St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A clustered origin for isolated massive stars

Thumbnail
View/Open
Clust_mergers_isolatedMS_v6_CLEAN.pdf (2.029Mb)
Date
03/2018
Author
Lucas, William E.
Rybak, Matus
Bonnell, Ian A.
Gieles, Mark
Funder
European Research Council
Grant ID
Keywords
Stars: formation
Stars: luminosity function
Mass function
Stars: massive
Open clusters and associations: general
QB Astronomy
QC Physics
3rd-DAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
High-mass stars are commonly found in stellar clusters promoting the idea that their formation occurs due to the physical processes linked with a young stellar cluster. It has recently been reported that isolated high-mass stars are present in the Large Magellanic Cloud. Due to their low velocities it has been argued that these are high-mass stars which formed without a surrounding stellar cluster. In this paper we present an alternative explanation for the origin of these stars in which they formed in a cluster environment but are subsequently dispersed into the field as their natal cluster is tidally disrupted in a merger with a higher-mass cluster. They escape the merged cluster with relatively low velocities typical of the cluster interaction and thus of the larger scale velocity dispersion, similarly to the observed stars. N-body simulations of cluster mergers predict a sizeable population of low-velocity (≤20 km s−1), high-mass stars at distances of >20 pc from the cluster. High-mass clusters in which gas poor mergers are frequent would be expected to commonly have haloes of young stars, including high-mass stars, which were actually formed in a cluster environment.
Citation
Lucas , W E , Rybak , M , Bonnell , I A & Gieles , M 2018 , ' A clustered origin for isolated massive stars ' , Monthly Notices of the Royal Astronomical Society , vol. 474 , no. 3 , pp. 3582-3592 . https://doi.org/10.1093/mnras/stx2997
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
DOI
https://doi.org/10.1093/mnras/stx2997
ISSN
0035-8711
Type
Journal article
Rights
© 2017, the Author(s). This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1093/mnras/stx2997
Description
WEL and IAB gratefully acknowledge support from the ECOGAL project, grant agreement 291227, funded by the European Research Council under ERC-2011-ADG. MR acknowledges funding from the Nadacia SPP grant No. 28/2013. MG acknowledges support from the Royal Society in the form of a University Research Fellowship (URF) and the European Research Council (ERC-StG-335936, CLUSTERS). This work used the compute resources of the St Andrews MHD Cluster.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/12176

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter