Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorHepburn, Matt S.
dc.contributor.authorWijesinghe, Philip
dc.contributor.authorMajor, Luke G.
dc.contributor.authorLi, Jiayue
dc.contributor.authorMowla, Alireza
dc.contributor.authorAstell, Chrissie
dc.contributor.authorPark, Hyun Woo
dc.contributor.authorHwang, Yongsung
dc.contributor.authorChoi, Yu Suk
dc.contributor.authorKennedy, Brendan F.
dc.date.accessioned2020-02-24T12:30:05Z
dc.date.available2020-02-24T12:30:05Z
dc.date.issued2020-02-01
dc.identifier266500639
dc.identifier643f12d7-2045-4d73-bf9a-d5b21452ec18
dc.identifier85078885868
dc.identifier000519069700025
dc.identifier.citationHepburn , M S , Wijesinghe , P , Major , L G , Li , J , Mowla , A , Astell , C , Park , H W , Hwang , Y , Choi , Y S & Kennedy , B F 2020 , ' Three-dimensional imaging of cell and extracellular matrix elasticity using quantitative micro-elastography ' , Biomedical Optics Express , vol. 11 , no. 2 , pp. 867-884 . https://doi.org/10.1364/BOE.383419en
dc.identifier.issn2156-7085
dc.identifier.otherORCID: /0000-0002-8378-7261/work/69463486
dc.identifier.urihttps://hdl.handle.net/10023/19521
dc.descriptionFunding: Australian Research Council; Cancer Council Western Australia; Industrial Transformation Training Centre; The William and Marlene Schrader Trust of the University of Western Australia.en
dc.description.abstractRecent studies in mechanobiology have revealed the importance of cellular and extracellular mechanical properties in regulating cellular function in normal and disease states. Although it is established that cells should be investigated in a three-dimensional (3-D) environment, most techniques available to study mechanical properties on the microscopic scale are unable to do so. In this study, for the first time, we present volumetric images of cellular and extracellular elasticity in 3-D biomaterials using quantitative micro-elastography (QME). We achieve this by developing a novel strain estimation algorithm based on 3-D linear regression to improve QME system resolution. We show that QME can reveal elevated elasticity surrounding human adipose-derived stem cells (ASCs) embedded in soft hydrogels. We observe, for the first time in 3-D, further elevation of extracellular elasticity around ASCs with overexpressed TAZ; a mechanosensitive transcription factor which regulates cell volume. Our results demonstrate that QME has the potential to study the effects of extracellular mechanical properties on cellular functions in a 3-D micro-environment.
dc.format.extent18
dc.format.extent6202149
dc.language.isoeng
dc.relation.ispartofBiomedical Optics Expressen
dc.subjectQC Physicsen
dc.subjectQH301 Biologyen
dc.subjectBiotechnologyen
dc.subjectAtomic and Molecular Physics, and Opticsen
dc.subjectNDASen
dc.subjectSDG 3 - Good Health and Well-beingen
dc.subject.lccQCen
dc.subject.lccQH301en
dc.titleThree-dimensional imaging of cell and extracellular matrix elasticity using quantitative micro-elastographyen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doi10.1364/BOE.383419
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record