
Elaborator Reflection: Extending Idris in Idris

David Christiansen
Indiana University Bloomington, USA

davidchr@indiana.edu

Edwin Brady
School of Computer Science, University of St Andrews,

Scotland
ecb10@st-andrews.ac.uk

Abstract
Many programming languages and proof assistants are defined
by elaboration from a high-level language with a great deal of
implicit information to a highly explicit core language. In many
advanced languages, these elaboration facilities contain powerful
tools for program construction, but these tools are rarely designed
to be repurposed by users. We describe elaborator reflection, a
paradigm for metaprogramming in which the elaboration machinery
is made directly available to metaprograms, as well as a concrete
realization of elaborator reflection in Idris, a functional language
with full dependent types. We demonstrate the applicability of Idris’s
reflected elaboration framework to a number of realistic problems,
we discuss the motivation for the specific features of its design, and
we explore the broader meaning of elaborator reflection as it can
relate to other languages.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Metaprogramming, dependent types, elaboration

1. Introduction
Writing programs that write programs, or metaprogramming, allows
ordinary programmers to seize privileges that were once reserved
for language implementers. This is especially true when metapro-
grammers are able to extend the languages that they use to express
themselves. Language extensions can eliminate the need for tedious
boilerplate code, they can enable domain-specific idioms, notation
and design patterns to be expressed directly, and they can enable
optimizations that were not foreseen by the compiler’s authors. In
languages based on dependent type theory, metaprograms are widely
used for automating the construction of proofs as well as programs.

Idris is a pure functional language with full dependent types.
Idris is type checked in two stages: first, a metaprogram known as
an elaborator translates the user-accessible language into a much
smaller core language, known as TT, after which the TT program
is type checked independently with a much simpler type checker.

Elaboration allows Idris to have high-level conveniences whose
safety is guaranteed by the core language’s type checker. These
conveniences include implicit arguments that are found by the

compiler, type classes,1 type-driven disambiguation of names, and
local definitions. The core language has none of these. Elaborating
each of these features affects the elaboration of the others. For
example, resolving a type class might cause the value of an implicit
argument to be discovered, which itself provides type information
that enables a name to be disambiguated, which then might cause
still more implicit arguments to be solved. This means that the
elaboration procedures for each of these features must be able to
share information and that they cannot be written in isolation.

A difficult metaprogramming problem calls for a powerful
solution. Taking a cue from successful metaprogramming systems
for proof automation, Brady (2013) based the Idris elaborator on
the design of tactic-based interactive proof assistants, embedding
proof tactics in a Haskell monad. The elaborator is then a function
from high-level Idris abstract syntax trees to programs in this
tactic language, which construct the desired TT program when
run. The abstractions and effects in the tactic language, including
holes to be filled in and unification problems yet to be resolved,
enable the elaborators for each language feature to communicate
without needing to know about each others’ implementation details.
Additionally, the tactic-based elaborator has proven to be robust
in the face of extensions that were not conceived of at the time
of its initial implementation, such as quasiquotation (Christiansen
2014). Unfortunately, the elaborator monad is part of the underlying
language implementation, and modifications and extensions require
changing the compiler, erecting a solid barrier between language
users and language implementers.

In this paper, we introduce elaborator reflection, where Idris’s
elaboration framework is realized as a primitive monad in Idris itself.
This empowers ordinary Idris users to write elaboration scripts
in Idris, and running these elaboration scripts is as easy as type
checking an Idris file, rather than rebuilding the compiler. With this
new power at our fingertips, we discovered that Idris’s elaborator
monad turns out to be useful for more than just elaborating high level
Idris programs. We extended Idris with the ability to write separate
termination proofs for general recursive functions by automating
the Bove-Capretta transformation (Bove and Capretta 2005), we
automated the proofs of a number of the lemmas in Idris’s standard
library, and we demonstrated how to generate data types that
match the schemas of external data sources based on Idris’s type
providers (Christiansen 2013), all without leaving the cozy confines
of our favorite language.

Contributions
This paper makes the following contributions:

• We present elaborator reflection, a new paradigm for metapro-
gramming in which metaprograms output a simpler core lan-

1 Type classes are called “interfaces” in recent versions of Idris, but in the
present paper we will use the Haskell terminology.

guage and have access to the elaboration facilities of the high-
level language’s implementation.
• We demonstrate a concrete realization of elaborator reflection in

the dependently typed functional language Idris.
• We demonstrate that Idris’s elaborator reflection is general

enough to support diverse metaprogramming tasks, including
type class derivation, proof automation, interactive code genera-
tion, and even reimplementation of compiler features as libraries.

Additionally, elaborator reflection may provide an alternative route
to self-hosting. We comment on this possibility in Section 7.

2. Motivating Examples
Elaborator reflection allows us to write metaprograms, describing
mechanical procedures for automatically generating programs in
Idris’s core language. In this section we briefly describe two exam-
ples which will benefit from elaborator reflection: automatic gen-
eration of termination predicates to help reason about totality; and
automation of a family of proofs. Here, we describe the problems;
later, in Section 5, we will describe how to solve these problems and
others using elaborator reflection.

Before discussing more realistic examples, it can be instructive
to see a small example of elaborator reflection in action. Firstly,
we construct a metaprogram that will implement a monomorphic
identity function at a type determined by the context in which it is
invoked:

mkId : Elab ()
mkId = do x <- gensym "x"

attack
intro x
fill (Var x)
solve
solve

The type annotation Elab () declares that mkId is a metaprogram
that uses elaborator reflection. The use of do-notation desugars to the
monadic bind operator, just as in Haskell. The first step in generating
the function is to construct a unique name for its argument using
gensym, which returns a fresh name. The next tactic, attack, is
used to delimit fresh scopes. It is described in detail in Section 4.1.
The lambda term is constructed using intro, which automatically
populates the type annotation of the lambda from the expected
function type. The body of the lambda is filled with a reference to
its bound variable x. Because fill only places a provisional term
in the focused hole, the solve tactic is used to mark that provisional
term as a complete solution. Finally, solve is used again, this time
to mark the scope introduced by attack as completed.

The metaprogram is invoked using the syntax %runElab mkId,
which tells Idris to build a term by applying the elaborator mkId. It
can be used in many different contexts that expect identity functions:

idNat : Nat -> Nat
idNat = %runElab mkId

idUnit : () -> ()
idUnit = %runElab mkId

idString : String -> String
idString = %runElab mkId

theAnswer : Int
theAnswer = (%runElab mkId) 42

We will return to a detailed description of elaborator reflection
soon. First, we present two interesting metaprogramming problems.

2.1 Termination Predicates
Idris is primarily a programming language rather than a proof
assistant. As such, it admits programs that it cannot determine to be
total functions and programmers do not, in general, need to write
termination proofs. To maintain its consistency as a logic, non-total
programs are not reduced during type checking, but are otherwise
compiled normally.

However, a user who has written a total function that does not
pass the termination checker may later decide to use it in a type,
either to prove some property about it or to be able to exploit its
reduction behavior. To use this function in a type, the user must
rewrite it to contain an explicit termination argument. Unfortunately,
such a modification typically has a drastic negative impact on the
readability of the function, commingling the administrivia of the
termination argument with the interesting flow of the algorithm
being implemented. Ideally, a user would specify an algorithm, and
then receive a separate proof obligation for its termination condition,
separating the mundane bookkeeping of the transformation from the
interesting termination argument.

For example, a programmer might write a functional analogue
of quicksort:

quicksort : List Nat -> List Nat
quicksort [] = []
quicksort (x::xs) =
quicksort (filter (< x) xs) ++
x :: quicksort (filter (>= x) xs)

Then, the programmer might decide that they want a total version of
quicksort. Ideally, it should be sufficient to write:

make quicksort total by qsTotalityProof

where qsTotalityProof becomes the name of a proof obligation
for a termination argument.

Rather than hard-coding such an interactive feature by directly
modifying our language implementation, we can use the reflected
elaborator to implement it as a library. Bove and Capretta (2005)
demonstrated a means of rewriting a large class of functional
programs that use general recursion into a form acceptable to
proof assistants. The Bove-Capretta transformation of a program
consists of an inductive family that represents the call graph of the
program, indexed by the program’s arguments, and a function that is
structurally recursive over these call graphs. The inductive family is
typically referred to as an accessibility predicate. For quicksort,
the accessibility predicate is:

data QSAcc : List Nat -> Type where
QSAccCase0 : QSAcc []
QSAccCase1 : QSAcc (filter (< x) xs) ->

QSAcc (filter (>= x) xs) ->
QSAcc (x :: xs)

The well-foundedness of the accessibility predicate can serve as
evidence that the program will return a value in finite time for a
particular set of arguments that have been proven to be accessible,
and it becomes possible to prove that the function is total by showing
that all possible arguments are accessible. For quicksort, we write
a helper function qs’ by recursion over a QSAcc predicate:

qs' : (xs : List Nat) -> QSAcc xs -> List Nat
qs' [] QSAccCase0 = []
qs' (x :: xs) (QSAccCase1 l r) =

qs' (filter (< x) xs) l ++
x :: qs' (filter (>= x) xs) r

Additionally, accessibility predicates are collapsible (Brady et al.
2003) and can therefore be eliminated from the run-time behavior of
the program, because the particular constructor of the accessibility

Constants, c ::= Typei (type universes)
| i (integer literal)
| str (string literal)

Binders, b ::= λx : t (abstraction)
| let x 7→ t : t (let binding)
| ∀x : t (function space)
| var x : t (pattern variable)

Terms, t ::= c (constant)
| x (variable)
| b. t (binding)
| t t (application)
| T (type constructor)
| D (data constructor)

Figure 1. TT expression syntax

predicate is always uniquely determined by the other arguments to
the function. We will revisit this example in Section 5.1, and see
how we can automatically generate accessibility predicates using
elaborator reflection.

When the program to be translated makes use of nested recursion,
the accessibility predicate will refer to the rewritten program, as the
result of the nested call must be accessible. Thus, to support nested
recursion, the method requires that the type theory support inductive-
recursive definitions as set forth by Dybjer (2000). Both Idris and
its reflected elaborator support inductive-recursive definitions.

2.2 Proof Automation
Proof obligations sometimes arise naturally in the course of de-
pendently typed programming. Like Agda (Norell 2007), Idris is
primarily designed to support the interactive, direct construction of
proof terms in the same fashion as program terms.

When one cares about the structure of a proof object, rather
than its mere existence, this approach is convenient. However, some
proof objects are wholly uninteresting, and contribute only tedious
details to a program text. In these cases, an automation system more
like those of tactic-based proof assistants can be desirable, allowing
these proofs to be produced with much less code.

As befits its roots in tactic-based interactive proof assistants,
Idris’s reflected elaborator can be used as a tactic language for
proof automation. Here, we present a simple yet powerful proof
automation procedure, named mush as an homage to the much more
capable tactic crush in Chlipala (2011). We can apply mush as
follows, for example, to prove the associativity of addition:

plusAssoc : (j, k, l : Nat) ->
plus (plus j k) l = plus j (plus k l)

plusAssoc = %runElab mush

We can use mush to prove a variety of the properties that
are proved by hand in Idris’s Prelude, including that zero is a
right identity of addition, that addition and subtraction cancel, that
mapping a function over a list preserves the length of the list, that
the length of two appended lists is the sum of the length of the input
lists, and that the empty list is a right identity of appending lists. We
will present the definition of mush in Section 5.2.

3. The Core Language and Elaboration
Idris’s elaborator is written in Haskell in an elaboration monad
that provides state and error handling effects. Full details of the

elaborator, including the typing and evaluation rules for the core
language, are given by Brady (2013). The typing rules are standard
for a dependently typed core calculus. In this section we reprise the
essential features for elaborator reflection. In particular, we show
the syntax of the core language, TT, and its representation as high
level Idris data types.

3.1 The Core Language, TT
Figure 1 shows the syntax of Idris’s core expression language, TT.2

The purpose of elaboration is to translate a high level Idris program
into a collection of data type definitions and pattern matching
function definitions, built from TT expressions. Data types are
defined in the following form, where T is the type constructor and
the Di are the data constructors:

data T : t where D1 : t | . . . | Dn : t

TT supports mutual inductive-recursive definitions (Dybjer 2000).
In this paper, we do not show the distinction between parameters and
indices, but the distinction is indeed maintained in TT. All functions
are defined by top-level pattern match clauses, in the following form:

f : t
var ~x1 :~t1. f ~t1 = t1
. . .
var ~xn :~tn. f ~tn = tn

Note that names which are used in the definition are explicitly bound
as pattern variables using a var x :T binding. So, for example, the
high level Idris program. . .

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

vAdd : Num a => Vect n a -> Vect n a -> Vect n a
vAdd Nil Nil = Nil
vAdd (x :: xs) (y :: ys) = x + y :: vAdd xs ys

. . . elaborates to the following definitions in TT:

data Vect : ∀n :Nat. ∀a :Type. Type where
Nil : ∀a :Type. Vect Z a

| (::) : ∀a :Type. ∀k :Nat. ∀x :a.
∀xs :Vect k a. Vect (S k) a

vAdd : ∀a :Type. ∀n :Nat. ∀c :Num a.
∀xs :Vect n a. ∀ys :Vect n a. Vect n a

var a : Type, c : Num a.
vAdd a Z c (Nil a) (Nil a) = Nil a

var a : Type, k : Nat, c : Num a,
x : a, xs : Vect k a, y : a, ys : Vect k a.
vAdd a (S k) c ((::) a k x xs) ((::) a k y ys)

= ((::) a k ((+) c x y) (vAdd a k c xs ys))

Note that all of the function and pattern variables have been made
explicit in the types.

3.2 Elaboration
Elaboration of a high level Idris program into TT involves traversing
the syntax of the high level program, incrementally constructing
a TT term. During elaboration, the TT term may contain holes,
which stand for parts of the program which have not yet been
elaborated. Elaboration is type-directed, meaning that the elaborator
always knows the type of the term it is constructing. The elaborator
may also generate unification constraints between the type of the

2 We also write function types ∀x :S . T as S → T if x is not free in T .

b ::= . . .
| ?x : t (hole binding)
| ?x≈ t :t (guess)

Figure 2. TTdev extensions

term it is constructing, and the required type. Such constraints may
often need elaboration to make further progress before they can be
resolved. There are, therefore, several pieces of state which need to
be maintained during elaboration:

• a goal type, which is a TT term representing the type to be
inhabited by the current elaboration procedure;
• an incrementally constructed proof term, which is a TT term

that must inhabit the goal type;
• a hole queue containing the holes and guesses that remain in the

proof term;
• a collection of open unification problems;
• a supply of fresh names; and miscellaneous pieces of state to

implement other internal operations.

We refer to these collectively as the proof state.
Instead of maintaining a separate metavariable context that

tracks the unique names, scopes, expected types, and equality
constraints related to the holes in the term, the Idris elaborator
equips TT with two additional binding forms, using the already-
existing scoping and equality mechanisms for terms and contexts
to represent metavariables in-place. This style was pioneered by
McBride’s (1999) Oleg proof assistant. We refer to this extended
core language as the development calculus TTdev . Figure 2 shows
the extensions to the syntax of hole and guess binders in TTdev .

In TTdev , the term ?x : t . e is the term e with an additional
bound variable x . The typing rules for hole binders assign the type t
to x in its scope, demanding no further justification because further
elaboration will be required to determine the actual term of type t
to be inserted. Because we are working modulo Idris’s definitional
equality which includes β-conversion, directly substituting a term
for the hole x might trigger a sequence of reductions that interferes
with further processing that we intend to perform. Thus, instead of
directly substituting a term for a hole variable, we first construct a
temporary binder that resembles a let but is computationally inert.
This placeholder binder is called a guess. If the term e′ is inserted
into the hole x above, the resulting guess is written ?x ≈ e′:t. e.
Then, when concerns about the precise structure of the body of the
guess binder are no longer relevant, the guess can be substituted for
the variable that it binds.

During elaboration, the names of holes and guesses are unique,
so that the hole queue can contain just the names. When the hole
queue is non-empty, elaboration is said to be focused at the hole
or guess whose name is at the head of the queue. Many tactics
implicitly modify the focused hole. When a guess is substituted for
the variable that it binds, focus proceeds to the next hole or guess in
the queue.

The Idris elaborator interprets each high-level Idris construct as
a computation in an elaborator monad:

data Elab a -- abstract

Elaboration scripts are written using a collection of basic tactics,
which are small, reusable building blocks for proof term construc-
tion. Some of the most commonly used tactics are:

• claim, which wraps the focused subterm with a new hole
binding for a given name and type;

• fill, which converts a hole into a guess given an appropriately-
typed term; and
• solve, which substitutes the focused guess in its scope and

focuses on the next term.

We will describe these and other tactics in detail in Section 4.1. The
Idris elaborator (and hence the Elab data type) is written in Haskell,
so any features of the language are written as programs in the Elab
monad in Haskell. The purpose of elaborator reflection is to expose
the Elab monad in Idris programs, thus allowing Idris extensions
to be written directly in Idris itself. To use this, we need an Idris
representation of TT programs, and an Idris API for the elaborator
monad.

3.3 Reflection Data Types
Idris’s reflection API uses a number of data types for representing
terms and definitions, as shown in Figure 3.

-- Variable names
data TTName = ...

-- Constants
data Const = I Int | Str String | ...

-- Binders
data Binder : Type -> Type where

Lam : (ty : a) -> Binder a
Pi : (ty, kind : a) -> Binder a
Let : (ty, val : a) -> Binder a
PVar : (ty : a) -> Binder a
Hole : (ty : a) -> Binder a
Guess : (ty, val : a) -> Binder a

-- Terms which have not yet been typechecked
data Raw = Var TTName

| RBind TTName (Binder Raw) Raw
| RApp Raw Raw
| RConstant Const
| RType

-- Well typed, de Bruijn indexed terms
data TT = P NameType TTName TT

| V Int
| Bind TTName (Binder TT) TT
| App TT TT
| TConst Const
| TType TTUExp

Figure 3. Outline of the reflected TT data type

The core language is represented by two separate data types:
Raw and TT. Raw is used to represent terms that are to be submit-
ted to the type checker, while TT represents terms produced by the
type checker. The differences between them are that Raw does not
mention universe levels and it does not distinguish between locally
and globally bound names, with a single constructor for variable
references. TT, on the other hand, decorates the type of types with
information about universe levels and it uses a locally nameless rep-
resentation, with de Bruijn indices for bound variables. Additionally,
TT contains local caches of the types of global variables, allowing TT
terms to be understood in isolation. Both representations of the core
language have a uniform representation of binders, implemented by
the data type Binder.

Idris names are represented using the TTName data type. In
addition to names that users might write, with or without namespace

qualifiers, TTName includes constructors for machine-generated
unique names as well as names that result from inner scopes, such as
where blocks. Additionally, it includes a constructor that is reserved
for names generated by user elaboration scripts so that they can
define globally-unique top-level names for helper definitions.

While the majority of the data types involved in elaborator
reflection are used to represent details about the core Idris language,
a few of them mention features of high-level Idris. In particular, top-
level type signatures are represented by a list of FunArg followed
by a return type, rather than by a dependent function type in the core
theory:

data Plicity =
Explicit | Implicit | Constraint

record FunArg where
constructor MkFunArg
name : TTName
type : Raw
plicity : Plicity
erasure : Erasure

This allows reflection scripts to specify whether each argument is
to be passed implicitly, explicitly, or using type class resolution, as
well as whether the arguments are intended to be runtime-relevant.
By looking up this specification in the global context, elaboration
scripts can determine the intended calling conventions of Idris
functions and attempt to infer implicit arguments as users would
expect. Additionally, record types such as TyDecl, DataDefn, and
FunDefn describe new type declarations, data declarations, and
pattern-matching functions to be added to the global context.

Finally, reflected error messages are represented as lists of the
type ErrorReportPart, which contains constructors for embed-
ding strings, Idris terms, names, and even other error messages in
an error. This allows error messages that result from metaprograms
to be rendered using Idris’s pretty printer and to take advantage of
some of Idris’s interactive features.

3.4 Quasiquotation
Working directly with the Raw and TT data types when writing
metaprograms in Idris has many of the same disadvantages as
programming directly in TT. Christiansen (2014) described how
to use Idris’s elaborator to translate quotations of high-level Idris
terms into the corresponding reified TT terms. While it is certainly
possible to use the reflected elaborator without quotations, they are
a convenient interface and are used extensively in this paper. The
expression syntax:

`(e)

refers to a quotation of the expression e for which a type must be
inferrable, while the syntax:

`(e : t)

represents a quotation of a term at some particular type (Idris does
not have a native type annotation syntax for expressions, as it is not
necessary elsewhere). Idris quotations are in fact quasiquotations,
which means that sub-regions of a quotation can be evaluated rather
than quoted. These sub-regions, called antiquotations, are prefixed
with a tilde (~). Quotations can be used both as ordinary expressions
and as patterns, with antiquotations in patterns containing patterns.
Additionally, both the TT and Raw data types can be quoted, and
Idris uses the expected type to determine which representation to
produce.

Idris also has a quotation syntax for TTName. Because Idris sup-
ports pervasive type-disambiguated overloading, there is a distinc-
tion between names as they are written in a source file and the full,

qualified version that is eventually discovered during elaboration.
The syntax `{{n}} is an unresolved quotation of the name n — that
is, it is a quotation of the name n precisely as written. The similar
syntax `{n} is a resolved quotation, where the name n is treated as a
reference to a unique name in scope, and expanded with namespace
qualifiers prior to reification as a TTName. If n cannot be uniquely
resolved, then `{n} will result in an error. Typically, unresolved
names should be used for new things being defined by a metapro-
gram, while resolved names should be used for existing definitions
that the metaprogram will consult.

4. Elaborator Reflection
An Idris program consists of a series of declarations, which can be
data types, records, functions, type classes, and instances, among
others. Elaborator reflection adds a new declaration form:

%runElab e

Here, e is an Idris expression. This will first elaborate e with
the goal type Elab (). If successful, the result is then run as an
elaboration script by a built-in interpreter that assigns elaboration
effects to a collection of primitive elaboration scripts. This can
be understood by analogy to run-time side effects. Like Haskell,
Idris has a family IO of computations that are assigned effectful
semantics by the language runtime: a program with type IO a
produces a value of type a, potentially having used side effects
to do so. Analogously, a program in Elab a produces a value of
type a, potentially having used side effects in the elaborator. While
IO actions are run implicitly by being assigned the name main,
actions in Elab are run explicitly using the %runElab syntax.

Similarly, elaborator reflection adds a new expression form:

%runElab e

This works in exactly the same way as the declaration form, except
that the elaboration script is run in the context of expression
elaboration.

4.1 Elaborator Operations
Elab is an instance of the Functor, Applicative, and Monad type
classes. Additionally, a backtracking failure-handling operator is
used to implement Alternative, allowing the standard Idris choice
operator <|> to be used to express error recovery. Errors can occur
when tactics are misused, or they can be explicitly signaled by the
fail tactic, which takes a reflected error message as an argument.

The additional effects available in Elab largely correspond
to the low-level tactics mentioned in Section 3.2, described in
detail by Brady (2013). While Brady’s article distinguishes between
expression and definition elaborators, with the latter invoking the
former, the reflected elaborator allows the mixing of both forms
of operation and thus expands these tactics with operators for
both querying and extending the global context. This is to allow
the same elaboration code to be used in both expression and
definition contexts, as well as to allow elaboration scripts to produce
expressions that depend on auxiliary definitions or data types. In
this section, we describe the most important primitives in detail. A
comprehensive description is available in the first author’s Ph.D.
thesis (Christiansen 2016).

As described in Section 3, the elaboration monad has a state
that includes a proof term with holes in it, a queue containing these
holes, and a collection of open unification constraints. The following
primitive operators in Elab manipulate or query the proof state:

gensym : (hint : String) -> Elab TTName

Produce a unique name, which is useful when establishing a new
binder.

focus : (h : TTName) -> Elab ()

Move the focus to the hole h, bringing it to the front of the hole
queue, or fail if the hole h does not exist.

unfocus : (h : TTName) -> Elab ()

Move the hole h to the end of the hole queue, or fail if the h does
not exist.

fill : (e : Raw) -> Elab ()

Place a term e with type te in the focused hole ?h : th . e
′,

converting it to a guess ?h≈e:t. e′, and fail if the current focus is
not a hole. The type t of the guess is constructed by unifying te
and th, which may instantiate holes that they refer to. Fail if the
current focus is not a hole or if unification fails. This unification
can result in the solution of further holes or the establishment of
additional unsolved unification constraints.

solve : Elab ()

Substitute the focused guess throughout its scope, eliminating it
and moving focus to the next element of the hole queue. Fail if
the focus is not on a guess.

claim : (n : TTName) -> (t : Raw) -> Elab ()

Establish a new hole binding named n with type t, surrounding
the current focus.

apply : (op : Raw) -> (argSpec : List Bool) ->
Elab (List TTName)

Apply the operator op, establishing holes for its arguments based
on argSpec, a list of Booleans whose length is equal to the
number of arguments that the operator will be applied to. A
hole is established for each argument, with the type determined
by the type of the operator, with the appropriate references to
earlier holes in cases where the operator has a dependent type. If
the corresponding Boolean is False, the hole is not eligible to
be solved by unification, while if the corresponding Boolean is
True, the hole is marked as suitable to be solved automatically.
For example, elaborating an application of a function f that
takes one implicit argument and two explicit arguments might
invoke apply `(f) [False, True, True]. The names of
the established holes are returned.
This tactic is not part of Brady’s 2013 idealized tactic language.
It is a built-in tactic in Elab to allow its complicated implemen-
tation to be directly shared with the underlying Idris elaborator.
Figure 4 exhibits an Elab script that uses apply to insert the
term plus Z (S Z) into a goal of type Nat.

compute : Elab ()

Normalize the current goal type.

rewriteWith : (rule : Raw) -> Elab ()

Attempts to rewrite the current goal using the equality proof
rule. This tactic invokes the underlying elaborator for Idris’s
rewrite ... in ... syntax.

Each form of binder b in Figures 1 and 2 has an introduction
associated tactic. A precondition of these tactics is that the focused
hole is of the form ?h : t . h — that is, that the body of its scope
consists directly of a reference to the hole-bound variable. If a

do [x, y] <- apply `(plus) [False, False]
solve
focus x; fill `(Z); solve
focus y; fill `(S Z); solve

Figure 4. An Elab script to insert plus Z (S Z)

hole binder were of the form ?h : t1 → t2 . f h and a tactic
such as intro `{{x}} were applied, the result would be the term
?h : t2 . λx : t1. f h. However, this would cause the application of
f to be ill-typed, as it expects an argument of type t1 → t2, not an
argument of type t2. Additionally, some binding tactics require that
t, the type of the hole h, have a specific form, because the binder
that is to be established may have a typing rule associated with it.
The binding tactics are:

intro : (n : TTName) -> Elab ()

Wrap the focused hole ?h : ∀x : t1. t2 . h in a lambda, or
fail if the focus is not on a hole suitable for binding. The
provided name is used for function’s argument, so the result
is λn : t1. ?h : [n/x]t2 . h .

forall : (n : TTName) -> (t : Raw) -> Elab ()

Wrap the focused hole ?h : Type . e in a dependent function type,
yielding (n : t)→?h : Type . e.

patbind : (v : TTName) -> Elab ()

Introduce a new pattern binding var v around the hole, similarly
to intro and forall.

letbind : (n : TTName) ->
(v : Raw) -> (t : Raw) -> Elab ()

Introduce a new let binding around the focused hole, given a
name n to bind, a term v, and a type annotation t. It is an error if
v does not have type t in the focused context.

attack : Elab ()

Restructure the focused hole to make it suitable for binding
by establishing a new hole inside a guess. If the focus is at
?h : t1 → t2 . f h, then invoking attack will result in the term
?h ≈ (?h′ : t1 → t2 . h

′):t1 → t2. f h with the focus on h′.
Invocations of binding tactics should be bracketed by attack and
solve, representing the new scopes. Following a binding tactic,
the focus is on a hole in the immediate scope of the introduced
binding, so repeated invocations of attack are not necessary for
repeated binders.

For an example of the interplay between attack and binding tactics,
refer to Figure 5 in which the TT equivalent of the Idris term
\t : Type => t -> Nat is constructed using tactics.

The following queries against the global environment are pro-
vided as primitives in Elab:

getEnv : Elab (List (TTName, Binder TT))

Look up the lexical scope at the focused hole, or fail if there are
no holes.

lookupTy : (n : TTName) ->
Elab (List (TTName, NameType, TT))

Look up the core-language types of every overloading of a name
n in the global context. The NameType indicates whether the
name is a user-defined constant, a data constructor, or a type
constructor.

lookupDatatype : (n : TTName) ->
Elab (List Datatype)

Look up the reified definitions of all data types whose names are
overloadings of n.

lookupFunDefn : (n : TTName) ->
Elab (List (FunDefn TT))

Look up the reified definitions of all top-level bindings whose
names are overloadings of the n.

- - Initial state ?h : ∀t :Type. Type . h
do attack ?h≈(?h′ : ∀t :Type. Type . h′):∀t :Type. Type. h

intro `{{t}} ?h≈(λt :Type. ?h′ : Type . h′):∀t :Type. Type. h
arg <- gensym "arg" No change in proof term
forall arg (Var `{{t}}) ?h≈(λt :Type. ∀arg : t. ?h′ : Type . h′):∀t :Type. Type. h
fill `(Nat) ?h≈(λt :Type. ∀arg : t. ?h′≈Nat:Type. h′):∀t :Type. Type. h
solve {- the fill -} ?h≈(λt :Type. ∀arg : t. Nat):∀t :Type. Type. h
solve {- the attack -} λt :Type. ∀arg : t. Nat

Figure 5. An elaboration script with binding, where the terms in focus are underlined

lookupArgs : (n : TTName) ->
Elab (List (TTName, List FunArg, Raw))

Look up the high-level Idris calling conventions (that is, which
arguments are to be found implicitly) for all overloadings of n.

The following operators provide an interface to the type checker
and evaluator:
check : (env : List (TTName, Binder TT)) ->

(tm : Raw) -> Elab (TT, TT)

Invoke the type checker to produce a fully-annotated term and its
type, considered with respect to a particular lexical environment
env.

normalise : (env : List (TTName, Binder TT)) ->
(tm : TT) -> Elab TT

Invoke the evaluator to normalize tm relative to the global context
and the lexical context env.

Elaboration scripts can extend the global context with new
declarations and definitions. Rather than a single-step process to
define a function or data type, a two-step process is employed where
the type of a function or type constructor is first declared, followed
by another operation to define either its pattern-matching equations
or constructors. Under this scheme, the newly defined elements can
be required to pass the type checker, but it is still possible to define
functions and data types that refer to one another. Additionally, this
allows elaboration scripts to leave behind abstract definitions to be
later filled in by users, such as the totality proof obligations from
Section 2.1. The operators for extending the global context are:

declareType : TyDecl -> Elab ()

Add a type declaration to the global context.

defineFunction : FunDefn Raw -> Elab ()

Use a sequence of pattern-matching clauses to define a function.
As a special case, zero-argument definitions produce top-level
bindings of constants.

declareDatatype : TyDecl -> Elab ()

Add the declaration of the type constructor for an inductive family
to the global context.

defineDatatype : DataDefn -> Elab ()

Define an inductive family by its list of constructors.

metavar : TTName -> Elab ()

Solve the current hole as if it were a top-level Idris named
hole. Not to be confused with the holes in TTdev , which are an
implementation technique for elaborators, Idris’s holes represent
unfinished user programs. These holes can later be solved using
all of Idris’s standard interactive features. This tactic allows
metaprograms to delegate to human intelligence when necessary.

As an example of tactic-driven definitions, the Idris data type
definition:

data B = T | F

can be equivalently constructed with the following metaprogram:

%runElab
(do declareDatatype $

Declare `{{B}} [] `(Type)
defineDatatype $

DefineDatatype `{{B}}
[Constructor `{{T}} [] (Var `{{B}})
, Constructor `{{F}} [] (Var `{{B}})
])

and the Idris type declaration:

append : Vect n a -> Vect m a -> Vect (n + m) a

can be equivalently created using the metaprogram:

imp : TTName -> Raw -> FunArg
imp n t = MkFunArg n t Implicit Erased

exp : TTName -> Raw -> FunArg
exp n t = MkFunArg n t Explicit NotErased

appendDecl : TyDecl
appendDecl =
Declare

`{{append}}
[imp `{{a}} `(Type)
, imp `{{n}} `(Nat)
, imp `{{m}} `(Nat)
, exp `{{xs}}

`(Vect ~(Var `{{n}}) ~(Var `{{a}}))
, exp `{{ys}}

`(Vect ~(Var `{{m}}) ~(Var `{{a}}))
]
`(Vect (plus ~(Var `{{n}})

~(Var `{{m}}))
~(Var `{{a}}))

%runElab (declareType appendDecl)

In addition to the specialized searching performed to resolve type
class instance dictionaries, Idris also contains a general-purpose
proof search that attempts to use the constructors of inductive types
to solve a goal. Proof search is invoked during elaboration when
solving for implicit arguments decorated with the auto modifier as
well as interactively by users during program development. In the
reflected elaborator, proof search can be applied to the focused goal:

search' : Int -> List TTName -> Elab ()

Attempt to solve the focused hole using proof search, taking a
search depth and a list of additional names to use as hints.

Many of the primitives in the reflected elaborator require already-
formed terms as arguments. Sometimes, it can be non-trivial to
produce these terms. In particular, reflected function definitions

represent the defining clauses of pattern-matching definitions as
pairs of terms, and patterns can have complicated relationships that
are imposed by dependent pattern matching. To aid in the production
of terms, elaboration scripts can recursively invoke the reflected
elaborator:

runElab : Raw -> Elab () -> Elab (TT, TT)

Use the provided elaboration script to solve a reflected goal. The
action is run in a fresh proof state with the provided type as the
goal, and the resulting term and its type are returned on success.

Finally, to assist in the development of non-trivial elaboration
scripts, some debugging tools are provided:

debug : Elab a

Halts the elaborator as if a fatal error had occurred and provide a
detailed dump of the elaborator state, including the current proof
term and the contents of the hole queue. This can be used to
diagnose errors in elaboration scripts.

debugMessage : List ErrorReportPart -> Elab a

Halt and show all of the information displayed by debug, along
with a user-specified message. The message, like the one provided
to fail, is rendered using Idris’s pretty printer.

Idris’s type classes are elaborated to record types, and instances
are elaborated to either records of functions or to functions from
other instances dictionaries to new instance dictionaries. The
database of registered instances for a given type class is a map-
ping from type class names to collections of instance names, and
instance resolution attempts to combine these instances to create
an inhabitant of a particular goal type. Elab contains effects for
querying the instance database as well as registering new definitions
as instances.

Additional operations include tactics to replace a hole with a
pattern variable, look up the name and type of the focused goal, get
the hole queue as a list of names, and check terms for conversion.
There are also a collection of operators that reveal information
about where %runElab was invoked, such as the lexically declared
namespace, the precise source location, and the precedence and
associativity declared for some operator.

4.2 Interactive Proving
Tactic scripts are notorious for being difficult to read without tool
support, and tactic scripts built with Idris’s elaborator reflection
are no exception. Thus, Idris provides an interactive shell in which
Elab actions can be executed one at a time, replacing a previous
special-purpose tactic language. This interactive shell provides
programmers with immediate feedback as to the effect of their
actions. Additionally, it allows them to inspect values that result
from Elab computations, such as the internal representations of
reified definitions. At the end of an interactive elaboration session,
Idris will optionally append the elaboration script to the current
source file, so that loading it will execute the tactic script.

Additional tools can be built on top of the elaboration shell.
For example, the Emacs mode for Idris provides a proof script
development environment, reminiscent of Proof General (Aspinall
2000), in which programmers can interactively step forwards and
backwards a tactic script, inspecting the proof state at each step.

4.3 Staging Issues
From the perspective of an Idris user who is not using elaborator
reflection, the elaboration of an Idris program proceeds from top
to bottom. Names must be declared before use. Idris additionally
supports mutual blocks, within which all type declarations are elab-
orated prior to elaborating all definitions, allowing for mutually
recursive definitions. Some expressions, such as case expressions,

require additional top-level definitions to be produced after elabora-
tion, but these helper definitions are not accessible to other parts of
the program, which means that users can be blissfully unaware of
this elaboration order.

This account of name and definition visibility becomes more
challenging in the presence of elaborator reflection. Like Template
Haskell, Idris’s elaborator reflection introduces tricky staging issues.
Metaprograms in the elaborator can have side effects such as
defining new names, filling holes, or even aborting elaboration.

For example, lists are elaborated from left to right. This can be
observed using the following declaration:

xs : List Nat
xs = let x = S Z

valDecl = Declare `{{val}} [] `(Nat)
in [%runElab (do declareType valDecl

fill `(Z)
solve),

x + val]

The name val in the second position in the list is not bound until the
elaborator script in the first position has executed. If list elaboration
were to proceed from right to left, then val would be unbound.

It is also possible to observe that the value of valDecl has been
elaborated prior to the execution of the elaborator script, because it
is available. Furthermore, simply lifting Elab expressions to the top
level and elaborating them prior to the elaboration of the context in
which they are executed is not sufficient: if it were computed via a
case expression, the script would fail, because the computational
behavior of the case expression is not elaborated until after xs has
been elaborated. In the future, we hope to make the dependencies
between elaboration stages more explicit.

5. Using the Reflected Elaborator
A metaprogramming system is of no use if it cannot be used to
write interesting metaprograms. In this section, we deliver on our
promises from Section 2 and describe additional experiences with
the reflected elaborator.

5.1 Termination Predicates
In Section 2.1 we showed the following general recursive definition
of quicksort:

quicksort : List Nat -> List Nat
quicksort [] = []
quicksort (x::xs) =
quicksort (filter (< x) xs) ++
x :: quicksort (filter (>= x) xs)

Idris cannot automatically determine that this function terminates.
We can, however, show that it terminates using an accessibility
predicate. Using elaborator reflection, we can automatically generate
accessibility predicates by directly adapting Bove and Capretta’s
method (2005) to rewrite Idris programs that make use of general
recursion into a pair of an accessibility predicate and a function
defined by recursion over the predicate. We begin by declaring the
type of the elaboration procedure:

bc : (inFun, outFun, accPred : TTName) -> Elab ()
bc inFun outFun accPred = do

The procedure bc takes three arguments: inFun, which is the partial
program to be rewritten, outFun, which is the name to use for the
rewritten function, and accPred, which is the name to use for the
accessibility predicate. In the do block, the first step is to check that
the provided name uniquely identifies a function:

(inFun', Ref, inTy) <- lookupTyExact inFun
| _ => fail [TextPart "Not a function"]

The -Exact variants of the lookup operations require that a single
name match and do not disambiguate. In Idris’s extended do
notation, the vertical bar specifies alternative actions to be taken
instead of the remainder of the do block, in case a pattern-matching
do binding fails to match its main pattern. In this case, the program
terminates with an error message.

Next, the code generator declares the new data type and the
new function. The lookupArgsExact query discovers the calling
convention of a function — that is, which of its arguments are to
be discovered automatically through unification or through type
class resolution. After that, a new inductive family is declared
using declareDatatype, which establishes a formation rule or
type constructor in the global typing context.

(_, args, res) <- lookupArgsExact inFun'
declareDatatype $ Declare accPred args `(Type)

Now that the accessibility predicate has been declared, the new
function, which uses it, must be declared. The new functions argu-
ments are those of the previous function along with the accessibility
predicate applied to the other arguments.

let accArg = MkFunArg `{{acc}}
(mkApp (Var accPred)

(map (Var . name) args))
Explicit
NotErased

In this code, Var is a term constructor for variable references, taking
a name as an argument, and name projects the name field from
FunArg. In Idris’s surface syntax, this argument would be written
(acc : accPred ~a), where accPred is the name provided for the
accessibility predicate and ~a is the names of the previous arguments
to the function. In the case of qs, this will be (acc : QSAcc xs).
The new argument accArg is added to the signature for the rewritten
function:

declareType $
Declare outFun (args ++ [accArg]) res

We declare the rewritten function’s type and the type constructor
of the accessibility predicate first, because the constructors of the
data type may need to refer to the function, and those will not be
typeable if it does not yet exist.

Now that the typing rules for the rewritten function and the
accessibility predicate have been added, it is time to compute the
constructors of the data type and the pattern-matching equations for
the rewritten definition. The input to the transformation is the list of
original clauses:

DefineFun _ oldClauses <- lookupFunDefnExact inFun'

Because each equation is simultaneously translated into a new equa-
tion and a corresponding constructor of the accessibility predicate,
the result of processing the clauses is unzipped into constructors and
new pattern-matching equations. The processClauses function is
a direct implementation of Bove and Capretta’s algorithm.

(newClauses, ctors) <-
unzip <$> processClauses Z oldClauses

Finally, the data type is defined by its constructors and the rewritten
function is defined using the new pattern-matching equations.

defineDatatype $ DefineDatatype accPred ctors
defineFunction $ DefineFun outFun newClauses

We can invoke bc using the %runElab directive:

%runElab (bc `{quicksort} `{{qs'}} `{{QSAcc}})

The resulting definitions are the TT equivalents of:

data QSAcc : List Nat -> Type where
QSAccCase0 : QSAcc []
QSAccCase1 : QSAcc (filter (< x) xs) ->

QSAcc (filter (>= x) xs) ->
QSAcc (x :: xs)

and

qs' : (xs : List Nat) -> QSAcc xs -> List Nat
qs' [] QSAccCase0 = []
qs' (x :: xs) (QSAccCase1 l r) =
qs' (filter (< x) xs) l ++
x :: qs' (filter (>= x) xs) r

It is now up to a user to show that QSAcc xs is inhabited for all lists
xs by defining a helper such as the following:

qsAcc : (xs : List Nat) -> QSAcc xs

This particular formulation is convenient when there may be some
additional preconditions for totality. In cases where the function is
actually total, it may be convenient to instead generate an unfulfilled
proof obligation that the entire domain is accessible as well as a
wrapper with the same signature as the original function. This proof
obligation can then be discharged using all of Idris’s standard tools
for interactive development. The wrapper then uses the result of
this proof to call the rewritten function. Because this mechanism
did not require modifications to the Idris compiler, users are free to
customize it however they want, while still being able to rely on the
unmodified underlying type checker for correctness, and features
such as custom syntax rules3 can be used to provide a syntax akin
to that in Section 2.1

5.2 Proof Automation with Tactics
Previous versions of Idris supported a special-purpose tactic lan-
guage for writing proofs at an interactive shell, and user inter-
faces reminiscent of dedicated proof assistants such as Coq were
constructed to facilitate interactive proving. However, the special-
purpose tactic language had a number of drawbacks: its extreme
simplicity meant that it was not possible to build abstractions or
non-trivial derived tactics, it was impossible to reuse Idris code in
tactics, and it introduced a large number of new keywords into the
language grammar. Elaborator reflection has subsumed this previous
tactic language, allowing Idris’s ordinary abstractions and definition
forms to be used to build a richer language of tactics. Idris addition-
ally includes a library of derived tactics that is named Pruviloj. In
addition to extended versions of the primitive tactics that do things
like introducing multiple lambda bindings at once, Pruviloj includes
features such as an induction tactic that generates its own eliminators
for inductive families and tactics for automatically discharging proof
goals with absurd hypotheses. The eliminator-generation feature of
Pruviloj replaces a built-in feature of the Idris compiler, and we aim
to implement more of Idris in itself in the future.

To demonstrate the utility of the derived tactics in Pruviloj for
proof automation, we now present the definition of the mush tactic
from Section 2.2. The tactic will perform the following steps when
given a goal of the form (x : t) -> P x:

1. Bind x under a lambda, introducing it as a local assumption

2. Perform induction on x, generating elimination principles as
necessary

3. In each proof goal introduced by the induction, apply a non-
inductive solver called auto.

3 http://docs.idris-lang.org/en/latest/tutorial/syntax.
html#syntax-rules

mush : Elab ()
mush =

do attack
x <- gensym "x"
intro x
try intros
induction (Var x) `andThen` auto
solve

This mush tactic uses derived tactics and tacticals such as intros,
which introduces as many times as possible with automatically-
generated names; try, which applies its argument but does nothing
in case of failure; induction, which generates and applies an
elimination principle to the appropriate value and motive, returning
a list of holes corresponding to the cases for each constructor; and
andThen, which runs its first argument, expecting a list of hole
names, then applies its second argument in each of the holes.

The helper tactic auto performs the following steps:

1. Normalize the goal

2. If the goal is a universal quantification, introduce all quantified
variables as local assumptions

3. Attempt to rewrite the goal with all equality proofs that are
assumptions from induction

4. Attempt to dispatch the potentially-rewritten goal using a local
hypothesis, or Idris’s built-in proof search if that fails

auto : Elab ()
auto =

do compute
attack
try intros
hs <- map fst <$> getEnv
for_ hs $

\ih => try (rewriteWith (Var ih))
hypothesis <|> search
solve

The only new Pruviloj tatic employed in the definition of auto is
hypothesis, which attempts to solve the goal with each variable
in the local scope, failing if none apply. The tactic search is
defined in the Prelude as search' 100 []. All of the control
structures, including the do-notation, the recovery operator <|>, the
iteration operator for , and the mapping operator <$>, are standard
Idris operators that can be used with any instances of Monad,
Alternative, Foldable, and Functor type classes, which are
analogous to their Haskell definitions.

5.3 Deriving Type Class Instances
Haskell supports deriving of instances for a collection of built-in
type classes, freeing users from the burden of writing boilerplate
Boolean equality comparisons and conversions to String. Idris
has no similar feature. However, using elaborator reflection, we
have been able to implement deriving of type classes such as Eq and
Show. While deriving of Eq and Show are implemented as traditional
code generators, we have also implemented a tactic that will derive
decision procedures for Idris’s propositional equality for a large class
of data types, given a type signature. As decidable equality typically
requires a number of pattern-matching cases that is quadratic with
respect to the number of constructors in the data type, this can save
a great deal of code.

5.4 Interaction with Idris Type Providers
Idris’s type providers (Christiansen 2013), inspired by F# (Syme
et al. 2013), allow arbitrary side effects to be performed during type

checking. This lets Idris programs refer to the world in which they
are found. Type providers in Idris differ from F#’s type providers,
along with analogous uses of IO in Template Haskell, in a very
important way: instead of using IO to do code generation, with
the generated code spliced into the program prior to further type
checking, Idris type providers compute a value using IO which is
then included directly in the elaborated program. In particular, an
Idris type provider is a term with type IO (Provider a), where
Provider is an error monad isomorphic to Either String. The
elaborator for the declaration syntax:

%provide (x : a) with p

executes p as an IO action. If p returns a success, then the contents
of the success are unpacked and used as the definition of x, while
if p returns an error message, elaboration halts and displays the
message to the user. Because they are ordinary IO actions returning
an ordinary Idris data type, Idris type providers manage to stay
within the abstractions of the language. Idris’s full dependent types
enable these provided values to be used as codes in the technique
of generic programming with universes (Altenkirch and McBride
2003; Benke et al. 2003). A single computed value can be used to
instantiate an entire library of code at one particular type from a
predetermined part of Idris’s type system.

However, generic programming with universes does not come
for free. Types described with a universe encoding do not enjoy
the conveniences of native data types, such as convenient notations
for pattern matching, and techniques like pattern synonyms cannot
easily be specialized to a particular returned code. The syntactic
overhead is substantial and difficult to avoid. Additionally, while
Idris’s optimizer and partial evaluator (Brady and Hammond 2010)
may be able to reduce or remove the cost of carrying around codes
at run time, this cannot be relied upon in general, which may lead to
unpredictable changes in performance. For these reasons, generic
programming with universes is not applicable to all type providers,
and code generation may sometimes be a better option.

By first using a type provider to discover information about the
surrounding world and then an Elab script to generate code, the full
expressiveness of an approach based on code generation becomes
available, while still maintaining the possibility of using ordinary
Idris IO actions for the effectful portions.

Here, we demonstrate the definition of a type provider combined
with an Elab script that, together, generate a record type based on
a list of field/type pairs in a text file. Similar metaprograms are
used for purposes such as generating data types based on database
schemas.

An Idris record type consists of a single-constructor data type
along with a collection of getters and setters that are named accord-
ing to a particular convention. Getters project a single field from an
instance of the record type, while setters construct a new instance
that is the same as an old one, except with one field replaced by a
new value. In Idris, the syntax record {f} r projects a field from
r using the getter named f, while record {f=y} r invokes a setter
named set f to construct a modified version of r. In other words,
to generate a record type named R with fields f1 : t1, . . . , fn : tn,
we generate the following type declaration:

data R : Type where
MkR : (f1 : t1) -> · · · -> (fn : tn) -> R

We also generate getters and setters for each field fk:

fk : R -> t1
fk (MkR a1 . . . an) = ak

set fk : tk -> R -> R
set fk a (MkR a1 . . . an) = (MkR a . . . ak−1 a ak+1 . . . an)

In our example type provider, record fields can be either strings,
floating-point numbers, or arbitrary-precision integers. We represent
these types using the following data type:

data Ty = STRING | INTEGER | DOUBLE

We use the type List (String, Ty) to represent the field names
and types of a particular record type. A type provider to read a
description from a text file looks like an ordinary Idris program:

getRec : String -> IO (Provider (List (String, Ty)))
getRec file =

do (Right contents) <- readFile file
| Left err => return (Error (show err))

case parseStr rec contents of
Left err => return (Error err)
Right info => return (Provide info)

It attempts to read the contents of the given file, passing any errors on
to the type provider error constructor. Then, it invokes a combinator
parser on the contents of the specified file. Parse errors are returned
as type provider errors, while successful results are returned in the
Provide constructor to be spliced in.

The type provider can be invoked on a text file using the
following syntax:

%provide (info : List (String, Ty))
with getRec "ProviderTest.txt"

which results in the top-level name info being bound to the field
specification in the text file, assuming that the file exists and is
syntactically correct. The next step is to invoke an elaboration script
to convert the field specification into a real Idris record type using
the following syntax:

%runElab (genRecord `{{MyRecord}} info)

The elaboration script genRecord, defined in Figure 6, is respon-
sible for generating the data type and its getters and setters. It is
invoked with a name and a record specification as arguments.

The first step in genRecord is to place the users’s provided
name into the current namespace using an helper operation called
inThisNS, which queries Elab for the namespace and wraps it
around the name provided as an argument. Then, it declares a
zero-argument data type with the namespaced name. After that,
it generates a name for the constructor using ctorName, which
prepends Mk to the user-provided record type name. Next, it adds
the constructor, using the helper function fieldArg to convert
(String, Ty) pairs into the FunArg type described in Section
3.3. Finally, it adds the constructor to the data type and calls a
helper operation to define the accessors according to the scheme
described earlier in this section. Having done this, the type is now an
ordinary Idris record type and can be used with Idris’s record syntax.

genRecord : TTName -> List (String, Ty) -> Elab ()
genRecord n fields =

do recN <- inThisNS n
declareDatatype $ Declare recN [] `(Type)
ctorN <- ctorName recN
let tyDefn = DefineDatatype recN [

Constructor ctorN
(map fieldArg fields)
(Var recN)

]
defineDatatype tyDefn
mkAccessors tyDefn

Figure 6. Generating a record type

Additionally, it will be compiled just like any other Idris record type.
Elaborator reflection does not presently support reusing Idris’s own
record type elaborator, but this would be a useful extension in the
future.

6. Related Work
Reflection in Agda (pre-2016) Agda’s elaborator is different in a
number of ways from Idris’s: the core language is not strictly delin-
eated from the high-level language and a global metavariable context
is used instead of an Oleg-style development calculus (Norell 2007).
Agda’s type checker can be seen as an elaborator from terms that
may contain metavariables to terms that do not. In previous versions
of Agda, a number of quoting and unquoting splicing operators
were available, along with a data type representing reified high-level
Agda terms and definitions. Because the splicing operator acted on
high-level Agda terms, it could perform elaboration to do things
like solving implicit arguments. Previous work by van der Walt and
Swierstra (2012) and Kokke and Swierstra (2015) demonstrated
how to use this to encode non-trivial proof automation in Agda
itself, and both cite the fact that this proof automation is performed
within Agda itself as major advantages. Unfortunately, both systems
needed to reimplement much of the infrastructure that is part of the
Agda implementation, such as unification, and each was forced to
duplicate information about the types of values that Agda already
has in its global context.

Reflection in Agda (post-2016) Inspired by Idris’s elaborator
reflection, the Agda language has recently adopted a form of
elaborator reflection in place of the previous API.4 Since version
2.5.1, Agda exposes its elaboration monad, including the unification
and metavariable machinery, to user elaboration scripts. Because the
details of its elaboration mechanism differ substantially from those
of Idris, so do the operations exposed in its reflected elaborator.

Direct vs. Indirect Reflection In his Ph.D. thesis on reflection in
Nuprl, Barzilay (2006) contrasts two approaches to the design of
a reflection system: indirect reflection, in which the aspects of the
language that are to be reflected are re-implemented internally, and
direct reflection, in which the underlying implementation is invoked
directly. Barzilay points out a number of advantages of the direct
approach to reflection: indirect representations of terms have an
exponential increase in memory usage as levels of quotation increase,
it becomes more difficult to ensure the correspondence between both
implementations of the system, and having two implementations of
each feature vastly increases the work that is necessary to develop
and maintain new language features. The previous work on reflection
in Agda by van der Walt and Swierstra (2012) and Kokke and
Swierstra (2015) is an excellent example of the burden that indirect
reflection places on language and tool authors.

While Idris’s reflection system uses an indirect representation
of reified terms, the exponential blowup is not a major problem
because typical applications require no more than one level of
quotation. Additionally, because the quoted terms are in Idris’s
small, stable core language, concerns about ongoing development
are less pressing than they would be if the high-level language
were quoted. The large, complex parts of Idris, such as the type
checker and the elaboration machinery, are reflected directly. For
example, the elaboration strategy for Idris’s rewrite ... in ...
syntax, which rewrites the current goal type using an equality
proof, is exposed directly as the rewriteWith primitive, rather
than requiring that it be re-implemented in Idris code. Likewise,
the apply tactic, which has proven to be highly useful in both

4 Documented on a post to the Agda mailing list: https://lists.
chalmers.se/pipermail/agda/2016/008414.html and in the release
notes for Agda version 2.5.1

the elaborator that is written in Haskell and in reflected elaboration
scripts, is exposed directly rather than being implemented in a library.
This tactic requires somewhat complex reimplementations of the
typing rules for dependent functions in order to compute the correct
dependent types for the holes that the operator will be applied to,
and it makes little sense not to share the implementation.

Template Haskell Template Haskell (Sheard and Jones 2002) is
a metaprogramming system for Haskell in which metaprograms
are monadic actions that transform Haskell programs. It has been
enabled a great deal of interesting work, including prototype imple-
mentations of generic programming extensions (Norell and Jansson
2004). Template Haskell’s Q monad, however, does not supply ef-
fects related to the elaboration infrastructure of implementations
such as GHC. Instead, it provides only the ability to produce fresh
names and the ability to look up definitions from the global context.

Tactic-Based Interactive Proof Assistants There is a rich tradition
of interactive proof assistants based on automation through tactic
languages. Indeed, the ML family of programming languages began
as a tactic language for the Edinburgh LCF system, and Nuprl also
uses a dialect of ML for proof automation. Coq has a dedicated
DSL for writing tactics, known as LTac (Delahaye 2000), with
features such as backtracking and matching against terms and
contexts. Idris’s elaboration infrastructure intentionally resembles
the control structures and features found in these systems. However,
the reflected elaborator uses Idris as its own metalanguage, allowing
code re-use across programs, specifications, and proofs automation
or metaprogramming.

MTac MTac (Ziliani et al. 2013) is an alternative tactic language
for Coq that, like Elab, provides a monadic interface to proof au-
tomation, using Coq’s own term language. In MTac, a computation
with type M t is a tactic that will either solve a goal of type t or
fail. In other words, the type of a tactic provides information about
the goals to which it can be applied. While they are superficially
similar, MTac and elaborator reflection serve different purposes.
MTac is a dedicated proof automation language, specifically tai-
lored to that purpose, while elaborator reflection is intended to
be a general-purpose means of language extension. Implementing
MTac’s primitives would be an interesting use of the reflected elabo-
rator.

Internal Metaprogramming in Type Theory Altenkirch and
McBride (2003) and Benke et al. (2003) pointed out that many
applications of generic programming can be internalized directly
into type theory, using a universe encoding. Later work by Chapman
et al. (2010) showed that primitive facilities for defining data types
can be replaced by a single self-describing type of descriptions, uni-
fying generic programming with ordinary programming. Chapman
et al. refer to this technique as levitation. Inspiring as this work is,
many practical problems remain to be solved before we can build
our languages on top of levitation. In particular, we do not yet have
predictable optimization strategies to eliminate all extraneous data
type descriptions at run time, and implementations of techniques
like levitation are notoriously slow when compared to native data
types in existing type checkers. While we wait for the missing
technology, other techniques are relevant and interesting.

Other, special-purpose universes have been used to write non-
trivial and interesting metaprograms, including some of the ones that
we have implemented with elaborator reflection, internally to type
theory. In particular, McBride (2015) showed how to generically
describe general recursion in Agda, including a generic version
of the Bove-Capretta predicates that are implemented using an
encoding based on Dybjer and Setzer’s 1999 encoding of inductive-
recursive definitions. Devriese and Piessens (2013) provided a large
collection of metaprogramming tools implemented directly within

Agda. Because these metaprograms are written in the type theory,
they are also verified, and they have all the other advantages of
programs written in type theory.

While this line of work is exciting, there are many important
problems to be solved before we can rely on internalized reason-
ing for all of our metaprogramming needs. First, described data
types still have a significant performance overhead, both during
type checking and execution, relative to native data types and defi-
nitions. Second, the need to account for every detail internally can
lead to epic amounts of code and work to automate even simple
procedures — Devriese and Piessens’s metaprogramming system
required approximately 1200 lines of code to implement a generic
printer, much of which is a mandatory correctness proof for the
metaprogram. By contrast, programs in the reflected elaborator are
similar in length and complexity to traditional tactic scripts and code
generators. An implementation of type class instance derivation for
Show using Idris’s elaborator reflection that handles more data types
than Devriese and Piessens’s implementation and must take care of
additional details like generating instance objects is less than 300
lines of code. Finally, a number of separate universes for metapro-
gramming exist, with different strengths and weaknesses, and code
written for one is not immediately applicable to the others. There is
hope on the horizon — Magalhães and Löh (2014) demonstrate a
universe for Haskell datatypes from which many other commonly-
derived universe encodings can themselves be derived. A similar
solution might work for universes of dependent data types.

While one of these universes or tools could be given special syn-
tactic and run-time support, privileging a single metaprogramming
system for fast execution and tool support might prevent progress
with others. Additionally, metaprograms written in Elab can use
verified internal metaprograms’ tactics by generating the appropriate
code. We need not make an all-or-nothing choice between external
and internal metaprogramming, and elaborator reflection could even
be used to ease some of the overhead of using internal metaprogram-
ming features, just as Idris’s elaborator eases the burden of working
in a very small language like TT.

7. Discussion
We have described an approach to metaprogramming called elabora-
tor reflection that is applicable to languages that have a type checker
that synthesizes terms in either a separate core language or a much
more explicit version of the source language. In Idris, elaborator
reflection has enabled features to be moved from the compiler to
libraries, making the implementation simpler and providing users
with more flexibility. It has also replaced a previous special-purpose
tactic language. The features provided by the elaboration frame-
work, such as incremental construction of terms and higher-order
unification, have proven to be useful for a variety of metaprogram-
ming tasks. Additionally, elaborator reflection provides a framework
within which other metaprogramming systems can be implemented.

Idris’s reflected elaborator falls short of a complete tool for
language extension. It is not yet possible to replace or extend
the built-in elaboration procedures for already-existing language
features, and the need to invoke elaboration scripts explicitly using
%runElab means that they are not as convenient as built-in features
of Idris. We hope to lift these limitations in the future.

In elaborator reflection, metaprograms have direct access to
the infrastructure of the elaborator itself, which provides precisely
those tools that were already necessary to elaborate the language
in question. The concept of elaborator reflection is not limited to
implementations of dependent type theory. It is applicable to any
language in which concepts outside of the language’s own semantics
are used to implement a type checker or elaborator. While Agda has
already adopted elaborator reflection, it is instructive to consider
how the concept might look in other languages.

Elaborators that are implemented as one monolithic program are
less likely to be useful in a reflection setting. However, we expect
that realistic elaborators will contain a substantial support library,
even if it does not resemble a collection of tactics. In many cases,
this library will also be useful for metaprogramming within the
language.

For instance, the GHC implementation of Haskell performs
elaboration by arranging for a constraint solver to produce explicit
evidence in a small core language, System FC. Initially, a program
is traversed, generating a large collection of constraints to be solved.
When these constraints are solved, each solution contributes to the
final program in the core language, which can be type checked
independently (Vytiniotis et al. 2011). It could be interesting to
design a reflection of this system, providing Haskell code with the
ability to add new constraints with novel means of creating evidence
terms. This could serve as an alternative to more “heavyweight”
constructions such as the type checker plugin API. Furthermore,
Atkey’s recent work on the relationship between type checking,
elaboration and tactics (Atkey 2015), for example, suggests one
possible path to wider adoption of the concept.

7.1 Future Work
Elaboration Stages As described in Section 4.3, Idris’s elaborator
reflection system suffers from subtle staging issues similar to those
faced by Template Haskell. It is convenient to be able to define an
elaboration script and use it in the same source file. On the other
hand, the close dependence of some elaboration scripts on the order
of elaboration may lead to reluctance to change the elaborator in
the future, due to the risk of breaking existing metaprograms. A
potential solution to these issues can be found in Flatt’s 2002 paper
about the Racket (then MzScheme) module system and its treatment
of macros. In this module system, the visibility of names is stratified
into metalevels, with compile-time macro code being inaccessible to
run-time code and vice versa. Additionally, due to the possibility of
metaprograms that generate or manipulate metaprograms, there is an
infinite hierarchy of stages. Within a module definition, components
can be defined or imported at any stage. A similar addition to the
Idris module system that classifies imports and definitions by their
elaboration stage could make it possible to reliably reason about
elaboration times and statically reject metaprograms that do not
respect staging.

Generic Programming Unlike Haskell, Idris does not have a “na-
tive” type class deriving feature. Elab scripts can be used to imple-
ment non-trivial type class deriving, but the level of abstraction is
quite low. Generic deriving mechanisms that use a uniform repre-
sentation of data types, such as that described by Magalhães et al.
(2010) and implemented in GHC, provide a more elegant approach
that additionally allows generic programs to be written as ordinary
programs, rather than through code generation. Similarly, dependent
types allow non-trivial data types to be encoded generically, but
the dust has not yet settled around which universe encoding of data
types is best. Norell and Jansson (2004) describe an application
of Template Haskell to implementing novel generic programming
systems. Similarly, the Shapeless generic programming library for
Scala5 uses Scala’s macro facility to implement its generics, an
approach discussed by Burmako (2013). We would like to follow
the lead of Norell and Jansson and the Shapeless developers and
use elaborator reflection to make an implementation of a high-level
generic programming system convenient to use with native data
types.

Alternative Proof Languages The reflected elaborator provides
many useful primitives, but exposes a very low-level interface

5 Available from https://github.com/milessabin/shapeless

for proof construction. Users must keep track of individual holes,
ensuring that each of them is filled and solved in turn. Matching
against reflected terms is highly intensional, not even respecting
Idris’s definitional equality, and normalization must be specifically
requested. Additionally, a single proof automation API is not equally
suitable for all tasks. In future, we would like to implement higher-
level proof APIs by interpreting them in Elab. We have already
implemented a significant portion of Agda’s former reflection API,
and we would like to explore an implementation of MTac.

Self Hosting Thus far, the only non-trivial dependently typed
language implemented in itself is F* (Swamy et al. 2016). F* was
bootstrapped by writing the first version in a subset of the language
that overlaps with F#, using the F# compiler to compile the initial
version. Rather than implementing a direct compiler in the style of
Idris, F* is first translated to either F# or OCaml, which allowed
subsequent versions of F* to be compiled using the respective
compilers. Elaborator reflection suggests an alternate route to self-
hosting. Given facilities for syntactic abstraction and the ability to
write terms directly in the core language, the elaborators for a high-
level language like Idris could be written as macros, expanding to the
core language. Then, the only primitives needed for bootstrapping
would be an implementation of the core type theory, the macro
system, and the basic elaboration primitives.

Elaborator reflection empowers Idris’s users to take charge of
their language. In a self-hosted Idris, implemented by means of a
tower of reflected elaborators with a stage-respecting module system,
users will have freedom comparable to that of a Lisp user. At the
same time, the safety and stability of the TT type checker provides a
solid grounding for new features, ensuring that they have a sensible
explanation. A reflected elaborator on top of type theory provides
both freedom and security.

Acknowledgments
The first author’s work was funded by the Danish Advanced Technol-
ogy Foundation (Højteknologifonden) grant 17-2010-3 and by the
United States National Science Foundation grant 1540276. The sec-
ond author is generously supported by EPSRC grant EP/N024222/1.
We would like to thank Shayan Najd, Sam Tobin-Hochstadt, and the
anonymous reviewers for their feedback on a draft of this paper, as
well as Ulf Norell and Peter Sestoft for discussions during the devel-
opment of elaborator reflection. The #idris channel on Freenode
has also been an excellent source of feedback and discussion.

References
T. Altenkirch and C. McBride. Generic programming within dependently

typed programming. In Proceedings of IFIP TC2/WG2.1 Working
Conference on Generic Programming, Schloss Dagstuhl, 2003.

D. Aspinall. Proof General: A generic tool for proof development. In
Proceedings of the 6th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS 2000, pages 38–43.
Springer Berlin Heidelberg, 2000. doi: 10.1007/3-540-46419-0 3.

R. Atkey. An Algebraic Approach To Typechecking and Elaboration.
Talk at Higher Order Programming with Effects (HOPE), 2015. URL
http://bentnib.org/.

E. Barzilay. Implementing Reflection in Nuprl. PhD thesis, Cornell
University, 2006.

M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and
proofs in dependent type theory. Nordic Journal of Computing, 10(4):
265–289, Dec. 2003.

A. Bove and V. Capretta. Modelling general recursion in type theory.
Mathematical Structures in Computer Science, 15(4):671–708, Aug.
2005.

E. Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. Journal of Functional Programming, 23
(05):552–593, 2013. doi: 10.1017/S095679681300018X.

E. Brady and K. Hammond. Scrapping your inefficient engine: using partial
evaluation to improve domain-specific language implementation. In
Proceeding of the 15th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’10, pages 297–308. ACM, 2010. doi:
10.1145/1863543.1863587.

E. Brady, C. McBride, and J. McKinna. Inductive families need not store
their indices. In S. Berardi, M. Coppo, and F. Damiani, editors, Types
for Proofs and Programs, International Workshop, TYPES 2003, volume
3085 of Lecture Notes in Computer Science, pages 115–129. Springer,
2003. doi: 10.1007/978-3-540-24849-1 8.

E. Burmako. Scala macros: Let our powers combine!: On how rich syntax
and static types work with metaprogramming. In Proceedings of the 4th
Workshop on Scala, SCALA ’13. ACM, 2013. doi: 10.1145/2489837.
2489840.

J. Chapman, P.-E. Dagand, C. McBride, and P. Morris. The gentle art of
levitation. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’10, pages 3–14. ACM,
2010. doi: 10.1145/1863543.1863547.

A. Chlipala. Certified Programming with Dependent Types. MIT Press,
2011. Available online: http://adam.chlipala.net/cpdt/.

D. R. Christiansen. Dependent type providers. In Proceedings of the 9th
ACM SIGPLAN Workshop on Generic Programming, WGP ’13, pages 25–
34, New York, NY, USA, 2013. ACM. doi: 10.1145/2502488.2502495.

D. R. Christiansen. Type-directed elaboration of quasiquotations: A high-
level syntax for low-level reflection. In Proceedings of the 26th Inter-
national Symposium on Implementation and Application of Functional
Languages, IFL ’14, October 2014.

D. R. Christiansen. Practical Reflection and Metaprogramming for Depen-
dent Types. PhD thesis, IT University of Copenhagen, 2016.

D. Delahaye. A tactic language for the system Coq. In Proceedings of the
7th International Conference on Logic for Programming and Automated
Reasoning, LPAR’00, pages 85–95, Berlin, Heidelberg, 2000. Springer-
Verlag.

D. Devriese and F. Piessens. Typed syntactic meta-programming. In
Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’13, pages 73–86, New York, NY, USA,
2013. ACM. doi: 10.1145/2500365.2500575.

P. Dybjer. A general formulation of simultaneous inductive-recursive
definitions in type theory. The Journal of Symbolic Logic, 65:525–549, 6
2000. doi: 10.2307/2586554.

P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. In J. Girard, editor, Proceedings of the 4th International
Conference on Typed Lambda Calculi and Applications, TLCA’99,
volume 1581 of TLCA ’99, pages 129–146. Springer, 1999. doi:
10.1007/3-540-48959-2 11.

M. Flatt. Composable and compilable macros:: You want it when? In
Proceedings of the Seventh ACM SIGPLAN International Conference on
Functional Programming, ICFP ’02, pages 72–83, New York, NY, USA,
2002. ACM. doi: 10.1145/581478.581486.

P. Kokke and W. Swierstra. Auto in Agda. In R. Hinze and J. Voigtlnder,
editors, Mathematics of Program Construction, volume 9129 of Lecture

Notes in Computer Science, pages 276–301. Springer International
Publishing, 2015. doi: 10.1007/978-3-319-19797-5 14.

J. P. Magalhães and A. Löh. Generic generic programming. In Proceedings
of the 16th International Symposium on Practical Aspects of Declarative
Languages, PADL 2014, pages 216–231, New York, NY, USA, 2014.
Springer-Verlag New York, Inc. doi: 10.1007/978-3-319-04132-2 15.

J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh. A generic deriving
mechanism for haskell. In Proceedings of the Third ACM Haskell
Symposium on Haskell, Haskell ’10, pages 37–48, New York, NY, USA,
2010. ACM. doi: 10.1145/1863523.1863529.

C. McBride. Dependently typed programs and their proofs. PhD thesis,
University of Edinburgh, 1999.

C. McBride. Turing-completeness totally free. In R. Hinze and J. Voigtländer,
editors, Proceedings of Mathematics of Program Construction: 12th Inter-
national Conference, MPC 2015, pages 257–275. Springer International
Publishing, 2015. doi: 10.1007/978-3-319-19797-5 13.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, Göteborg, Sweden, September
2007.

U. Norell and P. Jansson. Prototyping generic programming in Template
Haskell. In D. Kozen, editor, Mathematics of Program Construction,
volume 3125 of LNCS, pages 314–333. Springer-Verlag, 2004. doi:
10.1007/978-3-540-27764-4 17.

T. Sheard and S. P. Jones. Template meta-programming for Haskell. In
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell
’02, pages 1–16. ACM, 2002. doi: 10.1145/581690.581691.

N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest,
K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue,
and S. Zanella-Béguelin. Dependent types and multi-monadic effects
in F*. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, pages
256–270. ACM, 2016. doi: 10.1145/2837614.2837655.

D. Syme, K. Battocchi, K. Takeda, D. Malayeri, and T. Petricek. Themes in
information-rich functional programming for Internet-scale data sources.
In Proceedings Workshop on Data Driven Functional Programming,
DDFP 2013, 2013. doi: 10.1145/2429376.2429378.

P. van der Walt and W. Swierstra. Engineering proof by reflection in Agda.
In R. Hinze, editor, 24th International Symposium on Implementation
and Application of Functional Languages, volume 8241 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012. doi:
10.1007/978-3-642-41582-1 10.

D. Vytiniotis, S. L. P. Jones, T. Schrijvers, and M. Sulzmann. Out-
sideIn(X): Modular type inference with local assumptions. Journal
of Functional Programming, 21(4-5):333–412, 2011. doi: 10.1017/
S0956796811000098.

B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, and V. Vafeiadis.
Mtac: A monad for typed tactic programming in Coq. In Proceedings
of the 18th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’13, pages 87–100. ACM, 2013. doi: 10.1145/
2500365.2500579.

