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Good vibrations by the beach boys: Magnitude of substrate vibrations is a 1 

reliable indicator of male grey seal size.  2 

3 

Running Title: Ground vibrations contain information on male seal size 4 

5 

ABSTRACT 6 

Communication via substrate vibrations can convey information on conspecific presence, individual 7 

quality, group cohesion, and/or allow for predator avoidance. While studies have identified that various 8 

species use this modality, few studies on mammalian taxa have investigated if the information contained 9 

in substrate vibrations is a reliable indicator of resource holding potential (RHP). The grey seal 10 

(Halichoerus grypus) breeding colony at Donna Nook, UK, is part of a limited geographic region where 11 

the Body Slap (BS) behaviour is performed during male-male conflicts. This behaviour is thought to have 12 

a mechanical component. We examined if the magnitude of the BS substrate vibrations contained reliable 13 

information on male mass and size as measures of RHP, and if reliability varied across environmental 14 

conditions. To test this, we deployed seismometers during the breeding season that recorded continuous 15 

seismic data over a frequency bandwidth 0.03Hz-500Hz. Locations and times of BS events performed by 16 

individual males were recorded, matched with the seismic data, and a distance corrected magnitude was 17 

calculated for each event. Our results demonstrate the BS generates a stereotyped seismic signature 18 

measurable up to 126.3 m away. We found a positive correlation between the maximum and mean 19 

magnitudes of the substrate-borne vibrations and a male’s length. Dampness of the sand substrate had no 20 

effect on magnitude. Results of this study confirm that the maximum magnitude substrate vibrations 21 

generated by the Body Slap behaviour is an indicator of male size and that the substrate-borne vibrations 22 

are reliable across varying environmental conditions. 23 

24 
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INTRODUCTION 27 

Resource holding potential (RHP) is a representation of an individual’s ability to win in a contest, 28 

and as such, is often positively correlated with size, mass or ornamentation (Carlini et al., 2006; Insley & 29 

Holt, 2011; Smith, 1979, Sneddon, Huntingford, & Taylor, 1997; Vannoni & McElligott, 2008). 30 

Signalling during agonistic interactions has been favoured by selection to convey information regarding 31 

these correlates of RHP, which opponents can use in assessment to avoid costly escalations (Arnott & 32 

Elwood, 2009; Smith, 1979). Such signals are particularly common in polygynous systems with intense 33 

male-male competition; for example, roaring in male red deer (Cervus elaphus) (Clutton-Brock & Albon, 34 

1979) or vocalizations by northern elephant seal bulls (Mirounga angustirostris) (Sanvito, Galimberti, & 35 

Miller, 2007b). While the literature investigating air-borne acoustic and visual displays as indicators of 36 

male or female RHP is extensive (Arnott & Elwood, 2009; Clutton-Brock & Albon, 1979; Sanvito, 37 

Galimberti, & Miller, 2007b; Vannoni & McElligott, 2008), only a few studies have extended these 38 

questions to signals that generate substrate-borne vibrations (Elias et al., 2008; Rivero et al., 2000). The 39 

lack of studies is particularly evident in mammalian systems. Interest in mammalian use of substrate 40 

vibrations as a mode of communication has risen in recent years (Hill, 2009; O’Connell-Rodwell, 2007), 41 

but has generally focused on the use of vibrations to convey information about the presence of 42 

conspecifics (Brownell & Farley, 1979; Randall & Matocq, 1997; Shipley, Stewart, & Bass, 1992), group 43 

cohesion and spacing (O’Connell-Rodwell, 2007) or predator avoidance (Randall, 2001). Some studies 44 

have suggested links (Shipley, Stewart, & Bass, 1992), but few have explicitly investigated the use of the 45 

characteristics of substrate-borne vibrations as advertisement of male RHP in mammalian systems.  46 

Substrate vibrations generated by animal signalling are extensively documented across numerous 47 

animal taxa; conservative estimates suggest that in the order Insecta alone, a total of 195,000 species use 48 

this mode of communication (Hill, 2009). In comparison, the number of mammalian species known to use 49 

this form of communication is estimated at 32 species across 11 families (Hill, 2009). These signals can 50 

be generated via direct contact: stridulation (Gordon & Uetz, 2011), tremulation (Caldwell et al., 2010) or 51 

percussive drumming (Elias et al., 2008; Randall & Matocq 1997); or through vocalizations strong 52 
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enough to excite substrate-borne vibrations (Hill, 2009; O’Connell-Rodwell, 2007; Shipley, Stewart, & 53 

Bass, 1992).  Previous work has identified that the substrate-vibration components of signals can be used 54 

in various forms of communication: stridulations and tremulations can advertise quality during conflict 55 

and mate choice, while foot drumming and substrate coupled vocalizations have been linked with 56 

conspecific avoidance and group cohesion (Elias et al., 2008; Hill, 2009). In this study, we investigate a 57 

specific behaviour performed by male grey seals (Halichoerus grypus) during the breeding season and 58 

investigate if the substrate vibrations generated convey reliable information regarding male RHP that 59 

could be used in contest assessment by receivers.  60 

Wild, breeding male grey seals are ideal model species for this investigation. Grey seals in the 61 

UK have individually unique and stable natural markings and site fidelity, which allows for individual-62 

based observations within and between breeding seasons (Anderson & Fedak 1985; Boyd, Lockie, & 63 

Hewer, 1962; Hiby & Lovell 1990; Pomeroy, Twiss, & Redman, 2000; Twiss, Pomeroy, & Anderson, 64 

1994). Parturition and mating occurs yearly in the autumn or winter in the UK, and seals breed across a 65 

variety of substrates (e.g. sand, rocky-intertidal, grass) depending on colony locality. The breeding season 66 

lasts for approximately 8 weeks. Females are ashore for 18-20d during which they give birth to a single 67 

pup, mate (oestrus is roughly on day 16 post-partum), and wean; this results in a turnover of females and 68 

variation in local densities throughout the breeding season (Anderson, Burton, & Summers, 1975; Boness 69 

& James 1979). Males maximize mating success by remaining among groups of females for as long as 70 

possible by forming loose territories and exhibit a range of aggressive behaviours (Boness & James 1979; 71 

Twiss, 1991; Twiss, Anderson, & Monaghan, 1998). Aggressive interactions occur between males 72 

throughout the season as territories shift, new males arrive and as access to females in oestrus changes 73 

(Boness & James 1979; Twiss, 1991; Twiss, Pomeroy, & Anderson, 1994). Inter-male aggression 74 

typically takes the form of ritualized displays, but some interactions will escalate to physical fights 75 

comprised mainly of wrestling (Boness, 1984; Twiss, 1991). The known correlates for RHP for grey seals 76 

and other closely related pinnipeds are length and mass (Anderson & Fedak, 1985; Carlini et al., 2006); 77 
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although, some studies have suggested that for grey seals, intermediate values of these traits are the best 78 

correlate of RHP (Lidgard et al., 2005).  79 

The male grey seal agonistic behavioural repertoire consists primarily of threat behaviours such 80 

as the Open-Mouth Threat, body positioning and Roll (Lawson, 1993; Miller & Boness, 1979; Twiss, 81 

1991). Recently a geographically isolated addition to the repertoire was noted: the Body Slap (BS), which 82 

is used during the breeding season in male-male conflict and male-female interactions at some beach 83 

breeding colonies in the UK (Bishop et al., 2014).  In the performance of the BS, males lie prone, push 84 

their ventral surface off the ground with their flippers and then let their chest and stomach fall back to the 85 

substrate (Bishop et al., 2014, Video 1). A Body Slap event typically consists of 2 to 3 repetitions of this 86 

general motor pattern in immediate sequence (Bishop et al., 2014, Video 1). The display generates a 87 

distinct slapping noise as contact is made with the ground (Video 1); the arching of the back potentially 88 

serves to display lateral area; and vibrations can be felt through the substrate by observers (AB, SDT pers. 89 

obs.) suggesting that the display likely serves as a multi-modal form of non-vocal communication (Miller, 90 

1991).  91 

Investigations into multi-modal signals have shown that when substrate-borne vibrations are 92 

present, they often serve as a mechanism for complementing acoustic or visual displays (Elias et al., 93 

2005; Hebets & Uetz, 1999; Shipley, Stewart, & Bass, 1992; Stratton & Uetz 1983). For northern 94 

elephant seals, playback experiments demonstrated that males responded more strongly to stimuli with 95 

substrate-borne vibrations and air-borne acoustic components than air-borne acoustic alone (Shipley, 96 

Stewart, & Bass, 1992). Similar findings were demonstrated in insect systems (Elias et al., 2005; Hebets 97 

& Uetz 1999; Stratton & Uetz, 1983). There are also cases where acoustic, visual or chemical modes were 98 

thought to be the primary component of a communication signal, but upon further inspection the 99 

substrate-borne vibration component was found to be the most important (Gibson & Uetz, 2008; Hebets 100 

et al., 2013; Torr, Heritage, & Wilson, 2004). While the BS does have an air-borne acoustic component, 101 

grey seals generally do not have stereotypical vocal displays, with the exception of a ‘yodel call’ on Sable 102 

Island (Boness & James, 1979). Their other agonistic behaviours have been described as visual displays 103 
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(Lawson, 1993; Miller & Boness, 1979; Twiss, 1991), but while little work has been done on night-time 104 

activity budgets for breeding pinnipeds (Anderson, 1978; Culloch et al., 2014), elephant seal behaviours 105 

that generate substrate-borne vibrations were found to persist through the night (Shipley, Stewart, & Bass, 106 

1992), lending support to the hypothesis that the visual component of these displays may not be the 107 

primary mode of communication.  108 

Therefore, for this study we chose to investigate the substrate-borne vibrations of the BS and ask: 109 

are the characteristics of the substrate-borne vibrations of a BS an indicator of male RHP, and do the 110 

characteristics of individuals’ displays vary across environmental conditions? To test this, we compared 111 

both the maximum magnitude of the substrate-borne vibrations a male produced while Body Slapping and 112 

the mean magnitude across all his Body Slap events, with his length, mass and dominance in order to 113 

determine which of the two measures of the substrate vibrations was more reliable in predicting known 114 

correlates to RHP (Anderson & Fedak, 1985; Carlini et al., 2006; Lidgard et al., 2005). As any air-borne 115 

acoustic components of the BS would arguably vary by wind direction, air temperature, and surface 116 

dampness of the substrate (Hill, 2009), we also examined the effects of environmental variability on the 117 

reliability of the substrate-borne vibrations by testing to see if individuals’ magnitudes varied with surface 118 

saturation of the substrate due to tidal fluctuations or rain on the beach breeding site. 119 

 120 

METHODS 121 

Field Site  122 

Data were collected on breeding male grey seals at the Donna Nook breeding colony on the North 123 

Lincolnshire coast, eastern England (53.47°N, 0.15°E). The colony produces approximately 1,500 pups 124 

annually and is managed as part of the Lincolnshire Wildlife Trust’s wildlife refuge system and also spans 125 

the Ministry of Defence’s (MOD) Royal Air Force (RAF) training range (Bishop et al. 2014). Field 126 

observations were conducted across the autumn breeding season in 2013 (27 October – 12 December) 127 

during all daylight hours for an average of 8h 48min daily. The breeding colony was split into two study 128 

sites to cover the range of topography: the PUB (53.476°N, 0.155°E) and RAF (53.474°N, 0.155°E) sites. 129 
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All observations for this study were conducted at the RAF site, characterized as tidal sand flats. While 130 

some colonies have restricted, or few, access points from the sea to the breeding grounds (e.g. North 131 

Rona; Twiss, 1991), Donna Nook is characterized by open access along the entire beach front. Males in 132 

the study area were identified daily via unique pelage markings or post-hoc from high resolution pictures 133 

taken with a Canon EOS 30D or 40D with a 100-400mm lens (Bishop et al., 2014; Twiss, Pomeroy, & 134 

Anderson, 1994) at distances ranging from 10 – 180 m, yielding a total of 105 males identified.  135 

 136 

Seismometer Deployment and Behavioural Data Collection 137 

We deployed 2 Guralp 6TD seismometers (Guralp Systems Ltd) from 30 October to 23 138 

November 2013. The seismometers were both buried at 53.47491 N, 0.15503 E, at a depth of 1 m. 139 

Continuous seismic data were recorded over 24 h encompassing a frequency bandwidth of 0.03Hz-500Hz 140 

(Brisbourne, 2012). Velocity was measured in 3 axes (X, Y and Z); however, for the purpose of this study 141 

we chose to follow the methods of previous work on northern elephant seals (Shipley, Stewart, & Bass, 142 

1992) and focus on the vertical movement axis only. During daylight hours, field observers recorded BS 143 

events, noting ID of male and time of event to the second (h:m:s). An event was defined as a bout of 144 

displaying, usually comprised of 2 repetitions of the motor pattern, but the range varied from 1 - 6 145 

repetitions (Bishop et al., 2014). Events were labeled as being performed on ‘wet’ or ‘dry’ sand; wet sand 146 

being any sand exposed to tidal inundation within the past 12 h or with visibly pooled water. Locations of 147 

events were mapped onto aerial photographs of the study area using a Nikon laser 550 rangefinder (6x21), 148 

with accuracy of 0.5 m up to 100m and ±1m at >100m distance, along with horizon reference points. 149 

Maps were digitized and distance (km) of each BS event to the seismometer was calculated using ArcMap 150 

10 (ESRI, 2011).  151 

 152 

Post-processing Seismic Data 153 

Post deployment, we matched the time of an observed event to the seismic record of vertical 154 

velocity traces using Scream! v4.5 (Guralp Systems Ltd). The unfiltered peak to peak amplitudes (nm/s) 155 
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of the displays were extracted. To minimize potential false positive matches, only displays that were at 156 

least double in amplitude relative to the background were considered positive matches (Shipley, Stewart, 157 

& Bass, 1992). As males performed BSs at different distances from the seismometer, in order to compare 158 

their relative magnitudes, the amplitudes had to be distance corrected. The seismometer measures 159 

amplitudes as velocity in nm/s (v); however the distance correction formula required this measure to first 160 

be converted into vertical displacement in nm (A) using the formula 161 

𝐴 =  (
[𝑣]

𝑓∗2π
)             (1)  162 

where v is the vertical velocity in nm/s of an event, and f is the frequency in Hz. Frequency analysis of the 163 

displays indicated that the bulk of the energy contained in these signals lay within the 20Hz band. To 164 

ensure that all calculations were carried out using the same formula, we used this frequency to convert 165 

peak-peak velocity amplitudes to displacement.  166 

Magnitude values, which could be compared relative to each other, were then calculated using 167 

Booth’s (2007) distance correction equation generated specifically for seismic activity in the UK (Booth, 168 

2007)  169 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = (1 ∗ 𝐿𝑂𝐺10(𝐴)) + (1.11 ∗ 𝐿𝑂𝐺10(𝐷)) + (0.00189 ∗ 𝐷) − 2.09      (2) 170 

where A was the displacement amplitude of the display in nm and D was the distance in km an event was 171 

from the seismometer (see Booth, 2007 for derivation of constants). The maximum magnitude generated 172 

per male, mean magnitude per male (for males with 4 or more events), and the variation in magnitude 173 

(standard error around the mean for males with 4 or more events) were calculated and used in further 174 

analyses.  175 

 176 

Photogrammetric Measures of Morphological Features 177 

We selected to use standard length (cm) and lateral area (proxy for mass) as our morphological 178 

measures of male RHP. For male grey seals, the links between male mass and RHP suggests that mid-179 

sized males have highest mating success, likely due to tradeoffs between mass and maneuverability 180 
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(Lidgard et al., 2005; Twiss, 1991). Lidgard et al., (2005) also found a positive relationship between 181 

standard length and length of stay, the latter of which is a known positive correlate of mating success for 182 

males adopting the primary strategy of ‘residency’ (Twiss, 1991). Finally, Anderson and Fedak (1985) 183 

found that larger males lost fewer male-male encounters than smaller males by mass, again suggesting 184 

that size is positively associated with RHP. 185 

Seals cannot be handled at Donna Nook, so to determine morphological features associated with 186 

RHP, we adopted a photogrammetric estimation technique similar to that used by Jacquet (2006) and 187 

McFadden, Worthy, & Lacher (2006). Standardized photographs at a fixed height of 1m above the ground 188 

were taken of known males lying prone and perpendicular to the photographer using a Canon EOS 40D 189 

digital SLR with 100-400mm Canon Lens (Fig. 1a). Distance to the male in the photograph was 190 

determined using a Nikon Laser Range Finder 550 with +/- 0.5m accuracy. Multiple photographs were 191 

taken of individual males throughout the season. Each photograph was assessed for quality across the 192 

following criteria: where the male’s neck was fully extended, the angle of offset from perpendicular was 193 

minimal, and the tail was visible (Jacquet, 2006; McFadden, Worthy, & Lacher, 2006). Distance 194 

correction calibration formulae (Eq 3) for each of the four zoom levels used (100, 200, 300, 400mm) were 195 

generated following the methods of Jacquet (2006). We calculated the formula for the linear relationship 196 

describing how the ratio of the known length of an object in cm (SL) to the width in pixels of that object 197 

in a photograph (P) changes as distance from the camera increases (D) (Jacquet, 2006). In the example 198 

formula (Eq 3), at 400mm zoom, the 0.0015 was derived from the slope of the regression line and 0.0038 199 

represents the intercept. The R
2
 values for the best fit lines for each zoom level were all 0.99. These 200 

formulae were then used to calculate nose to tail standard lengths (SL) for each male from photographs.  201 

𝑆𝐿 =  [(0.0015 ∗  𝐷) +  0.0038] ∗  𝑃    (3) 202 

McFadden, Worthy, & Lacher, (2006) found that for weaned monk seals (Monachus 203 

schauinslandi) values of lateral area (LA), girth perimeter (GP) and lateral perimeter (LP) calculated from 204 

photographs were highly correlated with measured values for body mass. Also, for northern elephant seals 205 

(Haley, Deutsch, & LeBoeuf, 1991) and southern elephant seals (Mirounga leonina) (Bell, Hindell, & 206 
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Burton, 1997) lateral area was a strong predictor of body mass. To estimate mass from our photographs, 207 

we selected to calculate the LA of the seal using methods similar to McFadden, Worthy & Lacher (2006). 208 

A digitized outline of the seal, including hind-flippers, was generated in ArcMap 10 and the area of the 209 

polygon was calculated in pixels
2
 (Fig 1b). Using quadratic versions of the distance correction calibration 210 

formulae used to estimate SL (Eq 3), where D was again distance to the seal, and P was the area of the 211 

seal in pixels squared from the photograph, we then estimated LA in cm
2
 (Eq 4).  212 

𝐿𝐴 =  [( 0.000002 ∗ 𝐷2) + (0.00004 ∗  𝐷) – (0.0013)] ∗  𝑃2   (4) 213 

Our final dataset included measurements for 70 of 105 males. No quantification of accuracy 214 

between actual morphometric and photogrammetric values was possible due to handling restrictions. 215 

However, the range of generated lengths, 166.1 to 240.3 cm (±0.5 – 10.9 cm SE per male), were well 216 

within the range of known grey seal sizes (Lidgard et al., 2005; Twiss, 1991; Twiss et al., 2000). To 217 

account for the remaining uncertainty resulting from off-angle positioning or lack of neck-extension, both 218 

of which would under-estimate length or area, we only used the photograph resulting in the maximum SL 219 

and the photograph with the maximum LA for each male in our analysis.  220 

 221 

Dominance and Local Density 222 

In addition to morphometric measures, we calculated a daily dominance score for each male to 223 

compare to the values generated in the seismic record. Dominance has also been positively linked to 224 

mating success (Twiss, 1991; Twiss, Anderson, & Monaghan, 1998) and individual dominance scores can 225 

vary throughout the season in response to turnover of males and females. We selected to use the 226 

dominance calculation of Elo scores (Neumann et al., 2011) as this method allows for calculation of 227 

dominance scores sequentially through time. Only males who were present on the colony for at least 2 228 

days and were involved in a minimum of 10 aggressive interactions were included for this analysis 229 

(Bishop et al., 2014; Twiss, Anderson, & Monaghan, 1998). For each male, the mean Elo score on the day 230 

of a BS event (Elo) was calculated using records of his wins, losses and draws up to that date in the 231 
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season (see: Neumann et al., 2011 for further details of calculation). The mean Elo score across the entire 232 

study period was also calculated per male. Lastly, to account for unequal density of males within the 233 

study site, we mapped male positions on the colony hourly and calculated the average nearest neighbor 234 

distance (DNM) per day for each male using ArcMap 10 (ESRI, 2011).  235 

 236 

Statistical Analysis 237 

Our objective was to determine if maximum magnitude or an average magnitude was the most 238 

reliable indicator of male RHP. To do this, we used generalised linear models comparing the maximum 239 

magnitude a male generated (N = 26 males) against his maximum standard length (MSL), maximum 240 

lateral area (MLA), Elo on the day of maximum magnitude, mean distance to nearest neighbor (DNM) on 241 

the day of maximum magnitude and the substrate type on which the maximum was performed (1 = wet 242 

sand; 0 = dry sand). Because lateral area as a proxy for mass would be expected to decrease through time 243 

due to fasting (Anderson & Fedak, 1985; Lidgard et al., 2005; Twiss, 1991) there was a potential 244 

temporal disconnect between the date of maximum seismic magnitude and the date of the 245 

photogrammetric MLA. Twiss (1991) found individual variation in mass loss was not correlated with 246 

dominance, age, arrival weight or other metrics; therefore, to account for mass loss over time we included 247 

a variable of the difference between the date of the maximum magnitude generated by a male and the date 248 

when the photograph of his MLA was taken (DayDIFF), which ranged from 0 – 23 d. MSL does not 249 

change throughout the course of a breeding season so no temporal measure was included for this variable. 250 

Similar models were run with the response variable set as either the mean magnitude per male (N = 22 251 

males) or standard error of the mean magnitude per male (N = 22 males). In the models examining mean 252 

magnitude and standard error, the predictor variables of mean dominance and mean nearest neighbor 253 

distance were calculated across the entirely of each male’s stay, and the mean substrate type across all 254 

displays per male was used instead of a single value. To account for temporal disconnects in these 255 

models, the number of days over which the mean was calculated (DayMEAN) and the difference in days 256 

between the first BS event and the date of MLA were included in the models (DayDIFF). Models for all 257 
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analyses were run in R 2.13.2 (R Development Core Team, 2011). Final model selection followed AIC 258 

minimization criteria, where all models within ∆6 AIC are retained, and any models within this set that 259 

are more complex versions of their nested counterparts, but with higher ∆AIC values, are excluded 260 

(Richards, 2008). 261 

While the last two models account for mean substrate type, this was across males and not within 262 

individual IDs. To test if surface substrate dampness enhances or degrades the magnitude of the vibrations 263 

of an individual’s display, for males that we observed displaying on both wet and dry sand we also tested 264 

for differences in mean and maximum magnitude of a display by substrate. Due to the small sample size 265 

(N = 11 males), we used small-sample randomization tests designed for two-repeated measures on small 266 

group or single-case blocks (Todman & Dugard, 2001).  267 

 268 

RESULTS 269 

Seismic signature of the Body Slap 270 

 The Body Slap generated a stereotyped seismic trace with raw amplitudes ranging from 10 752 271 

nm/s to 475 136 nm/s, and after distance corrections, magnitudes ranged from –1.62 to -0.14 (Figure 2a). 272 

Frequency was broadband and ranged from 10-80Hz. Other male behavioural events were observed ad lib 273 

and matched to the seismic record for comparison, including male locomotion (Figure 2b).  BS displays 274 

were measurable up to 126.3 m from the source; of the observed BS events in the field, 94.3% were 275 

positively matched in the seismic record up to 70m distance, but proportion matched dropped to 71.7% 276 

from 80-100m and to 37% on average beyond 100m (Figure 3). We recorded events for 39 individual 277 

males (within-male sample sizes ranging from 1-255 events, median for males with >4 events = 22.5) for 278 

a total of 470 observed events comprised of 990 individual slaps matched in the seismic trace. Similar to 279 

findings of Bishop et al. (2014), 9.45% of events consisted of a single slap, 61.5% consisted of 2 slaps, 280 

and 28.9% consisted of >3 repetitions. Inter-repetition intervals were typically 1s apart and separately 281 

distinguishable (Figure 2a). 282 
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 283 

BS contains information on male size 284 

 MSL and DayDIFF were retained in the best model (∆AIC = 0) for predicting maximum 285 

magnitude; however, the model with only MSL had a ∆AIC of 0.21 suggesting this variable on its own is 286 

a strong predictor of maximum magnitude (Table 1). In both models, MSL shared a significantly positive 287 

relationship with maximum magnitude a male produced (Figure 4a; Table 1). The best model predicting 288 

mean magnitude retained MSL and DNM as predictive parameters. MLA and Elo were each retained in 2 289 

models but both with greater ∆AIC values and small effect sizes (Table 1). The relationship between 290 

MSL and mean magnitude was weaker than that seen between MSL and maximum magnitude (Figure 4b; 291 

Table 1). DNM shared a statistically significant negative relationship with mean magnitude, suggesting 292 

mean magnitude decreases as density of competitors decreases (Figure 4c; Table 1). A total of 7 models 293 

were retained by the selection criteria for predicting mean magnitude, each with varying parameters 294 

(Table 1). DNM was retained in the top 4 models, and was retained in more models than any other 295 

parameter (Table 1). We fit a further 3 models to test if the relationship between mean magnitude and 296 

DNM was the result of larger or more dominant males occupying areas of greater conspecific density 297 

(Table 2), but found no evidence of MSL, MLA or Elo correlating with DNM (Table 2). Finally, 298 

variability in magnitude per male was best predicted by only the null model, suggesting that none of the 299 

variables were good predictors of variability in magnitude. 300 

 301 

BS displays on wet and dry sand 302 

 The maximum magnitude of displays for males who had events recorded on both wet and dry 303 

substrates was not different across substrate type (2-tailed: t = 0.069, 1000 permutations, P = 0.432).  304 

Similarly, no difference was found comparing the mean magnitude of displays for males who had events 305 

recorded on both wet and dry substrates (2-tailed: t = 0.008, 1000 permutations, P = 0.919). 306 

 307 

DISCUSSION 308 
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Our findings confirm that male grey seals generate substrate-borne vibrations associated with a 309 

specific, stereotyped display. Furthermore, while the frequency of the percussive display was broadband, 310 

the maximum generated magnitudes of this display were reliable indicators of male size. Previously, the 311 

rates of percussive displays of the BS were linked to success in agonistic interactions (Bishop et al., 2014) 312 

and this study suggests that the magnitude of the BS contains information regarding RHP that could be 313 

used by opponents in assessment. The results of this study also indicate that, while the breeding colonies 314 

at which the BS has been observed are all open-access beach sites with variable surface water pooling due 315 

to tidal and rain fluctuations, individuals’ maximum and mean magnitudes were not significantly different 316 

across wet or dry surface sand conditions.  317 

 In a polygynous mating system, selection should favour signals of male RHP to maximize 318 

information transfer and minimize the costs of agonistic interactions (Arnott & Elwood, 2009; Smith, 319 

1979). Since percussive, vibratory signal energy depends on both mass and available muscular power 320 

(Markl, 1983), one would expect maximum magnitudes to highly correlate with size (e.g. mass) and 321 

strength (e.g. height a male can achieve in ‘push-up’). Our results support this relationship in that we 322 

found that of our predictor variables, standard length significantly correlated with the magnitude of the 323 

substrate vibrations in the best model. Interestingly, our proxy for mass (MLA) and dominance (Elo) were 324 

retained in models for mean magnitude, but these models did not perform as well and the effects were 325 

expressed by very low coefficients. In male grey seal agonistic encounters, wrestling is the primary form 326 

of physical contact (Boness & James, 1979) and previous studies investigating mating success in male 327 

grey seals have suggested length and mass are selected for in two separate processes: length provides 328 

maneuverability for fighting agility, while mass provides ability to fast for longer periods and maximize 329 

mating success through length of stay (Anderson & Fedak, 1985; Lidgard et al., 2005; Twiss, 1991). In 330 

this system, it seems likely stabilizing selection has favoured males with intermediate masses and males 331 

of longer standard lengths to maximize the tradeoffs between maneuverability and prolonged residency 332 

(Anderson & Fedak, 1985; Lidgard et al., 2005; Twiss 1991). In the closely related northern elephant 333 

seals, length was also positively correlated with dominance (Carlini et al., 2006). Other examples of mass 334 
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not being the best predictor of RHP have been found in species that rely on maneuverability, and often 335 

these cases are found in aquatic habitats. Standard length in male sword-tails (Xiphophorus cortezi) was 336 

the strongest predictor of RHP (Moretz, 2003). We found that length strongly correlated with maximum 337 

magnitude, which if longer males are able to achieve greater heights during the display, could provide 338 

information on male maneuverability. However, there was still some unexplained variation which may 339 

provide information on other characteristics of the performer. For example, inter-individual variation in 340 

musculature, possibly associated with length or mass, could subsequently produce greater magnitudes. 341 

Alternatively, previous work has found winners on average performed the BS at greater rates than losers 342 

(Bishop et al., 2014) and rate of percussive displays has been shown to signal stamina in other animal 343 

systems (Briffa, Elwood, & Russ, 2003); therefore it might be interesting in future work to consider the 344 

potential tradeoffs between the physical constraints of generating substrate vibrations (maneuverability 345 

and musculature) and the physiological constraints (available energy for repeat displays) to determine 346 

what other potential information might be available in the Body Slap display. 347 

Compared to other vibratory signals, communication via percussive behaviours which generate 348 

broadband substrate vibrations has been considered highly adaptive to conditions requiring 349 

communication over long distances, sensory-limited environments (e.g. caves, subterranean), or for 350 

home-ranges that span a variety of environmental conditions (Aicher & Tautz 1990; Elias, Mason, & 351 

Hoy, 2004; Hebets et al., 2008; Hill, 2009; O’Connell-Rodwell, Hart, & Amason, 2001; Randall & 352 

Matocq, 1997). In regards to vibrations in sand, early research has demonstrated that even soft, desert 353 

sand substrate can carry vibrations such as those used by the predatory desert scorpion (Paruroctonus 354 

mesaensis) to orient to and determine the distance to prey (Brownell, 1977; Brownell & Farley, 1979).  355 

Aicher & Tautz (1990) tested for difference in signals across dry and wet beach sand, and found that dry 356 

sand appeared to reduce the velocity of vibrations simulated from fiddler crab (Uca pugilator) percussive 357 

behaviours, but this was for signals in the frequency range of 340-370Hz. In the present study, we found 358 

that individuals’ maximum and mean magnitudes did not vary across surface saturation of the substrate. 359 

This might be explained by the environment at the site for this study, Donna Nook, and at similar sites 360 
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where the BS behaviour has been observed. The site is characterized by expansive, uniform tidal flats of 361 

packed sand that experience a high variability in the levels of surface water; however, the underlying 362 

substrate likely remains fairly well saturated throughout the tidal cycle. Seals were not observed 363 

performing in the soft, dune sand. Therefore, while the variation in surface substrate dampness and visible 364 

pooling of water would arguably alter the airborne acoustic characteristics, there is no evidence that 365 

surface dampness has an effect on the magnitude of the substrate vibrations across the substrates occupied 366 

by seals. Another potential component of the BS display which might act as a signal, the visual 367 

component, would also be limited by the visual range of grey seals on land, which is particularly 368 

attenuated at low-light conditions (Schusterman, 1981), and the grey seals’ low line of sight being 369 

obscured by other seals. Furthermore, there was evidence of BS traces in the seismic record during the 370 

nighttime; although, observational confirmation of these was not possible. If the visual component is used 371 

at all, it is likely to be most effective at very short range and only during daylight (Culloch et al. 2014). 372 

These findings suggest the possible adaptive significance of using the substrate-borne vibration 373 

component of the percussive BS display as a way to transmit information in a variable environment. 374 

According to operational sex-ratio theory, the intensity and/or frequency of aggressive behaviours 375 

are predicted to increase relative to number of competitors or male density (deJong et al., 2013; Weir, 376 

Grant, & Hutchings, 2011) and this has been demonstrated in numerous studies, mainly in controlled 377 

conditions (Quinn, Adkinson, & Ward, 1996; Smith, 2007). As the grey seal breeding season progresses, 378 

sex-ratios shift from male biased to female biased and local densities of both sexes increase (Boness & 379 

James, 1979; Twiss, Anderson, & Monaghan, 1998). In our study, we found mean magnitude of the BS 380 

display increased with relative male density, but maximum magnitude did not. This could suggest that 381 

longer males occupy areas of greater densities, but we found no evidence of male length, lateral area or 382 

dominance correlating to mean neighbour distances. Alternatively, local competitor density might 383 

influence the amount of effort put into a display. Males that can maintain position in high density female 384 

areas have been shown to have greater mating success (Twiss, Pomeroy, & Anderson, 1994); therefore, 385 

males in patches of higher female, and subsequently higher male, densities might consistently display 386 
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closer to their maximum because the costs of losing access to females outweighs the energetic costs of 387 

displaying at their physical limits. This corresponds with previous work that suggests, for male grey seals, 388 

not losing a position on the breeding grounds was more important that physically besting an opponent 389 

(Anderson & Fedak, 1985; Twiss, 1991). Similar mechanisms for maximizing mating opportunities while 390 

minimizing costs can be seen in the Natterjack Toad (B. calamita) mating system, where males escalate 391 

the intensity of their signalling as female densities increase by switching from stationary calling to active 392 

movement and clasping (Arak, 1983). Agonistic displays by male mosquitofish (Gambusia affinis) to 393 

other males increased as competitor density increased, and were greatest when male and female density 394 

were high (Smith, 2007). This study provides some evidence that characteristics of the substrate-borne 395 

vibrations of the BS might be tailored to local competitor densities, but further examination is needed to 396 

determine how flexible males are in their displays in regards to matching local conditions.  397 

Male northern elephant seals vocalize during contests and multiple components of this signal 398 

contain information regarding male RHP (Insley & Holt, 2011; Sandegren, 1976; Sanvito, Galimberti, & 399 

Miller, 2007a; Sanvito, Galimberti, & Miller, 2007b; Shipley, Hines, & Buchwald, 1981; Thomas et al., 400 

1988). Similarly, in intra-sexual interactions in sexually dimorphic species, vocalization components such 401 

as formant frequencies have been found to correlate with male size (Reby & McComb, 2003; Vannoni & 402 

McElligott, 2008). Determining if components contain information associated with RHP is the first step 403 

to understanding the potential usage of a behavioural display by a receiver. Our results have demonstrated 404 

a positive relationship between the magnitude of the BS’s substrate-borne vibrations and proxies for RHP, 405 

but how the receiver responds to the information in the BS still requires further examination and is likely 406 

context dependent. For example, a recent playback study indicated that while calls of male elephant seals 407 

contain information regarding RHP, recipients did not appear to respond to information regarding size 408 

from the signal (Casey et al., 2012; Casey et al., 2013). Instead, researchers found that males recognize 409 

the individual pattern associated with a dominant or subordinate male (Casey et al., 2012; Casey et al., 410 

2013). As the proportion of males returning between years in the elephant seal system is relatively high 411 

(~50%, LeBoeuf, 1974), there might be selection for ‘remembering’ individual signals and the dominance 412 
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rank of the sender within and between years. While grey seals are closely related to elephant seals, in the 413 

grey seal system, male return is lower in comparison (31.4% Donna Nook, Bishop n.d.) and the BS is 414 

highly stereotyped, suggesting that it is unlikely a similar recognition mechanism is in effect. Still, further 415 

work utilizing playback manipulations (e.g. observations of receivers’ response when presented with a 416 

range of substrate-borne vibration magnitudes) could be done to investigate the honesty of the 417 

information in the BS display and if active or passive receivers are deriving the information regarding size 418 

from the BS substrate vibrations and basing decisions on that information. 419 

In summary, our results demonstrate that the substrate-borne vibrations of a male-male agonistic 420 

behaviour in a classically polygynous mammal contain information of the performer’s RHP, and that the 421 

information on size is reliable in a variable environment. Given the BS is a behaviour that has only been 422 

noted within the past 30 years and is at present geographically isolated (Bishop et al., 2014), it is 423 

interesting to consider the evolutionary history of this species. Grey seals in the UK have experienced 424 

increased terrestrialization of breeding colonies since the last glaciation. At present, grey seals breed on a 425 

variety of substrates; however, the BS display has only been observed at colonies with flat sandy beaches 426 

(Bishop et al., 2014). Other colonies across their range exhibit similar substrate types and conditions but 427 

observers have not reported usage of this behaviour. Furthermore, the usage of this behaviour appears to 428 

have evolved in a reasonably short period of time. An exciting aspect of these findings therefore is that 429 

while it is likely the BS originated as an extension of the locomotor pattern (Bishop et al., 2014), it is 430 

possible the substrate and local environmental conditions at Donna Nook and nearby colonies promoted 431 

the use of this behaviour.  432 
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FIGURE LEGENDS 620 

 621 
Figure 1. Example of photogrammetric positioning and digitizing of image to calculate: (a) nose to tail 622 

standard length (SL; 1 point unit = 1 pixel) and (b) lateral area (LA) for an individual male. 623 

 624 

Figure 2: Oscillogram (top) and spectrogram (bottom) recorded at 0.03-500Hz. (a) 3 BS events (3 625 

repetitions at 7:02:31; 2 repetitions at 7:02:50; 2 repetitions at 7:03:09). Distance from source = 50 m. 626 

All three events presented between 10-80Hz with highest energy at 20-40Hz.; (b) Male locomotion at 627 

7:49:30. Distance from source = 40 m. 628 

 629 

Figure 3: Proportion of BS events positively matched in the seismic record to the number observed in the 630 

field across distance (10m bins). Labels represent number of events observed in field. Detectability 631 

dropped off after 80m from source and maximum distance detected was 126.3 m.  632 

 633 

Figure 4: Results of best models. Correlations for maximum (a) and mean magnitude (b) indicated a 634 

positive relationship with maximum standard length. Mean magnitude also shared a negative relationship 635 

with mean nearest neighbor distance (c). See Table 1 for coefficient estimates.  636 
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Table 1: Model outputs of signal information analyses. Displayed models include all retained models within 6 ΔAIC, ignoring more complicated 637 
versions of nested models that had higher ΔAIC (Richards 2008). Values for predictor variables represent coefficient estimates; significant 638 
variables are in bold.   639 
 640 

Seismic Component AICc ΔAICc N INT MSL MLA Elo DNM SUB DayDIFF DayMEAN 

*Maximum Magnitude 
         

  

Model 1 0.8 0 26 -3.32 0.013 
    

-0.009  

Model 2 1.0 0.21 26 -3.43 0.013       

†Mean Magnitude 
         

  

Model 1 -21.11 0 22 -1.50 0.005 
  

-0.020 
 

  

Model 2 -19.84 1.27 22 -1.34 
  

0.0007 -0.018 
 

  

Model 3 -19.34 1.77 22 -0.85 
 

4E-05 
 

-0.019 
 

  

Model 4 -19.15 1.97 22 -0.50 
   

-0.023 
 

  

Model 5 -17.72 3.39 22 -1.97 
  

0.0010 
  

  

Model 6 -17.30 3.81 22 -2.03 0.005 
    

  

Model 7 -17.21 3.90 22 -1.33 
 

5E-05 
   

  

†SE Magnitude 
         

  

Model 1 -125.0 0 22 0.032 
     

  

* MSL = maximum standard length (cm); MLA = maximum lateral area (cm
2
); Elo=mean dominance score up to and including the day of maximum magnitude; 641 

DNM = mean distance to nearest neighbor on day of maximum magnitude; SUB = substrate (1=wet; 0=dry); DayDIFF = difference in dates between maximum 642 
magnitude and maximum LA measure. 643 

† MSL, MLA (same as above). Elo= mean dominance score for whole season; DNM = mean distance to nearest neighbor for whole season, SUB = mean 644 
substrate across all BS events; DayDIFF = difference in dates between first BS event and maximum LA measure; DayMEAN = number of days mean seismic 645 
magnitude was calculated across. 646 
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Table 2: Generalised linear model (GLM) testing for relationship between: 1) MSL and DNM, 2) MLA 647 
and DNM, and 3) Elo and DNM. The Null models were the best for all three response variables (bold; 648 
Richards 2008).  649 
 650 

Model (N = 22) AICc ΔAICc 

1) MSL ~ DNM 184.0 2.24 

    MSL ~ 1 181.7 0 

2) MLA ~ DNM 380.8 0.78 

    MLS ~ 1 380.0 0 

3) Elo ~ DNM 257.4 0.81 

    Elo ~ 1  256.6 0 

* MSL = maximum standard length (cm); MLA = maximum lateral area (cm
2
); Elo = mean dominance score for 651 

whole season; DNM = mean distance to nearest neighbor for whole season. 652 
  653 
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Figure 2 669 
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Figure 3 680 
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Figure 4 682 
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