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ABSTRACT

Context. Quantifying the gas surface density inside the dust cavities and gaps of transition disks is important to establish their origin.
Aims. We seek to constrain the surface density of warm gas in the inner disk of HD 139614, an accreting 9 Myr Herbig Ae star with
a (pre-)transition disk exhibiting a dust gap from 2.3±0.1 to 5.6±0.3 AU.
Methods. We observed HD 139614 with ESO/VLT CRIRES and obtained high-resolution (R∼90 000) spectra of CO isotopologues
ro-vibrational emission at 4.7 µm. We derive constraints on the disk’s structure by modeling the CO isotopologue line profiles, the
spectroastrometric signal, and the rotational diagrams using grids of flat Keplerian disk models.
Results. We detected υ = 1→ 0 12CO, 2→1 12CO, 1→0 13CO, 1→0 C18O, and 1→0 C17O ro-vibrational lines. Lines are consistent
with disk emission and thermal excitation. 12CO υ = 1 → 0 lines have an average width of 14 km s−1, Tgas of 450 K and an emitting
region from 1 to 15 AU. 13CO and C18O lines are on average 70 and 100 K colder, 1 and 4 km s−1 narrower than 12CO υ = 1 → 0,
and are dominated by emission at R≥ 6 AU. The 12CO υ = 1 → 0 composite line profile indicates that if there is a gap devoid of gas
it must have a width narrower than 2 AU. We find that a drop in the gas surface density (δgas) at R = 5− 6 AU is required to be able to
reproduce the line profiles and rotational diagrams of the three CO isotopologues simultaneously. Models without a gas density drop
generate 13CO and C18O emission lines that are too broad and warm. The value of δgas can range from 10−2 to 10−4 depending on the
gas-to-dust ratio of the outer disk. We find that the gas surface density profile at 1 < R < 6 AU is flat or increases with radius. We
derive a gas column density at 1 < R < 6 AU of NH = 5× 1019 − 1021 cm−2 (1.2× 10−4 − 2.4× 10−3 g cm−2) assuming NCO = 10−4NH .
We find a 5σ upper limit on the CO column density NCO at R≤1 AU of 5 × 1015 cm−2 (NH ≤ 5 × 1019 cm−2).
Conclusions. The dust gap in the disk of HD 139614 has molecular gas. The distribution and amount of gas at R≤ 6 AU in HD
139614 is very different from that of a primordial disk. The gas surface density in the disk at R ≤ 1 AU and at 1 < R < 6 AU
is significantly lower than the surface density that would be expected from HD 139614’s accretion rate (10−8 M� yr−1) assuming a
standard viscous α-disk model. The gas density drop, the non-negative density gradient in the gas inside 6 AU, and the absence of a
wide (> 2 AU) gas gap suggest the presence of an embedded < 2 MJ planet at around 4 AU.

Key words. protoplanetary disks – stars:pre-main sequence – planets and satellites: formation – stars: Herbig Ae/Be – techniques:
spectroscopic.
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A. Carmona et al.: CO ro-vibrational emission in the transition disk HD 139614.

1. Introduction

Transition disks are protoplanetary disks that exhibit a deficit of
continuum emission at near- and/or mid-IR wavelengths in their
spectral energy distribution (for a recent review, see Espaillat
et al. 2014). This deficit of emission is commonly interpreted
as evidence for the presence of a dust gap, a dust cavity, or a
dust hole inside the disk1. Sub-mm interferometry observations
have confirmed such cavities in the dust by spatially resolving
the thermal emission from cold large (∼mm) grains at tens of
AU (e.g. Piétu et al. 2006; Brown et al. 2009; Andrews et al.
2011; Cieza et al. 2012; Casassus et al. 2013; Pérez et al. 2014).
Observations of scattered light in the near-IR using adaptive op-
tics have confirmed the existence of dust cavities in micron-sized
dust grains. These observations show that the cavity size in small
grains can be smaller than that in large grains (e.g. Muto et al.
2012; Garufi et al. 2013; Follette et al. 2013; Pinilla et al. 2015a).
Furthermore, near-IR scattered light imaging and sub-mm inter-
ferometry observations have highlighted that a large fraction of
transition disks has asymmetries in the dust distribution (e.g. spi-
rals, blobs, horseshoe shapes), albeit, the presence and shape of
asymmetries appear to be different according to the wavelength
of the observations and thus the dust sizes traced (e.g. Muto et al.
2012; van der Marel et al. 2013; Isella et al. 2013; Pérez et al.
2014; Benisty et al. 2015; Follette et al. 2015).

The origin of the dust cavities and gaps is a matter of in-
tense debate in the literature: scenarios such as grain growth
(e.g., Dullemond & Dominik 2005; but see Birnstiel et al. 2012),
size dependent dust radial drift (e.g., Pinte & Laibe 2014),
dust dynamics at the boundary of the dead-zone (Regály et al.
2012), photoevaporation (e.g., Clarke et al. 2001; Alexander &
Armitage 2007; Owen et al. 2012), giant planet(s) (e.g., Marsh
& Mahoney 1992; Lubow et al. 1999; Rice et al. 2003; Quillen
et al. 2004; Varnière et al. 2006; Zhu et al. 2011), dynamical
interactions in multiple systems (e.g., Artymowicz & Lubow
1996; Ireland & Kraus 2008; Fang et al. 2014), and magneto-
hydrodynamical phenomena (Chiang & Murray-Clay 2007) all
have been proposed.

The presence of accretion signatures in many transition disks
(e.g., Fang et al. 2009; Sicilia-Aguilar et al. 2013; Manara et al.
2014) and the detection of molecular emission of warm (e.g,
Bary et al. 2003; Pontoppidan et al. 2008, 2011; Salyk et al.
2009, 2011) and cold (Casassus et al. 2013; Bruderer et al. 2014;
Perez et al. 2015; Canovas et al. 2015; van der Marel et al. 2015b,
2016) gas indicate that the dust cavities observed in accreting
transition disks contain gas. Radiative transfer modeling of CO
ro-vibrational emission (Carmona et al. 2014) and CO pure rota-
tional emission (Bruderer 2013; Perez et al. 2015; van der Marel
et al. 2015b, 2016) further suggests that there is a gas surface
density drop (δgas) inside the dust cavity, with δgas values vary-
ing from 0.1 up to 10−5 (see Table C.1). Some of the transition
disks are not accreting and thus seem to not have gas (Sicilia-
Aguilar et al. 2010). Also, there is also a substantial difference

?? Based on CRIRES observations collected at the VLTI and VLT
(European Southern Observatory, Paranal, Chile) with program 091.C-
0671(B)

1 We mean by a dust hole, when no dust emission is detected inside
a determined radius in the disk at all wavelengths. We mean by a dust
cavity, a region where there is a drop in the dust density. Inside the
dust cavity radius some dust is still present (i.e. continuum emission
is detected inside the cavity radius, for instance at IR wavelengths).
We mean by a dust gap when continuum emission is detected at radii
smaller and larger than the location of the gap. A dust cavity can have
inside a dust gap.

in the global structure and/or disk mass between accreting and
non-accreting transition disks, with the non-accreting being sig-
nificantly more evolved (lower masses, flatter disks) as seen with
Herschel (Sicilia-Aguilar et al. 2015).

The dust grains of different sizes having different spatial lo-
cations, the sub-mm dust cavities filled with gas, and the dif-
ferent surface density profiles for the gas and the dust strongly
favor the planet(s) scenario. Likely, we are witnessing several
coexisting mechanisms, as planet formation might affect the dy-
namics of the dust in the disk (Rice et al. 2003; Zhu et al. 2011;
Pinilla et al. 2012, 2015b) or favor the onset of photoevaporation,
once the accretion rate has decreased (e.g. Rosotti et al. 2013;
Dittkrist et al. 2014). Studies have focused on investigating tran-
sition disks that are bright in the sub-mm and have large dust
cavities of tens of AU (e.g., Andrews et al. 2011; van der Marel
et al. 2015a). Because single jovian planets interacting with the
disk are expected to open gaps only a few AU wide (e.g., Kley
1999; Crida & Morbidelli 2007), the presence of multiple (un-
seen) giant planets has been postulated as a possible explanation
for the observed large dust cavities (Zhu et al. 2011; Dodson-
Robinson & Salyk 2011).

In a recent near- and mid-IR interferometry campaign,
Matter et al. (2014, 2016) have revealed that the 9 Myr old
(Alecian et al. 2013) accreting (10−8 M�/yr, Garcia Lopez et al.
2006) Herbig A7Ve star HD 139614 has a transition disk with a
narrow dust gap extending from 2.3±0.1 to 5.3±0.3 AU 2. and
a dust density drop δdust at R<6 AU of 10−4 (see Table 1 for a
summary of the stellar properties). HD 139614 is one of the first
objects with a spatially resolved dust gap with a width of only a
few AU, thus potentially being a case of a transition disk where
the dust gap has been opened by a single giant planet.

HD 139614 is located within the Sco OB2-3 association
(Acke et al. 2005) at a distance of 131±5 pc (Gaia Collaboration
et al. 2016). HD 139614 has peculiar chemical abundances in
its photosphere (Folsom et al. 2012), with depletions of heavier
refractory elements, while C, N, and O are approximately solar.
HD 139614 belongs to the group-I Herbig Ae stars according
to the SED classification scheme of Meeus et al. (2001), which
suggests that its outer disk is flared. Matter et al. (2016) derived a
dust disk mass of 10−4 M� based on a fit to the SED. The Spitzer
mid-IR spectra of HD 139614 exhibit a weak amorphous silicate
feature at 10 µm (Juhász et al. 2010) and PAH emission (Acke
et al. 2010). The disk’s mid-IR continuum has been spatially re-
solved at 18 µm (FWHM of 17 ±4 AU) but it is not resolved
at 12 µm (Mariñas et al. 2011). Kóspál et al. (2012) report that
the ISOPHOT-S, Spitzer and TIMMI-2/ESO 3.6m mid-infrared
spectra taken at different epochs agree within the measurement
uncertainties, thus suggesting that there is no strong mid-IR vari-
ability in the source. Emission from cold CO gas in the outer
disk of HD 139614 has been reported in JCMT single dish ob-
servations by Dent et al. (2005) and Panić & Hogerheijde (2009).
Emission of [O I] at 63 µm from the disk has been detected by
Hershel (Meeus et al. 2012; Fedele et al. 2013). The [O I] 63
µm line flux of HD 139614 is among the weakest of the whole
Herbig Ae sample of Meeus et al. (2012). No emission of [O I]
at 145 µm, [C II] at 157 µm, CO, H2O, OH or CH+ in the 50
−200 µm region was detected by Herschel (Meeus et al. 2012,
2013; Fedele et al. 2013).

2 The dust gap limits derived in Matter et al. (2016) are 2.5±0.1 to
5.7±0.3 AU. They were calculated using a distance of 140 pc. The val-
ues in the text are the values corrected by the new Gaia distance. Both
values are consistent within uncertainties.
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Table 1. Stellar Properties

Star Sp. Type Teff d Mass Radius RV W2 Age idisk LX Ṁ
[K] [pc] [M�] [R�] [km s−1] [mag] [Myr] [◦] [erg s−1] [M� yr−1]

HD 139614 A7Ve a 7600±300 b 131±5 c 1.76+0.15
−0.08

b 2.06±0.42 b 0.3±2.3 b 5.1 d 8.8+4.5
−1.9

b 20 e 1.2×1029 f 10−8 g

7850 h 1.7±0.3 h 1.6 h >7 a

Notes. a van Boekel et al. (2005); b Folsom et al. (2012); Alecian et al. (2013); c Gaia Collaboration et al. (2016); d 4.6 µm, WISE satellite release
2012 (Cutri 2012); e Matter et al. (2016); f Güdel et al. (in prep.) see Sect. 5.4; g Garcia Lopez et al. (2006); h van Boekel et al. (2005) stellar
properties used in Matter et al. (2016).

Table 2. Log of the science and calibrator observations

Star UT Date Obs. texp Airmass Seeing RVbary
a PSFFWHM

b S/N b,c sensitivity 3σ b,d

[y-m-d] [s] [”] [km s−1] [mas] [10−15 erg s−1 cm−2]
3.3 km s−1 20 km s−1

HD 139614 2013-06-15 2400 1.07 − 1.13 0.93 − 1.23 9.74 ± 0.02 178±10 160 − 100 0.2 − 0.3 1.2 − 2.0
CAL HIP 76829 2013-06-15 320 1.16 − 1.18 0.87 − 1.06 9.36 ± 0.01 172±10 310 − 200

Notes. a Radial velocity due to the rotation of the Earth, the motion of the Earth about the Earth-Moon barycenter, and the motion of the earth
around the Sun; b measured in one nod position; c for the science spectra the S/N is measured in the telluric-corrected spectrum, note that the S/N
decreases from chip 1 to chip 4; d integrated flux sensitivity limits are given for a spectrally unresolved line of width 3.3 km s−1 and a line of width
20 km s−1.

In this paper we present the results of ESO/VLT CRIRES
high-resolution spectroscopy observations of CO ro-vibrational
emission at 4.7 µm towards HD 139614. Our aim is to use CO
isotopologues spectra to constrain the warm gas content in the
inner disk of HD 139614 and address the following questions:
What is the gas distribution in the inner disk of HD 139614?
Does the HD 139614 disk have a hole, a gas-density drop or
a gap in the gas? How does the gas distribution compare with
the dust distribution? What is the most likely explanation for the
observed gas and dust distributions in HD 139614?

The paper is organized as follows. We start by describing the
observations and data reduction in Section 2. In Section 3, we
present the observational results. In Section 4, we derive the CO
emitting-region, the average temperature and column density of
the emitting gas, and the gas surface density and temperature
distribution. In Section 5, we discuss our results in the context
of the proposed scenarios for the origin of transition disks and
compare HD 139614 with other transition disks. Section 6 sum-
marizes our work and provides our conclusions.

2. Observations and Data Reduction

HD 139614 was observed with the high-resolution near-IR spec-
trograph CRIRES at the ESO Very Large Telescope atop Cerro
Paranal Chile in June 2013. CRIRES has a pixel scale of 0.086
arcsec/pixel in the spatial direction (11 AU at 131 pc). and
2.246×10−6 µm in the wavelength direction (0.14 km s−1 at
4.7 µm). Observations were performed with a 0.2” slit ori-
ented north−south utilizing Adaptive Optics using the target
as a Natural Guide Star. Observations were performed in the
CRIRES “ELEV” mode, which maintains the slit at the same
N-S position angle during the whole observing sequence. A
standard ABBA nodding sequence was executed using a nod-
ding throw of 12” along the slit and two ABBA nodding cycles.
Observations used a wavelength setting centered at 4.780 µm,
covering a wavelength range from 4.713 µm to 4.818 µm. The

telluric standard star HIP 76829 was observed immediately fol-
lowing the science observations. We provide a summary of the
observations in Table 2.

We reduced the data using the CRIRES pipeline version
2.3.13 and a custom set of IDL routines for improved 1D spec-
tra merging from the two nodding positions, accurate telluric
correction and wavelength calibration. Nodding sequences were
corrected for non-linear effects, flat-fielded, and combined using
the CRIRES pipeline. A combined 2D spectrum for the nod A
and nod B positions was generated individually. Each combined
2D spectrum was corrected for combination residuals (due to
small fluctuations in the sky brightness between nods) by sub-
tracting a background spectrum at each position. This residual
background spectrum was obtained by computing at each wave-
length the median of two background windows each 20 pixels
wide at both sides of the PSF. Prior to subtraction, the residual
background spectrum was smoothed in the wavelength direction
with a 3 pixels box.

A 1D spectrum was extracted from each nod A and nod
B combined 2D spectrum using the optimal extraction method
implemented within the CRIRES pipeline. Bad pixels and cos-
mic rays in the 1D spectrum of each nod were removed manu-
ally using the information of the 1D spectrum of the other nod.
The 1D spectra of both nods were merged taking their average.
Before merging, the 1D spectrum of nod B was shifted a frac-
tion of a pixel such that the cross-correlation between the 1D
spectrum of nod A and nod B was maximized. This was done
to correct for small sub-pixel differences in wavelength due to
the tilt of the spectra in the spatial direction. The merged 1D
spectrum was wavelength calibrated using the telluric absorption
lines by cross-correlation with a HITRAN atmospheric spectrum
of Paranal. The accuracy in the wavelength calibration is 0.15 −
0.2 km s−1.

3 https://www.eso.org/sci/software/pipelines
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A 1D telluric standard star spectrum was obtained from the
telluric standard observation following the same procedure used
for the 1D science spectrum. The science 1D spectrum was then
corrected for telluric absorption by dividing it by the 1D spec-
trum of the standard star. Two adjustments in the 1D standard
star spectrum were performed prior the telluric correction. First,
the 1D standard star spectrum was shifted in the wavelength di-
rection a fraction of a pixel, such that the cross correlation with
the science spectrum was maximized. Second, the differences on
the depth of the telluric lines of the 1D standard star with respect
to the 1D science spectrum spectrum were corrected. For this we
found the parameter f in

ISTD corrected = I0 e− f τ (1)

that gave the smallest χ2 statistic between the normalized sci-
ence spectrum and normalized standard star spectrum. The fac-
tor f controls the depth of the atmospheric absorption. The goal
is to find the value of f that makes the depth of telluric lines of
the standard star the same as in the science spectrum. The χ2 be-
tween the normalized science spectrum and normalized standard
star spectrum (thus the value of the factor f ) was calculated for
each chip independently. A region with several unsaturated sky
absorption lines and without CO ro-vibrational emission was se-
lected in each chip for this. The optical depth τ was estimated
using

τ = −ln (ISTD observed/I0) (2)

I0 = ĪSTD observed + 3σ. (3)

Here ĪSTD observed is median of the standard star flux at the wave-
lengths within 95% and 100% of the atmospheric transmission
andσ is the noise in the standard star spectrum in the same wave-
length range.

The telluric corrected 1D spectrum was flux calibrated by
first normalizing it with a polynomial fit to the continuum and
then multiplying the normalized spectrum by the expected flux
of the WISE W2 (4.6 µm) magnitude of HD 139614 (5.1 mag,
WISE release 2012, Cutri 2012). To convert the magnitude into
flux we used the 4.7 µm photometry and the zero points of
Johnson (1966)4. Errors in the final flux calibrated spectra are
dominated by slit losses and systematics errors in the telluric
correction and are around 20%. Finally, the flux calibrated 1D
spectrum was corrected for the radial velocity (RV) of the star
(0.3±2.3 km s−1, Alecian et al. 2013) and the radial velocity due
to the rotation of the Earth, the motion of the Earth around the
Sun, and the motion of the Earth about the Earth-Moon barycen-
ter, using the velocities given by the IRAF task rvcorrect (RVbary
= −1 × Vhelio). Integrated line fluxes, line profile centers and
FWHM were measured in the telluric corrected 1D spectrum us-
ing a Gaussian fit to the line profiles. The errors on those quan-
tities are the errors on the Gaussian fit.

To produce a merged 2D spectrum we employed the follow-
ing procedure. The 2D nod A and nod B spectra were corrected
for the tilt of the PSF along the wavelength axis using a second
degree polynomial. The 2D nod B spectrum was shifted by a
fraction of a pixel in the wavelength direction with a value equal
to the shift found for the nod B extracted 1D spectrum. A 2D sec-
tion of ±20 pixels from the PSF center was extracted from the
nod A and nod B 2D spectra, and both sections were averaged

4 The WISE and Johnson 1966 zero-points differ by 10% which is
a value lower that the uncertainties due to slit losses and systematic
errors.
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Fig. 1. Composite normalized spectrum of the υ=1 → 0 12CO,
13CO, and C18O lines detected. Error bars are 1σ in each spec-
trum.

to obtain a merged 2D spectrum. The merged 2D spectrum was
corrected for telluric absorption by diving it by the 1D spectrum
of the standard star.

The photocenter (i.e. spectro-astrometric signature) was cal-
culated from the merged 2D spectrum employing the formal-
ism described by Pontoppidan et al. (2011). The PSF-FWHM
as a function of the wavelength was calculated by fitting a
Gaussian in the spatial direction of the merged 2D spectrum.
We calculated the composite 1D line profiles, photocenter and
PSF−FWHM for each isotopologue by averaging the data of in-
dividual detected lines. This is done to increase the signal of CO
line with respect to the continuum. The averaging procedure was
performed using as wavelength scale the velocity. The theoreti-
cal wavelength center of each transition was used as v = 0 km
s−1 velocity reference. We selected only emission lines that are
not blended with other transitions. For each velocity channel we
selected the data which lie in regions with atmospheric transmis-
sion higher than 20%, and calculated the average flux if at least 3
data points were available. Channels with less than 3 data points
were defined as NaN to exclude data from regions of poor at-
mospheric transmission. The error in each channel was defined
as the standard deviation of the values in each channel. For fur-
ther analysis, the composite data were re-centered such that the
center of the 1D spectrum is at v = 0 km s−1, and the 1D spec-
trum was continuum subtracted and normalized by the peak flux
(median of the flux within ±2 km s−1).
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Fig. 2. Examples of the υ = 1 → 0 12CO, 13CO, C18O, C17O and υ = 2 → 1 12CO lines observed. The lower panels display the
normalized spectrum of the target (in red) and the spectrum of the telluric standard (in black). The spectra is presented corrected by
the radial velocity of HD 139614 and the barycentric velocity. The reference for v = 0 km s−1 are the theoretical wavelengths of
each of the transitions. Note that the flux scale is larger for the υ = 1 → 0 12CO lines. Error bars are 3σ. Several υ = 3 → 2 12CO
lines were covered in the spectra but none are detected. See Table A.1 for a summary of the centers, fluxes, flux upper limits and
FWHM of the lines.

3. Observational Results

We have detected υ = 1 → 0 12CO, 13CO, C18O, C17O, and
υ = 2 → 1 12CO emission lines. The υ = 3 → 2 12CO emis-
sion lines are not detected in the spectrum. We display in Fig. 2
a summary of the CO lines detected together with the atmo-
spheric transmission. In Table A.1 in the Appendix, we summa-
rize the lines observed, their centers, integrated fluxes, FWHM
and the average line ratios with respect to 1→0 12CO emission5.
We reached a 3 σ sensitivity of 2×10−16 erg s−1 cm−2 for a line
width of 3.3 km s−1, and 1.2×10−15 erg s−1 cm−2 for a line width
of 20 km s−1 (equivalent widths of 0.01 and 0.075 Å respec-
tively).

We achieved a spectral resolution of ∼3.3 km s−1 (R∼ 105)
as measured in an unresolved unsaturated sky-absorption line.
The centers of the CO emission lines in the barycentric and
radial velocity corrected spectra are located on average at v =
0.2 ± 0.1 km s−1 (see Table A.1). As this value is close to zero
and it is lower than the uncertainty of ±2.3 km s−1 in the radial
velocity (Alecian et al. 2013). We conclude that the CO emis-
sion is at the stellar velocity, thus, most likely originating in the

5 To keep the notation short in the rest of the paper, unless specifi-
cally noted, we mean by 12CO, 13CO, C18O emission υ = 1 → 0 12CO,
13CO, C18O emission.

disk. The 12CO composite line profile has a “flat top” and does
not display evidence for asymmetries6. The composite 13CO and
C18O lines are single peaked. Some asymmetric sub-structures
are present in both lines but they are consistent with noise.

C18O emission is, at the 2 σ level, 4 km s−1 narrower than
12CO emission. 13CO and 2 → 1 12CO lines are 1 km s−1 nar-
rower than the 12CO line, at the 1 σ level. To further test whether
the 12CO, 13CO and C18O line profiles are different, we have run
a two-sample Kolmogorov-Smirnov (K-S) test7 on the compos-
ite 1D spectra in the ±15 km s−1 interval, after normalization
by the line peaks. The K-S significance between the 12CO and
C18O line profiles is 8%, between the 12CO and 13CO line profile
is 30%, and between the C18O and 13CO line profile is 97%. The
K-S test indicates that the 12CO and C18O profiles are different
(being the C18O narrower), and that statistically the 13CO profile
resembles more to the C18O profile than to the 12CO profile.

The 1σ average error obtained in the stacked photocenter is
0.06 pixels equivalent to 5 mas or 0.7 AU at d =131 pc (see

6 Note that the 1σ error in the flux in the 12CO composite line profile
is slightly larger at negative velocities. This is because the left side of the
line is located in a region with a lower atmospheric transmission. The
small differences in the flux between negative and positive velocities in
the line are mostly due to differences in the atmospheric transmission.

7 KSTWO function in IDL.
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Table 3. Types of models used in the interpretation of the observations.

Model Data Modeled Constraint
1. flat disk with a power-law intensity composite 12CO line profile, photocenter and • emitting region

PSF−FWHM • limits on the gap width
2. 1D LTE slab 12CO, 13CO, and C18O rotational diagrams • average NH and Tgas for each isotopologue

12CO and υ = 2→ 1 12CO rotational diagrams • CO excitation mechanism
3. flat disk with a power-law column density 12CO, 13CO, C18O rotational diagrams • column density distribution
and temperature distribution and LTE excitation and 12CO P(9), 13CO R(4), and C18O R(6) • temperature distribution

line profiles • depth of the gas density drop
• limits on the gas gap width and depth

Fig. 3). Note that different channels have different error bars and
the 1σ error quoted is an average value. No displacement of the
photocenter centroid is detected at the position of the 12CO lines
(the interpretation of this constraint requires modeling and it will
be discussed in the next section).

The single-nod PSF-FWHM continuum of HD 139614
(178±10 mas) and the telluric standard (172±10) are consistent
within the errors, thus, there is no evidence of extended con-
tinuum emission at 4.7 µm. We measured a stacked continuum
PSF-FWHM of 2.40±0.05 pixels (1σ), equivalent to 206±4 mas
or 27±0.6 AU at d = 131 pc (29 AU at 140 pc) (see Fig. 3). The
difference of 30 mas (∼1/3 pixel) between the stacked contin-
uum PSF-FWHM and the single-nod PSF-FWHM, corresponds
to systematic errors introduced during the merging of the 2D
nod A and nod B spectra, and to small differences between the
PSF-FWHM at the location of the continuum of the different
CO transitions. The composite PSF-FWHM at the location of
the line appears constant as a function of the wavelength. This
directly indicates that there is no 12CO emission extending to
spatial scales larger than ∼ 30 AU. More stringent limits will be
deduced in the next section.

4. Analysis

We derived constraints on the disk structure from our CRIRES
data using models with an increasing complexity. First, we will
deduce the extent of the CO emitting region from the compos-
ite 12CO spectrum and spectro-astrometric signature, using a flat
Keplerian disk with a parametric power-law intensity. Then, we
will constrain the average column density of gas and tempera-
ture of each isotopologue from the rotational diagrams, using an
1D LTE slab model with single temperature and column density.
Finally, we will derive the column density and temperature dis-
tribution of the gas as a function of the radius from the simulta-
neous fit of the line profiles and rotational diagrams of the three
CO isotopologues. For this, we will use a large grid of 1D flat
Keplerian LTE disk models with a power-law temperature and
column density distribution. A summary of our analysis strategy
is given in Table 3.

4.1. The extent of the CO ro-vibrational emitting region

The simplest way to model a line profile and spectro-astrometric
signature and deduce the emitting area is to assume a flat
Keplerian disk with a power-law intensity as a function of the
radius:

I(R) = I0(R/Rin)α, (4)

extending from the an inner radius Rin to an outer radius Rout,
where I0 is the intensity at Rin which is assumed initially to be

1. The exponent α is obtained for each pair of Rin and Rout such
that I(Rout) = 0.01 × I0. In this model, all the physics of the
excitation of the line is in the exponent α. The 1% limit on the
intensity was chosen because the line profile does not change
significantly when integrating to a lower percentage.

We modeled the composite 12CO line profile, photocen-
ter, and PSF−FWHM with this simple flat Keplerian disk with
parametrized intensity. We provide in Sect. B of the Appendix
the details of the model. The model includes the effect of the
disk inclination, the effects of the slit width, the spectral broad-
ening due to the CRIRES resolution, and the spatial resolution
during the observations. In the models, we used a central stellar
mass of 1.7 M�, an inclination i = 20◦, a PA = 292◦ (Matter
et al. 2016) and a north−south slit orientation. Models assume
a distance of 140 pc as calculations were performed before the
recent Gaia distance measurement of 131±5 pc.

We calculated a grid of disk models varying Rin between 0.1
and 70 AU and Rout between 0.2 and 100 AU. In Fig. 4, we
present the contour plots of the χ2

red reduced statistic (assuming
3 free parameters: Rin, Rout, I0) of the model of the composite
12CO line profile. Disk models with 0.9 < Rin < 1.8 AU and
13 < Rout < 20 AU gave the best fit to the 12CO composite line-
profile. The model that displays the smallest χ2

red has Rin=1.2 AU
and Rout= 15 AU and α exponent of the intensity −1.8.

Although disk models with Rout as large as 20 AU provide a
good fit to the 12CO composite line profile, star + disk models
with a CO emitting region with Rout > 18 AU generate a pho-
tocenter displacement at the position of the CO line larger than
the 1σ limit of the observations (see the yellow curve in Fig. 4,
which displays for each Rin the value of Rout that would gener-
ate a displacement of the photocenter by 1σ ). In a similar way,
star + disk models with a CO emitting region with Rout > 15
AU generate a PSF-FWHM broadening at the position of the
line that is 1 σ larger than the observations (see orange line in
Fig. 4, which displays for each Rin the Rout that generates a PSF-
FWHM larger than 1σ at the line position). The non-detections
of the photocenter displacement and the PSF-FWHM broaden-
ing constrain Rout to less than 15 AU. The model which best fits
the 12CO line profile is compatible with the non-detection of the
astrometric signature and PSF broadening at the position of the
line (see Fig. 3).

Our simple flat-disk model accurately describes the over-
all line profile, the line width, and the line wings (emission at
5<v<15 km s−1). However, the model appears to slightly under-
predict the emission at velocities near zero. This suggests that
a weak emission component at large radii might be present.
Nevertheless, if present, this component does not generate a de-
tectable spectrometric signature. The zero velocity component
could be an additional emission component from the outer disk
at R ≥ 6 AU not captured in our simple flat-disk model, or a
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Fig. 3. Observed composite of the normalized υ = 1 → 0 12CO
line profile, photocenter, and PSF− FWHM. In red the same
quantities produced by a flat disk model with power-law inten-
sity with Rin=1.2 AU and Rout=15 AU (black cross in Fig. 4).
Error bars in the composite line-profile are 1σ. Horizontal dot-
ted lines are the average 1σ errors in the +20 to +40 km s−1

region. Note that this plot assumes a distance of 140 pc for HD
139614. Using the recently announced Gaia distance of 131 ± 5
pc, the mean of PSF-FWHM is 27 AU.

disk wind emission component as seen in CO ro-vibrational in
other protoplanetary disks (e.g., Pontoppidan et al. 2011; Hein
Bertelsen et al. 2016). Although presence of a wind cannot be
ruled-out completely, the symmetry of the line (i.e. the lack of
an emission shoulder in the blue), the lack of a spectroastromet-
ric signature, and the very fact that the line profile is well de-
scribed by a disk model suggest that the observed CO emission
is consistent with disk emission.

Fig. 4. χ2
red contour plot for the grid of flat disk Keplerian models

with power-law intensity. The black cross displays the model
with the lowest χ2

red (0.35). The yellow and red curves show,
for each Rin, the value of Rout that would generate a 1σ spectro-
astrometric signal or a 1σ PSF-FHWM broadening, respectively.

4.1.1. The inner radius of the CO emission

The models that best reproduce the 12CO composite line pro-
file have an inner radius around 1 AU. However, some models
with smaller Rin are also compatible with the data. In Fig. B.1a,b
in the Appendix, we display the line profiles expected for disks
with Rin ranging from 0.1 to 1.2 AU. In panel (a), we show the re-
sults of the models with Rout fixed to 15 AU (α adjusted such that
I(Rout) = 0.01× I(Rin)). In panel (b) the line profiles with α fixed
to −1.8 (Rout set such that I(Rout) = 0.01× I(Rin)). Depending on
the value of α, models with Rin as low as 0.3 AU are compatible
with the observed 12CO composite line profile.

In all our power-law intensity models, we have assumed a
sharp inner edge, thus an abrupt increase in the intensity from
zero to I0 at Rin. If instead we assume a soft inner edge, thus
a smooth increase of the intensity from Rin up to the radius
of the maximum intensity RImax = 1.2 AU, then Rin can be as
small as 0.01 AU and the line profile would still be compatible
with the data (see Fig. B.1c in the Appendix). The Rin constraint
from a power-law intensity model with a sharp inner edge corre-
sponds to the radius of the maximum intensity. CO gas can still
be present further in if the inner edge is soft. In Sect. 4.5 we
will provide upper limits to the gas column density at R < 1 AU
based on the 12CO line profile shape.

4.1.2. A continuous or a gapped gas distribution?

The 12CO line profile data is well described by a continuous and
smooth intensity profile from 1.2 AU up to 15 AU. As mentioned
in the introduction, Matter et al. (2014, 2016) resolved a gap in
the dust from 2.5 AU to 6 AU based on near and mid-IR VLTI in-
terferometric observations. This raises the question whether the
12CO line profile could be described by an intensity distribution
with a gap.

The 12CO line profile clearly indicates that there is emission
at R < 6 AU, otherwise the line profile would have been much
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Fig. 5. Line profiles predicted for models with a gap in the inten-
sity distribution: a) line profiles expected for a intensity distribu-
tion with a gap devoid of gas from 2.5 AU to 6 AU, in orange the
contribution from 1.2 to 2.5 AU, in blue the contribution from 6
to 15 AU, and in red the total line profile; b) similar plot but for
a gap devoid of gas of width 1 AU extending from 5 to 6 AU.
Error bars in the spectrum are 1σ.

narrower (see blue line in panel a of Fig. 5). As consequence,
an inner gas hole of 6 AU radius is ruled out. Furthermore, the
line profile rules out a CO emitting region confined to a narrow
ring between 1.2 and 2.5 AU, otherwise the line would have been
much broader (see yellow curve in panel a of Fig. 5).

We have tested the scenario in which the intensity distribu-
tion of the best solution of the power-law intensity model has
a gap (i.e. no emission) between 2.5 AU and 6 AU. In such a
case (Fig. 5a) the velocity channels between 3 and 8 km s−1 are
not well reproduced. Such a large gap of 3.5 AU is not compati-
ble with the observed 12CO line. If the gap in the gas is smaller,
for instance 2 AU or less, the line profile could be consistent
with the observations (Fig. 5b). Given the CRIRES resolution, a
small gap of 1−2 AU in the intensity would not be detectable. In
Sect. 4.4 we will derive constraints on the CO column density
inside a potential gap.
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red contour plot of the modeled rotational diagrams for

12CO, 13CO, and C18O using a single temperature and surface
density slab model. The combined χ2

red contour plot is obtained
by simultaneously using all the data of the three isotopologues.
The cross indicates the location of the χ2

red minimum in each
panel. The numbers inside the contour indicate n-times the value
of the minimum χ2

red.

4.2. Average temperature and column density

The detection of ro-vibrational emission of the CO isotopo-
logues C18O and C17O indicates that the emitting medium must
be dense and warm. To constrain the average temperature and
column density of the gas probed in the CRIRES spectra, we
modeled the 12CO, 13CO and C18O line fluxes using a simple
semi-infinite slab model in LTE with a single gas temperature
and column density. We did not model the C17O observations
because only two line fluxes are available and no reliable esti-
mate of the temperature can be derived. We wrote a CO LTE
slab model using the frequencies, energy levels and Einstein co-
efficients from Chandra et al. (1996).

We generated a grid of LTE slab models by varying the
hydrogen-nuclei column density NH from 1018 to 1025 cm−2 with
steps of 0.25 dex, and the gas temperature Tg from 100 to 1000
K with steps of 25 K. We assumed a turbulent line broadening
of 0.1 km s−1. We used a 12CO abundance of 10−4 (N12CO =
1.0× 10−4NH), a 12CO/13CO ratio of 100 and a 12CO/C18O ratio
of 690 following Smith et al. (2009)8.

8 The 12CO/13CO and 12CO/C18O ratios of Smith et al. (2009) were
deduced from high-resolution spectroscopy of CO ro-vibrational lines
detected in absorption towards VV CrA, a binary T Tauri star in the
Corona Australis molecular cloud. The 12C/13C from Smith et al. is
nearly twice the expected interstellar medium (ISM) ratio, and the
12CO/C18O ratio is ×1.4 the ISM ratio. We used the 12CO/13CO and
12CO/C18O ratios of Smith et al. instead of the ISM ratios because we
believe they are more representative of the isotopologues ratios that
would be expected in the inner disk of HD 139614.
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Fig. 7. Rotational diagrams and optical depths of the slab model
(NH = 5 × 1021 cm−2, Tgas = 450 K) with the lowest χ2

red com-
bining all the 12CO, 13CO, and C18O data (cross in Fig. 6). In
the left panels observations are in black and models in red. In
the right panels the optical depths of the observed transitions are
in black, other transitions are in red. A single temperature and
density slab does not correctly describe the rotational diagrams
of the three CO isotopologues simultaneously. Error bars in the
rotational diagram are 1σ.

The output of a slab model is in units of line flux per stera-
dian and the optical depth of each transition. To compare slab
calculations with the observed line fluxes an average solid an-
gle of the emitting region needs to be prescribed. A single tem-
perature and column density model is equivalent to assuming a
disk model with constant intensity with radius (i.e., α = 0). We
tested Keplerian disk models with a constant intensity and found
that the line profile, photocenter and PSF−FWHM could be re-
produced by a flat disk of Rin=0, Rout=6.5 AU. We thus use an
average emitting region radius of 6.5 AU and a distance of 140
pc9 to determine the solid angle for the 1D slab model10.

9 Models were calculated before the recent Gaia distance measure-
ment of 131±5 pc, the difference in distance of 5−9 pc does not change
the conclusions reached.

10 Note that the Rout of 15 AU found in Section 4.1 can not be used
here because this emitting region was found with a decreasing power-
law intensity, which is equivalent to assume a radial decreasing temper-
ature and column density distribution. The 1D slab model has a single
temperature and column density.
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Fig. 8. Rotational diagrams of the υ = 1→ 0 12CO (squares) and
υ = 2 → 1 12CO (triangles) observed emission. Overplotted is
a slab model with Trot=Tvib=460 K and NH = 1022 cm−2, in red
for υ = 1 → 0 12CO emission and in green for υ = 2 → 1 12CO
emission.

For each NH and Tgas slab model, a rotational diagram for
each CO isotopologue was calculated. We used the X and Y coor-
dinates Y = ln(Ful/νguAul) and X = Eu. Here Ful is the line flux
of the transition between the upper level u and the lower level l,
gu is the degeneracy of the upper level (2J+1), Aul is the Einstein
coefficient of transition and Eu the upper energy level of the tran-
sition. For the rotational diagram of each isotopologue we calcu-
lated the statistical quantity χ2

red = 1
N−4

∑
i

(Yslab i − Yobs i)2/σ2
Yobs i

.

Here σYobs i is the difference between Y calculated using the ob-
served line flux and Y calculated using the observed line flux
plus 3σ. The N − 4 corresponds to three degrees of freedom
(NH , Tgas, Ω), and N the number of data points (8 for 12CO, 7
for 13CO and 9 for C18O). In Fig. 6, we display the χ2

red contour
plots for each CO isotopologue and one χ2

red combining the data
of the three isotopologues.

We find that the best fit to the rotational diagram is different
for each CO isotopologue. 12CO is best described with Tgas ∼

450 K and NH > 1020 cm−2. 13CO is best reproduced by lower
temperatures (Tgas ∼ 380 K) and NH column densities of at least
5 × 1022 cm−2. The C18O is best fit by even lower temperatures
∼ 350 K and NH column densities higher than 5×1022 cm−2. The
errors on Tgas are 10−20 K. The colder temperatures for 13CO
and C18O emission indicate that they are produced at larger radii
than the 12CO emission or at lower vertical scale heights.

The “best” combined model for the rotational diagrams of
the three isotopologues emission is a model with NH = 5 × 1021

cm−2 and Tgas = 450 K. In this model the 12CO emission is
optically thick and the 13CO and C18O optically thin (Fig. 7).
The combined solution however only describes satisfactorily the
12CO rotational diagram. The slopes of the 13CO and C18O rota-
tional diagrams are not well reproduced. The curvature on the
rotational diagrams suggests that there 13CO and C18O emis-
sions are optically thick or that there is a gradient in temperature.
This is also suggested by the χ2

red contours, because solutions are
degenerate with respect to NH , giving only lower limits for the
column density.
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Fig. 9. Examples of the predicted 13CO R(4) and C18O R(6) emission for a continuous power law distribution of temperature
and column density that describe the 12CO P(9) line profile and the 12CO rotational diagram. Colors in the spectra and rotational
diagrams correspond to the different column density distributions in the first panel. A disk model with a single power law surface
density cannot simultaneously reproduce the 12CO, 13CO, and C18O line profiles and rotational diagrams.

4.2.1. Thermally excited or UV-pumped emission?

The detection of υ = 2 → 1 12CO emission raises the question:
is the observed CO ro-vibrational emission thermally excited, or
due to UV-pumping as observed in some other Herbig Ae/Be
stars (e.g., Brittain et al. 2007; van der Plas et al. 2015)? The
υ = 2 → 1 12CO / υ = 1 → 0 12CO average line ratio of ∼0.2
is lower than in Herbig Ae/Be stars with flared disks, but it is at
the higher end of the T Tauri sample with single component CO
ro-vibrational emission (see Table 3 in Banzatti & Pontoppidan
2015). The non-detection υ = 3 → 2 12CO emission and the up-
per limit of 0.04 on the υ = 3 → 2 12CO /υ = 1 → 0 12CO line
ratio indicate that the UV-pumping, if present, is not as strong as
in other Herbig Ae/Be stars with CO fluorescent emission. For
example, in the case of HD 100546 van der Plas et al. (2015)
measured an average υ = 3 → 2 12CO / υ = 1 → 0 12CO line
ratio of 0.3. The A7V spectral type of HD 139614 is later than
most of the Herbig Ae/Be stars studied in Brittain et al. (2007)
and van der Plas et al. (2015). This in part could explain the
weaker effect of UV pumping in HD 139614 with respect to
other Herbig Ae/Be stars previously studied.

We explored models around the best solution of the com-
bined fit to the υ = 1 → 0 12CO, 13CO, and C18O rotational
diagrams, and calculated the LTE υ = 2→ 1 12CO and υ = 3→
2 12CO emission. We found that the observed υ = 2 → 112CO
emission and the non-detection of the υ = 3→ 2 12CO emission
can be well described by an LTE model, with Tgas= 460 K and
NH = 1022 cm−2, in which the rotational temperature is equal
to the vibrational temperature11. We show this model in Fig. 8,
where we display the rotational diagrams of υ = 1 → 0 12CO
and υ = 2 → 1 12CO emission of the model and the observa-
tions. This model generates υ = 3→ 2 12CO emission lines with
integrated fluxes on the order of 10−18−10−17 erg s−1 cm−2 which
is consistent with the non-detection of those lines in our CRIRES

11 The model with Tgas= 450 K and NH = 1022 cm−2 of Fig. 7 gener-
ated slightly weaker υ = 2→ 1 12CO emission.

spectra. We conclude that the observed emission is most likely
thermally excited.

4.3. Deriving the surface density and temperature distribution

The different temperatures and column densities of each CO iso-
topologue and the difference on line widths between the CO
isopotologues, suggest that the emission of each isotopologe is
produced at different radial distances and/or vertical heights. The
narrower and colder 13CO and C18O lines pose an interesting
puzzle for the interpretation of the data. If the CO ro-vibrational
emission is modeled with a 1D power law column density and
temperature distribution (NH ∝ RαNH and Tgas ∝ RαTgas ) and
both distributions have no discontinuities (i.e. no gaps nor den-
sity drops or jumps in the temperature). If the 12CO/13CO and
12CO/C18O abundance ratios are constant, then, a disk model
able to reproduce the 12CO line profile and 12CO rotational di-
agram would generate 13CO and C18O lines that are too broad,
too strong, and too warm to be consistent with the observations
(see Fig. 9, in the next sub-section we provide the details of the
model). Since the 13CO and C18O emission observed is optically
thin up to relatively high column densities (NH ∼ 1022 cm−2 and
NH ∼ 1023 cm−2 respectively), the 1D single power-law mod-
els generate 13CO and C18O lines that are too broad, too strong,
and/or too warm because the column of gas at small radii is too
large.

4.3.1. Power law temperature and column density Keplerian
disk model with a depleted inner region

Near- and mid-IR interferometry and the SED (Matter et al.
2016) indicate a depletion of dust mass on the order of 10−4 in
the inner 6 AU with respect to the extrapolated surface density
at R > 6 AU. If a similar behavior would also be followed by
the gas, the narrower and colder C18O and 13CO profiles could
be explained as the result of the presence of a gas density drop
in the inner 6 AU of the disk. A gas density drop can make the
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Fig. 10. Schematic illustration of the free parameters in the flat Keplerian disk model with a power-law column density and tem-
perature. The grid includes models with with decreasing (αinner < 0), flat (αinner = 0) and increasing (αinner > 0) surface density
distributions in the inner 6 AU. The anchor point for the surface density is at 6 AU and for the temperature is at 1 AU. In all the
models the cavity radius is at 6 AU.

C18O and 13CO lines to be optically thin in the inner 6 AU and
make their emission be dominated by the contribution at R>6
AU where the density is higher and the gas colder.

To test the gas density drop hypothesis, we modeled the ob-
served CO ro-vibrational emission with a flat disk in Keplerian
rotation, in which the gas column density and temperature are
described by a power law distribution:

NH (R ≥ 6 AU) = NH (R= 6 AU)

( R
6 AU

)αNH outer

(5)

Tgas (R ≥ 1 AU) = T0 (R= 1 AU)

( R
1 AU

)αTgas

. (6)

We allowed the models to have a reduced surface density at R <
6 AU by a factor δgas

NH (R < 6 AU) = δgas · NH (R= 6 AU)

( R
6 AU

)αNH inner

. (7)

A reference radius of 6 AU was set for the column density
to compare the gas distribution with that of the dust. A reference
radius of 1 AU was selected for the temperature, given that the
modeling of the 12CO line with a power law intensity suggested
that 1 AU is the radius of the maximum intensity.

We choose αNH inner to range from −2.5 up to +3 to cover a
wide range of possible surface density distributions in the inner
disk12. As Matter et al. (2016) found a dust depletion factor of
10−4, we tested models with δgas ranging from 1 to 10−4.

The choice of modelling the temperature as a power law in-
stead of using a full radiative transfer calculation (e.g. Woitke
et al. 2009; Thi et al. 2013; Carmona et al. 2014; Bruderer 2013;
Bruderer et al. 2014) enables us to describe the CO temperature

12 Previous models of CO ro-vibrational emission in transition disks
have assumed a flat surface density (Pontoppidan et al. 2008, 2011) or
a surface density decreasing with a −3/2 exponent (Salyk et al. 2009).
Carmona et al. (2014) found an increasing surface density profile for
the gas with exponent +0.2 in the inner disk of the transition disk HD
135344B. Andrews et al. (2011), Bruderer et al. (2014), and van der
Marel et al. (2015b) modeled SMA or ALMA observations of transition
disks assuming the same surface density exponent of −1 for the inner
and the outer disk. Matter et al. (2016) found that the surface density
of the dust in the inner 2.5 AU of HD 139614 increases radially with a
exponent +0.6.

in the emitting region independently from that of the dust with
a minimum number of free parameters. This permitted us to ex-
plore a large fraction of the parameter space.

The disk is modeled with a flat geometry using a radial and
azimuthal grid. The model is analogous to the model described
in Sect. 4.1 and Sect. B in the Appendix, with the difference that
the intensity at each radius is calculated using the local Tgas and
NH using the CO slab model previously described

I(R) = I(Tgas,NH)slab. (8)

The local broadening of the line is the convolution of the turbu-
lent broadening (0.1 km s−1), the local thermal broadening and
the spectral resolution13. We recall that the CO slab model as-
sumes LTE excitation, which is a good approximation given that
CO emission is likely thermally excited. We set the outer radius
equal to 30 AU. Observations set an upper limit of 15 AU to the
emitting region, however, we used a larger outer radius to per-
mit some combinations of NH(R) and Tgas(R) inside the grid to
have a sufficiently large radial extent to let the intensity decrease
to low levels. A model in which the radial calculation grid ends
artificially early would generate a line profile and a line flux that
does not correctly represent the NH(R) and Tgas(R) selected. In
the flat-disk parametric intensity models that describe the CO
emission in HD 139614, we saw no significant change in the
line profiles with/without slit (lines are dominated by the contri-
bution in the inner 15 AU). Therefore, we did not include the slit
effects in our model in order to enable the calculation of a large
number of models.

A model has six free parameters: NH (R= 6 AU), αNH inner , αNH outer ,
δgas,T(R=1 AU) and αTgas . Each model produces integrated line-
fluxes and rotational diagrams for the three CO isotopologues
and synthetic line profiles at the CRIRES resolution for the 12CO
P(9) line at 4745.13 nm , 13CO R(4) at 4730.47 nm, and the
C18O R(6) line at 4724.03 nm. These three CO transitions were
selected because their line profiles have a high S/N and are less
affected by telluric absorption. The merged composite line pro-
file was not used because the model line predictions needed to

13 Including the instrument resolution in the convolution kernel of the
thermal and turbulent broadening enables to save hundreds convolu-
tions per model, 107 convolutions in the grid, and it is equivalent to
convolving the final data-cube by the instrument resolution.
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Table 5. Parameters of the best model of the grid

Model NH (R=6AU) αNH inner αNH outer δgas T(R=1 AU) αTgas

[cm−2] [K]
grid’s best model 1023 +2.0 −2.5 10−2 675 −0.35
grid’s best model if αNH inner ≤ +1.0 1023 0.0 −2.0 10−2 650 −0.35
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Fig. 11. Bayesian probability distributions of the grid of the NH and Tgas power-law models calculated (81 000 models). The χ2

statistic used to calculate the probability considers the rotational diagrams and line profiles of the three isotopologues simultane-
ously.

be compared with a line profile in flux units. In the merged com-
posite spectra the flux information is lost.

To find the models that best describe the observations, we run
a uniform grid of 81000 models covering the parameter space
described in Table 4. To calculate the most probable values of
the parameters in the grid, we used a Bayesian approach (see for
example Pinte et al. 2007, and references therein). We provide
details of the calculation of the Bayesian probabilities in Sect. C
in the Appendix.

4.3.2. Grid results

Fig. 11 displays the Bayesian probability distribution diagrams
of the grid. The first panel in the upper left shows the probability
of models with and without a gas density drop. The diagram indi-
cates that to reproduce simultaneously the CO ro-vibrational line
profiles and the rotational diagrams of the three isotopologues, a
gas column density drop in the inner 6 AU of the disk is required.
A δgas =10−2 in the column density appears as the most likely
value. The empirical evidence of the gas density drop emerges
from both the line profile shapes and the rotational diagrams.
Models without gas density drop generate 13CO and 18CO lines
that are too broad, strong and warm (too much warm 13CO and
18CO emitting at small radii) to be consistent with the observa-
tions. To directly visually illustrate this, we show the progression
from a model without a column density drop to the best model
of the grid which has a column density drop of 10−2 in Fig. 12.

The column density of gas traced by CO at R = 6 AU is
well constrained to NH ∼1023 cm−2. This gas column density
is similar to the dust column density at R = 6 AU found by
Matter et al. (2016) 14. The gas column density is higher than
the column density found in the single Tgas − NH slab model of
the three CO isotopologues of Sect. 4.2. This is because higher
column densities describe better the 18CO and 13CO rotational
diagrams. In fact, the emission of 18CO and 13CO is optically
thick in the 6 - 10 AU region where 80 to 90 % of the line flux is
emitted (see Fig. 13).

CO ro-vibrational emission traces the gas in regions where
the dust is optically thin or the disk’s upper layers where Tgas >
Tdust. In Fig. 14, we display the dust’s optical depth at 4.7 µm
from the best model of the SED and IR-interferometry data of
HD 139614 from Matter et al. (2016). At R<6 the dust is opti-
cally thin down to the disk’s mid-plane, at R≥ 6 AU the dust is
optically thick (except in the surface layers). As consequence,
in the inner disk at R <6 AU, the gas column density traced by
CO ro-vibrational emission should be a good estimate of the to-
tal column density of gas. Our models suggest that the column
density of gas at 1 < R < 6 AU ranges between NH = 5 × 1019

cm−2 and NH = 1021 cm−2 (1.2 × 10−4 − 2.4 × 10−3 g cm−2).
In the outer disk at R >6 AU, the gas column density traced by
CO ro-vibrational emission is a lower limit, as we trace only the

14 Note that in the models we fixed the density drop location at 6 AU,
see the discussion section for the models varying the radius of the den-
sity drop.
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Illustration of a progression of models from the grid

1. Model with a continuous disk with a surface density with exponent α=-1.0 : 13CO and C18O emission is too strong, broad, and warm.
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2. Same model but with δgas = 10−1 : 13CO and C18O are weaker but still too strong
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3. Same model but with δgas = 10−2 : 13CO and C18O have a flux closer to observations but 13CO is still too broad because the amount of gas at small radii.
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4. Change of the α exponent of the inner disk from −1.0 to 0 (flat inner disk): 13CO and C18O line profiles and rotational diagrams get closer to the observations.
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5. Change of the α exponent of the inner disk to +1.0: improvement to the fit of the 13CO and C18O line profiles and rotational diagrams.
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6. Change of the α exponent of the inner disk to +2.0: improvement to the fit of the wings of the 12CO line and the 12CO rotational diagram.
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7. Change of the α exponent of the outer disk from -1.0 to -2.5: better description of the peak flux and rotational diagram of C18O.
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Fig. 12. Example of a progression of disk models taken from the grid to illustrate the effect of the change of parameters on the line
profiles and rotational diagrams. The observed data is in black the model predictions are in red. Error bars in the line profiles are
3σ. The dashed line is the dust surface density from Matter et al. (2016). The model starts with a continuous gas disk that follows
the same power law as the dust in the outer disk, and it is refined until the best description of the CO ro-vibrational observations is
reached. The two branches seen in the rotational diagram correspond to the R and P branches of CO ro-vibrational emission.

gas in the disk’s surface where the dust is thin and Tgas > Tdust.
If we assume a gas-to-dust mass ratio of 100 for the outer disk
and use the dust column density at R ≥ 6 of Matter et al. (2016),
then the total column of gas at R ≥ 6 AU can be up to a factor
100 higher than the column density traced by CO ro-vibrational
emission. Therefore, the gas density drop δgas could be as large
as 10−4 depending on the total gas mass of the outer disk.

The Bayesian probability distributions indicate that the pre-
ferred values for the surface density exponent in the inner 6 AU

are flat or positive with αNH inner ranging from 0.0 up to high val-
ues such as +3.0. A few models with negative inner disk power
law exponents can describe the data, however, the largest frac-
tion of models describing the observations have a flat or positive
surface density exponents.

The probability plots show that increasingly negative expo-
nents of the density in the outer disk αNH outer have a larger prob-
ability. This behavior is due to the fact that the models that best
reproduce the 13CO and C18O emission are those in which a large
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grid’s best model: αNH inner =+2.0 δgas = 10−2
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Fig. 13. Gas column density, temperature, CO optical depth, flux density, cumulative line flux, rotational diagrams, and line profiles
of the 12CO P(9), 13CO P(4), and C18O R(6) emissions of the best model in the grid. The model is in red and the observations are
in black. Observed line profiles are displayed in flux units after continuum subtraction with 3 σ error bars. The two branches seen
in the rotational diagram correspond to the R and P branches of CO ro-vibrational emission. The right-most panels compare the
normalized theoretical line profiles with the observed composite line profile of each CO isotopologue with a 1 σ error bar.

fraction of the line-flux (∼60%) is produced between 6 and 10
AU. This suggests that the emission of 13CO and C18O is likely
dominated by the contribution of the inner rim of the outer disk.
This naturally explains the narrower line profiles of these two
isotopologues.

Fig. 13 displays the surface density profile, temperature pro-
file, optical depth, flux density, cumulative line flux, rotational
diagrams, and the 12CO P(9), 13CO P(4) and C18O R(6) line pro-
files of the model in the grid exhibiting the best combined fit
to the data. This model has an NH at R = 6 AU of 1023 cm−2,
αNH inner (R < 6 AU) = +2.0, αNH outer (R > 6 AU) = −2.5,
δgas (R = 6 AU) = 10−2, T0 (R = 1 AU) = 675 K, and
αTgas = −0.35. Note that the solution is not unique and mod-
els with other parameters can still provide a satisfactory fit to
the data. The Bayesian probability distribution diagrams show
which values of the model parameters are the most likely given
the observations.

From the pure modeling point of view, the higher probabil-
ity of models with a flat or with an increasing surface density

in the inner disk can be easily explained. The emission of 13CO
and C18O is optically thin at R<6 AU. Thus to have a weaker
intensity at v > 10 km s−1 a small column of gas is needed at
small radii. A surface density with a decreasing profile in the in-
ner 6 AU, even with a low column density (see Fig. 9), produces
13CO and C18O line profiles with line wings that are too strong.
The effect is also seen in the 13CO and C18O rotational diagrams.
Flat and increasing surface density profiles provide “colder” ro-
tational diagrams that better describe the observations. A visual-
ization of this is provided in Fig. 12, which illustrates the effect
of changing the exponent of the surface density profile in the in-
ner disk from -1.0 to +2.0 while keeping a constant δgas = 10−2

at R = 6 AU. As soon as αNH inner = 0 is reached, the strong high
velocity line-wings of the 13CO and lines C18O disappear. The
12CO line profile hardly changes in all the models with αNH inner

-1.0 to +1.0 because it is optically thick. However, when αNH inner

is higher than +1.5, 12CO becomes optically thin at R< 2 AU,
the wings of the 12CO line become weaker, and the 12CO line
profile is well fitted.
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Fig. 14. Vertically integrated optical depth of the dust at 4.7 µm
from the HD 139614 model of Matter et al. (2016), which best
describes the SED and VLTI IR-interferometry data. The dust is
optically thin at 4.7 µm in the inner 6 AU of the disk. At R>6
AU the dust is optically thick except in the upper-most layers of
the disk.

4.4. Quantitative constraints on the width and column density
depth of a gas gap

As discussed in Sect. 4.1.2, the 12CO ro-vibrational composite
line profile does not display evidence for a gap (i.e. a zone devoid
of gas) of size larger than 2 AU. To derive quantitative limits on
the gap width and the column density of the gas that could be
inside a potential gap, we calculated the expected 12CO R(4) line
for a series of models around the best model of the grid including
gaps of increasing width (i.e., from 5 to 6 AU, from 4 to 6 AU,
from 3 to 6 AU, and from 2 to 6 AU) and varying NH inside
the gap (at R =6 AU) from 1021 to 1017 cm−2. The normalized
theoretical 12CO R(4) spectra was compared with the high S/N
composite 12CO spectrum.

Fig. 15 display the results. The models confirm the sugges-
tion of the simple power-law intensity model (Sect. 4.1.2). A gap
of 2 AU or smaller remains undetected. Gaps of width larger than

Table 4. Parameter space of the power-law NH and Tgas models.

Parameter Units Values

NH (R= 6 AU) [cm−2] 1020, 1021, 1022, 1023, 1024, 1025

αNH inner (R< 6 AU) −2.5,−2.0,−1.5,−1.0,−0.5,
0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0

αNH outer (R> 6 AU) −2.5,−2.0,−1.5,−1.0,−0.5

δgas (R= 6 AU) 1, 10−1, 10−2, 10−3, 10−4

T0 (R= 1 AU) [K] 550, 575, 600, 625, 650, 675, 700,
725, 750

αTgas −0.40,−0.35,−0.30,−0.25,−0.20

Total 81000 models
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Fig. 16. Predicted 12CO R(4) line profile for a disk extending
from 0.1 to 1.0 AU with a flat surface density NH = 5×1019 cm−2

and the extrapolated temperature profile from the best model of
the grid. Error bars are 3σ. The horizontal dashed line is the 5σ
limit.

2 AU and with an NH inside the gap lower than 1018 cm−2 (yel-
low and red colors, δgas < 10−5) would have been seen in the
12CO composite spectrum as a line profile with “shoulders” at
±15 km s−1.

4.5. Upper limits to the gas column density at R < 1 AU
12CO ro-vibrational emission requires relatively small column
densities (NCO ∼ 1015 cm −2) to be optically thick. Therefore, if
the gas is sufficiently warm, CO ro-vibrational emission is rel-
atively easy to detect. As the gas in the inner 1 AU of a disk
around a Herbig Ae star has a temperature warmer than 300 K,
the lack of strong CO ro-vibrational emission in the inner 1 AU
of HD 139614 suggests a low column density of gas at R ≤ 1
AU. To derive upper limits to the column of gas at R ≤ 1 AU
in HD 139614, we calculated the expected emission from gas
between 0.1 and 1.0 AU assuming a flat surface density profile
and the temperature profile of the best model of the grid. We
found that gas column densities larger than NH = 5 × 1019 cm−2

(1.4 g cm−2) would have produced line profile wings (v > 15
km s−1) stronger than 5σ above the noise of the 12CO P(9) line
(Fig. 16). As we assume standard abundances, our CRIRES ob-
servation set a 5σ upper limit to the CO column at R ≤ 1 AU of
NCO = 5 × 1015 cm−2.

UV photodissociation could be responsible for the destruc-
tion of CO in the inner 1 AU of the disk’s around HD 139614.
In the absence of dust, CO self-shields against photodissocia-
tion in the vertical and radial direction if NCO > 1015 cm−2 (van
Dishoeck & Black 1988). Therefore, from the self-shielding per-
spective, the absence of CO ro-vibrational emission from R <1
AU suggests that NH ≤ 1019 cm−2 at R≤ 1 AU, assuming stan-
dard abundances. This value is consistent with the upper limit
derived from the CO ro-vibrational line profile modeling.

4.6. Uncertainties, Limitations and Tests of Robustness

Optical depth effects explain the higher probabilities of models
with αNH inner of +2 or +3. However, such high αNH inner are hard
to justify physically15. To test the robustness of the modeling

15 X-ray photoevaporation models (e.g., Owen et al. 2012; Mordasini
et al. 2012) evolve to a flat surface density. Planet disk interaction mod-
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Fig. 15. 12CO R(4) line profiles predicted for different gap sizes and diverse column densities inside the gap, for the best model
of the grid (see Fig. 13), compared with composite 12CO line profile. Observed and modeled line profiles are normalized such the
continuum is at zero and the line peak at 1. The color code in the surface density density panel corresponds to the color in the line
profile plot. The solution without gap is displayed in black. The temperature profile is kept constant in all the models. Error bars are
1σ.

conclusions, we recalculated the Bayesian probability plots for a
sub-grid selecting only models with αNH inner ≤ +1 (54 000 mod-
els, Fig. C.1). We found that a gas density drop and gas surface
density at R < 6 AU that is flat are still needed to explain the
observations. In Fig. C.2 and Table 5, we display the character-
istics of the best model of the αNH inner ≤ +1 sub-grid. The model
has δgas = 10−2 and has a flat (αNH inner = 0.0) surface density at
R <6 AU16.

C18O emission is detected at lower S/N than 12CO and 13CO
emission. To further test the robustness of the presence of the
gas density drop, we re-calculated the Bayesian probability di-
agrams only taking into account the 12CO and 13CO emission
(Fig. C.3). We retrieved the same results, the models with the
highest probabilities are those with a gas density drop of at least
a factor 100 in the inner 6 AU and that have a surface density at
R < 6 AU that is with flat or increasing with radius.

Our models assume constant 12CO/H2, 12CO/13CO and
12CO/C18O ratios with radius. The CO ro-vibrational lines trace
warm CO, thus freeze-out onto dust surfaces and fractiona-
tion reactions are not a concern. Photodissociation by UV-
photons could potentially be relevant, because the self-shielding
of 13CO and C18O requires higher column densities than for
12CO. Models of disks including selective photodissociation
(e.g. Miotello et al. 2014) showed that the gas masses in the
outer disk can be underestimated by up to an order of magni-
tude17. However, an underestimation of the column density due

els (e.g. Crida & Morbidelli 2007) can give a positive density gradient
with radius in the inner disk, but only in the innermost radii.

16 Note, however, that models with flat surface density profiles pro-
duce a less good fit to the observations than models with positive αNH inner

because of the stronger 12CO high velocity wings (Fig. 12).
17 For an application of selective photodissociation to the Solar

Nebula see Lyons & Young (2005).

to selective photodissociation by a factor of ten in the inner disk
would not change the conclusion that a surface density drop is
required to describe the CO ro-vibrational data. Moreover, van
der Marel et al. (2016) recently modeled ALMA CO sub-mm ro-
tational emission from the gas in transition disks with large dust
cavities. They find that selective-photodissociation does not sig-
nificantly affect the CO isotopologues rotational emission from
gas inside the cavity.

We have used a single vertical temperature for each radius,
but disks have a vertical gradient of temperature. At R < 6 AU,
the dust (see Fig. 14) and the 13CO and C18O lines (see Fig. 13)
are optically thin18. Therefore, at R < 6 AU, the 13CO and C18O
transitions trace the whole vertical column of gas. Although in a
disk the temperature increases from the mid-plane to the surface,
in the inner 6 AU, the 13CO and C18O lines are not dominated
by the hottest gas (T> 500-1000 K) located in the upper most
layers near the surface because the amount of gas in those upper
regions is very small. The 13CO and C18O ro-vibrational lines
are emitted lower down, in the region where the CO gas is the
densest and where the gas temperature in the vertical direction
varies by a few 10 K at most down to the mid-plane19. The 12CO
emission is optically thick at R <6 AU thus, on average, emitted
higher up in the disk. The dominant emitting regions for 12CO,
13CO and C18O ro-vibrational emission have differences in ver-
tical height but, in fact, they overlap in the vertical direction.
The temperature profile in our simple 1D models should be un-

18 An additional argument for an optically thin inner disk comes from
the detailed radiative transfer modeling of CO ro-vibrational emission
in the Herbig F4V pre-transition disk HD 135344B in Carmona et al.
(2014). We found that, to have CO ro-vibrational emission from inside
the dust cavity, the dust in the inner-most disk should be optically thin.

19 See Fig. A.4 in Carmona et al. (2014) for the temperature distribu-
tion of the gas inside an optically thin dust cavity of a transition disk
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derstood as a representative average vertical temperature20. The
column of C18O (thus NH) could be underestimated because the
1D models use a higher average temperature. However, the col-
umn density in the inner 6 AU should be lower than NH=1021

cm−2. Higher NH , even with T0 (R= 1 AU) = 575 K (100 K lower
than the best model of the grid), would generate 13CO and C18O
lines with high velocity wings which would be too strong to be
compatible with the CRIRES spectrum.

We assumed a smooth temperature profile with radius, with-
out bumps or discontinuities. However, as the dust density is
much lower at R < 6 AU, the temperature at the inner rim of
the outer disk might be higher, as seen in thermochemical disks
models (Thi et al. 2013; Carmona et al. 2014; Woitke et al. 2016;
Hein Bertelsen 2015). The question in HD 139614 is what frac-
tion of the column of the emitting CO around 6 AU is at higher
temperatures. The smoothness and width of the 12CO line pro-
file, and the fact that the average temperatures of 13CO and C18O
lines (380 and 350 K respectively) are similar to that of the
power law temperature at 6 < R < 10 AU (350 - 300 K, where
most of the 13CO and C18O flux is produced) suggest that the
column of CO at temperatures much higher than 400 K in the
inner rim of the outer disk AU should be small. We conclude
that a smooth temperature power law describes the temperature
of the largest column of gas emitting the CO ro-vibrational lines.

We assumed that the gas density drop occurs at the same
radius as the dust density drop. But the gas density drop does
not have to occur at 6 AU. We have tested a sub-grid of models
(28800) in which we varied the radius of the gas density drop
between 4.0 and 6.0 AU (see Fig. C.4)21. The grid shows that
the most likely value for the gas density drop is 6.0 AU. Models
with a gas density drop down to 5.0 AU can also describe the
data but are less likely22.

The model grid was calculated assuming Rin =1 AU because
the power-law intensity model indicated that the radius of the
maximum intensity is close to 1 AU (Sect. 4.1). We have tested
models with gas down to 0.1 AU extending the power-law tem-
perature and density profile. The fit was satisfactory for surface
density exponents between +1 and +3. Models with surface den-
sity exponents smaller than +1 gave too strong line wings for the
12CO emission. The best model of the grid, which has α = +2.0
surface density exponent, gave a good fit when extending it down
to 0.1 AU (Fig. C.5). This model is consistent with the upper
limits on the surface density at R< 1 AU derived in Sect. 4.5.

In the grid of models we did not fit the υ = 2→1 12CO lines.
We checked the predicted υ = 2 →1 12CO 2-1 P(3) and P(4)
lines for the best model of the grid. We found that the model is
able to reproduce the observed FWHM of the υ = 2 →1 lines
but the model has weaker υ = 2 → 1 line fluxes than the ob-
servations. We explored models around the best solution of the
grid. We found that a model with an NH at 6 AU three times

20 The best model in the grid has a radial temperature that is a com-
promise between the 12CO that requires a higher temperature (emitted
higher up) and 13CO and C18O emission that require lower temperatures
(emitted further down). The best model combining 12CO, 13CO, and
C18O has a gas T0 (R= 1 AU) = 675 K. This temperature is in-between the
temperature of the best model for 12CO alone (T0 (R= 1 AU) = 725 K) and
the temperature of the best model for C18O emission alone (T0 (R= 1 AU)
= 625 K).

21 The fact that dust is seen at R ∼ 6 AU and that the dust requires a
scale heigh to fit the near-IR data (SED and visibilities) implies that gas
should be present at the location of the dust. For this reason larger radii
than 6 AU for the gas density drop were not considered in the modeling.

22 The change in the gas-density drop radius can be compensated by
changes in δgas or the surface density or temperature exponent.

larger (NH (R=6 AU) = 3×1023 cm−2), the same density profile at
R <6 AU (thus δgas=3.3×10−3), and the same temperature profile
described well the υ = 2 → 1 lines while having a good fit to
the υ = 1 → 0 lines. The model indicates that the υ = 2 → 1
lines are dominated by the contribution at 6 < R < 10 AU. We
present the predicted emission lines of this model in Fig C.6 in
the Appendix.

Our grids of models were calculated before the Gaia distance
release, thus assumed a distance of 140 pc. The new Gaia dis-
tance of 131 ± 5 pc translates in a location of gas (and dust)
density drop 0.4 AU closer in. This difference is within the un-
certainties of the data modeling, thus, the conclusions we reach
are not affected.

5. Discussion

The main results of the observations and modeling (see Table 3
for a modeling overview) of the CO ro-vibrational emission lines
in the HD 139614 disk are:

1. CO ro-vibrational emission extends from 1 AU to 15 AU in
HD 139614, so the dust gap observed in IR-interferometry
data contains molecular gas.

2. C18O lines are a few km s−1 narrower than 12CO lines.
3. 13CO and C18O emission are 50 - 100 K colder than 12CO

emission.
4. The observed CO emission is likely thermal excited.
5. A drop of 10−2 to 10−4 in the gas column density at 5−6 AU

is required to reproduce simultaneously the line profiles and
rotational diagrams of the three CO isotopologues.

6. The gas surface density NH at 1 < R < 6 AU ranges between
5×1019 and 1021 cm−2 and has a distribution that most likely
is flat or that increases with radius.

7. The 5σ upper-limit on the CO column density NCO at R ≤ 1
is 5× 1015 cm−2, which corresponds to a gas column density
NH < 5 × 1019 cm−2 if standard abundances are assumed.

8. Our data does not show evidence for a gap (devoid of gas)
in the gas distribution. The width of any possible gap is con-
strained to be smaller than 2 AU.

5.1. Gas vs. dust surface density distribution

In Fig. 17, we display the dust surface density (in blue) derived
by Matter et al. (2016) from ESO/VLTI near and mid-IR inter-
ferometry observations. In the same figure we illustrate the gas
surface density derived from the CO ro-vibrational emission. In
yellow the best model of the grid, in red the best model of the
grid if αNH inner ≤ 1.0.

We find that the αinner = +0.6 deduced for the dust is consis-
tent with the range of αNH inner of the gas observations. The near-IR
continuum and the CO ro-vibrational observations suggest gas-
to-dust mass ratios for the inner disk at R< 2.5 AU ranging from
a few up to 100, depending on the gas surface density exponent
at R<6 AU. Concerning the depletion levels of the gas and the
dust (δgas and δdust), if the gas-to-dust mass ratio is 100 in the
outer disk, then the level of depletion for the gas and the dust
would be similar. However, it is likely that given the age of HD
139614 (9 Myr, Alecian et al. 2013) and the weak [O i] 63 µm
line flux (4.5 × 10−17 W m−2, among the weakest of the whole
Herbig Ae sample of Meeus et al. 2012), that the gas-to-dust
mass ratio in the outer disk is below hundred23. In such a case,

23 In the detailed model of the transition disk HD 135344B (which
has a dust cavity of 30 AU) by Carmona et al. (2014), we found that to
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Fig. 17. Gas and dust surface density. In blue the dust surface density derived from modeling the SED + near and mid-IR observa-
tions, taken from Matter et al. (2016). In red the gas surface density of the best model of the whole grid. In orange the gas surface
density of the best model of the grid restricted to only models with αNH inner ≤ +1.0. Note that the value of δgas depends on the
gas-to-dust ratio assumed for the outer disk. Note that this plot assumes a distance of 140 pc for HD 139614. The new Gaia distance
of 131 ± 5 pc implies that the location of the gas and dust density drop is 0.4 AU closer in. However, this difference is within the
uncertainties of the modeling of the data.

the density drop in the gas would be less deep than the density
drop in the dust.

5.2. CO ro-vibrational emission in HD 139614 and other
protoplanetary disks

The integrated 12CO line fluxes of HD 139614 are of the same
order (10−14 erg s−1 cm−2) as previously observed primordial
and transition disks (e.g. Najita et al. 2003; Salyk et al. 2011;
Brown et al. 2013; Banzatti & Pontoppidan 2015). The widths
of the 12CO line profiles of HD 139614 (and other transition
disks) are, however, significantly narrower and lack the high-
velocity wings (emission at v > 15 km s−1) that are observed
in primordial disks24. This difference is due to the fact that, in
primordial disks, the 12CO emission is dominated by gas inside
1 AU, while in HD 139614 (and most transition disks) the CO
ro-vibrational emission is dominated by gas at R> 1 AU.

Given that 12CO ro-vibrational emission becomes optically
thick at relatively small column densities (NCO ∼ 1015 cm−2),
the lack of high velocity wings in the 12CO line profiles of
HD 139614 (and other transition disks) directly indicates that
at R<1 AU the column density of gas is much lower than in
primordial disks. The 5σ upper limit of NH ∼ 5 × 1019 cm−2

on the column of gas at R < 1 AU (assuming standard abun-

reproduce its weak [O i] line (4.7×10−17 W m−2, Meeus et al. 2012) the
gas-to-dust mass ratio in the outer disk needed to be much lower than
100 with a best value below 10.

24 The 12CO ro-vibrational emission from primordial disks is 2 to 5
times broader than that of transition disks (Brown et al. 2013).

dances) derived for HD 139614 is significantly lower than the
NH = 1024 − 1026 cm−2 typical of primordial disks.

In HD 139614, the 13CO emission is narrower and colder
than the 12CO emission. Differences between CO isotopologues
line widths and temperatures have already been reported in a
number of primordial and transition disks (e.g., Brown et al.
2013). However, the 12CO and 13CO line width difference in
primordial disks is of the order of tens of km s−1, while in
HD 139614 (and other transition disks) it is only a few km s−1.
This further suggests that there is a different inner disk gas struc-
ture between transition disks and primordial disks (as already
pointed out by previous authors, e.g., Brown et al. 2013; Banzatti
& Pontoppidan 2015).

The ν = 1 → 0 CO and ν = 2 → 1 CO emission in
HD 139614 can be described by thermal emission (Tex = Trot =
Tvib). The average CO temperature of 460 K (log T = 2.7) and
the CO inner radius of 1 AU locate HD 139614 in the left side of
the UV pumping regime in the recently proposed T/R diagram
of Banzatti & Pontoppidan (2015). According to the T/R dia-
gram, HD 139614 belongs to the disk category 2: objects with
partly devoid disks gaps. HD 139614 appears in the T/R dia-
gram as an intermediate case between the category 1 disks that
are primordial, and the category 3 that are transition disks that
have ν = 2 → 1 CO ro-vibrational emission dominated by UV
pumping.

In summary, the properties of CO ro-vibrational emission are
clearly different between HD 139614 and primordial disks. The
data and models show that, although there is molecular gas in-
side the inner 6 AU of HD 139614, the gas distribution and gas
mass is different from that of a primordial disk at R< 6 AU.
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5.3. Comparison to other transition disks with quantified gas
surface densities inside the dust cavity

HD 139614 adds to the growing number of transition disks with
quantified gas density drops inside the dust cavity. In Table C.1,
we provide a summary of the properties of those sources25. The
largest fraction of transition disks shows stronger depletions in
the dust than in the gas (δdust < δgas) inside the dust cavity. Some
disks have a similar depletion level (e.g., HD 139614), and only
one source, J1604-2130, has a depletion level higher in the gas
than the dust. Altogether, this suggests that the dust depletes
faster than the gas in the inner disk. This behaviour might be
because it is hard to stop viscous accretion of gas through the
disk unless the mass of the (outer) disk is very low. This seems
to be the case for transition disks around low-mass/solar-type
stars (Sicilia-Aguilar et al. 2015). If trapping of mm-dust grains
is occurring at the inner rim of the outer disk, then a mm-dust de-
pletion higher than the gas depletion would be expected inside
the dust cavity (e.g. Pinilla et al. 2016).

Table C.1 shows that, in a large fraction of objects, the gas
density drop radius is smaller than the sub-mm dust density drop
radius. This is consistent with the detection of micron sized par-
ticles at radii smaller than the sub-mm dust cavity radius (e.g.
Muto et al. 2012; Garufi et al. 2013; Follette et al. 2013; Pinilla
et al. 2016) because small dust grains are expected to be coupled
to the gas. Furthermore, this also provides observational sup-
port for the scenario of dust trapping by pressure bumps due to
the presence of (unseen) planets inside the dust cavity (e.g. Rice
et al. 2006; Paardekooper & Mellema 2006; Fouchet et al. 2010;
Pinilla et al. 2012, 2015b; Gonzalez et al. 2015). In the case of
HD 139614, the dust and gas cavity radii are similar, but it is the
only object in the sample with a dust cavity radius smaller than
10 AU and the only object where the dust cavity radius is mea-
sured in the IR. Future sub-mm observations of HD 139614, will
enable to test whether its sub-mm cavity radius is larger than the
gas cavity radius.

5.4. Origin of the dust and gas density distribution in
HD 139614

Photoevaporation has been suggested as a potential mechanism
for the origin of the dust cavities in transition disks (see recent
reviews by Alexander et al. 2014; Owen 2015). The key factor
in this scenario is when the mass accretion rate of the disk be-
comes lower than the photoevaporation mass loss rate due to the
radiation of the central star. The accretion rate of 10−8 M�/yr in
HD 139614 (Garcia Lopez et al. 2006) is at the high end of the
mass loss rates (10−8 − 10−10 M�/yr) in which photoevaporation
starts to become relevant.

The inner radius of the dust gap of ∼3 AU is consistent with
the critical radius of the gap that is expected to be opened by
EUV photoevaporation for a 1.7 M� star (Rc,EUV ' 1.8×M∗/M�
AU, e.g., Alexander et al. 2014). However, the very fact that we
detect molecular gas inside 3 AU, the lack of a gap in the gas and
the accretion rate of the source do not favor the EUV photoevap-
oration scenario, unless we are seeing the “gap” just beginning to
form through photoevaporation. This has a very low probability
given the EUV photoevaporation timescales (105 yr). Although
EUV photoevaporation is likely not the dominant mechanism for

25 Note that the number of transition disks with detections of gas in-
side the dust cavities from CO ro-vibrational and CO rotational emis-
sion is much larger (e.g., Pontoppidan et al. 2011; Salyk et al. 2011;
Brown et al. 2013; Banzatti & Pontoppidan 2015). We discuss here only
the sources with published gas and dust surface density profiles.

the formation of the dust gap and the gas density drop, it cannot
be completely excluded due to the age of HD 139614 (∼9 Myr).

X-ray photoevaporation has been suggested to be relevant
for accreting transition disks due to its high mass-loss rates (e.g.,
Owen et al. 2011, 2012). Herbig Ae stars are, however, generally
weak X-ray emitters (e.g., Stelzer et al. 2006, 2009). HD 139614
has been observed with XMM-Newton in the context of a large
program investigating young stars and their protoplanetary disks
(PI. M. Güdel). Details of the observations and data reduction
will be described in a future publication of that survey. A first
analysis of the XMM data indicate an unabsorbed X-ray flux of
5.26×10−14 erg s−1 cm−2 which translates into an X-ray lumi-
nosity of 1.2×1029 erg s−1. Using this X-ray luminosity and the
scaling relation for X-ray photoevaporation in Alexander et al.
(2014), we obtain a mass-loss rate of 5.6×10−10 M�/yr. Since
this value is much lower than the accretion rate, it is likely that
X-ray photoevaporation (alone) is not the dominant mechanism
responsible for the dust gap and gas density drop in the inner
disk of HD 139614. Furthermore, in the X-ray photoevaporation
model, a gap in the gas of 5−6 AU width would be expected for
a gas density drop δgas ranging from 10−2 to 10−4 (e.g., see Fig. 9
in Owen et al. 2011). This X-ray photoevaporation-induced gap
is larger than 2 AU upper limit we derive from our CRIRES CO
observations26. Finally, the lack of [O i] 6300 Å emission (Acke
et al. 2005) as a tracer of photoevaporation winds (e.g., Font
et al. 2004; Ercolano & Owen 2010; Gorti et al. 2011; Baldovin-
Saavedra et al. 2012; Rigliaco et al. 2013), does not support pho-
toevaporation as the main gas depletion process taking place in
HD 139614 (see also Sicilia-Aguilar et al. (2010, 2013, 2015)
who argue that accreting transition disks are unlikely caused by
photoevaporation).

The interaction of a giant planet with its parent disk causes
dramatic changes in the distributions of the gas and the dust in
the disk, which alters the planets orbital properties (planetary
migration). A recent review is provided in Baruteau et al. (2014).
For this discussion, we highlight a few key aspects: 1) a giant
planet is expected to open a gap in the gas with a width of a few
AU27; 2) the gas surface density profile inside the planet’s orbit
could have a variety of behaviors (be lower than in the outer
disk or be radially decreasing, flat, or increasing); 3) the gas at
radii close to the planet’s orbit can have velocities that deviate
significantly from the Keplerian speed; 4) the presence of giant
gap-opening planets will generate pressure bumps in the disk
that will trap dust particles (for instance at radii immediately
outside of the planet radius).

The width of the gap in the gas (and small dust grains)
opened by a planet scales with the Hill radius (RH) of the planet.
The Hill radius of a planet of mass Mp at a distance rp from a
star of mass M∗ is defined by

RH = rp

(
Mp

3M∗

)1/3

. (9)

The gap opened in the gas by a planet generally does not exceed
5 times the Hill radius (e.g. Dodson-Robinson & Salyk 2011).
The mass of HD 139614 is 1.7 M�. If we assume that the planet
is located at 4.5 AU, according to Eq. 9, planets more massive
than 3.7 MJ would be expected to open gaps larger than 2 AU

26 Note, however, that the X-ray photoevaporation models described
here were mostly developed for 1 M� stars and may not be directly
applicable to A-type stars.

27 Note that the gap’s width and depth depend on the planet’s mass
and the disk’s physical properties such as the temperature and turbulent
viscosity near the planet’s orbit.

19



A. Carmona et al.: CO ro-vibrational emission in the transition disk HD 139614.

in the disk. Matter et al. (2016) present hydrodynamical simu-
lations adapted to HD 139614 with the objective of exploring a
single giant planet as a cause of the dust gap observed in the IR
interferometry observations. We refer the readers to that paper
for the details of the modeling. The results of the hydrodynam-
ical simulations after 100 000 orbits (1 Myr) are the following:
1) planets of 1.7, 3 and 6.8 MJ located at 4.5 AU produce a gas
gap of width 2, 3 and 4 AU respectively; 2) the surface density
profile in the inner disk (R< 3 AU) changes due to the presence
of a 3 MJ planet from an initial R−1 to R+0.6 profile, and features
a reduction factor ∼10 relative to the outer disk. In the context
of the planet-disk simulations, if a planet is responsible for the
dust gap and the gas density drop it should have a mass smaller
than 2 MJ

28.
The exponent of +0.6 observed in the inner disk in the

hydro-simulations is compatible with the CO observations. The
gas density drop in the hydro-simulations is, however, at least
a factor 10 weaker than the δgas suggested from the CO-
rovibrational data. But hydro-simulations were run for 1 Myr
while HD 139614 has an age ∼9 Myr. It is indeed possible that
the inner disk has lost a significant fraction of its gas mass due
to accretion onto the star and also photoevaporation, a process
which is not included in the Matter et al. hydro-simulations29.

Moreover, a 1 − 2 MJ giant planet could be responsible for
the observed 3.5 AU-wide dust gap, while having a gas gap
smaller than 2 AU. The presence of a planet can generate pres-
sure bumps in the inner and outer edge of the gap, which could
trap particles (e.g, Pinilla et al. 2012). The location of those dust
traps are at a radius smaller (for the inner disk) and larger (for the
outer disk) than the inner and outer edge of the gas gap opened
by the planet (e.g., Pinilla et al. 2016). The gas-dust interaction
thus could produce gaps of different width for the dust and for
the gas as observed in HD 139614.

Regály et al. (2014) have computed the CO ro-vibrational
lines profiles expected for a disk with an embedded giant planet
for stars with different masses and planets at different separa-
tions. For a 2 M� star harboring a 10 MJ planet at 3 and 5 AU
separations, they have predicted asymmetric CO ro-vibrational
lines with distortions on the order of 10% with respect to the
symmetric line profiles. The composite 12CO line profile is sym-
metric and distortions are not detected at the 1σ level. This indi-
cates that the mass of the planet, if present, must be lower than
10 MJ , which is consistent with the upper limit of 2 MJ from the
lack of a gap in the gas distribution.

Besides dynamical interaction with embedded planets and
photoevaporation, various mechanisms to trap dust particles
have been proposed to explain the gaps, lopsided shapes, and
ringed structures observed recently by ALMA in disks (e.g.,
Pérez et al. 2014; van der Marel et al. 2015b; ALMA Partnership
et al. 2015; Andrews et al. 2016). Scenarios include a magneti-
cal origin such as radial pressure variations due to MHD turbu-
lence (zonal flows Johansen et al. 2009), radial variations in the
disk resistivity (e.g., Flock et al. 2015; Lyra et al. 2015), vortex
formation due to instabilities at the edge of the dead-zone (e.g.
Regály et al. 2013; Faure et al. 2015). Or a chemical origin such
as the changes in opacity due migrating solids reaching the con-
densation fronts of volatiles (e.g. Cuzzi & Zahnle 2004; Brauer
et al. 2008; Banzatti et al. 2015; Okuzumi et al. 2016). While
these scenarios could in part explain the dust features discov-

28 Note that the planet mass depends on assumptions such as the disk
viscosity. In the Matter et al. (2016) models assumed α = 0.006

29 For a study of the interplay of photoevaporation and planet forma-
tion see for example (Rosotti et al. 2013).

ered in disks, it is not clear whether they are able to explain the
gas density drop that the CO ro-vibrational emission reveals in
HD 139614 (and other transition disks). The low gas column-
density detected inside the dust cavities of transition disks, com-
bined with the low optical depth of the dust can, however, impact
the ionization structure of the disk and have an effect on MHD
phenomena.

5.5. A dust trap in the inner disk?

The possibility of an increasing gas surface density profile in the
inner 6 AU has interesting consequences from the point of view
of gas and dust evolution. If the gas surface density profile within
6 au of HD 139614 is indeed the result of a giant planet of mass
between 1 and 2 MJ at 4.5 AU, pressure bumps would be present
at the two edges of the planetary gap. In dust can accumulate,
grow, and be trapped in those pressure bumps (e.g. Fouchet et al.
2010; Pinilla et al. 2012). The trapping of the particles depends
on how well they are coupled to the gas and therefore, it de-
pends on their size and local gas surface density. Quantitatively,
particles with size aopt = 2Σgas/πρd drift the fastest towards the
regions of high pressure and are the most efficient particles to
trap (e.g. Fouchet et al. 2010). Here ρd is the internal density of
the dust grains, typically 1 − 3 g cm−3, and Σg is the gas surface
density. Using NH = 1019 − 1021 cm−2 (2.4 × 10−5 − 2.4 × 10−3

g cm−2)30 for the inner disk of HD 139614, we obtain that sub-
micron and micron sized grains are trapped at the inner gap’s
edge. This can lead to an increasing dust surface density with
radius in the inner disk, as the analysis of IR interferometry ob-
servations suggested (Matter et al. 2016).

5.6. Gas surface density in the inner disk and accretion rate
onto the star

Many of the bright transition disks have stellar accretion rates
(Ṁ?) between 10−9 and 10−8 M� yr−1, very similar to accre-
tion rates of classical T-Tauri stars with primordial gas-rich disks
(e.g. Manara et al. 2014). However, the surface density of the gas
in the cavities of transition disks typically ranges from 10−3 to 1
g cm−2 (see Table 6), which is several orders of magnitude lower
than at similar locations in primordial disks. Also quite surpris-
ingly, transition disks with similar Ṁ? can have very different
gas surface densities in their inner regions. This is the case for
IRS 48 and RXJ1615, both of which have Ṁ? ∼ a few×10−9 M�
yr−1, but estimated gas surface densities inside their cavities that
differ by roughly 2 orders of magnitude, despite the cavities be-
ing of similar size in the gas (van der Marel et al. 2015b, 2016).
These all seem to be counter-intuitive facts when considering
that, in a steady-state model of a protoplanetary disk, the stellar
accretion rate and the disk’s accretion rate should take similar
values throughout the disk.

The disk’s accretion rate, Ṁdisk, is related to the surface den-
sity Σ and radial velocity vR of the gas at radius R through
Ṁdisk = −2πR vR(R) Σ(R). If we now suppose that Ṁdisk ∼ Ṁ?,
then at a radius of 1 AU and for an accretion rate of 10−8 M�
yr−1, we find that |vR| should go from about 70 km s−1 down to
0.07 km s−1 for Σ in the range [10−3 − 1] g cm−2. At 1 AU, the
Keplerian velocity (vK) is about 30 km s−1, which means that for
the transition disks with the lowest densities inside the cavity, the
gas radial velocity can be comparable to the Keplerian velocity.
The above range of radial velocities is at odds with typical val-

30 Here the hydrogen mass fraction of gas with solar composition is
assumed (0.7) to calculate the gas surface density in g cm−2.
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ues expected in classical viscous disk models. These models tell
us that |vR| ∼ αh2vK were h is the disk’s aspect ratio and α is the
dimensionless turbulent viscosity of the disk. If the disk’s mag-
netic field is able to sustain vigorous turbulence in the cavities
of transition disks, then |vR| can reach at most ∼ 10−5vK. This is
at least 2 orders of magnitude smaller than the above range of
radial velocities obtained when assuming Ṁdisk ∼ Ṁ?.

Another way to visualize the problem is to think in terms of
the gas column density expected for the accretion rates reported,
and the CO ro-vibrational line-profiles that such column densi-
ties would produce. In the case of HD 139614, the Ṁstar = 10−8

M� yr−1 would suggest an NH of 1025 − 1026 cm−2 at R ≤1 AU
for α ranging from 10−2 to 10−3. These gas columns are large
enough for the CO to self-shield against UV photodissociation
and produce strong CO ro-vibrational emission from R < 1 AU
(not seen in our CRIRES spectrum). For example, if NH ∼ 1025

cm−2 at R < 1 AU in a disk without dust in the cavity (best case
for UV-photodissociation) around a Teff=10000 K central star
(i.e. brighter in UV than HD 139614) NCO would be 1021 cm−2

at R < 1 AU (see Fig. 8 in Bruderer 2013), a value much larger
than the 5σ limit of NCO = 5 × 1015 cm−2 from our CRIRES
data. According to the Bruderer (2013) models (for a Teff=10000
K), to have NCO < 1015 cm−2, NH needs to below 1022 cm−2 at
R < 1 AU for an inner disk without dust. In the case of HD
139614, which has a Teff ∼ 7800 K (so less UV) and some dust
in the inner disk31, NH should be even lower to enable the effi-
cient photodissociation of CO.

There are probably two ways to solve the above issues. The
first is to concede that the inner parts of transition disks do not
have to be in a steady state with Ṁdisk ∼ Ṁ?. This implies that
measured accretion rates should not be used as direct proxies to
derive the amount of gas left in the cavities of transition disks.
The second way is to conceive that the radial flow of gas in-
side the cavities of transition disks is not necessarily driven by
turbulent accretion, but by interactions with one or more mas-
sive companion(s) inside the cavity. HD 142527 may be a pio-
neering example of the latter possibility. Casassus et al. (2015)
show that a highly inclined stellar companion to HD 142527 can
generate fast radial flows inside the cavity of its transition disk.
Pontoppidan et al. (2011) detected in HD 142527 a 12CO ro-
vibrational spectrum and spectro-astrometry signature display-
ing asymmetries, indicating non-Keplerian contributions to the
emission. Further resolved observations of the gas kinematics
inside the cavities of transition disks will help assess the occur-
rence of this second scenario. In our case of HD 139614, the
12CO composite line profile is symmetric, smooth, and consis-
tent with Keplerian motion, which suggests the first scenario,
namely that Ṁdisk (1 AU) is likely different than Ṁ?.

6. Summary and Conclusions

We have obtained VLT/CRIRES high-resolution spectra (R ∼
90 000) of CO ro-vibrational emission at 4.7 µm in HD139614,
an accreting (10−8 M� yr−1) Herbig Ae star with a (pre-) transi-
tion disk which is characterized by a dust gap between 2.3 and
6 AU and a dust density drop δdust of 10−4 at R< 6 (Matter et al.
2016). We have detected υ = 1 →0 12CO, 13CO, C18O, C17O,
and υ = 2→1 12CO ro-vibrational emission. The lines observed
are consistent with disk emission and thermal excitation. We find
the following:

31 The dust at R<2.5 AU is optically thin at 4.7 µm, but in the UV it
has higher opacity, thus helping to shield CO.

1. The υ = 1 →0 12CO spectrum indicates that there is gas
from 1 AU up to 15 AU, and that there is no gaps in the
gas distribution. If a gap is present in the gas (i.e., a region
devoid of gas) it should have a width smaller than 2 AU.

2. The spectra of 13CO and C18O υ = 1 →0 emission are on
average colder and emitted further out in the disk (R >6 AU)
than the 12CO υ = 1 →0 emission. Keplerian flat-disk mod-
els show clearly that a drop in the gas density δgas of a factor
of at least 100 at R = 5 − 6 AU is needed to describe si-
multaneously the line profiles and rotational diagrams of the
three CO isotopologues. Models without a gas density drop
produce C18O and 13CO lines too wide and warm to be com-
patible with the data. If the gas-to-dust mass ratio is equal to
100 in the outer disk, the gas depletion factor δgas could be as
large at 10−4. Moreover, we find that the gas surface density
profile in the inner 6 AU of the disk is flat or increases with
radius.

The presence of molecular gas inside 6 AU and the weak X-
ray luminosity do not favor photoevaporation as the main mech-
anism responsible for the inner disk structure of HD 139614. The
gas density drop, a flat or increasing gas surface density profile
at R < 6 AU, combined with the non-detection of a gap in the gas
wider than 2 AU, suggest the presence of a single Jovian-mass
planet inside the dust gap. If a giant planet is indeed responsible
for the transition disk shape of HD 139614, its location would
be at around 4 AU and its mass would be lower than 2 Jupiter
masses. Furthermore, if a small gap in the gas (due to a planet)
were to be present, a gas surface density profile that increases
with radius in the inner disk might lead to a dust trap at the
gap inner edge for sub-micron and micron sized grains, which
could explain that the dust surface density increases with radius
at R < 2.5 AU, as found in IR interferometry observations.

We constrain the gas column density between 1 and 6 AU to
NH = 5 × 1019 − 1021 cm−2 (1.2 × 10−4 − 2.4 × 10−3 g cm−2)
assuming NCO = 10−4NH . We derive a 5σ upper limit on the
CO column density at R <1 AU NCO = 5 × 1015 cm−2, which
suggests an NH < 5 × 1019 cm−2 at R <1 AU . The gas surface
density in the disk of HD 139614 at R ≤ 1 AU and at 1 < R < 6
AU is significantly lower than the surface density that would be
expected for HD 139614’s accretion rate, assuming a standard
viscous α-disk model. Our result, and the low gas surface densi-
ties reported in the inner disks of other transition disks, suggests
that stellar accretion rates should not be used as direct proxies to
derive the amount of gas left inside the dust cavities of transition
disks. An investigation of the topology of the magnetic fields of
young stars with transition disks is needed, to help address the
issue of the differences between the accretion rate and the inner
disk’s gas surface density.

We have discussed the ensemble of transition disks with cur-
rent constraints for the gas surface density inside the dust cav-
ity. The sample shows that, in the majority of the sources, the
drop in the dust density is larger than the drop in the gas density
(δdust < δgas). This suggests that dust is depleted faster than gas
in the inner disk.

The number of transition disks with a complete set of multi-
wavelength observations of gas and dust (ALMA, CRIRES,
Herschel, Spitzer, VLTI, SEDs, HiCiAO, VLT/SPHERE, GPI)
is growing. A homogenous multi-wavelength / multi-technique
modeling of gas and dust observations in transition disks would
be of great help to understand the variety of gas and dust struc-
tures that those disks have, and to study the possible links to
planet formation. In that respect, it would be of great help to have
spatially resolved measurements of the rotational transitions of
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CO isotopologues in the sub-mm for HD 139614 (for example
with ALMA32).
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of the Hungarian Academy of Sciences. A. Carmona and C. Pinte acknowl-
edge funding from the European Commission’s 7th Framework Program (EC-
FP7) (contract PERG06-GA-2009-256513) and from Agence Nationale pour
la Recherche (ANR) of France under contract ANR-2010-JCJC-0504-01. A.
Carmona acknowledges financial support by the European Southern Observatory
visitors program. The research leading to these results has received funding
from the EC-FP7 under grant agreement no 284405. C. Eiroa is partly sup-
ported by the Spanish Grant AYA 2014-55840-P L.A.Cieza was supported by
CONICYT-FONDECYT grant number 1140109 and the Millennium Science
Initiative (Chilean Ministry of Economy), through grant Nucleus RC130007.
A.C would like to thank C.P. Folsom for comments on the manuscript. A.C and
C.B would like to thank G. Lesur and S. Casassus for discussions on protoplan-
etary disks.

References
Acke, B., Bouwman, J., Juhász, A., et al. 2010, ApJ, 718, 558
Acke, B., van den Ancker, M. E., & Dullemond, C. P. 2005, A&A, 436, 209
Alecian, E., Wade, G. A., Catala, C., et al. 2013, MNRAS, 429, 1001
Alexander, R., Pascucci, I., Andrews, S., Armitage, P., & Cieza, L. 2014,

Protostars and Planets VI, 475
Alexander, R. D. & Armitage, P. J. 2007, MNRAS, 375, 500
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Appendix A: Measured line centers, FWHM, integrated fluxes, and upper limits.

Table A.1. CO ro-vibrational line fluxes, upper limits and average line ratios.

line λ0 λobs
a ∆ V Integrated flux b FWHM b

[nm] [nm] [km s−1] [10−15 erg s−1 cm−2] [km s−1]
12CO 1→ 0 P(6) 4717.69 4717.73 ± 0.01 0.25 ± 0.06 13.0 ± 0.5 13.7 ± 0.4
12CO 1→ 0 P(7) 4726.73 4726.73 ± 0.01 0.00 ± 0.06 15.2 ± 0.4 14.7 ± 0.3
12CO 1→ 0 P(9) 4745.13 4745.15 ± 0.01 0.13 ± 0.06 14.3 ± 0.4 13.5 ± 0.4
12CO 1→ 0 P(10) 4754.50 4754.52 ± 0.01 0.13 ± 0.06 17.5 ± 0.4 15.1 ± 0.3
12CO 1→ 0 P(11) 4763.98 4764.01 ± 0.01 0.19 ± 0.06 14.8 ± 0.4 13.3 ± 0.4
12CO 1→ 0 P(12) 4773.58 4773.64 ± 0.01 0.38 ± 0.06 13.5 ± 0.3 13.4 ± 0.2
12CO 1→ 0 P(13) 4783.29 4783.33 ± 0.01 0.25 ± 0.06 14.7 ± 0.4 14.0 ± 0.3
12CO 1→ 0 P(15) 4803.07 4803.10 ± 0.01 0.19 ± 0.06 13.3 ± 0.5 13.3 ± 0.4

14.5 ± 0.5 13.9 ± 0.3 average

13CO 1→ 0 R(6) 4715.04 4715.10 ± 0.01 0.38 ± 0.06 3.5 ± 0.2 11.8 ± 0.5
13CO 1→ 0 R(5) 4722.70 4722.72 ± 0.01 0.13 ± 0.06 4.3 ± 0.3 13.1 ± 0.6
13CO 1→ 0 R(4) 4730.47 4730.49 ± 0.01 0.13 ± 0.06 4.3 ± 0.2 13.4 ± 0.5
13CO 1→ 0 R(2) 4746.31 4746.36 ± 0.03 0.32 ± 0.19 3.3 ± 4.4 12.6 ± 2.8
13CO 1→ 0 R(0) 4762.56 4762.60 ± 0.01 0.25 ± 0.06 2.4 ± 0.3 11.2 ± 0.8
13CO 1→ 0 P(1) 4779.22 4779.27 ± 0.01 0.31 ± 0.06 2.6 ± 0.2 12.3 ± 0.9
13CO 1→ 0 P(2) 4787.71 4787.71 ± 0.02 0.00 ± 0.13 4.3 ± 0.5 15.9 ± 1.6
13CO 1→ 0 P(4) + 4804.99 - - 8.4 ± 0.8 -

12CO 2→ 1 P(9)
3.5 ± 0.6 12.9 ± 0.6 average

C18O 1→ 0 R(7) 4716.46 4716.50 ± 0.02 0.25 ± 0.13 1.2 ± 0.2 11.1 ± 1.6
C18O 1→ 0 R(6) 4724.03 4724.04 ± 0.02 0.06 ± 0.13 1.6 ± 0.2 10.8 ± 1.2
C18O 1→ 0 R(5) 4731.70 4731.75 ± 0.02 0.32 ± 0.13 1.4 ± 0.3 10.4 ± 1.2
C18O 1→ 0 R(3) 4747.34 4747.38 ± 0.03 0.25 ± 0.19 1.2 ± 0.3 11.4 ± 2.0
C18O 1→ 0 R(2) 4755.31 4755.36 ± 0.02 0.32 ± 0.13 0.9 ± 0.2 7.9 ± 1.2
C18O 1→ 0 R(1) 4763.38 c - 1.5 ± 0.2 c

C18O 1→ 0 R(0) 4771.56 4771.62 ± 0.03 0.38 ± 0.19 0.9 ± 0.3 10.3 ± 2.2
C18O 1→ 0 P(1) 4788.22 4788.22 ± 0.02 0.00 ± 0.13 0.8 ± 0.2 5.5 ± 1.1
C18O 1→ 0 P(3) 4805.29 c - 1.1 ± 0.4 c

1.2 ± 0.1 9.6 ± 0.8 average

C17O 1→ 0 R(0) 4716.96 - - < 0.5 -
C17O 1→ 0 P(1) 4733.62 - - < 0.5 -
C17O 1→ 0 P(3) 4750.71 4750.78 ± 0.04 0.44 ± 0.25 0.6 ± 0.2 9.9 ± 2.3
C17O 1→ 0 P(4) 4759.40 - - < 0.6 -
C17O 1→ 0 P(9) 4804.53 4804.56 ± 0.02 0.19 ± 0.12 0.9 ± 0.3 7.4 ± 2.3

0.8± 0.2 9 ± 1.6 average

12CO 2→ 1 R(0) 4715.72 4715.75 ± 0.01 0.19 ± 0.06 >0.7 d

12CO 2→ 1 P(1) 4732.65 4732.70 ± 0.01 0.32 ± 0.06 1.8 ± 0.2 12.2 ± 1.0
12CO 2→ 1 P(3) 4750.01 4750.05 ± 0.01 0.25 ± 0.06 2.7 ± 0.2 11.4 ± 0.7
12CO 2→ 1 P(4) 4758.86 4758.91 ± 0.01 0.31 ± 0.06 4.0 ± 0.2 12.7 ± 0.5
12CO 2→ 1 P(6) 4776.89 4776.89 ± 0.03 0.00 ± 0.19 >3.0 e

12CO 2→ 1 P(7) 4786.07 4786.12 ± 0.01 0.31 ± 0.06 5.2 ± 0.3 14.8 ± 0.8
12CO 2→ 1 P(9) 4804.78 blend 13CO 1→ 0 P(4) -

3.4± 0.7 12.8 ± 0.7 average

12CO 3→ 2 R(7) 4718.52 - - < 0.5 -
12CO 3→ 2 R(6) 4726.31 - - < 0.6 -
12CO 3→ 2 R(5) 4734.20 - - < 0.4 -
12CO 3→ 2 R(3) 4750.31 - - < 0.5 -
12CO 3→ 2 R(2) 4758.52 - - < 0.8 -
12CO 3→ 2 R(0) 4775.28 - - < 0.8 -
12CO 3→ 2 P(1) 4792.48 - - < 0.7 -
12CO 3→ 2 P(2) 4801.24 - - < 1.0 -

< 0.6 - average

average ∆V all lines 0.22±0.12

average line ratios
13CO 1→ 0 / 12CO 1→ 0 0.24 ± 0.05
C18O 1→ 0 / 12CO 1→ 0 0.08 ± 0.01
C17O 1→ 0 / 12CO 1→ 0 0.05 ± 0.01
12CO 2→ 1 / 12CO 1→ 0 0.23 ± 0.05
12CO 3→ 2 / 12CO 1→ 0 <0.04

Notes. Average line ratios were calculated from the average line fluxes. a Line centers are measured in the barycentric and radial velocity corrected
spectra. Their value is the center and 3σ error of the Gaussian fit to the line. b Integrated flux and FWHM of the Gaussian fit and 1σ error; upper
limits of the integrated line flux are 3σ assuming a line width of 10 km s−1; the error in the average is the maximum between the standard error of

the mean and
√∑

σ2
i

N . c Detection but Gaussian fit not possible; d No meaningful FWHM due to the low sigma detection ; e Detected but severely
affected by the atmospheric transmission.
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Appendix B: Flat disk model

The computation of a flat disk model starts by calculating the
expected integrated line flux of an annulus at radius R. This is
done by multiplying the intensity by the solid angle of the annu-
lus projected by the inclination i:

F(R) = I(R) Ω(R)projected. (B.1)

Here R is the mid-point of two grid points in the radial grid

R = 0.5 (R j + R j+1), (B.2)

and

Ω(R)projected = π cos(i) (R2
j+1 − R2

j )/D
2, (B.3)

where D is the distance to the source. The integrated line flux
for each cell in the azimuthal direction is then determined by
dividing the total integrated flux of the annulus by the number of
points of the azimuthal grid (Nθ):

F(R, θ) = F(R)/Nθ. (B.4)

We used 50 to 100 points in the radial direction and 1000 points
in the azimuthal direction. The local line profile φ of a grid point
in R and θ is then obtained by convolving the integrated flux
of the cell with a normalized Gaussian kernel, with a FWHM
equal to the spectral resolution convolved with the turbulent and
thermal broadening:

φ(R, θ, ν) = F(R, θ) ∗ φGauss(ν) (B.5)

The line profile of each cell in the azimuthal direction θ is then
velocity shifted to the expected local Keplerian velocity shift

∆V = cos(θ) sin(i)

√
GM?

R
, (B.6)

thus obtaining a φ(R, θ, ν)shifted for each cell.
If no slit effects are taken into account, the 1D spectrum of

the whole disk is obtained by summing the contributions of each
azimuthal cell in each annuli:

φ(R, ν) =

Nθ∑
φ(R, θ, ν)shifted, (B.7)

and summing the spectra of all the annuli in the radial direction

φ(ν) =

NR∑
φ(R, ν). (B.8)

To generate 3D channel maps the φ(R, θ, ν)shifted of each cell
is sampled in a cartesian data cube with coordinates X,Y, νwhere

X = R cos(θ), (B.9)

Y = R sin(θ) cos(i). (B.10)

If the effect of the slit is taken into account, the 1D spectrum is
extracted from the 3D (X,Y, ν) channel map data cube generated
by the model. First, the image in each velocity channel is con-
volved with a Gaussian beam of FWHM 206 mas to model the
spatial resolution. Then, to simulate the effect of the slit, the 3D
data-cube is rotated to account both for the position angle of the
disk on the sky and the slit orientation. After a 2D spectrum is
obtained from the 3D data by summing the pixels inside a 0.2”
vertical aperture. This 2D disk’s model spectrum is scaled such
that, in the extracted 1D disk spectrum, the peak of the line is

equal to the peak of the flux in the normalized observed com-
posite 1D spectrum.

To calculate the spectroastrometric signature, a synthetic
star+disk 2D spectrum is created by adding to the 2D disk spec-
trum a 2D star spectrum broadened by the PSF-FWHM. The 2D
star’s spectrum is constructed such that the continuum in the ex-
tracted 1D spectrum is equal to 1. The model 2D star + disk
spectrum is finally re-binned in the spatial and spectral direc-
tions such that its spatial and spectral pixel scales are the same
as the CRIRES data. With this synthetic 2D star + disk spectrum,
the theoretical spectroastrometric signature was measured using
the formalism of Pontoppidan et al. (2011).

Appendix C: Calculation of the Bayesian probability

In each model, a χ2 was calculated for each observational dataset
(i.e., one χ2 for the 12CO P(9) line profile, one χ2 for the 12CO
rotational diagram, etc...) using

χ2 =
1

N − 1

∑
i

(Ymodel i − Yobs i)2/σ2
Yobs i

. (C.1)

Where, Y corresponds to the line flux per velocity channel, in
the case of the spectrum, and the Y axis in the case of the rota-
tional diagram. N is the number of channels in the spectrum or
the number of data points in the rotational diagram. For the line
profiles we used the velocity channels from -15 to 15 km s−1.
This enabled us to cover the wings of the line and a small part of
the continuum.

As there are six observational datasets, six χ2 values were
calculated per model. Because the numerical value of χ2 can be
very different for the rotational diagram and the line profile, be-
fore calculating the combined χ2, the χ2 of each observational
dataset (i.e. line profile, rotational diagram) was normalized by
the minimum values of χ2 of that observational data set in the
entire grid. The sum of the six normalized χ2 gave the final χ2

for a model. The Bayesian probability

p = exp(−χ2/2) (C.2)

was calculated for each model, and finally p was divided by the
sum of all p. In this way, a normalized bayesian probability p
was obtained for each model. The 1D probability for each free
parameter was calculated by summing the normalized p of all the
models containing a particular value of the parameter in ques-
tion. Similarly, 2D probability distributions were constructed by
summing the normalized p of all the models containing the pair
of values for the free parameters in the plot.
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Fig. B.1. Line profiles predicted for models around the best solution of the power-law intensity model: a) effect of varying the inner
radius with the outer radius fixed; b) effect of varying the inner radius keeping α fixed. In the models, α or Rout are adjusted such
that I(Rout) = 0.01 × I(Rin); c) line profile for an intensity distribution with a sharp increase at 1.2 AU (in blue) and the line profile
of an intensity distribution that grows as a power law from 0.01 AU to 1.2 AU (in red). In both models the intensity decreases with
α = −1.8 at R > 1.2 AU. Error bars in the composite spectrum are 1σ.
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Fig. C.1. Bayesian probability plots for a sub-sample of the grid
in which only the models with αNH inner ≤ +1 are considered
(54 000 models).
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Fig. C.3. Bayesian probability plots for the grid using only the
12CO and 13CO data (i.e. no C18O data). Models suggest a sur-
face density drop of at least a factor 100 in the inner 6 AU, and
an increasing surface density profile with radius (i.e. a power law
with a positive exponent).
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Fig. C.2. Surface density, temperature, CO optical depth, flux density, cumulative line flux, rotational diagrams, line profiles of the
12CO P(9), 13CO P(4), and C18O R(6) emission, for the best model in the grid when αNH inner ≤ +1.0. Model is in red observations
are in black. Observed line profiles are displayed in flux units after continuum subtraction with 3 σ error bars. The two branches
seen in the rotational diagram correspond to the R and P branches of CO ro-vibrational emission. The right-most panels compare
the normalized theoretical line profiles with the observed composite line profile of each CO isotopologue with a 1 σ error bar.
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Fig. C.4. Bayesian probability plots for a sub-grid of models (28800), in which we varied the radius of the gas density drop (Rgap rmax)
between 4.0 and 6.0 AU. Rgap rmax) down to 5 AU are compatible with the data. The most likely value for the gas density drop is 6
AU, a radius similar to the dust density drop.
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Fig. C.5. Flux density, cumulative line flux, rotational diagrams, line profiles of the 12CO P(9), 13CO P(4), and C18O R(6) emission,
for the model exhibiting the best combined fit to the rotational diagrams and line profiles, extrapolating the surface density and
temperature profile down to 0.1 AU. Model is in red and observations are in black. Observed line profiles are displayed in flux units
after continuum subtraction with 3 σ error bars. The two branches seen in the rotational diagram correspond to the R and P branches
of CO ro-vibrational emission. The right-most panels compare the normalized theoretical line profiles with the observed composite
line profile of each CO isotopologue with a 1 σ error bar.
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Fig. C.6. Surface density and temperature profile, and predicted υ = 1→ 0 12CO P(6), 13CO R(4), C18O R(6), and υ = 2→ 1 12CO
P(3) and 12CO P(4) line profiles for a model with NH at R = 6 AU three times larger than the best model of the grid (NH (R=6 AU) =

3×1023 cm−2). The higher NH enables to describe the υ = 2 → 1 12CO P(3) and 12CO P(4) line profiles while keeping a good fit to
the υ = 1 → 0 lines. The model has the same temperature structure and same surface density at R < 6 that the best model of the
grid (thus δgas=3.3×10−3). The cumulative flux plot shows that the υ = 2→ 1 lines are dominated by the contribution at 6 < R < 10
AU. Errors in the plot are 3σ and the dashed horizontal line is the 5σ limit.
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