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The Cytochrome P450 (CYP) system is involved in 90% of the human bodys interactions with xenobi-
otics and due to this it has become an area of avid research including the creation of transgenic mice. This
paper proposes a three compartment model which is used to explain the drug metabolism in the Hepatic
Reductase Null (HRN) mouse developed by the University of Dundee (Henderson et al., 2003).
The model is compared with a two compartment model using experimental data from studies using wild
type and HRN mice. This comparison allowed for metabolic differences between the two types of mice
to be isolated. The three sets of drug data (Gefitinib, Midazolam and Thalidomide) showed that the trans-
genic mouse has a decreased rate of metabolism.
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1. Introduction

Over recent years the Cytochrome P450 enzymatic system has become a focus of drug metabolism stud-
ies. Since it is involved in 90% of the human body’s interactions with xenobiotics (Parikh et al., 1997) it
is an area of interpatient variability in drug response. Dueto this transgenic mice have been developed
in order to investigate this superfamily of enzymes. One of these mice is the Hepatic Reductase Null
(HRN) mouse developed by CXR Biosciences. The three compartment model proposed in this paper
was developed to compare the metabolism within a wild type and HRN mouse in order to pinpoint spe-
cific differences in mechanism of drug action.
HRN mice are missing the hepatic Cytochrome P450 system but bred so that they are still viable and fer-
tile. These mice are useful as they give one the opportunity to study the metabolism pathways taken by
the drug. Through this method it is also possible to gain an insight as to whether the main metabolism of
a drug happens in the liver, gastro-intestinal tract, extrahepatically etc. An unexpected consequence of
deleting hepatic Cytochrome P450 reductase was the discovery that the P450 content of the liver was in-
creased by approximately a factor of five. These mice help investigate the toxicokinetics of compounds
which can show the side effects associated with a drug. This is especially useful when the drug has a nar-
row therapeutic window, for example, anti-cancer drugs (Henderson et al., 2006). Cyclophosphamide
has been pharmacokinetically examined using the Cytochrome P450 reductase null mouse (Pass et al.,
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2005).
In pharmacokinetics there are a number of different approaches to modelling drug data including “whole
body” approaches, Physiologically Based Pharmacokinetics (PBPK) and compartment models. All
three models are based on the representation of the drug absorption using a series of blocks or com-
partments. The “Whole Body” models have been of great interest since this approach gives a better
idea of where the metabolism takes place if all systems are taken into account (Lüpfert and Reichel,
2005). As such compartments are assigned to the lungs, heart, liver, kidney etc. and pharmacokinetic
parameters for each are found experimentally or assigned arbitrarily. Flynn et al. (1996) used a Phys-
iologically Based Pharmacokinetic (PBPK) model with a number of compartments in order to analyse
ethanol metabolism in mice after an intraperitoneal injection. This approach uses mass balance equa-
tions to track both parent and metabolite compounds over time per compartment. This allows a greater
insight into the effect of certain organ systems on ethanol concentration. This approach is still used
within this area of research although better parameter estimates are still needed (Ramchandani et al.,
2001).
Modelling drug data using compartments allows for complex systems to be analysed in a simpler way.
The compartment models used in this paper have two and three compartments and were developed from
the basis of a one block model. A paper by Yu et al. (1999) used aone-compartment model for the
metabolites in their experiments. They were investigatingCyclophosphamide and Ifosfamide in rats
with reference to Cytochrome P450 catalysed metabolism with respect to phenbarbital pre-treatment.
These drugs were given as intraperitoneal injections but since they were modelling the metabolites,
the one compartment approach is equivalent to a two compartment approach since there is a phase of
metabolism prior to the data used.
In Klein et al. (2012) a two compartmental model was used while investigating the effect of the CYP2C9
enzyme on Warfarin metabolism. The article was focussed on the prevalence of Drug-Drug Interactions
(DDI) which can arise in Asian populations due to polymorphisms in this enzyme.
Grass (1997) used a two compartment STELLA (Structural Thinking Experimental Learning Labora-
tory with Animation) model in order to analyse the drugs ketorolac and ganciclovir. This model is a
physiologically based formulation used to describe dynamics in the gastro-intestinal tract. The parame-
ters were simulated fromin vitro data including animal cultures and used to predict oral drugabsorption
in humans.
An example of a three compartment model was shown in Sugano etal. (2011) where it was used to
represent an epithelial cell and parameterised using membrane permeabilities. This article allowed for
pharmacokinetic parameters to be estimated from the data which can aid with drug design.
A three compartment model was applied to mouse data in Shen etal. (2011) where the link between
5-methoxy-N,N-dimethyltryptamine metabolism and the CYP2D6 enzyme was studied. Their model
describe a nonlinear elimination from the central compartment based on Michaelis-Menten kinetics and
the peripheral compartment is solely to represent the CYP2D6 dependent metabolism.
A review of modelling techniques including oral administrations with respect to metal metabolism is
outlined in Curis et al. (2009). This paper outlines the advantages and disadvantages of different models
as well as the need for “dummy” compartments that have no strict use as they represent the absorbed
from and excreted to compartments. The paper presents the mammalian model for humans, which is
generally a compartment representing blood or plasma with peripheral sections for organ systems that
are relevant to the drug in question.
Doan and Boje (2000) analyse several different pharmacokinetic models with reference to the endoge-
nous inhibitors and their effect on drug half-lives and concentration. They investigate this by using
compartment models and different administration techniques for the inhibitor. This includes oral and



bolus with the oral ingestion of food, which contain the inhibitor. The parameters in this case were
found using data from literature sources from experiments on rats which were given aspartame.
The oral administration of CHS 828, a cancer agent on rats, was analysed by Friberg et al. (2005) using
a one-compartment model. The study investigated the effectof change of therapeutic schedule on drug
efficacy on breast cancer cell lines.
Techniques for retrieving parameter values are usually done in vitro with some more recent studies doing
experimentsin vivo (Lombardo et al., 2002) as well since converting parameters(Baranczewski et al.,
2006) from one to the other have been unreliable (Chiu et al.,2007). Other methods include trying to
find parameters by reproducing a verified set of data (Curis etal., 2009). The other problem for this
experimental data is that sometimes the particular animal used is not a good representative of the mod-
elled animal. For example, using rat data to predict parameters for a human model (Harris and Barton,
2008) may be partially similar in mechanism in the body but the differences could cause errors in the
estimation and therefore a better understanding is needed to account for these.
The focus of this article is to introduce the three compartment model and through its usage investigate
the difference between the metabolism of the wild type and HRN mouse. Within section 2 we introduce
the drugs analysed and explain the development of the model.In the results section (section 3) the
model fit and the fitted parameters are analysed to give information on whether the three compartment
model has the best fit and how the two mice differ with respect to parameters.

2. Mathematical Methods

Compartment modelling is widely used in pharmacokinetics,as it is a means of reducing complexity in
drug metabolism problems. The simplest model is one with a single well-mixed compartment, which is
used mostly to describe intravenous administrations sincetransfer into the blood system is assumed to
be 100%. As such there is no need for an absorption phase to be taken into account such as there would
be with oral or intraperitoneal administrations. This is due to the need for the oral drug to be absorbed
through the Gastro-Intestinal (GI) tract membranes (Smithet al., 2001) and the intraperitoneal injection
needs to pass out of the peritoneal membrane surrounding theabdominal cavity.
The experimental data provided by CXR Biosciences were taken from procedures on both Hepatic
Reductase Null (HRN) and wild type mice (three of each). The drugs investigated here were given
through intraperitoneal injection. An intraperitoneal injection is used in experiments on small rodents
since they are very small and so have limited muscle mass and small veins (Fox et al., 2006). As such
it is easier to inject into the peritoneum since intravenousand intramuscular administrations are not so
possible. Two different compartment models were applied tothe sets of drug data as shown in Figure 1.

2.1 Specific Drugs

There were three sets of drug data and these were for Gefitinib, Midazolam and Thalidomide. These
were chosen due to the fact that there is only one cytochrome P450 enzyme responsible for the metabolism.
What follows is an explanation of the properties and mechanism of action for each drug.

2.1.1 Gefitinib This drug is an epidermal growth factor receptor (EGFR) inhibitor and as such is used
to treat many human cancers (Chang et al., 2008). In lung and breast cancers EGFR is overexpressed and
this can lead to uncontrolled cell proliferation and this iswhy this drug is important in cancer treatment.
This drug is metabolised by CYP3A4 (Scripture et al., 2005),which means this must take place in the
liver and small intestine since this is where this enzyme canbe found. The substance was injected into



the peritoneum with a dose of 5 mg/kg.

2.1.2 Midazolam This drug is a short-acting hypnotic-sedative drug that is commonly used in den-
tistry, endoscopy and in combination with local anaesthesia (Wishart et al., 2006). It is frequently used
in palliative care as a sedative or anticonvulsant (Morita et al., 2003). It is supposed to be used over short
periods of time with the longest time of use reported being 35days. It is a benzodiazepine that acts as a
central nervous system depressant and as such has pharmacodynamic properties including amnesia and
sedation (Wishart et al., 2006). It increases (gamma)-amino butyric acid (GABA) activity, which causes
a calming effect resulting in sleep. This drug is metabolised by CYP3A4 (Lewis, 2000) that is found in
the liver and small intestine. As with Gefitinib this is givenby intraperitoneal injection of 1 mg/kg.

2.1.3 Thalidomide This compound was initially used as a non-barbiturate hypnotic but it had to be
removed from distribution due to teratogenic effects. It iscurrently used for inflammatory and immuno-
logical disorders as it shows immunosuppressive activity (Wishart et al., 2006). In addition to this it
shows anti-angiogenic activity, which might mean it can be used as part of cancer therapy. Although
many of the effects of the drug have been documented there is still a lot more information about its
mechanism of action required (Strasser and Ludwig, 2002). Recently there has been research with ze-
brafish in Japan that has isolated the protein that caused thebirth defects in the children of Thalidomide
patients (Ito et al., 2010). The Cytochrome P450 enzyme responsible for Thalidomide metabolism is
2C19 (Ando et al., 2002) and this is found in the liver and is subject to polymorphisms. This drug was
given by intraperitoneal injection with a dose of 20 mg/kg.

FIG. 1. Schematic diagram of the models. The two compartment model (within the bordered area) and the proposed three
compartment model.

2.2 Two Compartment Model

The two compartments shown in Figure 1 allow extravascular administration (e.g. intraperitoneal) to be
modelled since the drug can start at the injection/dose site(y1) and pass through to the bloodstream (y2).
As such there should be an absorption phase into the bloodstream and then an elimination/excretion
curve.
Using the Law of Mass Action, the ordinary differential equations for the above model are:

dy1

dt
=−k12y1 (2.1)

dy2

dt
= k12y1− k20y2 (2.2)



Within this modely1 andy2 represent the primary dosing site (e.g. peritoneum in intraperitoneal admin-
istration) and the bloodstream respectively. The raw data is taken to represent they2 concentration. The
parameters for this model are fitted using nonlinear least squares algorithm with the raw data and the
analytical solutions are shown in the Appendix.

2.3 Three Compartment Model

This model further extends the previous one through an extracompartment. The configuration and or-
dinary differential equations for this model are as follows:

dy1

dt
=−k12y1 (2.3)

dy2

dt
= k12y1− k23y2+ k32y3− k20y2 (2.4)

dy3

dt
= k23y2− k32y3 (2.5)

(2.6)

In this model the first and second compartments represent thesame as in the previous model i.e.y2

represents the bloodstream andy1 the injection/dose site. The bloodstreamy2 is assumed to only have
positive values as this is physiologically realistic. As wecan see there is a rate of absorption into the
main compartment (y2) indicated byk12. From the main compartment there are two ways for the drug
to be distributed – it can be passed into compartment three orbe expelled from the system entirely. The
expulsion rate from the main compartment isk20. Compartment three represents lipid in the liver i.e.
k23 is the rate at which the drug is stored andk32 is the rate at which it is released back into the system.
The current assumption is thatk23 >> k32 i.e. that it is easier to get into compartment three than it isto
leave.
As with the two compartment model the parameters were fitted using nonlinear least squares and the
analytical solutions are given in the Appendix.

3. Results

For each drug the model parameters are compared and contrasted with the Wild Type (WT) and HRN
mouse. These parameters can be found in table 1 and table 2. The plots (figures 2, 3 and 4) show
the average drug data (over three mice) and the fitted model. The fit was assessed using the Akaikes
Information Criterion (AIC) and a F test (tables 3 and 4) on each average data set compared with the
each of the fitted models. The AIC statistic was used with the Fstatistic since the models are nested and
it uses a penalty for too many parameters.

3.1 Gefitinib

The parameters for Gefitinib shown in tables 1 and 2 indicate that for most of the parameters (with
the exception ofy1(0) andk32 for the two and three Compartment models respectively) the transgenic
mouse shows slower rate of metabolism than that of the wild type mouse. In figure 2 both the two and
three compartment models fit the data well although the bimodal nature of the HRN data lends itself
more to the three compartment model. The AIC values suggest that the best model for the HRN mouse



Two Compartment WT HRN Ratio (3dp)

Gefitinib
y1(0) 55331.46 67711.24 1:1.224
k12 0.447 0.141 1:0.316
k20 15.679 11.290 1:0.720

Midazolam
y1(0) 835.445 2242.681 1:2.684
k12 1.376 0.581 1:0.422
k20 8.777 6.272 1:0.715

Thalidomide
y1(0) 77565.25 24408.21 1:3.793
k12 0.561 2.126 1:0.072
k20 3.908 0.283 1:0.315

Table 1. Gefitinib, Midazolam and Thalidomide Model Parameters for two compartment model.

Three Compartment WT HRN Ratio (3dp)

Gefitinib

y1(0) 3278.265 1583.595 1:0.483
k12 4.953 4.443 1:0.897
k23 2.691 2.190 1:0.814
k32 1.784 2.136 1:1.197
k20 0.749 0.224 1:0.300

Midazolam

y1(0) 234.059 278.353 1:1.189
k12 4.263 4.501 1:1.056
k23 1.697 1.026 1:0.605
k32 1.091 3.264 1:2.991
k20 1.983 0.771 1:0.389

Thalidomide

y1(0) 82347.45 122055.7 1:1.482
k12 0.610 0.437 1:0.717
k23 1.677 0.667 1:0.398
k32 5.449 0.718 1:0.132
k20 4.209 0.351 1:0.351

Table 2. Gefitinib, Midazolam and Thalidomide Model Parameters for three compartment model.

Data
Two Compartment Three Compartment

Gefitinib Midazolam Thalidomide Gefitinib Midazolam Thalidomide
HRN 84.271 19.440 99.047 100.874 75.439 155.047
WT 92.288 21.748 84.200 88.438 77.748 140.200

Table 3. AIC (Akaike’s Information Criterion) for Gefitinib, Midazolam and Thalidomide. The model chosen for each data set is
indicated inbold.

is the two compartment model whereas for the WT this is the three compartment model. The average
data for the HRN mouse shows at least two peaks, which are not features of either of the compartment
models considered. The F test results suggest that the threecompartment model provides a better fit for
the data even though it has more parameters.



Data
F test

Gefitinib Midazolam Thalidomide
HRN 3.177e−10 0.934 0.001
WT 3.953e−11 0.481 0.002

Table 4. F statistic values for Gefitinib, Midazolam and Thalidomide.
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FIG. 2. (Colour online) Plots showing the Gefitinib drug concentration against time for the raw data (5) and computational
simulation results from HRN (left) and WT (right).

3.2 Midazolam

The parameters for the two models for this drug are shown in tables 1 and 2. For the Midazolam models
the fitted initial concentrations and thek12 andk32 in the 3 compartment model are all larger in the
transgenic mice than the wild type. However for all the otherrate parameters the rates (excretion and
transfer) are slower in the HRN mouse. Both models fit the absorption and excretion phase fine but after
the 2-hour point the two compartment fitted model does not fit well as shown in figure 3. According to
the AIC values (table 3) the two compartment model is the bestfor the data sets and the F-test supports
this outcome.

3.3 Thalidomide

For this drug the model parameters are listed in tables 1 and 2. As with Midazolam all the initial
concentrations for the models are larger for the transgenicmouse than for the wild type. However for
the rate parameter all of the rates are reduced in the HRN mouse. The fit of these models to these data
points is good but the peaks are not similar in shape as shown in Figure 4. The AIC values suggest that
the best model for the data is the two Compartment model but the F-test favours the three compartment
model.
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FIG. 3. (Colour online) Plots showing the Midazolam drug concentration against time for the raw data (5) and computational
simulation results from HRN (left) and WT (right).
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FIG. 4. (Colour online) Plots showing the Thalidomide drug concentration against time for the raw data (5) and computational
simulation results from HRN (left) and WT (right).

4. Discussion

Throughout this paper the same two models have been fitted to the data sets with varying amount of
success. A table summarising the success in fitting the models to the CXR Bioscience data is shown
in table 5. It shows that although the two compartment model fits well to the data sometimes a more



Drug
Wild Type Hepatic Reductase Null

F test AIC F test AIC
Gefitinib 3 3 3 2

Midazolam 2 2 2 2
Thalidomide 3 2 3 2

Table 5. Summary of Compartmental Models chosen for each CXRBioscience Experiment.

complex model is necessary. This is shown particularly in Midazolam where the data can be fitted using
the two compartment model but for Gefitinib and Thalidomide the data requires the more complex three
compartment model. The need for extra complexity could stemfrom a physiological difference or the
necessity for multiple time scales due to multiple Cytochrome P450 enzymes acting on the drug or the
drug needing to move area to get metabolised. The novel threecompartment model outlined in this
paper takes a step towards addressing this need for more complexity.
When the parameters for the HRN and wild type mice were compared for most of the data sets the HRN
rates were slower than their counterpart. This could mean there is a metabolic difference between the
two mice stemming from the genetic knockout. Since metabolism is dependent on a number of factors
it is difficult to pin this down to one physiological parameter.
The parameters for Gefitinib shown in tables 1 and 2 indicate that for most of the parameters (with the
exception ofk32 for Three Compartment model) the transgenic mouse shows slower rate of metabolism
than that of the wild type mouse. This fact indicates that compartment 3 in the HRN mouse is less like
a “fatty liver” as was intended since it is easier to leave than enter.
For the Midazolam models the fitted initial concentrations,k12 andk32 in the 3 compartment model are
all larger in the transgenic mice than the wild type. Howeverfor all the other rate parameters the rates
(excretion and transfer) are slower in the HRN mouse. Both models fit the absorption and excretion
phases fine but after the 2-hour point the fitted 2 compartmentmodel does not fit well. Out of the two
models the three compartment shows the best visual fit to the data sets.
For Thalidomide all the initial concentrations for the models are larger for the transgenic mouse than
for the wild type.
Although the initial concentration for the two compartmentmodel was roughly four times in the HRN
mouse the associated rate parameters were both less than a third of the wild type rate. This suggests that
physiologically the absorption and elimination of the transgenic mouse was much slower than a normal
mouse metabolising Thalidomide. The visual fit of the two andthree compartment model to the data
sets was good with the exception of the peak area.
The problem with fitting the compartment models to these setsof data is generated by experimental
constraints. It would be easier if more data were available instead of just three mice of each type for
each drug. This would mean that the average would be statistically more representative which would aid
in providing a better fit. Other than this constraint it wouldhave been useful if more samples could have
been taken or taken more regularly. However this is unfeasible since the volume of blood in a mouse is
finite and takes a while to replenish. It is due to these constraints that sampling is prioritised within the
first hour after the dose.
Since both models were fitted using the non-linear least squares in Microsoft Excel the results are
comparable. This area of modelling is useful since the curves generated are able to mimic real life. If it
was possible to fully explain the action of the drug for both types of mouse it would be easier to show
the specific metabolic differences between the transgenic and wild type. From the work presented it can



be seen that the HRN mouse has a slower metabolism than the wild type.
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Appendix: Analytical Solutions

The solution to the two compartment model is obtained through straightforward integration and is given
as:

y1(t) = y1(0)e
−k12t , (4.1)

y2(t) =
k12y1(0)e−k20t

k12− k20
−

k12y1(0)e−k12t

k12− k20
. (4.2)

The solution to the three compartment model, while a little unwieldy, may be obtained using MAPLE,
and with the substitutionsF = [k2

20−2k32k20+2k20k23+ k2
32+2k32k23+ k2

23]
1/2 and

G= [k2
23+(2k20+2k32)k23+(k32− k20)

2]1/2 is given as:



y1(t) = y1(0)e
−k12t , (4.3)

y2(t) =−((−4(k2
20− k32k20+2k20k23+ k2

32+2k32k23+ k2
23)

1/2k20+4Fk32−4Fk23−4k2
20

+8k32k20−8k20k23−4k2
32−8k32k23−4k2

23)k
2
12+(4Fk2

20+(8Fk23+4k2
20−8k32k20+8k20k23

+4k2
32+8k32k23+4k2

23)k20−4Fk2
32+(4k2

20−8k32k20+8k20k23+4k32h2+8k32k23+4k2
23)k32

+4Fk2
23+(4k2

20−8k32k20+8k20k23+4k2
32+8k32k23+4k2

23)k23)k12+(−4Fk32− k2
20+2k32k20

−2k20k23− k2
32−2k32k23− k2

23)k
2
20+(4Fk2

32+(−4Fk23−2k2
20+4k32k20−4k20k23−2k2

32

−4k32k23−2k2
23)k32+(−2k2

20+4k32k20−4k20k23−2k2
32−4k32k23−2k2

23)k23)k20+(−k2
20

+2k32k20−2k20k23− k2
32−2k32k23− k2

23)k
2
32+(−2k2

20+4k32k20−4k20k23−2k2
32−4k32k23

−2k2
23)k23k32+(−k2

20+2k32k20−2k20k23− k2
32−2k32k23− k2

23)k
2
23+(k2

20−2k32k20+2k20k23

+ k2
32+2k32k23+ k2

23)
2)k12y1(0)e

((−0.5(k20−k32−k23−F)t)(((−2k12+ k20+ k32+ k23−F)(−2k12

+ k20+ k32+ k23+F)(k2
20−2k32k20+2k20k23+ k2

32+2k32k23+ k2
23)(2k12− k20− k32− k23

−F)))−1+((−4Fk20+4Fk32−4Fk23+4k2
20−8k32k20+8k20k23+4k2

32+8k32k23+4k2
23)k

2
12
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20+(8Fk23−4k2

20+8k32k20−8k20k23−4k2
32−8k32k23−4k2

23)k20−4Fk2
32+(−4k2
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23)
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20

−2k32k20+2k20k23+ k2
32+2k32k23+ k2

23)(2k12− k20− k32− k23+F)))−1
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(0.5)(−8e(−k12t)Fk23k2

12+8e(−k12t)Fk23k32k12)y1(0)
((−2k12+ k20+ k32+ k23−F)(−2k12+ k20+ k32+ k23+F)Fk23)

, (4.4)

y3(t) = 2
e(−0.5(k20−k32−k23+F))tk23k12y1(0)

F(2k12− k20− k32− k23+F)
−2

e(−0.5(k20−k32−k23−F))tk23k12y1(0)
F(2k12− k20− k32− k23−F)

−
(−2y1(0)e−k12t+((2(k20+k32+k23−F))−1)te((2(k20+k32+k23+G))−1)t

−2k12+ k20+ k32+ k23−F
(4.5)

+
2y1(0)Ge−k12t+((2(k20+k32+k23+F))−1)te((2(k20+k32+k23−G))−1)t

(−2k12+ k20+ k32+ k23+F))k23k12(e−t(k20+k32+k23))
.
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