be derived, as before. Firstly, the boundary conditions for continuous velocity across the
plasma interfaces at z = ±a are:

Ae =
ρe

ρi

m2eg + λ2
ec

2
Ae

(αg − λ2
i c

2
Ai)

2
+ ψ2g2

exp (−αa)
m2e

[

Ai

(

Γ cos (ψa) − λ2
i c

2
Aiψ sin (ψa)

)

(3.64)

+Bi

(

Γ sin (ψa) + λ2
i c

2
Aiψ cos (ψa)

)]

,

Be =
ρe

ρi

m1eg + λ2
ec

2
Ae

(αg − λ2
i c

2
Ai)

2
+ ψ2g2

exp (αa)

m1e

[

Ai

(

Γ cos (ψa) + λ2
i c

2
Aiψ sin (ψa)

)

−Bi

(

Γ sin (ψa) − λ2
i c

2
Aiψ cos (ψa)

)]

,
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where

Γ = α2g − αλ2
i c

2
Ai + ψ2g (3.65)

which is related directly to the gravity term g. In fact, if g = 0 then Γ = 0 also. Also, the second condition
is that the total pressure perturbation is continuous across the interfaces at z = ±a, and so

Ae = exp (−αa) [Ai cos (ψa) +Bi sin (ψa)] , (3.66)

Be = exp (αa) [Ai cos (ψa) −Bi sin (ψa)] .

By making the substitutions

χ1 =
ρe

ρi

m1eg + λ2
ec

2
Ae

(αg − λ2
i c

2
Ai)

2
+ ψ2g2

1

m1e
, (3.67)

and

χ2 =
ρe

ρi

m2eg + λ2
ec

2
Ae

(αg − λ2
i c

2
Ai)

2
+ ψ2g2

1

m2e
, (3.68)

then the boundary conditions, given by Eqs. (3.64) and (3.66), can be rearranged to give a linear system of
two equations with two unknowns Ai and Bi:

Ai

[

(1 − χ2Γ) cos (ψa) + χ2λ
2
i c

2
Aiψ sin (ψa)

]

+Bi

[

(1 − χ2Γ) sin (ψa) − χ2λ
2
i c

2
Aiψ cos (ψa)

]

= 0,

Ai

[

(1 − χ1Γ) cos (ψa) − χ1λ
2
i c

2
Aiψ sin (ψa)

]

(3.69)

−
(

Bi

[

(1 − χ1Γ) sin (ψa) + χ1λ
2
i c

2
Aiψ cos (ψa)

])

= 0.

From this system of equations the dispersion relation for the (pure) body modes of oscillation of a magnetic
slab of plasma embedded in an environment with gravity acting perpendicular to the z-axis is derived:

[

(1 − χ2Γ) cos (ψa) + χ2λ
2
i c

2
Aiψ sin (ψa)

] [

(1 − χ1Γ) sin (ψa) + χ1λ
2
i c

2
Aiψ cos (ψa)

]

+
[

(1 − χ2Γ) sin (ψa) − χ2λ
2
i c

2
Aiψ cos (ψa)

] [

(1 − χ1Γ) cos (ψa) − χ1λ
2
i c

2
Aiψ sin (ψa)

]

= 0, (3.70)

where

Γ = α2g − αλ2
i c

2
Ai + ψ2g,

α = g/2c2Ai and ψ =
√

|λ2
i | − α2 with λ2

e > 0 and λ2
i < 0. After some algebra, the body mode dispersion

relation can be written as

(

1 − χ2Γ − χ1Γ + χ1χ2Γ
2 + χ1χ2λ

4
i c

4
Aiψ

2
)

sin (2ψa) + (χ1 − χ2)λ
2
i c

2
Aiψ cos (2ψa) = 0, (3.71)
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or in a neater form:

(

1 − χ2Γ − χ1Γ + χ1χ2Γ
2 + χ1χ2λ

4
i c

4
Aiψ

2
)

tan (2ψa) + (χ1 − χ2)λ
2
i c

2
Aiψ = 0. (3.72)

This is an algebraic equation for the frequency of the modes ω, since Γ, λi, χ1, χ2 and ψ are all functions of
ω. No explicit analytical solution is obtained, so initially some limiting cases are considered before solving
Eq. (3.72) numerically.

3.3 Reduction to the g = 0 Case

By setting g = 0 in the dispersion relations Eq. (3.60) and (3.71) then the results in Roberts (1981b) and
Dı́az (2004) for a magnetic slab in the absence of gravity should be obtained.

Initially consider the surface modes (λ2
e > 0 and λ2

i > 0), which have frequencies given by the dispersion
relation

exp ((m1i −m2i) a)

[

1 − ρe

ρi

m1i

m2e

m2eg − λ2
ec

2
Ae

m1ig − λ2
i c

2
Ai

] [

1 − ρe

ρi

m2i

m1e

m1eg − λ2
ec

2
Ae

m2ig − λ2
i c

2
Ai

]

(3.73)

− exp ((m2i −m1i) a)

[

1 − ρe

ρi

m2i

m2e

m2eg − λ2
ec

2
Ae

m2ig − λ2
i c

2
Ai

] [

1 − ρe

ρi

m1i

m1e

m1eg − λ2
ec

2
Ae

m1ig − λ2
i c

2
Ai

]

= 0.

Setting g = 0 has consequences on m1 and m2 in each region (with subscript ‘i’ for internal regions and
subscript ‘e’ for external regions respectively). Recall that

mj = − g

2c2A
±

√

(

g

2c2A

)2

+ λ2, j = 1, 2 (3.74)

where m1 uses the positive square root and m2 is the negative square root. Thus with g = 0, m1 and m2

become

m1 = λ, m2 = −λ. (3.75)

On substituting these expressions for mj into Eq. (3.73) with g = 0, one obtains

exp (2λia)

[

1 +
λe

λi

]2

− exp (−2λia)

[

1 − λe

λi

]2

= 0. (3.76)

After some algebra, Eq. (3.76) can be written in the form
[

λi

λe
+ tanh (λia)

] [

λi

λe
+ coth (λia)

]

= 0. (3.77)

In Roberts (1981b) the dispersion relations for the surface modes for antisymmetric and symmetric modes,
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respectively, are

λi

λe
+

(

tanh

coth

)

(λia) = 0. (3.78)

So by Eq. (3.77) the new dispersion relation reduces to the same limit. However, there is one difference.
In Roberts (1981b) symmetric and antisymmetric (even and odd) modes were considered separately as the
model had full symmetry. Hence two separate dispersion relations were derived, shown in Eq. (3.78), for
the surface modes in this case. However, due to the presence of gravity in this model, the upper environment
region and the lower environment region (1 and 2 respectively) are not identical, so this symmetry cannot
be assumed, and hence one single dispersion relation exists. When this relation is reduced, by setting g = 0,
then the even and odd mode dispersion relations appear as a product of each other.

Consider, now, the body mode dispersion relation; similar results to the g = 0 case are expected. The
body mode frequencies are governed by the dispersion relation

(

1 − χ2Γ − χ1Γ + χ1χ2Γ
2 + χ1χ2λ

4
i c

4
Aiψ

2
)

sin (2ψa) + (χ1 − χ2)λ
2
i c

2
Aiψ cos (2ψa) = 0. (3.79)

where

χ1 =
ρe

ρi

m1eg + λ2
ec

2
Ae

(αg − λ2
i c

2
Ai)

2
+ ψ2g2

1

m1e
, (3.80)

χ2 =
ρe

ρi

m2eg + λ2
ec

2
Ae

(αg − λ2
i c

2
Ai)

2
+ ψ2g2

1

m2e
, (3.81)

Γ = α2g − αλ2
i c

2
Ai + ψ2g,

and α = g/2c2Ai and ψ =
√

|λ2
i | − α2, with λ2

e > 0 and λ2
i < 0. Setting g = 0 has an effect on χ1, χ2, Γ,

ψ and α in the following manner: Γ = α = 0, ψ = λi and

χ1 =
ρe

ρi

λ2
ec

2
Ae

λ4
i c

4
Ai

1

λe
, χ2 =

ρe

ρi

λ2
ec

2
Ae

λ4
i c

4
Ai

−1

λe
. (3.82)

Upon substituting the g = 0 parameters into Eq. (3.79) the dispersion relation for the body modes
becomes

2

[

sin (λia) +
λe

λi
cos (λia)

] [

cos (λia) −
λe

λi
sin (λia)

]

= 0, (3.83)

which reduces, after some algebra, to become
[

tan (λia) +
λi

λe

] [

cot (λia) −
λi

λe

]

= 0. (3.84)

In Roberts (1981b) the dispersion relations for the body modes for antisymmetric and symmetric modes,
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respectively, are

λi

λe
+

(

tan

− cot

)

(λia) = 0. (3.85)

Again, due to the lack of symmetry in the model, the odd and even modes can no longer be separated
as was possible in Roberts (1981b) (see Eq. (3.85)). Now there is a single dispersion relation that can
be factorised accordingly in the limit of g = 0. The effect of this lack of symmetry in the model is
apparent when plotting the zero-gravity dispersion relations for the body modes. Recall that there are no
surface modes in the corona (Roberts, 1981b), and the surface mode dispersion relation given by Eq. (3.77)
also supports this result (when considering typical coronal parameters of a low-β plasma). The plot of
the dispersion curves for the body modes as a solution of Eq. (3.85) is displayed in Fig.3.3. The modes
are clearly separated into families of symmetric and antisymmetric oscillations. Fig. 3.4 shows that the
presence of gravity in the derivation no longer allows for the simplification of symmetry. Even when g = 0

in Eq. (3.71) then the lack of symmetry is preserved. This is due to the two distinct regions above and
below the coronal slab (regions 1 and 2 in this notation).

3.4 Numerical Results

The surface and body mode dispersion relations (3.60) and (3.71) are solved numerically for various para-
meter values. There are four dimensionless parameters arising in the analysis which shall be examined
here:

ωcAi/L, gL/2c2Ai, cAi/cAe, a/L. (3.86)

Here, ωcAi/L is solved for. Therefore two parameters must be fixed and the third is varied. Consider, then,
the parameter regime. Firstly, examine a/L: coronal loops are not coins, i. e. they are far longer than they
are wide, so a/L is typically small. (However, it is interesting to discuss, mathematically, the case when
a/L is large, but it is not particularly physical.) For this purpose consider a typical value of a/L = 0.1.
The density contrast is given by c2Ai/c

2
Ae = ρe/ρi. In a related calculation, in Donnelly et al. (2006), the

typical density contrast was ρe/ρi = 25/4 = 6.25. Here the same value of density contrast is chosen when
this parameter is fixed. Finally, consider gL/2c2Ai; coronal loops typically have lengths of order 150 Mm
when observed using TRACE, and a fair estimate for the Alfvén speed is of order cAi = 1000 km s−1

(Nakariakov et al., 1999). The solar gravitational acceleration is approximately g = 274 m s−2 (Priest,
1982), so together with a typical Alfvén speed and loop length then gL/2c2Ai ' 0.02. In this discussion
values of gL/2c2Ai far larger than the typical solar value are considered as this case is mathematically
interesting.

Upon non-dimensionalising the parameters, g = gL/2c2Ai, ω = ωL/cAi and λ2
i = n2π2 − ω2, then

direct effect of including gravity on the cutoff terms becomes apparent.
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Figure 3.3: Dispersion diagram showing the solution to Eq. (3.85) under the assumption of symmetric and
antisymmetric modes. As gravity is neglected in this derivation the assumption is valid. The solid lines are
for the antisymmetric modes and the dotted lines represent the symmetric modes. Here cAi/cAe = 2/5.
The dot-dashed line and the dotted line represent the upper and lower cutoff frequencies, respectively.

Figure 3.4: Dispersion diagram showing the solution to Eq. (3.84) for body modes in the corona. Here
there is no longer any assumption of symmetric or antisymmetric modes. Parameters as in Fig. 3.3. The
dot-dashed line and the dotted line represent the upper and lower cutoff frequencies, respectively.
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Body ModeSurface Mode

Figure 3.5: Sketch showing the spatial difference between surface and body modes in a slab of plasma
(after Roberts (1985)).

3.4.1 Upper and Lower Cutoff Frequencies

In this analysis the trapped modes of oscillation are considered. The restriction of trapped modes enforces
an upper cutoff frequency that is determined by the density contrast between the environment and the slab
interior (Roberts, 1981b). Modes that allow energy to leak away from the slab (called leaky modes) could
also be considered. However, here the trapped modes are studied. For a further discussion on leaky modes
of oscillation in coronal slabs, see Cally (1986), Cally and Bogdan (1993), Dı́az et al. (2004), Terradas et al.
(2005), Cally (2006) and Ruderman and Roberts (2006).

Initially, consider the cutoff term for the surface modes, which is given by the analysis of the following:

m = − g

2c2A
±

√

(

g

2c2A

)2

+ λ2. (3.87)

Recall that for line-tied oscillations

k2 =
n2π2

L2
, (3.88)

and also the eigenvalue λ is defined as

λ2 = k2 − ω2

c2A
=
n2π2

L2
− ω2

c2A
. (3.89)

The surface modes are satisfied as long as mi and me are real valued, and the condition for ω is

ω2L2

c2Ai

< g2 + n2π2, g2 =

(

gL

2c2Ai

)2

. (3.90)

So as g increases then so does the value of the cutoff, which is highlighted in Fig. 3.7.

Consider the cutoff terms for the body modes in Eq. (3.71). The upper cutoff determines whether the
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modes are leaky or not. This is determined by λ2
e > 0. On applying line-tying conditions the upper cutoff

term becomes

ω2L2

c2Ai

< n2π2 c
2
Ae

c2Ai

(3.91)

The inequality (3.91) indicates that the upper cutoff is not affected by the inclusion of gravity; however, it
does still remain dependent upon the density contrast, given by c2Ai/c

2
Ae (as is the case in Roberts (1981b)).

A second, lower cutoff frequency exists, which effectively marks the transition between surface and body
modes (Roberts, 1981b). The spatial differences between body and surface modes is sketched in Fig. 3.5.
Oscillating body modes that have a frequency lower than this cutoff become oscillating surface modes. The
lower cutoff is determined by Eq. (3.61), in particular ψ2 > 0, i. e. mi is imaginary. Because of this
condition the lower cutoff condition is

|λ2
i | − α2 > 0, (3.92)

where α = g/2c2Ai as before. After some algebra, this condition can be rewritten to give the lower cutoff
term:

ω2L2

c2Ai

> g2 + n2π2, g2 =

(

gL

2c2Ai

)2

(3.93)

This indicates that the lower cutoff depends on gravity, but is independent of the density contrast ratio
c2Ai/c

2
Ae. This dependence on gravity differs from the uniform slab considered in Roberts (1981b).

3.4.2 Surface Mode Analysis

This analysis begins with the surface modes in the corona. Roberts (1981b) noted that there were no surface
modes in the corona for the case when g = 0. This is shown by the plot of the dispersion relation given in
Fig. 3.6. The dispersion curves, indicated by the solid lines, are never zero and so the dispersion relation
has no roots. Numerically solving Eq. (3.60) yields the same results. There are no roots to the surface mode
dispersion relation, which is also shown by plotting the dispersion relation itself, shown in Fig. 3.7. The
dashed vertical line indicates the cutoff frequency when g = 0. However, notice that for the g 6= 0, the
cutoff has shifted and the dispersion relation has also shifted. Also, for the typical value of g = 0.02 in the
corona, the cutoff term is virtually unchanged by the inclusion of gravity. Any modifications due to gravity
are small. However, other stellar objects, with a larger gravitational acceleration, may show significant
consequences to surface modes by including stratification by gravity.

3.4.3 Body Mode Analysis

Initially, consider the case where the density contrast ratio is constant, here a typical value of cAi/cAe = 2/5

is chosen (as in Donnelly et al. (2006)). Also, coronal loops are typically much longer then they are wide,
so a value of a/L = 0.1 is chosen. This is probably high; however, it illustrates the problem without any
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Figure 3.6: Dispersion relation (3.60) for the first three surface modes (n = 1, 2, 3) for the case g = 0
in a slab of half length L/Λc = 2.5. The solid lines indicate that the dispersion relation is never zero
(confirmed numerically), and therefore has no solution. Hence there are no surface modes in the corona.
Here vAi = cAi. The vertical dashed lines indicate the values of the upper cutoff, in the absence of gravity,
for n = 1, 2 and 3, respectively.

Figure 3.7: (a) Dispersion relation (3.60) for a slab of dimensionless half-length L/Λc = 2.5 for the three
cases gL/2c2Ai = 0 (the solid line), gL/2c2Ai = 4 (the dotted line) and gL/2c2Ai = 10 (the dot-dashed line).
The vertical dashed line represents the zero gravity cutoff. Notice that the cutoff is modified with increasing
gravity.
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numerical complications, and also it is already known that the exact numerical value of a/L is not important
provided it is small (Roberts, 1981b). In this case, the upper cutoff term is given by Eq. (3.91). However,
the lower cutoff, given by Eq. (3.93), will vary depending upon the particular values of gL/2c2Ai chosen.
The numerical solution of dispersion relation (3.71) is displayed in Fig. 3.8 for a small value of gL/2c2Ai

and in Fig. 3.9 for a larger value of gL/2c2Ai.

From Figs. 3.8 and 3.9 it is clear that the frequency of oscillation is modified by the inclusion of lateral
structuring by gravity across the slab. In fact, each mode is affected in a different way by this lateral struc-
turing: the fundamental mode is far more affected, with its frequency significantly reduced (a maximum
shift of around 10% occurs for a/L = 0.2), whereas its first harmonic has a slightly increased frequency
for a large value of g. It is shown in Chapter 4 that longitudinal structuring can affect different harmonics in
different ways. Fig. 3.8 also shows that for a/L ' 1 and also for a/L� 1 this shift in frequency is small.

Fig 3.9 shows that for a large gravitational force the fundamental (kink) mode reaches the lower cutoff
and becomes a modified body mode. The frequency is shifted down by such an amount that it falls below
the cutoff for a/L < 1. This is a new effect, not present in the uniform model of Roberts (1981b) where
the fundamental mode was always a body mode without reaching either lower or upper cutoff frequencies.

Now consider the effect of varying the density contrast between the internal and environment regions
(in this notation it is equivalent to varying cAi/cAe). This effect can be studied by fixing the parameters
gL/2c2Ai and a/L. Also, the value of a/L = 0.1, so from Fig. 3.8 only the fundamental mode is expected
to propagate. Various values of gL/2c2Ai are chosen to note the change between the uniform and non-zero
gravity cases. Initially, the fundamental body modes propagates for all a/L in the corona in a uniform
medium (Roberts, 1981b). The upper cutoff term now varies with increasing density contrast, given by
Eq. (3.91), but the lower cutoff is constant with respect to c2Ai/c

2
Ae. However, the lower cutoff does depend

on the magnitude of gL/2c2Ai, so increases with increasing gravity (see Eq. (3.93)).

Fig. 3.10 shows the effect of varying the density contrast on the fundamental fast mode of oscillation
(antisymmetric kink mode) in a coronal loop with a/L = 0.1 in the absence of gravity. Here, the mode is
propagating for all cAi/cAe < 1, consistent with Roberts (1981b).

In Fig. 3.11 the effect of including a gravitational term is displayed. Fig. 3.9 shows that the frequency
of oscillation is clearly reduced when gravity is included, and this is apparent when comparing Fig. 3.11,
which has a gravity term, to Fig. 3.10 for a uniform plasma. Fig. 3.12 shows the effect of including a
large gravitational term. It is also known, from Fig. 3.9, that the fundamental body (kink) mode becomes a
modified body mode when a large gL/2c2Ai is included. Fig. 3.12 includes the same large gL/2c2Ai = 2.5

and it shows that for small cAi/cAe the mode does not propagate: it is a modified body mode. However, the
mode does become a true body mode for some values of cAi/cAe that are closer to unity. Also notice that
this mode, for a large value of gL/c2Ai has the same frequency for two different values of cAi/cAe, which
has consequences on its application to coronal seismology.

Now consider the case when a/L and cAi/cAe are fixed then so that the effect of increasing gL/2c2Ai

can be analysed directly. Consider again some typical parameters values a/L = 0.1 and cAi/cAe = 2/5.
Solving Eq. (3.71) indicates the dimensionless frequency variation when gL/2c2Ai varies. The lower cutoff
is dependent on gL/2c2Ai, given by Eq. (3.93); however, the upper cutoff is independent of gravity and is
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Figure 3.8: Dispersion diagram for the fast body mode solution ωL/cAi (solid curves) to Eq. (3.71) as a
function of a/L. Here, gL/2c2Ai = 1 and cAi/cAe = 2/5. The dot-dashed curves indicate the equival-
ent diagram with g = 0. The dashed and dotted lines indicate the upper and lower cutoff frequencies,
respectively.

Figure 3.9: Dispersion diagram for the fast body mode solutions ωL/cAi (solid curves) to Eq. (3.71). Here
gL/2c2Ai = 2.5 and cAi/cAe = 2/5. The dot-dashed line indicates the equivalent diagram with g = 0,
the dashed and dotted lines indicate the upper and lower cutoff frequencies, respectively. Notice that the
fundamental kink mode falls below the cutoff frequency, becoming a modified body mode.
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Figure 3.10: Dispersion diagram for the fast body mode (solid curve) of oscillation in a uniform coronal
slab given by Eq. (3.71). The dashed and dotted lines indicate the upper and lower cutoff frequencies,
respectively. Here, g = 0 and a/L = 0.1.

Figure 3.11: Dispersion diagram for the fast body mode (solid curve) of oscillation in a horizontal coronal
slab given by Eq. (3.71). The dashed and dotted lines indicate the upper and lower cutoff frequencies,
respectively. Here, gL/2c2Ai = 1.5 and a/L = 0.1.
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Figure 3.12: Dispersion diagram for the fast body mode (solid curve) of oscillation in a horizontally struc-
tured coronal slab given by Eq. (3.71). The dashed and dotted lines indicate the upper and lower cutoff
frequencies, respectively. Here, gL/2c2Ai = 2.5 and a/L = 0.1.

constant in this calculation.

Fig. 3.13 shows that the fundamental mode of oscillation drops below the lower cutoff for some value of
gL/2c2Ai ' 2.5. At this point the propagating body mode becomes a modified body mode, which does not
propagate in the corona (Roberts, 1981b). Fig 3.14 shows that higher harmonics are affected differently by
the inclusion of gravity. In fact, only the fundamental becomes a modified body mode, so for large values
of g the first sausage mode may appear similar to the fundamental kink mode, oscillating very close to the
lower cutoff frequency.

It is important to remark that in the solar corona the value of gL/2c2Ai is small, typically gL/2c2Ai ' 0.02.
Significant consequences occur in this model for large gL/2c2Ai, e. g. modified body modes. However, this
case is unphysical for the Sun, but other stars may have a large enough gravitational acceleration, due to
large loop length or small Alfvén speeds, to produce such effects. For example, with a typical Alfvén speed
of around 100 km s−1 (an order of magnitude below the typical solar coronal value), then gL/2c2Ai ' 2 so
plasma slabs satisfying this condition may suffer some of the effects reported here.

3.5 The Alfvén Wave

Another MHD mode of interest here is the Alfvén mode. First studied by Alfvén (1943b), the Alfvén
mode, in an unbounded homogeneous medium, is characterised by being an incompressible mode with its
maximum phase velocity occurring when the mode propagates parallel to the magnetic field. The trapped
Alfvén mode can be analysed by studying Eqs. (3.27)–(3.29). Recall that for a low-β plasma the system of
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Figure 3.13: Dispersion diagram for the fast body mode solution ωL/cAi (solid curve) to Eq. (3.71) as a
function of gL/2c2Ai. The dashed and dotted lines indicate the upper and lower cutoff frequencies, respect-
ively. Here, a/L = 0.1 and cAi/cAe = 2/5.

Figure 3.14: Dispersion diagram for the fast body mode solutions ωL/cAi (solid curves) to Eq. (3.71)
as a function of gL/2c2Ai. The dashed and dotted lines indicate the upper and lower cutoff frequencies,
respectively. Here, a/L = 1.0 and cAi/cAe = 2/5.
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equations is given by:

ρ0

(

∂2

∂t2
− c2A

∂2

∂z2

)

v⊥ + ∇⊥
∂pT

∂t
− ∂ρ1

∂t
gx̂ = 0, (3.94)

(

∂2

∂t2
− c2A∇2

)

∂pT

∂t
+ g

(

x̂ · ∇⊥
∂pT

∂t

)

= 0. (3.95)

By considering the possibility that ∂pT/∂t = 0, then Eq. (3.94) becomes

ρ0

(

∂2

∂t2
− c2A

∂2

∂z2

)

v⊥ − ∂ρ1

∂t
gx̂ = 0, (3.96)

and Eq. (3.95) is identically satisfied. Alfvén (1943b) showed that the Alfvén mode, in a uniform (g = 0)
plasma, satisfies the dispersion relation

ω2 = c2Ak
2
z = c2Ak

2 cos2 θ, (3.97)

where θ is the angle between the direction of propagation and the applied magnetic field B0ẑ. On examin-
ing the uniform version of Eq. (3.96) then it is clear that the solutions satisfy the Alfvén mode dispersion
relation. The Alfvén mode is highly anisotropic, it propagates along the applied magnetic field with its max-
imum phase speed cA when parallel to the field. Its phase speed vanishes when the direction of propagation
is perpendicular to the magnetic field.

Eq. (3.96) describes the Alfvén mode in a plasma where gravity acts in the x-direction, embedded in a
uniform magnetic field, B0ẑ. Eq. (3.96) can be separated into the x and y-directions to give two equations
describing each component of the Alfvén mode:

ρ0

(

∂2

∂t2
− c2A

∂2

∂z2

)

vx + ρ0g
∂vx

∂x
= −ρ0g

∂vy

∂y
(3.98)

and

ρ0

(

∂2

∂t2
− c2A

∂2

∂z2

)

vy = 0. (3.99)

Eqs. (3.98) and (3.99) are the set of coupled differential equations describing the Alfvén mode in a low-β
slab of plasma, embedded in a horizontal magnetic field, with gravity acting perpendicular to the slab. The
introduction of gravity to the system causes the polarisation of the Alfvén mode to be affected differently
in each direction. If g = 0 then Eq. (3.98) is the equivalent equation to Eq. (3.99) for the vx and vy polar-
isations, respectively. However, when g 6= 0, as is the case here, then gravity has introduced a preferential
direction, x̂. Now the components of the Alfvén mode, vx and vy , are no longer equivalent. Consider
Eqs. (3.98) and (3.99) for two cases.

Initially, the case of vy 6= 0, but ky = 0 is considered, hence ∂vy/∂y = 0. Eq. (3.98) becomes

ρ0

(

∂2

∂t2
− c2A

∂2

∂z2

)

vx + ρ0g
∂vx

∂x
= 0. (3.100)
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Effectively the equations are no longer coupled. By letting vx(x, z) = f(x)h(z) exp (iωt), then Eq. (3.100)
leads to the eigenvalue equation

ω2

c2A
+
h′′(z)

h(z)
=

g

c2A

f ′(x)

f(x)
= ±λ2. (3.101)

Separation of variables leads to the equation for the z-dependence

h′′(z) +

(

ω2

c2A
+ λ2

)

h(z) = 0, (3.102)

which has the simple solution h(z) = C sin (kz) + D cos (kz). Line-tying invokes the condition that
k = nπ/L and so λ2 can be defined as

λ2 =
n2π2

L2
− ω2

c2A
. (3.103)

The x-equation is a first order, linear ordinary differential equation of the form

f ′(x) +
λ2c2A
g

f(x) = 0, (3.104)

which can be solved using the integrating factor. This leads to the equation

f(x) = f(0) exp
(

−λ2c2Ax/g
)

. (3.105)

Now the form of f(x) is known in the three regions of the model: above, below and inside the slab. In
particular, f(x) can be written as

f(x) =



















a1e exp
(

−λ2
ec

2
Aex/g

)

, x > a,

bi exp
(

−λ2
i c

2
Aix/g

)

, |x| < a,

a2e exp
(

−λ2
ec

2
Aex/g

)

, x < −a.

(3.106)

By considering the boundary conditions across the plasma interfaces at x = ±a (with no flows) then the
conditions of continuous velocity and total plasma pressure apply across the interfaces are, as before:

n̂ · [v]±a = n̂ · [B]±a
= 0, (3.107)

[pT]±a = 0. (3.108)

However, in studying the Alfvén wave pT = 0, so the second of these conditions is already satisfied. This
leaves the only condition of the continuity of the plasma velocity across x = ±a. However, there is no way
to enforce a solution in the form of Eq. (3.106) which has vx → 0 when x→ ±∞ (see Fig. 3.15). Thus, the
only solution that satisfies the required boundary conditions is vx = 0, i. e. there is no wave polarisation
in the x-direction.
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−a a

vx

x

Figure 3.15: Sketch of the vx component of the Alfvén mode. Notice that there are no trapped solutions for
vx 6= 0.

Consider Eq. (3.99) to calculate the y-component. It has the simple oscillatory solutions

vy(x, z) = A sin (kz) +B cos (kz) , (3.109)

where k = nπ/L and λ is defined as before in Eq. (3.103). Therefore, the full solution of the Alfvén modes
can be written:

vx = 0, vy = A sin (kz) + B cos (kz) , vz = 0. (3.110)

This is the well known Alfvén mode, polarised in the y direction for a uniform medium. Furthermore, by
considering the case when ky 6= 0 then vx = 0 is still a requirement. Also, considering the system when
vy = 0 then there is no solution for the trapped Alfvén mode in this geometry.

Although the inclusion of gravity causes a preferred direction, in the x-direction, it does not affect the
trapped Alfvén modes. These trapped modes are still polarised in the y-direction, as expected, and vx = 0

is the only solution that allows trapped modes.

3.6 Gravity Aligned with Magnetic Field

In this Chapter the variable pT has been introduced and the coupled partial differential equations describing
a slab of magnetic plasma embedded in a magnetic environment, with gravity acting perpendicular to the
z-axis, have been derived. It is interesting to consider the case of gravity acting parallel to the z-axis (as in
Chapter 2). Here, the equations, in terms of the total pressure perturbation, for the case of a vertical slab in
the presence of gravity are derived.

Consider a vertical slab of plasma, symmetric about the z = 0 axis, parallel to the equilibrium magnetic
field, B0ẑ. This plasma is stratified under gravity, g and embedded in the uniform, vertical magnetic field
B0 = (0, 0, B0). The plasma pressure p0 (z) and the density ρ0(z) are related by hydrostatic equilibrium

dp0

dz
= gρ0(z), (3.111)
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i. e. gravity acts in the direction of the z-axis (see Fig. 3.16).

photosphere
B0

2a

g

z

x 2L

L

Figure 3.16: Coronal loop model: gravity aligned with the magnetic field. The slab is symmetric about the
horizontal dashed line at z = 0 for stability.

The starting point is the set of equations of continuity, momentum, induction and adiabatic energy equa-
tions, Eqs. (3.1)–(3.4) as before. Consider small amplitude perturbations about the equilibrium condition

−∇p0 (z) − 1

2µ
∇B2

0 + ρ0 (z) g = 0. (3.112)

The perturbations are of the form p = p0 + p1(z, t) and ρ = ρ0 + ρ1(z, t) producing a perturbed flow and
magnetic field v and B1 respectively.

Eqs. (3.1)–(3.4) are linearised about the equilibrium condition (3.112) to get the linearised MHD equa-
tions:

∂ρ1

∂t
+ ∇ · (ρ0(z)v) = 0, (3.113)

∂B1

∂t
= (B0 · ∇)v⊥ − B0 (∇ · v⊥) , (3.114)

ρ0 (z)
∂v

∂t
= −∇pT + ρ1g +

1

µ
(B0 · ∇)B1, (3.115)
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∂p1

∂t
+ (v · ∇) p0 (z) = c2s (z)

(

∂ρ1

∂t
+ (v · ∇) ρ0 (z)

)

, (3.116)

and again the quantity pT is

pT = p1 +
1

µ
B0 · B1, (3.117)

with c2s (z) = γp0(z)/ρ0(z).

Consider the perpendicular motion in Eq. (3.115):

ρ0 (z)
∂v⊥

∂t
= −∇⊥pT +

1

µ
B0

∂B⊥

∂z
. (3.118)

On taking the time derivative of this and noting

∂B⊥

∂t
= B0

∂v⊥

∂z
(3.119)

from Eq. (3.114), then the wave equation describing the modes of oscillation in the perpendicular direction
to the magnetic field is derived,

ρ0 (z)

(

∂2

∂t2
− c2A (z)

∂2

∂z2

)

v⊥ + ∇⊥
∂pT

∂t
= 0. (3.120)

Concentrating on the motion parallel to the z-axis, the momentum equation becomes

ρ0 (z)
∂vz

∂t
= −∂pT

∂z
+

1

µ
B0

∂Bz

∂z
+ ρ1g, (3.121)

Then taking the time derivative and noting

∂Bz

∂t
= −B0 (∇⊥ · v⊥) (3.122)

from Eq. (3.114), and substituting for ∂ρ1/∂t by Eq. (3.113), the wave equation describing the plasma
perturbations in the direction parallel to the magnetic field is given by,

ρ0 (z)
∂2vz

∂t2
= − ∂

∂z

∂pT

∂t
− g

∂

∂z
(ρ0 (z) vz) − ρ0 (z) c2A (z)

∂

∂z
(∇⊥ · v⊥) − gρ0 (z) (∇⊥ · v⊥) .

(3.123)

Consider, now, the quantity pT to eliminate the term in Eq. (3.123) containing (∇⊥ · v⊥). Taking the
time derivative of pT gives

∂pT

∂t
=
∂p1

∂t
+

1

µ
B0 · ∂B

∂t
. (3.124)
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Substituting for ∂p1/∂t by using Eq. (3.116) and rearranging gives an equation for pT:

∂pT

∂t
= −c2f (z) ρ0 (z) (∇ · v) + ρ0 (z) c2A (z)

∂vz

∂z
− vzp

′
0, (3.125)

where (′) denotes the derivative with respect to z. Rearranging Eq. (3.125) yields an equation for (∇⊥ · v⊥)

cast in the form of pT,

(∇⊥ · v⊥) = − 1

c2f (z) ρ0 (z)

∂pT

∂t
− c2s (z)

c2f (z)

∂vz

∂z
− vz

c2f (z) ρ0 (z)
p′0. (3.126)

Substituting Eq. (3.126) into Eq. (3.123) gives the equation describing the parallel plasma perturbations in
terms of vz :

ρ0 (z)
∂2vz

∂t2
= − ∂

∂z

∂pT

∂t
− g

∂

∂z
(ρ0 (z) vz)− (3.127)

ρ0 (z) c2A (z)
∂

∂z

(

− 1

c2f (z) ρ0 (z)

∂pT

∂t
− c2s (z)

c2f (z)

∂vz

∂z
− vz

c2f (z) ρ0 (z)

∂p0

∂z

)

− gρ0 (∇⊥ · v⊥) .

Here, the general set of three equations describing the three-dimensional plasma perturbations in a strat-
ified and magnetised plasma, where gravity acts parallel to the equilibrium magnetic field, B0ẑ, has been
derived. Rewriting this system of equations:

ρ0 (z)

(

∂2

∂t2
− c2A (z)

∂2

∂z2

)

v⊥ + ∇⊥
∂pT

∂t
= 0, (3.128)

∂pT

∂t
= −c2f (z) ρ0 (z) (∇ · v) + ρ0 (z) c2A (z)

∂vz

∂z
− vzp

′
0, (3.129)

ρ0(z)
∂2vz

∂t2
= − ∂

∂z

∂pT

∂t
− gvzρ

′
0− (3.130)

ρ0(z)c
2
A (z)

∂

∂z

(

− 1

c2f (z) ρ0 (z)

∂pT

∂t
− c2s (z)

c2f (z)

∂vz

∂z
− vz

c2f (z) ρ0 (z)

∂p0

∂z

)

− gρ0(z) (∇ · v) .

By setting g = 0, then the Eqs. (3.128)–(3.130) reduce to the set of equations for pT with constant plasma
density.

Eqs. (3.128)–(3.130) are a set of three coupled partial differential equations that describes the plasma
perturbations in terms of the total perturbed pressure, pT. When g = 0 then these equations match the
g = 0 case studied for a low-β plasma in Dı́az (2004) and Donnelly (2006). pT can be eliminated from
Eqs. (3.128),(3.129) and (3.130), considering only two-dimensional perturbations vx and vz . This is the
special case studied in Ferraro and Plumpton (1958).

Firstly, substitute Eq. (3.129) into Eq. (3.128) which gives

ρ0 (z)

(

∂2

∂t2
− c2A (z)

∂2

∂z2

)

vx +
∂

∂x

(

−ρ0 (z) c2f (z)
∂vx

∂x
− ρ0 (z) c2s (z)

∂vz

∂z
− vz

∂p0

∂z

)

= 0.

(3.131)
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Substituting the equilibrium condition given by Eq. (3.112) then, after some algebra, this becomes
(

c2A (z)
∂2

∂z2
+ c2f (z)

∂2

∂x2
− ∂2

∂t2

)

vx +

(

c2s (z)
∂

∂z
+ g

)

∂vz

∂x
= 0. (3.132)

By using Eq. (3.128) to eliminate pT from Eq. (3.130) gives

ρ0 (z)
∂2vz

∂z2
= − ∂

∂z

(

−ρ0 (z) c2f (z)
∂vx

∂x
− ρ0 (z) c2s (z)

∂vz

∂z
− vz

∂p0

∂z

)

− (3.133)

g
∂

∂z
(ρ0 (z) vz) + ρ0 (z) c2A (z)

∂

∂z

(

−∂vx

∂x

)

− gρ0 (z)
∂vx

∂x
.

Again using the equilibrium condition given by Eq. (3.112) to eliminate the ∂p0/∂z terms, after some
algebra, yields the equation

(

ρ0 (z) c2s (z) +
(

ρ0 (z) c2f (z)
)′ − gρ0 (z)

) ∂vx

∂x
+ (3.134)

(

ρ0 (z) c2s (z)
∂2

∂z2
+
(

ρ0 (z) c2s (z)
)′ ∂

∂z
− ρ0 (z)

∂2

∂t2

)

vz = 0.

Now consider the terms ρ0 (z) c2s (z) present in Eq. (3.134):

ρ0 (z) c2s (z) = ρ0 (z)
γp0 (z)

ρ0 (z)
= γp0 (z) ⇒

(

ρ0 (z) c2s (z)
)′

= γ
∂p0

∂z
= γρ0 (z) g. (3.135)

Secondly, consider ρ0 (z) c2f (z) which also appears in Eq. (3.134):

ρ0 (z) c2f (z) = γp0 (z) +
B2

0

µ
⇒
(

ρ0 (z) c2f (z)
)′

= γρ0 (z) g. (3.136)

Substituting Eqs. (3.135) and (3.136) into Eq. (3.134) gives
(

c2s (z)
∂

∂z
+ (γ − 1) g

)

∂vx

∂x
+

(

c2s (z)
∂2

∂z2
+ γg

∂

∂z
− ∂2

∂t2

)

vz = 0. (3.137)

Eqs. (3.132) and (3.137) are the two coupled partial differential equations first derived in Ferraro and
Plumpton (1958)2. They describe the two-dimensional motions of a plasma, stratified under gravity embed-
ded in a vertical, uniform magnetic field. Eqs. (3.132) and (3.137) in the limit of a strong magnetic field,
and under the influence of a stretching coordinate, lead to the Klein-Gordon equation, given by Eq. (2.67),
describing the slow magnetoacoustic modes (see Chapter 2); see also Roberts (2006) for a full discussion.

Returning to Eqs. (3.128)–(3.130), they describe the Alfvén and magnetoacoustic waves in a low-β
plasma in the presence of gravity. It is clear from these equations that the fast and slow modes are coupled
in this system, and the presence of gravity modifies this coupling. A qualitative discussion gives some use-
ful application of Eqs. (3.128)–(3.130); a quantitative discussion is left for future work. When ∂pT/∂t = 0

then Eq. (3.128) describes the Alfvén mode. This mode is not directly affected by gravity in this configura-

2In Ferraro and Plumpton (1958) the z-axis and gravity are antiparallel.
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tion, though it is influenced by the non-uniformity in the equilibrium quantities (brought about by gravity).
The fast mode is altered by both the non-uniformity and the presence of vzp

′
0 (= ρ0gvz) in Eq. (3.129).

The slow mode is also affected by the non-uniformity in the equilibrium quantities and the terms (such as
gvzρ

′
0) which arise from g being non-zero. The overall interaction of the modes is, of course, far more

complex, but Eqs. (3.128)–(3.130) may prove useful regarding an exploration of the role of gravity in the
coupling of the MHD modes.

3.7 Conclusions

The aim of this Chapter is to study the effect of the inclusion of gravity across the magnetic field embedded
in a horizontal uniform slab of plasma. In particular, the effect of gravity on the fast mode is studied when
acting both perpendicular and parallel to the applied magnetic field. The results are compared primarily to
those of Roberts (1981b).

A new set of coupled differential equations is derived to describe the perturbations of pT and v for a
slab of plasma embedded in a horizontal (z-direction) magnetic field, with gravity acting in the x-direction.
These equations are an extension of Roberts (1981b), Dı́az (2004) and Donnelly (2006). The inclusion of
gravity is shown to modify the cutoff frequencies. In particular the upper cutoff depends only on the density
contrast inside and outside the slab (not directly on gravity). However, the lower cutoff is directly modified
by the inclusion of gravity. Furthermore the inclusion of gravity breaks the symmetry of the problem, and
the distinction between even and odd modes of oscillation is no longer apparent. The important parameter is
not simply the magnitude of g but it is the dimensionless combination gL/c2Ai. This parameter is generally
small in the solar corona. However, in other stellar objects this parameter may be larger, introducing some
of the more significant effects found to be caused by the introduction of gravity. In the limit g → 0 then the
model reduces to the well known model of a slab of plasma embedded in a uniform magnetic field (Roberts,
1981b).

Roberts (1981b) showed that surface modes do not exist in the low-β corona in the absence of gravity. It
is shown here that even in the presence of gravity, no surface modes exist in a slab of low-β plasma (such
as the corona). However, a consequence of the lower cutoff dependence on gravity is that the fundamental
(kink) body mode of oscillation, which propagates for any aspect ratio a/L of the slab in a uniform medium,
no longer propagates for all a/L. In fact, for large values of gL/2c2Ai, this body mode becomes a modified
body mode, and its frequency falls below the lower cutoff frequency. Thus the inclusion of gravity allows
the transition of modes between surface and body modes. Surface modes do not exist in the low-β corona,
but modified body modes exist when gravity is present.

A less drastic consequence of the inclusion of gravity is that the frequency of the fundamental body
mode is reduced (increasing the period) compared to the uniform case (as in Evans and Roberts (1990) for
the p and f -modes in the solar interior). A further consequence of gravity is that each mode is affected
in a unique way; for example, the fundamental frequency is reduced, but all other modes have increased
frequency.
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The Alfvén mode has also been studied briefly in this configuration, and although g introduces a pre-
ferred direction, the only allowed solution for the trapped Alfvén modes is when they are polarised only in
the y-direction. No component in the x-direction is trapped so the Alfvén mode is not coupled with the fast
mode.

Next, a new set of equations, Eqs.(3.128)–(3.130), is derived for a vertical slab embedded in a magnetic
field that is also vertical, aligned with gravity, in terms of the total plasma pressure perturbation pT. The set
of coupled differential equations for pT and v is derived and the reduction to both the equations of Ferraro
and Plumpton (1958) and consequently to the Klein-Gordon equation for the slow magnetoacoustic mode
(given in Chapter 2 and also in Roberts (2006)) is shown. Although this set of equations is not studied in
detail here, there is scope for future work regarding the model.

This model is designed to provide insight into the complications that the inclusion of gravity brings.
However, there are many physical processes neglected here, which should be included as extensions in any
future work. The inclusion of an x-dependence for ρ0 (x) would complicate matters. Here it is assumed that
a � Λ, which effectively means that the x-dependence of density is constant. The inclusion of a variable
density profile along the loop, ρ0 (z), would allow for more accurate modelling of the slab. However, this
complicates the problem, hence numerical extensions to this work would be required to fully analyse this
model (see Donnelly 2006; Donnelly et al. 2006; Donnelly et al. 2007, in press).



Chapter 4

P1/2P2 as a Tool for Coronal Seismology

4.1 Introduction

With1 the advent of the space missions Solar and Heliospheric Observatory (SOHO) and the Transition Re-
gion And Coronal Explorer (TRACE) there is convincing evidence of slow and fast magnetoacoustic waves
in the corona. There is observational evidence of slow modes occurring as propagating waves (DeForest
and Gurman 1998; Robbrecht et al. 1999; Ofman et al. 1997, 1999; De Moortel et al. 2000,2002a,b; Sak-
urai et al. 2002; McEwan and De Moortel 2006) and also as standing waves (Kliem et al. 2002; Ofman and
Wang 2002; Wang et al. 2002, 2003, 2004). Fast kink waves have also been reported as standing modes
(Aschwanden et al. 1999; Brown et al. 2002; Nakariakov et al. 1999; Wang and Solanki 2004; Verwichte
et al. 2005) and as propagating waves (Williams et al. 2002). Fast sausage modes have also been identified
(Nakariakov et al. 2003; Nakariakov et al. 2005; Melnikov et al. 2005a). Extensive reviews of these obser-
vations and their theoretical interpretation are provided in Roberts (2000, 2004), Roberts and Nakariakov
(2003), Wang (2004), Aschwanden (2004), Nakariakov and Verwichte (2005), De Moortel (2006) and
Goossens et al. (2006). Waves can be utilised to provide diagnostic tools for coronal seismology (Roberts
et al. 1984; Roberts 1986, 2000, 2004, 2006; Nakariakov et al. 1999; Nakariakov and Ofman 2001), to give
indirect determinations of various coronal parameters.

The fundamental period P1 of an MHD mode contains information mainly about the average profile of
the propagation speed of the mode. Andries et al. (2005a) argued that the frequencies and damping times
of a stratified loop are very close to those of an unstratified loop with the same weighted mean density, the
weight depending upon the spatial structure of the mode under consideration (see also Dı́az et al. (2006)).

However, higher harmonics carry more detailed information about a structure. An analogy can be drawn
here, with nuclear and particle physics, where to probe small lengthscales it is necessary to study inter-
actions with particles of higher energy (lower wavelength), since an incoming perturbation with large
wavelength would only feel the averaged properties, and would not be influenced by the details of the
particle under study. In the context of coronal loops, higher harmonics have lower wavelengths, so they
are more influenced by the chromospheric structure or the gravitational scale height. The study of P1/2P2

provides information about these scales.

Observations of standing waves have so far mainly identified the fundamental harmonics of a vibrating
loop, with evidence for higher harmonics being rare. However, King et al. (2003) have identified the

1Aspects of this Chapter have been published in McEwan et al. (2006): On the Period Ratio P1/2P2 in the Oscillations of Coronal
Loops
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propagation of a first harmonic wave in a fan-like loop footpoint, and Verwichte et al. (2004) have identified
the fundamental and its first harmonic (termed the second harmonic in that paper) of the transverse kink
mode in two cases.

Andries et al. (2005a,b) and Goossens et al. (2006) have pointed out that the identification of harmonics
could provide important diagnostic information for the coronal seismology of a loop. In particular, Andries
et al. (2005b) studied the ratio P1/P2 of the fundamental oscillation period, P1, and its first harmonic, P2,
of a kink mode oscillation, showing that this ratio falls below 2. For standing waves on an elastic string,
P1/P2 = 2 and so P1/2P2 = 1. In Andries et al. (2005b) the departure of P1/P2 from 2 is a consequence
of the density structure along the loop, and they explore this aspect through numerical modelling of the
oscillations. Their work allows a comparison between the model and the observational results of Verwichte
et al. (2004), which gave P1/P2 = 1.81 in one case and P1/P2 = 1.64 in another case. Andries et al.
(2005b) included density structure but ignored the effects of gravity. Further scope for improvements in
the techniques of coronal seismology include the development of spatial seismology. Erdélyi and Verth
(2007) have identified that the spatial dependence of the amplitude of transverse loop oscillations depends
on the density structure within the loop. However, the measurable change in the spatial profile seems to be
at the limit of the current EUV imagers but with future higher resolution missions this technique may prove
useful.

The suggestion that P1/2P2 may depart from unity is taken up, and it is argued that such a departure is
a natural consequence of the structure and stratification of the medium. The deviation of the ratio P1/2P2

from unity is studied for fast and slow MHD modes in response to such effects as structuring in the lon-
gitudinal or transversal directions or gravity. The main conclusion is that longitudinal structuring is the
most important effect and this can be used in coronal seismology to estimate properties such as the density
stratification scale.

4.2 Ratio of P1/2P2 for Fast Modes

A convenient starting point for this analysis is the set of linearised ideal MHD equations for a straight
uniform magnetic field B0 = B0ẑ, constant plasma pressure and an equilibrium density profile ρ0 (z) that
is structured along the z-axis (Roberts, 1991; Dı́az et al., 2002; Dı́az, 2004),

∂pT

∂t
= ρ0(z)c

2
A(z)

∂vz

∂z
− ρ0(z)c

2
f (z)∇ · v, (4.1)

ρ0(z)

(

∂2

∂t2
− c2A(z)

∂2

∂z2

)

v⊥ + ∇⊥
∂pT

∂t
= 0, (4.2)
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ρ0(z)

(

∂2

∂t2
− c2T(z)

∂2

∂z2

)

vz +
c2s (z)

c2f (z)

∂

∂z

(

∂pT

∂t

)

= 0, (4.3)

Figure 4.1: The dispersion diagram for magnetoacoustic waves in a magnetic flux tube of radius a. The
diagram gives the phase speed cph(= ω/k) of the modes as a function of longitudinal wavenumber k (in
dimensionless units of ka). The solid curves give the fast kink modes, the dashed curves are the fast sausage
modes. Also shown is the weakly dispersive band of slow waves (sausage and kink) with speed close to
cTi, the slow mode speed in the tube interior. Here the internal Alfvén speed cAi is half the Alfvén speed
cAe in the environment, ci = 0.2cAi and ce = 0.1cAi. (After Edwin and Roberts (1983)).

where cs(z) =
√

γp0/ρ0(z) is the sound speed, cA(z) = B0/
√

µρ0(z) the Alfvén speed, and cf and cT
are defined through c2f = c2s + c2A and c−2

T = c−2
s + c−2

A . Notice that the characteristic speeds depend on
the coordinate z along the loop via the equilibrium density profile. Here v = v⊥ + vz ẑ is the perturbation
flow and pT is the associated total (plasma plus magnetic) pressure perturbation. The effects of gravity are
not included in this analysis.

Eqs. (4.1)–(4.3) are valid in the internal and external region separately. Boundary conditions of continu-
ous total pressure and velocity across the interface are used to model the radial dependence. In Roberts
(1991) neither a uniform magnetic field nor uniform pressure was assumed but the density ρ0 was taken to
be independent of z.

Eqs. (4.1)–(4.3) may be used to obtain the modes of oscillation of an unbounded homogeneous cyl-
indrical magnetic flux tube of radius a with constant densities ρi and ρe inside and outside the tube. For
waves of frequency ω and longitudinal wavenumber k, the modes of oscillation of a magnetic flux tube
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embedded in a magnetised plasma have been discussed by Edwin and Roberts (1983), who obtained a dis-
persion diagram for the modes. Fig. 4.1 displays such a diagram, obtained here for a flux tube with internal
Alfvén speed cAi embedded in an environment with Alfvén speed cAe = 2cAi; the sound speed ci inside
the tube is ci = 0.2cAi and the sound speed ce in the environment is ce = 0.1cAi.

Figure 4.2: P1/2P2 for the kink mode in a uniform coronal loop in a uniform environment. The dotted curve
is for the case ρi/ρe = 2, the solid curve is for ρi/ρe = 25/4, and the dashed curve represents ρi/ρe = 15.
Departures of P1/2P2 from unity are here a consequence of radial structuring (ρi 6= ρe, cAi 6= cAe).

4.2.1 Magnetic Structuring

The ratio P1/2P2 departs from unity even in the case of a straight homogeneous loop. To see this, consider
the fast kink mode which in Fig. 4.1 has a phase speed cph (= ω/k) which in the limit of a thin tube
(ka� 1) has speed ck, where

ck =

(

ρic
2
Ai + ρec

2
Ae

ρi + ρe

)1/2

(4.4)

where ρi and ρe denote the plasma densities inside and external to the loop, respectively. In a uni-
form magnetic field in which the tube is defined solely by a density difference, so ρi 6= ρe, then ck =

cAi (2ρi/ (ρi + ρe))
1/2; for a high density loop with ρi � ρe, this gives a speed ck =

√
2cAi, which is

41% larger than the tube’s Alfvén speed cAi.

Consider then the ratio P1/2P2 of the fundamental fast kink oscillation of period P1 to its first harmonic
of period P2. Since cph = ω/k, the associated period is P = 2π/ω = 2π/kcph. Consider a line-tied
coronal loop of length 2L. Line-tying determines the values of the longitudinal wavenumber k that allow
the oscillation to fit within the loop, so that (see Roberts et al. 1984) k = kn = nπ/(2L), for integer n.
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Then the period P = Pn is given by

Pn =
4L

ncph(kn)
. (4.5)

The speed cph(kn) varies with kn, as shown in Fig. 4.1; the modes are dispersive. When n = 1 the
fundamental mode is given by k1 = π/(2L) and n = 2 gives its first harmonic (or overtone), with k2 =

2k1 = π/L. Thus

P1

2P2
=
cph(k2)

cph(k1)
. (4.6)

In a medium for which dispersion is absent, cph(k1) = cph(k2) and so P1/2P2 = 1. This is the situation
with a sound wave or a wave on an elastic string. But here dispersion – introduced as a consequence of
structuring across the magnetic field – causes this ratio to depart from unity. In fact, for the kink mode
of Fig. 4.1, dispersion results in cph(k1) > cph(k2) (since k1 < k2) and so P1/2P2 is less than unity.
Fig. 4.2 displays P1/2P2 as a function of a/L, determined from Fig. 4.1 for a uniform tube in a uniform
environment (with the density ρi in the loop interior exceeding the density ρe in the environment). The
departure of P1/2P2 from unity, here a measure of the density structuring across the field, varies with loop
length. For very short (L � a) or very long (L � a) loops, the ratio is close to one, but it possesses a
minimum when L ' a. In coronal applications, only the results for long loops (L � a) are likely to be
relevant. (In the case of fast sausage modes (shown dashed in Fig. 4.1), the presence of cutoff complicates
the consideration of P1/2P2, since it may be that the wave is leaky.)

The departure of P1/2P2 from unity in the kink mode can be understood more fully if the focus is
directed towards a thin tube (ka � 1) with zero plasma β. With β = 0 (sound speeds are set to zero), the
kink mode in a thin tube has a phase speed cph given by (Edwin and Roberts, 1983)

cph = ck

(

1 − A (κka)2K0 (κka)
)

, ka� 1, (4.7)

where K0 denotes the modified Bessel function and

A =
1

4

(

ρi − ρe

ρi + ρe

)

, κ =

(

ρi − ρe

ρi + ρe

)1/2

. (4.8)

This relation applies strictly for ka � 1, but it is illuminating to consider its use in Eq. (4.6) for arbitrary
ka, with k = k1 when required. Then

P1

2P2
=

1 − 4Ax2K0 (2x)

1 −Ax2K0 (x)
, (4.9)

where x = κk1a = (κπ/2)(a/L). So P1/2P2 varies as a function of a/L (see Fig. 4.2). Expanding the
denominator for small x, gives

P1

2P2
≈ 1 −Ax2(4K0 (2x) −K0 (x)). (4.10)
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It is easy to show that P1/2P2 has a minimum when x = xm, i.e., when ka = 1
κxm, with xm being

determined by the transcendental equation

8K0 (2xm) − 2K0 (xm) = 8xmK1 (2xm) − xmK1 (xm) . (4.11)

The corresponding minimum value of P1/2P2 is given by
(

P1

2P2

)

min

= 1 − 1

4

(

ρi − ρe

ρi + ρe

)

Bm, (4.12)

where Bm depends only on xm. Specifically, numerical determination gives xm = 0.48 and Bm = 0.19.
The important point here is to note that the shift in P1/2P2 from unity depends entirely on ρi and ρe,
reaching a maximum value of 1

4Bm = 0.0475 in the extreme ρi � ρe. Thus dispersion in a thin coronal flux
tube produces, for the kink mode, a shift in P1/2P2 of at most 4.75%, with a corresponding minimum value
of P1/2P2 = 0.9525. Actual shifts, when the full dispersion relation is used, rather than the approximation
(4.7), amount to somewhat more than 4.75% (Fig. 4.2 indicates a maximum shift of around 7.5%), but
nonetheless this provides a good guide as to the magnitude of the harmonic shift due to dispersion induced
by structuring across the field.

4.2.2 Longitudinal Structuring

Consider, now, the role of structuring along the magnetic field. To carry out the investigation of longitudinal
structuring described in this Section, the procedure detailed in Donnelly (2006) and Donnelly et al. (2006)
is closely followed. The role of longitudinal structure has also recently been addressed by Andries et al.
(2005b) and McEwan et al. (2006). Consider again a zero-β plasma, taking an exponential density profile
ρi(z) = ρi(0) exp (z/Λc) for coronal scale height Λc. The density increases from a value ρi (0) = ρapex

at the loop apex (z = 0) to a value ρi (z = L) = ρbase at the loop base (z = L), which are related to the
scale height as

L

Λc
= ln

(

ρbase

ρapex

)

. (4.13)

In the zero-β limit, Eqs. (4.1) and (4.2) can be combined to obtain a single partial differential equation
for the perturbed total pressure (Dı́az et al., 2002; Donnelly et al., 2006),

(

∂2

∂t2
− c2A(z)∇2

)

pT = 0. (4.14)

The same procedure used in Dı́az et al. (2002) to solve Eq. (4.14) is followed. A sum over the eigenfunctions
is required to satisfy the boundary conditions at the loop surface, which lead to a system of equations for
the coefficients of the eigenfunctions. The condition of having non-trivial solutions gives the dispersion
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relation (see Donnelly (2006) for further details on the calculation).

Figure 4.3: P1/2P2 as a consequence of combined longitudinal and transverse structuring. The density
is exponentially stratified along the loop. The solid line has a base density that is 8 times the density at
the apex (ρbase/ρapex = 8) and the dotted line has ρbase/ρapex = 16. The tube is structured radially with
cAe (0) = 5

2cAi (0), corresponding to a tube density enhancement at the apex of 25/4 times the environment
density there.

The general solution is a result of a combination of two effects, radial and longitudinal structuring. Two
typical curves for various ratios ρbase/ρapex and cAe (0) = 2.5cAi (0) are shown in Fig. 4.3. Due to the
presence of the exponential density profile the ratio P1/2P2 is now no longer equal to unity for any value
of a/L. In fact, the longitudinal stratification shifts the ratio even for a/L � 1 (see Fig. 4.4). However, in
addition the effect of the structure across the loop shifts it further (though in a similar way of that shown
in Fig. 4.2 for an unstructured loop) as a/L is increased and the dispersive nature of the mode is included.
Notice in Fig. 4.3 that the shift due to longitudinal stratification is larger than that due to radial structuring,
especially since for solar coronal loops a/L ≈ 0.01. The previous case of an unstructured loop follows
from Fig. 4.4 by taking the limit Λc → ∞, so L/Λc → 0.

4.2.3 Effect of gravity

The effect of gravity has not been taken into account in Eqs. (4.1)–(4.3). By assuming that gravity is acting
along the axis g = g(z)ẑ (in a vertical loop, for example), Eq. (4.3) becomes

ρ0
∂2vz

∂t2
= − ∂

∂z

∂pT

∂t
− gvz

∂ρ0

∂z
− (4.15)

ρ0c
2
A

∂

∂z

(

− 1

c2f (z) ρ0 (z)

∂pT

∂t
− c2s (z)

c2f (z)

∂vz

∂z
− vz

c2f (z) ρ0 (z)

∂p0

∂z

)

− gρ0 (∇ · v) ,

as shown in Chapter 3 by Eq. (3.130).
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Figure 4.4: P1/2P2 as a function of the inverse scale height L/Λc for a coronal loop of fixed length
2L structured exponentially in density. Here a loop of half-length L = 103a is assumed and cAe (0) =
5
2cAi (0), so ρi (0) = 25

4 ρe (0).

However, in the low-β plasma limit, this equation is decoupled from the perpendicular components of the
perturbed velocity and the perturbed total pressure is as before (this analysis becomes the Klein-Gordon
analysis derived in Chapter 2). Therefore, the results obtained previously remain valid in this limit. The
analysis is more complicated if gravity is not pointing in the loop direction (see Chapter 3 for a full discus-
sion), but then other features, such as the curvature of the loop, need to be explored. However, the main
effect of gravity would still be through the stratification in the equilibrium density profile (studied here).

4.3 Thin Tube Limit

The thin tube approximation has been widely applied to the oscillations of photospheric flux tubes, stratified
by gravity. Sausage modes were discussed by Roberts and Webb (1978, 1979) and kink modes by Spruit
(1981). Recently Dymova and Ruderman (2005) showed its application to coronal flux tubes, specifically
considering prominence structures. Here the thin tube approximation, applied to coronal loops, is shown
to give results that compare favourably with full numerical solutions obtained by Donnelly et al. (2006);
Donnelly et al. (2007, in press). Thus the use of the thin tube approximation provides valuable analytical
information about the departure of the period ratioP1/2P2 from unity, complementary to detailed numerical
solutions such as those presented in Andries et al. (2005b), McEwan et al. (2006) and Donnelly et al. (2006);
Donnelly et al. (2007, in press).

Consider the thin tube limit (L/Λc � 1), then Eqs. (4.1)–(4.3) are simplified to the single ordinary
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differential equation (see Dymova and Ruderman (2005) for details) describing the fast kink modes

d2vr

dz2
+

ω2

c2k (z)
vr = 0, (4.16)

where

c2k (z) =
2B2

0

µ (ρi (z) + ρe (z))
. (4.17)

This equation has been studied for various density profiles in Erdélyi and Verth (2007).

4.3.1 Thin Tube Limit for an Exponential Density Profile

Here, the case when the densities ρi(z) and ρe(z) are both exponentials, with the same scale height Λc is
considered:

ρi (z) = ρi (0) exp (z/Λc) , ρe (z) = ρe (0) exp (z/Λc) , (4.18)

the density ρi(z) is increasing from ρi(0) at the loop apex (z = 0) to ρi(0) exp (L/Λc) at the loop footpoint
(z = L). The Alfvén speed within the loop is cAi and that outside the loop is cAe, both exponentially
decreasing functions of z. For these profiles Eq. (4.16) becomes

d2vr

dz2
+

ω2

c2k(0)
exp (z/Λc) vr = 0. (4.19)

By writing u = z/2Λc, the differential operator d2/dz2 becomes

d2

dz2
=

1

4Λ2
c

d2

du2
, (4.20)

and so Eq. (4.19) becomes

d2vr

du2
+

4Λ2
c

c2k(0)
ω2 exp (2u) vr = 0. (4.21)

This is a form of Bessel’s equation and Abramowitz and Stegun (1964) states that

d2ψ

du2
+
(

λ2
0 exp (2u) − ν2

)

ψ = 0 (4.22)

has solution ψ = Cν (λ0 exp (u)), where Cν is a linear combination of Bessel functions of the first kind
(see also Chapter 2). Hence Eq. (4.19) may be solved in terms of the zeroth order Bessel functions J0 and
Y0 (Abramowitz and Stegun, 1964), yielding

vr (z) = AJ0 (λ0 exp (z/2Λc)) +BY0 (λ0 exp (z/2Λc)) , (4.23)
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with

λ0 =
2Λcω

ck(0)
= 2

Λc

L

ωL

cAi

[

1

2

(

1 +
c2Ai

c2Ae

)]1/2

. (4.24)

This solution matches the solution found in Roberts and Webb (1978), who considered sausage waves in
the thin tube limit.

Consider a loop of length 2L, symmetric about the apex z = 0. Then the standing modes are defined by
the following conditions: for the odd modes vr (L) = vr (0) = 0, giving

vr(0) = AJ0 (λ0) +BY0 (λ0) = 0,

vr(L) = AJ0 (λ0 exp (L/2Λc)) +BY0 (λ0 exp (L/2Λc)) = 0; (4.25)

and for the even modes v′r(0) = vr(L) = 0, giving

v′r(0) = AJ ′
0 (λ0) +BY ′

0 (λ0) = 0,

vr(L) = AJ0 (λ0 exp (L/2Λc)) +BY0 (λ0 exp (L/2Λc)) = 0. (4.26)

Solving these four linear relations by setting their determinant to zero gives the dispersion relations for the
fast modes of oscillation in a line-tied coronal loop with an exponential density profile:

J0 (λ0)Y0 (λ0 exp (L/2Λc)) − Y0 (λ0) J0 (λ0 exp (L/2Λc)) = 0 (4.27)

for the odd modes, and

J ′
0 (λ0)Y0 (λ0 exp (L/2Λc)) − Y ′

0 (λ0) J0 (λ0 exp (L/2Λc)) = 0 (4.28)

for the even modes. Here
λ0 =

2Λcω

ck(0)
.

By determining ω1 numerically from Eq. (4.27) the fundamental frequency is obtained and by using the
relation Pn = 2π/ωn the fundamental period P1 is found. Similarly, from Eq. (4.28), ω2 implies P2. From
these results the period ratio P1/2P2 = ω2/2ω1 can be calculated.

Eqs. (4.27) and (4.28) are solved numerically, with cAi/cAe = 2/5. The dispersion diagram is shown in
Fig. 4.5 and the period ratio P1/2P2, determined from the thin tube dispersion relations (4.27) and (4.28),
compared to the full numerical solution is shown in Figs. 4.6 and 4.7. Fig. 4.8 shows P1/2P2 as a function
of cAi/cAe. Fig. 4.6 indicates that there is a slight deviation of the thin tube calculation of P1/2P2 from
the full numerical solution in Donnelly et al. (2006); Donnelly et al. (2007, in press) for an exponentially
structured loop embedded in a uniform environment. However, this deviation is small (less than 1% for
all L/Λc). Fig. 4.7, however, shows that the thin tube solution matches the full numerical solution for an
exponentially structured loop embedded in an exponentially structured environment (Donnelly, 2006).

Consider approximate solutions of the dispersion relations (4.27) and (4.28) which determine the parameter
λ0 for a given L/Λc. Since
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Figure 4.5: Dispersion curves for the fast kink mode where a � L and cAi/cAe = 2/5. The solid curves
are the even modes and the dotted curves are the odd modes.

Figure 4.6: P1/2P2 using the thin tube model for an exponentially stratified corona where cAi/cAe = 2/5.
The solid curve is the full numerical solution provided in Donnelly et al. (2006); Donnelly et al. (2007, in
press) for an exponential loop profile embedded in a uniform environment and the dashed curve is the thin
tube approximation for an exponential loop profile embedded in an exponential environment.
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Figure 4.7: P1/2P2 using the thin tube model for an exponentially stratified corona, where cAi/cAe =
2/5. The solid curve is the full numerical solution discussed in Donnelly (2006) for an exponential loop
profile embedded in a exponential environment and the dashed curve is the thin tube approximation for an
exponential loop profile embedded in an exponential environment.

Figure 4.8: P1/2P2 as a function of cAi/cAe using the thin tube model for an exponentially stratified
corona. The solid line represents L/Λc = 1.0, the dashed line is L/Λc = 2.5 and the dot-dashed line is
L/Λc = 5.0.
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λ0 =
2Λcω

ck(0)
= 2

Λc

L

ωL

cAi

[

1

2

(

1 +
c2Ai

c2Ae

)]1/2

, (4.29)

the parameter λ0 is large whenever ω � ck(0)/2Λc. Standing kink waves in a uniform loop of length 2L

result in periods P u
n = 4L/nck, giving λ0 � 1 whenever L/Λc � nπ; so it is expected that λ0 � 1 in

loops that are much shorter than 2πΛc. Suppose that λ0 is large. The expansions for Bessel functions of
large arguments, given in Abramowitz and Stegun (1964), can then be employed:

J0 (z) '
√

2

πz

((

1 − 9

128z2

)

cos (z − π/4) +
1

8z
sin (z − π/4)

)

, (4.30)

Y0 (z) '
√

2

πz

((

1 − 9

128z2

)

sin (z − π/4) − 1

8z
cos (z − π/4)

)

, (4.31)

J1 (z) '
√

2

πz

(

cos (z − 3π/4) − 3

8z
sin (z − 3π/4)

)

, (4.32)

and

Y1 (z) '
√

2

πz

(

sin (z − 3π/4) +
3

8z
cos (z − 3π/4)

)

. (4.33)

Eq. (4.28) can be approximated by using the relations that J ′
0(z) = −J1(z) and Y ′

0(z) = −Y1(z) (Ab-
ramowitz and Stegun, 1964). Then, Eq. (4.28) becomes

−J1 (λ0)Y0 (λ0 exp (L/2Λc)) +Y1 (λ0)J0 (λ0 exp (L/2Λc)) = 0. (4.34)

Substituting Eqs. (4.30)–(4.33) into Eq. (4.34) for the even modes gives
{

1 +
1

128λ2
0

(

15 − 6

eL/2Λc
− 9

eL/Λc

)}

cot
[

λ0(e
L/2Λc − 1)

]

+
1

8λ0

3eL/2Λc + 1

eL/2Λc
= 0. (4.35)

By writing

λ0 = (2x)/(L/Λc) (4.36)

and

x = π/2 + (L/πΛc)x1 + (L/πΛc)
2x2 + (L/πΛc)

3x3 + . . . , (4.37)

then an equation can be deduced which approximates the first zero of Eq. (4.35), i. e. P1 for L/Λc � π:

(

L

πΛc

)(

1

2
− x1 −

π2

8

)

−
(

L

πΛc

)2 (
x1

π
+

π

18
+ x2 +

πx1

4
+
π3

48

)

+O

(

(

L

πΛc

)3
)

= 0. (4.38)
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Thus, for the first even mode, x = xeven where

xeven ' π

2
−
(

π2

8
− 1

2

)(

L

πΛc

)

+

(

π3

96
− π

16
− 1

2π

)(

L

πΛc

)2

. (4.39)

This gives a period P1 = 2π/ω1 determined by combining Eqs. (4.29), (4.36) and (4.37):

P1 =
Pk

1 −
(

π

4
− 1

π

)

L

πΛc
+

(

π2

48
− 1

8
− 1

π2

)

L2

π2Λ2
c

, (4.40)

where Pk is the period of a fast wave trapped in a uniform loop with ck = ck(0),

Pk = 4
L

cAi

[

1

2

(

1 +
c2Ai

c2Ae

)]1/2

=
4L

ck(0)
. (4.41)

In a similar way, expanding Eq. (4.27) for the odd modes, much as for Eq. (4.34), by using Eqs. (4.30)–
(4.31), gives
{

1 − 9

128λ2
0

(

1 − 2

9eL/2Λc
+

1

eL/Λc

)}

tan
[

λ0

(

eL/2Λc − 1
)]

+
1

8λ0

1 − eL/2Λc

eL/2Λc
= 0, (4.42)

which can be expanded as series in L/πΛc after writing λ0 = (2x)/(L/Λc) and x = π + (L/πΛc)x1 +

(L/πΛc)
2x2 + (L/πΛc)

3x3 + . . .. The result is

(

L

πΛc

)(

π2

4
+ x1

)

+

(

L

πΛc

)2 (
π3

24
+ x2 +

πx1

4
+

π

32

)

+ O

(

(

L

πΛc

)3
)

= 0. (4.43)

Hence, for the odd mode,

xodd ' π − π2

4

(

L

πΛc

)

+

(

π3

48
− π

32

)(

L

πΛc

)2

. (4.44)

From this, the approximation of P2 to second order can be written:

P2 =
Pk/2

1 − π

4

L

πΛc
+

(

π2

48
− 1

32

)

L2

π2Λ2
c

. (4.45)

Similar expansions can be obtained for higher harmonics.

Eqs. (4.40) and (4.45) show that the periods P1 and P2 depend upon the loop half-length L, the scale of
density variations Λc, and the basic period Pk which is itself determined by the loop half-length, the Alfvén
speed cAi inside the loop and the ratio of the internal and external Alfvén speeds squared (or respectively
the density ratio between the environment and the loop, ρe/ρi). However, by combining Eqs. (4.40) and
(4.45) Pk can be eliminated and then the period ratio P1/2P2 depends only upon the ratio L/Λc of the loop



4.3 Thin Tube Limit 117

half-length L to the density scale height Λc:

P1

2P2
= 1 − 1

π2

L

Λc
+

(

2

π4
− 5

32π2

)(

L

Λc

)2

, (4.46)

for L/Λc � π. This expression is valid up to second order in L/Λc but higher order corrections could
be included. Eq. (4.46) relates the ratio P1/2P2, which can be determined observationally, directly to
L/Λc. The comparison of the first and second order approximations of P1/2P2 to the numerical solutions
of Eqs. (4.27) and (4.28) is shown in Fig. 4.9.

Figure 4.9: P1/2P2 using the thin tube model for an exponentially structured corona with cAi/cAe = 2/5.
The solid curve is the full numerical solutions of Eqs. (4.27) and (4.28). The dotted curve gives the linear
approximation of Eq. (4.46), namely P1/2P2 = 1− 1

π2

L
Λc

, and the dashed curve corresponds to Eq. (4.46).

Comparison With Observational Data

In Section 4.2, the main cause of the shift in the period ratio is shown to lie in the structuring along the
magnetic field. Eq. (4.46) supports this claim. Return, then, to the observational data in Verwichte et al.
(2004) (their Table II). They reported two periods in two of their time series (labelled ‘C’ and ‘D’) which
were interpreted as the fundamental and first harmonics of the loops. The values of P1/2P2 obtained from
the wavelet analysis are (Verwichte et al., 2004)

P1

2P2

∣

∣

∣

∣

C

= 0.91 ± 0.16,
P1

2P2

∣

∣

∣

∣

D

= 0.82 ± 0.15, (4.47)

in which the error bars have been calculated by the usual formulae for propagation of errors in derived
magnitudes. In case C the value of the shift lies in the uncertainty range, but in case D the observations
clearly point to a shift in P1/2P2. Calculating the value of L/Λc given by Eq. (4.46) to second order gives

L

Λc

∣

∣

∣

∣

C

= 1.0 ± 2.2,
L

Λc

∣

∣

∣

∣

D

= 2.1 ± 2.8, (4.48)
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however, calculating the value of L/Λc by using Fig. 4.4 gives

L

Λc

∣

∣

∣

∣

C

= 1.0 ± 2.2,
L

Λc

∣

∣

∣

∣

D

= 2.2 ± 2.7. (4.49)

Hence, using the loop lengths given in Verwichte et al. (2004), namely 2L = 218 Mm for case C and
2L = 228 Mm for case D, then Λc can be determined both analytically (using Eq. (4.46)) and numerically
(using Fig. 4.4). Eq. (4.46) gives the values of the density scale height of the two oscillating coronal loops
to be Λc = 109 ± 250 Mm for case C and Λc = 51 ± 62 Mm for case D. The fully numerical calculation,
using Fig. 4.4, gives the values as Λc = 109 ± 240 Mm for case C and Λc = 52 ± 62 Mm for case D. The
values obtained for Λc are consistent with those found in Andries et al. (2005b) when the curved geometry
is considered (they differ by a factor of π/2). The factor of π/2 is due to Andries et al. (2005b) calculating
the scale height Λc equal to the loop radius (r); however, here the scale height is calculated as the length
along the loop from base to apex (rπ/2). Unfortunately, in both cases the relative errors are large because
of the steepness of the curves in Fig. 4.4 and in Fig. 4.9, but these values nonetheless indicate the potential
for what can be achieved. The equilibrium density ratio ρbase/ρapex can also be obtained with Eq. (4.13),
giving 2.8 for case C and 8.7 for case D, but the error bars are very large. From these scale heights the loop
temperature T can also be inferred, with assumptions of an isothermal loop in hydrostatic equilibrium, as

T =
Λµmpg

kB
. (4.50)

So the loop temperatures for the two cases are

TC = 2.3 ± 5.1MK, TD = 1.1 ± 1.3MK. (4.51)

Case D is consistent with the TRACE 171 filter which was used to observe the transverse loop oscillations,
however, case C is shifted significantly from this value. The results presented in Eq. (4.49) are obtained
using the full numerical solution, given in Fig. 4.4. However, the results presented in Eq. (4.48) have been
found analytically using the thin tube approximation. The analytical and numerical results are comparable,
although there is a shift of around 2% between the analytical result for case D compared to the numer-
ical result. Comparing the value of L/Λc for case D to the analytical limitations for the thin tube model
(L/Λc � π), it is noted that the value of L/Λc is approaching the analytical limit.

In this Section it is shown that the dominant cause of a shift in P1/2P2 from unity is the longitudinal
structuring of the plasma, exceeding shifts caused by other effects such as dispersion (see also McEwan
et al. (2006)). The observational determination of P1/2P2 thus yields information regarding the longit-
udinal structure, in particular the density scale height for the two known observational cases studied by
Verwichte et al. (2005). Here a simple formula (Eq. (4.46)) is developed, that relates directly the observed
value of P1/2P2 to the ratio L/Λc of the density scale height Λc of a coronal loop of half-length L. This
formula relies on an expansion of the dispersion relations (4.28) and (4.27), valid for L/Λc � π. However,
typical quiescent long loops, observed using TRACE, often do not satisfy this condition and the expansion
would not be applicable in this case. On the other hand, shorter active region loops do satisfy this condition
and the formula is robust in this case.

The ratio P1/2P2, in the thin tube limit, is independent of all other parameters difficult to measure, such
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as the plasma density or the equilibrium magnetic field strength. It depends only on the loop length and
the density scale height. Thus, by using Eq. (4.46), one can determine the coronal density scale height
Λc without relying on other input parameters, provided accurate measurements of P1 and P2 are obtained.
This method is of course only as accurate at the measurements of the periods P1 and P2, and currently
there are large error bars in the determination of Λc in both cases, but particularly pronounced in case C.
However, instruments and techniques for measuring periods are more advanced than those for determining
number density or magnetic field strength, so there is a method, here, for coronal seismology that relies
on relatively well known input parameters. Such a development in coronal seismology is crucial as many
current measurements rely on relatively unknown input parameters.

Formula (4.46) has applications for stellar observations also. The determination of input parameters for
stellar seismology is difficult, mainly due to the great distances involved. Recent observations of stellar
coronal oscillations have been reported (Mathioudakis et al., 2003, 2006; Mitra-Kraev et al., 2005), al-
though only single harmonics have so far been detected. With observations of higher harmonics stellar
density scale heights could be determined. In practice, however, this technique may prove difficult as there
is a lack of spatial resolution in stellar observations. Hence, there is no way of knowing whether the limit
L/Λc � π is valid for a particular observation.

Notice that this procedure gives a value of the ratio L/Λc which is independent of other considerations.
This is an important advantage over other quantities deduced from coronal seismology, such as the de-
termination of the magnetic field strength (Nakariakov and Ofman, 2001), for which the values of other
unknowns (e. g. the equilibrium coronal density) need to be assumed.

4.3.2 Thin Tube Limit for Linear c2

k
(z) Variation

Consider a vertical, thin coronal flux tube, that is symmetric about z = 0, with footpoints at z = ±L.
Furthermore, consider Eq. (4.16) where now c2k(z) is varying linearly in z with the form

c2k(z) = c2k(0)(1 − αz), z > 0. (4.52)

The point z = 0 corresponds to the apex of a loop. So the kink speed is ck(0) at z = 0 and decreases (for
α > 0) to ck(L) at the footpoint. The apex kink speed c2k(0) squared is given by

c2k(0) =
2B2

0

µ (ρi(0) + ρe(0))
. (4.53)

Eq. (4.16) becomes

d2vr

dz2
+

ω2

c2k(0) (1 − αz)
vr = 0. (4.54)
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Setting Z = (1 − αz) then the differential operator becomes d2/dz2 = α2d2/dZ2 and so Eq. (4.54)
becomes

d2vr

dZ2
+

1

Z

ω2

c2k(0)α
2
vr = 0. (4.55)

Eq. (4.55) can be transformed into a form of Bessel’s equation by using the same method described in
Chapter 2. This is also the general result shown in Abramowitz and Stegun (1964), namely

d2ψ

dZ2
+

(

λ2
1

4Z
− ν2 − 1

4Z2

)

ψ = 0 (4.56)

which has solution (Abramowitz and Stegun, 1964) ψ(Z) = z1/2Cν

(

λ1 (Z)1/2
)

, where Cν is the linear
combination of Bessel functions of the first and second kind, of order ν.

Using this transformation, Eq. (4.55) has the solution

vr(z) = (1 − αz)1/2
[

AJ1

(

λ1 (1 − αz)1/2
)

+BY1

(

λ1 (1 − αz)1/2
)]

, (4.57)

where λ1 = 2ω/ck(0)α. This solution matches the solution discussed in Roberts and Webb (1978). By
applying the boundary conditions vr (L) = vr (0) = 0, then

vr(0) = AJ1 (λ1) +BY1 (λ1) = 0,

vr(L) = AJ1

(

λ1
ck(L)

ck(0)

)

+BY1

(

λ1
ck(L)

ck(0)

)

= 0, (4.58)

for the odd modes of oscillation. Applying v′r(0) = vr(L) = 0 gives

v′r(0) = AJ ′
1 (λ1) +BY ′

1 (λ1) = 0,

vr(L) = AJ1

(

λ1
ck(L)

ck(0)

)

+BY1

(

λ1
ck(L)

ck(0)

)

= 0, (4.59)

which describes the standing even modes of oscillation. Solving these four relations by setting the determ-
inant to zero gives the dispersion relations for the fast modes of oscillation in a line-tied coronal loop with
a linearly varying c2k(z):

J1 (λ1)Y1

(

λ1
ck(L)

ck(0)

)

− Y1 (λ1)J1

(

λ1
ck(L)

ck(0)

)

= 0 (4.60)

for the odd modes, and

J ′
1 (λ1)Y1

(

λ1
ck(L)

ck(0)

)

− Y ′
1 (λ1)J1

(

λ1
ck(L)

ck(0)

)

= 0 (4.61)

for the even modes. Here

λ1 =
2ω

ck(0)α
= 2

ωL

cAi

1

αL

[

1

2

(

1 +
c2Ai

c2Ae

)]1/2

. (4.62)
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The numerical solution to Eqs. (4.60) and (4.61) is given in Fig. 4.10. From Fig. 4.10, it is clear that an
increase in L/Λc = αL causes a reduction in the non-dimensional frequency.

Consider P1/2P2: for some constant value of ck(0)/ck(L) the variation of the period ratio P1/2P2 with
increasing loop length (L/Λc ≡ αL) is plotted; this is shown in Fig. 4.11. The effect of a temperature
gradient, determined by ck(0)/ck(L), produces an immediate shift in P1/2P2 which does not vary with
loop length. However, by fixing L/Λc(≡ αL) and ck(0)/ck(L), but varying cAi/cAe (shown in Fig. 4.12)
then it is clear that altering this parameter does not effect P1/2P2. Consider, now, the effect of varying
ck(0)/ck(L) for a loop with fixed L/Λc (for example L/Λc = 2.5), then the effect of an increasing tem-
perature gradient can be observed. This is shown in Fig. 4.13. Initially, for small ck(0)/ck(L) the shift in
P1/2P2 from unity is significant, but as ck(0)/ck(L) becomes larger then P1/2P2 asymptotes to 1/2 (so
P1 ' P2).

4.4 Ratio of P1/2P2 for Slow Modes: The Klein-Gordon Equation

The Klein-Gordon equation arises in a variety of wave studies (Roberts 2004): it describes the slow mode
in a loop and its reduction to a one dimensional sound wave in the low-β limit of a rigid magnetic field is
shown in Roberts (2006). It also describes both sausage and kink modes in a thin photospheric flux tube
(Rae and Roberts 1982; Spruit and Roberts 1983). The Klein-Gordon equation may be written in the form

∂2Q

∂t2
− c2(z)

∂2Q

∂z2
+ Ω2(z)Q = 0, (4.63)

where Q (z, t) is related to the vertical motion vz by

Q (z, t) =

(

ρ0 (0) c2 (0)

ρ0 (z) c2 (z)

)1/2

vz (z, t) . (4.64)

For a slow magnetoacoustic mode c(z) = cT (z), the tube speed, and for an acoustic mode c(z) = cs (z),
the sound speed, Ω(z) is a cutoff frequency. In general these quantities are a function of distance along the
propagation path (i.e. the loop). The cutoff frequency Ω generally depends upon gravitational stratification.
Writing Q(z, t) = Q(z) exp(iωt), for frequency ω, the Klein-Gordon equation (Eq. 4.63) gives

d2Q

dz2
+

(

ω2 − Ω2(z)

c2(z)

)

Q = 0. (4.65)

4.4.1 Constant c and Ω

The simplest case to discuss is that of a medium, for which the propagation speed c and the cutoff frequency
Ω are constants. This case, for example, arises for an acoustic wave propagating vertically in an isothermal
atmosphere. Then Eq. (4.65) has solution

Q(z) = A sin (kz) +B cos (kz) , (4.66)
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Figure 4.10: Dispersion curves for the thin tube model of a linearly structured corona where cAi/cAe = 2/5
and ck(0)/ck(L) = 2.5. The solid curve gives the even modes of oscillation and the dashed curve gives the
odd modes.

Figure 4.11: P1/2P2 using the thin tube model for a linearly structured corona where cAi/cAe = 2/5. Here
the solid line represents ck(0)/ck(L) = 1.5, the dashed line is ck(0)/ck(L) = 3.0 and the dot-dashed line
is ck(0)/ck(L) = 10.0.
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Figure 4.12: P1/2P2 as a function of cAi/cAe with ck(0)/ck(L) = 2.5. Here three different values of
αL ≡ L/Λc = 1, 2.5 and 5 have been plotted, however, all three cases produce identical curves. P1/2P2

is invariant in cAi/cAe in this case.

Figure 4.13: P1/2P2 using the thin tube model for a linearly structured corona. Here cAi/cAe = 2/5 and
L/Λc ≡ αL = 2.5.
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where

ω2 = k2c2 + Ω2, (4.67)

and

Ω2 =
c2

4Λ2
. (4.68)

Standing waves, which have Q = 0 at the ends of a coronal loop, are of interest here. It is convenient
to discuss separately modes that are symmetric and anti-symmetric about the apex of a loop. In a loop of
length 2L, straightened out so that z = ±L are the loop footpoints and z = 0 is the loop apex, the even

modes are of the form

Q(z) = B cos(kz) (4.69)

and satisfy dQ/dz = 0 at the loop apex (z = 0); the perturbation Q has a maximum or minimum at the
apex. At the loop footpoint z = L it is required thatQ = 0, so kL =

(

n− 1
2

)

π, n = 1, 2, 3, . . . , producing
even mode frequencies ω = ω2n−1, where

ω2
2n−1 = Ω2 +

(

n− 1
2

)2
π2c2

L2
. (4.70)

The case n = 1 produces the fundamental frequency ω1 of the loop as a whole; n = 2 produces the
harmonic ω3 of the loop as a whole, etc.

Similarly, consider the odd modes which leave the loop apex undisturbed, so Q = 0 at z = 0 and z = L.
Then

Q(z) = A sin(kz) (4.71)

with kL = nπ, n = 1, 2, 3, . . . The odd modes have frequencies ω = ω2n where

ω2
2n = Ω2 +

n2π2c2

L2
. (4.72)

The first harmonic of the loop as a whole has a frequency ω2, given by Eq. (4.72) with n = 1.

Thus, using Eq. (4.68), the ratio of the fundamental and first harmonic frequencies, ω2/ω1 leads to
P1/P2, with

P1

2P2
=

(

1 + Ω2L2

π2c2

1 + 4Ω2L2

π2c2

)
1

2

=







1 + 1
4

(

L
πΛc

)2

1 +
(

L
πΛc

)2







1/2

, (4.73)

where Λc = c/2Ω (see Eq. (2.70) with Λ′ = 0). It is immediately clear that 1
2 ≤ P1/2P2 ≤ 1, becoming

one when Ω = 0. The case when Ω = 0 corresponds to the uniform loop in a uniform environment,
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with no gravitational stratification. In fact it is also clear that when L/Λc � π then one can derive the
approximation

P1

2P2
' 1 − 3

8

(

L

πΛc

)2

+
39

128

(

L

πΛc

)4

+ O

(

(

L

πΛc

)6
)

. (4.74)

Fig. 4.14 displays the ratio P1/2P2 as a function of loop half-length L (measured in units of the density
scale height Λc), as determined by Eq. (4.73). Stratification of density causes P1/2P2 to fall off from unity,
with the effect being most marked in very long loops (L � Λc). In general, coronal loops have L ' Λc,
and the departure of P1/2P2 from unity is only slight. In fact the shift in P1/2P2 due to stratification by
gravity for the slow mode for a loop of typical half-length (L ' Λc) is comparable to the shift brought about
by radial magnetic structuring for the fast mode. For example, a loop with internal density ρi = 25

4 ρe, half-
length L = 5×104 km and radius a = 5000 km, so a/L = 1/20, produces a kink mode ratio of P1/2P2 =

0.995 (see Fig. 4.2). This may be compared with a slow wave in an isothermal atmosphere with sound
speed cs = 200 km s−1 for which the acoustic cutoff is Ω (= cs/2Λc = γg/2cs) and cs/Ω = 1.78 × 105

km, resulting in P1/2P2 = 0.988. This is a shift from unity of 0.012 or 1.2%. Typically, slow or acoustic
modes produce a small harmonic shift in all but extremely long loops.

4.4.2 Non-constant c and Ω

Consider Eq. (4.63) for the case when c and Ω vary with z. To be specific, the case of an acoustic wave
propagating vertically in an atmosphere with a linear temperature profile for which the propagation speed c
is the sound speed cs(z):

c2 = c2s (z) = c2apex (1 − αz) . (4.75)

The sound speed squared c2s decreases (for α > 0) linearly with distance z from the loop apex. Suppose
that the loop sound speed decreases from a value capex at the loop apex (z = 0) to cbase at the loop base
z = L. Then

α =
λ2 − 1

λ2L
, λ =

capex

cbase
. (4.76)

The pressure scale height is Λc(z) = Λc (0) (1 − αz), and the cutoff frequency is given by (see Lamb 1932;
Roberts 2004)

Ω2(z) =
c2s

4Λ2
c

(

1 − 2Λ
′

c

)

=

(

(γg)
2

4c2apex

+
γαg

2

)

1

(1 − αz)
, (4.77)

where a dash (′) denotes the derivative with respect to z. By writing u = (1 − αz), then Eq. (4.65) becomes

d2Q

du2
+

(

ω2

α2c2apex

1

u
− M0

α2c2apex

1

u2

)

Q = 0, (4.78)
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Figure 4.14: P1/2P2 for a slow (or acoustic) mode in an isothermal coronal loop as a function of loop
half-length L in units of the pressure scale height Λc. P1/2P2 is given by Eq. (4.73). Here Λ0 = Λc.

Figure 4.15: P1/2P2 approximation given by Eq. (4.74) (dashed line) for L/Λc � π compared to the full
analytical solution (solid line) for an acoustic mode in an isothermal coronal loop. The dotted line displays
the second order terms of Eq. (4.74), namely P1/2P2 ' 1 − 3

8 (L/πΛc)
2. Here Λ0 = Λc.
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where

M0 =
γ2g2

4c2apex

+
γgα

2
. (4.79)

The substitutions Q = sY (s), where s = u1/2, and x = β0s with β2
0 = 4ω2

α2c2
apex

transform Eq. (4.78) into
Bessel’s equation (Abramowitz and Stegun 1964)

d2Y

dx2
+

1

x

dY

dx
+

(

1 − ν2

x2

)

Y = 0. (4.80)

The solution to Eq. (4.78) is (James 2003; see also Chapter 2),

Q(z) = (1 − αz)
1

2

[

AJν

(

2ω

αcapex
(1 − αz)

1

2

)

+BYν

(

2ω

αcapex
(1 − αz)

1

2

)

]

, (4.81)

where

ν = 1 +
γg

αc2apex

. (4.82)

Consider the odd modes, satisfying Q = 0 at the loop apex z = 0 and at the loop base z = L. Then

Jν (x)Yν (λx) − Jν (λx)Yν (x) = 0, (4.83)

where the arguments of the Bessel functions are:

x =
2ω

αcapex

cbase

capex
, xλ =

2ω

αcapex
. (4.84)

This is the dispersion relation for the odd acoustic modes in a gravitationally stratified atmosphere of a loop
with a sound speed profile that is varying linearly with height.

In a similar way, the dispersion relation for the even modes which satisfy Q = 0 at z = L and have
dQ/dz = 0 at z = 0 is:

Jν (x)Yν (λx) − Jν (λx)Yν (x) + (λx)
(

Jν (x)Y
′

ν (λx) − J
′

ν (λx)Yν (x)
)

= 0. (4.85)

Here a dash denotes the derivative of a Bessel function: J
′

ν(z) = dJν(z)/dz, etc.

Eqs. (4.83) and (4.85) determine the dimensionless frequency 2ω/αcapex for various values of capex/cbase

and ν. The actual frequency ω is determined once the base sound speed cbase and the temperature gradient
are specified. It is interesting to note that the structure of Eqs. (4.83) and (4.85) remains even in the absence
of gravity (g = 0), though the order ν of the Bessel functions then reduces to unity. Thus a shift in the ratio
of P1/2P2 occurs as a consequence of non-isothermality, even if gravity is ignored. Eqs. (4.83) and (4.85)
are solved numerically for various values of λ = capex/cbase, the ratio of the sound speed capex at the loop
apex to the sound speed cbase at its base. Eq. (4.85), combined with Eq. (4.84) and the result Pn = 2π/ωn,
provides the period P1 and its first harmonic gives P2, determined by Eq. (4.83). The ratio P1/2P2 is
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Figure 4.16: The ratio P1/2P2 for a sound wave in a non-isothermal loop of length 2L. The sound speed
squared varies linearly with distance, falling from a value capex at the loop apex to cbase (= capex/λ) at its
base. When λ is close to unity the isothermal case is recovered (cf. Fig. 4.14).

Figure 4.17: The ratio P1/2P2 for a sound wave in a non-isothermal loop of length 2L. Here the solid line
denotes L/Λc = 1.0 and the dashed line is L/Λc = 2.0. Here λ = capex/cbase is varied. Notice that when
λ = 1 then P1/2P2 ' 0.95 for L/Λc = 1.0 and P1/2P2 ' 0.85 for L/Λc = 2.0 from Fig. 4.14.
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displayed in Fig. 4.16. When λ is close to unity, the loop is almost isothermal and P1/2P2 is close to unity
(though decreasing with increasing loop length). But for a more strongly structured sound speed, the shift
from unity in P1/2P2 is stronger. For example, for a base sound speed of cbase = 100 km s−1 and an
apex sound speed of capex = 150 km s−1, so λ = 1.5, Fig. 4.16 shows that P1/2P2 ' 0.92 in short loops
(L � Λc) and falling to approximately 0.58 in extremely long loops (L ' 10Λc). For loops with a larger
temperature gradient (λ � 1), the immediate deviation of P1/2P2 from unity becomes more significant,
however for long loops the behaviour of P1/2P2 is similar to the isothermal case. This is also shown in
Fig. 4.17 where L/Λc is fixed, with λ varied. When λ is close to unity then the value of P1/2P2 matches the
isothermal value, as expected. However, P1/2P2 is asymptotic for large values of λ (for example, λ > 5).
This suggests that there is a maximum shift of the period ratio due to the structuring of the sound speed in
this manner. The immediate shift of the period ratio from unity due to a large temperature gradient is also
apparent in Fig. 4.17; the period ratio is not unity for a non-isothermal loop.

4.4.3 Isobaric Loop Without Gravity

So far it is clear that structuring along a loop produces a shift in P1/2P2, even in the absence of gravity
(which reduces the cutoff frequency Ω to zero). Accordingly, consider Eq. (4.63) in an atmosphere with a
linear temperature gradient in the absence of a cutoff frequency, Ω = 0:

∂2Q

∂t2
− c2(z)

∂2Q

∂z2
= 0. (4.86)

The propagation speed in Eq. (4.86) can be the sound speed c = cs for a sound wave or the tube speed
c = cT for a slow mode. Consider, then, the acoustic mode, with c = cs. The sound speed is given by
Eq. (4.75) and as before the loop apex is at z = 0 and the footpoints at z = ±L. Again, consider only half
the loop between z = 0 and z = L; by symmetry the other half behaves similarly.

Eq. (4.86) may be solved for the linear temperature gradient (given by Eq. (4.75)) in the absence of
gravity, in terms of Bessel functions:

Q(z) = (1 − αz)
1

2

[

AJ1

(

2ω

αcapex
(1 − αz)

1

2

)

+BY1

(

2ω

αcapex
(1 − αz)

1

2

)

]

. (4.87)

By using the same boundary conditions at the loop apex, z = 0, and the loop footpoint, z = L, then the
odd modes satisfy the dispersion relation:

J1 (x)Y1 (λx) − J1 (λx)Y1 (x) = 0, (4.88)

where the arguments of the Bessel functions are, again:

x =
2ω

αcapex

cbase

capex
, xλ =

2ω

αcapex
. (4.89)
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Similarly, the even modes satisfy the dispersion relation:

J1 (x)Y1 (λx) − J1 (λx)Y1 (x) + (λx)
(

J1 (x)Y
′

1 (λx) − J
′

1 (λx)Y1 (x)
)

= 0, (4.90)

where a dash (′) denotes the derivative of a Bessel function.

Eqs. (4.88) and (4.90) are solved numerically, determining the dimensionless frequencies ωL/capex

which satisfy the boundary conditions for odd and even modes. The density scale height (in the absence of
gravity) is represented in the following manner. Define Λ0 by

1

Λ0
=
ρ′0
ρ0
, (4.91)

which is calculated at z = 0, with ρ0(z) given by

ρ0(z) =
γp0

c2s (z)
, (4.92)

and c2s (z) = c2apex (1 − αz). Hence,

Λ0 =
1

α
, (4.93)

thus, L/Λ0 = αL. Notice as α → 0 the plasma becomes uniform, and so Λ0 → ∞ as expected. Fig. 4.18
displays the dimensionless frequency ω as a function of L/Λ0. The effect of the cutoff term, due to gravity,
is no longer present, and the frequency of the modes now tends to zero as αL tends to infinity, allowing any
oscillation of finite period, satisfying the dispersion relation, to propagate.

Another interesting result of this study is that the period of any one harmonic, at some fixed λ, is some
average value in the range between 2L/ncbase, the maximum period, and the minimum period 2L/ncapex,
where n is the harmonic number; this is shown in Fig. 4.19. Consider the limit λ→ 1, the isothermal case,
then the period of oscillation becomes the maximum period associated with that value of λ. Similarly as
λ → ∞ then the period becomes the minimum period. Figs. 4.20 and 4.21 show the period ratio P1/2P2

for an isobaric loop with a linearly varying sound speed profile. On comparing Fig. 4.20 to Fig. 4.16 it is
clear that the period ratio is never unity for a loop with a linearly varying sound speed profile, and that the
period ratio is shifted from its uniform value of unity by a constant value, when gravity is absent. The shift
is less than the shift when gravity is present for a loop of finite length. This is highlighted when comparing
Fig. 4.21 to Fig. 4.17; the shift of the period ratio is around 10% smaller for loops with λ � 1 in the
absence of gravity (shown in Fig. 4.21).

Now consider the work of Dı́az and Roberts (2006) who studied the slow mode. Here c = cT, and
density ρ0(z) increases exponentially in chromospheric footpoint layers but is otherwise uniform; thus

c2T (z) =











c2T (0), 0 ≤ |z| ≤W,

c2T (0)e(−|z|−W )/Λc , W ≤ |z| ≤ L.

(4.94)

The variation in propagation speed cT(z) is confined to footpoint layers of width (L −W ); the scale of
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Figure 4.18: Dispersion diagram for a coronal loop with apex 10 times hotter than its base (λ = 10). Here,
L/Λ0 = αL.

Figure 4.19: Periods of oscillation for λ = 3, 10, 30. For each value of λ, the dotted lines showing the
minimum possible periods for a homogeneous loop with density equal to that of the apex density, and the
dashed line indicates the maximum possible period for a homogeneous loop with density equal to the base
density.
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Figure 4.20: The period ratio P1/2P2 as loop length varies for various capex/cbase = λ. Here the solid line
is λ = 1.5, the dashed line is λ = 3.0 and the dotted line represents λ = 10.0.

Figure 4.21: The period ratio P1/2P2 as the ratio λ = capex/cbase varies. Fig. 4.20 shows that this ratio is
independent of loop length (here, αL = 1.0; however, this choice is arbitrary).
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variation is determined by Λc, which is related to the density ρbase in the footpoints and the density ρapex

at the loop apex through

Λc = (L−W ) / ln (ρbase/ρapex) . (4.95)

Eq. (4.86) may be solved for the profile in Eq. (4.94), with the result that even modes satisfy the dispersion
relation (see Dı́az and Roberts 2006 for a full discussion on the calculation):

tan
ωW

cT(0)
=
J1 (D(ω))Y0 (E(ω)) − Y1 (D(ω))J0 (E(ω))

J0 (D(ω))Y0 (E(ω)) − Y0 (D(ω))J0 (E(ω))
, (4.96)

where the arguments of the Bessel functions are:

D(ω) =
ω

cT (0)
2Λc, E(ω) =

ω

cT (0)
2Λce

(L−W )/(2Λc). (4.97)

In fact, Eq. (4.96) reduces to Eq. (4.85) in the limit W = 0, as may be seen as follows. In Section 4.4.2
a fully stratified loop was considered, so W = 0 in Eq. (4.94). Therefore, the left-hand side of Eq. (4.96)
vanishes, implying that

J1 (D(ω))Y0 (E(ω)) − Y1 (D(ω))J0 (E(ω)) = 0. (4.98)

Also, in the absence of gravity Eq. (4.82) gives ν = 1. By writing x = D (ω) and using the recurrence
relation of Bessel functions, Z1 (z)+zZ ′

1 (z) = zZ0 (z), with Z the Bessel function J or Y , thus Eq. (4.85)
is recovered.

P1/2P2 may be determined using dispersion relation Eq. (4.96) and a similar relation for the odd modes.
The results are displayed in Fig. 4.22, provided courtesy of A. J. Dı́az and published in McEwan et al.
(2006). Notice that for small W/L (e. g. W/L = 0.1), for which the exponential variation covers most of
the loop, results similar to Fig. 4.4 are obtained, as the density profile for each case is similar. However,
a direct comparison with Fig. 4.4 is not possible as it refers to the kink mode whereas here the slow mode
is studied. On the other hand, for a thin chromospheric layer (for which W is comparable to L), P1/2P2

returns to unity unless the base density is very high.

Comparing these results with those of the Klein-Gordon equation, the longitudinal structure alone re-
produces the period ratio profiles obtained with the inclusion of gravity. For example, comparing Fig. 4.14
with the plot for a fully stratified loop in Fig. 4.22 (solid line) then the shape is similar, since the density
ratio is related to the scale length L/Λc by Eq. (4.95) with W = 0.

In conclusion, a temperature variation along the loop can cause a deviation of P1/2P2 from unity. This
ratio has a maximum value of unity for a uniform loop and drops below 1 as λ (the temperature/density
contrast between loop footpoint and apex) increases. The inclusion of a temperature gradient has an im-
mediate effect on the ratio P1/2P2. Of course, the inclusion of stratification by gravity causes this ratio to
reduce, as studied in the previous case, but it is interesting to note that it is not simply the inclusion of the
cutoff term in the equations that causes this effect. Furthermore, following the analysis of Dı́az and Roberts
(2006), a structuring of density (without gravity) produces a shift in the period ratio P1/2P2. Therefore,
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Figure 4.22: P1/2P2 as a function of the scale height L/Λc, for various chromospheric layers of dimen-
sionless W/L (= 0.1, 0.7, 0.9). This diagram has been provided courtesy of A. J. Dı́az and is published in
McEwan et al. (2006).

in conclusion, in isobaric coronal loops it is the longitudinal structuring of density (through gravitational
stratification or otherwise) that brings about this deviation of the ratio P1/2P2 from unity.

4.5 Discussion and Conclusion

In this work the various effects which cause the ratio P1/2P2 to depart from unity, its value in a homo-
geneous medium, have been explored. Magnetic structuring, due principally to density contrast between
the interior and exterior of a loop, causes fast magnetoacoustic waves to be dispersive, and this manifests
itself in the ratio P1/2P2. Longitudinal structuring or stratification has a more significant effect than radial
structuring, producing a larger departure from unity in P1/2P2. Longitudinal structure has also been con-
sidered by Andries et al. (2005b). The effect for a simple flux tube with a discrete density profile has been
illustrated, but similar results for any radial structure (e. g. the Epstein profile) are anticipated. Of course,
other effects such as magnetic flux tube expansion or non-adiabatic damping may also produce a shift in
P1/2P2 from unity; however, such effects are left for a future study.

Slow magnetoacoustic waves are only very weakly dispersive, so shifts in P1/2P2 due to radial struc-
turing are small. However, longitudinal structuring or stratification has a more important role here too,
reducing P1/2P2 below unity (becoming 0.5 in the limit of an infinitely long loop). The presence of a
gravitational force (as opposed to longitudinal structuring by some other effect) complicates the behaviour
of P1/2P2, but the effects are generally small in the corona (because of the high pressure scale height).
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The results presented here can be used to extract information about the equilibrium state of a coronal
loop. Previous work (e. g. Nakariakov and Ofman 2001) have studied the relevance for coronal seismology
of the fundamental period, which allow the global properties of the loop, such as the mean density or the
magnetic field strength, to be deduced. However, observational measurements of P1/2P2 give information
about smaller scales, and this has been used to estimate the structure lengthscale for the fast mode (or the
ratio between the footpoint and apex density). In principle, if all the harmonics could be observed, the
problem could be inverted to obtain a density profile (as it is currently done in helioseismology, where
thousands of modes are reported). But with two coronal modes only currently observed such detailed
information has not yet been obtained. This method can also be applied to slow modes, but there are
currently no observations of P1/2P2 for slow modes. On the other hand, it is interesting to note that more
than one mode has been detected in prominences (Régnier et al. 2001; Pouget et al. 2006). Currently,
only information relating to the fundamental harmonics of each prominence oscillation family is used for
seismology, but similar techniques could be applied in the future for extracting information from the first
(and higher) harmonics.

The case of a thin coronal flux tube is also considered. Here, an analytical formula is derived to determine
the coronal density scale height using P1/2P2 for an exponentially structured thin coronal loop embedded
in an exponentially structured environment. This analytical formula highlights that it is the longitudinal
structuring of a loop that is the dominant effect in determining P1/2P2.

In conclusion, the individual contributions which cause a deviation of P1/2P2 from unity are determ-
ined, an effect highlighted in Andries et al. (2005b). Lateral structure, longitudinal structure and density
stratification all play a part in forming P1/2P2, but the conclusion is that longitudinal structure is the key
ingredient for magnetoacoustic modes.



Chapter 5

Longitudinal Intensity Observations Observed

by TRACE – evidence of p-mode coupling?

5.1 Introduction

Many1 questions remain unanswered about the solar corona; its fine scale structure, its heating mechanism,
and the source and nature of its complicated dynamics are just a few. One method of exploring these ques-
tions is through coronal seismology (Roberts et al., 1984), using wave motions to probe into the supporting
medium’s physical properties. Observations of coronal oscillations in the radio band were reviewed by
Aschwanden (1987), reporting quasi-periodic motions of coronal loops. More recent reviews of coronal
oscillations observed using the Transition Region And Coronal Explorer (TRACE) are given in, for ex-
ample, Aschwanden (2004), Wang (2004) and Nakariakov and Verwichte (2005). The technique of coronal
seismology was utilised on TRACE data by Nakariakov and Ofman (2001), who gave an estimate of the
magnetic field strength in a coronal loop oscillating as a flare-excited, transverse kink mode. Coronal seis-
mology relies upon the accurate measurement of wave properties in the atmosphere. The high temporal and
spatial resolution of the Solar and Heliospheric Observatory (SOHO) and TRACE have provided the tools
necessary to improve the number of these observations, and hence the statistics involved.

Analytical and numerical models investigating various aspects of coronal loop oscillations have been
developed over many years. They have improved understanding of coronal seismology and of the heating
problem, but both problems remain largely unsolved, as these models, numerical and analytical, rely on
accurate parameter input. Since the discovery that magnetic flux tubes act as waveguides in plasmas (see,
for example, Edwin and Roberts 1983), various models have been developed to include processes that were
often neglected in early studies. Such processes include gravity, studied by James (2003) and Mendoza-
Briceno et al. (2004). The effect of loop structure at the footpoints has been addressed in De Pontieu et al.
(2001), Ofman (2002), Dı́az et al. (2004) and Donnelly et al. (2006). Many models assume straightened
coronal loops; indeed, the effect of curvature on the period of oscillations in coronal loops was found to
be negligible (van Doorsselaere et al., 2004). The consequences of longitudinal stratification of the loop
was studied recently in Andries et al. (2005b) and Erdélyi and Verth (2007), and the distinction between
the effects of temperature stratification and that of gravity is addressed in Chapter 4 and in McEwan et al.
(2006). The isolation of the various processes such as pressure and temperature stratification, and their
effects on oscillations, is also addressed in Klimchuk et al. (2004). The role of coronal oscillations on the

1Aspects of this Chapter have been published in McEwan and De Moortel (2006): Longitudinal Intensity Observations Observed
by TRACE – evidence of p-mode coupling?
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heating of the corona and of coronal loops is discussed in Porter et al. (1994a,b). A comprehensive review of
analytical and numerical models combined with observations is given in Nakariakov and Verwichte (2005).

Oscillations in coronal structures other than loops have been studied widely over recent years, such as
oscillations in prominences (for a comprehensive review, see Oliver and Ballester (2002)), oscillations in
prominence fibrils (Dı́az et al., 2003), wave propagation in the vicinity of coronal magnetic null points
(McLaughlin and Hood, 2004, 2005), and oscillations in coronal plumes (Ofman et al., 1997, 1999, 2000).

Observations of such wave phenomena are now abundant. Nightingale et al. (1999) found propagating
intensity disturbances using TRACE near coronal loop footpoints. DeForest and Gurman (1998) used
SOHO to find evidence of compressive waves in plumes, which Ofman et al. (1999, 2000) interpreted as
the MHD slow mode. Using the Extreme ultraviolet Imaging Telescope (EIT), onboard SOHO, Berghmans
and Clette (1999) observed propagating intensity disturbances travelling in the corona at around 150 km
s−1. De Moortel et al. (2000) and Robbrecht et al. (2001) showed TRACE data could be used to find
similar waves in coronal loops and interpreted the intensity oscillations as outwardly propagating slow
MHD modes. Models interpreting these oscillations as damped magnetoacoustic oscillations in a stratified
atmosphere were provided by Nakariakov et al. (2000) and Tsiklauri and Nakariakov (2001). De Moortel
et al. (2002a) selected 38 such examples of outwardly propagating slow magnetoacoustic modes above the
footpoints of coronal loops, using TRACE 171 Å and 195 Å data. They found 3 minute periodicities
in footpoints anchored above sunspot regions and 5 minute periodicities above regions of plage. This
suggested that both the 3 and 5 minute solar oscillations may propagate up into the corona. Evidence
for the propagation of the 3 minute umbral oscillations throughout the solar atmosphere was previously
studied in e. g. Maltby et al. (1999, 2001). A model suggesting that the 5 minute global p-modes may leak
up into the corona, exciting the 5 minute coronal oscillations, is given by De Pontieu et al. (2004, 2005).
Extensive reviews of observations and models of the slow MHD modes are given in, for example, Roberts
and Nakariakov (2003), Wang (2004), De Moortel (2006), De Pontieu and Erdélyi (2006), Erdélyi (2006)
and Roberts (2006).

5.1.1 Driving of Coronal Slow Waves – p-mode Leakage?

The driving force behind the propagating slow MHD waves in coronal loops, both above sunspots and above
regions of plage, has long been postulated. For example, Brynildsen et al. (2002); O’Shea et al. (2002) and
Rendtel et al. (2003) have reported 3 minute oscillations in loops above sunspots and discussed the link
between these waves and the 3 minute umbral oscillations. Similarly, other authors such as Baudin et al.
(1996); Marsh et al. (2003) and McEwan and De Moortel (2006), have reported 5 minute oscillations in
coronal loops not associated with sunspots. One suggestion for this case is that the driving force originates
in the global 5-minute p-modes. The global p-modes are a well known phenomenon in the solar interior,
with a range of frequencies (2 − 5 mHz), with most power occurring for oscillations with a period of 5

minutes (3 minute oscillations are also found in sunspots). The properties of these oscillations can be used
to probe the solar interior through the technique of helioseismology (e. g. Chaplin 2006); an approach
which has yielded such results as the depth of the convective zone and the existence of the region known as
the tachocline, where the solar magnetic field is thought to be generated.
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One link between the global p-mode oscillations and coronal oscillations has been identified in sunspot
regions. Maltby et al. (1999, 2001) and Brynildsen et al. (2002) suggested that the global 3-minute p-mode
oscillations can propagate through the Transition Region into the corona and drive 3-minute oscillations
observed in the corona as loop oscillations originating from footpoints anchored in sunspot related act-
ive regions. However, it is still unclear how the 5-minute coronal oscillations, observed in coronal loop
footpoints anchored in plage, are driven.

De Pontieu et al. (2003, 2004, 2005) suggested that the 5-minute p-modes can leak up through the
Transition Region, into the corona, along inclined field lines, and drive the 5-minute Transition Region
moss oscillations, and supported this idea with a numerical simulation. These moss oscillations become
coronal shocks as they propagate up into the corona, and it is these shocks that drive the observed 5-minute
oscillations. It was shown in De Pontieu et al. (2003) that moss oscillations have similar properties to the
coronal 5-minute oscillations. However, they have particular spatial and temporal properties (constraints).
De Pontieu et al. (2003) showed that moss oscillations exist on a spatial extent of 1 to 2 arcsec, and on a
timescale of around 30 minutes (or 4 to 6 cycles). During this study this spatial and temporal constraint is
addressed. The aim is to show that the 5-minute coronal loop footpoint oscillations can exist on loops of
spatial extent of around 1 to 2 arcsec, and the oscillations exist for around 30 minutes, after which they can
no longer be detected. This provides some supporting observational evidence for the suggestion that global
5-minute p-modes can indeed drive coronal oscillations, as put forward by De Pontieu et al. (2005).

5.1.2 Evidence of Multiple Frequencies

So far, many of the observations of waves in coronal loops have been interpreted as single frequency oscilla-
tions. However, multi-frequency observations have been performed by King et al. (2003), who observed the
slow mode in a coronal loop and presented evidence of two simultaneous frequencies occurring. Measuring
the period of these oscillations King et al. (2003) found that the period of the first oscillation was approx-
imately double the period of the second. Joint studies have been performed using data from the TRACE
instrument and SOHO/EIT by Robbrecht et al. (2001), observing propagating slow waves in two distinct
wavelengths, and by Marsh et al. (2003), observing an oscillation through chromospheric, transition region
and coronal temperatures.

The importance of the higher harmonic observations has been highlighted in Andries et al. (2005b)
and McEwan et al. (2006) who have both shown, for standing waves, that the ratio of the period of the
fundamental harmonic P1, to the period of its first overtone, P2, can be used as a seismological tool to gain
information about the stratification and structure of a coronal loop. Similarly, Erdélyi and Verth (2007) have
shown that comparing standing eigenfunctions can lead to spatial seismology of the corona. This type of
‘comparative seismology’ may also have applications to the propagating modes, although no such studies
have been carried out for this type of mode. Also, the observations to study this are not currently available.

During the course of this study, evidence of multi-frequency oscillations is found, occurring in coronal
loop footpoints, and manifesting themselves as propagating slow MHD waves. The dominant oscillation,
showing more clearly in wavelet diagrams, appears to have double the period of the less dominant os-
cillation. It is proposed that this is evidence of multiple frequency oscillations existing in coronal loops,
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and it is to be hoped that further observations will allow the development of the technique of comparing
multi-wavelength oscillations and using the results to probe the corona.

5.1.3 Outline of Chapter

In this Chapter evidence of the small spatial and temporal scales of the longitudinal coronal loop oscillations
is presented, improving on the statistics initially outlined in De Moortel et al. (2002b), and also evidence
of multi-frequency oscillations in coronal loops is presented. TRACE data is used to look for longitudinal
intensity oscillations above many active regions, in the lower parts of coronal loops. Section 5.2 outlines the
data studied and the active regions observed. In Section 5.3 the data analysis techniques are described and
in Section 5.4 the technique of wavelet analysis, and its power in determining parameters associated with
the observed oscillations, is outlined. Section 5.5 shows how observations from TRACE combined with in-
formation from the wavelet analysis can be used to determine coronal parameters. Section 5.6 concentrates
on the small spatial and temporal scales attainable by TRACE, and how these concentrated oscillations can
provide a link between the global 5-minute p-modes and the coronal 5-minute oscillations, described here
in development of De Moortel et al. (2002b). Section 5.7 describes the importance of observing higher
harmonics in the development of coronal seismology, and the multi-wavelength observations discovered
during this study. A statistical overview of propagating slow magnetoacoustic oscillations is provided in
Section 5.8 and the conclusions are presented in Section 5.9.

5.2 Data Preparation and Observations

The observations are taken by TRACE (Handy et al., 1999) as part of Joint Observing Programme 83
(JOP83), ‘High Cadence Activity Studies And The Heating Of The Corona’; see Walsh et al. (1998). The
data under analysis here is taken in the period April 21st 2003 until May 3rd 2003, with the concentration
placed on the 171 Å (Fe IX) passband. All of the loop footpoints observed are situated above quiescent
active regions; these regions are numbered AR0339 (April 22nd 2003), AR0337 (April 24th-26th 2003),
AR0346 (April 26th 2003), AR0336 (April 29th-30th 2003), AR0338 (April 29th 2003), AR0342 (April
29th 2003) and AR0345 (May 3rd 2003). The June 13th 2001 data observes AR9493.

The data is cleaned using the TRACE preparation routines in SolarSoft IDL. In particular, dark current is
corrected for, cosmic ray hits are removed and the images are corrected for solar rotation. Long datasets are
trimmed so that they are uninterrupted by radiation belt transition and the South Atlantic Anomaly. They
are sorted into sub-cubes of near constant time cadence, typically 20-30 minutes long, with a cadence of
around 50 seconds for some datasets to as little as 4 second cadence for others. The spatial resolution is
1 arcsec for all datasets except those observed on April 22nd 2003, which have a spatial resolution of 0.5
arcsec.
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5.3 Data Analysis

5.3.1 Identifying Evidence of Oscillations

The analysis of the cleaned datacubes is similar to that discussed in De Moortel et al. (2000). A running
difference of the datacube is performed which identifies propagating intensity disturbances shown as dark
and light bands across the time-space diagram. A diagonal band indicates a propagating intensity disturb-
ance. Wavelet analysis is used on the data to find the spectral and temporal information. Some temporal
and spatial resolution must be sacrificed to gain information from the wavelet analysis above a certain con-
fidence level, set at 99% for this study. Generally the Morlet mother wavelet with wavelet parameter k = 6

is used as a default in this study. However, if the time-series is short, the Paul mother wavelet is used as the
effect of the cone of influence is less pronounced (Farge, 1992).

The signal-to-noise ratio is increased by summing over consecutive images, increasing the time cadence
of any sub-cube. Upon choosing the relevant footpoint inside a tube – see Fig. 5.1(a) for a typical footpoint
- the intensity of each cross-section of the tube is summed over roughly 2 arcsec (two or four pixels,
depending on the spatial resolution). A running difference is then taken by subtracting the image from
several frames earlier. The number of images that are summed over and the time step of the running
difference depend on the time cadence of each individual dataset, but generally an image is subtracted from
around 90 seconds before. The light bands on a time-space diagram correspond to higher intensity, and
the dark bands correspond to lower intensity. A positive gradient of the bands on the diagram indicate
outwardly travelling disturbances and a negative gradient indicates an inwardly travelling disturbance. See
Fig. 5.1(b) for a typical time-space diagram.

5.3.2 Use of Wavelet Analysis

The time-space diagrams show loops that support some kind of oscillation, and it is the data from these
loops on which a wavelet analysis is performed (see Fig. 5.1(a) and Fig. 5.1(b) for a typical coronal loop
footpoint and time-space diagram, discussed further in Section 5.5). The wavelet analysis simultaneously
decomposes a time-series into spectral and temporal space, so this technique is used at each position along
the loop to provide the time localised frequency components of the signal. Wavelet analysis utilises a
sensitive parameter, the wavelet parameter, which offsets the time localisation of the analysis against the
spectral localisation. Initially, a wavelet that is localised in time is used (the Paul wavelet with wavelet
parameter k = 3) to identify a true oscillatory signal. Once a signal is identified then a more spectrally
localised wavelet is used (the Morlet wavelet with k = 6) to identify the measured spectral information. A
substantial review of wavelet analysis, the wavelet parameter and the effect of varying the mother wavelet
is given in De Moortel et al. (2004). A brief discussion on wavelet analysis and the effect of varying
parameters is given in Section 5.4.

The wavelet analysis has some sources of uncertainty inherent with it (see Torrence and Compo (1998)
for a full discussion, and Section 5.4 for a briefer version relevant to this discussion). Here, the time series
is finite, so the analysis will suffer from edge effects, resulting in a Cone Of Influence (COI) in the wavelet
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(a)

(b)

Figure 5.1: (a) A typical example of a large coronal loop footpoint supporting an oscillatory signal in
TRACE 171 Å, from April 30th 2003, 1641UT. The footpoint is highlighted by the solid white lines. (b)
Plot of the running difference taken over the time series at each position along the loop. The solid white
lines indicate the gradient of the diagonal bands.
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(a)

(b)

Figure 5.2: (a) The intensity oscillation in data numbers observed in a cut taken at position p = 4 along the
loop; this position shows the clearest evidence of an oscillation. The left hand diagram is the data including
the background intensity trend, with the right hand side being the data with an average background level
removed and the linear trend (dashed line) corrected for. (b) The wavelet diagram at position 4 along the
loop. The dashed line indicates the cone of influence and the solid lines indicate the contours of 99%
confidence. The colour bar on the wavelet diagram shows that darker regions indicate the areas with higher
normalised wavelet power.
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diagrams. Fig. 5.2(a) and Fig. 5.2(b) display the intensity oscillation associated with the loop shown in Fig.
5.1(a), and Fig. 5.2(b) displays the wavelet power diagram. Areas found within the COI can be considered
free from these edge effects. Anything outside the COI is considered to suffer significantly and therefore
cannot be considered reliable. The 99% confidence level used here originates from the signal-to-noise ratio
of the data. The confidence level indicates that there is only a 1% chance that any evidence of periodicity
showing in the wavelet diagram is due to noise. In this study it is assumed that the noise in TRACE data
follows a Poisson distribution. Only signals above the confidence level and within the COI are considered
real signals.

5.4 Wavelet Analysis

A summary of wavelet analysis is now presented and this technique is compared to Fourier analysis. Four-
ier analysis has long been a method employed to determine the power of oscillatory signals at a particular
frequency. However, this analysis does not provide detailed information about the time localisation of the
signal (Torrence and Compo, 1998). Since many recent observations of coronal magnetoacoustic waves
indicate that these wave motions are not steady harmonic wave-trains, but exist over a finite lifetime then
this method of stationary analysis is inappropriate. Instead, turn to an extension of Fourier analysis called
Wavelet analysis. By decomposing a time series simultaneously into spectral and temporal space, inform-
ation of the power at particular frequencies and at particular times is obtained. Hence knowledge of when
particular modes of oscillation are present is found, and not just the knowledge that they exist.

Wavelet analysis has been used to identify the slow magnetoacoustic waves, described here, in De Moor-
tel et al. (2000), and to determine that there are two particular frequencies of oscillation of the coronal loop
footpoints: namely the 3 minute sunspot oscillations and the 5 minute plage oscillations (De Moortel et al.,
2002b). It has also been used to identify two simultaneous oscillations of different periodicity in a coronal
loop by King et al. (2003). A comprehensive discussion of wavelet analysis, its strength in determining
results from astrophysical data and its versatility in trading temporal resolution and spectral resolution can
be found in De Moortel et al. (2004). Initially the Fourier transform and its inverses are studied, then a
comparison is made between the wavelet results and Fourier results.

5.4.1 The Fourier Transform

The Fourier transform, of which wavelet analysis is an extension, decomposes any periodic function, or
dataset, into a set of basis functions of sines and cosines multiplied by coefficients (amplitudes). These
coefficients represent the contribution of the sine and cosine constituents at all frequencies. The Fourier
transform of a function is defined as (Wylie, 1966)

F (ω) =

∫ ∞

−∞

f(t) exp (−i2πωt) dt, (5.1)
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and the inverse transform is given by

f(t) =

∫ ∞

−∞

F (ω) exp (i2πωt) dω. (5.2)

This particular field of data analysis is concerned with discrete data so it is convenient to introduce the
discrete Fourier transform

Fn =
1

N

N−1
∑

m=0

fm exp (−i2πmn/N) , (5.3)

and its inverse is given by

fm =
1

N

N−1
∑

n=0

Fn exp (i2πmn/N) . (5.4)

The Fast Fourier Transform (FFT) is an algorithm used to compute the discrete Fourier transform. The
Fourier transform itself can be thought of as a transformation of a time series into the spectral domain. The
wavelet transform takes this idea a step further and transforms the time series into the spectral and temporal
domain simultaneously.

5.4.2 The Wavelet Transform

The starting point is the definition of the wavelet transform for a continuous time series. However, it must
be stressed that the results obtained later in this Chapter refer to a discrete time series, as the data analysed
consists of discrete data numbers (DN). The continuous wavelet transform of a time series f(t) is defined
as the convolution of f(t) with a scaled, normalised analysing function ψ0 (η), the mother wavelet:

W (t, s) =

∫ ∞

−∞

f(t
′

)
1√
s
ψ∗

0 (η) dt
′

, (5.5)

where t is time, s is the wavelet scale for η =
(

t
′ − t

)

/s and ψ∗
0 is the complex conjugate of ψ0. The

mother wavelet, ψ0 (η), must be localised in time and in frequency, and should satisfy the admissibility
condition. This condition states that the function ψ0 should be integrable and of a zero average, i. e.
∫ ∞

−∞

ψ0ψ
∗
0dη = 1. (5.6)

Reverting to discrete variables then the discrete wavelet transform of a time series xn is defined to be

Wn (s) =
N−1
∑

n′=0

xn′ψ∗

√

δt

s





(

n
′ − n

)

δt

s



 , (5.7)

where s is the wavelet scale, n allows translation along the analysing wavelet in time, N is the number of
observations and δt is the observation interval in time. The factor

√

δt/s in the discrete transform, and
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the equivalent factor, 1/
√
s, in the continuous transform enforce the normalisation condition of the mother

wavelet, ψ0.

The wavelet function, ψ0, is generally complex so the wavelet transform, W (t, s) or Wn (s), is also
complex. The transform can be divided into a real part and a complex part, or an amplitude and a phase re-
spectively. Therefore, the wavelet power spectrum is defined to be |Wn (s) |2. In this analysis an algorithm
developed by Torrence and Compo (1998) is used to calculate the wavelet power spectrum. A significant
property of this algorithm is that it assumes the data is an infinite time-series and thus it wraps around at the
edges of the transform if a finite time series is considered. One can either pad the edges of the time series
with zeros to exclude these edge effects, or construct a cone of influence (COI). The COI represents the
areas where the edge effects of a finite time series have affected the wavelet analysis. The COI is defined
as the e-folding time for the autocorrelation of wavelet power at each scale. This e-folding time is chosen
so that the wavelet power for a discontinuity drops by a factor e−2, and beyond this point the edge effects
can be neglected. All the analysis in this Chapter use the COI technique which shows up on the wavelet
power diagrams as a dashed black line, and all signals detected under the COI, and above any prescribed
significance level, will be considered true signals.

(a) (b)

(c)

Figure 5.3: Each mother wavelet, ψ, is plotted against a dimensionless period: (a) The Morlet wavelet
(Eq. (5.8)) with k = 6. (b) Paul wavelet (Eq. (5.9)) with k = 6. (c) DOG (or Mexican hat) wavelet (see
Eq. (5.10)) with k = 2.
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The choice of the wavelet function, or mother wavelet, depends upon several factors: orthogonality,
complex or real, width and shape. For a full discussion of this, see Farge (1992) and Torrence and Compo
(1998). However, in this study, the main concentration is on the Morlet Wavelet, the Paul Wavelet and a
brief discussion of the Derivative Of Gaussian (DOG) Wavelet. Firstly, the most commonly used wavelet,
the complex valued Morlet Wavelet is:

ψ0 (η) = π− 1

4 exp (ikη) exp

(

−η
2

2

)

, (5.8)

where k is the wavelet parameter (see Section (5.4.4)), and η is the non-dimensional time. The wavelet
parameter can take values of k = 6 to k = 60 and the admissibility conditions are still satisfied. The Morlet
wavelet (5.8) is a complex exponential wave with a Gaussian envelope. The Morlet wavelet with k = 6 is
shown in Fig. 5.3(a).

A second choice of wavelet is the Paul Wavelet:

ψ0 (η) =
2kikk!

π (2k)!
(1 − iη)−(k+1) , (5.9)

where k is again the wavelet parameter, restricted to values k = 4 to k = 40 by the admissibility condition.
This complex wavelet is more localised in temporal space, for similar k, in comparison to the Morlet; hence
it has a better temporal resolution. However, the Paul wavelet has a poorer frequency resolution. The Paul
wavelet with k = 6 is shown in Fig. 5.3(b).

A third, commonly used, wavelet is the DOG wavelet, given by

ψ0 (η) =
(−1)

k+1

√

Γ
(

k + 1
2

)

dk

dηk

(

exp

(

−η
2

2

))

, (5.10)

where the wavelet parameter k can take values k = 2 to k = 80 to satisfy admissibility (the case when
k = 2 is known as the Mexican hat wavelet). The real valued DOG wavelet is in between the Paul and the
Morlet for time resolution. An example of the DOG wavelet with k = 2 is given in Fig. 5.3(c).

5.4.3 Wavelet Significance Levels

TRACE data noise follows a Poisson distribution, i. e. σnoise =
√
N , where N is the number of counts

observed. Assuming this noise distribution, a significance level, defined as the probability that the signal
identified by the wavelet analysis is a true signal, is set. It can be shown (Torrence and Compo, 1998) that
the local wavelet power distribution is

|Wn (s) |2
σ2

noise

→ 1

2
Pkχ

2
2, (5.11)

at each time interval n and scale s, where χ2
2 is the χ2-distribution with two degrees of freedom. Pk is

the mean spectrum at the Fourier frequency k that corresponds to the wavelet scale s. De Moortel (2000)
shows, furthermore, that the significance level (also known as a confidence level), above which any wavelet
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power is considered real, is given by

|Wn (s) |2
σ2

noise

> ln (1/ε) , (5.12)

where ε is given by the probability for some power to exceed a detection level power Pdet. The quantity
1 − (1 − ε) is the probability for Pdet to be caused by noise. Throughout this analysis a significance level
of 99% is used, therefore there is only a 1% chance that any wavelet power above Pdet is due to noise.
Using this significance level confidence contours at 99% are constructed on the wavelet power spectrum
diagrams, labelled on the figures as solid lines marked with 99% contours.

5.4.4 Spectral and Temporal Resolution: The Wavelet Parameter

Temporal resolution can be traded with spectral resolution using the wavelet parameter k, and also by
choice of the mother wavelet; Paul, Morlet, etc. In general using a Paul wavelet will provide a better time
resolution, as does using a small value for k. However, the choice of a Morlet mother wavelet, or a higher
wavelet parameter, will result in a better frequency resolution. Care has to be taken to ensure that the choice
of wavelet parameter keeps the mother wavelet admissible. Here, the effects of altering the mother wavelet,
and the wavelet parameter are discussed, by analysing two simple harmonic functions in Section 5.4.5. The
reader is referred to De Moortel et al. (2004) for a full discussion on the effect of varying parameters in a
wavelet analysis.

5.4.5 Wavelet Analysis of Simple Functions

The work in this Section closely follows the work of De Moortel (2000) and De Moortel et al. (2004) to
discuss the effects of varying k and the mother wavelet. To begin with, the effect of varying the mother
wavelet is examined. Consider the function

f(t) = sin(2π10t) + sin(2π25t) + sin(2π50t), (5.13)

where f(t) represents the time-series, and t is time. The function given in Eq. (5.13) is shown in Fig. 5.4(a).
Taking a wavelet analysis of Eq. (5.13), using three different mother wavelets, the three wavelet diagrams
shown in Figs. 5.4(b), 5.4(c) and 5.4(d) are obtained. By Fig. 5.4(b) it is clear that there are three frequencies
present throughout the whole signal, one at period 0.1 s, another at period 0.04 s and the third at period
0.02 s. The wavelet diagram in Fig. 5.4(c) also picks up three periodicities. However, the lowest of the
three is not picked up constantly. For this value of wavelet parameter (k = 6) the Morlet mother wavelet
has a better spectral resolution in comparison to the Paul mother wavelet. Finally, a comparison to the
DOG mother wavelet can be drawn, which is shown in Fig. 5.4(d), and here, three periodicities are also
picked up. However, spectral resolution is lost even more. From these findings it is apparent that the Morlet
mother wavelet has, in general, the best spectral resolution of the three most common mother wavelets,
when compared to the others at identical wavelet parameter, k.
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(a) (b)

(c) (d)

Figure 5.4: (a) Function analysed using 3 different mother wavelets, f(t) = sin(2π10t) + sin(2π25t) +
sin(2π50t). (b) Wavelet power spectrum of the function f(t) using a Morlet mother wavelet with k = 6.
(c) The power spectrum given when f(t) is wavelet analysed using the Paul mother wavelet with k = 6. (d)
The wavelet diagram given when f(t) is wavelet analysed using the DOG mother wavelet with k = 6. The
colour bars on the wavelet diagrams indicate that darker regions have higher normalised wavelet power.
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Figure 5.5: The function analysed using the same Morlet mother wavelet but with different wavelet para-
meters, k, given by Eq. (5.14).

Concentrate, now, on the effect of varying the value of the wavelet parameter k, for a given mother
wavelet. Using the Morlet mother wavelet based upon its good spectral resolution, the following function
is analysed:

f(t) =



















sin(2π10t), 0 ≤ t ≤ 1
3

sin(2π25t), 1
3 < t ≤ 2

3

sin(2π50t), 2
3 < t ≤ 1,

(5.14)

shown in Fig. 5.5. The choice of function will also demonstrate the ability of the wavelet transform to show
distinct frequencies localised in time.

Figs. 5.6(a), 5.6(b), 5.6(c) and 5.6(d) indicate that as k varies from 3 up to 12 temporal resolution of
the wavelet analysis is altered, as well as the spectral resolution. As k is increased temporal resolution is
lost, shown by the overlaps in the time axis of Fig. 5.6(d) for example. However, simultaneously, spectral
resolution is gained. At lower values of k, for example in Fig. 5.6(a), time resolution has increased, and
no overlaps exist in the time axis, spectral resolution is lost. It is generally thought (Torrence and Compo,
1998; De Moortel et al., 2002, 2004) that a Morlet mother wavelet, with k = 6, gives the best trade-off
between spectral and temporal resolution; see Fig. 5.6(b). For the measured results in this Chapter the
Morlet mother wavelet, with wavelet parameter k = 6 is used. However, the Morlet wavelet with k = 3

does not satisfy the admissibility condition for a wavelet, and the diagram in Fig. 5.6(a) is only included to
show the effect of decreasing k to such low values.
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(a) (b)

(c) (d)

Figure 5.6: (a) Wavelet diagram for f(t) defined in Eq. (5.14) using the Morlet mother wavelet where
k = 3. (b) Wavelet diagram for f(t) using the Morlet mother wavelet where k = 6. (c) Wavelet diagram
for f(t) using the Morlet mother wavelet where k = 9. (d) Wavelet diagram for f(t) using the Morlet
mother wavelet where k = 12. The colour bars on the wavelet diagrams indicate that darker regions
represent higher normalised wavelet power.
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5.4.6 Comparison of Wavelet Analysis to Fourier Analysis

(a)

(b)

Figure 5.7: (a) Fast Fourier Transform (FFT) of Eq. (5.13), (b) FFT of Eq. (5.14).

The work in this Section closely follows the work presented in De Moortel (2000) comparing wavelet
analysis and Fourier analysis. On calculating, analytically, the Fourier transform of the two functions (5.13)
and (5.14) the comparison between wavelet and Fourier analysis can be studied in detail. Consider, first,
the stationary oscillatory function given by Eq. (5.13). To begin with, the Fourier transform of the general
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function sin(lt) is:

F (ω) =

∫ ∞

−∞

sin(lt) exp (−2πiωt) dt

=
1

2i

∫ ∞

−∞

(exp (ilt) − exp (−ilt)) exp (−2πiωt) dt

=
1

2i

∫ ∞

−∞

(exp (−2πit (ω − ω0)) − exp (−2πit (ω − ω0))) dt, (5.15)

where l = 2πω0. For ω0 > 0 (a positive frequency) then the second integral in Eq. (5.15) is negligible
compared to the first. In fact, it is only larger when ω0 < 0, which is not physical - so the second integral
can be neglected. Consider the integral I:

I =

∫ a

−a

exp (−2πit (ω − ω0)) dt (5.16)

= − −1

2πi (ω − ω0)
[exp (−2πit (ω − ω0))]

a
−a

=
1

π

1

(ω − ω0)
sin (2π (ω − ω0) a) .

When ω 6= ω0 then

−1

π

1

(ω − ω0)
≤ I ≤ 1

π

1

(ω − ω0)
, (5.17)

which is independent of a. When ω = ω0 then

I = 2a, (5.18)

so as a→ ∞ then I → ∞. Eqs. (5.17) and (5.18) indicate that the integral behaves like a delta function as
a→ ∞:

I ' δ (ω − ω0) , (5.19)

where l = 2πω0. The Fourier transform of Eq. (5.13) is therefore

F (ω) = δ (ω − 10) + δ (ω − 25) + δ (ω − 50) . (5.20)

In a similar fashion the Fourier transform of equation (5.14) is:

F (ω) =

∫ 1/3

0

sin (2π10t) exp (2πiωt) dt+

∫ 2/3

1/3

sin (2π25t) exp (2πiωt) dt

+

∫ 1

2/3

sin (2π50t) exp (2πiωt) dt. (5.21)
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To solve this one considers the following integral

I =

∫ b

a

exp ((−2πi(ω − ω0) t) dt

=

∫ b

a

cos (2π (ω − ω0) t) dt− i

∫ b

a

sin (2π (ω − ω0) t) dt

=
1

2π

1

(ω − ω0)
(sin (2π (ω − ω0) b) − sin (2π (ω − ω0) a))

+
1

2π

1

(ω − ω0)
(i cos (2π (ω − ω0) b) + i cos (2π (ω − ω0) a)) . (5.22)

Using Eq. (5.22) the Fourier transform of Eq. (5.14) is given by

2πF (s) =
1

ω−10

(

sin
[

2π
3 (ω − 10)

]

− i cos
[

2π
3 (ω − 10)

]

+ i
)

+
1

ω−25

(

sin
[

4π
3 (ω−25)

]

−sin
[

2π
3 (ω−25)

]

−i cos
[

4π
3 (ω−25)

]

+i cos
[

2π
3 (ω−25)

]

)

+
1

ω−50

(

sin [2π (ω−50)]−sin
[

4π
3 (ω−50)

]

−i cos [2π (ω−50)]+i cos
[

4π
3 (ω−50)

]

)

.

Figure 5.8: Plot of the analytical Fourier transforms of Eq. (5.13), in blue, and Eq. (5.14) in red. Notice the
Fourier power peaks at the frequencies ω0 = 10, 25 and 50 present in the signal.

When l = 2πω0 then the Fourier transform is a delta function. The plot of the Fourier transforms is
shown in Fig. 5.8. The peaks in Fig 5.8 indicate the frequencies present in the signal and the width of the
peaks (δω) gives information on the length of periodicity in the signal, however, this will not be discussed
here.

To compare the two methods of data analysis a Fast Fourier Transform (FFT) is performed on the two
functions (5.13) and (5.14) analysed using wavelet analysis in the previous Section. The FFT of these
two functions are plotted in Figs. 5.7(a) and 5.7(b). In Fig. 5.7(a) the result from the wavelet analysis
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given in Figs. 5.4(b) to 5.4(d) is confirmed, showing periods of around 0.1 s , 0.04 s and 0.02 s. However
there is no information as to how long each of these periods persist in the time series - wavelet analysis
indicates that these periodicities are always present. Fig. 5.7(b) indicates periods of 0.1 s, 0.04 s and 0.02

s are present, agreeing with the wavelet analysis shown in Fig. 5.6(b) for example. However, the wavelet
study indicates that these periodicities are only present at distinct times throughout the signal, information
lacking in the Fourier transform. Hence, for a non-stationary signal, as in Eq. (5.14), Fourier analysis is
insufficient as no information is found regarding the time localisation. Therefore a time-frequency analysis,
of which wavelet analysis is one, is needed. However, Fourier analysis will provide confirmation to any
results identified using the wavelet technique.

5.5 Illustration of Measured Parameters

The measured parameters can be illustrated by reference to the coronal loop observed on April 30th 2003
at 1641UT. This loop is situated above active region AR0336, close to the solar limb as shown earlier in
Fig. 5.1(a). The time series runs from 1641UT to 1703UT, with a near constant cadence of 14 s. As the time
cadence is short here, a sum over three successive images is taken for the running difference routine to gain
a satisfactory signal to noise (S/N) level. This routine subtracts the summed images taken approximately
84 s previously to give the running difference diagram shown in Fig. 5.1(b).

The time series itself is of 20.8 minutes duration. The outlined loop footpoint shown in Fig. 5.1(a) is
42.0 Mm in length, and 10.4 Mm in mean width. The divergence rate of the footpoint is 0.173 along the
outlined section. The co-temporal white light image contains no evidence of any sunspots, so there is no
possibility of this loop footpoint being situated above a sunspot. The propagation speed of the intensity
oscillation is estimated by measuring the slope of the bands in the time-space diagram. Multiplying the
inverse of this slope by the correct spatial resolution gives an estimate of 110 km s−1 for this example (the
correct spatial resolution is calculated by taking the spatial resolution of the data and multiplying it by the
number of pixels over which the running difference is summed). The variation in amplitude of the intensity
is calculated using Asub(t)/Atotal(t), where Asub(t) is the background subtracted amplitude (given by the
right-hand diagram in Fig. 5.2(a)) and Atotal(t) is the total amplitude variation (given by the left-hand
diagram in Fig. 5.2(a)). Using this data, in Fig. 5.2(a), the variation in amplitude from the background
intensity is 1.48% – 3.89%. From a wavelet analysis, the periods range from 175 s to 450 s. Fig. 5.2(b)
shows two bands of period, at around 200 s and 300 s. However, taking into account all positions along the
loop, most power occurs with a period of around 300 s, and this intensity oscillation is no longer detectable
after travelling 11.2 Mm along the loop. In this example the loop footpoint is not anchored in a sunspot, so
the result of a 300 s period is consistent with De Moortel et al. (2002b).

The properties of the disturbance within the data: propagation speed, intensity variation, are suggestive
of a compressional wave, the speed (110 km s−1) of which is indicative of the slow MHD mode. Datasets
which yield similar properties are reported in Section 5.8, as is the updated set of statistics of the various
parameters found here and in De Moortel et al. (2002b). In the next Section the properties of a particular
subset of the oscillations is studied. Thin strands of wide coronal loops oscillating independently are studied
and a possible reason for this behaviour is suggested.
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5.6 Possible Evidence of p-mode Excitation of Coronal Loop Oscil-

lations

The suggestion that the global 5 minute p-modes can leak up into the corona and drive the observed coronal
loop oscillations was postulated and numerically simulated in De Pontieu et al. (2005). These authors
suggested the p-modes leak into the chromosphere, driving Transition Region moss oscillations. The moss
oscillations have similar properties to coronal loop oscillations. De Pontieu et al. (2003) determined a
period of 350 ± 60 s and amplitude variations of 10.0 ± 3.0%. These oscillations have a spatial extent of
1-2 arcsec, where the TRACE resolution is 1 arcsec, existing for timescales of order 30 minutes. They can
leak up from the resonant cavity into the lower atmosphere along inclined magnetic fields, as the inclination
reduces the effect of gravity. The moss oscillations become coronal shocks as they propagate up into the
corona, and these shocks may drive coronal oscillations.

Previous studies have not focused directly on this temporal and spatial constraint in coronal oscillations.
It is shown here that there is evidence of these short durations and small spatial scales occurring in wide loop
footpoints in which some fine loop structure can be identified. The analysis is focused on data originally
studied in De Moortel et al. (2002b) (the event of June 13th 2001), as well as data taken during this study
(May 3rd 2003). In both datasets wide fan-like footpoints are observed, which show some strand-like fine
structure. Each strand is a few Mm in diameter, and oscillates independently and at distinct times from the
others.

5.6.1 June 13th 2001

On June 13th 2001, TRACE observed the active region AR9493. The observation was part of JOP144, as
described in De Moortel et al. (2002b). The data has a constant pointing, near constant cadence of 60 s, and
0.5 arcsec resolution. The co-temporal white light image contains no evidence of any sunspots. It is subject
to the methods of preparation outlined in Section 5.2. By taking a running difference at various times across
the two outlined strands in Fig. 5.9(a), it is found that they oscillate independently of each other at distinct
times. Figs. 5.9(b) and 5.9(c) show the independent oscillations of these distinct loop strands. It is proposed
that this indicates driving of the oscillation on a small spatial scale, a few Mm in diameter, for short periods
of time. This quasi-periodic driving is consistent with the behaviour of the global p-modes. The running
difference diagrams and wavelet analysis of the data are shown in Figs. A.1(a), A.1(b), A.2(a) and A.2(b)
presented in Appendix A.

A Morlet mother wavelet is used to analyse the time-series, with wavelet parameter k = 6. The loop
strand, numbered 1 in Fig. 5.9(a), is 13.7 Mm in length, with an average width of 3.1 Mm and a divergence
rate of 0.114; the strand oscillates from 0057UT – 0126UT, with an amplitude variation of around 6% of
the background intensity. It has a period of around 350 s and a propagation speed of order 95 km s−1, with
the oscillation being detectable for 5.7 Mm along the loop. At 0138UT a second loop strand, numbered 2 in
Fig. 5.9(a), originating approximately 1 Mm away from the previous loop, with a length of 12.8 Mm, width
of 3.4 Mm and a divergence rate of 0.132, is also found to oscillate. This has an amplitude of 7.1% variation
of the background intensity, a period of around 390 s and a propagation speed of order 105 km s−1. The
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(a)

(b) (c)

Figure 5.9: (a) The two sections of the wide fan-like coronal loop footpoint that are found to oscillate
independently on June 13th 2001. The strand numbered 1 oscillates at 0057UT, whilst the strand numbered
2 oscillates at 0138UT. (b) The time-space diagram of the intensity running difference is taken across (as
opposed to along) the loop, labelled 3 in Fig. 5.9(a), at 0057UT on June 13th 2001. In this time-space
diagram, position is defined to be the position along loop 3. At 0057UT the oscillation is mainly confined
to around position 10 across the loop structure, corresponding to strand 2 from Fig. 5.9(a). (c) The time-
space diagram along loop 3, taken on the same day at 0138UT. Now the intensity oscillation is centred
around position 8, corresponding to strand 1 in Fig. 5.9(a). Note that the original oscillation, at position 10,
is no longer present.
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Table 5.1: Overview of the measured and observed parameters from the data taken on June 13th 2001 as
part of JOP144 in the 171 Å passband. L is the length of the observed footpoint, w is the average footpoint
width, wd is the divergence rate of the loop footpoint, Amin − Amax is the range of intensity variation in
amplitude above the background, Pprop indicates the dominant period found by wavelet analysis, v is an
estimate of the propagation speed of the oscillation and Ld is the length along each footpoint over which
the oscillation could be detected.

No. Time (x,y) L (Mm) w (Mm) wd

1 0057UT (270,196) 13.7 3.1 0.114
2 0138UT (276,198) 12.8 3.4 0.132

No. Amin −Amax(%) Pprop (s) v (km s−1) Ld (Mm)
1 2.8 - 9.2 350s O(95) 5.7
2 2.8 - 11.4 390s O(105) 7.2

first loop strand is no longer oscillating at this later time, and the second strand showed no evidence of
supporting a periodic intensity disturbance during the first time series. A summary of the oscillations is
given in Table 5.1.

The spatial scales are shown by the isolated loop strands, identified in Figs. 5.9(b) and 5.9(c), by taking
an intensity running difference across the loop. Fig. 5.9(b) shows that the intensity oscillation occurs
between positions 8 to 11 on the loop shown in Fig. 5.9(a), and at a later time an oscillation occurs between
positions 7 to 9. These positions correspond to strand 2 and 1 respectively in Fig. 5.9(a). The observed
oscillations are detected for around 4 to 6 cycles (or 20 to 30 minutes), which is indicative of the temporal
constraint, as suggested by De Pontieu et al. (2005).

The results in Table 5.1 show that both oscillations have very similar measured parameters, with peri-
ods relatively close to the well known global 5-minute oscillations. The similarity of these measurements
suggests that the same driving force is the source of each oscillation. The source point itself shifts ap-
proximately 1 Mm over this time scale of 45 minutes, and only drives coronal oscillations in loop strands
of cross-section approximately 3 Mm in diameter, fitting the postulation of p-mode driving of the coronal
oscillations very well.

5.6.2 May 3rd 2003

A second set of examples of oscillations in a group of wide coronal loop footpoints is observed on May 3rd
2003. The data here is taken as part of JOP83. It has a near constant y-axis pointing but the x-axis pointing
shifts as the Sun rotates. There is a near constant cadence of 14 s and a spatial resolution of 1 arcsec.
The co-temporal white light image contains no evidence of any sunspots. The same cleaning routines are
carried out as on the data taken from the June 13th 2001 datasets. Again it is observed that strands oscillate
independently of each other: five strands are found that oscillate at distinct times, switching on and off
quasi-periodically, and all showing similar measured parameters. The wide footpoint in question is shown
in Fig. 5.10(a). The full set of observed loops, time-space diagrams and wavelet diagrams highlighting
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Table 5.2: Overview of the measured and observed parameters from the data taken on May 3rd 2003 as part
of JOP83 in the 171Å passband. Variables as defined in Table 5.1.

No. Time (x,y) L (Mm) w (Mm) wd

2 1605UT (369,-248) 37.4 8.8 0.136
5 1605UT (340,-234) 30.4 9.6 0.143
5 1740UT (387,-247) 34.2 8.3 0.191
3 1834UT (359,-237) 32.3 12.4 0.315
4 1858UT (389,-251) 28.6 8.2 0.229
5 1858UT (397,-247) 31.8 9.2 0.251
2 2012UT (360,-228) 40.5 10.8 0.197
5 2012UT (407,-251) 31.3 8.7 0.139
1 2301UT (388,-204) 36.8 7.7 0.118
1 2321UT (391,-205) 34.0 8.4 0.064
5 2321UT (446,-249) 24.5 9.9 0.236
2 2321UT (393,-235) 26.4 10.9 0.275

No. Amin −Amax (%) Pprop(s) v (km s−1) Ld (Mm)
2 1.1 - 4.2 225s O(130) 5.5
5 2.1 - 5.3 175s O(100) 4.3
5 1.1 - 4.7 220s O(85) 8.9
3 1.1 - 5.6 360s O(100) 16.2
4 1.4 - 4.1 300s O(115) 7.2
5 1.3 - 5.2 300s O(60) 6.4
2 1.7 - 6.4 310s O(80) 5.8
5 1.5 - 5.6 310s O(85) 6.0
1 1.6 - 6.0 330s O(90) 6.9
1 1.1 - 4.2 310s O(80) 7.1
5 1.6 - 4.6 300s O(60) 9.3
2 1.8 - 4.6 300s O(145) 7.1

Table 5.3: Table showing that certain loop strands oscillate distinctly. For example strand 2 is oscillating at
1605UT, not at 1740UT but again at 2012UT. Strand 5 oscillates at 1740UT, not at 1834UT but is observed
to oscillate again at 1858UT.

Time Oscillating Strand
1605UT 2,5
1740UT 5
1834UT 3
1858UT 4,5
2012UT 2,5
2301UT 1
2321UT 1,2,5
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(a)

Figure 5.10: (b) The five coronal loop strands that oscillate on May 3rd 2003. The order in which these
oscillate is given in Table 5.3.

these oscillations, and the others from this study, are given in Figs. A.3(a) to A.9(c) of Appendix A.

Of the twelve oscillations originating from the base of this wide coronal loop footpoint (see Table 5.3 for
details of the times that each strand is found to oscillate), the average parameters measured are consistent
with each other. The range of the period over the twelve oscillations is 175 to 360 s, the amplitude variation
ranges from 1.1 to 6.4%, and the propagation speeds ranges from the order of 60 km s−1 to 145 km s−1.
The dimensions of the footpoints are also nearly constant across the twelve oscillations studied, with no two
strands being closer than 1 Mm nor further apart than 24 Mm, except strand number 1 which is isolated.
These observations strongly suggest that the driving force exists on a scale of a few Mm in diameter,
matching the strands’ dimensions, and that the patches jump around over a scale of the order of 10 Mm. A
detailed summary of the parameters measured is given in Table 5.2.

From Tables 5.1 and 5.2 there are clear sets of examples of intensity oscillations in the footpoints of
coronal loops, interpreted as outwardly propagating slow MHD waves, that are driven in small patches,
only a few Mm in diameter, at the base of the loop. The excited strands are between 3 Mm and 12.4

Mm in diameter, and the patches themselves appear to be of similar size, as adjacent strands of the loops
in question are not excited simultaneously. These observations strongly support the existence of a quasi-
periodic driving force, acting on regions of small spatial scales. A possible interpretation of this is that the
global 5 minute p-mode oscillations are leaking up into the corona and driving oscillations in the observed
coronal loop footpoints, with a similar period, as suggested by Baudin et al. (1996), Marsh et al. (2003)
and De Pontieu et al. (2003, 2005). Similar suggestions that the 3 minute p-mode oscillations drive sunspot
oscillations have been made by Brynildsen et al. (2002), O’Shea et al. (2002) and Rendtel et al. (2003).

These observations appear to support the coupling behaviour simulated numerically by De Pontieu et al.
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(2005): the global p-modes, normally evanescent upon reaching the corona, can leak up into the solar
atmosphere along inclined magnetic field lines, driving the coronal oscillations. Indeed, the inclination of
the field lines decreases the effect of gravity, hence decreasing the acoustic cutoff frequency and allowing
the modes to propagate into the corona (see Section 2.4 for a more detailed discussion). The inclination
of these field lines cannot often be determined, as many observed loops are not situated on the solar limb.
Solar rotation will cause the loops to be visible off limb at a later time but in most cases TRACE is no longer
observing the active region in question (neither JOP83 nor JOP144 focused on off-limb loops). Another
problem is that often the second footpoint cannot be identified, so an accurate reconstruction of the field
lines is very difficult.

5.7 Simultaneous Observations of Multiple Frequencies

Observations of slow MHD waves in the solar corona have mainly been identified as a single oscillating
frequency. For example, De Moortel et al. (2002b) identified the 5 minute plage oscillations as a single
frequency; similarly, the 3 minute sunspot oscillations are identified as a single frequency. The possibility
of the existence of multiple frequencies (or harmonics for the standing modes) being present is a basic
aspect of any oscillation. A simple example is shown in Roberts et al. (1984) where the period of the
standing slow MHD wave (in a low-β plasma) is given approximately by

Pn =
4L

ncs
, (5.23)

where here 2L is the length of the loop and n is the harmonic number. The fundamental mode is n = 1,
and its first harmonic is n = 2. For propagating modes n is typically much larger and the period is much
shorter.

Indeed the identification of higher harmonics, for standing modes, is becoming increasingly important
with the development of models measuring properties of the fundamental harmonic against the properties of
the higher harmonics. Andries et al. (2005b) and McEwan et al. (2006) have developed models that predict
the value of the density scale height from accurate observations of the transverse standing kink mode in
coronal loops, using a comparison of the ratio of the fundamental period P1 and the first overtone P2 to
the expected value of 2 given by Eq. (5.23). McEwan et al. (2006) stress that the ratio P1/2P2 falls below
unity due to the presence of the longitudinal density structure along the loop, and that this structure can be
inferred from the level of this deviation. Other effects contribute to the deviation of P1/2P2 from unity,
such as dispersion. However, such effects are negligible compared to longitudinal density structuring.

McEwan et al. (2006) have also modelled the slow standing mode in a coronal loop stratified under
gravity and structured in sound speed. The ratio P1/2P2 falls below unity due to the presence of gravity
alone, or due to the structuring of the sound speed alone, and McEwan et al. (2006) have identified that this
shift in P1/2P2 can be used as a seismological tool in determining properties of the corona. This topic is
discussed in Chapter 4.

With this new branch of investigation in mind, it is becoming increasingly important to identify ob-
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servationally higher harmonics (or, indeed, simultaneous observations of multiple frequencies) of coronal
waves. Verwichte et al. (2004) began the process by identifying the second harmonic of the transverse
standing kink mode, a result which prompted the investigations in Andries et al. (2005b) and McEwan
et al. (2006). An identification of simultaneous frequencies is presented in King et al. (2003). Here, two
propagating slow modes are observed simultaneously. The running difference diagram of the data (given in
King et al. (2003)) shows two sets of dark and light bands, and a wavelet analysis reveals two simultaneous
periodicities, with the property that ω1/ω2 ' 2.

Although much of the current theoretical work comparing multiple frequencies concerns the standing
modes, it may prove important to look for multiple frequencies of propagating modes. Next, observational
findings are presented that are indicative of the presence of multiple frequencies of oscillation in the datasets
studied in this Chapter. Three such examples are reported that show the presence of two simultaneous bands
of period appearing in the running difference diagrams. These are confirmed in a wavelet investigation.
The examples of April 24th and April 26th 2003 are used to describe the findings, illustrating the details
specifically for April 26th 2003.

5.7.1 April 26th 2003

On 26th April 2003 (as part of the particular results reported in this Chapter) TRACE observed the active
region AR0337 as part of JOP144 (see Fig. 5.11(a)). The data has a constant pointing, near constant cadence
of 36 s and 1.0 arcsec spatial resolution, and the dataset commences at 0725UT. The data is subject to the
methods of preparation as outlined in Section 5.2. Upon taking a running difference (see Fig. 5.11(b)) of
the data evidence of an intensity oscillation is found, appearing as dark and light bands across the running
difference diagram. Upon closer inspection a shorter set of dark and light bands is found, much closer to
the footpoint base, indicating a second intensity oscillation may be present.

A wavelet analysis of the data (the intensity oscillation is shown in Fig. 5.12(a)), using the Morlet
wavelet with parameter k = 6, gives evidence of two periodicities being present throughout the dataset; see
Fig. 5.12(b).

The footpoint region is approximately 39.8 Mm long and 10.4 Mm wide, with a divergence ratio of
0.09. The dataset is 20.4 minutes long with a time cadence of 36 s and a spatial resolution of 1 arcsec.
The dominant oscillation, dominating the wavelet power spectrum, occurs with a period of around 400 s;
it can be detected along the loop for 18.1 Mm and propagates with a velocity of around 105 km s−1. The
secondary oscillation has a period of around 200 s, and can be detected for around 9.7 Mm along the loop;
this propagates with a velocity of around 35 km s−1. The overall intensity variation throughout the two
simultaneous oscillations is 2.6 − 6.9%.

5.7.2 Discussion of 26th April Observations

Although the active region AR0337 contains sunspots, the loop footpoint considered here is not embedded
in a sunspot. As in De Moortel et al. (2002b), if an intensity oscillation is detected in this loop, with a
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(a)

(b)

Figure 5.11: (a) Active region AR0337 and the coronal loop footpoint supporting evidence of two simul-
taneous oscillations. (b) The running difference diagram showing the intensity variation, with the two sets
of dark and light bands highlighted by the dashed lines.
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(a)

(b)

Figure 5.12: (a) The intensity oscillation from the coronal loop footpoint studied on 26th April 2003,
showing evidence of two separate oscillations occurring simultaneously. Intensity is measured along the
y-axis and time is measured in seconds along the x-axis. (b) The wavelet diagram (taken at position
p = 3 along the loop) for the oscillation shows two bands of period occurring throughout the dataset. The
colour bar shows that darker regions on the wavelet diagram indicate higher normalised wavelet power. All
subsequent wavelet diagrams have the colour bar omitted.
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Table 5.4: The measured parameters from the three datasets showing evidence of multiple frequencies
simultaneously present with the dominant frequency. The dominant is denoted (D) and the secondary
harmonic is denoted (S). Periods are in seconds and propagation speeds are in km s−1.

Date Time Period (D) Period (S) Prop. Speed (D) Prop. speed (S)
April 24th 0723UT 300 175 110 35
April 24th 0849UT 400 225 140 45
April 26th 0725UT 400 200 105 35

propagation speed around the local sound speed, then it would oscillate with a period of around 5 minutes.
Indeed, this is the case in the dominant part of the two oscillations detected on 26th April, where an
oscillation, interpreted as a propagating slow MHD mode, with a period of 400 s is observed. However,
a simultaneous oscillation occurring with a period half that of the dominant period is also observed. The
propagation speed is also reduced by around half to a third. During the course of this study, three examples
of coronal loops, supporting oscillations interpreted as propagating slow MHD modes, showed evidence of
a second simultaneous oscillation being present. Table 5.4 gives an overview of parameters.

It is proposed that the three examples given in Table 5.4 show evidence that multiple frequencies may
oscillate simultaneously, consistent with the observations reported in King et al. (2003). It must be stressed
that the observations reported both here and in King et al. (2003) refer to propagating modes. The possibility
of observing simultaneous multiple wavelength oscillations in the corona has been highlighted, suggesting,
also, the possibility of observing simultaneous standing modes. The existence of simultaneous multiple
frequency oscillations is important to both coronal seismology and the overall coronal energy budget (Tsik-
lauri and Nakariakov, 2001). Further analysis of similar phenomena with higher resolution instruments
may yield more accurate determination of the parameters associated with the multiple frequency oscilla-
tions, and hence more information regarding the determination of coronal parameters and the contribution
of wave motions to the overall coronal heating problem and the processes which cause the generation of
higher harmonics.

5.8 Statistics of Slow MHD Waves in Coronal Loops

A statistical summary of the observations is presented in Tables 5.5 and 5.6 and the results are presented
in full in Tables A.1 and A.2 of Appendix A.1, the parameters are described in Section 5.5. The results
presented in Table 5.5 are the measured parameters from this study alone. Those presented in Table 5.6
are the combination of findings presented here and those of De Moortel et al. (2002b). The uncertainty
range associated with the statistics is taken to be the standard error in the mean, σM = σ/

√
n, where

σ =
∑

(x− µ) /
√
n is the standard deviation, µ is the mean and n is the number of samples. Taking into

account that De Moortel et al. (2002b) used the standard deviation to represent errors, not the error in the
mean, the magnitude of errors between the two studies is comparable.

Particular attention is drawn to the dimensions of the footpoints, which are very similar in both studies.
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Table 5.5: Overview of the averages and ranges of the physical parameters of the 25 oscillating coronal
loop footpoints observed in this study from April 21st 2003 until May 3rd 2003.

Parameter Average Range
Footpoint Length, L 30.7 ± 2.8 Mm 7.0 − 54.6 Mm
Footpoint Width, w 9.3 ± 0.1 Mm 3.5 − 14.9 Mm

Footpoint Divergence wd 0.18 ± 0.02 0.05 − 0.48
Oscillation Period, P 281.2 ± 17.0 s 150 − 550 s
Propagation Speed, v 98.4 ± 6.0 km s−1 O(60) − O(145) km s−1

Relative Amplitude, A 3.4% ± 0.2% 0.7 − 13.4%
Detection Length, Ld 8.0 ± 1.2 Mm 2.9 − 18.1 Mm

Energy Flux, F 268 ± 79 erg cm−2 s−1 68 − 1560 erg cm−2 s−1

Table 5.6: Statistical overview of the averages and ranges of the physical properties of the 63 oscillations
in coronal loop footpoints found in this study combined with that in De Moortel et al. (2002b).

Parameter Average Range
Footpoint Length, L 28.1 ± 1.3 Mm 7.0 − 54.6 Mm
Footpoint Width, w 8.6 ± 0.3 Mm 3.5 − 14.9 Mm

Footpoint Divergence wd 0.24 ± 0.02 0.05 − 0.71
Oscillation Period, P 281.5 ± 10.3 s 145 − 550 s
Propagation Speed, v 99.7 ± 3.9 km s−1 O(45) − O(205) km s−1

Relative Amplitude, A 3.7% ± 0.2% 0.7 − 14.6%
Detection Length, Ld 8.3 ± 0.6 Mm 2.9 − 23.2 Mm

Energy Flux, F 313 ± 26 erg cm−2 s−1 68 − 1560 erg cm−2 s−1
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This indicates that the studies have been carried out on loop footpoints of a similar size, of mean length
28.1 ± 1.3 Mm, mean width of 8.6 ± 0.3 Mm, and a mean divergence of 0.24 ± 0.02. The periodicity of
oscillation is almost exactly that determined in De Moortel et al. (2002b), with a period of 281.5 ± 10.3 s.
The mean propagation speed of the 63 examples is found to be 99.7±3.9 km s−1. Note that a more rigorous
analysis of the 38 examples studied by De Moortel et al. (2002b) yielded propagation speeds of the order
v = 98.3 ± 5.5 km s−1. The oscillation periods were also confirmed using Fast Fourier Transform (FFT),
and agreed with the wavelet results to within 5% on average. All the oscillations are of small amplitude,
with an intensity variation above the background of 3.7 ± 0.2%, and they are all detected over a similar
length, Ld = 8.3 ± 0.6 Mm.

Assuming the coronal loops are homogeneous and the oscillations are linear, then an estimate the energy
flux carried by the oscillations can be found. The energy flux F = ρ

(

(δv)
2
/2
)

vs, where δv is the wave
velocity amplitude and vs is a measure of the sound speed. Following De Moortel et al. (2002b), and taking
vs ' cs = 1.5× 105 cm s−1 and density ρ = 5× 10−16 g cm−3; gives an average value for the energy flux
of F = 313 ± 26 erg cm−2 s−1.

The method for determining the propagation speed gives a useful estimate, but generally the error bars
are large (due to the method of estimating gradients), so it can provide only the order of the propagation
speed. Also, the fact that the propagation speeds estimated here give a lower limit for the propagation speed
of the slow magnetoacoustic mode must be stressed. The line-of-sight effects can be significant. A loop
footpoint directed parallel to the line-of-sight, supporting a compressional wave (or some other propagating
intensity oscillation), will show a zero propagation speed using the technique of running difference. It could
be interpreted simply as a periodic brightening of some kind. However, one lying perpendicular to the line-
of-sight, supporting the same periodic intensity oscillation, will show the full value of the propagation
speed, and any loop lying at an angle between these extremes will show a speed which is a fraction of the
full value. The line-of-sight effects have not been considered in this study. The average inclination of the
loops studied in this paper can also be estimated, using the relation quoted in Robbrecht et al. (2001), that
the expected angle of inclination is α = arccos (vp/cs), where vp is the propagation speed and cs = 150

km s−1 is the sound speed at around 1 MK. Using this method, an average angle of inclination from the
vertical of the order of 48.3 ± 2.0◦ is obtained. This value is in good agreement with the inclination
found by De Pontieu et al. (2005) to be necessary for the propagation of 5 minute p-modes throughout the
solar atmosphere. Referring to the discussion in Chapter 2, Figs. 2.17 and 2.18 indicate that slow MHD
oscillations in the photosphere, with cs = 7.5 km s−1, can propagate if the angle of inclination of the
waveguide (the magnetic field lines) to the perpendicular is around 50 degrees, similar to the findings here.
Further discussion on the role of gravity and cutoff can be found in Chapter 2.

This study, combined with the result of De Moortel et al. (2002b), provides a substantial set of paramet-
ers, rigorously checked over 63 examples. The averages of the measured parameters have reasonably small
errors, and could confidently be used to confirm the accuracy of theoretical or numerical models, as is the
goal both here and in De Moortel et al. (2002b).
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5.9 Discussion and Conclusions

An overview of the measured parameters determined using TRACE observations of longitudinal intensity
oscillations in coronal loop footpoints is presented. 79 data sub-cubes are examined, in which 39 loops
were found that show evidence of intensity oscillations. Wavelet analysis gave 25 examples of periodic
intensity oscillations above a 99% confidence level. The measured parameters from these 25 examples are
summarised in Table 5.5, and combined statistically with 38 other examples studied in De Moortel et al.
(2002b) in Table 5.6.

The data shows small amplitude periodic variations in intensity, suggestive of a compressional wave,
with propagation speeds of the order of the coronal sound speed. The periods of these oscillations are
much less than the coronal acoustic cutoff period and the disturbances are interpreted as slow propagating
magnetoacoustic waves. Approximately half of the original datacubes analysed contain evidence of such
oscillations, and approximately one third showed evidence of the oscillations above the 99% confidence
level. Hence, these oscillations are commonplace in footpoints of large coronal loops.

The footpoints supporting the oscillations are observed to have length L ≈ 28.1 ± 1.3 Mm, width
w ≈ 8.6±0.3 Mm and a divergence wd ≈ 0.24±0.02. The oscillations are found to be of a small amplitude
A ≈ 3.7 ± 0.2%, propagating at a velocity v ≈ 99.7 ± 3.9 km s−1, with a period of P ≈ 281.5 ± 10.3 s.
All oscillations are observed to be outwardly propagating, and are usually only detected within the first 15

Mm of the loop footpoint. The energy flux of the waves is found to be 313± 26 erg cm−2 s−1. This is only
a small percentage of the total energy required to heat coronal loops. However, as discussed in Tsiklauri
and Nakariakov (2001) and Erdélyi (1996), this estimate is a lower limit for the total energy flux as it only
takes into account the contribution from a single harmonic.

The result that coronal loops embedded in regions of plage can oscillate, usually with a period of around
5minutes, is confirmed. However, no further examples of coronal loops embedded in a sunspot are found
and hence the statistic regarding coronal loops rooted in sunspot regions is not improved. Fig. 5.13(a) shows
that despite the mean period being close to the expected 5 minutes, there is also a significant peak at around
3 minutes, although no link to sunspots is observed in this study. Fig. 5.13(b) identifies that in general 3 or 5
minutes periodicities can be expected when observing longitudinal intensity oscillations along coronal loop
footpoints. It is suggested that the peak at around 200 s in Fig. 5.13(a) could be related to the identification
of second harmonics, as described in Section 5.7.

Many of the loops observed in this study show evidence of filamentary behaviour. For example, in
Fig. 5.1(a) there is a wide coronal loop footpoint in which many individual strands can be identified, but
only one of these strands is observed to oscillate at that point in time. Indeed, most of the loops observed
have shown some extent of filamentary behaviour (see Appendix A). The proximity of several of these os-
cillations is used, particularly those occurring on June 13th 2001 and May 3rd 2003, to support the argument
that the 5 minute coronal oscillations are driven by the leaking of the 5 minute global p-mode oscillations.
De Pontieu et al. (2005) showed that the moss oscillations are driven by the leaking of the global 5 minute
p-modes along inclined magnetic fields into the lower solar atmosphere, and that subsequently the moss
oscillations become coronal shocks that drive the coronal loop oscillations. The coronal loop oscillations
observed on June 13th 2001 and May 3rd 2003 are excited in regions of spatial extent of order 2 arcsec,
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(a)

(b)

Figure 5.13: (a) Histogram showing the distribution of the periods measured in this study. The dominant
period is clearly seen at around 300 s. There is a second peak at around 200 s, as was found by De Moortel
et al. (2002b). (b) The histogram showing the distribution for all 63 examples observed. Here, the dominant
period at around 300 s with a second peak at around 160 s which is less pronounced.
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which matches the temporal and spatial properties of p-mode driven moss oscillations very well. This sup-
ports the idea of the quasi-periodic global p-modes exciting distinct strands of wide coronal loops over short
timescales. It also supports the simulations performed by De Pontieu et al. (2005). This has highlighted the
need for higher spatial resolution instruments in the future, as the oscillations clearly indicate a filamentary
structure in coronal loops.



Chapter 6

Conclusions and Future Work

“Well it started badly, tailed off a bit in the middle and the less said

about the ending the better!”, Rowan Atkinson.

6.1 Overview of Thesis

This Thesis investigates various effects of introducing inhomogeneities in models of coronal plasmas. This
study concentrates on analytically deriving the dispersion relations for numerous models. This allows
the effect of inhomogeneities, such as footpoint structure or a temperature profile, on the frequency of
oscillation to be identified. Many of these findings are compared to the uniform models, allowing a fuller
understanding of the processes involved in coronal loop oscillations to be built up.

This treatment is mainly theoretical, with a numerical determination of the solutions to the dispersion
relations. The study is divided into two categories: the slow and fast magnetoacoustic modes. For the slow
mode oscillations the effect of longitudinal density structuring on the frequency of oscillation is considered.
This is done by studying various density profiles, caused by gravitational stratification or by structuring in
the sound speed (or temperature). This models the coupling of the upper corona to the cooler, dense
footpoint region.

Similarly, for the fast mode, a model in which gravity is perpendicular to the equilibrium magnetic field
is introduced, and its effect on the frequency of oscillation is considered. During this analysis it is found
that a new tool for coronal seismology can be developed, namely P1/2P2 analysis (Chapter 4) which uses
observed parameters to infer coronal properties, without the need for poorly constrained input parameters.
Furthermore, TRACE observations are studied to identify evidence of propagating slow modes in coronal
loops and evidence suggesting one possible mechanism for the upward driving of these oscillations is
reported. Now follows a summary of the main results.

6.2 Summary of Results

In Chapter 2 a vertical slab of coronal plasma, stratified by gravity is modelled. The coupled partial differen-
tial equations describing the two dimensional linear perturbations of velocity vx and vz about a hydrostatic
equilibrium are derived. Considering a stretched coordinate in the vertical direction, to study the longit-
udinal mode in detail (reducing the problem to a one dimensional problem), it is shown that the coupled

170
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differential equations become the Klein-Gordon equation with the propagation speed equal to the tube
speed cT (Roberts, 2006). In the low-β limit, then cT ' cs, the local sound speed, and the cutoff frequency
becomes the acoustic cutoff frequency. The role of gravity introduces the finite cutoff term which means
only waves with frequencies greater than the cutoff frequency will be propagating modes. In Chapter 2
the standing longitudinal acoustic (slow) mode is studied to model the effects introduced by gravitational
stratification and density structuring along the loop.

To begin with an isothermal plasma is studied, for which the sound speed and cutoff frequency are
constants. Simple oscillatory solutions that are amplified by the stratification due to gravity are found. For
typical coronal parameters the acoustic cutoff period is very long (> 70 minutes), so only modes with an
extremely long period will be evanescent. Observations suggest that the standing slow modes in hot coronal
loops (> 6 MK) have a period of around 30 minutes, so it is unlikely that the propagation of these modes is
strongly affected by the cutoff frequency. However, it is found that the frequency of oscillation is increased
when compared to the uniform medium case, but this is only significant for loops with half-lengths much
greater than the density scale height. It was also found that the frequency of each harmonic is shifted in a
specific way.

This study of the longitudinal mode is then extended to include footpoint density enhancements. Initially
this is done by considering two isothermal layers, stratified by gravity, with a step function in density at
some interface point. The interface separates a dense, cool footpoint region embedded in the chromosphere
and a rare, hot coronal region. The dense footpoint regions have a much higher cutoff frequency (by a factor
of ρbase/ρapex), and therefore the footpoint regions have a much shorter associated cutoff period. Also,
the longitudinal acoustic (slow) mode could be evanescent in the footpoint region, but propagating in the
coronal region. A simple numerical simulation is performed to model that propagating modes in the solar
interior could leak along inclined magnetic field lines, into the corona, and become propagating. Other
studies (De Pontieu et al., 2005) have shown that these leaky modes can excite the propagating coronal
acoustic (slow) mode oscillations (studied in Chapter 5). Another consequence of including footpoint
density enhancements is that the frequency of oscillation is reduced from the isothermal case. This shift in
frequency is proportional to the ratio of the chromospheric to coronal (h/L) extent of the loop half-length.
Typically, in the corona, loops have a large coronal extent, much longer than the expected depth of the
chromosphere, so this shift in frequency will be small. Again, the frequency of higher harmonics suffers a
different shift from the fundamental mode.

In an extension to the footpoint structure a loop that is fully non-isothermal was considered. A coronal
loop, stratified by gravity, with a temperature profile varying linearly from a maximum at the loop apex
(with temperature equal to the coronal temperature in the two-layer model) to a minimum at the loop base
(with temperature equal to the chromospheric temperature) is modelled. The frequency of oscillation is
reduced in comparison to the simple two-layer model. In fact, the reduction in the frequency is related to
the temperature (hence density) contrast between the loop apex and loop base. Furthermore, it is found that
the frequency of each harmonic is shifted by a different amount.

Finally, the effect of introducing a shallow layer of plasma, with a rapid linear increase in temperature
(modelling the transition region) from the loop base to the upper extent of the transition region, coupled
with a thick layer of isothermal plasma (modelling the corona) on the frequency of the slow modes is
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considered. The frequency of oscillation is decreased by the inclusion of both the transition region layer and
the temperature (hence density) contrast between the loop footpoint and the upper extent of the transition
region layer. This result combines the two results found previously: the two-layer model and the linearly
varying temperature model. The reduction in frequency is proportional to the extent of the transition region
and to the density contrast between footpoint and apex. Once more, the frequency of each harmonic is
altered by a different amount.

In Chapter 3 dynamical effect of gravity acting across a coronal slab of plasma on the transverse coronal
oscillations is considered – the fast modes. A new set of coupled differential equations describing the
variation of the linear total plasma pressure and velocity perturbations is derived. The role of gravity is
measured by the non-dimensional parameter gL/2c2

Ai, where g is the gravitational acceleration, L is the
half-length of the slab and cAi is the Alfvén speed within the slab. The inclusion of gravity breaks the
symmetry of the uniform model. The result is that the modes can no longer be classified into symmetric
and antisymmetric families or sausage and kink modes.

In this study the surface mode, on the interface between slab and environment, is not present in the
corona. This matches the results for a uniform slab embedded in a uniform environment. The body mode,
however, is present. The presence of gravity causes the lower cutoff frequency to increase proportional to
the square of the non-dimensional parameter gL/2c2

Ai. This causes the fundamental body mode to reach a
cutoff for some large parameter value (numerically calculated to be gL/2c2

Ai ' 2.5). If the fundamental
body mode reaches this cutoff, it is termed a modified body mode (similar to a surface mode in the uniform
case). Effectively, the presence of gravity allows the transition between surface and body modes. The upper
cutoff term is not altered by the inclusion of gravity in the momentum equation. As the upper cutoff relates
to the trapped nature of the mode, the body modes remain trapped even in the presence of gravity. On
studying this effect on the frequency of oscillation it is found that the presence of gravity reduces the fre-
quency of the fundamental body mode. However, for the higher modes the frequency is increased slightly.
This is another example of inhomogeneities, due to gravity, or otherwise, causing different harmonics to be
affected in different ways (consistent with the findings of Chapter 2).

The Alfvén wave is briefly studied in this configuration. Although gravity introduces a preferred dir-
ection, the trapped Alfvén mode can only occur when polarised in the y-direction. No component in the
direction of gravity can be trapped. Therefore, there is no coupling of the Alfvén mode to the transverse
fast kink mode.

Finally, the case of gravity lying parallel to the plasma slab is briefly considered. A new set of coupled
differential equations describing the total plasma pressure and velocity perturbations pT , which can be
reduced to the well known Klein-Gordon equation, studied in detail in Chapter 2, is derived. It is hoped
that future study of these equations will yield further insight into the effect of gravity on the coupling of
longitudinal modes to transverse modes.

In Chapter 4 the results discovered in Chapters 2 and 3; that density structuring affects each harmonic
uniquely, are returned to in detail. Longitudinal structuring of density causes a shift in all harmonics,
but the magnitude of each shift is unique to a particular harmonic. Furthermore, dispersion, introduced
by radial structuring of a flux tube, or by gravity, causes similar phenomena to occur. A new parameter,
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P1/2P2, the ratio of the fundamental period P1 to twice its first harmonic P2 that describes the shift of the
period (hence frequency) of the first two standing modes of oscillation is derived. For a uniform medium,
there is no shift in frequency for any harmonic, so this non-dimensional parameter is unity. However, for
a medium containing inhomogeneities, such as density structuring or stratification, the ratio deviates from
unity. Thus the magnitude of the shift of P1/2P2 from unity can yield information regarding the scale of the
inhomogeneities. Here, the role of various inhomogeneities, both laterally and longitudinally, on the period
ratio for both fast and slow magnetoacoustic modes (see also McEwan et al. (2006)) are systematically
studied.

Dispersion due to radial structuring causes a small deviation of the period ratio P1/2P2 from unity for
the fast mode, typically only a few percent. Stratification by gravity produces a small shift in P1/2P2 for
the longitudinal mode, similar in magnitude to the shift introduced by radial structuring for the transverse
mode. Longitudinal structuring, however, is found to cause a significant measurable shift in the period
ratio of both fast and slow modes. Two cases are studied, the exponential density profile for the fast and
slow modes, and a linearly varying temperature profile for the slow mode. Importantly, the density scale
height can be inferred, when simultaneous observations of the fundamental standing mode and its first
harmonic are available, by using P1/2P2 as a diagnostic tool for coronal seismology. The shift in the
period ratio allows the density contrast between loop apex and footpoint, and thus the density scale height,
to be inferred. For an exponential density profile, the shift in the period ratio is a function of the ratio of
loop half-length to density scale height, L/Λc for both the fast and slow mode. For the linearly varying
density, the period ratio is shifted by a constant value (fast and slow).

Much of this study is numerical. However, the case of the transverse fast kink mode in a thin coronal
flux tube is studied analytically. A thin coronal slab, with an exponential density profile, embedded in
an atmosphere exponentially structured in density is modelled. The dispersion relation is derived and
approximations for the periods of the first two harmonics were obtained. Then, an analytical approximation
for P1/2P2 in terms of the non-dimensional loop half-length measured in units of the density scale height
is derived. This formula is applied to the known observations (Verwichte et al., 2005) for the fast mode
to determine the coronal scale height, without the need for estimates of input parameters (such as number
density of magnetic field strength). These results match the numerical calculations very well. Further
numerical work regarding the thin flux tube model is carried out for the case of a linearly varying density
profile. Here, it is also found that the period ratio is shifted due to the density inhomogeneity. However,
this shift is constant with respect to the non-dimensional loop half-length. Instead, for this case, the period
ratio varies proportionally to the temperature (density) contrast between loop footpoint and apex (similar to
the linear temperature model of P1/2P2 for the slow mode).

A potentially powerful analytical and numerical diagnostic tool for probing the corona is derived: the
period ratio P1/2P2 depends on relatively robust measurable parameters; loop half-length L, and the peri-
ods P1 and P2. There is no need for estimating other input parameters such as the equilibrium density or
Alfvén speed.

In Chapter 5 evidence of propagating longitudinal intensity oscillations observed using TRACE 171
data (McEwan and De Moortel, 2006) is reported. Observations of wide coronal loop footpoint regions are
the focus of this study and the datasets are analysed using the running difference technique. The datasets
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which show evidence of propagating intensity disturbances along the loop footpoints are analysed using
Fourier and wavelet analysis. The disturbances are periodic intensity oscillations, with periods of around
3 to 5 minutes. It is also found that these periodic intensity oscillations propagate with speeds similar
to a typical coronal sound speed of 150 km s−1 (for a 1 MK degree corona). The conclusion is that
these intensity oscillations are indicative of propagating coronal slow mode oscillations. Twenty five such
examples are reported, and the statistics of each oscillation are collated to give approximate measured
and inferred parameters using coronal seismology with the slow magnetoacoustic mode. Furthermore, a
comparison of wavelet analysis and Fourier analysis is performed. It is highlighted that wavelet analysis
can easily give the time localisation of the oscillating frequencies within a signal, whereas Fourier analysis
does not. All of the signals analysed show periodicities using both analysis techniques.

During this study, evidence that some of these oscillations appeared to be localised in space across wide
coronal loop footpoints is found. It appears that only a thin segment of a wide coronal loop footpoint is
oscillating. Furthermore, the oscillations are also temporally localised, occurring for only a few periods.
Previous numerical results have indicated that similar slow mode oscillations to those discovered here,
possibly driven by the global p-modes leaking up along inclined magnetic field lines, occur for similar
timescales (or a few periods) with similar spatial localisation (of a few Mm, e. g. a loop strand, not the whole
loop width). A running difference of these localised oscillations across the loop is performed to show that
the oscillations are localised in space. Evidence is found that individual loops strands are oscillating, but
neighbouring strands are not. Furthermore, the oscillations are only detectable for a few periods, suggesting
time localisation. These observations indicate that the slow modes are confined to individual loop strands,
which may be driven by the leaking p-modes. Also the average inclination of the observed oscillating
coronal loops matches the required inclination for the p-mode leakage to occur.

In this observing programme evidence of simultaneous oscillations occurring in the same coronal loop
but with a different propagation speed is also found. Using a wavelet analysis it is shown that two period-
icities are present throughout the whole dataset of one loop. The higher period is approximately double the
lower, suggesting that two oscillating harmonics are propagating simultaneously. These waves have very
different propagation speeds, the oscillation with the larger period has a speed approximately three times
that of the other in all cases. These modes are not standing waves, so cannot be used to create P1/2P2.
However, the implications for the coronal energy budget proves interesting. The impact on the total con-
tribution of wave motions to the coronal heating budget depends on the contribution of energy from all the
oscillating harmonics, so further observations of simultaneous multi-wavelength oscillations could prove
important in the study of the overall coronal heating problem.

6.3 Future Work

This Thesis presents various projects designed to understand the nature of structuring and stratification on
the oscillations in coronal loops. Effects such as the coupling with the lower atmosphere for slow mode
oscillations, and simple density stratification and line-tying for the transverse fast modes are considered.
New ways to determine coronal parameters using the technique of coronal seismology are discussed. How-
ever, there are many possible extensions to the work outlined in this Thesis. Furthermore, much of the
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research carried out in this Thesis has left open questions for future work. Here, some of the possible future
extensions to this research are presented, and some new questions are posed.

6.3.1 Development of the Slow Mode Model

In Chapter 2 a straightened, vertical coronal loop, lying parallel to a constant gravitational acceleration
and with no environment conditions is considered. The obvious extensions to this work would be the
development of the governing equations to include a non-constant gravity term (similar to Nakariakov et al.
2000; Mendoza-Briceno et al. 2004; van Doorsselaere et al. 2004). A non-constant gravity would allow
the model to consider loop curvature, and the effects on the physical parameters such as the frequency of
oscillation, or even the eigenfunctions of the slow mode.

A second important extension would be to consider the environment effects. Coronal loops are not
embedded in a uniform coronal environment. The corona itself is a highly structured and dynamical me-
dium, stratified by gravity. The model presented here considers an isolated one-dimensional coronal slab
of plasma. However, it would be interesting to study the effect of introducing an environment, perhaps
initially uniform then extending to an exponentially stratified case. This would lead to the consideration of
a two-dimensional model, effectively removing the stretching coordinate.

Finally, more work has to be done to understand the coupling of the longitudinal mode with the lower
atmosphere and chromosphere. The eigenfunctions must be studied in detail for various cases involving
footpoint density structures, as in Dı́az and Roberts (2006). Knowing the spatial structure of the eigenfunc-
tions allows features to be identified in any observations from either current or future missions such as The
Solar Terrestrial Relations Observatory (STEREO), Hinode or the Solar Dynamics Observatory satellite
(SDO). Being able to inform the observers of what to look for, the process of forward modelling, is crucial
in the development of coronal seismology in any of the current research programmes.

6.3.2 Development of the Fast Mode Model

In Chapter 3 a slab of plasma, treated as approximately uniform, embedded in an environment and lying
perpendicular to gravity is considered. In reality one would expect a slab of coronal plasma to be stratified
vertically by gravity, and structured horizontally due to some density profile along the slab. The first
obvious extension to this model would be to allow some variation of density parallel to gravity, which
would begin to complicate the governing equations. Secondly this model could be developed to include a
density inhomogeneity in the z-direction (Donnelly et al., 2006; Donnelly et al., 2007, in press), along the
slab, modelling a more realistic coronal loop.

A detailed study of the eigenfunctions is necessary to understand the spatial structure of the body modes
in this new configuration. Also, the modified body modes must be studied in greater detail. One must
discover whether these modes are some kind of leaky surface mode or if they have the spatial structure of a
body mode but are simply killed by the presence of gravity. Again, with a full study of the spatial structure
of the eigenfunctions the observers can be informed of what to look for. It would then be possible to measure
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the direct effect of gravity on the frequency of the fast modes, and perhaps use this information to infer
new coronal parameters (by using the non-dimensional parameter gL/2c2

Ai). Another interesting extension
would be to allow leaky modes to occur (Cally, 1986). This would provide information regarding the
interaction between the slab and its environment. Allowing energy leakage would cause coupling between
the fast mode and the Alfvén mode, which is not possible for the trapped mode solutions.

6.3.3 Extension to P1/2P2

In Chapter 4 models which predict coronal lengthscales are derived, provided simultaneous observations
of a fundamental standing mode oscillations and its first harmonic are achieved. This model should be
developed for both the fast and slow modes to include various other non-uniform effects. For example,
the fast mode case does not include any gravitational stratification, despite the results of Chapter 2 and 3
showing that the presence of gravity causes dispersion. These equations have been derived in this Thesis.
However, they have not yet been applied in this context. It is already known that the effect of gravity is fairly
small on the shift in P1/2P2 from unity. However, it is crucial to know its magnitude to fully understand
all the contributions towards the shift in this useful diagnostic parameter.

The inclusion of a radial density inhomogeneity may alter the effect of radial structuring on the shift in
P1/2P2 from unity. Other possible extensions would be to include loop curvature or non-ideal effects such
as wave damping. A full consideration of the problem involving the line-tying boundary conditions should
also be studied: are these conditions valid? If they are not fully realistic, then this may have a fundamental
effect on the period ratio. It would also be useful to extend this work to include the sausage mode, especially
with the recent increase in the observations of this mode (for example see Nakariakov et al. 2003, 2005
and Melnikov et al. 2005a). Finally, with the increase in solar observational missions (STEREO, SDO,
HINODE, TRACE, SOHO), it may be of interest to develop the diagnostic parameter P1/nPn, extending
the n = 2 case already studied. If these instruments could yield simultaneous observation of multiple
harmonics, then P1/nPn could give information regarding the full density profile of an oscillating coronal
loop (similar to the technique used in helioseismology (Chaplin, 2006)).

6.3.4 p-mode Leakage and the Driving of Coronal Oscillations

In Chapter 5 evidence of the leakage of the global p-modes along inclined field lines into the corona is
reported. These leaky modes may drive the propagating coronal slow modes (De Pontieu et al., 2005),
observed here using TRACE. By using STEREO data, loop inclination should be determined, and hence
the inclination of the magnetic field lines along a loop. Using this information, together with observed
oscillations of isolated coronal loop strands (McEwan and De Moortel, 2006), further study on the possible
leakage of the global p-modes into the upper solar atmosphere could be carried out. Simple numerical
simulations in De Pontieu et al. (2005) have already shown that the average inclination for the 5 minute p-
modes to leak along inclined field lines is approximately 45 degrees. Using this data it could be determined
whether these experiments fully represent the leakage or whether other effects need to be considered.
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6.4 Concluding Remarks

From this brief overview alone it is clear that from the four areas of research presented here, much has
been discovered; however, much more is yet to be studied. I hope that with the extension of some of
the work presented here one can begin to understand, in greater detail, the nature of coronal oscillations,
the contribution of wave motions to the coronal energy budget, techniques of coronal seismology and to
develop the scientific understanding of the Sun’s interaction with Earth.

“Good night, and good luck!”, Edward R. Murrow.



Appendix A

Data Analysis of TRACE Observations

(a)

(b)

Figure A.1: (a) The running difference diagram showing intensity variation at 0057UT on June 13th 2001
on strand 1 of the wide coronal loop footpoint. (b) The running difference showing a similar variation in
intensity at 0138UT on the same day, on strand 2.
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(a)

(b)

Figure A.2: (a) The wavelet diagram at 0057UT, using a Morlet mother wavelet with k = 6, showing a
periodic variation in intensity, present throughout the time series, of around 350 s. (b) The wavelet diagram
at 0138UT showing a period in intensity variation of around 390 s. The darker regions on the wavelet
diagrams indicate higher normalised wavelet power.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.3: Figs. A.2(a), (b) and (c) show the coronal loop, time-space diagram and the clearest wavelet
diagram, at position 3, for the oscillation observed in Loop 1, from Table B.1. (d), (e) and (f) show loop 2,
with wavelet diagram at position 2. (g), (h) and (i) show loop 3 (wavelet diagram at position 4) and (j), (k)
and (l) show loop 4 at position 9. The darker regions on the wavelet diagrams indicate higher normalised
wavelet power.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.4: Figs. A.3(a), (b) and (c) show the coronal loop, time-space diagram and the clearest wavelet
diagram, at position 2, for the oscillation observed in Loop 5, from Table B.1. (d), (e) and (f) show loop
6, taking the wavelet diagram at position 4. (g), (h) and (i) show loop 7 (wavelet diagram at position 0)
and (j), (k) and (l) show loop 8 with the wavelet diagram at position 0. The darker regions on the wavelet
diagrams indicate higher normalised wavelet power.



Appendix A. Data Analysis of TRACE Observations 182

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.5: Figs. A.4(a), (b) and (c) show the coronal loop, time-space diagram and the clearest wavelet
diagram, at position 5, for the oscillation observed in Loop 9, from Table B.1. (d), (e) and (f) show loop
10, taking the wavelet diagram at position 4. (g), (h) and (i) show loop 11 (wavelet diagram at position 2)
and (j), (k) and (l) show loop 12 with the wavelet diagram at position 1. The darker regions on the wavelet
diagrams indicate higher normalised wavelet power.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.6: Figs. A.5(a), (b) and (c) show the coronal loop, time-space diagram and the clearest wavelet
diagram, at position 1, for the oscillation observed in Loop 13, from Table B.1. (d), (e) and (f) show loop
14, taking the wavelet diagram at position 6. (g), (h) and (i) show loop 15 (wavelet diagram at position 5)
and (j), (k) and (l) show loop 16 with the wavelet diagram at position 5. The darker regions on the wavelet
diagrams indicate higher normalised wavelet power.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.7: Figs. A.6(a), (b) and (c) show the coronal loop, time-space diagram and the clearest wavelet
diagram, at position 3, for the oscillation observed in Loop 17, from Table B.1. (d), (e) and (f) show loop
18, taking the wavelet diagram at position 1. (g), (h) and (i) show loop 19 (wavelet diagram at position 3)
and (j), (k) and (l) show loop 20 with the wavelet diagram at position 0. The darker regions on the wavelet
diagrams indicate higher normalised wavelet power.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.8: Figs. A.7(a), (b) and (c) show the coronal loop, time-space diagram and the clearest wavelet
diagram, at position 4, for the oscillation observed in Loop 21, from Table B.1. (d), (e) and (f) show loop
22, taking the wavelet diagram at position 6. (g), (h) and (i) show loop 23 (wavelet diagram at position 0)
and (j), (k) and (l) show loop 24 with the wavelet diagram at position 2. The darker regions on the wavelet
diagrams indicate higher normalised wavelet power.
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(a) (b) (c)

Figure A.9: Figs. A.8(a), (b) and (c) show the coronal loop, time-space diagram and the clearest wavelet
diagram, at position 1, for the oscillation observed in Loop 25, from Table B.1. The darker region on the
wavelet diagram indicates higher normalised wavelet power.
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A.1 Statistical Overview of TRACE Observations

Table A.1: Overview of the oscillations found in JOP83 in the 171Å of TRACE observed during the
period between April 23rd 2003 and May 3rd 2003; the date and time indicate the start of the sequence
(UT), AR identifies the NOAA active region number, (x,y) gives the solar x and solar y coordinates of the
loop footpoint, d indicates the duration of the sequence in minutes, L is the loop length in Mm, w is the
average width of the footpoint in Mm and wd gives the divergence rate of the footpoints.

Loop Date & Time AR (x,y) d L w wd

(DDMMYY UT) (min) (Mm) (Mm)
1 22042003 1816 0339 (283,142) 19.3 7.0 3.5 0.16
2 22042003 1916 0339 (51,364) 19.3 10.0 4.7 0.29
3 24042003 0723 0337 (207,-34) 16.2 39.1 9.3 0.07
4 24042003 0849 0337 (217,-42) 25.7 54.6 12.4 0.19
5 26042003 0725 0337 (322,-152) 20.4 38.9 10.4 0.09
6 26042003 0904 0337 (377,-109) 17.4 15.6 12.0 0.23
7 26042003 1700 0346 (-522,298) 19.8 21.0 14.9 0.48
8 29042003 1820 0336 (631,48) 12.3 31.5 9.6 0.14
9 29042003 1820 0336 (707,208) 12.3 25.5 10.4 0.14
10 29042003 2123 0338 (648,51) 12.3 25.6 7.3 0.14
11 29042003 2123 0342 (646,54) 12.3 30.1 7.7 0.05
12 30042003 1641 0336 (832,187) 20.8 38.5 7.6 0.08
13 30042003 1641 0336 (828,209) 20.8 42.0 10.4 0.17
14 03052003 1605 0345 (369,-248) 14.3 37.4 8.8 0.14
15 03052003 1605 0345 (340,-234) 14.3 30.4 9.6 0.14
16 03052003 1740 0345 (387,-247) 15.6 34.2 8.3 0.19
17 03052003 1834 0345 (359,-237) 17.6 32.3 12.4 0.32
18 03052003 1858 0345 (389,-251) 18.9 28.6 8.2 0.23
19 03052003 1858 0345 (397,-247) 18.9 31.8 9.2 0.25
20 03052003 2012 0345 (360,-228) 16.9 40.5 10.8 0.20
21 03052003 2012 0345 (407,-251) 16.9 31.3 8.7 0.14
22 03052003 2301 0345 (388,-204) 17.6 36.8 7.7 0.12
23 03052003 2321 0345 (391,-205) 20.0 34.0 8.4 0.06
24 03052003 2321 0345 (446,-249) 20.0 24.5 9.9 0.24
25 03052003 2321 0345 (393,-235) 20.0 26.4 10.9 0.28
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Table A.2: Overview of the oscillations found in JOP83 in the 171Å of TRACE observed during the
period between April 23rd 2003 and May 3rd 2003; v is the projected speed of propagation of the wave,
Amin − Amax is the range of amplitudes relative to the background intensity, Pmin − Pmax is the range
of oscillation period given by the wavelet diagrams for each oscillation, Pprop is the dominant period at
which the oscillations propagates, Ld is the length along the loop that the oscillation is detected and F is
the estimated energy flux of the wave.

Loop v Amin −Amax Pmin − Pmax Pprop Sunspot Ld F
kms−1 (%) (s) (s) Y/N (Mm) (102 erg cm−2 s−1)

1 O(65) 2.0 - 5.3 250 - 410 340 N 4.2 2.8
2 O(60) 3.8 - 13.4 200 - 375 250 N 3.0 15.6
3 O(140) 2.0 - 5.9 150 - 330 190 N 3.5 3.3
4 O(120) 1.6 - 5.4 350 - 550 420 N 6.5 2.6
5 O(120) 2.6 - 6.9 275 - 450 440 N 18.1 4.8
6 O(100) 1.5 - 4.6 175 - 250 200 N 2.9 2.0
7 O(85) 0.8 - 2.8 275 - 400 330 N 9.5 0.7
8 O(90) 1.8 - 3.8 225 - 250 230 N 3.8 1.7
9 O(105) 0.7 - 3.9 200 - 250 215 N 7.1 1.1
10 O(100) 1.0 - 3.8 175 - 250 225 N 6.0 1.0
11 O(85) 1.3 - 3.5 175 - 250 220 N 5.7 1.0
12 O(145) 0.9 - 5.0 250 - 450 290 N 15.6 1.8
13 O(110) 1.5 - 3.9 175 - 450 300 N 11.2 1.5
14 O(130) 1.1 - 4.2 175 - 300 225 N 5.5 1.5
15 O(100) 2.1 - 5.3 150 - 310 175 N 4.3 2.9
16 O(85) 1.1 - 4.7 175 - 375 220 N 8.9 1.8
17 O(130) 1.1 - 5.6 275 - 370 360 N 16.2 2.4
18 O(115) 1.4 - 4.1 200 - 400 300 N 7.2 1.6
19 O(60) 1.3 - 5.2 275 - 325 300 N 6.4 2.2
20 O(80) 1.7 - 6.4 200 - 340 310 N 5.8 3.5
21 O(85) 1.5 - 5.6 225 - 340 310 N 6.0 2.7
22 O(90) 1.6 - 6.0 200 - 370 330 N 6.9 3.0
23 O(80) 1.1 - 4.2 200 - 340 300 N 18.2 1.5
24 O(60) 1.6 - 4.6 200 - 325 300 N 9.3 2.0
25 O(145) 1.8 - 4.6 175 - 375 300 N 7.1 2.2
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MacCormack Numerical Scheme

The Klein-Gordon equation is given by,

∂2Q

∂t2
− c2s (z)

∂2Q

∂z2
+ Ω2 (z)Q = 0. (B.1)

For the MacCormack scheme Eq. (B.1) must be written as two equations of first order, so the following
variable is introduced

v =
∂Q

∂t
+ cs (z)

∂Q

∂z
. (B.2)

From Eq. (B.2) one can calculate

∂v

∂t
=

∂2Q

∂t2
+ cs (z)

∂

∂z

(

∂Q

∂t

)

(B.3)

=
∂2Q

∂t2
+ cs (z)

∂

∂z

(

v − cs (z)
∂Q

∂z

)

= c2s (z)
∂2Q

∂t2
− Ω2 (z)Q+ cs (z)

∂v

∂z
− c2s (z)

∂2Q

∂z2
− cs (z)

∂cs
∂z

∂Q

∂z
.

In an isothermal atmosphere cs (z) is a constant, hence dcs/dz = 0. The Klein-Gordon equation can then
be written as two first order equations:

∂v

∂t
= cs

∂v

∂z
− Ω2Q, (B.4)

∂Q

∂t
= v − cs

∂Q

∂z
. (B.5)

Eqs. (B.4) and (B.5) are written in discrete form to obtain the predictor steps:

qn+1
pj = −c

(

qn
j+1 − qn

j

)

+ dtvn
j + qn

j (B.6)

and

vn+1
pj = c

(

vn
j+1 − vn

j

)

− dtΩ2qn
j + vn

j , (B.7)

with the initial conditions of q(z, 0) = v(z, 0) = 0 and

∂qp
∂z

=
∂vp

∂t
= 0 (B.8)
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at the z = L boundary.

The corrector steps are calculated to be:

qn+1
j = 0.5

(

dtvn+1
pj + qn

j + qn+1
pj − c

(

qn+1
pj − qn+1

pj−1

))

(B.9)

and

vn+1
j = 0.5

(

c
(

vn+1
pj − vn+1

pj−1

)

− dtΩ2qn+1
pj + vn

j + vn+1
pj

)

, (B.10)

with

q (0, t) = sin (2πωt) (B.11)

and

v (0, t) = 2πω cos (2πωt) + cs (q (1, t) − q (0, t)) /dz, (B.12)

where c = csdt/dx is the Courant number, and c = 0.8 for these simulations to maintain stability.
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