
Matching and Merging Scenarios Automatically with
Alloy

J. Bowles1, M. Alwanain2, B. Bordbar2, and Y. Chen2

1 School of Computer Science, University of St Andrews
Jack Cole Building, North Haugh, St Andrews KY16 9SX, UK

jkfb@st-andrews.ac.uk
2 School of Computer Science, University of Birmingham

Edgbaston, Birmingham, UK
{m.i.alwanain|b.bordbar|y.chen}@cs.bham.ac.uk

Abstract. The design of large systems often involves the creation of models
that describe partial specifications. Model composition is the process of com-
bining partial models to create a single coherent model. This paper presents an
automatic composition technique for creating a sequence diagram from partial
specifications captured in multiple sequence diagrams with the help of Alloy.
Our contribution is twofold: a novel true-concurrent semantics for sequence di-
agram composition, and a model-driven transformation of sequence diagrams to
Alloy that preserves the semantics of composition defined. We have created a tool
SD2Alloy that implements the technique as follows: two given sequence diagrams
are transformed into two Alloy models, and merged according to a set of syntactic
logical constraints describing how their elements should be matched. These con-
straints are in accordance to our compositional semantics. The technique can also
be used to detect problems and inconsistencies in the composition of diagrams.

1 Introduction

The process of developing modern systems is gradually becoming more and more com-
plex. Due to the increase in the complexity of such software development processes, we
often make use of multiple models for expressing various scenarios and viewpoints. To
reduce the complexity of the design, models of the system are usually broken into par-
tial specifications. For example, behaviour related to the interaction between parts can
be captured by different sequence diagrams. However, integrating these diagrams into
one to describe the whole behaviour requires model composition techniques. Manual
model composition is error-prone, time-consuming and tedious [1]. In recent years, au-
tomated model composition has received considerable attention [2, 3]. For example [2]
make use of Alloy for automated composition. Nonetheless, most automated merging
methods only focus on static models.

In this paper we focus on the automated integration of sequence diagrams, one of
UML’s most popular behavioural models [4]. In particular, we focus on the composi-
tion of sequence diagrams with the help of Alloy. Our contribution is twofold: a novel
true-concurrent semantics for sequence diagram composition, and a model-driven trans-
formation of sequence diagrams to Alloy that preserves the semantics of composition.

Our automated technique follows three main steps. In the first step, multiple se-
quence diagrams are automatically transformed into Alloy models. For each sequence
diagram a unique Alloy model is produced which if solved has as many solutions as
there are possible traces of execution in the original sequence diagram. These traces
have a direct correspondence to the ones obtained in the underlying semantics of se-
quence diagrams used, namely labelled event structures (LES) [5, 6]. In the second step,
the Alloy models are merged to produce a single Alloy model, which contains elements
from the individual Alloy models of each sequence diagram in addition to syntactic log-
ical constraints specifying how the elements are matched and the diagrams should be
composed. The logical constraints used for the matching are syntactic and considered
in our true-concurrent semantics of composition. In the third step, we use the composed
model obtained, that is the conjunction of the overall logical constraints, to formally
check if the sequence diagrams can be composed and obtain the composition of the
diagrams automatically. These steps are fully automated in our tool SD2Alloy which
was implemented using Model Driven Architecture (MDA) techniques [7]. Later in the
paper, we justify further our choice of Alloy as a target language.

The remainder of the paper is structured as follows: Section 2 gives a general back-
ground of sequence diagrams, their formalisation with event structures and Alloy. Sec-
tion 3 addresses model composition syntactically (at the UML level) and semantically
(over labelled event structures) which guides the model transformation from sequence
diagrams onto Alloy as discussed in Section 4. Section 5 describes model composition
via Alloy, and Section 6 gives some details of our tool. Finally, Section 7 describes
related work and Section 8 concludes the paper.

2 Background

2.1 Sequence Diagrams

UML sequence diagrams capture scenarios of execution as object (or in some cases
component) interactions. Each object has a vertical dashed line called lifeline showing
the existence of the object at a particular time. Points along the lifeline are called lo-
cations (a terminology borrowed from LSCs [8]) and denote the occurrence of events.
The order of locations along a lifeline is significant denoting, in general, the order in
which the corresponding events occur.

A message is a synchronous or asynchronous communication between two objects
shown as an arrow connecting the respective lifelines, that is, the underlying send and
receive events of the message. We only consider synchronous communication in this
paper, even though both forms of communication can be addressed in our approach.
An interaction between several objects consists of one or more messages, but may
be given further structure through so-called interaction fragments. There are several
kinds of interaction fragments including seq (sequential behaviour), alt (alternative be-
haviour), par (parallel behaviour), neg (forbidden behaviour), assert (mandatory be-
haviour), loop (iterative behaviour), and so on [4]. Depending on the operator used, an
interaction fragment consists of one or more operands. In the case of the alt fragment,
each operand describes a choice of behaviour. Only one of the alternative operands is
executed if the guard expression (if present) evaluates to true. If more than one operand

has a guard that evaluates to true, one of the operands is selected nondeterministically
for execution. In the case of the par fragment, there is a parallel merge between the
behaviours of the operands. The event occurrences of the different operands can be
interleaved in any way as long as the ordering imposed by each operand as such is
preserved.

Finally, interaction fragments can be nested producing expressive and complex sce-
narios of execution. One simple example illustrating the concepts above and with a
parallel nested within an alternative fragment is given in Fig. 1. In this case, all mes-

l4

sd 3
a:A b:B

m3

m4

m1

l0
l1

l2

l5

l6

l7

l8

l9

alt

m2

par

l3

Fig. 1. A sequence diagram with nested fragments.

sages (from m1 to m4) are sent synchronously between objects a and b. The locations
along the lifeline of object a are shown explicitly. The importance of locations as well
as the effect produced through the nesting of fragments (i.e., the possible traces of ex-
ecution) are described in the next subsection. In particular, the distinction between the
syntactic notion of a location on a sequence diagram from its semantic counterpart of
an event will be clarified.

2.2 Formal Model

Several possible semantics for sequence diagrams have been defined (see [9] for an
overview). In this paper we use the semantics defined in [6] which introduces a very
simple and intuitive behavioural model to capture interactions, and is the only true-
concurrent semantics available for sequence diagrams.

Prime event structures [5], or event structures for short, describe distributed com-
putations as event occurrences together with binary relations for expressing causal de-
pendency (called causality) and nondeterminism (called conflict). The causality relation
implies a (partial) order among event occurrences, while the conflict relation expresses
how the occurrence of certain events excludes the occurrence of others. From the two
relations defined on the set of events, a further relation is derived, namely the concur-
rency relation co. Two events are concurrent if and only if they are completely unrelated,
i.e., neither related by causality nor by conflict.

Formally, an event structure is a tripleE = (Ev,→∗,#) whereEv is a set of events
and→∗,# ⊆ Ev × Ev are binary relations called causality and conflict, respectively.
Causality→∗ is a partial order. Conflict # is symmetric and irreflexive, and propagates
over causality, i.e., e#e

′ →∗ e′′ ⇒ e#e
′′

for all e, e
′
, e

′′ ∈ Ev. Two events e, e
′ ∈ Ev

are concurrent, e co e
′

iff ¬(e→∗ e′ ∨ e′ →∗ e ∨ e#e′).
We omit further technical details on the model, but note that for the application of

event structures as a semantic model for sequence diagrams we use discrete event struc-
tures. Discreteness imposes a finiteness constraint on the model, i.e., there are always
only a finite number of causally related predecessors to an event, known as the local
configuration of the event. A further motivation for this constraint is given by the fact
that every execution has a starting point or configuration.

Event structures are enriched with a labelling function (usually a total function µ :
Ev → L that maps each event onto an element of the set L). This labelling function is
necessary to establish a connection between the semantic model (event structure) and
the syntactic model (here a sequence diagram).

Intuitively, each location marked along a lifeline of an object in a sequence diagram
corresponds to one (possibly more) event(s) in the labelled event structure. The set of
labels used could be the set of locations in a sequence diagram but is usually more
concrete information on what the location represents: the initialisation of an object,
sending/receiving a message, beginning/ending an interaction fragment, etc.

Consider the locations marked on Fig. 1 for object a. The events in the model shown
in Fig. 2 have a direct correspondence to the locations of object a.

(m4,r)

e0

e1

e3e2(m1,s) (m2,s)

e4

e5 e6

e7

e82e81

(m3,r)

#

Fig. 2. Event structure for object a of Fig. 1.

The graphical representation of the event structure Ea shows immediate causality
between events (e.g., e0 → e1) and direct conflict (e.g., e2#e3). By conflict propagation
we also have e2#e4, etc. Unrelated events are concurrent (e.g., e5 co e6). Intuitively,
events e1 and e4 denote the beginning of the alternative and parallel fragments respec-
tively. Consequently events e5 (denoting the receipt of message m3) and e6 (denoting
the receipt of message m4) are concurrent. Events e81 and e82 both correspond to lo-
cation l8 denoting the end of the alternative fragment. These events must be in conflict
because they represent different ways to reach the location. Note that there cannot be

one end event in this case, because conflict propagates over causality and it would lead
to an event in conflict with itself and hence an invalid event structure (conflict is ir-
reflexive). Some event labels are given where (m1, s) denotes sending message m1,
and (m3, r) denotes receiving message m3.

Let I denote the set of objects involved in the interaction described by sequence
diagram SD. A model MSD = (E,µ) for a sequence diagram SD is obtained by com-
position of the models Mi = (Ei, µi) of each object instance i ∈ I . In the composed
model, the set of events Ev is such that e ∈ Ev iff there is an object i ∈ I such that
e ∈ Evi, or (e1, e2) ∈ Ev iff there are two objects i 6= j ∈ I with e1 ∈ Evi, e2 ∈ Evj ,
µi(e1) = (m, s) and µj(e2) = (m, r). In other words, shared events (e1, e2) corre-
spond to message synchronisation. To keep it simple, we assume that µ : Ev → Mes
is a partial function defined over shared events only and indicating the message ex-
changed. I.e., µ(e1, e2) = m iff µi(e1) = (m, s) and µj(e2) = (m, r) for some
i, j ∈ I . More details on the semantics of sequence diagrams using event structures
can be found in [6].

2.3 Alloy

Alloy [10] is a declarative textual modelling language based on first-order relational
logic. An Alloy model consists of a number of signature declarations, fields, facts and
predicates. Furthermore, each signature denotes a set of atoms, which are the basic
entities of Alloy. Alloy is supported by a fully automated constraint solver called Alloy
Analyzer, which permits the analysis of system properties by searching for instances of
the model. It is possible to check whether certain properties of the system are present.
This is achieved via an automated translation of the model into a Boolean expression,
which is then analysed by SAT solvers such as SAT4J [11] embedded within the Alloy
Analyzer. The Alloy Analyzer has been used in various applications including the
composition of static models [2].

In this paper, Alloy is used as part of an automated tool to compose sequence di-
agrams. The composition is based on a set of logical constraints which we designate
merging glue. Alloy is a language for describing the structural information underlying
a design model whereas labelled event structures are needed to make sure the semantics
of the behavioural model and the composition are as expected.

The choice of Alloy as a target framework makes it straightforward to find a model
(if available) for the composition of sequence diagrams. The approach converts each
sequence diagram into a set of logical constraints to which it is simple to add additional
constraints capturing the merging glue. Alloy solves these constraints to find a model
that complies to both sequence diagrams and the glue.

3 Model Composition

For the integration of two or more scenarios we define syntactic composition of se-
quence diagrams and its underlying semantics.

Our mechanism for composition of sequence diagrams considers interleaving of dia-
grams and shared behaviour. In the first case, diagrams evolve completely autonomously

whereas in the latter case diagrams have shared behaviour (shared objects and mes-
sages). We treat the cases separately and consider only the composition of two dia-
grams. The case for an arbitrary number of diagrams is easily generalised from here.
In the sequel, let SD1 and SD2 be two sequence diagrams, with sets of instances and
messages given by I1, I2, Mes1 and Mes2 respectively.

The interleaving of diagrams SD1 and SD2 with Mes1 ∩Mes2 = ∅ is written
SD1 ‖ SD2 and is defined syntactically as par(SD1, SD2). In other words, it consists
of a diagram with a par fragment and two operands where each operand contains the
behaviour described in SD1 and SD2 respectively.

Semantically, the model for SD1 ‖ SD2 is an event structure MSD1‖SD2
= (E,µ)

whereEv = Ev1∪Ev2, all relations are preserved, and µ(e) is defined for all e iff µi(e)
is defined for some i ∈ {1, 2} in which case µ(e) = µi(e). For shared instances o ∈
I1 ∩ I2 we further match the initial and maximal events in Ev1 and Ev2. We illustrate
this with an example (see Fig. 3) showing shared objects but different messages.

m2

a:A

l2

l1

l0

sd 1
b:B

m1

a:A

p2

p1

p0

sd 2
b:B

Fig. 3. Two simple sequence diagrams.

The models associated to SD1 and SD2 are given in Fig. 4.

m1

ea0’

ea2’ eb2’

eb0’

(ea1’,eb1’)
m2

ea0

ea2 eb2

eb0

(ea1,eb1)

Fig. 4. Model for SD1 (left) and SD2 (right).

As described above, if we compose both models we can merge initial and maximal
events for shared objects which in this case corresponds to events ea0 and ea0

′
, eb0 and

eb0
′
, ea2 and ea2

′
, and eb2 and eb2

′
. The final composition SD1 ‖ SD2 is shown in

Fig. 5. This is the exact model obtained for a sequence diagram which consists of a
parallel fragment with two operands where the first operand is taken from SD1 and the
second operand is taken from SD2.

The composition of diagrams SD1 and SD2 with shared behaviour is written SD1 ‖G
SD2 where G =Mes1 ∩Mes2 indicates the shared behaviour.

If G = Mes1, in other words, all the behaviour in SD1 is shared, then we say
that SD1 is syntactically contained in SD2, and the composition SD1 ‖G SD2 can be
reduced to SD2.

eb0ea0

ea2

(ea1,eb1)
m1

(ea1’,eb1’)
m2

eb2

Fig. 5. Model for SD1 ‖ SD2.

We now consider the case that G = {m}. This case can be generalised to a finite
number of messages, but we omit it here for simplicity.

Consider SD1 = seq(ϕ0,m, ϕ1) and SD2 = seq(ϕ0
′
,m, ϕ1

′
) where seq denotes

a sequential fragment, ϕ0, ϕ1, ϕ0
′

and ϕ1
′

are interactions which on their own would
define a valid sequence diagram and may be empty. The composition SD1 ‖G SD2 is
defined syntactically by seq(par(ϕ0, ϕ0

′
),m, par(ϕ1, ϕ1

′
)).

Note that the seq fragment describes the default (sequential) behaviour of a se-
quence diagram and can be omitted in a diagram, but is useful here to describe compo-
sition in general. For example, SD1 from Fig. 3 can be seen as seq(ϕ0,m1, ϕ1) with
ϕ0 and ϕ1 both empty.

Consider a more complex case where SD1 = f(seq(ϕ0,m, ϕ1), ϕ2) and SD2 =
seq(ϕ0

′
,m, ϕ1

′
) where f denotes an arbitrary fragment (e.g., par, alt, etc). The com-

position SD1 ‖G SD2 is defined syntactically by:

f(seq(par(ϕ0, ϕ0
′
),m, par(ϕ1, ϕ1

′
)), ϕ2)

In other words, if the shared behaviour is contained in an arbitrary fragment, then this
fragment is preserved in the composed behaviour.

Consider the sequence diagrams SD1 and SD2 given in Fig. 6 which share message
m2.

m4

b:B

alt
m1

m2

m3

sd 1
a:A a:A

sd 2
b:B

m2

Fig. 6. Two sequence diagrams with shared message m2.

The sequence diagrams can be seen as SD1 = alt(ϕ0, seq(∅,m2, ϕ1)) and SD2 =
seq(∅,m2, ϕ1

′
)), with ϕ0 corresponding to a simple interaction with m1, and similarly

for ϕ1 and message m3, and ϕ1
′

and message m4. The composition SD1 ‖G SD2 as
outlined above is given by alt(ϕ0, seq(∅,m2, par(ϕ1, ϕ1

′
))). The composed diagram

is our first sequence diagram from Fig. 1.

Given the syntactic composition of two sequence diagrams we derive the model (a
labelled event structure) as described before.

4 Model Transformation to Alloy

We implement our composition method with the help of MDA techniques [7]. Due to
space restrictions, in this paper we only discuss some of the transformation rules from
sequence diagrams to Alloy. These rules can be implemented via any MDA transfor-
mation engine. Our approach is such that if an Alloy model can be solved, it generates
all possible solutions each of which corresponds to a run of the original sequence dia-
gram and in accordance to the formal semantics defined in the previous sections. The
following transformation rules illustrate the transformation for sd1 from Fig. 6.

4.1 Lifeline and message

Each lifeline in a sequence diagram, which corresponds to an object with a name and
of a given class (type), is transformed into Alloy code as follows.

1 abstract sig Lifeline {}
2 one sig A {} //Lifeline Class
3 one sig a {} //Lifeline name
4 one sig sd1_L_1 extends Lifeline {name: a, type: A }
5 one sig sd1_L_2 extends Lifeline {name: b, type: B }

A Lifeline corresponds to an abstract signature refined further by concrete life-
lines from a sequence diagram. The code above shows the transformation of sd1 life-
lines in Alloy. Lines 4 and 5 give concrete lifeline declarations sd1 L 1 and sd1 L 2.
The keyword one in the declaration indicates that there is exactly one instance of the
signature. Furthermore, a lifeline signature has fields name to specify the object name
and type to specify its class.

A message has two message ends, a send and a receive events, which cover a lifeline.
A receive event cannot occur unless its corresponding send event has happened before.
An event is either a send or a receive event.

7 abstract sig Event { cover :one Lifeline , next :set Event }
8 abstract sig Message { send :one Event , receive :one Event }
9 //a message send event always occurs before the associated receive event

10 fact MessageEventsOrder {all m: Message |
11 m.receive in m.send.next }
12 // all events correspond to send or receive events of one message
13 fact {all e: Event | one m: Message |
14 e = m.send or e = m.receive }

The rule above creates the domains Event and Message. In both cases these are ab-
stract signatures with two fields. The Event signature has a field cover corresponding
to a relationship with the lifeline it belongs to, and a field next denoting a relationship
with a set of events. This relationship corresponds to the immediate causality relation
from our labelled event structures. The Message signature has two fields send and
receive both corresponding to one event. The facts on lines 10-14 describe two con-
straints over the elements in the domain as mentioned before and are straightforward.

A message also has a name which is introduced when creating a concrete message.

15 lone sig sd1_m1 extends Message { name : m1}
16 lone sig sd1_m2 extends Message { name : m2}
17 lone sig sd1_m3 extends Message { name : m3}

In diagram sd1 of Fig. 6 we have three messages m1,m2 and m3. The lines above
show the declaration of these messages. The messages are declared as lone (a multi-
plicity keyword in Alloy meaning 0 or 1). This has to do with the fact that messages
within an alternative fragment are not guaranteed to occur. We will explain this in more
detail in the transformation rule for the alternative fragment.

18 lone sig sd1_e1 extends Event {}
19 lone sig sd1_e2 extends Event {}
20 lone sig sd1_e3 extends Event {}
21 lone sig sd1_e4 extends Event {}
22 lone sig sd1_e5 extends Event {}
23 lone sig sd1_e6 extends Event {}
24

25 // assigning events to messages
26 fact { sd1_m1.send = sd1_e1 and sd1_m1.receive = sd1_e2 and
27 sd1_m2.send = sd1_e3 and sd1_m2.receive = sd1_e4 and
28 sd1_m3.send = sd1_e5 and sd1_m3.receive = sd1_e6 }
29

30 // assigning events to lifelines
31 fact EventToLifeline {
32 sd1_e1. cover =sd1_L_1 and sd1_e2. cover =sd1_L_2
33 ...
34 sd1_e5. cover =sd1_L_1 and sd1_g6. cover =sd1_L_2 }

Six events are declared in lines 18-23 above. Events are always associated to the
sending or receiving of messages. How these events are associated to the messages
declared in lines 15-17 is given in the fact of lines 26-28, and which lifeline they cover
is given in the fact of lines 31-34. All events are declared as lone as the corresponding
messages fall within the scope of an alternative fragment and may therefore not occur.

In the case of sequential messages without interaction fragments, or messages within
the same operand (e.g., m2 and m3), this implies a total order among the events of
the lifeline of an object. This is specified in Alloy by another logical constraint called
GeneralOrder shown below for the events underlying messages m2 and m3.

36 fact GeneralOrder {
37 sd1_e6 in sd1_e3.ˆnext and sd1_e5 in sd1_e4.ˆnext
38 }

The fact above specifies the expected ordering between events e3 (m2.send) and
e6 (m3.receive), and between e4 (m2.receive) and e5 (m3.send) . No state-
ment is made about the relation between these events and those underlying m1 because
they belong to a different operand and are hence not related by causality.

4.2 Alternative Combined Fragment

For the alternative interaction fragment (aka combined fragment in UML’s metamodel
[4]), the transformation generates a set of abstract signatures as follows.

39 abstract sig Combinedfragment {
40 operand:set Operand}
41 abstract sig Operand{cover:set Event+Combinedfragment}
42

43 fact {all e: Event | lone op: Operand |

44 e in op. cover }
45

46 fact {all cf: Combinedfragment |
47 lone op: Operand | cf in op. cover }
48

49 fact {all op: Operand |
50 one cf: Combinedfragment | op in cf. operand }
51

52 // alt: exactly one operand will be executed
53 fact Alt-Execution {all CF: Combinedfragment |
54 (CF.TYPE = CF_TYPE_ALT) => # CF.operand = 1}

These abstract signatures represent the main elements of combined fragments and
how interactions are defined at the metamodel level in UML[4]. The abstract signature
for CombinedFragment consists of one or more operands whereby operands contain
events (i.e., cover the send and receive events of the messages defined inside it) and/or
combined fragments nested within the operand. In addition, three facts impose further
constraints on the elements of these domains. Fact on line 43 states that every event e
belongs to at most one operand, and fact on line 46 states that every combined fragment
cf belongs to at most one interaction operand (indicating fragment nesting). Fact in
line 49 states that all interaction operands are operands of only one combined fragment.
Finally, the fact in line 53 defines that at most one operand is executed. This implies
that a different set of events may occur for each possible run of the code preserving the
semantics of alternative combined fragments.

56 one sig CF_TYPE_ALT {}//Combinedfragment Type
57 one sig sd1_CF extends Combinedfragment{TYPE = CF_TYPE_ALT}
58 lone sig sd1_Operand_1 extends Operand{}
59 lone sig sd1_Operand_2 extends Operand{}
60

61 // Covering: Combined Fragment->Operands
62 fact{
63 sd1_Operand_1 in CF.operand
64 sd1_Operand_2 in CF.operand}
65 // Connect events to Operands
66 fact EventToOp{
67 sd1_e1 in sd1_Operand_1.cover and sd1_e2 in sd1_Operand_1.cover and
68 sd1_e3 in sd1_Operand_2.cover and sd1_e4 in sd1_Operand_2.cover and
69 sd1_e5 in sd1_Operand_2.cover and sd1_e6 in sd1_Operand_2.cover}

In line 56, the signature CF TYPE ALT declares the type of the combined fragment,
in this case an ALT. Following this, in lines 57-59, three signatures define the combined
fragment and the number of operands used, in this case Operand 1 and Operand 2.
The operands (lines 58-59) are declared as lone which allows the previous fact in
line 53 to execute only one operand. Moreover, the facts in line 62 and 66 establish a
connection between the combined fragment and its operands, and between the operands
and their events, respectively.

4.3 Parallel Combined Fragment

In Alloy the representation of a parallel combined fragment (not present in Fig. 6) is
similar to that of an alternative combined fragment, but without fact Alt-Execution.
The following is an example.

1 one sig CF_TYPE_PAR {}//Combinedfragment Type
2 one sig sd1_CF extends Combinedfragment{

3 TYPE = CF_TYPE_PAR}
4 one sig Operand_1 extends Operand{}
5 one sig Operand_2 extends Operand{}
6 // Covering: Combined Fragment->Operands
7 fact{
8 Operand_1 in CF.operand
9 Operand_2 in CF.operand}

10 // Connect events to Operands
11 fact EventToOp{
12 sd1_e1 in sd1_Operand_1.cover and sd1_e2 in sd1_Operand_1.cover and
13
14 sd1_e5 in sd1_Operand_2.cover and sd1_e6 in sd1_Operand_2.cover}
15

16 fact{all CF: Combinedfragment, OP1: CF.operand, OP2: CF.operand,
17 E1: OP1.cover, E2: OP2.cover, E3: OP1.cover | no E4: OP2.cover | OP1 != OP2
18 and E2 in E1.next and E3 in E4.next }

All operands of a parallel fragment are declared as one since they are necessarily
executed. The Alloy model that contains a parallel combined fragment must show a
parallel execution of Operand 1 and Operand 2, i.e., the events covered by each
operand are not related and can thus occur in an arbitrary order. This is given in the fact
of line 16, and is in accordance to the labelled event structure semantics given earlier. It
implies a relation of concurrency between events in different operands whilst the events
within an operand remain ordered in the usual way. Therefore, this fact guarantees the
preservation of the correct and intended order of events in a parallel fragment.

5 Composition via Alloy

In order to compose Alloy models that have been obtained by transformation from
sequence diagrams, two fundamental conditions must be satisfied:

– Matching elements must indicate correspondence between equivalent elements of
the source. The purpose of matching is to uncover how two models correspond to
each other.

– Merging of equivalent elements identified earlier producing a composed version of
the models.

In Alloy, these conditions can be encoded by adding facts that must be satisfied to
match and merge equivalent elements. For example, consider two Alloy models A1 and
A2 each with two lifelines, where these lifelines have the same name and type. In order
to compose the lifelines with the same name from each one of the models we have to
specify the following fact.

fact lifelineEquality {
all L1: A1_Lifeline_1 , L2: A2_lifeline_1 |
(L1.type=L2.type && L1.name=L2.name) =># L2 =0}

The Alloy code above shows that if the matching condition is satisfied, then life-
lines will be merged into one given by L1 and L2 will be hidden. The same is true of
messages. For example, if the two Alloy models A1 and A2 have two messages with
the same name and involving the same objects (lifelines) then Alloy will compose these
messages into one.

The idea of the procedure of merging entered models in Alloy is as follows. First
we generate a new Alloy model A3 representing the result of merging the original mod-
els. Second, we copy all the elements of A1 to A3. Third, we copy all elements of A2
except the duplication elements such as abstract signatures that are shared in the two
models. Fourth, for any pair of equal elements, one of the signatures keyword has to be
changed from one to lone to be able to merge it and then add the merging facts men-
tioned above. Finally, in terms of merging messages, the merged message events (send
and receive) are replaced with their equivalent message events to apply the behaviour
environment of both models into this message.

Fig. 7. Alloy instance obtained from merging sd1 and sd2 of Fig. 6.

To validate our approach, we implemented the example of Fig. 6 in Alloy. After
solving the merged model, we obtained three Alloy solutions (also referred to as in-
stances). These instances show exactly the expected behaviour underlying Fig. 1 with
possible traces of execution: only m1 occurs, or m2 · (m3 co m4) occur. Fig. 7 shows
two Alloy instances, one for each of the possible executions of the second operand of
the alternative fragment. These instances show in particular that m2 is always before
m3 and m4, and m3 and m4 are in parallel. The complete Alloy code for the example
used as well as the composed model is available from our research webpage3.

6 The SD2Alloy Tool

Our approach relies on Model Driven Development (MDD) techniques that aim to en-
hance the role of modelling in software development [12]. It allows the developer to

3 http://www.cs.bham.ac.uk/∼bxb/research/matching-merging/alloy-example

model the required functionality and the overall architecture of the system instead of
calling on developers to spell out every detail of the system’s implementation using a
programming language. Hence, MDD results in reduced development cycles and lower
cost of software production.

Fig. 8. An overview of MDA.

To ensure that the methods developed can be adopted by the software industry, it is
crucial to follow standards set by the Model Driven Architecture (MDA) framework [7].
MDA is a framework for software development proposed by the Object Management
Group (OMG). It provides a set of guidelines for the structuring of models and their
specifications. It also defines a standard for application design and implementation.
Central to MDA is the notion of metamodels [13]. A metamodel defines all elements
that are available for a designer to use when modelling with a language. In MDA, a
model transformation is defined by mapping the meta-elements, i.e., the constructs of
the source metamodel (e.g., sequence diagrams) are mapped onto constructs in the tar-
get metamodel (e.g., Alloy) as Fig. 8 shows. Subsequently, every model arising from
the source metamodel can be transformed automatically to an instance of the destination
metamodel with the help of a model transformation framework such as SiTra [14].

Fig. 9. The SD2Alloy architecture.

We now give a brief description of our composition tool SD2Alloy which was built
in accordance to MDA. The transformation rules have been implemented as an Eclipse
plugin. Fig. 9 depicts the SD2Alloy architecture. The tool includes a modified open
source tool called Papyrus [16], which allows the user to generate any number of
sequence diagrams, and exports these diagrams as XMI files so they can be parsed.
SD2Alloy parses the XMI files generated by Papyrus into Java objects using the UML2
library. SiTra is used to transform the UML sequence diagrams and create the Alloy
Java object that produces the Alloy code.

In Fig. 9, two sequence diagrams SD1 and SD2 are transformed individually to Al-
loy generating Alloy 1 and Alloy 2 respectively. Moreover, this tool allows the user to
specify composition constraints required in Alloy to merge the entered models, shown
as S and denoting the syntactic matching of model elements. The composition model
obtained is shown as Alloy 3 which corresponds to the union of all constraints associ-
ated to the individual models Alloy 1, Alloy 2 and the glue contraints in S. If there are
no conflicts in Alloy 3 then the Alloy Analyzer produces an Alloy instance (in fact as
many as there are possible traces of execution in Alloy 3). If no solution can be pro-
duced, Alloy highlights the constraints that are causing a conflict. More details on the
tool can be found in [15].

Fig. 10. A snapshot of the SD2Alloy interface.

Fig. 10 and Fig. 11 show two snapshots of the interface of SD2Alloy. In both cases,
to the left we have a list of the current sequence diagrams used (here sd1.di and sd2.di
where di is the extension name given by Papyrus) as well as the syntactic matching dec-
larations of model elements from the different diagrams (here sd1-sd2Equality.eq).
Different levels of detail can be shown on different panes in the tool with the editor in
the middle showing the current diagram or code that is being edited. For example, in
Fig. 10 we show a diagram and in Fig. 11 we look at the generated Alloy code for the
same diagram. Properties of elements being edited can also be seen and changed on a
separate pane at the bottom right of the tool.

Fig. 11. Showing Alloy code in SD2Alloy.

7 Related work

Over the last decade, a number of software tools and algorithms have been designed
and implemented to compose behavioural models. Liang et al. [17], have presented a
method of integrating sequence diagrams based on the formalisation of sequence di-
agrams as typed graphs. Rubin et al. [2], illustrate the use of the Alloy Analyzer to
compose class diagrams based on syntactic properties of metamodels and the primary
model. This approach uses UML2Alloy [18] to transform UML class diagrams into
Alloy and the Alloy Analyzer to compose these classes. However, their method only
composes static models and the compositional code produced is generated manually.

In addition, Widl et al. [3] present an approach for composing concurrently evolved
sequence diagrams in accordance to the behaviour given in state machine models. They
describe the problem of merging sequence diagrams formally using SAT solvers. How-
ever, similarly to [17], the approach does not merge complex sequence diagrams.

When looking at the integration of several model views or diagrams, [19] presents
a method of mapping a design consisting of class diagrams, OCL constraints and se-
quence diagrams into a mathematical model for detecting and analysing inconsistencies.
Finally, [20] propose a further approach to composition of sequence diagrams by com-
posing sequence diagram operators directly. This approach is very different from ours
and can be seen as a high-level composition strategy at the UML level.

8 Conclusions

In this paper, we have defined a new compositional semantics of sequence diagrams
based on the true-concurrent model of labelled event structures, and presented an au-
tomated technique based on Alloy to generate a composed model in accordance to the
true-concurrent semantics.

The underlying developed tool takes as input one or more sequence diagrams, and
automatically constructs Alloy solutions for the composition. Each of the solutions cor-
responds to a run that can be derived from the underlying labelled event structure of
the composed sequence diagram. Our approach has been evaluated through a series of
examples and larger case studies.

References

1. Rosa, M.L., Dumas, M., Uba, R., Dijkman, R.: Merging business process models. On the
Move to Meaningful Internet Systems: OTM 2010 (2010) 96–113

2. Rubin, J., Chechik, M., Easterbrook, S.: Declarative approach for model composition. In:
MiSE’08, ACM (2008) 7–14

3. Widl, M., Biere, A., Brosch, P., Egly, U., Heule, M., Kappel, G., Seidl, M., Tompits, H.:
Guided merging of sequence diagrams. In: SLE 2012. LNCS 7745, Springer (2013) 164–
183

4. OMG: UML: Superstructure. Version 2.4.1. OMG, http://www.omg.org. (2011) Document
id: formal/2011-08-06. [accessed 1-6-2012].

5. Winskel, G., Nielsen, M.: Models for Concurrency. In Abramsky, S., Gabbay, D., Maibaum,
T., eds.: Handbook of Logic in Computer Science, Vol. 4, Semantic Modelling. Oxford
Science Publications (1995) 1–148

6. Küster-Filipe, J.: Modelling concurrent interactions. Theoretical Computer Science 351
(2006) 203–220

7. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The model driven architecture: practice
and promise. Addison-Wesley (2003)

8. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-based Programming Using LSCs and the
Play-Engine. Springer (2003)

9. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 sequence diagrams: a survey.
Software and Systems Modeling 10 (2011) 489–514

10. Jackson, D.: Software Abstractions: logic, language and analysis. MIT Press (2006)
11. Berre, D.L., Parrain, A.: The SAT4j library, release 2.2 - system description. Journal on

Satisfiability, Boolean Modeling and Computation 7 (2010) 59–64
12. Stahl, T., Völter, M.: Model-driven software development. Wiley (2006)
13. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for Software Engineering. Wiley

(2008)
14. Akehurst, D., Bordbar, B., Evans, M., Howells, W., McDonald-Maier, K.: SiTra: Simple

transformations in Java. In: MoDELS’06. LNCS 4199, Springer (2006) 351–364
15. Chen, Y.: Automated synthesis of sequence diagrams. Master’s thesis, University of Birm-

ingham (2013)
16. Lanusse, A., Tanguy, Y., Espinoza, H. et al.: Papyrus UML: an open source toolset for MDA.

In: ECMDA-FA 2009. (2009) 1–4
17. Liang, H., Diskin, Z., Dingel, J., Posse, E.: A general approach for scenario integration. In:

MoDELS’08. LNCS 5301, Springer (2008) 204–218
18. Bordbar, B., Anastasakis, K.: Uml2alloy: A tool for lightweight modelling of discrete event

systems. In: IADIS International Conference in Applied Computing. Vol. 1. (2005) 209–216
19. Bowles, J., Bordbar, B.: A formal model for integrating multiple views. In: ACSD 2007,

IEEE (2007) 71–79
20. Araújo, J., Whittle, J., Kim, D.: Modeling and composing scenario-based requirements with

aspects. In: RE 2004, IEEE (2004) 58–67

