
CLASSIFICATION AND ENUMERATION OF FINITE
SEMIGROUPS

Andreas Distler

A Thesis Submitted for the Degree of PhD
at the

University of St. Andrews

2010

Full metadata for this item is available in the St Andrews
Digital Research Repository

at:
https://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/945

This item is protected by original copyright

This item is licensed under a
Creative Commons License

http://www.st-andrews.ac.uk/
https://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/945

Ph.D. Thesis

University of St Andrews

Classification and Enumeration of

Finite Semigroups

Andreas Distler

St Andrews, May 2010

Declarations

I, Andreas Distler, hereby certify that this thesis, which is approximately 40,000 words

in length, has been written by me, that it is the record of work carried out by me and

that it has not been submitted in any previous application for a higher degree.

I was admitted as a research student and as a candidate for the degree of Doctor of

Philosophy in February 2006; the higher study for which this is a record was carried

out in the University of St Andrews between 2006 and 2010.

Date: Signature of candidate:

I, Nik Ruškuc, hereby certify that the candidate has fulfilled the conditions of the

Resolution and Regulations appropriate for the degree of Doctor of Philosophy in the

University of St Andrews and that the candidate is qualified to submit this thesis in

application for that degree.

Date: Signature of supervisor:

In submitting this thesis to the University of St Andrews we understand that we are

giving permission for it to be made available for use in accordance with the regulations

of the University Library for the time being in force, subject to any copyright vested

in the work not being affected thereby. We also understand that the title and the

abstract will be published, and that a copy of the work may be made and supplied to

any bona fide library or research worker, that my thesis will be electronically accessible

for personal or research use unless exempt by award of an embargo as requested below,

and that the library has the right to migrate my thesis into new electronic forms as

required to ensure continued access to the thesis. We have obtained any third-party

iv

copyright permissions that may be required in order to allow such access and migration,

or have requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the electronic

publication of this thesis:

Access to Printed copy and electronic publication of thesis through the University of

St Andrews.

Date: Signature of candidate:

Date: Signature of supervisor:

Abstract

The classification of finite semigroups is difficult even for small orders because of their

large number. Most finite semigroups are nilpotent of nilpotency rank 3. Formulae for

their number up to isomorphism, and up to isomorphism and anti-isomorphism of any

order are the main results in the theoretical part of this thesis. Further studies concern

the classification of nilpotent semigroups by rank, leading to a full classification for

large ranks.

In the computational part, a method to find and enumerate multiplication ta-

bles of semigroups and subclasses is presented. The approach combines the advan-

tages of computer algebra and constraint satisfaction, to allow for an efficient and

fast search. The problem of avoiding isomorphic and anti-isomorphic semigroups is

dealt with by supporting standard methods from constraint satisfaction with structural

knowledge about the semigroups under consideration. The approach is adapted to

various problems, and realised using the computer algebra system GAP and the con-

straint solver Minion. New results include the numbers of semigroups of order 9, and

of monoids and bands of order 10. Up to isomorphism and anti-isomorphism there are

52,989,400,714,478 semigroups with 9 elements, 52,991,253,973,742 monoids with 10

elements, and 7,033,090 bands with 10 elements. That constraint satisfaction can

also be utilised for the analysis of algebraic objects is demonstrated by determining the

automorphism groups of all semigroups with 9 elements.

A classification of the semigroups of orders 1 to 8 is made available as a data library

in form of the GAP package Smallsemi. Beyond the semigroups themselves a large

amount of precomputed properties is contained in the library. The package as well as

the code used to obtain the enumeration results are available on the attached DVD.

Contents

Preface xv

History . xvi

Content . xvii

Acknowledgements . xix

1 Mathematical Background 1

1.1 Binary Operations . 1

1.2 Semigroups . 5

1.3 Group Actions . 8

1.4 Directed Graphs . 10

2 Nilpotent Semigroups 11

2.1 Nilpotency Rank . 12

2.2 Power Group Enumeration . 26

2.3 3-nilpotent Semigroups . 33

3 Diagonals 45

3.1 Constructing Diagonals . 46

3.2 Analysing Diagonals . 54

3.2.1 Excluded diagonals . 58

3.2.2 Allowed diagonals . 62

4 Semigroups of Order at most 8 69

4.1 Enumeration Using Constraint Satisfaction 69

4.1.1 Formulation of the basic CSP 71

4.1.2 Breaking symmetries . 72

4.1.3 Instances from Ln and Ln 73

vii

viii Contents

4.1.4 Optimising constraints . 75

4.1.5 Computations for Ln and Ln 77

4.2 A Data Library of Small Semigroups 80

4.2.1 The semigroups in the library 81

4.2.2 Properties of the semigroups in the library 83

4.2.3 Usage . 85

5 New Enumeration Results 87

5.1 A Family of CSPs . 88

5.2 Bands . 94

5.3 52 989 400 714 478 . 105

5.3.1 Constant function . 107

5.4 The Monoids of Order at most 10 110

5.4.1 Basic CSP and diagonal case split 111

5.4.2 Structure of finite monoids 114

5.5 Automorphism Groups . 120

5.6 Outlook . 122

5.6.1 Semigroups of order 10 . 122

5.6.2 Subclasses of semigroups . 123

5.6.3 Other structures and properties 124

A Tables 127

A.1 Nilpotent Semigroups . 127

A.2 Automorphism Groups . 134

A.3 Up to Isomorphism . 138

B Semigroup Properties 141

C DVD Content 143

C.1 Smallsemi . 143

C.2 GAP code . 143

C.2.1 Auxiliary files . 144

C.2.2 Enumeration of semigroups 145

C.2.3 Computing automorphism groups 147

C.3 Instances and Output . 148

Bibliography 154

List of Tables

2.1 Ratio of lower bound and actual number of 3-nilpotent semigroups . 43

3.1 Numbers of non-equivalent functions from [n] to [n] 48

3.2 Numbers of non-equivalent partial functions from [n] to [n] 54

3.3 Numbers of diagonals appearing in associative multiplication tables 56

3.4 Possible orders of elements labelling vertices in a cycle 62

4.1 Enumeration of all different semigroups on [n] 78

4.2 Enumeration of non-equivalent semigroups on [n] 80

4.3 Properties of semigroups up to order 8 84

5.1 Enumeration of non-equivalent semigroups on [n] using a family

of CSPs . 91

5.2 Case split on the number of idempotents 93

5.3 Enumeration of non-equivalent bands on [n] using a family of CSPs 96

5.4 Numbers of non-equivalent semigroups on [n] by idempotent 106

5.5 Properties of semigroups of order 9 107

5.6 Enumeration of non-equivalent monoids on [n] 113

5.7 Enumeration of non-equivalent monoids up to order 10 119

5.8 Automorphism groups of non-equivalent semigroups S on [n] 121

ix

x List of Tables

A.1 Enumeration of non-equivalent nilpotent semigroups on [n] by rank 127

A.2 Numbers of all different, 3-nilpotent semigroups on [n] 128

A.3 Numbers of all different, commutative, 3-nilpotent semigroups on [n] 129

A.4 Numbers of non-isomorphic 3-nilpotent semigroups on [n] 130

A.5 Numbers of non-equiv. 3-nilpotent semigroups on [n] 131

A.6 Numbers of non-equiv. self-dual, 3-nilpotent semigroups on [n] . . . 132

A.7 Numbers of non-equiv. commutative, 3-nilpotent semigroups on [n] 133

A.8 Automorphism groups of semigroups of order 2 134

A.9 Automorphism groups of semigroups of order 3 134

A.10 Automorphism groups of semigroups of order 4 134

A.11 Automorphism groups of semigroups of order 5 135

A.12 Automorphism groups of semigroups of order 6 135

A.13 Automorphism groups of semigroups of order 7 135

A.14 Automorphism groups of semigroups of order 8 136

A.15 Automorphism groups of semigroups of order 9 137

A.16 Enumeration of non-isomorphic semigroups on [n] by idempotent . . 139

A.17 Enumeration of non-isomorphic self-dual semigroups on [n] 139

A.18 Enumeration of non-isomorphic (self-dual) monoids on [n] 140

C.1 Overview of code for the enumeration of semigroups 146

C.2 Overview of directories containing Minion instances and output files 148

List of Figures

1.1 Cayley table of a group with two elements 2

1.2 A Cayley table of V4 . 3

1.3 Cayley table of V4 with 4 as identity mapped under permutation (1 4) 4

1.4 Action of an anti-isomorphism on a multiplication table 9

2.1 Multiplication of generators in semigroups with nilpotency rank n− 1 17

2.2 Partially defined multiplication of generators 20

2.3 Multiplication of generators in semigroups with nilpotency rank n− 2 21

2.4 Partially defined multiplication of generators 22

3.1 Building rooted trees . 49

3.2 Unique associative multipl. table with diagonal (1, 1, 2, 5, 4, 4, 4, 6, 8) 55

3.3 An associative partial multiplication 57

3.4 Assembling of the diagonal (1, 1, 2, 5, 4, 4, 4, 6, 8) 63

3.5 Replication of one edge in a digraph 65

3.6 Replication of two edges in a digraph 65

3.7 Two graphs of diagonals . 66

4.1 Minion instance for L
−3

2 . 79

5.1 Two semilattice structures of bands 104

xi

xii List of Figures

Preface

Classification is an important research tool in all sciences. When concerned with

different objects or a certain phenomenon, which comes in different shapes, one

wants to bring order into the chaos by determining common features and dif-

ferences. Classification does so by building a catalogue of types of objects or

phenomena. Many such catalogues have been successfully utilised in science and

mathematics. An example not too far from the research area in this thesis demon-

strates how beneficial such a catalogue can be: the classification of finite simple

groups is used in the proofs of numerous results in group theory.

Algebraic structures often appear in different representations. This is fine as

long as one studies each object by itself, but causes difficulties if objects are to

be compared. The most important decision in a classification is which criteria

are used to distinguish objects. The representation is usually not a criterion for

the classification, and in particular one wants to be able to determine when two

objects in different representations have the same structure. What this actually

means depends not only on the type of object, but as well on the interest one

has in it. A circle, for example, has topologically the same structure as a square,

though any non-mathematician would point out clear differences between the two.

The objects studied in this thesis are finite semigroups. The work started with

the attempt to use a classification of semigroups of small order to analyse their

automorphism groups, only to find out that such a classification was not readily

available (see Section 4.2). The sheer number of semigroups makes a complete

classification difficult, and makes it even more difficult to provide one in a useful

format. The number of semigroups grows super-exponentially with their order

(see [KRS76]). Where the number of semigroups makes a classification impossible,

the related task of counting the semigroups might be achievable. Enumeration is

less informative than classification, but can provide more than just a number: for

xiv Preface

different subclasses of semigroups numbers can be compared; or, if the enumeration

is done with a formula, probabilities and asymptotics may be established.

The major existing results in the classification and enumeration of semigroups

are summarised in the forthcoming section. The subsequent section provides de-

tails on the content of this thesis.

History

The classification of finite semigroups was first done by hand. Tamura classified

the semigroups up to order 4 [Tam53, Tam54] (published in 1953 and 1954), and

classified, together with Tetsuya, Hashimoto, Akazawa, Shibata, and Inui, the

semigroups up to order 5 [THA+55] in the year after. The latter contained at least

one mistake in the original version. This became apparent from a comparison

with results from a computer search for semigroups. The first such was done by

Forsythe in 1954 to obtain the semigroups of order 4 [For55]. One year later

the semigroups of order 5 were found by Motzkin and Selfridge [MS55, For60].

From that point on the semigroups of increasing order were too numerous to be

considered by hand computations, and even presenting more than their number

became difficult. Plemmons created multiplication tables for the semigroups of

order 6 in 1966 [Ple67, Ple70], and stored them on magnetic tape, so that they

could be analysed. Much later, in 1989, Jürgensen wrote a report annotating

these tables [Jür89]. In between Jürgensen and Wick counted the semigroups of

order 7 [JW77], but did not store the multiplication tables. The same is likely to

be true for Satoh, Yama, and Tokizawa who counted the semigroups of order 8

and partitioned them according to their structure [SYT94]. This last result was

published in 1994. The most recent publication on an attempt to improve the

enumeration methods is from 2007 [Gri07], but it does not contain new numbers.

Naturally, many of the authors mentioned in the previous paragraph com-

mented on the challenge to enumerate the next higher order. Their guesses tend

to be rather far away from the actual numbers. This has changed since Kleitman,

Rothschild, and Spencer determined a lower bound for the number of semigroups

on a finite set, which they attempt to prove asymptotic [KRS76]. Even though

details of the proof are omitted the fact is widely believed.1 The result also led to

1This opinion is shared by various semigroup theorists the author has talked to. A written

Content xv

a lower bound for the number of structural types of semigroups [JMS91, Chapter

15], which appears to be tight. The majority of semigroups for orders 7 and 8 are

of the type used in [KRS76], and their ratio in semigroups of a given order seems

to converge to 1 while the order tends to infinity.

This completes the summary of major results which are extended in this thesis.

Closely related research has been done for the special case of commutative semi-

groups. The most recent results are available in [Gri03]. Two older surveys on the

use of computers in semigroup theory, including enumeration of semigroups, are

[Ple69, Jür78].

Content

The thesis contains theoretical and computational results on the classification and

enumeration of finite semigroups and subclasses like monoids, bands, and nilpotent

semigroups.

After some introductory material is presented in the next chapter, the first

new results are given in Chapter 2. The main theorems provide formulae for

the number of 3-nilpotent semigroups. Kleitman, Rothschild, and Spencer state

in [KRS76] that the ratio of the number of such semigroups on the set {1, 2, . . . , n}
and the number of all semigroups on {1, 2, . . . , n} tends to 1 while n ∈ N tends

to infinity. The conjecture, that the analogue is true for the numbers of structural

types of semigroups, is supported by empirical evidence in [SYT94]. The formulae

from Chapter 2 play an important role for the enumeration of semigroups in later

chapters.

The thesis continues with a chapter which serves on the one hand as preparation

for the computer search of semigroups presented later, and contains on the other

hand some theoretical results connected to this preparation. In the first part of

Chapter 3 an algorithm to construct diagonals of multiplication tables is given,

based on a correspondence between diagonals and certain digraphs. The diagonal

of the multiplication table defines the squares of elements. The second section of

Chapter 3 gives a partial answer to the question which structural information of

a semigroup can be deduced from the squares of all elements.

Chapters 4 and 5 are dedicated to the computer search for semigroups. The

account is given in [JMS91].

xvi Preface

method used for the search differs from what had been done before. Instead of a

specialised implementation, general purpose software is facilitated. The idea is to

formulate the problem of finding all semigroups as a constraint satisfaction prob-

lem (CSP). Constraint satisfaction is an area in computer science which provides

a framework to solve all kinds of (real life) problems, which allow a combinatorial

description. The CSP – and hence the original problem of finding semigroups – is

then solved with the constraint solver Minion [GJM06]. This approach separates

the search into a black box process, so that one can concentrate on the setup

of the CSP. Not having to worry too much about the search, makes it possible

to put all effort in a sophisticated setup. This becomes particularly important

if one considers subclasses of semigroups, for which additional structural infor-

mation is available. Already a very simple setup allows one to reproduce on a

modern computer the known results from the enumeration of semigroups up to

order 8 in Chapter 4. More elaborate formulations using mathematical knowl-

edge about semigroups are developed in Chapter 5. The computer algebra system

GAP [GAP08] is used for algebraic manipulations required for the setup. In ad-

dition, a technique, translating and extending an idea used by Plemmons in the

enumeration of semigroups of order 6 [Ple67], which splits one CSP into a family

of CSPs solving the same problem, is introduced and applied.

While the first part of Chapter 4 describes how the semigroups up to order 8

were created, the second part reports on the construction of a data library in GAP

containing their multiplication tables and information on some of their properties.

The data library is available as an add-on for GAP, the package Smallsemi [DM10],

which is contained on the DVD attached to this thesis.

Chapter 5 contains six sections. In the first section the split of a CSP into

a family of CSPs is explained. In the three subsequent sections the method is

applied to bands, semigroups, and monoids respectively, leading to new results in

the enumeration of all three types of algebraic objects. Finally, it was possible to

go back to the starting point of this thesis and compute the automorphism groups

of all semigroups with at most 9 elements. Possible future applications of the

developed methods are discussed in the closing section.

A verification of the enumerative results is possible using the code included on

the attached DVD. One idea behind the presented approach is that anybody can

reproduce the results using their chosen CSP solver. As stated earlier, Minion was

Acknowledgements xvii

used as a black box to solve carefully formulated CSPs, and so could (potentially)

any other CSP solver. This is not the whole truth though. As Minion is developed

at the University of St Andrews, where this thesis was written, there has been

an active interaction between the author and the developers of Minion. Over the

course of the PhD project Minion became orders of magnitude more efficient. This

was partially due to feedback from the intensive computations undertaken for this

thesis. While, for example, the results on the number of semigroups of order up to

8 are reproduced in Chapter 4 using the simplest formulation of the problem, this

would not have been possible with the version of Minion available three years ago.

On the other hand, using the most sophisticated setup, the results in Chapter 5 can

be obtained with an old version of Minion on a four years old desktop computer.

Unfortunately, the improvements to Minion and the benefits from mathematical

knowledge put in the setup are often not cumulative.

Acknowledgements

Remembering what brought me to St Andrews in first place, I am grateful that

Prof. Joachim Neubüser contacted Prof. Edmund Robertson, and that the latter

invited me and helped me to overcome my initial doubts.

I want to thank my first supervisor Prof. Nik Ruškuc for all the guidance

and support he gave me, and my second supervisor Prof. Steve Linton for all his

advice. My main collaborators Dr Tom Kelsey and Dr James Mitchell I thank for

the fruitful work together and for all their help.

I had the great pleasure to share ‘my’ office with so many people. They are Dr

Robert Brignall, Anne-Sandrine Paumier, Markus Pfeiffer, Claire Pollard, Victor

Maltcev, and Dr Stephen Waton. Thanks go to all of them, but in particular to

Victor, who is the office mate, from whose knowledge I benefited most.

Of all the other current and former members of CIRCA, who I owe thanks for

their help, I want to mention Dr John McDermott, who dedicated numerous hours

to deal with computer issues occurring during my rather extensive computations

and my work as GAP packages administrator.

I also thank my parents, Dagmar and Dietrich Distler, and my sister Denise

for their short and long distance support over the last four years.

Thanks go to my friends in St Andrews for reminding me that there is a life

xviii Preface

outside university; and to my more distant friends for reminding me that there is

a world outside St Andrews.

I am especially grateful for the invaluable support and encouragement I received

from Ana Patricia Barazal Barreira – who deserves a title far more than I do.

Last but not least I acknowledge the financial support I received from the Uni-

versity of St Andrews and from CIRCA, sponsoring my PhD and the attendance

of many conferences.

St Andrews, Andreas Distler

February 2010

With all the changes for the final version of my thesis done, I want to thank

my internal examiner Dr Max Neunhöffer and my external examiner Prof. Rick

Thomas for reading the thesis and for the corrections they suggested. Even more

though, I am grateful for the sympathy they showed and for the effort they made

which allowed me to complete my studies this month.

St Andrews, Andreas Distler

May 2010

1 Mathematical Background

This chapter provides background information for the rest of the thesis. Basic

definitions and well-known facts are presented. Conventions for the notation used

throughout the thesis are introduced. The chapter divides into four sections. The

areas covered are binary operations in general, semigroups in particular, group

actions, and directed graphs.

None of the sections is intended as an introductory text to the respective area,

but to enable a mathematician to understand this work without having to consult

the literature. Recommendations on further reading are given throughout.

1.1 Binary Operations

The algebraic objects encountered in this thesis are sets with a binary operation

defined on them, most often semigroups. It is assumed that the reader is familiar

with the basic definitions of algebraic structures. As a reminder and to introduce

the notation which will be used, the current section starts with a summary of the

basic definitions. For more detailed information the reader is referred to [How95,

Chapter 1] or [Kos82, Chapter 4], or other introductory books on algebra or semi-

group theory.

Definition 1.1.1 Let X be a set.

(i) A mapping ∗ : X ×X → X is a (binary) operation, and the pair (X, ∗) is a

magma.

(ii) A magma (X, ∗) and the operation ∗ are associative, if (a ∗ b) ∗ c = a ∗ (b ∗ c)
for all a, b, c ∈ X. An associative magma is a semigroup.

(iii) An element e ∈ X is an identity (element) of a magma (X, ∗), if e ∗ x = x

and x∗ e = x for all x ∈ X. A semigroup containing an identity is a monoid.

2 Mathematical Background

(iv) An element x ∈ X in a magma (X, ∗) is invertible, if there exists an identity

e ∈ X and an element x̄ ∈ X for which x ∗ x̄ = e and x̄ ∗ x = e. Then x̄ is

an inverse of x. A monoid in which every element is invertible is a group.

The cardinality of X is called the order or size of the magma (semigroup, monoid,

and group respectively).

It is common practice to identify the magma (X, ∗) with the underlying set X

and to denote the operation by simple juxtaposition of elements. Only in cases

where this is potentially ambiguous, operation symbols will be used. In general the

operation will be referred to as multiplication. If a magma contains an identity,

then it is unique. If an element x in a monoid is invertible, then it has a unique

inverse, which will be denoted x−1.

The way in which algebraic objects are represented is explained next. The

order of any algebraic object studied in this thesis is finite and most commonly

denoted by n ∈ N (where N = {1, 2, . . . }). The most näıve way to describe a

binary operation on a finite set is to note the result of the operation for every pair

of elements. This is usually done in the form of a table, the multiplication table or

– particularly for groups – Cayley table of a magma. The table is a square matrix

of dimension n whose rows and columns are indexed by the elements in the set.

Each entry defines the product of its row index multiplied with its column index.

That is, if (X, ∗) is a magma, then its multiplication table T(X,∗) = (ta,b)a,b∈X has

a ∗ b as entry ta,b for all a, b ∈ X. Figure 1.1 shows as example the Cayley table of

the group ({e, c}, ∗) of order 2, where e is the identity element.

∗ e c
e e c
c c e

Figure 1.1 Cayley table of a group with two elements

Most often the underlying set of a magma will be {1, 2, . . . , n}, which shall be

abbreviated as [n]. As a consequence one can assume that the rows and columns of

the multiplication table are indexed according to their position in the table. This

allows one to omit the row and column header. Under this convention every square

matrix of size n with entries in [n] uniquely defines a binary operation on [n]. The

1.1 Binary Operations 3

set of all such matrices will be denoted by Ωn. Figure 1.2 shows the Cayley table

of V4 (the Klein four-group) on {1, 2, 3, 4} with 1 as identity element.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

Figure 1.2 A Cayley table of V4

Even for finite algebraic objects it is in general not a good idea to represent

them via their multiplication tables. The representation is not particularly in-

structive to learn about the structure of the object, and the data to be retained

at once is in general unreasonably large. For magmas it is feasible if they are of

such small orders as predominately occurring in this thesis. Then the simplicity

of the representation makes it attractive for use with computers. The product of

any two elements is immediately available and membership is not an issue, while

storing tables of this size is not a problem.

When studying algebraic objects one is usually more interested in their struc-

ture than in their specific representation. This is reflected by an equivalence rela-

tion defined on algebraic objects of every type, placing them in the same equiva-

lence class, if they have the same structure. This shall be made precise for magmas.

Definition 1.1.2 Let (X, ∗) and (Y, ◦) be two magmas of the same order. A

bijection σ : X → Y is an isomorphism if it respects the multiplication – that is,

σ(a ∗ b) = σ(a) ◦ σ(b) for all a, b ∈ X – and an anti-isomorphism if it reverses

the multiplication – that is, σ(a ∗ b) = σ(b) ◦ σ(a) for all a, b ∈ X. If such a

bijection exists, then the magmas are isomorphic, respectively anti-isomorphic,

and are equivalent if they are either isomorphic or anti-isomorphic.

Loosely speaking, an isomorphism does nothing, but rename the elements in the

underlying set, and an anti-isomorphism changes in addition multiplication from

the left with multiplication from the right. Neither is essential for the structural

properties of the magma. Hence enumeration is done up to equivalence in this

thesis. To provide more complete information, results from enumeration up to

equivalence, obtained in the main body of the thesis, are given up to isomorphism

4 Mathematical Background

4 3 2 1
3 4 1 2
2 1 4 3
1 2 3 4

 apply(1 4)−→

4 2 3 1
4 1 3 2 4
2 3 1 4 2
3 2 4 1 3
1 4 2 3 1

rearrange−→

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

Figure 1.3
A Cayley table of V4, with 4 as identity, is mapped to a Cayley table of V4, where
1 is the identity, using the permutation (1 4).

in Appendix A.3. For a set X of magmas, |X | shall denote the number of non-

equivalent magmas, and |X̂ | the number of non-isomorphic magmas in X .

Instead of asking whether two magmas are isomorphic, one can determine an

isomorphic magma under a specific bijection. Given a magma (X, ∗), a set Y and

a bijection σ : X → Y , define a multiplication ◦ on Y as follows: for s, t ∈ Y

with s = σ(a) and t = σ(b) the product s ◦ t equals σ(a ∗ b). This makes σ an

isomorphism from (X, ∗) to (Y, ◦). If T(X,∗) = (ta,b)a,b∈X is the multiplication table

of (X, ∗), then

(σ (a ∗ b))σ(a),σ(b)∈Y =
(
σ
(
σ−1(s) ∗ σ−1(t)

))
s,t∈Y (1.1)

is the multiplication table of (Y, ◦). What happens to the table is that every

element is mapped to its image under the bijection, and this includes the indices.

To comply with the convention that each index equals the position of the row

respectively column in the table, rows and columns have to be rearranged. This is

best illustrated in an example as given in Figure 1.3, which splits the process into

two steps. First the table is mapped to its image disregarding the convention, and

then the rows and columns are put in the correct order.

The magma (Y, ·) which – in the same setup as before – is anti-isomorphic to

(X, ∗), has (
σ
(
σ−1(t) ∗ σ−1(s)

))
s,t∈Y (1.2)

as multiplication table. If a bijection is applied as an anti-isomorphism to a multi-

plication table, then the matrix is transposed in addition to the steps undertaken

for the isomorphism corresponding to the same bijection.

1.2 Semigroups 5

The dual of a magma X, denoted by X⊥, is the image of X under the anti-

isomorphism corresponding to the trivial permutation on X. A magma which is

anti-isomorphic to itself – or equivalently, isomorphic to its dual – is self-dual .

Note that in a group every anti-isomorphism gives rise to an isomorphism by

combining it with taking inverses. Combining the identity mapping with taking

inverses shows that every group is anti-isomorphic to itself (since (ab)−1 = b−1a−1)

and hence self-dual. If in a classification of magmas up to equivalence the self-

dual ones are known, it allows one to deduce the corresponding classification up

to isomorphism.

Lemma 1.1.3 Let X be a set of non-equivalent magmas. A set of non-isomorphic

magmas in X ∪ {X⊥ | X ∈ X} is given by X ∪ {X⊥ | X ∈ X , X is not self-dual}.

Proof: Since the magmas in X are non-equivalent, the possible pairs of isomorphic

magmas in X ∪ {X⊥ | X ∈ X} are a magma and its dual. Such magmas are by

definition self-dual. �

Note that for self-dual objects it does not make a difference whether they are

considered up to isomorphism or up to equivalence. This holds in particular for

commutative objects.

1.2 Semigroups

In this section terminology and well-known results around properties of semigroups

and their structure are presented. Again the reader is directed to other sources,

in particular [How95] and [CP61], for a general introduction to semigroup theory.

In the previous section a binary operation was given by its multiplication table.

Another common way of representing an algebraic object is to find an embedding

into an existing object. According to Cayley’s theorem every finite group of order

n is isomorphic to a permutation group on n elements, thus can be embedded into

the full symmetric group on [n]. An analogue statement holds for semigroups.

Lemma 1.2.1 Let S be a semigroup of order n ∈ N. Then S is isomorphic to

a subsemigroup of the full transformation monoid on [n + 1] (all mappings from

[n+ 1] into itself).

6 Mathematical Background

A proof for a more general statement, including the case that S is infinite, can be

found in [How95, Theorem 1.1.2].

A semigroup S is generated by A = {a1, a2, . . . , ak} if A ⊆ S and all elements

in S are products of finite length of elements from A. The elements in A are

generators, A is a generating set, and one writes S = 〈A〉 or S = 〈a1, a2, . . . , ak〉.
When presenting a semigroup S as a subsemigroup of a full transformation monoid

it makes sense to give just the generators of S, as the multiplication is determined

by the embedding. A set A, for which 〈A \ {a}〉 is a proper subset of 〈A〉 for all

a ∈ A is a minimal generating set of 〈A〉.
If a semigroup S is generated by a single element, then S is monogenic. If

S = 〈a〉 = {ai | i ∈ N} is a finite semigroup, then there exist minimal m, r ∈ N
such that am = am+r. The integers m and r are index and period of a and of S,

and S = {a, a2, . . . , am+r−1}. Hence

m+ r = |S|+ 1. (1.3)

For each pair of positive integers, m, r ∈ N, there exists a monogenic semigroup

with index m and period r. The transformation(
1 2 3 · · · m+ r + 1

r 1 2 · · · m+ r

)
(1.4)

generates such a semigroup. Every element in a semigroup generates a monogenic

subsemigroup.

A subsemigroup I of a semigroup S is an ideal if every product containing an

element from I as factor lies in I.

The order of a finite semigroup has essentially no relevance for its structure

– very much on the contrary to the situation for groups. The following lemma,

copied from [JMS91], gives some insight into this comment.

Lemma 1.2.2 Let S, T be two non-isomorphic semigroups of order n ∈ N. Then

there exist for all i ∈ N ∪ {0} two non-isomorphic semigroups Si and Ti of order

n+ i, such that Si contains S as subsemigroup and Ti contains T as subsemigroup.

To prove the lemma, define based on a semigroup S a monoid S1 with an

additional element, which is an identity.

1.2 Semigroups 7

Proof: The statement is shown by induction. Let S0 = S and T0 = T . By

assumption, S0 and T0 have the required properties. Now consider i > 0 and

assume Si−1 and Ti−1 fulfil the condition from the lemma. Let Si = S1
i−1 and

Ti = T 1
i−1.

Assume σ : Si → Ti is an isomorphism. Since σ must map the identity in Si to

the identity in Ti an isomorphism from Si−1 to Ti−1 is induced by restricting σ to

Si−1. The existence of such an isomorphism contradicts the induction hypothesis.

Hence Si and Ti are non-isomorphic. �

Structural statements about semigroups are therefore usually independent of

their size.

Remark 1.2.3 In every finite semigroup there exists at least one element which

is equal to its own square, and hence equal to all its powers [How95, Proposition

1.2.3]. Such an element is called an idempotent. A semigroup consisting entirely

of idempotents is a band.

The set of idempotents in a magma X is denoted E(X). One particular type

of idempotent, an identity, has already appeared in Definition 1.1.1. Let X be

a magma and e ∈ E(X). If ex = x (xe = x) for all x ∈ X, then e is a left

(right) identity. If ex = e (xe = e) for all x ∈ X, then e is a left (right) zero.

An idempotent, which is both a left and a right zero is a zero (element) of the

magma. While identities and zeros are unique, left/right identities or zeros may

not be. A magma in which every element is a left (right) zero element is a left

(right) zero semigroup – which is indeed a semigroup – and every element is a right

(left) identity, too. A magma with zero element, in which every product equals

the zero, is a zero semigroup – and is again indeed a semigroup.

Further properties of semigroups, which are solely mentioned, but not used, in

the course of this thesis, are compiled in Appendix B.

For finite semigroups the most important tool to describe their structure are

four equivalence relations on the elements, known as Green’s relations. Two ele-

ments a, b in a semigroup S are L-related, denoted by aLb, if there exist s, t ∈ S1

such that sa = b and tb = a. This defines an equivalence L on S. Analogously

one defines an equivalence R. Two elements a, b in a semigroup S are R-related,

if there exist s, t ∈ S1 such that as = b and bt = a. Furthermore, two elements are

8 Mathematical Background

H-related, if they are both L- and R-related. Finally, if there exists c ∈ S such

that aLc and cRb, then a and b are D-related. The classes defined by these four

Green’s relations are H-, L-, R-, and D-classes respectively. All four equivalence

relations are preserved under isomorphism.

Under an anti-isomorphism the Green’s relations H and D are preserved, while

L and R are interchanged. The latter relations are only invariant as an unordered

tuple. This is one reason why in certain situations one might be interested in

semigroups up to isomorphism instead of up to equivalence.1 The connecting

link are the self-dual semigroups as shown in Lemma 1.1.3, since they are anti-

isomorphic to itself.

1.3 Group Actions

The effect isomorphisms and anti-isomorphisms have on a multiplication table is

a special case of the common group theoretical notion of an action. Plenty of

detailed introductions are available in the literature, for example [Kos82, Chapter

7, §2].

Definition 1.3.1 Let X be a set and G a group with identity e. A mapping

φ : X ×G→ X, (x, g) 7→ xg

is a right action if xe = x and xgh = (xg)h for all x ∈ X and for all g, h ∈ G. A

left action is defined analogously.

The orbit of an element x ∈ X is the set {xg | g ∈ G}, denoted xG. Similarly

for Y ⊆ X define Y g = {xg | x ∈ Y } and Y G =
⋃
x∈Y x

G.

The stabiliser of an element x ∈ X is the set {g ∈ G | xg = x}, denoted by

StabG(x). The pointwise stabiliser of a subset Y ⊆ X is the intersection of the

stabilisers of the elements in Y , that is
⋂
x∈Y StabG(x). The setwise stabiliser of

Y , denoted by StabG(Y), is the set {g ∈ G | Y g = Y }.

Each action of a group G on a set induces an equivalence relation. The equiv-

alence classes are the orbits of the elements in the set. Elements in the same orbit

are called G-equivalent.

1It is not a coincidence that only H- and D-relations play a role in the search for semigroups
up to equivalence in Chapter 5.

1.3 Group Actions 9

Equivalence of magmas arising from multiplication tables in Ωn (the set of all

n× n matrices with entries in [n]) can now be expressed using the language from

the previous definition. For a set X denote by SX the (full) symmetric group of

all permutations on X and denote Sn = S[n]. Consider the action Ωn × Sn → Ωn

sending the table T = (ti,j)1≤i,j≤n ∈ Ωn under π ∈ Sn to (tπ
iπ
−1
,jπ−1)1≤i,j≤n. Then

two tables T1, T2 ∈ Ωn define isomorphic magmas if and only if there exists a

bijection π ∈ Sn sending T1 to T2. This follows from Equation (1.1) and the

definition of the action.

So far the action only covers isomorphisms. Anti-isomorphisms correspond to

the permutations in Sn as well. To have the action cover both isomorphisms and

anti-isomorphisms at the same time a simple trick is used. Let Sn × C2 act on

the set Ωn. Group elements (π, e), where e is the identity in C2, act like π in the

previously described action, thus correspond to isomorphisms. For (π, c) instead,

where c is the non-trivial element in C2, the action on a table (ti,j)1≤i,j≤n ∈ Ωn is

(tπ
jπ−1

,iπ
−1)1≤i,j≤n, following (1.2). This reflects the fact that an anti-isomorphism

reverses the order of the multiplication. Remember that the multiplication table

is transposed in addition to what π does as an isomorphism. A simple example is

given in Figure 1.4.

(
1 2
1 2

)
−→

(
1 1
2 2

)

Figure 1.4 Action of an anti-isomorphism on a multiplication table
The multiplication table of a right-zero semigroup with two elements goes to the
multiplication table of a left-zero semigroup under every anti-isomorphism.

Using the defined actions two magmas are in the same orbit, if they have the

same structure. Here ‘the same structure’ means that the magmas are isomor-

phic, if they are Sn-equivalent, and it means that the magmas are isomorphic or

anti-isomorphic, if they are Sn×C2-equivalent. Note that the partition of Ωn into

orbits induced by Sn is a refinement of the partition induced by Sn × C2. More-

over, the same considerations hold for every subset of Ωn that is closed under the

action, in particular it holds for the set of matrices defining semigroups. The two

multiplication tables in Figure 1.4 form one orbit under the action of S2×C2, and

are each an orbit by itself under the action of S2.

10 Mathematical Background

Definition 1.3.2 Let φ : X × G → X be an action, and let ψ : X → Y be a

function. If the mapping φψ : im(ψ)×G→ im(ψ) with (y, g) 7→ ψ(xg) for y = ψ(x)

is well-defined, then φψ is an induced action.

Induced actions from the action of Sn × C2 on multiplication tables will play

an important role in this thesis.

1.4 Directed Graphs

The elements of graph theory which appear in this thesis are, together with the

notation, mostly taken from [HP73]. The reference is concerned with enumeration

of graphs, and adapting the techniques presented in it will turn out to be useful

for the enumeration of semigroups in this thesis (see Sections 2.2 and 2.3).

The graphs occurring in this thesis have directed, but no multiple edges, and

loops are allowed. Some definitions are given next to introduce the notation. A

digraph is a pair (V,E) formed by a set V of vertices and a set E ⊆ V × V of

edges. If e = (v, w) ∈ E, then v is the start vertex of the edge e and w is the end

vertex. The outdegree of a vertex v ∈ V is the number of edges with v as start

vertex, and the indegree is the number of edges with v as end vertex.

Let v0, v1, . . . , vk be a sequence of vertices such that (vi−1, v1) is an edge for all

1 ≤ i ≤ k. Then the sequence together with the edges is a walk of length k. If all

the vertices are distinct, then the walk is a path. A walk in which the first and the

last vertex coincide, and all other vertices are pairwise distinct is a cycle.

Let Γ = (V,E) be a graph and U ⊆ V . Then Γ without U , denoted Γ \ U ,

is the graph (V \ U,E ′), where E ′ = {e ∈ E | e = (v, w) with v, w ∈ V \ U}. If

∆ = (W,F) is a second graph, then the union Γ∪∆ is the graph (V ∪W,E ∪F).

A bijection σ : V → W between the vertex sets of two graphs, Γ = (V,E)

and ∆ = (W,F), is an isomorphism (of graphs) if: (u, v) ∈ E if and only if

(σ(u), σ(v)) ∈ F . If such a bijection exist, then Γ and ∆ are isomorphic.

Graphs for which the direction of edges does not matter only appear as un-

derlying structures. The underlying graph of a digraph Γ = (V,E) is (V,E ∪ Ē),

where Ē = {(w, v) | (v, w) ∈ E}. A connected component of a digraph Γ = (V,E)

is a subset U of V such that there exists a path between any two vertices of U in

the underlying graph, and for each edge (v, w) ∈ E either v, w ∈ U or v, w ∈ V \U .

A digraph is connected, if its vertex set is a connected component.

2 Nilpotent Semigroups

In a constructive approach to the enumeration of algebraic objects, based on math-

ematical knowledge about their structure, it is necessary to understand certain

characteristics of the objects. Part of this is to look for properties which the

majority of the objects have in common. In this chapter finite semigroups S for

which the sequence of sets S ⊇ S2 ⊇ S3 ⊇ . . . (where Sk = {s1s2 · · · sk | si ∈ S})
stabilises with a singleton set are studied.

Definition 2.0.1 A semigroup S is nilpotent if there exists an r ∈ N such that

|Sr| = 1. The least such r is the nilpotency rank of S and S is said to be r-nilpotent .

As observed in [SYT94], 99.5% of the semigroups of order 8 are nilpotent and

99.4% even 3-nilpotent. In this chapter a classification of all finite, nilpotent semi-

groups is attempted. For 3-nilpotent semigroups the studies lead to the most

important theoretical result of this thesis: a formula for the number of 3-nilpotent

semigroups up to isomorphism and anti-isomorphism. Additional results are ob-

tained for nilpotent semigroups with nilpotency rank at least n−2, where n denotes

the order of the semigroups. A complete classification is not achieved using the

developed methods – even when restricting to small orders, which are of primary

interest for the enumeration in later chapters.

The chapter is organised in three sections. It starts with an introduction to

nilpotent semigroups and results for nilpotency ranks not equal to 3. The major

part of the chapter is concerned with the enumeration of 3-nilpotent semigroups.

The techniques used are compiled in Section 2.2, while the results form the final

section. Formulae for 3-nilpotent semigroups are established up to isomorphism

and up to equivalence, and for the subclass of commutative semigroups.

12 Nilpotent Semigroups

2.1 Nilpotency Rank

This section contains results related to the classification of nilpotent semigroups

by nilpotency rank.

For finite semigroups there is an equivalent formulation of the definition of

nilpotency, involving only powers of elements instead of all possible products.

Lemma 2.1.1 Let S be a finite semigroup. Then the following are equivalent:

(i) S is nilpotent;

(ii) S contains a zero element z and for every element s ∈ S there exists ks ∈ N
such that sks = z.

Proof: (i)⇒ (ii) : If S is r-nilpotent and z denotes the unique element in Sr, then

sz = zs = z for all s ∈ S as zs, sz ∈ Sr+1 = Sr. Therefore z is a zero element.

Moreover, sr = z for all s ∈ S, showing that the second statement follows from

the first.

(ii) ⇒ (i) : Let k = max{ks | s ∈ S} and n = |S|. Consider the product

s1s2 · · · sn+1 of length n+ 1 with each factor in S. Then the sequence of prefixes,

(s1 · · · si)1≤i≤n+1, must contain a repetition, say s1 · · · sl = s1 · · · sm with l < m ≤
n+ 1. Repeatedly replacing s1 · · · sl with s1 · · · sm leads to

s1 · · · sl = s1 · · · sl(sl+1 · · · sm) = · · · = s1 · · · sl(sl+1 · · · sm)k = s1 · · · slz = z.

As l is strictly smaller than m and hence at most n, consequently s1s2 · · · sn = z.

Thus all products of length at least n equal z, showing that S is n-nilpotent. �

For the forward direction of the previous lemma finiteness of the semigroup is

not required. Note that in general k = max{ks | s ∈ S} from the proof does not

equal the nilpotency rank of S. The proof shows that n is an upper bound for the

nilpotency rank of a semigroup S with n elements. Another way to see this, is to

consider the sequence of sets S ⊇ S2 ⊇ S3 ⊇ . . . mentioned in the introduction

of this chapter. The sequence becomes constant with the first repetition of a set,

which therefore occurs with Sr+1 in the case of an r-nilpotent semigroup. As the

sequence starts with an n element set this yields r ≤ n.

Lemma 2.1.2 Let S be an r-nilpotent semigroup. Then the following hold:

2.1 Nilpotency Rank 13

(i) the sets Sk \ Sk+1 with 1 ≤ k ≤ r− 1 are non-empty and form a partition of

S \ Sr;

(ii) if s = s1s2 · · · sk ∈ Sk\Sk+1 with 1 ≤ k ≤ r−1, then si · · · sj ∈ Sj−i+1\Sj−i+2

for all 1 ≤ i ≤ j ≤ k.

Proof: (i): For any three sets A,B,C with A ⊇ B ⊇ C the set A \ C equals the

disjoint union of A\B and B \C. Hence it suffices to show that the sets Sk \Sk+1

are non-empty for 1 ≤ k ≤ r− 1. As explained in the comments before the lemma

there is no repetition in S ⊇ S2 ⊇ . . . ⊇ Sr. Thus Sk+1 is a proper subset of Sk

for 1 ≤ k ≤ r − 1.

(ii): The statement is shown by contradiction. Assume that si · · · sj ∈ Sj−i+2

for some 1 ≤ i ≤ j ≤ k. This means si · · · sj can be expressed as a product

t1 · · · tj−i+2 ∈ Sj−i+2. Replacing si · · · sj by t1 · · · tj−i+2 in s, that is

s = s1s2 · · · sk = s1 · · · si−1t1 · · · tj−i+2sj+1 · · · sk,

yields s ∈ Sk+1, a contradiction. �

Both parts of the previous lemma are used repeatedly in the proofs throughout

this section. It is worthwhile to gain some intuition for its content. First of all, for

each element other than the zero, the length of a product equalling the element

is restricted. An element in Sk \ Sk+1 can be written as product with k factors,

but not as product with k + 1 factors. Collecting in separate sets elements with

the same maximal length of a product equalling the element yields a partition of

a nilpotent semigroup. An r-nilpotent semigroup is partitioned into r sets: one

for each maximal length between 1 and r − 1; and the zero element in a set by

itself. Looking at it this way each part of a product of maximal length is clearly

maximal itself, which is essentially what is stated in the second part of the lemma.

This shows in particular that every element in a product of maximal length is in

S \ S2. This connects to a further well-known result.

Corollary 2.1.3 Let S be a semigroup. Then the set S \ S2 is contained in any

minimal generating set. If S is nilpotent and has size at least 2, then S \S2 is the

unique minimal generating set.

14 Nilpotent Semigroups

Proof: The statement for the general case is obvious. It remains to be shown that

S \ S2 is a generating set if S with |S| ≥ 2 is nilpotent. The zero element of such

a semigroup is not contained in any minimal generating set as every element has a

power that equals the zero. According to Lemma 2.1.2(i) each element s ∈ S \ Sr

is in Sk \ Sk+1 for some 1 ≤ k ≤ r − 1 and thus has an expression as a product of

k factors. By choosing i = j in Lemma 2.1.2(ii) it follows that all the factors are

in S \ S2. �

Further consequences of Lemma 2.1.2 are restrictions on the sizes of the sets

Sk \ Sk+1 partitioning a nilpotent semigroup S.

Corollary 2.1.4 Let S be an r-nilpotent semigroup of order n. Then the following

hold:

(i) if |Sl\Sl+1| = 1 for any 1 ≤ l ≤ r−1 then |Sk\Sk+1| = 1 for all l ≤ k ≤ r−1;

(ii) |Sk \ Sk+1| ≤ min1≤i≤k−1{|Si\Si+1| |Sk−i \ Sk−i+1|} for all 2 ≤ k ≤ r − 1.

Proof: (i): Let s = s1s2 · · · sk ∈ Sk \ Sk+1 for some l < k ≤ r − 1. According

to Lemma 2.1.2(ii) the product s1s2 · · · sl of length l equals the unique element

t1t2 · · · tl in Sl \ Sl+1. Hence s1s2 · · · sk = t1t2 · · · tlsl+1 · · · sk. The right hand side

of this equation is still a product of maximal length equalling s. Thus t2t3 · · · tlsl+1

equals as well the unique element in Sl \ Sl+1 and can be replaced by t1t2 · · · tl.
Applying this argument repeatedly and always replacing the product of length

l with t1t2 · · · tl yields s = tk−l+1
1 t2 · · · tl. This implies |Sk \ Sk+1| = 1, since

s ∈ Sk \ Sk+1 was chosen arbitrarily.

(ii): Let s = s1s2 · · · sk ∈ Sk \ Sk+1 for some 2 ≤ k ≤ r − 1. For any

1 ≤ i ≤ k − 1 it follows with Lemma 2.1.2(ii) that s1 · · · si ∈ Si \ Si+1 and

si+1 · · · sk ∈ Sk−i \ Sk−i+1. Hence, |Si \ Si+1| |Sk−i \ Sk−i+1| is an upper bound for

the number of possible values of s. �

Applying the structural information provided by Lemma 2.1.2 and its corollar-

ies to nilpotent semigroups of certain rank leads to the first results in the classifi-

cation of finite nilpotent semigroups.

Lemma 2.1.5 Let S be a semigroup of order n. Then the following are equivalent:

2.1 Nilpotency Rank 15

(i) S is n-nilpotent;

(ii) S is monogenic and nilpotent;

(iii) S is monogenic with index n and period 1.

Proof: (i) ⇒ (ii): According to Lemma 2.1.2(i) the sets Sk \ Sk+1 with 1 ≤ k ≤ n

are non-empty. Hence each set contains exactly one element. The set S \ S2 is a

generating set due to Corollary 2.1.3 and thus S is monogenic.

(ii) ⇒ (iii): If a denotes the generator of S, then an and an+1 both equal the

zero element. Therefore the period of S is 1. Solving Equation (1.3) shows the

index equals n.

(iii) ⇒ (i): If a denotes the generator of S, then the equality an = an+1 holds.

Consequently an is a zero and every element to some power equals an. According

to Lemma 2.1.1 S is nilpotent. Moreover, Sk \ Sk+1 = {ak} for 1 ≤ k ≤ n − 1,

showing that S has nilpotency rank n. �

Lemma 2.1.5 makes it possible to classify nilpotent semigroups with at most 3

elements. The trivial semigroup is 1-nilpotent by Definition 2.0.1 and in agree-

ment with the previous result. Every semigroup with more than one element has

nilpotency rank at least 2. Moreover, in a 2-nilpotent semigroup every product

equals the zero element. Hence for order 2 the zero semigroup is the only nilpotent

semigroup, and for order 3 there is one 2-nilpotent and one 3-nilpotent semigroup.

Remark 2.1.6 For any order greater than 1 the zero semigroup is the unique

2-nilpotent semigroup of that order.

To classify nilpotent semigroups with n elements and nilpotency rank n−1 for

larger n, conclude from Lemma 2.1.5 that for each nilpotent semigroup of order n

with rank less than n, the minimal generating set contains at least two elements;

and exactly two if the rank equals n− 1 due to Lemma 2.1.2(i). The latter leads

to the following result.

Theorem 2.1.7 Let S be a nilpotent semigroup of order n (n 6= 4) and nilpotency

rank n − 1. Then S = T ∪ {x} where T is a monogenic subsemigroup of S with

nilpotency rank n− 1.

16 Nilpotent Semigroups

Proof: The statement is trivially true for 1 ≤ n ≤ 3. For n ≥ 5 let S = 〈u, v〉 (see

the comment before the theorem), and let tk denote the unique element in Sk\Sk+1

for 2 ≤ k ≤ n − 2, where uniqueness follows from Lemma 2.1.2(i). At least one

of uv, vu, u2, and v2 equals t2. Assume neither u2 nor v2 does. Hence, following

Lemma 2.1.2(ii), uu and vv do not appear in any product of maximal length

3 equalling t3. Remember in addition that all factors in a product of maximal

length are generators, then of all elements in S3 only uvu or vuv might equal t3.

Again it follows from Lemma 2.1.2(ii) that t2 = uv = vu in both cases. Thus

t3 = u(vu) = u(uv) = u2v or t3 = v(uv) = v(vu) = v2u, a contradiction to the

assumption that neither u2 nor v2 equal t2.

Without loss of generality let t2 = u2. If tk = s1s2 · · · sk for any 2 ≤ k ≤ n− 2,

then sisi+1 = t2 for all 1 ≤ i ≤ k − 1, once more due to Lemma 2.1.2(ii). Hence

tk = uk for 2 ≤ k ≤ n − 2. Finally un−1 equals the zero element as S has nilpo-

tency rank n − 1. Hence T = 〈u〉 is a nilpotent, monogenic subsemigroup with

n− 1 elements. Then T has nilpotency rank n− 1 according to Lemma 2.1.5. By

choosing x = v the statement follows. �

For semigroups of order 4 the step in the proof of the previous theorem that

restricts the possible results for products of two elements to certain combinations

does not work. Indeed, every combination can occur as will be shown in Section 2.3

studying 3-nilpotent semigroups in general.

The statement about the structure of the type of semigroups in Theorem 2.1.7

makes it possible to classify, and hence to count, those semigroups.

Theorem 2.1.8 For n ≥ 5 there are n + bn/2c nilpotent semigroups with n ele-

ments and nilpotency rank n− 1.

Proof: Let S = 〈u, v〉 and tk = uk ∈ Sk \ Sk+1 for 2 ≤ k ≤ n − 2 be as in

the proof of the previous theorem. If in addition the values of uv, vu, and v2

are known, S is uniquely determined, because ukv and vuk can then be deduced

for all 2 ≤ k ≤ n − 1. Since S is nilpotent, possible values for uv, vu, and v2

are elements in S2 = {uk | 2 ≤ k ≤ n − 1}. The choices not contradicting

associativity are determined below by considering several cases. Moreover, choices

leading to equivalent semigroups are identified. Note that any isomorphism or

anti-isomorphism preserves the structure of the semigroup and, in particular, sends

2.1 Nilpotency Rank 17

generators to generators. This leaves only three possibilities for an isomorphism or

anti-isomorphism between two semigroups arising from different choices for uv, vu,

and v2. They are the anti-isomorphism induced by the trivial permutation, and

the isomorphism and anti-isomorphism induced by the transposition of u and v.

As it is known that u2 is the unique element in S2 \S3 the latter two cases cannot

occur if v2 6= u2.

Case 1: uv ∈ {un−2, un−1}. Let l ∈ {2, 3, · · · , n− 1} such that vu = ul. From

(uv)u = u(vu) = ul+1 and the fact that (uv)u equals the zero element, un−1, it

follows that l ∈ {n−2, n−1}. In the same way um+1 = v(vu) = vul = u2l−1 = un−1,

if v2 = um, and hence m ∈ {n − 2, n − 1}. Since all products of three elements

involving v equal the zero element, un−1, the multiplication is associative. The

2 choices for each of uv, vu, and v2 result in the 8 combinations illustrated in

Figure 2.1. The multiplications ∗2 and ∗3 as well as ∗6 and ∗7 define pairs of

∗1 u v

u u2 un−2

v un−2 un−2

∗2 u v

u u2 un−1

v un−2 un−2

∗3 u v

u u2 un−2

v un−1 un−2

∗4 u v

u u2 un−1

v un−1 un−2

∗5 u v

u u2 un−2

v un−2 un−1

∗6 u v

u u2 un−1

v un−2 un−1

∗7 u v

u u2 un−2

v un−1 un−1

∗8 u v

u u2 un−1

v un−1 un−1

Figure 2.1 Multiplication of generators in semigroups with nilpotency rank n− 1

dual semigroups. The transposition of u and v does not yield an isomorphism or

anti-isomorphism since v2 6= u2. Hence there are 6 non-equivalent semigroups in

this case, 4 of which are commutative.

Case 2: uv = uk with 2 ≤ k < n/2. Let l ∈ {2, 3, · · · , n − 1} such that

vu = ul. From uk+1 = uvu = ul+1 it follows that k = l since k ≤ n − 3 and the

powers u3, u4, · · · , un for possible values of l are all different, except un−1 = un.

Using the same type of argument v2 = um implies um+1 = v2u = vuk = u2k−1,

and hence m = 2k − 2 since k < n/2. With uv = vu = uk and v2 = u2k−2 it

follows that the value of any product in S is determined by how many times u and

v appear. (A product containing i times u and j times v equals ui+j(k−1).) This

makes the multiplication associative. Hence for every choice of k there is exactly

one semigroup giving a total of dn/2e − 2. All these semigroups are commutative

18 Nilpotent Semigroups

and no two are equivalent since v2 is different in every case. (In the case k = 2,

where u and v are interchangeable, their transposition induces an automorphism.)

Case 3: uv = uk with n/2 ≤ k ≤ n−3. As in the previous case vu = uv = uk.

Now vvu = u2k−1 equals the zero un−1. This leaves the two choices un−2 and

un−1 for v2. Similar to the previous case the value of a product only depends on

the number of times u and v appear, making the multiplication associative. (In

fact, every product with more than one v equals the zero.) Thus this case yields

2(n− 2− dn/2e) non-equivalent semigroups, all commutative.

No two semigroups from different cases are equivalent, which leads to a total

of

6 + (dn/2e − 2) + 2(n− 2− dn/2e) = n+ bn/2c

semigroups, all but 2 from the first case commutative. �

The next step is to consider nilpotent semigroups with n elements and nilpo-

tency rank n − 2. Due to Lemmas 2.1.2(i) and 2.1.5 the minimal generating sets

of such semigroups contain either 2 or 3 elements.

Theorem 2.1.9 Let S be a nilpotent semigroup of order n (n 6= 5) and nilpotency

rank n−2. If n 6= 6 or S has a minimal generating set of size 3, then S = T∪{x, y}
where T is a monogenic subsemigroup of S with nilpotency rank n− 2.

Proof: The statement is trivially true for n ≤ 4.

Let n ≥ 6 and let first S = 〈u, v, w〉 have a minimal generating set of size 3.

Similar to the proof of Theorem 2.1.7 denote with tk the unique element in Sk\Sk+1

for 2 ≤ k ≤ n−3. Considering a product s1s2s3 = t3 it follows with Lemma 2.1.2(ii)

that s1, s2, and s3 are generators and that s1s2 = s2s3 = t2. Hence s1s1s2 = t3

and s1s1 = t2. Without loss of generality let u2 = t2. With the same arguments

as in the proof of Theorem 2.1.7 it follows that uk = tk for 2 ≤ k ≤ n − 2. In

particular |〈u〉| = n − 2 and un−2 is the zero element in S. Choosing x = v and

y = w completes this part of the proof.

Let now n ≥ 7 and S = 〈u, v〉. According to Corollary 2.1.4(i) the set S2\S3

must have size 2 and all Sk\Sk+1 for 3 ≤ k ≤ n−3 are of size 1. Let s ∈ S4\S5 and

s = s1s2s3s4. Without loss of generality s1 = u. According to Lemma 2.1.2 the

products s1s2s3 and s2s3s4 are in S3\S4, which contains only one element. Using

2.1 Nilpotency Rank 19

this argument repeatedly yields

s1s2s3s4 = us2s3s4 = uus2s3 = uuus2 = u4.

This means {uk} = Sk\Sk+1 for all 3 ≤ k ≤ n − 3 and |〈u〉| = n − 2. Choosing

x = v and y to equal the element in S2 \ S3 which does not equal u2 completes

the proof. �

For the classification of nilpotent semigroups with n elements and nilpotency

rank n− 2 the two cases depending on the size of the minimal generating set are

treated separately in the next two theorems.

Theorem 2.1.10 For n ≥ 6 the number of nilpotent semigroups with n elements,

nilpotency rank n− 2 and minimal generating set of size 3 equals

1
8
(21n2 + 22n− 96) if n is even, and

1
8
(21n2 + 36n− 81) if n is odd.

Proof: Let S = 〈u, v, w〉 and tk = uk ∈ Sk \ Sk+1 for 2 ≤ k ≤ n − 3 as in the

first part of the proof of the previous theorem. The proof to obtain the formula

for the number of such semigroups S follows a similar approach as the one for

Theorem 2.1.8. All of the products uv, vu, v2, uw,wu,w2, vw, and wv are in the set

S2 = {uk | 2 ≤ k ≤ n−2}, and knowing them uniquely determines S. The different

choices are discussed below in several cases. For each of the multiplications the

value of a product with three factors will depend only on the number of times v and

w appear, making all multiplications associative. Potential isomorphisms or anti-

isomorphisms between semigroups are induced by permutations of the generators

u, v, and w.

Case 1: u2 = v2. From t3 = u2u = v2u = vvu it follows that vu = t2 = u2.

Analogously uv = u2, leading to the situation illustrated in Figure 2.2. This case

is divided further.

Case 1.a: uw = uk with 2 ≤ k ≤ n/2 − 1. This case is similar to Case 2 in

the proof of Theorem 2.1.8. It follows from uvw = uuw = uk+1 that vw = uk and

similarly wu = wv = uk. From uww = ukw = u2k−1 one deduces that w2 = u2k−2.

As the value of a product depends only on the number of times u, v, and w appear,

20 Nilpotent Semigroups

u v w
u u2 u2 �
v u2 u2 �
w � � �

Figure 2.2 Multiplication of generators; � denotes undefined products

the multiplication is associative for each choice of k. This leads to

bn/2c − 2

commutative semigroups. All of these are non-equivalent, as u2 6= w2 6= v2 and

the transposition of u and v induces an automorphism for each such semigroup.

Case 1.b: uw = uk with n/2 − 1 < k ≤ n − 4. This case is similar to Case

3 in the proof of Theorem 2.1.8. As in the previous case vw = wu = wv = uk,

but now uww = u2k−1 equals the zero un−2 which leaves the two choices un−3 and

un−2 for w2. In any case an associative multiplication is defined, giving rise to

2(n− bn/2c − 3)

semigroups. As before these are all commutative and pairwise non-equivalent.

Case 1.c: uw ∈ {un−3, un−2}. This case is similar to Case 1 in the proof of

Theorem 2.1.8. All of wu, vw,wv, and w2 take values in {un−3, un−2}. For all

choices any product of three elements involving w equals the zero element and any

other product of length three equals u3. Hence, all of the 25 = 32 choices lead

to associative multiplications, many of which define equivalent semigroups. This

becomes easier to see when considering the two subsemigroups U = 〈u,w〉 and

V = 〈v, w〉 of S. Note that uk = vk for all 2 ≤ k ≤ n − 2 and both U and V

are nilpotent semigroups with n − 1 elements and rank n − 2. Fixing w2 = un−2

leaves three choices for each of U and V according to the proof of Theorem 2.1.8.

Exactly one of the choices is a non-commutative semigroup. Now, U and V can

be interchanged by permuting u and v, since u2 = v2. This yields 6 different,

unordered pairs (U, V). Each pair defines S up to equivalence, except when both U

and V are non-commutative, in which case there are the two possibilities illustrated

in Figure 2.3. This yields a total of 7 semigroups with w2 = un−2, and another 7

2.1 Nilpotency Rank 21

if w2 = un−3 using analogous reasoning,1 which gives

14

semigroups from this case.

u v w
u u2 u2 un−2

v u2 u2 un−2

w un−3 un−3 un−2

u v w
u u2 u2 un−3

v u2 u2 un−2

w un−2 un−3 un−2

Figure 2.3 Multiplication of generators in semigroups with nilpotency rank n− 2

Case 2: v2, w2 6= u2. Neither the transposition of u with v nor the transpo-

sition of u with w is an isomorphism or anti-isomorphism. Let V = 〈u, v〉 and

W = 〈u,w〉. Both V and W are semigroups with n − 1 elements and nilpotency

rank n−2. According to the proof of Theorem 2.1.8 there are n−1+b(n−1)/2c−1

choices for V and W – taking into account that v2, w2 6= u2 – and all but two of

the semigroups are commutative. This case is divided further.

Case 2.a: V,W not commutative. There are two choices for V and W , which

can be either equivalent or not, and either uv = uw or vu = uw. Taking into

account that V and W can be interchanged by permuting v and w and after ex-

cluding duals, Figure 2.4 shows the remaining 6 constellations. No two of these will

lead to equivalent semigroups. From uvw = un−2 it follows vw,wv ∈ {un−3, un−2}.
For Tables I, III, V, and VI in Figure 2.4 all 4 ways to choose values for vw and

wv lead to non-equivalent semigroups. For Tables II and IV, where V is equivalent

to W and uv = wu, the semigroup where vw = un−3 and wv = un−2 is equivalent

to the semigroup where vw = un−3 and wv = un−2 under the anti-isomorphism

exchanging v and w. All together, this case leads to

4 · 4 + 3 · 2 = 22

non-equivalent semigroups S.

Case 2.b: V not commutative, W commutative. According to the proof of

1Alternatively one can examine all 16 possible choices after fixing w2 = un−3 directly and
identify isomorphic and anti-isomorphic ones.

22 Nilpotent Semigroups

I u v w
u u2 un−3 un−3

v un−2 un−3 �
w un−2 � un−3

II u v w
u u2 un−3 un−2

v un−2 un−3 �
w un−3 � un−3

III u v w
u u2 un−3 un−3

v un−2 un−2 �
w un−2 � un−2

IV u v w
u u2 un−3 un−2

v un−2 un−2 �
w un−3 � un−2

V u v w
u u2 un−3 un−3

v un−2 un−2 �
w un−2 � un−3

VI u v w
u u2 un−3 un−2

v un−2 un−2 �
w un−3 � un−3

Figure 2.4 Multiplication of generators; � denotes undefined products

Theorem 2.1.8 there are 2(n − 1 + b(n − 1)/2c − 3) combinations for V and W

(the number of commutative semigroups excluding the one semigroup where both

generators equal u2). Again, from uvw = un−2 it follows vw,wv ∈ {un−3, un−2} and

all 4 choices lead to non-equivalent semigroups as v and w are not interchangeable.

This leads to a total of

8

(
n− 1 +

⌊
n− 1

2

⌋
− 3

)
.

Case 2.c: V commutative, W not commutative. This case yields semigroups

equivalent to those from the previous case.

Case 2.d: V,W commutative. Let uv = uk and uw = ul. Then it follows

from uvw = uk+l−1 that vw,wv ∈ {un−3, un−2} if k + l ≥ n − 1. Each case gives

three non-equivalent semigroups, since the two choices, where vw and wv differ

lead to two anti-isomorphic semigroups. If k + l ≤ n− 2 then vw = wv = uk+l−2.

Remember from the proof of Theorem 2.1.8 that there is one semigroup with

uv = uk if k < (n − 1)/2 and two otherwise. The respective statement holds as

well for w replacing v. Thus out of the

n−1+bn−1
2
c−3∑

i=1

i =
1

2

((
n+

⌊
n− 1

2

⌋)2

− 7

(
n+

⌊
n− 1

2

⌋))
+ 6

2.1 Nilpotency Rank 23

combinations of V and W there are

dn−1
2
e+1∑

k=3

n−k−2∑
l=k

1 +
n−k−2∑
l=dn−1

2
e

1

 =

dn−1
2
e+1∑

k=3

(n− 2k − 1) +

(
n−

⌈
n− 1

2

⌉
− k − 1

)

that allow 1 solution and the others allow 3.

Summing all cases, evaluating the sums and simplifying the expression sepa-

rately for even and odd integers yields the stated formula. �

Theorem 2.1.11 For n ≥ 7 there are 5n+bn/2c−dn/3e−1 nilpotent semigroups

with n elements, nilpotency rank n− 2 and minimal generating set of size 2.

Proof: The proof is similar to the ones for Theorems 2.1.8 and 2.1.10. As in the

second part of the proof of Theorem 2.1.9 let S = 〈u, v〉 and denote by y the

element in S, which is neither v nor a power of u. Since y ∈ S2 \S3 at least one of

uv, vu, v2 has to equal y. Note that the values of these products with two generators

together with the values of vu2, vy, uy uniquely define S.2 In the following different

choices for the products are considered, depending – on the first level – on the

products equalling y. All multiplications will again be associative, because the

value of a product with three elements will only depend on the number of times

v and y appear. Potential isomorphisms and anti-isomorphisms are induced by

permutations of the generators u and v.

Case 1: y = v2 = uv = vu. Let vy = uk. Since u and v commute, this yields

uy = uv2 = vuv = vy = uk and vu2 = uvu = uy = uk. Then

uk+1 = uvy = uyv = ukv = uk−1uv = uk−1y = uk−2uk = u2k−2,

2The remaining products are deduced as follows: vuk = (vu2)uk−2; ukv = uk−1(uv);

yuk =

vuuk = (vu2)uk−1 if vu = y

v2uk = v(vu)uk−1 = (vu)ul+k+2 = u2l+k−2 if vu = ul, v2 = y

uvuk = u(vu)uk−1 = ul+k if vu = ul, uv = y;

yv =

v2v = vv2 = vy if v2 = y

uvv = uul = ul+1 if v2 = ul, uv = y

vuv = vuk = (vu2)uk−2 if uv = uk, vu = y
.

24 Nilpotent Semigroups

which yields k = 3 or k ≥ n− 3, and thus leads to 3 non-equivalent semigroups.

Case 2: y = vu = uv. Let v2 = ul. It follows vy = vvu = ul+1. Let uy = uk

then vu2 = uvu = uy = uk and

ul+2 = v2u2 = vuvu = vuy = vuk = ukv = uk−2uy = u2k−2. (2.1)

Case 2.a: 2 ≤ l ≤ n − 5. From (2.1) it follows k = l/2 + 2 which leads to a

total of dn/2e − 3 non-equivalent semigroups.

Case 2.b: l ≥ n− 4. This leaves 3 choices for l, and for each k ≥ n/2 due to

(2.1). Hence there are 3(bn/2c − 1) non-equivalent semigroups from this case.

Case 3: y = uv = v2. Let vu = ul. Then

ul+1 = uul = uvu = yu = vvu = vul = vuul−1 = u2l−1

yields either l = 2 or l ≥ n− 3. Then vu2 = ul+1 and

uy = uv2 = uvv = yv = vvv = vy = vuv = ulv = ul−2uy,

showing that all three values for l lead to valid choices for vu2, uy, and vy. Hence

this case accounts for 3 non-equivalent semigroups.

Case 3’: y = vu = v2. This case yields semigroups equivalent to those from

Case 3.

Case 4: v2 = y. Let vu = uk and uv = ul. Then uk+1 = uvu = ul+1

and hence k = l or k, l ∈ {n − 3, n − 2}. Furthermore vu2 = vuu = uk+1 and

uy = uvv = ulv = u2l−1. For the value of vy consider uvy = ulvv = u2l−1v = u3l−2.

Case 4.a: 2 ≤ l < n/3. Then vy = u3l−3 and l < n − 3, which leads to

dn/3e − 2 non-equivalent semigroups.

Case 4.b: n/3 ≤ l ≤ n − 4. Then vy ∈ {un−3, un−2}, leading in this case to

2(n− 4− dn/3e+ 1) non-equivalent semigroups.

Case 4.c: l ∈ {n − 3, n − 2}. Again vy ∈ {un−3, un−2}. Recall that here

k ∈ {n − 3, n − 2}. This leads to equivalent semigroups if one of k and l equals

n− 3 and the other equals n− 2. The number of non-equivalent semigroups is 6.

Case 5: vu = y. Let uv = uk and v2 = ul. It follows vy = vvu = ul+1 and

uy = uvu = uk+1. For vu2 consider uvu2 = uk+2.

Case 5.a: 2 ≤ k ≤ n − 5. Here vu2 = uk+1. From ul+1 = vvu = vuk = u2k−1

2.1 Nilpotency Rank 25

it follows l = 2k − 2, or k ≥ (n − 1)/2 and l ∈ {n − 3, n − 2}. The former yields

d(n− 1)/2e − 2 non-equivalent semigroups, and the latter 2(n− d(n− 1)/2e − 4).

Case 5.b: n− 4 ≤ k ≤ n− 2. Here vu ∈ {n− 3, n− 2}, and l ∈ {n− 3, n− 2},
leading to 3 ∗ 2 ∗ 2 = 12 non-equivalent semigroups.

Case 5’: uv = y. This case yields semigroups equivalent to those from Case 5.

In contrast to before there are two semigroups from different cases which are

equivalent. The only possibility for this to happen is that the transposition of u

and v induces an isomorphism (or anti-isomorphism). For this v has to generate a

subsemigroup of size n− 2, and hence vi = ui for all 3 ≤ i ≤ n− 2. This occurs,

if k = 3 in Case 1 and if l = 2 in Case 4. Therefore adding the numbers from all

cases together and subtracting 1 yields the stated formula. �

Combining Theorems 2.1.10 and 2.1.11 gives the following result.

Corollary 2.1.12 For n ≥ 7 the number of nilpotent semigroups with n elements

and nilpotency rank n− 2 is

1
8
(21n2 + 66n− 104)−

⌈
n
3

⌉
if n is even, and

1
8
(21n2 + 80n− 93)−

⌈
n
3

⌉
if n is odd.

The case n = 5 is included in the forthcoming studies of 3-nilpotent semigroups

in the next sections. No further considerations will be undertaken for n = 6 as

the semigroups of this order are long known, see [Ple67]. There are 43 nilpotent

semigroups with 6 elements, nilpotency rank 4, and 2 generators, and hence the

number of 4-nilpotent semigroups with 6 elements is 142. They are available in

the GAP [GAP08] package Smallsemi [DM10] which is explained in Section 4.2.

The presented method of classifying nilpotent semigroups by their rank reaches

its limits at this point. The proofs of the formulae for the number of nilpotent

semigroups S with n elements and rank n−1 or n−2 rely on the fact that S3 \S4

contains only one element. This is no longer true for all semigroups of nilpotency

rank n− 3. Already to attempt a classification of nilpotent semigroups of order n

and rank n− 3 would seem to be a project in its own right.

Question 2.1.13 Can the methods in this section be extended to classify nilpo-

tent semigroups S for which |S3 \ S4| > 1?

26 Nilpotent Semigroups

An additional problem is that the results and their proofs in this section indicate

an increasing number of exceptions for small orders, when the nilpotency rank

decreases. This would make any formula worthless for the enumeration of all

semigroups of the smallest unknown order(s).

Alternatively the classification can be approached by increasing nilpotency

rank. The results for 1-nilpotent and 2-nilpotent semigroups were mentioned in

this section. Preparation for the far more challenging task of classifying semigroups

with nilpotency rank 3 is compiled in the next section.

2.2 Power Group Enumeration

Given an action of a group G on a finite set X, what is the number of orbits

X forms under G? Sophisticated methods to answer this – and more detailed –

questions effectively in a large number of settings were first developed by Red-

field [Red27] and Polya [Pol37]. In this section a modified version of a theorem by

de Bruijn [dB59] is presented, which will be used in the next section to enumer-

ate 3-nilpotent semigroups. Most of the content is based on [HP73], with slight

adjustments, particularly in the notation.

It is a well-known result that the question starting this section can be answered

by counting for each element g ∈ G the number of points x ∈ X with xg = x. For

a permutation π ∈ SX let δ(π, k) denote the number of cycles of length k in the

disjoint cycle notation of π. Then the result reads as follows.

Lemma 2.2.1 (Cauchy-Frobenius) Let G be a subgroup of SX . The number of

orbits of X under G is

N(G) =
1

|G|
∑
g∈G

δ(g, 1).

For two proofs of this lemma – together with enlightening information on the

confusion about its name – see [Neu79].

Depending on the action – which might not be presented as a subgroup of SX

– it can be difficult to apply Lemma 2.2.1. A tool that at first seems to require

even more knowledge will turn out very helpful for actions encountered later.

2.2 Power Group Enumeration 27

Definition 2.2.2 Let G be a subgroup of Sn. Then the polynomial

Z(G;x1, x2, . . . , xn) =
1

|G|
∑
g∈G

n∏
k=1

x
δ(g,k)
k

is the cycle index of the group G, in short denoted by Z(G).

Consider the following example, copied from [HP73], of finding the cycle index

of a specific group.

Example 2.2.3 Let G be S3, the symmetric group on 3 elements. The identity

permutation (1)(2)(3) has three cycles of length 1, resulting in the term x3
1. The

three permutations (1)(23), (2)(13), and (3)(12) of order 2 each have one cycle of

length 1 and one of length 2, together leading to the term 3x1x2. Finally, the two

permutations (123) and (132) contribute 2x3 to the cycle index. Thus it is

Z(S3) =
1

3!
(x3

1 + 3x1x2 + 2x3).

In the previous example the permutations are collected according to the struc-

ture of their disjoint cycle notation. Each collection, and thus each structure, is

associated with a partition of 3. In general, if j is a partition of n, written as j ` n,

then denote by ji the number of summands equalling i. This yields ji = δ(g, i) for

each element g in the collection3 associated with j. This observation allows one to

write the cycle index of the symmetric group in a more compact form.

Lemma 2.2.4 The cycle index of Sn is

Z(Sn) =
∑
j`n

(
n∏
i=1

ji!i
ji

)−1 n∏
a=1

xjaa .

Proof: First it shall be shown that the number of elements in Sn with cycle de-

composition according to a partition j ` n equals

n!∏n
i=1 ji!i

ji
. (2.2)

3For Sn these ‘collections’ are actually conjugacy classes.

28 Nilpotent Semigroups

The partition fixes the structure of the cycle decomposition. There are n! ways to

distribute the n elements, but some ways result in the same group element. By

rotation each cycle of length i allows i different ways to write it. Moreover, cycles

of the same length are interchangeable. In total each permutation appears written

in
∏n

i=1 ji!i
ji different ways.

Equation (2.2), together with the definition of the cycle index, yields the for-

mula when summing over partitions of n. �

It was shown in the mathematical background section how the natural action

of Sn leads to a more complicated action on multiplication tables. Other actions,

that are of interest in this thesis, build from existing actions in a similar way.

Definition 2.2.5 Let A and B be finite permutation groups acting on finite dis-

joint sets X respectively Y .

(i) The sum group AB = {αβ | α ∈ A, β ∈ B} acts on the union X ∪ Y . Each

αβ ∈ AB acts like α on elements in X and like β on elements in Y .

(ii) The power group BA = {(α; β) | α ∈ A, β ∈ B} acts on Y X , the set of

functions from X to Y . The image of f ∈ Y X under (α; β) is given by

f (α;β)(x) = (f (xα))β .

Be aware that both BA and AB are, as groups, isomorphic to the direct product

A×B. The notation in Definition 2.2.5 implicitly incorporates the action.

Lemma 2.2.6 Let AB be a sum group. Then Z(AB) = Z(A)Z(B).

Proof: The result follows immediately from Definition 2.2.2 of the cycle index and

Definition 2.2.5 of the sum group. �

For the power group the full cycle index is not required in this thesis. Of interest

is the constant form of the power group enumeration theorem, which yields the

number of orbits under the action of a power group. As mentioned, the result goes

back to de Bruijn [dB59], but is presented here in the form given in [HP73].

2.2 Power Group Enumeration 29

Theorem 2.2.7 Let A,B,X, and Y be as in Definition 2.2.5. The number of

orbits of functions in Y X under the power group BA equals

1

|B|
∑
β∈B

Z(A; c1(β), c2(β), . . . , c|X|(β)),

where

ci(β) =
∑
d|i

dδ(β, d).

Proof: The proof is only outlined and is available in [HP73, Section 6.1] in full.

The number of functions stabilised by an element in the power group is

δ((α; β), 1) =
m∏
i=1

∑
d|i

dδ(β, d)

δ(α,i)

.

Applying Lemma 2.2.1 proves the statement. �

To apply Theorem 2.2.7 the cycle index of A has to be known. So far, this is

the case for symmetric groups (Lemma 2.2.4) and hence sum groups of symmetric

groups (Lemma 2.2.6). This knowledge is not sufficient for the forthcoming section.

Three more group actions are considered and their cycle indices computed for

special cases.

Definition 2.2.8 Let A be a group acting on X.

(i) The group acting on Xk = {(x1, x2, . . . , xk) | xi ∈ X}, the k-fold Cartesian

product, componentwise like A (that is, (x1, x2, . . . , xk)
α = (xα1 , x

α
2 , . . . , x

α
k)

for α ∈ A) is denoted by A×k.

(ii) The group acting on the set X{k} = {{x1, x2, . . . , xk} | xi ∈ X} contain-

ing all subsets of X with at most k elements pointwise like A (that is,

{x1, x2, . . . , xk}α = {xα1 , xα2 , . . . , xαk} for α ∈ A) is denoted by A{k}.

(iii) Denote by 2A×2 the group with elements {α, ᾱ | α ∈ A} acting on X2 as

follows. For an element of the form α ∈ A the image of (x1, x2) is (xα1 , x
α
2)

as in A×2, and (x1, x2)
ᾱ = (xα2 , x

α
1).

30 Nilpotent Semigroups

The cycle indices of the groups A×k, A{k}, and 2A×2 can be deduced if one knows

the cycle index of the underlying group A. To do this for the special case when

A = Sn and k = 2 completes the preparation for the next section.

Lemma 2.2.9 Let n ∈ N.

(i) The cycle index of S×2
n is

Z(S×2
n) =

∑
j`n

(
n∏
i=1

ji! i
ji

)−1 n∏
a,b=1

x
jajb gcd(a,b)
lcm(a,b) . (2.3)

(ii) The cycle index of 2S×2
n is

Z(2S×2
n) =

1

2
Z(S×2

n)+
1

2

∑
j`n

(
n∏
i=1

ji! i
ji

)−1 n∏
a=1

(
qjaa p

j2a−ja
a,a

a−1∏
b=1

p2jajb
a,b

)
, (2.4)

where the monomials are pa,b = x
ab/ lcm(2,a,b)
lcm(2,a,b) and

qa =

xax

(a−1)/2
2a if a ≡ 1 mod 2

xaa if a ≡ 0 mod 4

x2
a/2x

a−1
a if a ≡ 2 mod 4.

(iii) The cycle index of S
{2}
n is

Z(S{2}n) =
∑
j`n

(
n∏
i=1

ji!i
ji

)−1 bn/2c∏
a=1

ra

b(n+1)/2c∏
a=1

sa

n∏
a=1

ta

(
a−1∏
b=1

x
jajb gcd(a,b)
lcm(a,b)

)
,

(2.5)

where the monomials are ra = xj2a
a xaj2a

2a , sa = x
aj2a−1

2a−1 , and ta = x
a(j2a−ja)/2
a .

Proof: (i): By definition each permutation in Sn induces a permutation in S×2
n .

Let α ∈ Sn and let za and zb be two cycles thereof with length a and b respectively.

Consider the action of α on those pairs in [n]2 which have as first component an

element in za and as second component an element in zb. Let (i, j) ∈ [n]2 be one

such pair. Since iα
k

= i if and only if a | k, and jα
k

= j if and only if b | k,
the pair (i, j) is in an orbit of length lcm(a, b). The total number of pairs with

first component in za and second component in zb equals ab. Hence there are

2.2 Power Group Enumeration 31

gcd(a, b) orbits. Repeating this consideration for every pair of cycles in α leads

to
∏n

a,b=1 x
δ(α,a)δ(α,b) gcd(a,b)
lcm(a,b) as contribution of the permutation induced by α to the

cycle index Z(S×2
n). This yields

Z(S×2
n) =

1

n!

∑
α∈Sn

n∏
a,b=1

x
δ(α,a)δ(α,b) gcd(a,b)
lcm(a,b) .

That the contribution of α only depends on its cycle structure allows one to replace

the summation over all group elements by a summation over partitions of n. The

number of elements with cycle structure associated to a partition j ` n is known

from the proof of Lemma 2.2.4. Therefore

Z(S×2
n) =

1

n!

∑
j`n

n!∏n
i=1 ji! i

ji

n∏
a,b=1

x
jajb gcd(a,b)
lcm(a,b) ,

and cancelling the factor n! proves (2.3).

(ii): For group elements in 2S×2
n that are in S×2

n the contribution to the cycle

index has just been computed. It is rearranged as follows to illustrate which

contributions come from identical cycles and which from disjoint cycles:

n∏
a,b=1

x
δ(α,a)δ(α,b) gcd(a,b)
lcm(a,b) =

n∏
a=1

(
xaδ(α,a)a xa(δ(α,a)

2−δ(α,a))
a

∏
b<a

x
2δ(α,a)δ(α,b) gcd(a,b)
lcm(a,b)

)
.

For group elements of the form ᾱ the contribution is going to be deduced from

the one of α. Let za and zb again be two cycles in α of length a and b respectively,

and assume at first, they are disjoint. Then za and zb induce 2 gcd(a, b) orbits of

length lcm(a, b) on the 2ab elements in [n]2 with one component from each of the

two cycles. Let

ω =
{
(i1, j1), (i2, j2), . . . , (ilcm(a,b), jlcm(a,b))

}
(2.6)

be such an orbit. Then

ω̄ =
{
(j1, i1), (j2, i2), . . . , (jlcm(a,b), ilcm(a,b))

}
(2.7)

is another one. The set ω ∪ ω̄ is closed under the action of ᾱ. In how many orbits

ω∪ ω̄ splits depends on the parity of a and b. Acting with ᾱ on (i1, j1) for lcm(a, b)

32 Nilpotent Semigroups

times gives (i1, j1) if lcm(a, b) is even and (j1, i1) if lcm(a, b) is odd. Hence the two

orbits ω and ω̄ merge to one orbit in the latter case and give two new orbits of the

original length otherwise. This yields the monomial

x
2ab/ lcm(2,a,b)
lcm(2,a,b) =

x
2 gcd(a,b)
lcm(a,b) if lcm(a, b) ≡ 0 mod 2

x
gcd(a,b)
2 lcm(a,b) if lcm(a, b) ≡ 1 mod 2,

which appears δ(α, a)δ(α, b) times if a 6= b and (δ(α, a)2−δ(α, a))/2 times if a = b.

Let za and zb now be identical and equal to the cycle (i1i2 · · · ia). The con-

tribution to the monomial of α is the factor xaa. The orbits are of the form

{(ij, ih) | 1 ≤ j, h ≤ a, j ≡ h + s mod a} for 0 ≤ s ≤ a − 1. For s = 0 the orbit

consists of pairs with equal entries, that is, {(i1, i1), (i2, i2) . . . (ia, ia)}, and thus

stays the same under ᾱ. For an orbit ω = {(ij, ih) | 1 ≤ j, h ≤ a, j ≡ h+ s mod a}
with s 6= 0 define ω̄ as in (2.7). If ω 6= ω̄ one argues like in the case of two disjoint

cycles and gets the result depending on the parity of a. Note that ω = ω̄ if and

only if s = a/2. In particular this does not occur for a odd in which case

xax
(a−1)/2
2a

is the factor contributed to the monomial of ᾱ. If on the other hand a is even, one

more case split is needed to deal with the orbit

ω = {(ij, ih) | 1 ≤ j, h ≤ a, j ≡ h+ a/2 mod a}.

Acting with ᾱ on (ia, ia/2) for a/2 times gives (ia, ia/2) if a/2 is odd and (ia/2, ia)

if a/2 is even. Thus ω splits into two orbits of length a/2 in the former case and

stays one orbit in the latter. The resulting factors contributed to the monomial of

ᾱ are therefore

xaa if a ≡ 0 mod 4

x2
a/2x

a−1
a if a ≡ 2 mod 4.

Following the analysis for all pairs of cycles in α leads to the contribution of ᾱ

to the cycle index. Summing as before over all different partitions of n, which

correspond to the different cycle structures, proves (2.4) as formula for Z(2S×2
n).

2.3 3-nilpotent Semigroups 33

(iii): To compute Z(S
{2}
n) let ω and ω̄ as in (2.6) and (2.7) be orbits for two

cycles za and zb from α ∈ Sn acting on X2. If the two cycles za and zb are disjoint

then both ω and ω̄ correspond to the same orbit

{
{i1, j1}, {i2, j2}, . . . , {ilcm(a,b), jlcm(a,b)}

}
of α acting on X{2}. The contribution to the monomial of α is therefore x

gcd(a,b)
lcm(a,b).

Let za and zb now be identical and equal to the cycle (i1i2 · · · ia). In S×2
n this gave

rise to the orbits {(ij, ih) | 1 ≤ j, h ≤ a, j ≡ h + s mod a} for 0 ≤ s ≤ a− 1. The

corresponding orbit under S
{2}
n for s = 0 becomes {{i1}, {i2}, . . . , {ia}}. All other

orbits become {{ij, ih} | 1 ≤ j, h ≤ a, j ≡ h+ s mod a} in the same way as before,

but these are identical for s and a − s. This yields one further exception if a is

even and s = a/2, in which case the orbit collapses to {{ij, ij+a/2} | 1 ≤ j ≤ a/2}.
In total, identical cycles lead to the monomials

xa/2x
a/2
a if a ≡ 0 mod 2

x(a+1)/2
a if a ≡ 1 mod 2.

Summing once more over conjugacy classes and making the case split depending

on the parity proves the formula for Z(S
{2}
n). �

Formulae like those in the previous lemma for slightly different actions are

given in [HP73, (4.1.9)] and [HP73, (5.1.5)]. The proof techniques used here are

essentially the same as in [HP73]. A reference for the cycle index of the groups in

Lemma 2.2.9 is not known to the author of this thesis.

2.3 3-nilpotent Semigroups

As mentioned in the preface, Kleitman, Rothschild, and Spencer asymptotically

counted the number of different semigroups on an n element set [KRS76]. The

cardinality of Zn, the set of different 3-nilpotent semigroups on [n], is identified

as an asymptotic lower bound,4 though part of the proof is only outlined. The

latter influenced Jürgensen, Milgi, and Szék in [JMS91] to give |Zn| as a mere lower

bound for the number of different semigroups on [n]. At the same time they suspect

4Strictly speaking only a subset of all 3-nilpotent semigroups is counted

34 Nilpotent Semigroups

(1/2n!)|Zn| to be a good lower bound for the number of non-equivalent semigroups

with n elements. This belief was supported by the numbers for semigroups of

order 7 and later backed up by the analysis in [SYT94, Section 8] for semigroups

of order 8.

In this section the construction of 3-nilpotent semigroups from [KRS76], to-

gether with the enumeration techniques presented in the previous section, is used

to establish an exact formula for the numbers |Ẑn| and |Zn| of 3-nilpotent semi-

groups up to isomorphism and up to equivalence. To employ the construction

found in [KRS76] for the counting, it is made more precise: for n ≥ 2 let B be a

subset of [n] with 1 ≤ |B| ≤ n − 1 and let A be the complement of B in [n]. If

z ∈ B and ψ : A × A → B is any function, then define a magma S(ψ, z) on [n]

with multiplication as follows

xy =

{
ψ(x, y) x, y ∈ A
z otherwise.

It is easy to verify that any product abc in S(ψ, z) equals z, meaning that the

multiplication is associative and S(ψ, z) forms a semigroup of nilpotency rank

at most 3. The semigroup S(ψ, z) is 2-nilpotent – and hence a zero semigroup

– if and only if ψ is the constant function with value z. Conversely, choosing

B = S2 for a 3-nilpotent semigroup S on [n], shows that S can be constructed

as described above. Before moving on to the enumeration up to isomorphism, the

given construction is used to count all different 3-nilpotent semigroups on [n].

Theorem 2.3.1 For n ∈ N the number of different 3-nilpotent semigroups on [n]

equals

|Zn| =
m0(n)∑
m=2

(
n

m

)
m

m−1∑
i=0

(−1)i
(
m− 1

i

)
(m− i)(n−m)2 ,

where

m0(n) =
⌊
n+ 1/2−

√
n− 3/4

⌋
.

Proof: For a fixed size m of B there are
(
n
m

)
choices for B and then m choices

for z. The number of functions from A2 to B is m(n−m)2 . To avoid counting

semigroups twice for different m, only those functions for which each element in

B \ {z} appears as image shall be counted. For a subset of B \ {z} of size i there

2.3 3-nilpotent Semigroups 35

are (m− i)(n−m)2 functions not having any of the elements in the subset as image.

The inclusion-exclusion principle yields

m−1∑
i=0

(−1)i
(
m− 1

i

)
(m− i)(n−m)2 (2.8)

as number of functions with B \ {z} in their image.

The function ψ is defined on a set with (n−m)2 elements. Hence, the condition

that every element in B \ {z} is an image yields the inequality m− 1 ≤ (n−m)2.

Reformulation gives m ≤ n + 1/2−
√
n− 3/4. Summing (2.8) over all values for

which 3-nilpotent semigroups occur proves the lemma. �

In [JMS91, Theorem 15.3] the formula in the previous lemma is given as the

number of a proper subclass of the semigroups in Zn, while their proof shows that

the exact number of different 3-nilpotent semigroups on [n] is counted. Note that

in agreement with the results from Section 2.1 the formula yields |Z1| = |Z2| = 0

and |Z3| = 1.5

The more complicated counting of non-isomorphic and non-equivalent semi-

groups in Zn is done in several steps. In a first step semigroups with 1 as zero

element are considered and, as in the proof of the previous lemma, they are distin-

guished by the number of different entries in their multiplication table. For n ≥ 3

and 2 ≤ m ≤ n− 1 define

Zn(m) =
{
S(ψ, 1) | ψ : ([n] \ [m])2 → [m] with [m] \ [1] ⊆ im(ψ)

}
.

None of these sets contains a zero semigroup, as im(ψ) consists of the zero element

for such a semigroup.

Lemma 2.3.2 Let S be a 3-nilpotent semigroup with n elements. Then

m ∈
{

2, . . . ,
⌊
n+ 1/2−

√
n− 3/4

⌋}
given by m = |S2| is unique such that there exists a semigroup in Zn(m) equivalent

to S.

5The convention 00 = 1 is used.

36 Nilpotent Semigroups

Proof: As each element in S2, other than the zero element, is a product of two

generators, it follows that 2 ≤ |S2| ≤ 1 + |S \ S2|2. This leads to the inequality

m ≤ 1 + (n−m)2 which yields m ≤ n+ 1/2−
√
n− 3/4.

Let z denote the zero element of S, and let f : S → [n] be any bijection such

that f(z) = 1 and f(S2) = [m]. Then define ψ : ([n] \ [m])2 → [m] by

ψ(i, j) = f(f−1(i)f−1(j)).

Now, since S is 3-nilpotent, if x ∈ [m] \ [1], there exist s, t ∈ S \ S2 such that

f(st) = x. Thus ψ(f(s), f(t)) = x and [m] \ [1] ⊆ im(ψ). Hence S(ψ, 1) ∈
Zn(m) and it remains to show that f is an isomorphism. If x, y ∈ S \ S2, then

f(x)f(y) = ψ(f(x), f(y)) = f(xy). Otherwise, x ∈ S2 or y ∈ S2, in which case

f(x)f(y) = 1 = f(z) = f(xy).

The uniqueness of m follows from the fact that |S2| is preserved by isomor-

phism and anti-isomorphism, and |S(ψ, 1)2| = k for all S(ψ, 1) ∈ Zn(k). �

Of course, in the previous lemma, it is not true in general that there exists a

unique semigroup in Zn(m) equivalent to S, or, in other words, |Zn(m)| < |Zn(m)|
in most cases. That each structural type of semigroup appears in exactly one of

the sets Zn(m) allows one to determine the number of types of semigroups in each

set independently. Together with Lemma 2.3.2 it follows in particular that

|Zn| =
m0(n)∑
m=2

|Zn(m)|, where m0(n) =
⌊
n+ 1/2−

√
n− 3/4

⌋
. (2.9)

Before |Zn(m)| is determined, the semigroups in Zn(m) are counted up to isomor-

phism; this being somewhat simpler but involving the same ideas as counting up

to equivalence.

Isomorphisms between semigroups in Zn(m) induce an equivalence of functions

from ([n] \ [m])2 into [m], which define the semigroups. For S(ψ, 1) ∈ Zn(m) and

π ∈ Sn one notes that the semigroup S(ψ, 1)π lies in Zn(m) if and only if π stabilises

[n] \ [m] and [1] – and hence [m] \ [1] – setwise. Thus the actions on source and

range of ψ are independent. The equivalence can then be captured using a power

group action.

2.3 3-nilpotent Semigroups 37

Lemma 2.3.3 Two semigroups S(ψ, 1) and S(χ, 1) in Zn(m) are isomorphic if

and only if ψ and χ lie in the same orbit under the action of the power group

(S×2
[n]\[m])

S[1]S[m]\[1].

Proof: (⇒) By assumption there exists a π ∈ Sn such that π : S(ψ, 1) → S(χ, 1)

is an isomorphism. As π stabilises [m] \ [1] setwise and 1π = 1, there do exist

τ ∈ S[1]S[m]\[1] and σ ∈ S[n]\[m] induced by π. Then for all x, y ∈ [n] \ [m]

ψ(x, y) = (ψ(x, y)π)π
−1

= (χ(xπ, yπ))π
−1

= (χ(xσ, yσ))τ
−1

= χ(σ;τ−1)(x, y).

(⇐) Since ψ and χ lie in the same orbit under the action of the power group

(S
(2)
[n]\[m])

S[1]S[m]\[1] , there exist σ ∈ S[n]\[m] and τ ∈ S[1]S[m]\[1] such that ψ(σ;τ) = χ.

Let π ∈ S[n] be defined by

xπ =

xσ x ∈ {m+ 1, . . . , n}

xτ
−1

x ∈ {1, . . . ,m}.

It shall be shown that π is an isomorphism from S(ψ, 1) to S(χ, 1): if x, y ∈ [n]\[m],

then

xπyπ = ψ(xσ, yσ) = (ψ(xσ, yσ)τ)τ
−1

= (ψ(σ;τ)(x, y))τ
−1

= (χ(x, y))τ
−1

= (xy)π.

Otherwise, without loss of generality, suppose that y ∈ {1, . . . ,m}. Then

(xy)π = 1π = 1τ
−1

= 1 = xσyτ
−1

= xπyπ,

as required. �

Lemma 2.3.3 shows that the number of non-isomorphic semigroups in Zn(m)

equals the number of orbits of functions defining semigroups in Zn(m) under the

power group action. The latter is obtained by application of Theorem 2.2.7.

Lemma 2.3.4 For p, q ∈ N with 1 ≤ q < p let N(p, q) denote the number of

orbits of functions from ([p] \ [q])2 into [q] under the action of the power group

38 Nilpotent Semigroups

(S×2
[n]\[m])

S[1]S[m]\[1]. Then

N(p, q) =
∑
j`q−1

∑
k`p−q

(
q−1∏
i=1

ji! i
ji

p−q∏
i=1

ki! i
ki

)−1 p−q∏
a,b=1

1 +
∑

d|lcm(a,b)

djd

kakb gcd(a,b)

.

Proof: Theorem 2.2.7 immediately yields that

N(p, q) =
1

(q − 1)!

∑
β∈S[q]\[1]

Z(S×2
[p]\[q]; c1(β), . . . , c(p−q)2(β)), (2.10)

where

ci(β) =
∑
d|i

dδ(β, d).

As mentioned before Z(S×2
[p]\[q]; c1(β), . . . , c(p−q)2(β)) depends only on the cycle

structure of β and is therefore an invariant of the conjugacy classes of S[1]S[q]\[1].

Then again, these can be labelled by the partitions of q − 1. If j is a partition

of q − 1 labelling the conjugacy class of β then δ(β, 1) = j1 + 1 and δ(β, i) = ji

for i = 2, . . . , q − 1 for all β ∈ S[1]S[q]\[1]. This yields that ci(β) = 1 +
∑

d|i djd.

Summing over conjugacy classes in Equation (2.10) gives:

N(p, q) =
∑
j`q−1

(
q−1∏
i=1

ji! i
ji

)−1

Z

S×2
[p]\[q];

1 +
∑
d|1

djd

 , . . . ,

1 +
∑

d|(p−q)2
djd

,
(2.11)

where it was used again that the size of each conjugacy class is

(q − 1)!∏q−1
i=1 ji! i

ji
.

According to Equation (2.3) the cycle index of S×2
[p]\[q] is

Z(S×2
[p]\[q]) =

∑
k`(p−q)

(
p−q∏
i=1

ki! i
ki

)−1 p−q∏
a,b=1

x
kakb gcd(a,b)
lcm(a,b) . (2.12)

Substituting (2.12) into (2.11) gives the formula for N(p, q). �

The previous lemma provides the essential information to determine a formula

2.3 3-nilpotent Semigroups 39

for the number of 3-nilpotent semigroups of order n up to isomorphism.

Theorem 2.3.5 Let n ∈ N and N(p, q) be defined as in Lemma 2.3.4, that is

N(p, q) =
∑
j`q−1

∑
k`p−q

(
q−1∏
i=1

ji! i
ji

p−q∏
i=1

ki! i
ki

)−1 p−q∏
a,b=1

1 +
∑

d|lcm(a,b)

djd

kakb gcd(a,b)

.

Then the number of non-isomorphic 3-nilpotent semigroups with n elements equals

|Ẑn| =
m0(n)∑
m=2

(N(n,m)−N(n− 1,m− 1)) ,

where

m0(n) =
⌊
n+ 1/2−

√
n− 3/4

⌋
.

Proof: The set of orbits counted by N(p, q) includes those with functions which

do not take every element in [q] \ [1] as image. The number of these orbits equals

N(p − 1, q − 1), the number of orbits of functions with one fewer element in the

image set. According to Lemma 2.3.3 the number of non-isomorphic semigroups

in Zn(m) equals the number of orbits of functions having [m] \ [1] in their image

set. Both are N(n,m) − N(n − 1,m − 1) due to the argument above. Summing

over m as in (2.9) proves the theorem. �

In the next part, the considerations to determine the number of 3-nilpotent

semigroups up to isomorphism are repeated up to equivalence.

Lemma 2.3.6 Two semigroups S(ψ, 1) and S(χ, 1) in Zn(m) are equivalent if

and only if ψ and χ lie in the same orbit under the action of the power group

(2S×2
[n]\[m])

S[1]S[m]\[1].

Proof: (⇒) If S(ψ) and S(χ) are isomorphic use Lemma 2.3.3. So assume that

π ∈ Sn is an anti-isomorphism between the two semigroups. As in the proof of

Lemma 2.3.3 let σ and τ denote the permutations on [m] and [n] \ [m] induced

by π. Then, for all x, y ∈ [n] \ [m],

ψ(x, y) = (ψ(x, y)π)π
−1

= (χ(yπ, xπ))π
−1

= (χ(yσ, xσ))τ
−1

= χ(σ;τ−1)(y, x).

40 Nilpotent Semigroups

Hence ψ = χ(σ̄;τ−1).

(⇐) If ψ = χ(σ;τ) with σ ∈ Sn, then S(ψ) and S(χ) are isomorphic semigroups

by Lemma 2.3.3. So assume that ψ = χ(σ̄;τ) with σ ∈ Sn. Choose π ∈ Sn depending

on σ and τ as in the proof of Lemma 2.3.3. Since

ψ(x, y) = χ(σ̄;τ)(x, y) = χ(σ;τ)(y, x),

the bijection π is an anti-isomorphism from S(χ) to S(ψ). �

The previous lemma allows one to determine a formula for the number of 3-

nilpotent semigroups up to equivalence by finding the number of non-equivalent

functions under the power group action.

Theorem 2.3.7 Let n ∈ N and define L(p, q) for 1 ≤ q < p ≤ n to be

L(p, q) =
1

(q − 1)!

∑
j`(q−1)

Z

2S×2
[p]\[q]; 1 +

∑
d|1

djd, 1 +
∑
d|2

djd, . . . , 1 +
∑

d|(p−q)2
djd

 .

Then the number of non-equivalent 3-nilpotent semigroups with n elements equals

|Zn| =
n−1∑
m=2

(L(n,m)− L(n− 1,m− 1)).

Proof: The proof follows the exact same steps as the ones of Lemma 2.3.4 and

Theorem 2.3.5, simply replacing the cycle index of S×2
[p]\[q] with the cycle index of

2S×2
[p]\[q] given in (2.4). �

When knowing the number of semigroups in a class (or even other mathematical

objects) up to isomorphism and up to equivalence, one easily obtains the number

of self-dual semigroups in that class. It was shown in the proof of Lemma 1.1.3

that, if l is the number up to equivalence, then 2l is the number of non-isomorphic

semigroups counting self-dual semigroups twice. Thus the number of 3-nilpotent,

self-dual semigroups of order n up to isomorphism equals 2|Zn| − |Ẑn|. Remem-

ber that for self-dual semigroups it is unnecessary to distinguish between ‘non-

isomorphic’ and ‘non-equivalent’, since each anti-isomorphism is at the same time

an isomorphism and vice versa.

2.3 3-nilpotent Semigroups 41

An important subclass of (self-dual) semigroups are commutative semigroups.

To obtain the number of 3-nilpotent, commutative semigroups with n elements,

the analysis from above is repeated on a different set of functions. Define

CZn = {S ∈ Zn | xy = yx for all x, y ∈ S}

and analogously CZn(m) as subset of Zn(m). First, it is straightforward to count

the semigroups in CZn in the same way as it was done for Zn in Lemma 2.3.1.

Lemma 2.3.8 For n ∈ N the number of different commutative 3-nilpotent semi-

groups on [n] equals

|CZn| =
m

(c)
0 (n)∑
m=2

(
n

m

)
m

m−1∑
i=0

(−1)i
(
m− 1

i

)
(m− i)(n−m)(n−m+1)/2,

where

m
(c)
0 (n) =

⌊
n+ 3/2−

√
2n+ 1/4

⌋
.

Proof: The proof follows the same steps as the one of Lemma 2.3.1. For a commu-

tative semigroup S(ψ, z) the function ψ : ([n] \ B)2 → B is defined by its values

on pairs (i, j) with i ≤ j. If m denotes |B| there are (n −m)(n −m + 1)/2 such

pairs.

For a fixed set B only functions taking all elements in B \ {z} as value are

counted, which implies the condition m− 1 ≤ (n−m)(n−m+ 1)/2. Reformulat-

ing this inequality yields the parameter m
(c)
0 (n). �

Again, it is claimed in [JMS91, Theorem 15.8], the formula in the previous

lemma is for a subclass of CZn (see the comment after Lemma 2.3.1). In addition,

the parameter m
(c)
0 (n) is corrected.

For each S(ψ, 1) ∈ CZn(m) the equality ψ(i, j) = ψ(j, i) holds for all i, j ∈
[n] \ [m]. Hence, the induced function ψ′ on ([n] \ [m]){2} for which ψ′{i} = ψ(i, i)

and ψ′{i, j} = ψ(i, j) for i 6= j is well-defined. Each function from ([n] \ [m]){2} to

[m] is induced by some ψ : ([n] \ [m])2 → [m].

Lemma 2.3.9 Two semigroups S(ψ, 1) and S(χ, 1) in CZn(m) are isomorphic if

and only if ψ′ and χ′ lie in the same orbit under the action of the power group

(S
{2}
[n]\[m])

S[1]S[m]\[1].

42 Nilpotent Semigroups

Proof: Using Lemma 2.3.3 it suffices to notice that ψ′ and χ′ are in the same

orbit under (S
{2}
[n]\[m])

S[1]S[m]\[1] if and only if ψ and χ are in the same orbit under

(S×2
[n]\[m])

S[1]S[m]\[1] . �

The result on the number of commutative 3-nilpotent semigroups follows in the

obvious way.

Theorem 2.3.10 Let n ∈ N and define K(p, q) for 1 ≤ q < p ≤ n to equal

∑
j`q−1
k`p−q

(
q−1∏
i=1

ji! i
ji

p−q∏
i=1

ki! i
ki

)−1 bn
2
c∏

a=1

c(a)k2ac(2a)ak2a

bn+1
2
c∏

a=1

c(2a−1)ak2a−1

∏
a<b

c(la,b)
kakbga,b

with la,b = lcm(a, b), ga,b = gcd(a, b), and c(x) = 1 +
∑

d|x djd. Then the number

of non-equivalent 3-nilpotent, commutative semigroups with n elements equals

|CZn| =
n−1∑
m=2

(K(n,m)−K(n− 1,m− 1)).

Proof: The proof follows the same steps as the one of Lemma 2.3.4 and Theo-

rem 2.3.5, only replacing the cycle index of S×2
[p]\[q] with the cycle index of S

{2}
[p]\[q]

given in (2.5). �

Tables with the numbers of 3-nilpotent semigroups on [n] in all variations occur-

ring in this section are compiled in Appendix A.1 for small values of n. They were

computed using the function Nr3NilpotentSemigroups from Smallsemi [DM10]

(see Section 4.2).

What hope is there to extend the methods in this section to count 4-nilpotent

semigroups? Harrison [Har66] applied the enumeration techniques presented in

Section 2.3 to sets with an arbitrary (finite) number of operations each of finite

degree, known as universal algebras. He mentions that in the next step towards

formulae for the number of other algebraic structures – such as semigroups, groups

and rings – associativity has to be studied first. It may seem like a step towards

this aim was made in this section. Note first, that the definition of nilpotency rank

is applicable to magmas in general. Then one possible point of view is, that the

presented methods were used to count 3-nilpotent magmas, which happened to be

semigroups. To extend the approach to 4-nilpotent magmas would work, but this

2.3 3-nilpotent Semigroups 43

Table 2.1 Ratio of lower bound and actual number of 3-nilpotent semigroups

n 3 4 5 6 7 8 9 10

|Zn|
2n!|Zn|

0.5 0.46875 0.58135 0.80651 0.96703 0.99757 0.99974 0.99996
|CZn|
n!|CZn|

1 0.7 0.58696 0.60188 0.72124 0.85657 0.93649 0.97449

would not give the numbers of 4-nilpotent semigroups. Already counting different

semigroups on [n] of any particular type is in general difficult due to associativity.

Without a set of functions to apply Theorem 2.2.7 to, the presented methods are

not applicable.

With |Zn| a new (presumably tight) lower bound for the number of non-

equivalent semigroups on [n] is provided. The enumeration formula in Theo-

rem 2.3.7 yields not only the total number of 3-nilpotent semigroups, but contains

as well the numbers of semigroups with any specified bijection as automorphism

or anti-automorphism. Studying this information in detail it should be possible to

answer the following question,

Question 2.3.11 Do asymptotically all non-equivalent, 3-nilpotent semigroups

on [n] have trivial automorphism group?

or at least the weaker version:

Question 2.3.12 Do asymptotically all different, 3-nilpotent semigroups on [n]

have trivial automorphism group?

These questions relate to the observation that the former bound |Zn|/2n! for the

number of semigroups seems to converge rapidly towards |Zn| as illustrated in

Table 2.1. With the formulae for both |Zn| and |Zn| available, the answer to

the questions is within reach. An important result for asymptotic behaviour of 3-

nilpotent semigroups is given in [KRS76]. When n tends to infinity, the proportion

of semigroups in Zn with n − n/(2 lnn) generators tends to 1. Further research

around this topic might ultimately lead to a proof that asymptotically all non-

equivalent semigroups on [n] have trivial automorphism group. Such results are

known for many other combinatorial and algebraic structures, for example for

graphs [ER63].

The results in this section will become important again in the enumeration of all

semigroups up to equivalence. A comparison between the numbers for 3-nilpotent

semigroups and all semigroups is done later.

44 Nilpotent Semigroups

3 Diagonals

In Chapter 1 representation of a binary operation via its multiplication table was

introduced. Equivalence of multiplication tables was defined based on isomor-

phisms and anti-isomorphisms between the represented algebraic structures, and

expressed via an action of Sn×C2 on the set of tables representing magmas with n

elements. Under this action each entry on the diagonal of a table is mapped to an

entry on the diagonal of the image. Thus the action on tables induces an action on

diagonals of tables. Plemmons used this independence of the diagonal from the rest

of the table in the search for semigroups of order 6 [Ple67]. The idea is to consider

only diagonals that are not equivalent under the induced action, and then to per-

form a separate search for each diagonal. The idea was adopted by Satoh, Yama,

and Tokizawa for the search of semigroups of order 8 [SYT94]. In their backtrack

algorithm diagonal positions of the table are considered first. They state that

they have determined ‘660 representatives of the diagonal positions’. No further

information on the diagonals is given in either of the references [Ple67, SYT94].

For Plemmons, as well as Satoh et al., the search for non-equivalent diagonals

was one step in the process of finding multiplication tables of semigroups. The

numbers of diagonals were known before, and, due to the small orders, this step

was comparatively simple. While one purpose of this chapter is to prepare for

this step in the search for semigroups, the content goes beyond this. Partially,

diagonals are studied independently, but also a better insight into the role the

diagonal plays in the multiplication of a semigroup is gained.

In the first section of this chapter a way to find non-equivalent diagonals using

their underlying structure, rather than a mere search, is presented. The corre-

spondence of diagonals to a certain class of directed graphs is employed to develop

an algorithm giving one diagonal of every equivalence class. Slight changes to the

algorithm let it output another set of diagonals, being non-equivalent with respect

46 Diagonals

to a different group. Results from implementations of the original algorithm and

its adaptation into GAP [GAP08] are provided.

In the second section diagonals are studied in connection with multiplication

tables. The starting point is the situation which will be the most common initial

setup in the search for semigroups: given is a multiplication table in which only

the diagonal positions are known. The first question at this point is whether a

diagonal appears at all in the multiplication table of a semigroup; and if it does,

how it influences the structure of the semigroup. Criteria answering the first

question form the majority of the second section.

3.1 Constructing Diagonals

In the search for multiplication tables of semigroups of order 6, Plemmons intro-

duced the idea of choosing the entries on the diagonal before the search [Ple67].

Subsequently, he performed a separate search for each choice of diagonal. Even

without going into the details of the search, it is obvious that not all nn different

diagonals have to be considered, if one is interested in the semigroups of order n

up to equivalence. In this section an algorithm giving a smaller set of diagonals

is explained. More precisely, a correspondence between diagonals and a certain

class of directed graphs will be established together with a notion of equivalence

for diagonals. It follows a closer look at the type of directed graphs involved in

the correspondence. The insight is then utilised in an algorithm that outputs a

list of all diagonals up to equivalence. The section finishes with a variation of the

algorithm adjusting it to a related problem.

The diagonal of a table T = (Ti,j)1≤i,j≤n is the n-tuple (T1,1, T2,2, . . . , Tn,n).

Having values in [n] the diagonal corresponds to the function

fT : [n]→ [n], i 7→ Ti,i.

For convenience this corresponding function shall be used in the following instead

of the diagonal itself. As every function f : [n]→ [n] is uniquely defined by the n-

tuple (f(1), f(2), . . . , f(n)) the correspondence is indeed a bijection. The action of

Sn×C2 on multiplication tables as defined by (1.1) and (1.2) induces an action on

diagonals, since every diagonal entry is mapped to a diagonal entry. For a function

fT and an element g ∈ Sn × C2 the induced action of g on fT is given by fT g and

3.1 Constructing Diagonals 47

denoted by f gT . Note that transposing a table does not influence the diagonal,

making it superfluous to consider both isomorphisms and anti-isomorphisms.1 For

a permutation π ∈ Sn both (π, e) and (π, c) – where e denotes the trivial and c

the non-trivial element in C2 – have the same effect on all diagonals. Hence, Sn-

equivalence of diagonals and (Sn × C2)-equivalence yield the same orbits. In the

following it suffices to consider the induced action of elements in Sn on diagonals.

A digraph ΓT can be associated with a diagonal of the table T . The vertex set

of ΓT is [n] and the edge set is {(i, fT (i)) | i ∈ [n]}. The correspondence can be

used to connect equivalence of diagonals to isomorphism of graphs.

Lemma 3.1.1 Let S and T be the multiplication tables of two binary operations

on [n]. Then ΓS is isomorphic to ΓT if and only if fS is Sn-equivalent to fT .

Proof: (⇒) : There exists π ∈ Sn sending the edge set of ΓT to the edge set of ΓS,

that is {(iπ, fT (i)π) | i ∈ [n]} = {(i, fS(i)) | i ∈ [n]}. The set on the left hand side

can be rewritten as {(i, fT (iπ
−1

)π) | i ∈ [n]}. Using fT (k) = Tk,k it follows that

fT (iπ
−1

)π = (Tiπ−1
,iπ

−1)π = (T π)i,i.

Hence the edge set also equals {(i, fTπ(i)) | i ∈ [n]} and a simple comparison of

functions yields that fTπ = fS.

(⇐) : There exists π ∈ Sn such that fTπ = fS. Going backwards through the

arguments of the proof for the other direction it follows π is an isomorphism from

ΓT to ΓS. �

The next aim is to obtain a set of representatives of the equivalence classes

of diagonals. To do this, a set of non-isomorphic digraphs representing functions

shall be constructed. Note that the number of non-equivalent functions on [n] are

long known. A formula in the style of the results in Section 2.3 is given in [Dav53,

Theorem 6] together with the terms for n up to 5. Adjusted to the notion used in

this thesis the formula reads

∑
j`n

(
n∏
i=1

ji!i
ji

)−1 n∏
a=1

∑
d|a

djd

ja

.

1In other words, the action of Sn × C2 on diagonals is not faithful.

48 Diagonals

More terms together with a counting series are given in [HP73, Table 3.4.1]. In the

same reference one can find as well numbers of functional digraphs,2 corresponding

to functions without fixed point. These are of interest as every finite semigroup

contains an idempotent (Remark 1.2.3), and therefore functional digraphs lead

to diagonals that do not appear in the multiplication table of any semigroup.

Numbers of non-equivalent functions with fixed point are presented in Table 3.1.

They are simply calculated as the difference between the numbers of digraphs

representing functions and the numbers of functional digraphs. For n = 8 one

finds that there are 660 non-equivalent functions with fixed point, which apparently

correspond to the 660 diagonals determined by Satoh et al. in [SYT94].

Table 3.1 Numbers of non-equivalent functions from [n] to [n]

n 1 2 3 4 5 6 7 8 9 10

functions 1 3 7 19 47 130 343 951 2 615 7 318
–, with fixed point 1 2 5 13 34 90 243 660 1 818 5 045
functional digraphs 0 1 2 6 13 40 100 291 797 2 273

To actually obtain a set of non-equivalent functions using the correspondence to

digraphs, it would be easy to start with all functions to get all digraphs. Only this

is not helpful, as deciding graph isomorphism is, in general, a hard problem. On the

other hand, two labelled graphs are isomorphic if and only if their corresponding

unlabelled graphs are identical. For the special class of digraphs representing

functions the types of structures involved can be described in a way that allows an

inductive construction of non-isomorphic graphs. To make the description easier,

the term ‘rooted tree’ – usually referring to an undirected tree with a distinguished

vertex – is defined for digraphs as follows.

Definition 3.1.2 A digraph is a rooted tree, if it is connected, there exists a unique

vertex, called the root, with outdegree 0, and all other vertices have outdegree 1.

A connected graph with n vertices and n− 1 edges is a tree. From Definition 3.1.2

it is clear that all edges point in the direction of the root, in the sense that the

end vertex of every edge lies on the path from the start vertex to the root. In

2The term ‘functional digraph’ is not used consistently throughout the literature. It sometimes
refers to all digraphs representing a function.

3.1 Constructing Diagonals 49

the literature it is more common that the edges in a rooted tree are pointing away

from the root. In any case a characterisation of rooted trees is well known.

Lemma 3.1.3 Rooted trees on n vertices are in one-one correspondence with

forests of rooted trees on n − 1 vertices. If Γ is a rooted tree with root r, then

Γ \ {r} is the corresponding forest of rooted trees.

The previous lemma is illustrated in Figure 3.1. Now, a well known description

of digraphs corresponding to functions can be given.

•

��

•

��

•

��

•

��~~
~~

~~
~~

•

��

•

��

•

��

•

��~~
~~

~~
~~⊙ ⊙ ⊙

→
⊙

 @
@@

@@
@@

@
⊙
��

⊙
~~~~

~~
~~

~~

2 + 2 + 3 = 7 8
⊗

Figure 3.1 Building rooted trees
The four rooted trees on the left with a total of seven vertices are assembled to

one rooted tree with eight vertices by introducing a new root vertex.

Lemma 3.1.4 Let Γ be a digraph representing a function from [n] to [n]. Then

every connected component of Γ contains exactly one cycle. After removing the

edges in the cycles, the connected components are rooted trees with the vertices

from the cycle as roots.

Proof: As Γ represents a function every vertex has outdegree 1. This fact is used

repeatedly throughout this proof.

Let C be a connected component of Γ and consider an infinite walk in C. An

infinite walk in Γ is determined by the first vertex in the walk (because every vertex

in the walk has outdegree 1). Moreover, as Γ is finite there has to be repetition

in the walk, showing that there is a cycle in C. To prove uniqueness consider a

sequence of vertices (v1, v2, . . . , vr) without repetition such that v1 and vr are both

in cycles of C and for all 1 ≤ i ≤ r− 1 either (vi, vi+1) or (vi+1, vi) is an edge. The

sequence is a path in the underlying graph of Γ. Such a sequence must exist for

every two vertices in C due to connectedness. Assume v1 and vr are from different

cycles. Then there is a minimal k with vk not in the same cycle as v1. Thus

(vk−1, vk) is not an edge but (vk, vk−1) is. Then (vk, vk+1) is not an edge as vk has



50 Diagonals

outdegree 1 and vk−1 6= vk+1. Inductively (vr−1, vr) is not an edge. Thus (vi, vi−1)

is an edge for all k ≤ i ≤ r making vk−1 a vertex in a cycle with both v1 and vr, a

contradiction.

Removing the edges from the unique cycle in C, the connected components do

not have a cycle and are therefore trees. Let u be a vertex from the cycle. As the

unique edge starting at u has been removed, its outdegree is 0, while the outdegree

of all other vertices is still 1. Hence, the connected component is a rooted tree

with u as root. �

Every graph isomorphism maps connected components to connected compo-

nents. Thus to obtain all graphs up to isomorphism, it suffices to know the con-

nected components up to isomorphism. It is easy to see how the components look

in the case of digraphs representing a function. As the knowledge will be needed

later, it is presented in the following lemma.

Lemma 3.1.5 Let Γ and ∆ be two connected digraphs representing functions from

[n] to [n]. Denote the length of the cycle of Γ by r and let (v1, v2, . . . , vr) be a path

through the cycle. Likewise, denote the length of the cycle of ∆ by s and let

(u1, u2, . . . , us) be a path through its cycle. Moreover, let (R(v1), R(v2), . . . , R(vr))

and (S(u1), S(u2), . . . , S(us)) be the rooted trees connected to the cycles, R(vi) with

root vi and S(ui) with root ui.

Then Γ and ∆ are isomorphic if and only if r = s and there is a power π of

the permutation (1 2 · · · r) such that R(viπ) ∼= S(ui) for all 1 ≤ i ≤ r.

Proof: (⇒) : It is clear that the cycle of Γ has to be mapped to the cycle of ∆

by every isomorphism σ and thus r = s. Moreover if vσ1 = uj then vσi = uiπ for

π = (1 2 · · · r)(j−1) and thus R(vi) ∼= S(uiπ).

(⇐) : Let σi be an isomorphism from R(viπ) to S(ui) for all 1 ≤ i ≤ r. Define

σ to map the vertex v from Γ to σi(v) where σi is the unique isomorphism with

v in its domain. Then σ is a bijection from the vertex set of Γ to the vertex set

of ∆ preserving not only the edges in the trees but as well the edges in the cycle.

Thus σ is an isomorphism. �

From the previous lemma and Lemma 3.1.4 it is known what connected di-

graphs representing functions look like and when they are isomorphic. An algo-



3.1 Constructing Diagonals 51

Algorithm 1
Construct the connected digraphs with N vertices and a cycle of length K

Require: K ≤ N
1: L← [ ] {initialise output as empty list}
2: C ← cycle of length K {vertices labelled 1 to K}
3: for all P ∈ Partitions(N,K) do {the partition specifies the sizes of rooted

trees at the vertices of the cycle}
4: for all (T1, T2, . . . , TK) ∈ Forests(P ) do
5: F ← {(T1π , T2π , . . . , TKπ) | π ∈ SK} {set of all arrangements of

(T1, T2, . . . , TK)}
6: for all O ∈ Orbits(〈(1 2 · · · K)〉,F) do
7: (R1, R2, . . . , RK)← representative of O {arbitrary element in the orbit}
8: D ← copy of C
9: for all i ∈ {1, 2, . . . , K} do

10: D ← D merged with Ri by identifying vertex i with the root of Ri

11: end for
12: add D to list L
13: end for
14: end for
15: end for
16: return L

rithm constructing one such digraph of every isomorphism type is given as Algo-

rithm 1. As prerequisite three algorithms Partitions, Forests, and Orbits are

assumed to exist.

Partitions takes two positive integers N and K as input and outputs all parti-

tions of N with K summands of positive integers.

Forests takes a partition a1 + a2 + · · ·+ aN as input and outputs all forests up

to isomorphism consisting of N trees T1, T2, . . . , TN , where Ti has ai vertices

for 1 ≤ i ≤ N .

Orbits takes a group and a set as input; the set being closed under the action of

the group. It outputs the orbits on the set under the action of the group.

Lemma 3.1.6 Algorithm 1 is correct.

Proof: According to Lemma 3.1.5 for two connected components to be isomorphic

they need to have the same forest attached to the vertices in the cycle. Thus the



52 Diagonals

digraphs constructed inside the loop starting at line 4 can only be isomorphic to

a digraph constructed in the same run. On the other hand, for every connected

digraph there is a run through this loop with the same forest as given by the di-

graph. It remains to be shown that in lines 7 to 12 one representative for every

type of connected digraph with (T1, T2, . . . , TK) as forest is constructed. The set F
defined in line 5 represents all connected digraphs with (T1, T2, . . . , TK) as forest.

The orbit calculation in line 6 follows the result from Lemma 3.1.5, putting two

ordered tuples in the same orbit if and only if they represent isomorphic digraphs.

Thus taking one representative in line 7 and constructing the corresponding di-

graph in lines 8 to 11 leads to the required set. �

Compared with the brute force approach of calculating the orbits of the set of

all functions from [n] to [n], the orbit calculations in Algorithm 1 are very easy,

making this algorithm a big improvement. Nonetheless a simple change can be

made to improve its performance even more. The idea is that for the majority of

forests it is clear how the orbits in line 6 look. Thus the orbit calculation – still the

bottleneck of the algorithm – can be avoided. In the simplest case (T1, T2, . . . , TK)

contains some isomorphism type of tree, T , only once. Then each orbit of F (from

line 5 of Algorithm 1) under 〈(1 2 · · ·K)〉 contains exactly one tuple that has T

in first position. Thus, of all ordered tuples arising from (T1, T2, . . . , TK) the ones

starting with T form a set of representatives.

An implementation based on Algorithm 1 in GAP was used to obtain all di-

agonals with a fixed point up to equivalence of size n for 1 ≤ n ≤ 18. Table 3.1

contains their numbers up to n = 10. The implementation uses existing func-

tionality for Partitions and Orbits, while Forests was implemented anew,

inductively constructing trees as illustrated in Figure 3.1. The orbit calculation

in line 6 is avoided in the case where some type of tree appears only once in

(T1, T2, . . . , TK). (Trying to use a generalisation of this idea, when the number of

times some isomorphism type T of tree appears in (T1, T2, . . . , TK) and the length

of the cycle K are coprime, makes the implementation of the algorithm compli-

cated and thus prone to errors, while being outperformed by the highly developed

orbit calculation available in GAP.) The code is available on the attached DVD,

see Appendix C.

An interesting variation of the original problem is to consider partial functions



3.1 Constructing Diagonals 53

from [n − 1] to [n − 1]. As before, each such function defines a digraph, whose

edges are given by the partial function. The outdegree for each vertex is then at

most 1. As on the other hand a digraph, in which each vertex has outdegree at

most 1, defines a partial function, the connection is again a correspondence.

Obviously, every function can be considered as a partial function, and, making

arbitrary choices for undefined values, a partial function can be completed to a

function. The latter means for the corresponding digraphs that the graph of a

partial function is a subgraph of the graph of some function. This observation

makes the analogue of Lemma 3.1.4 in the context of partial functions a corollary.

Corollary 3.1.7 Let Γ be a digraph representing a partial function from [n] to

[n]. Each connected component of Γ is either a rooted tree or contains exactly one

cycle. After removing the edges in the cycles, the connected components are rooted

trees and each vertex from a cycle is a root.

Proof: Consider which consequences removing edges from a digraph representing

a function can have. Removing an edge from a cycle leaves the component con-

nected, but with one fewer edge than vertices it becomes a tree; removing an edge

from outside a cycle creates a separate component that is a tree. If in a subsequent

step an edge is removed from a tree, it splits into two trees. Now the statement

follows from Lemma 3.1.4. �

Trees are the only new type of connected components appearing in the previous

lemma in comparison with Lemma 3.1.4. They are known as prerequisite for

Algorithm 1, inductively constructed as illustrated in Figure 3.1. Again, a program

that creates the connected components and assembles them in all non-isomorphic

ways was implemented in GAP. This program was used to obtain non-equivalent

partial functions up to order 18. Table 3.2 contains the numbers up to 11. More

terms are available at the On-Line Encyclopedia of Integer Sequences [Slo09].

Not only can one construct partial functions in the presented way, but there is

also a connection to diagonals of multiplication tables. To explain this in detail, it

would be necessary to anticipate the search for semigroups. Instead, a rough idea

is given. Extending a partial function on [n− 1] to a function on [n] by mapping

each element with undefined image to n leads to a diagonal with a fixed point,

namely n. Under this construction certain pairs of non-Sn−1-equivalent partial



54 Diagonals

Table 3.2 Numbers of non-equivalent partial functions from [n] to [n]

n 1 2 3 4 5 6 7 8 9 10 11

partial
functions 1 2 6 16 45 121 338 929 2 598 7 261 20 453
on [n− 1]

functions result in Sn-equivalent diagonals. Equivalence of diagonals was defined

using the action of Sn induced from the action on tables. If a semigroup has n

as distinguished idempotent – an identity or a zero element say – one has to use

the action of Sn−1 instead. Under this subgroup the construction from partial

functions becomes the right choice to obtain a set of non-equivalent diagonals.

The final remark in this section concerns an alternative approach to the con-

struction of non-isomorphic graphs. In [Rea78] Read introduced the idea of what

he called an ‘orderly algorithm’. The main idea is to introduce a linear ordering on

the graphs to obtain a notion of canonicity. In addition every canonical graph has

to arise from a smaller canonical one by adding vertices and edges. It is an induc-

tive process which includes some form of isomorphism testing to verify canonicity.

While the concept has proven useful for many different classes of graphs – and

for other structures as demonstrated for example in [HR02] – it seems that for

digraphs representing functions the presented approach is superior. Due to the

special structure described in Lemma 3.1.4 an inductive process is only needed for

building rooted trees as a prerequisite for Algorithm 1.

3.2 Analysing Diagonals

This section is dominated by the question as to whether a given diagonal appears in

a table defining an associative multiplication. Of course this question is decidable,

as it can, in theory, be answered by testing all finitely many ways of completing

the table. Such a method is impractical even for small tables, because of the vast

number of tests necessary. In this section more practical criteria using only the

diagonal itself are presented. These criteria do not apply to every diagonal. Using

them leaves the above question undecided for some cases.

After giving experimental data and introducing the concept of partial multi-

plication, there are two subsections addressing the initial question from two di-



3.2 Analysing Diagonals 55

rections. In Subsection 3.2.1, diagonals that do not appear in any associative

multiplication table are identified. Subsection 3.2.2 contains ways to build diago-

nals, that do appear, from smaller diagonals.

More generally, the connection between the diagonal of a multiplication table

and the semigroup defined by the table is studied. Some connections are very

obvious, like between the diagonal and the number of idempotents in the semi-

group. When considering diagonals as functions, idempotents correspond to the

fixed points, and it was mentioned before that every finite semigroup has at least

one idempotent (Remark 1.2.3). The connection that will be exploited is between

the diagonal and the monogenic subsemigroups of the semigroup. In first instance,

for every element x only powers of the form x2i
are computable from the diagonal.

This indicates that two semigroups with structurally different sets of monogenic

subsemigroups might still have identical diagonals. In particular, to draw conclu-

sions about Green’s equivalences of a semigroup just by knowing the squares of all

elements is essentially impossible. For example, the two monogenic semigroups of

order 2 – the cyclic group and the zero semigroup – both have a constant function

as diagonal. The two elements in the cyclic group form an H-class, while the two

elements in the zero semigroup are not even D-related. One might argue that the

situation is different when there exists a unique semigroup with a given diagonal.

An example of such a case is given in Figure 3.2.

1 1 1 4 5 5 5 4 5
1 1 1 4 5 5 5 4 6
1 1 2 4 5 5 6 4 7
4 4 4 5 1 1 1 5 1
5 5 5 1 4 4 4 1 4
5 5 5 1 4 4 4 1 4
5 5 6 1 4 4 4 1 4
4 4 4 5 1 1 1 6 2
5 6 7 1 4 4 4 2 8


Figure 3.2 Unique associative multipl. table with diagonal (1, 1, 2, 5, 4, 4, 4, 6, 8)

As for most of the research contained in this thesis, experimental results were

one of the starting points in the study of the influence of the diagonal on the other

entries in a multiplication table of a semigroup. The data collected in Table 3.3

shows that, for the inspected orders, many diagonals do not allow the remaining



56 Diagonals

Table 3.3 Numbers of diagonals appearing in associative multiplication tables

n 1 2 3 4 5 6 7 8 9 10

diagonals 1 3 7 19 47 130 343 951 2 615 7 318
–, of semigroups 1 2 5 11 26 60 138 319 740 1 720

positions in a multiplication table to be filled such that an associative multiplica-

tion is defined.3 Interestingly, the sets of diagonals do not reduce further if one

allows only commutative semigroups.

The situation where only the diagonal of a multiplication table is given – or

in other words only the squares of elements are known – is described in a more

general setting as follows. A partial multiplication is a binary operation that is

not necessarily defined for every pair of elements. Each multiplication table with

entries given for some positions, defines a partial multiplication. The product of

a pair of elements is known whenever the respective entry is available. In such

a setting the usual definition of associativity has to be generalised, as not every

expression will evaluate.

Definition 3.2.1 Let P be a set with a partial multiplication defined on it, and

let v and w be two words in the elements of P .

(i) The word v contracts to w if there exist (possibly empty) words s and r such

that v = spipjr and w = spkr where pipj = pk in P .

(ii) The two words v and w are associated if there exists a sequence of words

v = v1, v2, . . . , vl+1 = w such that for all 1 ≤ i ≤ l either vi contracts to vi+1

or vi+1 contracts to vi.

The process described in Definition 3.2.1(i) will be referred to as contraction. The

terms ‘to expand ’ and ‘expansion’ will be used to describe the reverse process.

Definition 3.2.2 A partial multiplication is associative if no two distinct elements

are associated.

This definition of associativity coincides with the usual one in case every prod-

uct is defined. Furthermore, every partial multiplication which can be completed

3See Chapter 5 for details on how this data was collected.



3.2 Analysing Diagonals 57

(
2 �
� 1

)

Figure 3.3 An associative partial multiplication; � denotes undefined products

to a multiplication of a semigroup is associative. The converse does not hold. A

minimal example for an associative partial multiplication whose table cannot be

completed to a multiplication table of a semigroup is given in Figure 3.3. This

example can be generalised, leading back to the original question as to whether a

diagonal allows an associative multiplication.

Lemma 3.2.3 Let P be a finite set with a partial multiplication defined on it, such

that exactly the squares of elements are known. Then the partial multiplication is

associative.

Proof: Let P = {p1, p2, . . . , pn}. Take two associated elements from P . Without

loss of generality let p1 be one of them and let the other be pj for some 1 ≤ j ≤ n. It

shall be shown that j = 1. According to Definition 3.2.1(ii) there exists a sequence

of words p1 = w1, w2, . . . , wr+1 = pj such that each word arises via contraction or

expansion from its predecessor. Note that the number of contractions equals the

number of expansions since w1 and wr+1 have the same length.

It shall be shown by contradiction that for every expansion there is a contrac-

tion doing the opposite. Let the m-th step be the last expansion which is not

undone. Thus wm expands to wm+1, meaning some ps in wm is replaced with ptpt,

where the square of pt equals ps according to the partial multiplication. As ptpt is

not part of wr+1, at least one pt has to vanish at some point. This cannot happen

due to any later expansions as they are all undone. On the other hand, the only

possible contraction including pt is to replace ptpt by ps. This would simply undo

the expansion, and thus contradict the assumption. Concluding that the final

word still contains ptpt yields a contradiction. Thus all expansions are cancelled

by contractions, and pj = p1, making the partial multiplication associative. �

The key point in the proof for the previous lemma is that every element is a

factor in at most one product of the partial multiplication. Each contraction is

then uniquely defined by one element it involves. Thus the proof can be adapted to



58 Diagonals

show a statement generalising Lemma 3.2.3 to all partial multiplications satisfying

the above condition. Moreover, there is no need to restrict defined products to pairs

of elements. One can, for example, replace ‘squares of elements’ in the condition

of the lemma by ‘k-th powers of elements’. As these situations are of no further

interest in this thesis, Lemma 3.2.3 states only the restricted case.

The example in Figure 3.3 and the previous result could give the impression

that Definition 3.2.2 should be revised. Even though it generalises the idea of dif-

ferent ways of bracketing a product for partial multiplications, it cannot be used

to identify diagonals that do not appear in the multiplication of a semigroup. A

quick excursion away from the aim of this section shows the usefulness of Defi-

nition 3.2.2. Instead of asking whether a table of a partial multiplication can be

completed to a semigroup table, one can ask whether it embeds into the table of

a semigroup. The partial table in Figure 3.3 for example, is a subtable of a Cay-

ley table for C3, the group with 3 elements; 1 and 2 then being the non-identity

elements. Tamari used in [Tam73] that being embeddable into a semigroup is

equivalent to Definition 3.2.2. Note that, even for finite partial multiplications,

the embedding is often into an infinite semigroup.

Returning to the aim of this section, Lemma 3.2.3 gives a negative result for

the attempt to answer which diagonals can appear in the multiplication table of a

semigroup.

3.2.1 Excluded diagonals

Despite the fact that every diagonal defines an associative partial multiplication,

criteria for a diagonal not to appear in the multiplication table of a semigroup can

be given. Every semigroup has an idempotent and thus every function related to

the diagonal of a semigroup has a fixed point (see Table 3.1).

This argument can be seen as information coming from the monogenic sub-

semigroups of the semigroup. Even though monogenic subsemigroups are not

determined by the diagonal, some information can be deduced. In particular, cer-

tain diagonals would require too large a number of elements in a single monogenic

subsemigroup and are therefore not diagonals of an associative multiplication ta-

ble.

Lemma 3.2.4 Let S be a semigroup of order n and let Γ be the digraph corre-



3.2 Analysing Diagonals 59

sponding to the diagonal of the multiplication table of S. If (v0, v1, . . . , vl) is a path

in Γ without a vertex from a cycle, then the following hold:

(i) the length l of the path is bounded by blog2(n− 1)c;

(ii) if the cycle of the component containing the path is a loop, then l is bounded

by blog2(k − 1)c, where k is the number of vertices in the component.

Proof: Consider a path (v0, v1, . . . , vl) of maximal length. If s ∈ S equals v0 then

vi = s2i
for 1 ≤ i ≤ l. All these powers of s are distinct since they label different

vertices in the path. Moreover, s2l+1
is a vertex in the cycle of the same connected

component as the path, because of the maximality of l.

Consider next the monogenic semigroup generated by s and its index m and

period r. It shall be shown that 2l+1 is a lower bound for the size of the monogenic

semigroup, which equals m+ r − 1 according to (1.3). This is true if m ≥ 2l + 1;

thus assume that m ≤ 2l. Let c denote the length of the cycle in the connected

component. Then squaring s2l+1
repeatedly yields the element itself after c times;

in other words (s2l+1
)2c

= s2l+1+c
= s2l+1

. Hence r divides 2l+1+c − 2l+1 or, re-

formulated, r divides 2l+1(2c − 1). However, if r was to divide 2l(2c − 1), then

(s2l
)2c

= s2l+c
= s2l

would follow, making s2l
a vertex in the cycle. Therefore

r ≥ 2l+1, which shows that, in any case, m+ r − 1 ≥ 2l + 1.

If the cycle is a loop, that is if c = 1, then repeated squaring for any power of

s will eventually equal s2l+1
as (sj)2l+1

= sj2
l+1

= s2l+1
for any j ∈ N. Thus the

corresponding vertices have to be in the same connected component as s.

Hence, in the general case, the number of elements in 〈s〉 is restricted by n, and

is restricted by the number of elements in the connected component if the cycle is

a loop. Rearranging 2l + 1 ≤ n, respectively 2l + 1 ≤ k, yields the bounds from

the lemma. �

The graph corresponding to the diagonal of a monogenic semigroup 〈a〉 with

index n and period 1 is connected and has a loop as cycle. The path starting at

a and ending at the root of the tree connected to the loop has length dlog2(n)e
which equals 1 + blog2(n − 1)c for n ≥ 2. This shows that the bounds given in

Lemma 3.2.4 are tight. The semigroup 〈a〉 is n-nilpotent according to Lemma 2.1.5.

With the previous result many diagonals are identified not to appear in any table

defining an associative multiplication. It can be improved further in the restricted



60 Diagonals

situation of tables defining nilpotent semigroups with specified nilpotency rank.

To see this, a necessary condition for a diagonal to appear in the multiplication

table of a nilpotent semigroup is established. It restricts the height of a rooted

tree, that is the maximal length of any path, in the graph corresponding to the

diagonal.

Lemma 3.2.5 Let S be a nilpotent semigroup of rank r. Then the graph Γ cor-

responding to the diagonal of the multiplication table is connected and its cycle is

a loop. Moreover, the length of a path in the rooted tree connected to the loop is

bounded by dlog2(r)e.

Proof: Let z denote the zero element in S and let n = |S|. If s ∈ S then sk = z

for all k ≥ r, in particular for k = 2n. Thus the vertices labelled s and z lie in the

same component of Γ. Since s was arbitrary, it follows that Γ is connected and

has a loop formed by the edge (z, z).

Let l be the length of a path in the tree rooted at z. Then there exists an s ∈ S
with s2l−1 6= z. It follows that 2l−1 < r. Reformulating yields h ≤ dlog2(r)e. �

Diagonals for which the corresponding graph has one connected component do

not only occur in the case of nilpotent semigroups. The smallest example is given

by the cyclic group with two elements, which has a constant function as diagonal.4

Then again, not every semigroup with one idempotent yields a graph with only

one component. A result on how the partitioning into components of the graph

influences the structure of the semigroup is given in the following. Remember that

the set of idempotent elements in a semigroup S is denoted by E(S), and K(e)

denotes the set {s | si = e for some i ∈ N} for e ∈ E(S).

Lemma 3.2.6 Let S be a finite semigroup. Then the partition of S defined by the

connected components of the graph Γ of the diagonal of the multiplication table is

a refinement of {K(e) | e ∈ E(S)}. The two partitions are equal if and only if the

cycle of each connected component in Γ is a loop.

Proof: Let e be an idempotent and s ∈ K(e) be an element with sk = e for some

k ∈ N. If t ∈ S labels a vertex in the same connected component of Γ as s, then

4Indeed, every finite 2-group – that is, a group in which the order of every element is a power
of 2 – leads to a graph with one component, since repeated squaring eventually yields the identity
element of the group.



3.2 Analysing Diagonals 61

there exist i, j ∈ N such that s2i
= t2

j
. Hence tk2

j
= sk2

i
= e2

i
= e, which shows

t ∈ K(e). That idempotents correspond to vertices with a loop completes the

proof. �

If the digraph corresponding to a diagonal contains not only loops as cycles

and there is more than one idempotent, then it is not possible to deduce from

the graph in which way {K(e) | e ∈ E(S)} was refined in the previous lemma.

Although, the fact that elements in cycles have to belong to some set K(e) can be

exploited, as the next result demonstrates.

Lemma 3.2.7 Let S be a finite semigroup and Γ the graph corresponding to the

diagonal of the multiplication table of S. Then elements of S labelling vertices in

the same cycle of Γ lie in a common subgroup of S. If the length of the cycle is c,

then the order of the group elements divides 2c − 1, but does not divide 2k − 1 for

any k < c.

Proof: Let s be a vertex in a cycle of length c. Consider the monogenic semigroup

generated by s. It is a group, since s = s2c
shows that the index of 〈s〉 is 1. From

this equation it follows as well that the order of s has to divide 2c − 1. On the

other hand, it cannot divide 2k − 1 for any k < c, as otherwise the cycle would

have length at most k. �

Due to the result in the previous lemma something can be said about the

Green’s structure of the semigroup if the graph of its diagonal has a cycle, which

is not a loop. Each subgroup of a semigroup is an H-class (see [How95, Theorem

2.2.5]).

Lemma 3.2.7 allows one to identify further diagonals that do not appear in

the multiplication table of a semigroup. For cycles of small size Table 3.4 lists

possible orders of the group elements. The order of any element must obviously

not be greater than the size of the whole semigroup. Moreover, a cyclic group of

given order yields a specific graph, which then has to be a subgraph of the graph

corresponding to the diagonal. The graph of C7, for example, consists of one loop

and two cycles of length three. Thus if the graph of a diagonal contains one cycle

of length 3 it contains in fact at least two.

The restrictions on the height of rooted trees and on possible combinations of

cycles strongly suggest that most diagonals cannot appear in the multiplication



62 Diagonals

Table 3.4 Possible orders of elements labelling vertices in a cycle

length of cycle orders of elements in cycle

1 1
2 3
3 7
4 5, 15
5 31
6 9, 21, 63
7 127
8 17, 51, 85, 255
9 511

table of a semigroup. This is supported by the empirical evidence in Table 3.3 and

the enumeration of rooted trees by height [Rio60].

Question 3.2.8 Are asymptotically all diagonals excluded from appearing in the

multiplication table of a semigroup?

Even though there exist results on the asymptotic behaviour of digraphs rep-

resenting functions [Mut88], a proof to answer Question 3.2.8 in the positive does

not seem straightforward.

3.2.2 Allowed diagonals

This subsection is about diagonals that appear in the multiplication table of a

semigroup. They will often be referred to as allowed diagonals.

The construction of 3-nilpotent semigroups in the previous chapter was such

that the products of generators can equal any non-generator. This holds in partic-

ular for squares of generators. Hence, any diagonal which fulfils the condition in

Lemma 3.2.5 for nilpotency rank 3 does appear in a semigroup. In a similar way

the diagonals from monogenic semigroups can be obtained constructively. The n

non-equivalent, monogenic semigroups of size n are, for example, generated by the

transformations (
1 2 3 · · · n+ 1

i 1 2 · · · n

)
with 1 ≤ i ≤ n.

Here i is the period of the semigroup.



3.2 Analysing Diagonals 63

In every semigroup each element generates a monogenic subsemigroup. The

diagonal of a finite semigroup S can thus be considered as the union of the diagonals

of the monogenic subsemigroups of S. Consider for example the semigroup defined

by the multiplication table in Figure 3.2. For three of its monogenic subsemigroups

containing together all elements in the semigroup the digraphs corresponding to

the respective diagonals of their multiplication tables are drawn in Figure 3.4.

They merge to the graph corresponding to the diagonal of the whole semigroup.

•3

��

�
�
�
�
�
�
�
�
� •1 ]]

�
�
�
�
�
�
�
�
� • 1]] • 9

��

•3

��

• 9

��•2

��

•7

��

• 8

��

−→ •2

��

•7

��

• 8

��•1 ]] •4

��

•
4

��

• 6oo •1 ]] •4

��

• 6oo

•5

DD

• 5

DD

•5

DD

Figure 3.4 Assembling the diagonal (1, 1, 2, 5, 4, 4, 4, 6, 8) of the semigroup from
Figure 3.2 using its monogenic subsemigroups

Assembling graphs of monogenic semigroups in arbitrary ways does not always

lead to the diagonal of a semigroup. Merging, for example, the first and the third

graph in Figure 3.4 yields the graph corresponding to a diagonal that does not

appear in any multiplication table of a semigroup with 8 elements.

Methods to construct semigroups from smaller semigroups shall be used to

deduce how to assemble graphs corresponding to diagonals of semigroups into

larger diagonals appearing in a semigroup.

Lemma 3.2.9 Let S and T be semigroups on disjoint sets with graphs Γ and ∆

corresponding to their diagonals. Then Γ ∪ ∆ is the graph of the diagonal of a

semigroup.

Proof: Define a multiplication on the union of the elements in S and T as fol-

lows. Products of elements, both in one of S or T are evaluated in the respective

semigroup. For s ∈ S and t ∈ T define st = ts = s. This yields an associative

multiplication as in every product with at least one factor in S, factors from T are

ignored. The diagonal of the multiplication table equals Γ ∪∆. �



64 Diagonals

The previous result deals with the simplest case of disjoint graphs. The sit-

uation becomes more complicated if graphs of allowed diagonals merge to give

another allowed diagonal, as shown in Figure 3.4. In the following result one of

the graphs involved has to arise from a semigroup containing a zero element.

Lemma 3.2.10 Let S and T be semigroups such that S ∩ T = {e}, where e is an

idempotent in S and a zero element in T . If Γ and ∆ denote the graphs correspond-

ing to the diagonals of the multiplication tables of S and T respectively, then there

exists a semigroup with Γ ∪ ∆ corresponding to the diagonal of its multiplication

table.

Proof: Define a multiplication on the union of the elements in S and T as fol-

lows. Products of elements, both in either S or T are evaluated in the respective

semigroup. For s ∈ S and t ∈ T define st = se and ts = es, evaluated in S.

Note that the multiplication is well-defined as the only element S and T have in

common is an idempotent in both semigroups and a zero element in T . The mul-

tiplication is associative, essentially because in every mixed product factors from

T are replaced by the same element from S. Moreover, if s ∈ S and t1, t2 ∈ T

then s(t1t2) = (se)e = (st1)t2, in which case it is needed that e is an idempotent

element. The semigroup constructed in this way has Γ ∪∆ corresponding to the

diagonal of its multiplication table. �

In the next two results, allowed graphs are enlarged by adjoining one or two

new elements to a semigroup. While this can still be seen as taking the union of

graphs belonging to smaller semigroups, it will be presented in a different way.

Lemma 3.2.11 Let S be a finite semigroup and Γ the graph corresponding to the

diagonal of its multiplication table. For a vertex v ∈ Γ construct Γv,I by adding a

new vertex to Γ and an edge from the new vertex to v. If v is the end vertex of an

edge in Γ then Γv,I is a graph corresponding to the diagonal of a semigroup.

Proof: Let t ∈ S such that t2 = v and denote by x an element not in S. Ex-

tend the multiplication of S to S ∪ {x} by defining xs = ts and sx = st for all

s ∈ S, and x2 = t2. As every appearance of x in a product is substituted by t, the

multiplication defined on S ∪ {x} is associative. The graph corresponding to the



3.2 Analysing Diagonals 65

•

��@
@@

@@
@@

@ •

��

•

��@
@@

@@
@@

@ •

��

%% %%◦

��~
~

~
~ •

��@
@@

@@
@@

@ •

��

•

��~~
~~

~~
~~

•

��

−→ •

��

−→ •

��•"" •"" •""

Figure 3.5 Replication of one edge in a digraph

diagonal of the new semigroup is Γv,I. �

The construction in the previous lemma is illustrated in Figure 3.5.

Lemma 3.2.12 Let S be a finite semigroup and Γ the graph corresponding to the

diagonal of its multiplication table. For a vertex v ∈ Γ construct Γv,II by adding

two new vertices to Γ, an edge from one to the other and an edge from the end

vertex of the new edge to v. If v is the end vertex of an edge for which the start

vertex is itself the end vertex of an edge in Γ then Γv,II is a graph corresponding

to the diagonal of a semigroup.

Proof: Let s ∈ S such that s4 = v and denote with x, y two elements not in S.

Extend the multiplication of S to S ∪ {x, y} by defining x2 = y and substituting

in any other product s for x and s2 for y. When products with three elements

are evaluated all appearances of x and y will eventually be substituted and the

substitution complies with the equality x2 = y. Hence the multiplication is as-

sociative. As x2 = y and y2 = v the graph corresponding to the diagonal is Γv,II. �

The last result means that replicating a walk of length two in the graph of an

allowed diagonal yields a new allowed diagonal. The process might involve parts

of a cycle, as the example in Figure 3.6 illustrates.

•"" • %% ## ##•ee ;; ;;◦oo_ _ _ ◦oo_ _ _ −→ •"" • %%•ee •oo •oo

Figure 3.6 Replication of two edges in a digraph

Starting with the diagonals from monogenic semigroups and using the results

in this section one can build a set of allowed diagonals for any order. To use

Lemma 3.2.10 note that a monogenic semigroup with zero element is nilpotent

due to Lemma 2.1.1. According to Lemma 2.1.5 there is one such semigroup of



66 Diagonals

every order, characterised by the fact that its period is 1. A nilpotent, monogenic

semigroup of order n is, for example, generated by the transformation(
1 2 3 · · · n+ 1

1 1 2 · · · n

)
.

Building allowed diagonals in this way yields, in fact, all diagonals that appear

in a semigroup for orders up to 8. For order 9 all but two allowed diagonals are

constructed by this process. The graphs in Figure 3.7 illustrate the two diagonals

missed. One of them consists of one loop and four cycles of length 2. According

to Lemma 3.2.7 a semigroup with this diagonal must be a group. Extending the

process by adding all diagonals which appear in groups would take care of this

and similar diagonals – assuming that the groups of the given order, or at least

their diagonals, are known. Still, the diagonal featured in Figure 3.4 would not

show up. It seems like there is no general rule that would allow one to construct

the semigroup with this diagonal (see Figure 3.2) from a smaller semigroup. It is

conceivable that there are more exceptions for higher orders. At least for order 10

though (the highest order which was examined) there is no new exception. That

is, when starting with all allowed diagonals of orders 1 to 9 and the diagonals of

monogenic semigroups of order 10, the construction rules from this section yield

all allowed diagonals of order 10.

•

��

•

��•

��

•

��

•

��

•

��

•

��

•

��

•

��•]] • //•

��

•]] •

DD

•

DD

•

DD

•

DD

•

DD

Figure 3.7 The two graphs corresponding to diagonals of semigroups of order 9
not found with the described construction

All new semigroups constructed from smaller ones using the results in this

subsection are commutative, if one starts with monogenic semigroups. Indeed, up

to order 10 the experimental results in Table 3.3 showed that all allowed diagonals

appear in commutative semigroups.



3.2 Analysing Diagonals 67

Question 3.2.13 Does each allowed diagonal appear in a commutative semi-

group?

If the answer to this question was ‘no’, it would be a fundamental problem

for the presented process of finding allowed diagonals. A ‘yes’ as answer to the

following question would have a similarly negative effect.

Question 3.2.14 Can a connected component, which has a loop as cycle and does

not correspond to an allowed diagonal itself, appear in the graph of an allowed

diagonal?

While on the face Questions 3.2.13 and 3.2.14 look rather different, they are

in fact closely connected. In an allowed diagonal that appears in a commutative

semigroup, elements, labelling the vertices in a connected component having a

loop, form a subsemigroup. This is shown by the following lemma.

Lemma 3.2.15 Let S be a commutative semigroup and let e ∈ E(S). Further

let x, y ∈ S be elements in the connected component containing e of the graph

corresponding to the diagonal of S. Then z = xy = yx is in the same connected

component.

Proof: Take m ∈ N such that x2m
= y2m

= e. Then z2m
= x2m

y2m
= e2 = e. �

Note that answering Question 3.2.14 in the negative would as well give a very

useful criterion to exclude diagonals as discussed in the previous subsection.

The reader might expect that criteria from the last two subsections, deciding

whether a diagonal appears in the multiplication table of a semigroup, play a role

in the computer search for semigroups. It will turn out that this is not the case,

at least not for the methods presented in the forthcoming chapters. Observations

for the diagonals that appear in the multiplication table of a monoid had been

utilised in [DK08], though the approach has already been superseded [DK09].



68 Diagonals



4 Semigroups of Order at most 8

Prior to this work the number of non-equivalent semigroups was known up to

order 8. Forsythe introduced computer search to the enumeration of semigroups

when he programmed SWAC to count the 126 distinct semigroups with 4 ele-

ments [For55].1 To obtain the results for subsequent orders, various authors im-

plemented specialised programs [MS55, Ple67, JW77, SYT94].

In this chapter the known results are reproduced using a new approach in the

enumeration of algebraic objects utilising constraint satisfaction (an area in com-

puter science concerned with combinatorial problem solving). This allows one to

use highly developed existing software instead of implementing a specialised pro-

gram. The new approach, including a realisation of it, is introduced and explained

in detail in the first section of this chapter.

The main reason for the reproduction of the enumeration results was to obtain

the semigroups of order at most 8 and to use them for the creation of an elec-

tronic data library. The library contains the semigroups as well as information

about them and is available as GAP [GAP08] package Smallsemi [DM10]. The

construction of Smallsemi is subject of Section 4.2.

4.1 Enumeration Using Constraint Satisfaction

Constraint satisfaction is an area in artificial intelligence concerned with modelling

and solving a wide range of combinatorial problems. Standard examples of prob-

lems are scheduling and planning. While formulations and theoretical research

follow a strict mathematical definition, the practical side of constraints satisfac-

tion combines search strategies with propagation, largely using heuristic methods.

The aim is to provide convenient tools – so called solvers – suitable for many dif-

1Tamura had already determined the semigroups of order 4 by hand calculations [Tam54].



70 Semigroups of Order at most 8

ferent applications. To get information about research in constraint satisfaction,

the reader might want to start with [RvBW06].

This section contains information on a basic approach to the computational

enumeration of semigroups up to equivalence utilising constraint satisfaction.

Known enumeration results from [SYT94] are reproduced. Basic definitions from

constraint satisfaction are provided.

Definition 4.1.1 A constraint satisfaction problem (CSP) is a triple (V,D,C),

consisting of a finite set V of variables, a finite set D, called the domain, of values,

and a set C containing subsets of DV (that is, all functions from V to D) called

constraints.

Definition 4.1.1 gives a rigorous description of a CSP that is not very useful in

practice. Most important, instead of being subsets of DV , constraints are formu-

lated as conditions uniquely defining such subsets. While this is not an important

distinction for the theory of constraint programming, it is when a CSP is used to

actually solve a specific problem.

Intuitively it is clear that one is looking for assignments of values in the domain

of a CSP to all variables such that no constraint is violated. This is formalised in

the next definition.

Definition 4.1.2 Let L = (V,D,C) be a CSP. A partial function f : V → D is

an instantiation. An instantiation f satisfies a constraint, if there exists a function

F in the constraint, such that F (x) = f(x) for all x ∈ V on which f is defined.

An instantiation is valid, if it satisfies all the constraints in C. An instantiation

defined on all variables is a total instantiation. A valid, total instantiation is a

solution to L. The number of all solutions of L will be denoted by |L|.

The rest of this section is divided into five parts explaining step by step how

semigroups are enumerated using a CSP. First, the problem is formulated as a

CSP. This is done for the enumeration of all different semigroups on [n] in the

forthcoming subsection. To count the number of structurally different semigroups

on n elements, the initial CSP is extended in Subsection 4.1.2 using a well-known

technique to eliminate symmetries in CSPs. This concludes the theoretical con-

siderations. In Subsection 4.1.3 the CSP is translated into input for a constraint

solver – software that is designed to return solutions to a CSP. This step is the



4.1 Enumeration Using Constraint Satisfaction 71

closest to programming in the described approach. The choices made for the input

can drastically influence the time a solver takes to return the solutions. Changes

to constraints that do not change the solutions of the CSP are discussed in Sub-

section 4.1.4. Finally, the results from solving the input to reproduce the known

enumeration of semigroups are presented in the last subsection.

4.1.1 Formulation of the basic CSP

As a first example for the usage of constraint satisfaction in the enumeration of

semigroups, all the different semigroups on the set [n] shall be determined. Solving

a problem using constraint satisfaction involves several steps. It starts with the

formulation of the problem as a CSP.

CSP 4.1.3 For n ∈ N define a CSP Ln = (Vn, Dn, Cn). The set Vn consists of n2

variables {Ti,j | 1 ≤ i, j ≤ n}, one for each position in an (n × n)-multiplication

table, having domain Dn = [n]. The constraints in Cn are

TTi,j ,k = Ti,Tj,k
for all i, j, k ∈ [n], (4.1)

reflecting associativity. (Note that (4.1) is a slight misuse of notation. Using a

variable as index shall refer to its value.)

It is straightforward to verify that the multiplication table defined by a so-

lution of Ln from CSP 4.1.3 will be associative, and that, in turn, the table of

every associative multiplication fulfils the constraints in Cn. Thus the valid full

assignments for Ln correspond to the semigroups on [n]. As the constraints Cn

enforcing associativity will be present in every following model, the solutions will

always define semigroups and are often referred to as such.

The number of all different semigroups on [n] grows rapidly with n and most

of the semigroups are 3-nilpotent [KRS76]. As it is known how to construct the

3-nilpotent semigroups on [n] (see Section 2.3), they do not have to be searched

for. Adding the constraint

∃i, j, k, r, s, t ∈ [n] : Ti,Tj,k
6= Tr,Ts,t (4.2)

to Cn yields the CSP L−3
n , having all different semigroups on [n] as solutions which

are neither 3-nilpotent nor a zero semigroup.



72 Semigroups of Order at most 8

4.1.2 Breaking symmetries

Recall that the actual aim is not to find all semigroups on [n], but to find one

semigroup of every equivalence class under the action of Sn × C2, that is, under

isomorphism and anti-isomorphism. It is very common that modelling a problem

as a CSP introduces symmetries. Here this happens because of the representation

of semigroups by their multiplication table. For this purpose identifiers, 1 up to n,

were introduced for the n elements that are initially indistinguishable. Moreover,

the model fixes the direction to read the multiplication off the table.

Starting from the solutions of Ln one can identify equivalent ones in a post-

process and thus obtain semigroups of order n up to equivalence. Due to the large

number of semigroups on [n] this is impractical. If one is interested in the semi-

groups up to equivalence, it will be far more efficient to extend Ln with constraints

which ensure that only one semigroup per equivalence class is a solution. The so

called ‘lex-leader’ approach is a well-known technique for this purpose [CGLR96].

Some preparation is needed before it is explained.

Definition 4.1.4 Let L = (V,D,C) be a CSP.

(i) Elements in the set V × D are called literals. Literals are denoted in the

form (x = k) with x ∈ V and k ∈ D.

(ii) Let χ denote the set of all literals of L. A permutation π ∈ Sχ is a symmetry

of L if, under the induced action on subsets of χ, instantiations are mapped

to instantiations and solutions to solutions.

(iii) A variable-value symmetry is a symmetry π ∈ Sχ such that there exists an

element (τ, δ) in SV × SD with (x = k)π = (xτ = kδ) for all (x = k) ∈ χ.

The given definition of symmetry of a CSP is relatively strong. On the other

hand, only symmetries of Ln induced by the action of Sn × C2 on multiplication

tables are of interest here. All these symmetries are variable-value symmetries and

any variable-value symmetry will always send instantiations to instantiations. Note

that indeed every element in Sn × C2 induces a symmetry as every solution of Ln

– that is, any associative multiplication table – is mapped to a solution. For more

information on symmetries in CSPs, including different definitions see [RvBW06,

Chapter 10].



4.1 Enumeration Using Constraint Satisfaction 73

The symmetries of a CSP L = (V,D,C) form a group G. Two solutions of L

are symmetric, if they are G-equivalent under the induced action of G on subsets

of the literals. The idea of lex-leader is to order solutions by defining an order

on the literals of the CSP. This allows one to define the canonical representative

in each orbit of symmetric solutions of L to be the solution which is smallest (or

largest) with respect to the order. To define an order on solutions of L, first fix an

ordering (χ1, χ2, . . . , χ|V ||D|) of the literals χ = V ×D. Given the fixed ordering of

the literals, an instantiation can be represented as a bit vector of length |V ||D|.
The bit in the i-th position is 1 if χi is contained in the instantiation and otherwise

the bit is 0. The bit vector for the instantiation I ⊆ χ corresponding to the ordering

of the literals (χ1, χ2, . . . , χ|V ||D|) will be denoted by (χ1, χ2, . . . , χ|V ||D|)|I . Of all

bit vectors corresponding to the elements in an orbit of symmetric solutions in

L, one is the lexicographic maximal, which shall be the property identifying the

canonical solution. If ≥lex denotes the standard lexicographic order on vectors,

extend L by adding, for all π ∈ G, the constraint

(χ1, χ2, . . . , χ|V ||D|)|I ≥lex (χπ1 , χ
π
2 , . . . , χ

π
|V ||D|)|I . (4.3)

Then, from each set of symmetric solutions in L, exactly those with lexicographic

greatest bit vector are solutions of the extended CSP.

The lex-leader method works as well for subgroups of the symmetries of a

CSP. In the case of Ln (respectively L−3
n ) the solutions form orbits under Sn×C2.

Adding Constraint (4.3) for each element in Sn × C2 gives a new CSP, which has

as solutions one semigroup from every equivalence class and is denoted by Ln

(respectively L
−3

n ).

4.1.3 Instances from Ln and Ln

After modelling a problem as a CSP it has to be translated into input for a con-

straint solver. The availability of types of values for variables and, in particular, of

constraints varies from program to program. The solver used in the work presented

here is Minion [GJM06]. An input file for a solver will be referred to as instance.

Regarding the needs to input the CSP Ln into Minion, matrices exist as variable

types (in the form of an array of arrays) and an interval of integers is a possible



74 Semigroups of Order at most 8

domain.2 On the other hand, associativity is not a common constraint in con-

straint satisfaction and hence not directly supported. This shortcoming can be

circumvented by introducing one auxiliary variable (a variable which is not part of

the formulation of the problem) for each equation TTi,j ,k = Ti,Tj,k
from (4.1). Using

two separate constraints, the auxiliary variable is then required to equal both the

left and the right hand side of the equation.

To create the lex-leader constraints in Ln more auxiliary variables are needed.

One Boolean variable for each literal in Ln is introduced. The Boolean variable

corresponding to the literal (Ti,j = k) for i, j, k ∈ [n] is ‘true’ if Ti,j has value k

and it is ‘false’ if Ti,j has another value.

When creating the input, certain choices are made that can influence the effi-

ciency of the search drastically. The choices made for Ln and Ln are described in

the following.

Variable order Using the adaptation by Satoh et al. of Plemmons’ idea, the

chosen search order for the variables in Ln puts the diagonal positions first

and proceeds row by row with the remaining positions. That is, the search

order is given by the tuple

(T1,1, T2,2, . . . , Tn,n, T1,2, . . . , T1,n, T2,1, T2,3, . . . , T2,n, . . . , Tn,1, . . . , Tn,n−1).

(4.4)

Value order The value order is chosen to be ascending for each variable in Ln.

Literal order This is only relevant for Ln. For best performance of the lex-leader

constraints the ordering of the literals must be in line with the search order

for variables and values.

Different implementations For some constraints different implementations are

provided. Which implementation is more efficient relies on the rest of the

problem. This is relevant in the case of the lexicographic comparison of

vectors used for the lex-leader constraints, which has three different imple-

mentations in Minion.

2Note that it is standard in computer science to start counting with 0. Hence, the set [n] will
be represented in Minion by {0, 1, . . . , n−1}. As this is a minor technical detail it will be mostly
ignored for further considerations.



4.1 Enumeration Using Constraint Satisfaction 75

Different constraints Some conditions can be expressed using various con-

straints. This is important for the constraint in (4.2) to forbid 3-nilpotent

solutions. The constraint says, there have to exist two of the auxiliary vari-

ables, introduced to require associativity, with different values. This is guar-

anteed by adding n constraints, one for each possible value 1 ≤ i ≤ n,

forbidding the vector of all auxiliary variables to equal the constant vector

of length n3 with value i. The same effect could be achieved using an occur-

rence constraint, which restricts the occurrence of a certain value in a vector

to a fixed number. Restricting the number of occurrences of each value i to

n3 − 1 would prevent the vector from being constant.

Having the order of the literals determined by the search order means that the

n3 literals appear in n2 blocks of the form ((Ti,j = 1), (Ti,j = 2), . . . , (Ti,j = n)) for

1 ≤ i, j ≤ n in the ordering. With the chosen ordering the solution tables will be

minimal in their orbit. It is easy to see that the maximal bit vector corresponding

to the literals arises from the table minimal in its equivalence class. If T and U are

two tables with T < U and (i, j) is the first position (with respect to the search

order) in which they differ, then Ti,j < Ui,j. Hence, in the bit vectors for T and U

the 1 in the block corresponding to position (i, j) appears earlier for T than for U .

4.1.4 Optimising constraints

Any vector that appears in one of the lex-leader constraints (4.3) maintains the

block structure in the ordering of the literals discussed at the end of the previous

subsection. The structure is preserved since all symmetries are variable-value

symmetries and hence the images of literals containing the same variable will still

contain the same variable. In any total instantiation one of the Boolean variables

corresponding to {(Ti,j = 1), (Ti,j = 2), . . . , (Ti,j = n)} will be ‘true’ and the other

n − 1 will be ‘false’. Thus the value of the least significant literal in every block

never decides about the lexicographic order of the vectors in (4.3) and can therefore

be removed. There is a simple, general rule to reduce the length of a lex-leader

constraint.

Remark 4.1.5 Consider the constraint

(χ1, χ2, . . . , χm)|I ≥lex (χ′1, χ
′
2, . . . , χ

′
m)|I . (4.5)



76 Semigroups of Order at most 8

If for every instantiation I with (χ1, . . . , χk−1)|I = (χ′1, . . . , χ
′
k−1)|I the equality

(χk)|I = (χ′k)|I holds, then (4.5) may be replaced by

(χ1, . . . , χk−1, χk+1, . . . , χm)|I ≥lex (χ′1, . . . , χ
′
k−1, χ

′
k+1, . . . , χ

′
m)|I .

The easiest example for an application of Remark 4.1.5 occurs for a symmetry π

which fixes some literal. If χi = χπi , then no decision on the lexicographic order is

made in bit i. The next step is to look at a cycle of length two in π. If χi = χπj and

χj = χπi with i < j then the j-th position is not significant for the lexicographic

comparison. Either the lexicographic ordering is decided before the j-th position

or otherwise χi = χπi and hence χj = χπi = χi = χπj . This example given for

a transposition in π generalises to cycles of arbitrary length. The literal of a

cycle corresponding to the least significant bit will never decide which vector is

lexicographically greater.

In general, methods that reduce the number and length of lex-leader constraints

without changing the set of solutions tend to be costly or are not likely to give

an essential reduction. In fact, there are problem classes where an exponential

number of lex-leader constraints is required [LR04].

The idea of changing constraints without changing the solutions shows up in

two ways. A constraint in a CSP is redundant if removing it does not change the

set of solutions. A constraint is implied in a CSP if it is not part of the CSP, but

adding it does not change the set of solutions. Obviously, the distinction between

redundant and implied constraints is somewhat artificial, and is indeed not used

consistently in the literature. In practice, a redundant constraint will be one that

the CSP does not benefit from for the purpose of solving it. Hence removing the

constraint is an improvement to the model. On the other hand, adding an implied

constraint aims to make solving the CSP easier.

Redundant and implied constraints will become more important for CSPs in-

troduced later. Here only one implied constraint for Ln is mentioned. Every

finite semigroup has an idempotent (see Remark 1.2.3), which yields the implied

constraint

∃i : Ti,i = i. (4.6)

This is a very simple example demonstrating how an implied constraint rises from

mathematical knowledge rather than being deduced directly from the constraints



4.1 Enumeration Using Constraint Satisfaction 77

already present.

Of particular interest is the interaction of the constraint in (4.6) with the lex-

leader constraints from (4.3) in Ln. The first literal in the ordering is (T1,1 = 1).

Under the permutation (1 i) the first literal becomes (Ti,i = i). Thus, since for

some 1 ≤ i ≤ n the equality Ti,i = i holds, T1,1 = 1 must hold in every canonical

solution. Hence (4.6) can be replaced by T1,1 = 1. Even though the latter rules

out many instantiations as solutions – implicitly identifying them as not canonical

– it does not avoid posting all 2n! lex-leader constraints. If Ti,i = i holds for all

1 ≤ i ≤ n, as it does for bands, all images of a solution table satisfy T1,1 = 1. An

important point to note is that many elements in Sn×C2 are no longer symmetries

of the CSP, if one adds T1,1 = 1 as constraint. The group of symmetries was used

to introduce the lex-leader method, but the aim of adding the constraints (4.3) to

the CSP Ln is to get one solution from every equivalence class under the action of

Sn × C2. That the latter is not a subgroup of the symmetries any more does not

matter: what is important is that each canonical solution fulfils the new constraint

and hence stays a solution.

The fact that T1,1 = 1 holds, influences as well constraint (4.2) in L
−3

n to

eliminate nilpotent semigroups of rank at most 3 from the solution set. As 1 is

an idempotent, it is the only candidate for the zero in a nilpotent semigroup.

It therefore suffices to forbid the vector of auxiliary variables, representing all

products of length three, to equal the constant vector with value 1; or to require

that 1 occurs at most n3 − 1 times in that vector. This allows as well a third

formulation of (4.2). Requiring the sum of the vector containing the auxiliary

variables to equal at least n3 + 1, prevents it from being a constant vector with 1

as entry. Since this formulation involves summation of the entries of the vector, it

tends to be less efficient that the realisations described in Subsection 4.1.3 and is

not used.

4.1.5 Computations for Ln and Ln

The input for Minion was produced using an interface from GAP written by Linton,

which is available on the attached DVD in the file minion.g (see Appendix C).

The interface was used to create Minion instances for Ln and L−3
n with 1 ≤ n ≤ 7

as well as for Ln and L
−3

n with 1 ≤ n ≤ 8. The instances can also be found on the

DVD. If one is not familiar with the input language for Minion, it will be difficult



78 Semigroups of Order at most 8

Table 4.1 Enumeration of all different semigroups on [n]

n 1 2 3 4 5 6 7

Ln, solutions 1 8 113 3 492 183 732 17 061 118 7 743 056 064
–, solve time ε ε ε ε 4 s 334 s 73 563 s

L−3
n , solutions 0 6 104 3 308 172 007 13 971 862 1 798 975 985

–, solve time ε ε ε ε 3 s 392 s 115 311 s

The times are rounded to seconds. They were obtained using the 64-bit
executable of Minion version 0.9 on a machine with 2.66 GHz Intel X-5430
processor and 16 GB RAM. The symbol ε stands for a time less than 0.5 s.

to understand the instances. As an example of a CSP turned into input for Minion,

an annotated version of the instance for L
−3

2 is given in Figure 4.1.3 Be aware that

this instance and every instance on the DVD use an obsolete syntax. The current

version 0.9 of Minion accepts these instances as input, but describes a different

syntax in its documentation.

Solving the created instances yields the results in Table 4.1 and Table 4.2.

Timings were obtained from a single run, while the results were checked in a second

run. The numbers for |Ln| and |Ln| match the known numbers of semigroups. The

differences |Ln| − |L−3
n | and |Ln| − |L

−3

n | coincide with the numbers of semigroups

of nilpotency rank at most 3 (see Appendix A.1).

It might be surprising at first that the smaller problems L−3
n , not including

semigroups of nilpotency rank at most 3, are solved slower than Ln for the same n

according to the timings in Table 4.1. This makes more sense if one remembers

how constraint (4.2) is expressed in this case: the vector of all products of three

elements is considered. To verify that this vector is not constant, the whole table

has to be known. This shows an essential problem if knowledge about a certain

class of semigroups shall be used to simplify the CSP. A simplification, measured in

runtime, will only happen if semigroups are excluded using a constraint that prop-

agates well. Even though the constraint to exclude 3-nilpotent semigroups from

the solutions is essentially the same for the instances L
−3

n , it seems to propagate

better in combination with the lex-leader constraints.

Note that for Ln and L
−3

n for 1 ≤ n ≤ 7 the setup of the instance files using

GAP takes longer than solving the instance. Nevertheless, the computationally

3As mentioned before, {0, 1} is used instead of {1, 2} in Minion.



4.1 Enumeration Using Constraint Satisfaction 79

MINION 1
#autogenerated by GAP
# Find semigroups of order 2
### boolean variables
8 # 8 auxiliary variables, one for each literal
0
0
### integer variables; domain: range from 0 to 1
12 0 1 12 # 4 for table positions, 8 for associativity
0
### search orders
[x8,x9,x10,x11] # variable order
[a,a,a,a] # value order (a = ascending)
5 # 5 vectors
[x0,x2,x4,x6] # reduced vector of literals for lex-leader constraints
[x0,x4,x2,x6] # reduced vector of literals of transposed table
[x7,x3,x5,x1] # ... of table under transposition (0 1)
[x7,x5,x3,x1] # ... of transposed table under transposition (0 1)
### vector of auxiliary variables for associativity
[x12,x13,x14,x15,x16,x17,x18,x19]
1 # 1 matrix
[[x8,x9] # the multiplication table as matrix
,[x10,x11]]
0
objective none
print m0
### connect boolean variables to entries in MT
reify(eq(x8,0),x0) # entry in first position is 0
reify(eq(x8,1),x1) # entry in first position is 1
[...] # analogue for the remaining 3 positions in the table
### constraints enforcing associativity
watchelement([x8,x9],x8,x12) # auxiliary variable x12 equals 0.(0.0)
watchelement([x8,x10],x8,x12) # ... and as well (0.0).0
watchelement([x8,x9],x9,x13) # auxiliary variable x13 equals 0.(0.1)
watchelement([x9,x11],x8,x13) # ... and as well (0.0).1
[...] # analogue for the remaining 6 auxiliary variables
### lex-leader constraints
lexleq[quick](v1,v0) # transposed table is less or equal to solution
lexleq[quick](v2,v0) # image under (0 1) is less or equal to solution
lexleq[quick](v3,v0)
### there are at most 7 products of 3 elements equal to 0
occurrenceleq(v4,0,7)

Figure 4.1 Minion instance for L
−3

2



80 Semigroups of Order at most 8

Table 4.2 Enumeration of non-equivalent semigroups on [n]

n 1 2 3 4 5 6 7 8

Ln, solutions 1 4 18 126 1 160 15 973 836 021 1 843 120 128
–, setup time ε ε ε ε ε 3 s 90 s 5 457 s
–, solve time ε ε ε ε ε 2 s 89 s 552 071 s

L
−3

n , solutions 0 3 16 117 1 075 13 312 226 223 11 433 105
–, setup time ε ε ε ε ε 3 s 86 s 5 555 s
–, solve time ε ε ε ε ε 2 s 61 s 11 119 s

The times are rounded to seconds. They were obtained using the 64-bit
executable of Minion version 0.9 on a machine with 2.66 GHz Intel X-5430

processor and 16 GB RAM. The setup was done with GAP. The symbol ε stands
for a time less than 0.5 s.

difficult part, limiting this approach to n = 8, is finding the solutions of the CSP

with Minion. Improving the GAP times seemed therefore irrelevant. One simple

way of doing so, is not to apply Remark 4.1.5 to the lex-leader constraints (4.3),

which, on the downside, slightly increases the time and memory requirements for

the Minion computation. The setup time without lex-leader constraints, that is for

the CSPs Ln and L−3
n , is negligible.

4.2 A Data Library of Small Semigroups

Plemmons mentioned in [Ple67] that he stored all semigroups of order 6 on mag-

netic tape. It seems unlikely that many people other than himself had access to

the data. Jürgensen and Wick [JW77] state that they did not store the semigroups

of order 7 because of their large number, and the same is likely to be true for the

semigroups of order 8 found by Satoh et al. [SYT94].

One motivation in reproducing the known enumeration results for semigroups

was to actually obtain the semigroups of orders 1 to 8 up to equivalence and to use

them for the creation of an electronic database: Smallsemi [DM10] by Mitchell and

the author is an extension – a so called package – for the computer algebra system

GAP [GAP08]. The integration of the data library into GAP allows one to analyse

the semigroups in a convenient way and enables other mathematicians to access

them. An ancestor of Smallsemi is available for an earlier version of GAP [S+97]:

GLISSANDO [Nöb97] contains semigroups of orders 1 to 5 up to isomorphism and



4.2 A Data Library of Small Semigroups 81

near-rings of orders 2 to 15.4 The creation of Smallsemi was inspired by other data

libraries in GAP, in particular the SmallGroups library [BEO02].

To obtain the semigroups and not just their number using the approach intro-

duced in the previous sections of this chapter is uncomplicated. Depending on the

command line switch used to execute Minion the output is the number of solutions

or the solutions themselves. Problematic is the amount of data obtained in this

way. How the data was compressed to a reasonable size inside the library is ex-

plained in the first part of this section. In addition to the semigroups, information

about them was computed and included in the library. A list of the precomputed

properties is given in Subsection 4.2.2. The last subsection contains some hints

on possible usages of Smallsemi. A copy of Smallsemi is included on the attached

DVD (Appendix C).

4.2.1 The semigroups in the library

Orders 2 to 7

The semigroups of orders 2 to 7 are produced using the approach from Section 4.1.

For each n with 2 ≤ n ≤ 7 there is one file containing the data from all tables of

semigroups of order n. The data is arranged in the following way. Reading the

entries in a table row by row, each table T corresponds to the vector

(T1,1, T1,2, . . . , T1,n, T2,1, T2,2, . . . , T2,n, . . . , Tn,1, Tn,2, . . . , Tn,n)

of length n2. The entry T1,1 always equals 1 in any solution of Ln – because every

finite semigroup has an idempotent and solutions are minimal in their equivalence

class – and is therefore not stored. Subtracting 1 from each entry yields a vector

of length n2 − 1 with integer entries in the range 0 to n − 1. Since n ≤ 10,

the value of each such integer is a single digit. This makes separators between

digits superfluous. Finally the vectors corresponding to the tables are put into

the columns of a text file. Hence, one obtains a file with n2 − 1 lines, each line

containing one character from {0, 1, . . . , n− 1} for each semigroups of order n.

4While the semigroup library of GLISSANDO was discontinued, the near-rings were ported to
the GAP package SONATA [ABE+03].



82 Semigroups of Order at most 8

Example 4.2.1 Consider the four multiplication tables of semigroups of order 2:(
1 1

1 1

)
,

(
1 2

2 1

)
,

(
1 1

1 2

)
and

(
1 1

2 2

)
. (4.7)

They lead to the vectors (1, 1, 1, 1), (1, 2, 2, 1), (1, 1, 1, 2), and (1, 1, 2, 2). After

removing the first position from each and subtracting 1 from every entry one

obtains (0, 0, 0), (1, 1, 0), (0, 0, 1), and (0, 1, 1). Writing these vectors as columns in

a text file yields

0100

0101

0011

which is exactly the content of the data file in Smallsemi storing the semigroups of

order 2.

Note that the multiplication tables are sorted with respect to the ordering

of the table positions used in search. Remember that the search order put the

diagonal positions first and then the remaining positions row by row, as shown in

Equation (4.4). This is the order in which the tables are returned as output by

Minion.

The presented way of formatting the data allows fast recovery of the multiplica-

tion tables, but is not an efficient way of storing the information. Each file contains

only n different characters and a lot of repetition. On the other hand, arranging

the data in the way at hand yields a very effective compression of the text files

with standard tools. The size of the file for n = 7 is 48 · 836022 − 1 = 40 129 055

Bytes; essentially the number of lines times the number of semigroups. Compress-

ing the file with gzip [Deu96] reduces the disc space needed to roughly 619KB.

The original content of files compressed with gzip can be read into GAP without

decompressing them – if gzip is present.5 This approach keeps the recovery of

multiplication tables essentially as fast as for uncompressed data, while requiring

only a fraction of the disc space. At the same time no specialised method for

compression needed to be developed. Nevertheless, the factor of compression is

of the same order of magnitude as for the groups of orders 512 and 1536 in the

SmallGroups library.

5See [GAP08, 3.11]; this is done using a pipe.



4.2 A Data Library of Small Semigroups 83

Order 8

Together with the overhead produced by Minion – that is mostly spaces and line

breaks – to output 1 843 120 128 square matrices of dimension 8 would roughly need

250GB of disk space. In a first step to avoid this amount of data in a single file, the

3-nilpotent semigroups of order 8 are handled as a separate case. The remaining

semigroups of order 8, that are the solutions of L
−3

8 plus the zero semigroup, are

partitioned depending on their diagonal. This yields 343 files containing solutions,

each corresponding to a diagonal which is minimal in its equivalence class and

appears in the multiplication table of a semigroup. To store the data belonging to

one diagonal the same method as for semigroups of orders 2 to 7 is used, with the

only difference that all diagonal entries are omitted.

Storing the 3-nilpotent semigroups of order 8 is done in a different way. To start

with, not the whole tables are stored. Remember that each nilpotent semigroup

has a unique generating set (Corollary 2.1.3) and that the product of two elements

which are not both generators equals the zero element in a semigroup of nilpotency

rank 3. Hence, if m with 2 ≤ m ≤ 6 denotes the number of generators, it suffices

to store the m × m tables containing all products of two generators. Then for

a fixed m, the list of tables is partitioned further depending on the diagonal, as

done for all other semigroups of order 8. Moreover, not all the tables are actually

stored. The list of tables for a specific m and a fixed diagonal can be sorted into

ranges and from each range only its length and the first table are stored. The data

is collected in two separate files for each case. The first file contains the tables and

is created in the same way as for the other semigroups of order 8. The lengths of

the ranges are stored as a list in a second file.

To store all tables of 3-nilpotent semigroups of order 8 one would need more

than 100GB of disk space. The information actually kept uses up just under

1GB, and is compressed with gzip to roughly 11MB. In total, the data stored in

Smallsemi related to the 1 843 973 430 multiplication tables of semigroups of order

2 to 8 takes up just under 22MB.

4.2.2 Properties of the semigroups in the library

In addition to the semigroups themselves information about them is retained in the

library. Data about those properties is kept, for which the numbers of semigroups



84 Semigroups of Order at most 8

with these properties are listed in Table 4.3. Definitions of the properties are

given in Appendix B. For each property it is either stored which semigroups have

it or which do not. Smallsemi itself was used to identify the semigroups with

any of the properties. The identification of semigroups defining the multiplication

in a near-ring relied on the SONATA [ABE+03] package. As the only exception,

the self-dual semigroups were determined by adjusting the symmetry breaking

method used for Ln. Recall that a semigroup is self-dual if there exists an anti-

isomorphism mapping the semigroup to itself, that is, an anti-automorphism. For

a solution of the CSP Ln this translates to the condition that the set of literals

forming the solution is mapped to itself under an element g ∈ Sn × C2 with non-

trivial C2 component. This is the case if for one of the lex-leader constraints (4.3)

corresponding to an anti-isomorphism equality holds. Posting a constraint, that

for at least one of these constraints equality does hold, will ensure that solutions of

the modified CSP are all those solutions of Ln which lead to self-dual semigroups.

Table 4.3 Properties of semigroups up to order 8

property \ order 1 2 3 4 5 6 7 8

commutative 1 3 12 58 325 2 143 17 291 221 805
regular 1 3 9 42 206 1 352 10 168 91 073
completely regular 1 3 9 42 204 1 336 10 041 89 909
inverse 1 2 5 16 52 208 911 4 637
simple6 1 2 2 5 2 6 2 12
zero simple7 0 1 2 2 7 2 10 2
multiplication in a near-ring 1 3 5 21 9 40 14 648
self-dual 1 3 12 64 405 3 312 44 370 2 203 037
monoid 1 2 6 27 156 1 373 17 730 858 977

Definitions of the properties are given in Appendix B.

Some additional information is implicitly available due to the way the tables

are stored. For orders 2 to 7 the fact that the semigroups are sorted with respect

to the ordering in Equation (4.4), considering the diagonal positions first, made it

possible to store efficiently which semigroups have which diagonal. For semigroups

of order 8 the data is distributed on different files depending on the diagonal.

So, for every semigroup the diagonal is known before the multiplication table

6A classification of simple semigroups is known, see [How95, Theorem 3.3.1].
7A classification of zero simple semigroups is known, see [How95, Theorem 3.2.3].



4.2 A Data Library of Small Semigroups 85

of the semigroup is recovered. Hence, the semigroups with a certain number of

idempotents (equalling the number of fixed points of the diagonal) are quickly

accessible. This applies in particular to bands.

The data related to the properties in Table 4.3 is stored in such a way that

the semigroups with any combination of precomputed properties can be deduced

as well. This effectively means that many more properties are precomputed. For

example, a group is an inverse semigroup with one idempotent; a semilattice is a

commutative band; a finite Clifford semigroup is a finite semigroup that is com-

pletely regular and inverse, and so on.

The stored information is somewhat different from what appears in the pub-

lished work, in particular in the paper by Satoh et al. [SYT94]. In the latter, the

numbers of semigroups with different Green’s class structures are given. In Small-

semi it would not be enough to merely store the number, but the information would

have to be kept for each semigroup. While this is certainly possible, storing infor-

mation for every semigroup is comparable to the task of storing the semigroups

themselves. As a consequence such information is not kept for all semigroups in

the current version of Smallsemi. A partial exception is the number of elements

in a generating set of minimal size. This information is stored for semigroups of

order at most 7.

4.2.3 Usage

The functions available in Smallsemi are described in detail in its documentation,

where one can find as well examples of usage. The aim here is to give a rough idea

of the functionality and to show how the library might promote research.

An obvious point is that Smallsemi provides a rich set of examples of semigroups.

One can analyse all or some of these semigroups simply to understand them better,

possibly to come up with new conjectures or research questions. The analysis of

the available semigroups of nilpotency rank n− 1 and n− 2 helped the author to

get an intuition for those semigroups, which in the end led to their classification in

Section 2.1. One specific question that is related to the studies contained in this

thesis was mentioned as Question 3.2.13. Existing conjectures can be verified for

orders up to 8 – or a counter example might be available.

A limitation that one has to keep in mind is that it is unfeasible to do time

intensive computations for all semigroups in the library. Just to create all semi-



86 Semigroups of Order at most 8

groups as objects in GAP takes around a day on a modern machine. Performing a

very simple test might take the same time. To run more complicated computations

might not be possible for all semigroups in a reasonable time. In such a case it is

often useful that a number of properties are precomputed for the semigroups in the

library. If one is interested in semigroups with any combination of precomputed

properties, it is straightforward to access and test only those.

Another application is to search for minimal examples or to find additional

examples of semigroups with some property. One instance of a published result

which can now be verified with Smallsemi is given in [WWL81]. In this paper four

semigroups of order 7 are presented as minimal examples of self-dual semigroups in

which no anti-automorphism is an involution. Like all other semigroups of order

at most 8, these four types of semigroups can be identified in Smallsemi. Each

semigroup in the library has an ID consisting of two numbers. The first number is

the order of the semigroup and the second is its position in the list of all semigroups

of this order. The four semigroups from [WWL81] have – in order of appearance

– IDs (7, 646 970), (7, 5 693), (7, 674 348), and (7, 680 714).

The identification of a semigroup returns the ID together with an isomorphism

– or if no such exists an anti-isomorphism – to the equivalent semigroup in the

library. This allows one to make use of fast calculations of properties for semigroups

in the library and to transfer the information back to the original semigroup. While

this is usually not particularly helpful for one semigroup of such small order, it

becomes useful if one has a larger number of small semigroups and wants to identify

equivalent ones and analyse the types of semigroups.

Finally, the fact that the self-dual semigroups in the library have been iden-

tified also allows one to efficiently work with the semigroups up to isomorphism,

if needed. The result from Lemma 1.1.3 is used in the implementation providing

this functionality.



5 New Enumeration Results

In the previous chapter the approach to the enumeration of semigroups using

constraint satisfaction made it possible to reproduce known results easily. In this

chapter the approach is improved to obtain new results, in particular the number

of non-equivalent semigroups with 9 elements. Two ideas, linking to each other,

allow the crucial improvements. Firstly, the enumeration problem will no longer be

formulated as a single CSP, but instead as a family of CSPs. Secondly, additional

mathematical knowledge is used to add implied constraints to the CSPs.

In the first section the idea of a case split leading to independent CSPs is

explained on the example of having one CSP for each possible diagonal of the

multiplication table of a semigroup. The example arises from the idea introduced

by Plemmons [Ple67]. The chapter continues utilising the idea of a case split for

the enumeration of bands in the second chapter. Detailed structural information

about bands is employed. Non-equivalent bands up to order 10 are constructed.

Their number of order 9 is 618 111, and there are 7 033 090 of order 10. The

results up to that point are sufficient to report in the third section the number

of semigroups of order 9 up to equivalence to be 52 989 400 714 478. Some further

refinements follow, which aim in particular to reduce the space requirements of the

computations.

Section 5.4 contains results first published by the author and Kelsey in [DK09].

Another application of the methods from the first section led to the numbers

of monoids with at most 10 elements. For orders up to 8 they are included in

Smallsemi [DM10], see Table 4.3. Up to equivalence there are 1 844 075 697 monoids

of order 9 and 52 991 253 973 742 of order 10.

In Section 5.5 the automorphism groups of all semigroups of order at most 9

are determined using CSPs. Only the automorphism groups of semigroups up to

order 7 were known before [ABMN09]. This shows that constraint satisfaction can



88 New Enumeration Results

even be employed as a tool in the analysis of algebraic objects.

The chapter – and the thesis – close with an outlook on possible future appli-

cations of the presented techniques.

5.1 A Family of CSPs

The possibilities to enhance the CSP Ln are restricted simply by the fact that not

much can be said about the multiplication table of a semigroup in general without

knowing any of the entries. The original idea by Plemmons [Ple67] to make the

search for multiplication tables of semigroups more efficient, was to do separate

computations depending on the diagonal. To consider diagonal positions first in

the search, as done in the previous chapter, was the adaptation of this idea used

by Satoh et al. [SYT94]. To actually do separate computations more than one

CSP has to be formulated.

CSP 5.1.1 Given a function f : [n] → [n] (corresponding to the diagonal of a

multiplication table, see Chapter 3) define a CSP Lf = (Vn, Dn, Cf ) based on Ln

(CSP 4.1.3) by adding the constraints

Ti,i = f(i) for all i ∈ [n] (5.1)

to Cn to obtain Cf .

The solutions to Lf are all multiplication tables defining a semigroup where

the square of the element i is given by f(i). In other words, the entries on the

diagonal of the multiplication table are given. For a set F of functions from [n] to

[n] denote by LF the family of CSPs {Lf | f ∈ F}.
Let Fn denote the set of all functions from [n] to [n]. Then the CSPs in LFn

have together the same solutions as Ln. It was already mentioned in Chapter 3

that it suffices to consider a subset of all functions if one only wants one semigroup

of each equivalence class. As the split of one CSP into a whole family will occur

repeatedly in this chapter, which set of diagonals to use shall be answered in a

more general setting.

Lemma 5.1.2 Let L = {Lx | x ∈ X} be a family of CSPs with disjoint solution

sets, and let T be a superset of all solutions. Let φ : T × G → T , (T, g) 7→ T g be



5.1 A Family of CSPs 89

an action of a group G mapping solutions to solutions. Further let ψ : T → X be

a surjective function.

If, for all x ∈ X and for every solution T of Lx, T is a solution of Lψ(T ),

and if φψ is an induced action of G on X (that is, xg = ψ(T g) for x = ψ(T ) is

well-defined), then the following statements hold.

(i) Let Y ⊆ X contain at least one element of every orbit from X under the

induced action φψ. Then the solutions of {Ly | y ∈ Y } contain at least one

element from every orbit of solutions under the action of φ.

(ii) Let S ∈ Lx and T ∈ Ly. If x is not equivalent to y, then S is not equivalent

to T .

(iii) Let T ∈ Lx. Then the set of solutions of Lx equivalent to T is the orbit of T

under the stabiliser of x in G.

Proof: (i): Let T be a solution of one of the instances in L. By assumption T is a

solution of Lψ(T ) and there exists a y ∈ Y equivalent to ψ(T ), that is ψ(T )g = y

for some g ∈ G. As ψ(T )g = ψ(T g), it follows that T g is a solution of Ly = Lψ(T g).

(ii): To show the contraposition of the second statement let T be equivalent to

S. Thus T g = S for some g ∈ G. Note that x = ψ(S) and y = ψ(T ) as the solution

sets of different instances are disjoint. Hence, x = ψ(S) = ψ(T g) = ψ(T )g = yg,

showing that x is equivalent to y.

(iii): Let g ∈ G be arbitrary. Then T g is a solution of Lψ(T g). Since the CSPs in

L have disjoint solution sets, T g is a solution of Lx if and only if ψ(T g) = xg = x.

Hence T g is a solution of Lx if and only if g lies in the stabiliser of x in G. �

Choosing L = LFn , T = Ωn (the set of all multiplication tables on [n]),

G = Sn × C2, and ψ as the mapping sending multiplication tables to the function

corresponding to their diagonal, satisfies the conditions in Lemma 5.1.2. The in-

duced action of Sn ×C2 on diagonals, and hence on functions from [n] to [n], was

described in Section 3.1 together with an algorithm to obtain a set of diagonals

up to equivalence. If Fn denotes such a set of non-equivalent diagonals, respec-

tively functions, then each type of semigroup appears as solution of LFn
due to

Lemma 5.1.2(i). Moreover, different CSPs in LFn
have pairwise non-equivalent so-

lutions due to Lemma 5.1.2(ii). This allows one to search independently in different



90 New Enumeration Results

CSPs for non-equivalent solutions, and the solutions of LFn
= {Lf | f ∈ Fn} will

form a set of semigroups on [n] up to equivalence. The solutions of Lf form orbits

under the stabiliser of f in Sn × C2 according to Lemma 5.1.2(iii). Hence, adding

one lex-leader constraint (4.3) for every element in StabSn×C2(f) to Lf yields Lf

following the considerations in Section 4.1.2.

With n getting up to 9 or even 10, calculating the stabiliser in Sn × C2 of a

function f corresponding to a diagonal directly under the induced action, starts

to become an efficiency issue for setting up the input files. This can be avoided

by reformulating the action to a pointwise action on sets. Then sophisticated al-

gorithms, in particular partition backtrack [Leo91], are available performing the

stabiliser calculation far more efficiently. The reformulation was in principal al-

ready introduced when explaining lex-leader constraints in Subsection 4.1.2. Every

element g ∈ Sn × C2 induces a bijection of the literals of the CSP Lf . Take the

set of literals χf = {(Ti,i = f(i)) | 1 ≤ i ≤ n} corresponding to the fixed diagonal

entries. Then g is in the stabiliser of f if and only if χgf = χf . It is not a coinci-

dence that the stabiliser of f in Sn × C2 equals the stabiliser of a set of literals;

note the following result.

Lemma 5.1.3 Let L = (Vn, Dn, C) be a CSP with non-empty solution set, in

which each set of equivalent solutions forms an orbit under G ≤ Sn × C2. If there

exists a subset χ of all literals χL such that the solutions of L are the subsets of χ

that are full assignments, then each set of equivalent solutions forms an orbit under

the setwise stabiliser of χ in Sn × C2.

Proof: The statement is shown in two steps. First, G ≤ StabSn×C2(χ) is proven.

Let g ∈ G and denote the set of solutions of L by T . Note that χ equals the union

of all solutions. Then

χg =

(⋃
T∈T

T

)g

=
⋃
T∈T

T g =
⋃
T∈T

T = χ

and hence g ∈ StabSn×C2(χ).

It remains to be shown that the image of every solution T of L under an el-

ement g in StabSn×C2(χ) is a solution equivalent to T . This follows immediately

from T g ⊆ χ. �



5.1 A Family of CSPs 91

Table 5.1 Enumeration of non-equivalent semigroups on [n] using a family of CSPs

n 1 2 3 4 5 6 7 8

LFn
, solutions 1 4 18 126 1 160 15 973 836 021 1 843 120 128

–, instances 1 2 5 13 34 60 243 660
–, setup time ε ε ε ε 1 s 9 s 68 s 689 s
–, solve time ε ε ε ε ε 4 s 35 s 14 015 s

L−3

Fn
, solutions 0 3 16 117 1 075 13 312 226 223 11 433 105

–, instances 1 2 5 13 34 60 243 660
–, setup time ε ε ε ε 1 s 9 s 82 s 667 s
–, solve time ε ε ε ε ε 4 s 31 s 563 s

The times are rounded to seconds. They were obtained using the 64-bit
executable of Minion, version 0.9, on a machine with 2.66 GHz Intel X-5430

processor and 16 GB RAM. The setup was done with GAP. The symbol ε stands
for a time less than 0.5 s.

The previous lemma does not directly apply to the CSPs in LFn , because of

the associativity constraint. If one neglects this constraint, such that the solu-

tions are all magmas fulfilling the remaining constraints, then the assumptions of

Lemma 5.1.3 are satisfied. Any full instantiation for which the values on the diag-

onal are in χf is a solution for f ∈ Fn, and equivalent solutions form orbits under

the stabiliser of the literals in Sn×C2. Adding the associativity constraint back in

does not change this fact, since associativity is invariant under isomorphism and

anti-isomorphism.

As before a CSP L−3
f is defined by adding constraint (4.2) to Lf , ruling out

3-nilpotent solutions. Adding this constraint is only necessary for functions f

fulfilling the criterion in Lemma 3.2.5 for 3-nilpotent semigroups, as otherwise Lf

does not have 3-nilpotent solutions. The family of instances {L−3
f | f ∈ Fn} is

denoted by L−3

Fn
.

The results of solving, for 1 ≤ n ≤ 8, the instances constructed from LFn
and

L−3

Fn
with Minion [GJM06] are given in Table 5.1. The numbers of semigroups

coincide with those from Table 4.2, while the runtimes for n = 8 are a magnitude

smaller.

That the diagonal entries of the multiplication table are known in Lf has further

consequences. The most obvious one, following the analysis in Section 3.2, is that

the CSP Lf has no solutions if the diagonal corresponding to f does not allow the



92 New Enumeration Results

table to be completed such that an associative multiplication is defined. Another

point is that some of the constraints enforcing associativity are trivially satisfied

or simplify, since the product of two elements is known whenever both factors are

the same. Moreover, for i ∈ [n] all powers of the form i2
k
, k ∈ N can be computed

from the diagonal (and no new values occur for k > n). If j equals any such power,

then ij = ji. This leads to the implied constraint

Ti,j = Tj,i for all i, j ∈ [n] with fk(i) = j for some k ∈ [n] (5.2)

for Lf . More implied constraints can be added to Lf in the special case where f

has exactly one fixed point and the digraph corresponding to f contains cycles.

According to Lemma 3.2.7 elements in [n] labelling the vertices of the cycle lie in

a common subgroup with the unique idempotent as identity. The computational

effect of all considerations in this paragraph on LFn
is very minor. None of them

relates to the bottleneck of the computation which is the CSP Lidn , where idn

denotes the identity function on [n]. This instance is dealt with in the following

section.

In [Jür78] Jürgensen claims that a case split depending on the number of idem-

potents in the semigroup is nearly as powerful as the case split depending on

diagonals. That the additional information available from the diagonal has no

considerable influence on the speed of the computation might be mistaken to sup-

port this claim. On the contrary, the fact that implied constraints do not help

the computation, indicates that the propagation of (4.1), enforcing associativity,

works well already. It does not imply that the information from the diagonal is su-

perfluous regarding the efficiency. For a rigorous verification of Jürgensen’s claim

a case split on the number of idempotents was implemented. For a non-empty

subset U of [n] let LU denote a CSP based on Ln with the additional constraints

Ti,i = i if i ∈ U

Ti,i 6= i if i ∈ [n] \ U.

The group used to add lex-leader constraints (4.3) to LU to obtain LU is the direct

product (SU × S[n]\U)× C2. Then LU = {LU | U = [m], 1 ≤ m ≤ n} is a family of

CSPs with all semigroups up to equivalence as solutions. Note that L[n] = Lidn .



5.1 A Family of CSPs 93

Table 5.2 Case split on the number of idempotents

n 1 2 3 4 5 6 7 8

LU , solutions 1 4 18 126 1 160 15 973 836 021 1 843 120 128
–, instances 1 2 3 4 5 6 7 8
–, setup time ε ε ε ε ε 3 s 42 s 525 s
–, solve time ε ε ε ε ε 1 s 33 s 519 542 s

L−3

U , solutions 0 3 16 117 1 075 13 312 226 223 11 433 105
–, instances 1 2 3 4 5 6 7 8
–, setup time ε ε ε ε ε 3 s 40 s 518 s
–, solve time ε ε ε ε ε 1 s 13 s 819 s

The times are rounded to seconds. They were obtained using the 64-bit
executable of Minion in version 0.9 on a machine with 2.66 GHz Intel X-5430

processor and 16 GB RAM. The setup was done with GAP. The symbol ε stands
for a time less than 0.5 s.

The results for Jürgensen’s approach are given in Table 5.2. The runtime for

n = 8 is only marginally slower than for the family L−3

F8
. The bottleneck of both

computations regarding memory usage is the same CSP, that is L[n] = Lidn .

One aspect, that typically influences the runtime, when some kind of equiva-

lence is involved, is the choice of representatives. For two equivalent functions f

and h the time to solve Lf and Lh can indeed vary considerably. Some testing

indicates that the representative returned by the implementation based on Al-

gorithm 1 is a good candidate. Again, this is not relevant for the bottleneck of

the computation, Lidn , since the identity function forms its own equivalence class.

Satoh et al. state in [SYT94] that their program gives – after filling the positions

on the diagonal – second priority to the positions in the multiplication table that

are in the row or column of an idempotent. For the approach using constraint

satisfaction, tests on some diagonals do not support this preference for the or-

dering of table positions. In particular, for diagonals with a cycle in the digraph

corresponding to the diagonal it seems most beneficial to first fill the positions in

the row and column of elements from the cycle.

This concludes the reproduction of and comparison with former results on the

enumeration of semigroups. In the next section a far more efficient way to solve

the bottleneck of the family of CSPs LFn
is presented, which subsequently results

in the finding of the number of semigroups of order 9 up to equivalence.



94 New Enumeration Results

5.2 Bands

One might think that subdividing a CSP into a family of independent instances

is a good way to parallelise the computation. This is not true for the family LFn
.

The biggest difficulties lie in a small number of instances. This is mainly influenced

by two factors: the number of solutions a particular instance Lf has, and how big

the stabiliser in Sn × C2 of the diagonal corresponding to f is. The former varies

a lot from case to case with most functions leading to no semigroup as discussed

in Section 3.2. The more severe problem at this point is the latter, which is best

demonstrated on the extreme example where f is the identity function idn on [n].

Every element in Sn × C2 stabilises the diagonal corresponding to idn. Hence 2n!

lex-leader constraints are added for the symmetry breaking. As one effect, solving

the instance Lidn takes more memory than all other instances in LFn
. For n = 8

the computation uses roughly 8GB RAM. Since the memory usage is linear in

the number and length of the lex-leader constraints (4.3), the computation is not

possible for n = 9 on the available machine with 16GB of memory.

That the instance Lidn is completely independent of all other instances in LFn

allows one to use additional mathematical knowledge which is available just for this

instance. The solutions of Lidn correspond to the bands on [n] up to equivalence.

The structure of bands is well understood. The building blocks for bands are two

types of bands with additional properties. These types are introduced in the next

definition.

Definition 5.2.1 Let B be a band.

(i) If B is commutative, then B is a semilattice.

(ii) If sts = s holds for all s, t ∈ B, then B is a rectangular band.

The operation in a semilattice will usually be denoted by ∧. To obtain the semi-

lattices on [n] up to equivalence define a CSP SLn based on Lidn by adding the

constraint

Ti,j = Tj,i for all i, j ∈ [n]

to enforce commutativity. In a semilattice B, saying ‘s is smaller than t’ if s∧t = s

for s, t ∈ B yields a partial order on B. Using the partial order in combination with

the minimality of tables that are solutions of SLn leads to an additional property

of solutions, stated in the following lemma.



5.2 Bands 95

Lemma 5.2.2 Let B be a semilattice (with operation ∧) corresponding to a solu-

tion of SLn. Then the inequality i ∧ j ≤ min{i, j} holds for all i, j ∈ [n].

Proof: Let T be a table defining a semilattice on [n] for which there exist k, l ∈ [n]

such that k ∧ l > min{k, l}. Without loss of generality let (k, l) be the first

position (with respect to the order of table positions (4.4) used for the search)

for which this inequality holds. It will be shown that T (k k∧l) < T and hence T

is not a solution of SLn. Clearly, k < l by commutativity, and by assumption

(T (k k∧l))k,l = (Tk∧l,l)
(k k∧l) = k < k ∧ l = Tk,l. It suffices to show that for every

position (i, j) that comes earlier in the order of positions (4.4) the inequality

(T (k k∧l))i,j ≤ Ti,j holds. Positions of the form (i, i) do not have to be considered

since the diagonal corresponds in any case to the constant function idn.

Case 1: consider a position (i, j) with i, j 6∈ {k, k ∧ l}, and i 6= j. Then

(T (k k∧l))i,j = (Ti,j)
(k k∧l). If for some position (Ti,j)

(k k∧l) > Ti,j holds, then it

follows Ti,j = k. Hence, k = i ∧ j which implies i ∧ k = i ∧ i ∧ j = i ∧ j = k. Due

to the minimality of (k, l) it follows k ≤ min{i, k} and in particular k ≤ i, in fact

k < i. Consequently (i, j) comes later than (k, l) in the order of positions.

Case 2: for i < k consider the two positions (i, k) and (i, k ∧ l). Neither of

the entries at the two positions in T equal k or k ∧ l as this would contradict

minimality of (k, l). Then (T (k k∧l))i,k = (Ti,k∧l)
(k k∧l) = Ti,k∧l and (T (k k∧l))i,k∧l =

(Ti,k)
(k k∧l) = Ti,k. As (i, k) comes earlier than (i, k ∧ l) in the order of positions

(4.4) it suffices to show p = (T (k k∧l))i,k = Ti,k∧l ≤ Ti,k = q. From the minimality

of (k, l) it follows that p, q ≤ i. Hence p ∧ q = (i ∧ k ∧ l) ∧ (i ∧ k) = i ∧ k ∧ l = p

which implies p ≤ min{p, q} and consequently p ≤ q.

Case 3: for j < k consider the two positions (k, j) and (k ∧ l, j). Analogously

to Case 2 one shows that (T (k k∧l))k,j = Tk∧l,j ≤ Tk,j, which completes the proof

that T (k k∧l) is smaller than T . �

From the result in the previous lemma it follows that

Ti,j ≤ min{i, j} (5.3)

is an implied constraint for SLn. Hence it can be added to the CSP without chang-

ing the solution set. As constraint (5.3) causes considerable domain restrictions

for many variables, adding it reduces the search space drastically. The results and



96 New Enumeration Results

Table 5.3 Enumeration of non-equivalent bands on [n] using a family of CSPs

n 1 2 3 4 5 6 7 8 9 10

Lidn , solutions 1 2 6 26 135 875 6 749 60 601 618 111 7 033 090
–, setup time ε ε ε ε ε 2 s 30 s 361 s � �
–, solve time ε ε ε ε ε ε 3 s 171 s � �

SLn, solutions 1 1 2 5 15 53 222 1 078 5 994 37 622
–, setup time ε ε ε ε ε ε ε 4 s 54 s 711 s
–, solve time ε ε ε ε ε ε ε ε 5 s 150 s

LB∗n , solutions 0 0 3 19 119 820 6 526 59 521 612 115 6 995 466

–, instances 0 0 2 9 39 165 784 4 181 25 037 167 059
–, setup time – – ε ε 1 s 10 s 85 s 985 s 12 916 s 144 314 s
–, solve time – – ε ε ε 1 s 11 s 90 s 791 s 9 322 s

LRn
, solutions 1 2 6 26 135 875 6 749 60 601 618 111 7 033 090

–, instances 1 2 3 5 6 8 9 11 13 15
–, setup time ε ε ε ε ε ε 5 s 56 s 676 s �
–, solve time ε ε ε ε ε ε ε 16 s 819 s �

The times are rounded to seconds. They were obtained using the 64-bit
executable of Minion version 0.9 on a machine with 2.66 GHz Intel X-5430

processor and 16 GB RAM. The setup was done with GAP. The symbol ε stands
for a time less than 0.5 s. The symbol � indicates insufficient memory.

runtimes of SLn for 1 ≤ n ≤ 10 are given in Table 5.3. It is well-known that

semilattices on [n] are in one to one correspondence with lattices on [n+ 1].1 The

numbers of semilattices on [n] are therefore known for n up to 17 from [HR02], in

which lattices with up to 18 elements are counted. Note that [HR02] is another

example for the application of an ‘orderly algorithm’, the constructive enumera-

tion technique which was introduced by Read [Rea78] and mentioned in the final

paragraph of Section 3.1.

The second type of band introduced in Definition 5.2.1 does not need to be

searched for. Rectangular bands are isomorphic to semigroups on a Cartesian

product I × Λ with multiplication defined by (i, λ)(j, µ) = (i, µ), and each such

multiplication defines a rectangular band. Two rectangular bands I1 × Λ1 and

I2 × Λ2 are isomorphic if and only if |I1| = |I2| and |Λ1| = |Λ2|, and they are

anti-isomorphic if and only if |I1| = |Λ2| and |Λ1| = |I2|. Hence, the number of

1The lattice corresponding to a semilattice B is obtained by adding a new identity element
and defining a second operation ∨ by s ∨ t =

∧
{x ∈ B1 | x ∧ s = s & x ∧ t = t} for all s, t ∈ B1.



5.2 Bands 97

rectangular bands on [n] up to isomorphism equals the number of divisors of n,

and the number of rectangular bands on [n] up to equivalence equals the number

of divisors of n less or equal
√
n.

Knowing the building blocks, the statement about the structure of bands is

given next.

Theorem 5.2.3 Let B be a band and let {Rα | α ∈ Y } be the set of D-classes

of B. Then the following statements hold:

(i) for all α ∈ Y the D-class Rα forms a subsemigroup that is a rectangular

band;

(ii) for all α, β ∈ Y the set RαRβ = {ab | a ∈ Rα, b ∈ Rβ} is contained inside a

D-class of B;

(iii) the index set Y forms a semilattice under the operation ∧ defined through

RαRβ ⊆ Rα∧β.

The previous theorem is a special case of a more general result stating that

every completely regular semigroup is a semilattice of completely simple semi-

groups [How95, Theorem 4.1.3]. The statement of Theorem 5.2.3 is given

in [How95, Theorem 4.4.1] in a compact form and a proof – as well for the gener-

alisation to regular semigroups – can be found in the same reference. Moreover,

there is a complete characterisation for bands available [How95, Theorem 4.4.5].

This characterisation defines the multiplication in a band via mappings between

the rectangular bands fulfilling certain conditions to guarantee associativity. Since,

using a CSP to search for bands, the conditions for the mappings are not easier

to check than associativity itself, only the information from Theorem 5.2.3 will be

used for the search.

CSP 5.2.4 Let Y be a semilattice, and let {Rα | α ∈ Y } be a set of disjoint

rectangular bands with
⋃
α∈Y Rα = [n]. Then define, based on Ln from CSP 4.1.3,

a CSP L{Rα|α∈Y } = (Vn, Dn, C{Rα|α∈Y }) by adding the constraints

Ti,j = ij for all i, j ∈ Rα for all α ∈ Y, (5.4)

Ti,j ∈ Rα∧β for all i ∈ Rα, j ∈ Rβ. (5.5)



98 New Enumeration Results

Each solution of CSP 5.2.4 is obviously a table defining a band. Moreover,

every such CSP has at least one solution, as will be explained in the following

remark. One word about the notation: if {Rα | α ∈ Y } are the D-classes of a

band where Y is a semilattice, then this shall implicitly mean that the operation

on Y arose from the multiplication in the band as described in Lemma 5.2.3.

Remark 5.2.5 Given a set of rectangular bands, {(Rα, ∗α) | α ∈ Y }, forming a

semilattice, there exists a band having this D-class structure. To define a multi-

plication choose fixed elements sα ∈ Rα for all α ∈ Y and then define the product

ab for a ∈ Rα and b ∈ Rβ by

ab =



a ∗α b if α = β

a ∗α sα if α ∧ β = α

sβ ∗β b if α ∧ β = β

sα∧β otherwise.

Following on from the comments right after Theorem 5.2.3, the statement in the

previous remark generalises as well to the case of semilattices of completely simple

semigroups. A completely regular semigroup arising from such a construction is a

strong semilattice of completely simple semigroups. The given construction is an

adaptation of the explanation at the end of [How95, Section 4.1]. Note that not

every band arises from such a construction. On the other hand, for the degenerate

case of a D-class structure {Rα | α ∈ Y } with |Y | = n or |Y | = 1 there is exactly

one band with the given structure. In the former case it is the semilattice Y itself,

and in the latter case it is the unique rectangular band Rα, α ∈ Y in the set. (More

generally, every D-class structure, in which each rectangular band Rα contains only

one element if α is not maximal in Y , allows exactly one multiplication.)

To make sure the CSPs from 5.2.4 are useful for a case split to find all bands,

more precise information is needed.

Lemma 5.2.6 The solutions of L{Rα|α∈Y } are all multiplication tables defining

bands with {Rα | α ∈ Y } as D-classes.

Proof: It shall first be shown that every solution leads to a band with D-classes

{Rα | α ∈ Y }. Let T be a solution table. Constraint (5.4) fixes parts of the multi-

plication table according to the multiplication in the rectangular bands Rα, α ∈ Y .



5.2 Bands 99

For two elements s, t ∈ Rα both sts = s and tst = t hold, due to Definition 5.2.1(ii).

Hence, the elements in Rα are contained in the same D-class. For s ∈ Rα and

t ∈ Rβ assume sDt. Thus there exist u ∈ Rγ for some γ ∈ Y , and v ∈ Rδ for

some δ ∈ Y such that t = usv. From constraint (5.5) it follows that β = γ ∧ α∧ δ
and therefore that α ∧ β = β. Exchanging s and t in this argument one obtains

α ∧ β = α, which yields β = α. Hence, two elements are D-related if and only if

they lie in the same rectangular band.

Let now T be the multiplication table of a band having D-classes {Rα | α ∈ Y }.
Multiplication inside a D-class is given by the respective rectangular band and

thus T complies with constraint (5.4). Products from distinct D-classes respect

the structure of the semilattice Y by Theorem 5.2.3, meaning that RαRβ ⊆ Rα∧β.

Thus the entries in T fulfil constraint (5.5) and – since it defines an associative

multiplication table – T is a solution of L{Rα|α∈Y }. �

Unfortunately introducing indices for the rectangular bands means that two

different sets {Dβ | β ∈ X} and {Rα | α ∈ Y } might describe the same semilattice

of rectangular bands. The CSPs L{Dβ |β∈X} and L{Rα|α∈Y } are identical if and only

if there exists an isomorphism σ : X → Y such that Dβ = Rα whenever σ(β) = α.

To avoid this ambiguity, the first step is to consider semilattices in the following

up to isomorphism, that is, each semilattice shall be a solution of SLn. Still, σ

might induce an automorphism. One can easily define a canonical indexing by

choosing the indices in {Rα | α ∈ Y } such that the inequality

(
minR1,minR2, . . . ,minR|Y |

)
≤lex

(
minR1π ,minR2π , . . . ,minR|Y |π

)
(5.6)

holds for all automorphisms π of Y . On the other hand, in situations where the

specific indexing is not important, it can be more useful to simply state that two

sets {Dβ | β ∈ Y } and {Rα | α ∈ Y } are identified if they define the same CSP.

From Remark 5.2.5 and Lemma 5.2.6 it follows that all instances L{Rα|α∈Y }

have at least one solution. Apart from this fact the situation is now similar

to that in Section 5.1, when trying to find all semigroups on [n] up to equiva-

lence using the family of instances LFn . It will be shown that all assumptions

for Lemma 5.1.2 are fulfilled. The set Bn shall contain all possible D-class struc-

tures of bands on [n]. Then the solution sets of different instances in the family

LBn =
{
L{Rα|α∈Y } | {Rα | α ∈ Y } ∈ Bn

}
are disjoint due to Lemma 5.2.6. The



100 New Enumeration Results

group G is again Sn×C2 acting this time on the set of all multiplication tables on

[n] that define bands, which is identical with the set of all solutions. Finally, let ψ

be the function sending the multiplication table of a band to the D-class structure

of the band. Then every solution T of an instance in LBn is a solution of Lψ(T ) by

Lemma 5.2.6. Furthermore, the induced action of Sn×C2 on the sets {Rα | α ∈ Y }
via {Rα | α ∈ Y }g = {Rg

α | α ∈ Y } for g ∈ Sn × C2 is well-defined, because if

the D-class structures of two bands coincide, so will the D-class structures of their

images under the same isomorphism or anti-isomorphism.

To actually find representatives for every D-class structure under the induced

action of Sn × C2 is computationally non-trivial. The two main problems are the

size of the set acted upon and that the convention from (5.6) has to be taken into

account. As when constructing diagonals in Section 3.1 the orbit calculations can

be simplified. Algorithm 2 uses invariants of the sets {Rα | α ∈ Y } to split the set

of all D-class structures into unions of orbits, which are considered independently.

The sizes of the rectangular bands (as multiset) is one of the invariants used. A

set would then be canonical if first

(
|R1|, |R2|, . . . , |R|Y ||

)
≤lex

(
|R1π |, |R2π |, . . . , |R|Y |π |

)
(5.7)

holds for all automorphisms π of Y , and of all such configurations inequality (5.6)

holds for the canonical one.

Three procedures are assumed to exist as prerequisite for Algorithm 2.

Partitions takes two positive integers N and K as input and outputs all parti-

tions of N with K summands of positive integers.

Orbits takes a group and a set as input; the set being closed under the action of

the group. It outputs the orbits on the set under the action of the group.

Stabiliser takes as input a group and an element from a set the group acts on.

It outputs the largest subgroup of the group acting trivially on the element.

For all three procedures existing implementations in GAP are used.

Lemma 5.2.7 Algorithm 2 is correct.

Proof: It needs to be shown that no two D-class structures in the output are

equivalent, and that for every D-class structure an equivalent one appears in D.



5.2 Bands 101

Algorithm 2
Construct non-equivalent D-class structures for bands on [N ] with K D-classes

Require: K ≤ N
1: D ← [ ] {initialise output as empty list}
2: for all L ∈ SLK do
3: for all p1 + p2 + · · · + pK ∈ Partitions(N,K) do {the partition specifies

the sizes of the rectangular bands}
4: G← Stabiliser(SK , L) {automorphism group of the semilattice L}
5: A ← {(p1π , p2π , . . . , pKπ) | π ∈ SK} {all arrangements of (p1, p2, . . . , pK)}
6: for all O1 ∈ Orbits(G,A) do
7: (q1, q2, . . . , qK)← representative of O1

8: for all i ∈ {1, 2, . . . , K} do

9: Ri ← non-isomorphic rect. bands on
{∑i−1

j=1 qj + 1, . . . ,
∑i

j=1 qj

}
10: end for
11: C ← the K-fold Cartesian product of {Ri | 1 ≤ i ≤ K}
12: H ← Stabiliser(G, (q1, q2, . . . , qK))
13: for all O2 ∈ Orbits(H × C2, C) do
14: (R1, R2, . . . , RK)← representative of O2

15: add pair (L, (R1, R2, . . . , RK)) to list D
16: end for
17: end for
18: end for
19: end for
20: return D

Two sets {Rα | α ∈ Y } and {Dβ | β ∈ X} are not isomorphic if Y is not

isomorphic to X or if the sizes of the rectangular bands do not match. Hence, sets

constructed in lines 4 to 17 of the algorithm may only be equivalent if they are

constructed in the same run. On the other hand, there is a run for all possible

sizes and isomorphism types of semilattices.

The representative structure under automorphisms of the semilattice can be

chosen in two steps as described in the paragraph before the lemma. A represen-

tative vector of the sizes of bands under the automorphisms of the semilattice is

chosen in line 6. No two structures constructed in different runs through this loop

can be equivalent. Moreover, for every structure {Rα | α ∈ Y } with the vector(
|R1π |, |R2π |, . . . , |R|Y |π |

)
of sizes of the rectangular bands, there is a run with an

equivalent vector of sizes under an automorphism of the semilattice Y .

In the second step only automorphisms of the semilattice stabilising the vector



102 New Enumeration Results

of sizes are considered. This subgroup is computed in line 12. A representa-

tive of an orbit of tuples of rectangular bands under automorphisms and anti-

automorphisms of the semilattice fixing the vector of sizes is chosen in line 13.

Hence, two such representatives could only be equivalent if the rectangular bands

in the same position are. This case is excluded by construction of C.

For a given D-class structure {Rα | α ∈ Y } one can assume, without loss of

generality, that the underlying sets of the rectangular bands are the ranges from

line 9. This leaves only isomorphisms or anti-isomorphisms in Sn×C2 to be consid-

ered for which the bijection in Sn induces a permutation of the rectangular bands,

and hence an automorphism or anti-automorphism of Y . A representative of each

equivalence class under this induced action is taken in line 13. �

The next step is to add lex-leader constraints (4.3) to each CSP in LBn
to

obtain LBn
. According to Lemma 5.1.2(iii) the equivalent solutions of L{Rα|α∈Y }

are orbits under StabSn×C2({Rα | α ∈ Y }). To calculate the stabiliser in Sn × C2

of a set of D-classes directly is even more inefficient than the direct stabiliser

calculation for diagonals; in particular, because two sets of D-classes {Dβ | β ∈ Y }
and {Rα | α ∈ Y } are identified if there exists an automorphism π of Y such

that Dβ = Rα whenever βπ = α. Recall that in the case of a CSP Lf with

fixed entries on the diagonal given by the function f , the stabiliser of the literals

given by f was computed. Again, the direct stabiliser calculation can be replaced

by calculating the setwise stabiliser of a set of literals using Lemma 5.1.3. All

constraints in CSP 5.2.4, but those enforcing associativity, are simple domain

restrictions. Consider a CSP L{Rα|α∈Y }. For all table positions (i, j) such that

i, j ∈ Rα for some α ∈ Y , the entries are given by the multiplication in the

rectangular bands due to (5.4). The corresponding set of literals is

χI =
⋃
α∈Y

{(Ti,j = k) | i, j, k ∈ Rα, k = ij} . (5.8)

For all other table positions it is only known in which rectangular band the entry

has to lie following (5.5). This leads to the set

χII =
⋃

α,β∈Y
α 6=β

{(Ti,j = k) | i ∈ Rα, j ∈ Rβ, k ∈ Rα∧β} (5.9)



5.2 Bands 103

of literals. As associativity is invariant under isomorphism and anti-isomorphism,

the solutions of L{Rα|α∈Y } form orbits under the setwise stabiliser of the literals

χI ∪ χII in Sn × C2 by application of Lemma 5.1.3.

Following the comment after Remark 5.2.5 it is clear that L{Rα|α∈Y } has exactly

one solution if |Y | = 1 or |Y | = n. These CSPs are therefore excluded from the

computation. The subset of Bn without structures of this kind is denoted by B∗n.
Hence, no instances need to be solved for n = 1, 2. The results of solving the

instances corresponding to D-class structures in B∗n for 3 ≤ n ≤ 10 are given in

Table 5.3. The numbers for 3 ≤ n ≤ 8 agree with the numbers given in [SYT94].

The numbers for n = 9, 10 are new results in the enumeration of bands up to

equivalence.

Due to the large number of instances in LB∗n , the setup time cannot be neglected

in this computation. Nevertheless, the issue that the setup took longer than the

solving, as seen in Table 5.3, could most likely be avoided using a more efficient

method to create the input files for Minion. No effort was made in this direction,

since the restricting factor for the computation is the memory usage. For n = 10

the available 16 GB RAM were needed to solve two of the instances. Looking

at these two instances in detail one realises that they correspond to the D-class

structures consisting of one trivial rectangular band and one left-zero semigroup

on n − 1 elements. The two possible arrangements are illustrated in Figure 5.1.

The bands from these two cases can be classified in general.

Lemma 5.2.8 For n ∈ N with n ≥ 3, the number of non-equivalent bands of order

n whose D-classes are a left-zero semigroup of order n− 1 and a trivial semigroup

is 1 plus the number of partitions of n− 1.

Proof: Let B be a band from the statement and without loss of generality let

its D-classes be [n − 1] and {n}. There is a unique semilattice on two elements

consisting of a zero and an identity. If {n} is associated to the zero element in the

semilattice, then the product of any element multiplied with n has to lie in {n}.
Hence, the multiplication in B is uniquely determined.

Let now {n} be associated to the identity element in the semilattice. Then

from xn = y with y ∈ [n−1] it follows y = xn = xxn = xy = x, since [n−1] forms

a left-zero semigroup. This means that n is a right identity and that every product

equals its left-most factor if this factor does not equal n. Multiplication on the left



104 New Enumeration Results


1 1 . . . 1
2 2 . . . 2
...

...
. . .

...
n− 1 n− 1 . . . n− 1

 (n)

(n)


1 1 . . . 1
2 2 . . . 2
...

...
. . .

...
n− 1 n− 1 . . . n− 1


Figure 5.1 The semilattice structures of the two cases in LB∗n requiring the most
memory

with n has to fulfil the idempotent condition nx = nnx, but is otherwise arbitrary.

Then n(nx) = (nn)x and anyway n(xy) = nx = (nx)y, making the multiplication

associative.

The band from the first case is not equivalent to any band from the second

case, since n ≥ 3. To count the number of non-equivalent bands from the second

case, note that the stabiliser of the D-class structure is S[n−1]. As with diagonals

one associates a digraph having edges (x, nx) with the row indexed by n. This

graph consists of rooted trees of height 1, because of the idempotent condition.

Unlabelled graphs of this type are in one-one correspondence with the partitions

of n− 1. �

The idea used in the proof of the previous lemma is essentially the same as

that used by Grillet to describe the first row of a multiplication table [Gri07]. The

result can be used to exclude such bands from the search and perform it on a

machine with just 1GB memory for n = 10.

The runtime for the family of CSPs LB∗n suffers so much from the huge number

of instances that it is worthwhile to think about a way how to obtain a smaller

family still counting all bands. This can be achieved by using only part of the

structural information about bands from Lemma 5.2.3. Instead of fixing the whole

D-class structure in one CSP just the rectangular band corresponding to the min-



5.3 52 989 400 714 478 105

imal element of the semilattice shall be specified.

CSP 5.2.9 For a rectangular band R on a subset of [n] define a CSP BR =

(Vn, Dn, CR) based on Lidn by adding the constraints

Ti,j = ij if i, j ∈ R (5.10)

Ti,j, Tj,i ∈ R if i ∈ R, j ∈ [n]. (5.11)

The solutions of BR are exactly the bands on [n] having R as their minimal

D-class. Let Ri
n denote the rectangular bands on any subset of [n] of size i and

Rn = ∪ni=1Ri
n. Then define the family of CSPs LRn = {BR | R ∈ Rn}. Applying

Lemma 5.1.2 yields as before a set Rn of rectangular bands leading to instances

with non-equivalent solutions. The set Rn contains each rectangular band of order

at most n up to equivalence. The symmetries of an instance BR are given by the

direct product of the stabiliser of R in SR × C2 with S[n]\R, which again can be

computed as stabiliser of the literals.

For some of the CSPs in LRn
the number of solutions is known. Those CSPs

with |R| = n have exactly one solution – that is R itself. The number of solutions

of the CSP BR where R is a left zero (or right zero) semigroup on n− 1 elements

equals the number of partitions of n − 1 according to the proof of Lemma 5.2.8.

The results for this case split are shown in Table 5.3. One can see that the smaller

number of instances yields a big improvement for orders up to 9. The larger number

of symmetries prevents any result for n = 10. With regard to the enumeration of

semigroups of order 9, of the presented approaches this one is the most efficient to

count the bands with 9 elements up to equivalence.

5.3 52 989 400 714 478

In the last section the number of solutions of the single instance in L−3

F9
which

could not be solved directly was determined using another case split. Counting

all solutions of instances in LF9
\ Lid9 with Minion, version 0.9, on a machine

with 2.66GHz Intel X-5430 processor and 8GB RAM took around 87 hours and

output 23 161 033 393 as result. Together with the number of bands of order 9 from

Table 5.3, the number of 3-nilpotent semigroups of order 9, computed using the

formula from Theorem 2.3.7, and the single 2-nilpotent semigroup, this yields the



106 New Enumeration Results

Table 5.4 Numbers of non-equivalent semigroups on [n] by idempotent

n 1 2 3 4 5 6 7 8 9
Idpt.

1 1 2 5 19 132 3 107 623 615 1 834 861 133 52 976 551 026 562
2 2 7 37 216 1 780 32 652 4 665 709 12 710 266 442
3 6 44 351 3 093 33 445 600 027 68 769 167
4 26 326 4 157 53 145 754 315 14 050 493
5 135 2 961 56 020 1 007 475 18 660 074
6 875 30 395 822 176 20 044 250
7 6 749 348 692 12 889 961
8 60 601 4 389 418
9 618 111∑

1 4 18 126 1 160 15 973 836 021 1 843 120 128 52 989 400 714 478

number of semigroups of order 9 up to equivalence. There are 52 989 400 714 478

non-equivalent semigroups with 9 elements. The numbers of semigroups with at

most 9 elements sorted by their number of idempotents are listed in Table 5.4.

Information on the classification of semigroups of order 9 in the form of [SYT94,

Table 4.2] is summarised in Table 5.5. The constraints added to obtain commuta-

tive semigroups are obviously Ti,j = Tj,i for all i, j ∈ [n]. A semigroup S is regular

if for all s ∈ S there exists a t ∈ S such that sts = s. If in addition all idempotents

in S commute then S is inverse. This leads to the constraints

∀i ∈ [n]∃j ∈ [n] : TTi,j ,i = i (5.12)

to get the numbers of regular semigroups and in addition

Ti,j = Tj,i for i, j ∈ {k ∈ [n] | f(k) = k} (5.13)

to get the numbers of inverse semigroups. How self-dual semigroups are determined

has been discussed in the first paragraph of Section 4.2.2.

For order 9 the percentage of semigroups that are 3-nilpotent reaches 99.96%

and is thereby getting even closer to 100% than for order 8. These numbers

support the conjecture that the ratio converges to 1 while n tends to infinity.

Other than for orders up to 8 the multiplication tables were counted but not

stored. In principle, the code provided on the attached DVD can be used to



5.3 52 989 400 714 478 107

Table 5.5 Properties of semigroups of order 9

Idpt. self-dual commutative regular inverse comm.-inv.

1 613 365 656 9 940 825 2 2 2
2 8 265 721 664 080 23 23 16
3 739 317 249 330 148 129 111
4 410 158 222 637 830 567 504
5 328 937 201 060 4 136 1 750 1 555
6 223 226 148 647 17 535 3 870 3 460
7 113 160 82 481 66 822 6 582 6 137
8 38 979 30 789 217 437 7 505 7 505
9 7 510 5 994 618 111 5 994 5 994∑

623 492 664 11 545 843 925 044 26 422 25 284

obtain multiplication tables of semigroups of order 9. Note that the output of

Minion for 2.3 ∗ 1010 tables of dimension 9 will occupy more than 3.5TB of disk

space. Moreover, the 3-nilpotent semigroups of order 9 were not even counted using

Minion. Extrapolation from tests on the number of solutions, which Minion counts

per second for such instances – roughly 1 million, suggests that the computation

time on a 2.66GHz Intel X-5430 processor would be between 1 and 2 years.

In the following further refinements are presented which aim in particular to

reduce the memory required for the computation. This is achieved by further case

splits, leading to a smaller number of lex-leader constraints (4.3) to be posted in

each CSP, and fixing more entries of the multiplication table. This allows one to

determine the number of semigroups with 9 elements on a 32-bit machine with as

little as 1 GB of memory. Furthermore, it introduces case splits that are useful for

the enumeration of subclasses of semigroups for orders higher than 9.

5.3.1 Constant function

In the following let c be the constant function c : [n]→ [n], i 7→ n. With 2(n− 1)!

lex-leader constraints Lc is the CSP in LFn
\ {Lidn} leading to the instance with

the biggest memory usage.2 The stabiliser of c in Sn×C2 is Sn−1×C2. Under this

group the off-diagonal positions in the last row and column of the multiplication

2In fact, the representative from the orbit of constant functions returned by the implementa-
tion of Algorithm 1 into GAP is not c, but the function with image {1}. Using c here simplifies
some of the notation.



108 New Enumeration Results

table form a separate orbit. Since in Lc the implied constraint (5.2) becomes

Tn,i = Ti,n for all i ∈ [n], the last row and column are equal in all solutions of Lc.

CSP 5.3.1 Let Lf ∈ LFn and let p : [n − 1] → [n − 1] be a partial function.

Then define a CSP Lpf based on Lf from CSP 5.1.1 by adding for all i ∈ [n] the

constraint

Tn,i =

p(i) if p is defined on i

n otherwise.

Let Pn−1 denote all partial functions on [n−1]. Employing the correspondence

between partial functions and digraphs, a set of non-equivalent partial functions

Pn−1 under the action of Sn−1 was determined in Section 3.1.

Only CSPs Lpc with p ∈ Pn−1 where p does respect the idempotent condition

Tn,i = Tn,Tn,i
will possibly have solutions. Denote the set of those partial function

by P∗n−1. Which digraphs correspond to partial functions satisfying the idempotent

condition? Let p ∈ P∗n−1 be a partial function. If i ∈ [n− 1] is in the image of p,

then p(i) = i. It follows that each cycle in the corresponding digraph is a loop and

the tree rooted at the loop vertex has height at most 1. Further, each i ∈ [n− 1]

on which p is undefined has to label an isolated vertex without any edges. Hence,

such a graph is uniquely determined by an integer 0 ≤ k ≤ n − 1 specifying the

number of isolated vertices and a partition of n− 1− k, each summand specifying

the number of vertices in one of the remaining components. These facts were used

to construct the partial functions in P∗n−1.

The stabiliser of the partial function p ∈ P∗n−1 in Sn−1×C2 are the symmetries

for which lex-leader constraints (4.3) are added to Lpc to obtain L
p

c . Hence, most

CSPs in the family
{
L
p

c | p ∈ P
∗
n−1

}
replacing Lc have far fewer constraints. The

only exception is the partial function p∅ which is nowhere defined. The CSP L
p∅
c is

special as all its solutions lead to nilpotent semigroups. This follows immediately

from Lemma 2.1.1, since n is a zero element and the square of each element equals

n.

No CSP in
{
L
p

c | p ∈ P
∗
n−1 \ {p∅}

}
has more than 2(n − 2)! lex-leader con-

straints. For n = 9 the solution numbers, 16 512 454 in total, for the corresponding

instances could be obtained on a machine with 1GB RAM. It remains to find the

solutions of L
p∅
c .



5.3 52 989 400 714 478 109

The CSP L
p∅
c

The fact that all solutions of L
p∅
c are nilpotent semigroups can be employed for

another case split.

Definition 5.3.2 Let S be a nilpotent semigroup with zero element z, and let

a ∈ S \ {z}. If as = sa = z for all s ∈ S, then a is an annihilator.

Every r-nilpotent semigroup S contains at least one annihilator, that is any element

in the set Sr−1 \ Sr, which is non-empty according to Lemma 2.1.2(i).

CSP 5.3.3 For a non-empty subset A ⊆ [n− 1] define a CSP LAc based on L
p∅
c by

adding, for all i ∈ A and for all j ∈ [n], the constraints Ti,j = n and Tj,i = n, and

for all i ∈ [n− 1] \ A the constraint

∃j ∈ [n] : Ti,j 6= n or Tj,i 6= n.

The constraints in LAc ensure that in any solution precisely the elements in A

are annihilators. The equivalent solutions of LAc are the orbits under the action of

the group SA×S[n−1]\A×C2. Since the stabiliser of c in Sn is Sn−1, CSPs with the

same number of annihilators have equivalent solution tables. This yields a CSP

family in the same fashion as for the case split on the number of idempotents used

to obtain the results in Table 5.2. The CSP L
p∅
c has the same solutions as the

family of CSPs {LAc | A = [m], 1 ≤ m ≤ n− 1}.
Indeed, the presented approach works for all functions f leading to nilpotent

semigroups; a condition that can be checked using the criterion from Lemma 3.2.5.

Obtaining the family of independent CSPs will be slightly different though. Since

the stabiliser for f 6= c will not be Sn−1, CSPs with the same number of annihi-

lators do not necessarily have equivalent solutions. Furthermore, the number of

annihilators is restricted by the size of the preimage of the fixed point of f .

Details of the generalisation of CSP 5.3.3 to non-constant functions are not

given, because the case split for f 6= c does not reduce the maximal amount of

memory needed to solve the instances in LFn
. With 4(n−2)! lex-leader constraints

the next bigger instance arises from the CSP Lf , where f has n−2 fixed points and

the remaining two points are mapped to each other. The digraph corresponding

to f consists of n− 2 loops and one cycle of length 2. According to Lemma 3.2.7

elements labelling the vertices in a cycle lie in a common subgroup. Without



110 New Enumeration Results

loss of generality, one can choose any fixed point to be the identity in the group

containing the elements labelling the 2-cycle. That there is a unique group of order

3 with a given diagonal determines 6 further entries, and reduces the number of

symmetries to (4(n− 3)!).

Further refinements are not explained as they had no considerable effects at

this stage. Some possible ideas are discussed in Section 5.6.

5.4 The Monoids of Order at most 10

There are 858 977 non-equivalent monoids of order 8, 1 844 075 697 of order 9, and

52 991 253 973 742 of order 10. These numbers have first been published by the

author and Kelsey in [DK08], respectively [DK09], and this section reports on

their findings.

The counting of bands in Section 5.2 showed that the enumeration using con-

straint satisfaction can successfully be applied to subclasses of semigroups. The

search benefited hugely from the structural knowledge about bands incorporated

in the CSP model.

Monoids are another important subclass of semigroups, and there exist results

on the structure of finite monoids, which can be exploited for the search. Before

the work on this thesis started, monoids had only been enumerated up to order 7

– though obviously the counting of semigroups of order 8 in [SYT94] included

monoids.

Adapting the CSP family LFn
from Section 5.1, the numbers of monoids up to

order 9 were determined in [DK08]. This approach is presented in the forthcoming

subsection.

Monoids of order 10 have first been enumerated in [DK09] using a refined

CSP model which facilitates structural information about finite monoids. In Sec-

tion 5.4.2 the structure of finite monoids is discussed, and the refined CSP model

is explained.

The presentation of the results from [DK08] and [DK09] is adjusted for this

thesis. Moreover the computations were repeated using the latest version of Minion

leading to considerable speed-ups.



5.4 The Monoids of Order at most 10 111

5.4.1 Basic CSP and diagonal case split

The basic CSP model Ln to find all semigroups on [n] from CSP 4.1.3 is modified

to return all monoids on [n] by adding the constraint

∃i ∈ [n]∀j ∈ [n] : Ti,j = Tj,i = j. (5.14)

When aiming to find monoids up to equivalence one can assume without loss of

generality that n is the identity element.3 Then (5.14) becomes

∀j ∈ [n] : Tn,j = Tj,n = j. (5.15)

Denote the new CSP with Mn. Formally, Mn was obtained by application of

Lemma 5.1.2 to the family of n CSPs fixing 1 through n to be the identity element.

That the identity in a monoid (even in a magma) is unique ensures these instances

are disjoint. The induced action on the identity is the natural action of Sn, and

the stabiliser of n in Sn is Sn−1. Hence the solutions of Mn form orbits under

Sn−1 × C2 according to Lemma 5.1.2(iii).

Next, the idea from Section 5.1 is adapted to split Mn into a family of CSPs

depending on the diagonal of the multiplication table. The set of diagonals used

to get instances with non-equivalent solutions will differ from the set used for the

family LFn
, because the group defining the equivalence of diagonals is no longer

Sn but Sn−1. It shall be used that functions from [n] to [n] with n as fixed point

are in one-one correspondence with partial functions from [n − 1] to [n − 1]. If p

is such a partial function, the corresponding function on [n] maps every i ∈ [n] for

which p is undefined to n.

CSP 5.4.1 Let p : [n− 1]→ [n− 1] be a partial function. Then define a CSP Mp

by adding constraints (5.1) to Mn for the function f corresponding to p. That is

for all i ∈ [n]

Ti,i =

p(i) if p is defined on i

n otherwise.

Recall that Pn−1 denotes the set of all partial functions on [n− 1]. How to get

a set Pn−1 of partial functions on [n− 1] up to Sn−1-equivalence was discussed in

3As for the constant function in Section 5.3.1 this choice is made for simplicity of notation.
In the computation 1 is the identity element.



112 New Enumeration Results

Section 3.1 (It should make sense now, why the set of diagonals obtained in this

way is useful.). One defines a family of CSPsMPn−1
=
{
Mp | p ∈ Pn−1

}
in which

distinct CSPs have non-equivalent monoids as solutions and each type of monoid

appears as solution of one CSP. The solutions of one of the CSPs Mp form orbits

under the stabiliser of the partial function p in Sn−1×C2. Applying Lemma 5.1.3

again, the stabiliser can be computed efficiently as the setwise stabiliser of the

literals {(Ti,i = p(i)) | i ∈ [n], p(i) is defined}.

A simple observation helps making the family MPn−1
far more efficient. One

constructs a set of non-equivalent monoids of order n by taking the semigroups

on [n − 1] and adding n as new identity element. A monoid M with identity

e is equivalent to one constructed in this way if and only if M \ {e} forms a

semigroup. Since non-equivalent semigroups are known from Section 5.1, it is not

necessary to search for these monoids. Excluding them from the search translates

to the condition that the identity appears at least twice (once from ee = e) in

the multiplication table. Denote the CSPs excluding such monoids by M e
p , and let

Me
Pn−1

denote the corresponding family of CSPs
{
M e

p | p ∈ Pn−1

}
.

Solving either the basic model Mn or the family of CSPs MPn−1
yields the

number of monoids for orders n, 1 ≤ n ≤ 9 (see Table 5.6). Solving M
e

n, respec-

tively Me

Pn−1
, is much faster and results in the number of monoids on [n] minus

the number of semigroups on [n − 1]. The numbers for monoids with 8 and 9

elements were first published in [DK08] using essentially the same family of CSPs.

Refinements excluding certain partial functions p from search, for which M e
p has

no solutions, are explained in the cited publication. No further details are given

here, since these limited considerations will become obsolete, after learning more

about the structure of finite monoids in the forthcoming subsection.

In [KR85, Theorem 2] Koubek and Rödl proved that for unlabelled monoids

the number of those monoids, that are constructed by adding a new identity to

a semigroup, yields an asymptotic bound for the number of all monoids.4 The

computational results suggest that the same holds for monoids up to equivalence.

4Note that these results are based on [KRS76], in which details in the proof of the main result
are omitted.



5.4 The Monoids of Order at most 10 113

Table 5.6 Enumeration of non-equivalent monoids on [n]

n 1 2 3 4 5 6 7 8 9

Mn, solutions 1 2 6 27 156 1 373 17 730 858 977 1 844 075 697
–, setup time ε ε ε ε ε ε 4 s 51 s 588 s
–, solve time ε ε ε ε ε ε 2 s 133 s 934 261 s

M
e

n, solutions 0 1 2 9 30 213 1 757 22 956 955 569
–, setup time ε ε ε ε ε ε 4 s 52 s 624 s
–, solve time ε ε ε ε ε ε 1 s 11 s 737 s

MPn−1
, solutions 1 2 6 27 156 1 373 17 730 858 977 1 844 075 697

–, instances 1 2 6 16 45 121 338 929 2 598
–, setup time ε ε ε ε 1 s 9 s 53 s 362 s 3 076 s
–, solve time ε ε ε ε 1 s 3 s 12 s 78 s 19 986 s

Me

Pn−1
, solutions 0 1 2 9 30 213 1 757 22 956 955 569

–, instances 1 2 6 16 45 121 338 929 2 598
–, setup time ε ε ε ε 1 s 9 s 55 s 459 s 3 220 s
–, solve time ε ε ε ε 1 s 2 s 10 s 47 s 289 s

The times are rounded to seconds. They were obtained using the 64-bit
executable of Minion version 0.9 on a machine with 2.66GHz Intel X-5430

processor and 16GB RAM. The setup was done with GAP. The symbol ε stands
for a time less than 0.5 s.



114 New Enumeration Results

5.4.2 Structure of finite monoids

Similar to the enumeration of bands, structural information about monoids shall

be used to improve the CSP model.

Definition 5.4.2 Let M be a monoid and let e be its identity. The elements in

He, the H-class of e, are called units.

Since the units of a monoid are the H-class of an idempotent, they form a

group (see [How95, Theorem 2.2.5]), the unit group. It is easy to check from the

multiplication table whether two elements lie in the same H-class. Each of the two

has to appear in the column and in the row of the other. Thus, an element in a

monoid is a unit if and only if the identity appears in its row and column. This

means any unit has a left and a right inverse, and hence, in fact, a unique inverse.

Thus units are precisely the invertible elements in a monoid.

Information about the multiplication of elements outside the unit group is

known as well. The following lemma provides a structural description for finite

monoids.

Lemma 5.4.3 Let M be a finite monoid and let e be its identity. Then the fol-

lowing hold:

(i) the set M \He forms the unique maximal ideal of M ;

(ii) multiplication from the left of elements in the unit group He on M \He,

λM : He ×M \He →M \He, (u,m) 7→ um, (5.16)

defines a left action of He on the maximal ideal;

(iii) multiplication from the right of elements in the unit group He on M \He,

ρM : M \He ×He →M \He, (m,u) 7→ mu (5.17)

defines a right action of He on the maximal ideal.

Proof: (i): It is shown in [Gri95, Chapter V, Proposition 1.3] that M \He forms an

ideal. Let I be an ideal of M containing a unit u. Then for all m ∈M the product



5.4 The Monoids of Order at most 10 115

u−1um lies in I. Consequently I = M . Hence M \He is the unique maximal ideal

of M .

(ii): Since M \He is an ideal, the map λM is well-defined. The identity e of M

acts trivially by definition. Furthermore for g, h ∈ He the equality

(g, (h,m)) = g(hm) = (gh)m = (gh,m)

holds for all m ∈M \He because of associativity of M . Hence λM is a left action.

(iii): The proof is analogous to that for the second part. �

Following Lemma 5.4.3 every finite monoid M decomposes uniquely into a

group, its unit group, and a semigroup, its maximal ideal. Note that not every left

and right action of a group G on a semigroup S yield a monoid on G∪ S. On the

other hand, if a monoid is defined, then it has indeed G as its unit group, since G

is then the H-class of the identity.

Remark 5.4.4 Given a group (G, ∗G) and a semigroup (S, ∗S) on disjoint sets G

and S, define a multiplication ∗ on G ∪ S using the trivial left and right action of

G on S. That is

x ∗ y =



x ∗G y if x, y ∈ G

x if x ∈ S, y ∈ G

y if x ∈ G, y ∈ S

x ∗S y if x, y ∈ S.

Since in every mixed product the factors from G are ignored, (G∪S, ∗) is a monoid.

A monoid where the left and right action of the unit group on the maximal

ideal are trivial will be referred to as trivial action monoid.

The next result on equivalent trivial action monoids looks on the first glance

like an obvious result about isomorphic structures. One must not forget that

equivalence adds a subtle point to this type of considerations. That the following

lemma holds, is therefore not clear a priori.

Lemma 5.4.5 Let (M, ∗M) with identity e and (N, ∗N) with identity f be two

trivial action monoids. Then M and N are equivalent if and only if their unit

groups He and Hf are isomorphic groups and the maximal ideals M \ He and

N \Hf are equivalent semigroups.



116 New Enumeration Results

Proof: (⇒) : Let first σ : M → N be an isomorphism or anti-isomorphism. Then σ

maps e to f and hence He to Hf . Therefore the restrictions of σ on He respectively

M \He are isomorphisms or anti-isomorphisms. That anti-isomorphic groups are

in fact isomorphic completes the proof for this direction.

(⇐) : Let σHe : He → Hf and σM\He : M \ He → N \ Hf be isomorphisms.

Then σ : M →M defined by

σ(m) =

σHe(m) if m ∈ He

σM\He(m) otherwise

defines an isomorphism. If on the other hand σM\He : M \ He → N \ Hf is an

anti-isomorphism, then an anti-isomorphism σ : M →M is given by

σ(m) =

(σHe(m))−1 if m ∈ He

σM\He(m) otherwise,

where the inverse is taken in the group Hf . �

Due to the previous result the number of non-equivalent trivial action monoids

can be expressed in terms of the the number of non-isomorphic groups and non-

equivalent semigroups.

Corollary 5.4.6 Let n ∈ N. If gk denotes the number of non-isomorphic groups,

and hk the number of non-equivalent semigroups on [k], k ∈ N, then

gn +
n−1∑
i=1

gihn−i

equals the number of non-equivalent trivial action monoids on [n].

For some sizes of group and semigroup the only possible actions are trivial.

Lemma 5.4.7 Let M be a monoid with n elements and 1, n− 1 or n units. Then

M is a trivial action monoid.

Proof: If M contains only one unit, then it is the identity element, which always

acts trivially. If M contains n− 1 units, then there is only one element that is not



5.4 The Monoids of Order at most 10 117

a unit, and every action on a set with one element is trivial. There is nothing to

show if M is a group. �

The structure theorem for monoids could be used to define a family of CSPs,

each specifying the unit group and the maximal ideal. While every instance would

be easy to solve, their number would be too big to make this approach practicable.

The aim of using more of the structure of monoids is to enumerate at least the

monoids with 10 elements. If then the unit group was of order 2, one would have

to solve one CSP for each non-equivalent semigroup of order 8, of which there are

1 843 120 128.

To avoid the problem of having to solve too many instances, a family of CSPs

using only part of the structural information about monoids from Lemma 5.4.3 is

introduced. As there are far fewer groups than semigroups the idea is to fix the

unit group of the monoids to be searched for, but not the maximal ideal.

CSP 5.4.8 For a group (G, ∗G) with identity e and G ⊆ [n] define a CSP MG =

(Vn, Dn, CG) based on Ln from CSP 4.1.3. Add the following constraints to Cn to

obtain CG:

Ti,j = i ∗G j for all i, j ∈ G (5.18)

Te,j = Tj,e = j for all j ∈ [n] \G (5.19)

Ti,j, Tj,i ∈ [n] \G for all i ∈ [n], j ∈ [n] \G. (5.20)

Constraint (5.18) fixes entries in the multiplication table indexed by elements in

G according to the multiplication in the group. Then constraint (5.19) ensures that

e is an identity element in every solution, which is therefore a monoid. Elements

outside G are not units due to constraint (5.20). Hence the solutions of MG are

the monoids on [n] having G as unit group. That the elements in G are units leads

to the implied constraints

∀i ∈ G∀j, k ∈ [n] \G with j 6= k : Ti,j 6= Ti,k & Tj,i 6= Tk,i,

which require the entries in a row and column of a unit to be all different.

The stabiliser of G in Sn × C2 is a subgroup of SG × S[n]\G × C2 and can by

application of Lemma 5.1.3 be computed using the literals of MG. Adding lex-



118 New Enumeration Results

leader constraints (4.3) for all elements in the stabiliser yields MG. If G≤n denotes

all groups on [k] for 1 ≤ k ≤ n, then G≤n are the groups of order at most n up to

isomorphism. The family of CSPsMG≤n
=
{
MG | G ∈ G≤n

}
has as solutions the

monoids on [n] up to equivalence.

The results from Table 5.6 show that most monoids are trivial action monoids.

To avoid searching for those, add the constraint

∃i ∈ G, j ∈ [n] \G : (Ti,j, Tj,i) 6= (j, j) (5.21)

to MG to obtain Mnta
G (for non-trivial action) and respectively the familyMnta

G≤n
.

From the experience of the enumeration of semigroups it seems desirable to have

some further case split for the maximal ideal. Adopting the idea in Section 5.1,

the part of the diagonal, which does not belong to the unit group shall be fixed in

addition.

CSP 5.4.9 Based on MG from CSP 5.4.8 define a CSP MG,f = (Vn, Dn, CG,f )

for a function f : [n] \ G → [n] \ G by adding the constraints Ti,i = f(i) for all

i ∈ [n] \G to CG to obtain CG,f .

The group Sn × C2 acting on multiplication tables induces a componentwise

action on the pairs (G, f). Two pairs are equivalent if the groups are isomorphic

and the functions are equivalent. The stabiliser of (G, f) in Sn × C2 is the direct

product of the stabiliser of SG × C2 with the stabiliser of f in S[n]\G.

The functions corresponding to diagonals of semigroups are known up to equiv-

alence from Section 3.2. Instead of the set of all functions on [n] up to equiva-

lence, Fn, this smaller set, denoted by F∗
n, can be used. Then MG≤n,F

∗
≤n

={
MG,f | G ∈ G≤n, f ∈ F

∗
n−|G|

}
has again all monoids on [n] up to equivalence as

solutions. Adding constraint (5.21) excludes trivial action monoids as solutions.

This makes it in particular unnecessary to consider unit groups of size 1, n − 1

or n (see Lemma 5.4.7). The results of solving the corresponding instances for

1 ≤ n ≤ 10 are given in Table 5.7, showing a considerable speed-up compared

with the approach fixing only the diagonal of the monoid. The number of monoids

on 10 elements has first been published by the author and Kelsey in [DK09].

Note that 16GB memory were needed to run the Minion computation for the

group on 2 elements and the identity function on 8 points. This made it impossible

to run the computation in this way for n = 11 with the available resources. On the



5.4 The Monoids of Order at most 10 119
T
a
b
le

5
.7

E
n
u
m

er
at

io
n

of
n
on

-e
q
u
iv

al
en

t
m

on
oi

d
s

u
p

to
or

d
er

10

n
1

2
3

4
5

6
7

8
9

10

M
e G
≤

n
,
so

lu
ti

on
s

0
1

2
9

30
21

3
1

75
7

22
95

6
95

5
56

9
1
85

3
25

9
26

4

–,
in

st
an

ce
s

0
2

3
5

6
8

9
14

16
18

–,
se

tu
p

ti
m

e
–

ε
ε

ε
ε

ε
1

s
7
s

62
s

69
7

s
–,

so
lv

e
ti

m
e

–
ε

ε
ε

ε
ε

ε
5

s
23

3
s

87
7

91
8

s

M
n
ta G
≤

n
,
so

lu
ti

on
s

0
0

0
2

5
58

42
8

5
53

9
10

1
08

2
9
26

9
71

5

–,
in

st
an

ce
s

0
0

0
1

2
4

5
7

8
13

–,
se

tu
p

ti
m

e
–

–
–

ε
ε

ε
1

s
6
s

61
s

70
1

s
–,

so
lv

e
ti

m
e

–
–

–
ε

ε
ε

ε
2

s
48

s
5

76
4

s

M
G
≤

n
,F

∗ ≤
n
,
so

lu
ti

on
s

1
2

6
27

15
6

1
37

3
17

73
0

85
8

97
7

1
84

4
07

5
69

7
52

99
1
25

3
97

3
74

2

–,
in

st
an

ce
s

1
2

4
10

21
49

11
2

26
1

59
9

1
38

4
–,

se
tu

p
ti

m
e

ε
ε

ε
ε

ε
3

s
18

s
11

7
s

96
4

s
�

–,
so

lv
e

ti
m

e
ε

ε
ε

ε
ε

1
s

7
s

55
s

20
03

5
s

�

M
e G
≤

n
,F

∗ ≤
n
,
so

lu
ti

on
s

0
1

2
9

30
21

3
1

75
7

22
95

6
95

5
56

9
1

85
3

25
9

26
4

–,
in

st
an

ce
s

0
1

2
5

10
23

52
12

3
28

0
64

4
–,

se
tu

p
ti

m
e

–
ε

ε
ε

ε
1

s
7

s
33

s
19

5
s

1
31

7
s

–,
so

lv
e

ti
m

e
–

ε
ε

ε
ε

ε
2

s
11

s
96

s
27

52
6

s

M
n
ta G
≤

n
,F

∗ ≤
n
,
so

lu
ti

on
s

0
0

0
2

5
58

42
8

5
53

9
10

1
08

2
9

26
9

71
5

–,
in

st
an

ce
s

0
0

0
2

7
20

49
11

7
27

3
64

0
–,

se
tu

p
ti

m
e

–
–

–
ε

ε
1

s
6

s
31

s
18

6
s

1
30

2
s

–,
so

lv
e

ti
m

e
–

–
–

ε
ε

ε
2

s
8
s

60
s

96
3

s

T
h
e

ti
m

es
ar

e
ro

u
n
d
ed

to
se

co
n
d
s.

T
h
ey

w
er

e
ob

ta
in

ed
u
si

n
g

th
e

64
-b

it
ex

ec
u
ta

b
le

of
M

in
io

n
ve

rs
io

n
0.

9
on

a
m

ac
h
in

e
w

it
h

2.
66

G
H

z
In

te
l
X

-5
43

0
p
ro

ce
ss

or
an

d
16

G
B

R
A

M
.
T

h
e

se
tu

p
w

as
d
on

e
w

it
h

G
A
P
.
T

h
e

sy
m

b
ol
ε

st
an

d
s

fo
r

a
ti

m
e

le
ss

th
an

0.
5

s.
T

h
e

sy
m

b
ol
�

in
d
ic

at
es

in
su

ffi
ci

en
t

m
em

or
y.



120 New Enumeration Results

other hand, the identity function makes the maximal ideal a band. As there are

relatively few bands (compared with the number of all semigroups) the approach

discarded before, specifying the unit group and the maximal ideal, becomes more

feasible.

It seems plausible that the approach just described would yield the number

of monoids on 11 elements that are not trivial action monoids, using the avail-

able resources. As the number of semigroups of order 10 is not known at the

moment this would not yet result in knowledge about all monoids on 11 elements.

Therefore priority was given to other computations such as the identification of

automorphism groups of semigroups of order 9 in the next section.

5.5 Automorphism Groups

So far the emphasis was on the enumeration of semigroups or subclasses of semi-

groups using constraint satisfaction. At some points along the way it was men-

tioned that additional properties were determined. An enumeration of commu-

tative, regular and inverse semigroups by the number of idempotents is given in

Table 5.5. Moreover, the self-dual semigroups were identified using a modified

CSP described in Section 4.2.2.

Recall that a semigroup is self-dual if it allows an anti-automorphism, that

is an anti-isomorphism mapping the semigroup to itself. In the CSP to find all

self-dual semigroups an additional constraint enforced equality for at least one of

the lex-leader constraints (4.3) that belong to an anti-isomorphism. The same

principal can be applied to determine or count semigroups with prescribed auto-

morphisms. A bijection is an automorphism if equality holds in the corresponding

lex-leader constraint (4.3). Several cases are distinguished depending on the orders

of automorphisms.

Aut(S) ∼= C2 Require strict inequality in all lex-leader constraints that do not

correspond to a permutation of order 2. Require that equality holds for

exactly one of the remaining lex-leader constraints.

Aut(S) ∼= C2
2 Require strict inequality in all lex-leader constraints that do not

correspond to a permutation of order 2. Require that equality holds for

exactly three of the remaining lex-leader constraints.



5.5 Automorphism Groups 121

Aut(S) ∼= Ck
2,k ≥ 3 Require strict inequality in all lex-leader constraints that do

not correspond to a permutation of order 2. Require that equality holds for

at least four of the remaining lex-leader constraints.

|Aut(S)| = 2k,Aut(S) 6∼= Ck
2 Require strict inequality in all lex-leader constraints

that do not correspond to a permutation of order 2m,m ∈ N. Require

that equality holds for at least one lex-leader constraint corresponding to a

permutation of order 4.

|Aut(S)| 6= 2k Require that equality holds for at least one lex-leader constraint

corresponding to a permutation of odd prime order.

These five distinct cases cover any non-trivial automorphism group. In the first

two cases, where the isomorphism type of the automorphism group is uniquely

determined, the number of solutions is returned by Minion. In the remaining three

cases a list of automorphisms for each solution table is output and read into GAP.

In the third case the length of each list determines the automorphism group of

the corresponding solution, while in the other two cases the identification function

in the SmallGroups library [BEO02] is used to find the isomorphism types. In

Table 5.8 the numbers of semigroups with trivial automorphism group is compared

with the number of semigroups with C2 as automorphism group and with the

remaining semigroups. The detailed list of all automorphism groups was put into

Appendix A.2, because of its volume. The Minion computations to obtain the

results were the most expensive calculations undertaken in the course of this thesis

and took nearly two months on a machine with 2.66GHz Intel X-5430 processor.

As a consequence the results for semigroups of order 9 have not been verified in a

second run.

Table 5.8 Automorphism groups of non-equivalent semigroups S on [n]

n 1 2 3 4 5 6 7 8 9
Aut(S)

trivial 1 3 12 78 746 10 965 746 277 1 834 638 770 52 961 873 376 696
C2 0 1 5 39 342 4 121 76 704 8 176 697 27 478 363 462

other 0 0 1 9 72 887 13 040 304 661 48 974 320

Araújo, von Bünau, Mitchell and Neunhöffer implemented an algorithm for the

computation of automorphism groups of semigroups into GAP, which is described



122 New Enumeration Results

in [ABMN09]. They used the implementation to determine automorphism groups

of semigroups of order at most 7. An obvious omission in [ABMN09] of C2 × C2

as automorphism group for semigroups of order 5 is corrected in Appendix A.2.

Apart from this exception the results coincide with the data from the reference.

5.6 Outlook

In this final section of the thesis future applications of the methods developed in

the previous and in this chapter are outlined; possible extensions and the impact

on research are discussed.

5.6.1 Semigroups of order 10

After presenting the number of semigroups of order 9, the most natural question

is whether the semigroups with 10 elements can be enumerated using the same

method. This is in first place a question about computational resources – both

time and space – that are required. Using the approach based on Lemma 5.1.2 of

splitting any instance which would need too much memory into a family of smaller

instances avoids problems with space. Certainly, this technique has its limitations

as well, but first tests showed that it does work for semigroups of order 10. It was

possible to set up all instances and to determine for each of them whether it has

any solution on a machine with 16GB RAM.

The other limited resource for computations is time. Extrapolation from the

fastest solving of instances for order 9 indicates that it would take at the same speed

at least 10 years to enumerate semigroups of order 10. As it becomes more and

more common to have multiple processors in one machine or even to use clusters for

all kinds of computations, the long time may not be a problem, if the computation

parallelises well enough. It was mentioned in Section 5.1 that the split of Ln into

the family of CSPs LFn
does not provide a good parallelisation. At that point the

comment rather referred to the memory usage, but the statement holds also for the

runtimes of the instances. Note that each CSP can be parallelised in a näıve way

by creating a separate CSP for each value of the first variable in the search order.

This will in general not lead to an equal distribution of runtime, but can easily

be done repeatedly. At least for a CSP with many lex-leader constraints (4.3)

a case split building up on Lemma 5.1.2 will be superior to the näıve approach,



5.6 Outlook 123

since it tends to reduce the total runtime. Still, there will be CSPs with a small

number of lex-leader constraints, but numerous solutions. As all of these have to

be counted, splitting such a CSP into a family of CSPs will essentially have no

effect on the solve time. The majority of solutions for order 9 have one or two

idempotents. More specific, most solutions appear in one of two cases: on the one

hand 4-nilpotent semigroups, and on the other hand semigroups which contain a

3-nilpotent subsemigroup on 9 elements. At the end of Chapter 2 it was mentioned

that there is little hope to find a formula for the number of 4-nilpotent semigroups

with the presented methods. How about the second case?

Question 5.6.1 Let S be a 3-nilpotent semigroup on n elements. How many

non-equivalent semigroups on n+ 1 elements with S as subsemigroup exist?

Note, that if the new element is not an idempotent, the extended semigroup will

be itself nilpotent. In the case that the new element is an idempotent two pos-

sibilities for the new semigroup based on S are S0 and S1. For the enumeration

of semigroups of order 10 already an answer to a special case of Question 5.6.1

covering most such semigroups might be helpful. Much depends on whether one

finds constraints that propagate well to exclude already constructed semigroups

from the search.

In any case, considering the speed of hardware and software development, with-

out doubt it will be possible to enumerate the semigroups on 10 elements using

the current approach within the next 10 years.

5.6.2 Subclasses of semigroups

Some prominent subclasses of semigroups have been enumerated as well in this

chapter. Separate CSPs or CSP families were created for bands and monoids. To

obtain results for higher orders than presented, similar considerations as in the

previous paragraphs for semigroups on 10 elements need to be made.

There are other important subclasses, which where not considered in detail; for

example semigroups which are commutative, regular, or inverse.5 The number of

commutative semigroups of order 10 known from [Gri03] was confirmed by adding

the constraint Ti,j = Tj,i for all i, j ∈ [n] to the CSPs in LF10
\{Lid10}. Solving this

family of CSPs gave the expected 3 518 892 715 commutative semigroups with 10

5See Table 4.3 for further properties one might be interested in.



124 New Enumeration Results

elements which are not semilattices. Details of the computation were not reported

since the result is not new and no additional knowledge was used to build the

CSP. For a model to be efficient it should be properly adjusted to commutativity.

Similarly, it is easy to find numbers of regular and inverse semigroups of order 9

using constraints (5.12) and (5.13), see Table 5.5, but these do not efficiently use

the additional structure of inverse or regular semigroups. All those subclasses are

as well candidates for an extension of the data library Smallsemi. While at the

moment all or none of the semigroups of a given order are contained in the library,

less numerous subclasses could be included for higher orders than 8.

If one wants to go to considerably higher orders, say 15, for any particular

subclass, then to get non-equivalent solutions of a CSP by posting lex-leader con-

straints will not be practicable for all instances. And splitting into ever larger

families of CSPs is as well problematic as seen in Section 5.2. On the other hand,

the number of, say inverse semigroups, is far smaller than the number of all semi-

groups. In this case, combining an incomplete method, which returns at least one

solution from every equivalence class, with an equivalence test as post-process be-

comes an option. A comparison of one such approach with the lex-leader technique

used throughout this thesis can be found in [DK08] – though in that instance using

lex-leader was more efficient. Even better would be, of course, to prove that only a

– considerably smaller – subset of lex-leader constraints has to be posted without

getting equivalent solutions, or at least to find such a subset efficiently, as has been

done for much simpler cases [GJMRD09].

5.6.3 Other structures and properties

Constraint satisfaction has been used to solve many different types of problems.

Every finite combinatorial problem can be formulated as a CSP. There is no rea-

son why the methods presented in this thesis would apply solely to subclasses of

semigroups. Other types of algebraic objects could be enumerated, but it might

not always be the most efficient approach. For example, using the CSP SLn given

in Section 5.2 was convenient to get semilattices, but it cannot compete with the

orderly algorithm used in [HR02] to determine all lattices up to order 18 (equiva-

lently, semilattices up to order 17).

For other problems, say related to graphs, an approach based on a formula-

tion as CSP might be an option, but this is outside the immediate scope of the



5.6 Outlook 125

presented methods. The only place were graphs appeared was the construction

of non-equivalent diagonals of multiplication tables. In fact, diagonals were im-

plicitly searched for when solving Ln from CSP 4.1.3, counting all semigroups and

considering diagonal positions first. Tough, it is far more efficient to calculate the

set of diagonals using Algorithm 1 exploiting the correspondence to digraphs. An

example of a novel result in graph theory found using constraint satisfaction is

contained in [PS03]. It would be interesting to find other so far unsolved problems

related to graphs, which can be solved as a CSP.

Using Minion all automorphism groups of semigroups of order at most 9 were

identified. Before, it was not possible to compute the automorphism groups of

semigroups with 8 elements even using most recent algorithms [ABMN09, Sec-

tion 5]. This situation might seem very specific, but it indicates that constraint

programming can be a useful tool for computational algebra beyond enumeration.

In many situations computational algebra systems (CAS) fall back to a brute force

method when looking at small problems, since elaborate algorithms used for big-

ger problems of the same type often produce too much overhead. This becomes

a disadvantage if many simple computations have to be performed as part of a

larger calculation. CSP solvers are specialised tools for the situation where search

is used to solve a problem. If a solver were to be integrated in a CAS with an

efficient interface certain simple computations could be performed faster.

On a more concrete note, other properties of all semigroups up to order 9 –

like their Green’s equivalences – could be determined using constraint satisfaction.

Up to order 8 some information on Green’s classes of semigroups is summarised

in [SYT94]. Even for semigroups of order 8, which are now available in Smallsemi

the most effective method to determine a certain property for all of them will in

some cases be to modify the model LF8
– though Smallsemi is (hopefully) more

convenient to use.



126 New Enumeration Results



A Tables

In this first part of the appendix numbers of different types of semigroups are

compiled, which did not make it to the main body of the thesis.

A.1 Nilpotent Semigroups

For the convenience of the reader this section contains the numbers of 3-nilpotent

semigroups of small orders in printed form. The numbers up to equivalence and

up to isomorphism were obtained using the function Nr3NilpotentSemigroups in

Smallsemi [DM10], which is an implementation of the formulae given in Section 2.3.

The numbers for all different semigroups were calculated using the formulae from

Lemma 2.3.1 and Lemma 2.3.8.

The nilpotent semigroups with 2 to 9 elements are classified by rank in Ta-

ble A.1. These numbers were obtained using a CSP based on the partition of

nilpotent semigroups given in Lemma 2.1.2. The code implementing this approach

is available in the file nilBYrank.g on the attached DVD (Appendix C).

Table A.1 Enumeration of non-equivalent nilpotent semigroups on [n] by rank

rank \ n 2 3 4 5 6 7 8 9

2 1 1 1 1 1 1 1 1
3 1 8 84 2 660 609 797 1 831 687 022 52 966 239 062 973
4 1 7 142 6 837 1 890 303 6 634 075 827
5 1 9 184 9 860 2 826 516
6 1 10 218 12 111
7 1 12 288
8 1 13
9 1∑

1 2 10 93 2 813 616 830 1 833 587 417 52 972 875 977 730



128 Tables

T
a
b
le

A
.2

N
u
m

b
er

s
of

al
l
d
iff

er
en

t,
3-

n
il
p
ot

en
t

se
m

ig
ro

u
p
s

on
[n

]

n
|Z
n
|

1
0

2
0

3
6

4
18

0
5

11
72

0
6

3
08

9
25

0
7

5
94

4
08

0
07

2
8

14
7

34
8

27
5

20
9

80
0

9
38

43
0

60
3

83
1

26
4

88
3

63
2

10
90

11
6

19
7

77
5

74
6

46
4

85
9

79
1

75
0

11
2

11
8

03
1

07
8

80
6

48
6

81
9

49
6

58
9

63
5

74
3

44
0

12
96

6
49

0
88

7
28

2
83

7
50

0
13

4
22

1
23

3
33

9
52

7
16

0
71

7
34

0
13

17
16

5
26

1
05

3
16

6
61

0
94

0
02

9
33

1
02

4
34

3
11

5
37

5
66

5
76

9
31

6
91

1
57

6
14

6
44

4
20

6
97

4
82

2
29

6
28

3
92

0
29

8
14

8
68

9
54

4
17

2
13

9
27

7
28

3
01

8
11

2
67

9
40

6
09

8
01

0
15

38
70

7
08

0
16

8
57

1
50

0
66

6
42

4
25

5
32

8
93

0
87

9
02

6
86

1
58

0
61

7
59

8
21

8
45

0
54

6
40

8
00

4
39

0
04

4
57

8
12

0
16

3
70

2
66

6
86

4
08

2
79

2
49

0
87

7
28

4
91

9
23

5
95

0
22

3
06

7
16

7
17

4
58

5
21

5
44

4
95

6
76

8
46

6
08

5
81

9
98

3
99

2
26

4
73

2
73

8
84

9
04

0



A.1 Nilpotent Semigroups 129

T
a
b
le

A
.3

N
u
m

b
er

s
of

al
l
d
iff

er
en

t,
co

m
m

u
ta

ti
ve

,
3-

n
il
p
ot

en
t

se
m

ig
ro

u
p
s

on
[n

]

n
|C

Z
n
|

1
0

2
0

3
6

4
84

5
1

62
0

6
67

17
0

7
7

65
5

42
4

8
2

76
2

84
7

75
2

9
3

17
7

53
1

09
9

86
4

10
11

94
2

81
6

96
8

51
3

35
0

11
17

0
38

7
99

0
51

4
80

7
76

3
28

0
12

11
44

5
73

4
47

3
99

2
30

2
20

7
67

7
40

4
13

3
78

3
74

1
94

7
41

6
13

3
94

1
82

8
68

8
62

1
48

4
14

5
51

5
86

9
59

4
36

0
61

7
15

4
29

5
30

9
60

4
96

2
21

7
27

4
15

33
92

0
02

3
79

3
86

3
70

6
95

5
62

9
53

7
24

6
61

0
15

7
73

7
73

6
80

0
16

96
1

31
5

88
3

91
8

21
1

83
9

93
3

60
5

60
1

92
3

92
2

42
5

71
3

63
5

60
3

84
8

08
0

17
16

0
89

8
86

8
32

9
02

2
12

1
11

1
52

0
48

9
01

1
08

9
64

3
69

7
94

3
35

6
92

2
36

8
99

7
91

5
12

0
18

19
3

72
3

23
9

22
1

18
8

06
5

10
6

56
6

63
6

54
6

06
1

28
6

12
1

44
6

06
0

61
1

63
6

16
2

98
8

63
0

72
4

40
3

47
0

19
1

47
1

20
8

65
0

40
1

31
1

15
6

22
2

79
7

79
5

17
9

82
2

43
4

24
2

21
0

11
5

20
0

37
7

38
9

76
6

87
4

74
2

12
4

80
6

30
4

22
2

43
2

20
59

64
8

12
8

31
7

64
0

93
5

34
2

56
8

03
1

97
0

78
2

06
8

80
9

72
3

18
9

23
5

77
4

10
9

33
8

82
2

41
8

51
0

41
8

69
4

46
4

09
7

17
4

91
0

14
6

34
0



130 Tables

T
a
b
le

A
.4

N
u
m

b
er

s
of

n
on

-i
so

m
or

p
h
ic

3-
n
il
p
ot

en
t

se
m

ig
ro

u
p
s

on
[n

]

n
|Ẑ
n
|

1
0

2
0

3
1

4
9

5
11

8
6

4
67

1
7

1
19

9
98

9
8

3
66

1
52

2
79

2
9

10
5

93
1

87
2

02
8

45
5

10
24

83
4

56
3

58
2

16
8

71
6

30
5

11
53

06
1

40
6

57
6

51
4

23
9

12
4

32
7

75
1

12
2

01
7

72
0

19
6

18
7

06
9

55
0

26
2

59
6

20
8

73
2

03
5

13
2

75
6

57
6

82
7

98
9

21
0

68
0

36
7

43
9

73
2

66
7

80
2

73
8

77
3

38
4

14
73

91
9

85
8

83
6

70
8

51
1

51
7

42
6

76
3

17
9

87
3

53
8

28
9

32
9

85
2

78
6

25
3

51
0

15
29

59
9

93
7

96
4

45
2

48
4

35
9

58
9

00
7

27
7

44
7

53
8

85
4

22
7

89
1

14
9

79
1

71
7

67
3

58
1

11
0

64
2

16
17

6
96

8
12

3
46

3
30

7
37

2
11

1
21

2
93

4
46

3
61

7
56

8
46

6
24

7
28

2
88

1
85

3
77

5
65

3
62

0
06

7
09

3
35

5
21

1
60

4
33

0
17

18
88

7
34

4
92

7
58

9
62

8
46

3
61

7
94

2
72

7
38

8
85

7
15

7
04

8
88

6
64

2
44

0
60

0
91

2
05

5
30

1
27

7
52

8
04

9
50

8
95

5
22

1
11

3
39

9
82

1
32

0



A.1 Nilpotent Semigroups 131

T
a
b
le

A
.5

N
u
m

b
er

s
of

n
on

-e
q
u
iv

al
en

t
3-

n
il
p
ot

en
t

se
m

ig
ro

u
p
s

on
[n

]

n
|Z
n
|

1
0

2
0

3
1

4
8

5
84

6
2

66
0

7
60

9
79

7
8

1
83

1
68

7
02

2
9

52
96

6
23

9
06

2
97

3
10

12
41

7
28

2
09

5
52

2
91

8
81

1
11

26
53

0
70

3
28

9
25

2
29

8
68

7
05

3
07

2
12

1
00

8
86

0
09

8
09

3
54

7
69

2
91

1
90

1
80

4
99

0
61

0
13

1
37

8
28

8
41

3
99

4
60

5
34

1
05

3
35

4
10

5
96

9
66

0
80

8
03

1
16

3
14

36
95

9
92

9
41

8
35

4
25

5
75

8
71

3
67

6
93

3
40

2
53

8
92

0
15

7
76

5
94

6
95

6
88

9
15

14
79

9
96

8
98

2
22

6
24

2
17

9
79

4
50

3
63

9
14

6
98

3
95

2
85

3
04

4
95

0
74

0
90

7
66

6
30

3
43

6
92

2
16

88
48

4
06

1
73

1
65

3
68

6
05

5
60

6
46

7
23

1
80

8
78

6
72

0
62

4
06

0
41

1
85

0
79

5
19

9
16

5
17

8
78

1
62

2
83

3
79

4
93

0
17

9
44

3
67

2
46

3
79

4
81

4
23

1
80

8
97

1
36

3
69

4
42

8
57

8
52

4
51

0
41

7
97

9
27

1
82

7
25

2
28

5
23

4
99

6
80

9
33

7
36

4
45

4
60

7
87

0
55

6
06

9



132 Tables

T
a
b
le

A
.6

N
u
m

b
er

s
of

n
on

-e
q
u
iv

al
en

t
se

lf
-d

u
al

,
3-

n
il
p
ot

en
t

se
m

ig
ro

u
p
s

on
[n

]

n
|{

S
∈

Z
n
|S

is
se

lf-
du

al
}|

1
0

2
0

3
1

4
7

5
50

6
64

9
7

19
60

5
8

1
85

1
25

2
9

60
6

09
7

49
1

10
60

8
87

7
12

1
31

7
11

1
99

0
35

8
24

9
77

8
39

3
12

25
83

5
56

1
20

7
40

1
24

9
18

5
13

1
73

9
26

8
47

9
27

1
51

8
87

7
28

8
94

2
14

59
0

68
6

93
1

53
9

55
0

98
5

67
9

10
7

66
0

26
8

15
84

6
42

9
05

1
47

8
19

8
75

1
69

0
09

7
65

9
02

5
76

3
20

2
16

4
97

5
00

0
83

7
94

1
84

7
81

4
74

4
71

0
29

0
46

9
89

0
45

5
98

5
53

0
17

13
4

19
3

51
7

94
2

74
2

44
9

26
9

19
2

46
5

56
9

16
5

77
3

68
8

10
2

34
1

29
0

81
8

18
23

01
9

22
3

06
3

16
1

15
6

01
2

64
2

50
9

01
1

51
3

68
2

62
9

69
6

43
0

76
2

79
8

44
4

41
2

80
0

19
30

68
0

50
9

56
8

61
0

90
6

77
6

26
3

62
4

76
8

43
4

58
1

56
8

67
0

34
7

39
3

80
0

99
0

31
6

74
7

80
9

11
8

85
0

20
25

2
78

4
53

0
87

7
59

9
60

0
37

1
04

1
76

2
57

0
28

0
77

8
74

6
93

4
98

1
50

1
93

1
36

7
53

2
82

1
10

2
61

1
46

6
41

9
35

1
99

3
21

10
75

5
14

7
52

0
39

0
10

8
55

9
85

8
54

6
03

6
35

1
59

4
38

5
61

5
20

3
98

9
09

2
98

9
51

8
57

2
47

2
02

3
89

2
43

1
32

0
58

6
54

9
06

7
32

7
57

8



A.1 Nilpotent Semigroups 133

T
a
b
le

A
.7

N
u
m

b
er

s
of

n
on

-e
q
u
iv

al
en

t
co

m
m

u
ta

ti
ve

,
3-

n
il
p
ot

en
t

se
m

ig
ro

u
p
s

on
[n

]

n
|C

Z
n
|

1
0

2
0

3
1

4
5

5
23

6
15

5
7

2
10

6
8

79
99

7
9

9
35

0
24

0
10

3
37

7
27

4
62

1
11

4
30

5
80

7
39

9
35

4
12

23
95

1
67

3
82

2
31

8
90

1
13

60
8

00
6

61
7

85
7

84
7

43
3

46
2

14
63

28
2

04
2

55
1

03
1

18
0

91
5

40
3

65
9

15
25

94
0

47
0

16
6

03
8

60
3

66
6

19
4

39
1

35
7

97
2

16
45

94
6

45
4

97
8

82
4

28
6

60
1

55
1

28
3

05
2

73
9

17
1

31
8

17
45

2
36

1
44

2
89

5
92

6
94

7
43

8
99

8
01

9
24

0
98

2
89

3
51

7
74

9
16

9
18

30
25

8
04

6
59

6
21

8
43

8
11

5
65

7
05

9
10

7
81

2
63

4
40

5
96

2
38

1
16

6
45

7
71

1
19

12
09

4
27

0
65

6
16

0
40

3
92

0
76

7
93

5
60

4
62

4
74

8
90

8
99

3
16

9
94

9
31

7
45

4
76

7
61

7
79

5
20

24
51

7
27

5
72

4
67

9
09

8
84

8
05

2
43

3
71

0
57

7
08

2
82

8
17

7
42

2
41

7
58

7
89

4
73

4
94

6
88

1
36

4
71

4
51

1
21

24
3

89
0

98
7

69
3

36
2

91
2

91
7

20
6

52
7

82
7

10
3

43
7

80
3

39
2

83
0

31
7

41
7

34
3

21
3

59
2

02
9

19
3

28
3

93
0

83
6

47
5

27
4

22
12

94
4

03
6

43
9

52
7

61
6

75
3

03
1

21
7

75
9

91
3

47
1

85
9

22
4

71
8

07
9

71
0

47
6

03
6

58
3

29
4

73
8

51
9

79
6

33
6

04
7

32
8

61
3

79
6

69
2

40
7



134 Tables

A.2 Automorphism Groups

The tables in this section list the automorphism groups of all semigroups up to

equivalence with 2 to 9 elements. There is one table for each order, containing

one line for each isomorphism type of automorphism group. The groups are iden-

tified by their ID in the SmallGroups library [BEO02], if their order is less than

1978. In any case a structural description, computed using the GAP command

StructureDescription, is provided, and – of course – the number of semigroups

with the given group as automorphism group.

Details about the code used to compute the automorphism groups are given in

Section C.2.3.

Table A.8 Order 2

group ID number

trivial (1, 1) 3
C2 (2, 1) 1

Table A.9 Order 3

group ID number

trivial (1, 1) 12
C2 (2, 1) 5
S3 (6, 1) 1

Table A.10 Order 4

group ID number

trivial (1, 1) 78
C2 (2, 1) 39
C2

2 (4, 2) 3
S3 (6, 1) 5
S4 (24, 12) 1



A.2 Automorphism Groups 135

Table A.11 Order 5

group ID number

trivial (1, 1) 746
C2 (2, 1) 342
C3 (3, 1) 2
C4 (4, 1) 1
C2

2 (4, 2) 26
S3 (6, 1) 33
D8 (8, 3) 1
D12 (12, 4) 4
S4 (24, 12) 4
S5 (120, 34) 1

Table A.12 Order 6

group ID number

trivial (1, 1) 10 965
C2 (2, 1) 4 121
C3 (3, 1) 26
C4 (4, 1) 7
C2

2 (4, 2) 441
S3 (6, 1) 300
D8 (8, 3) 17
C3

2 (8, 5) 6
D12 (12, 4) 49
S4 (24, 12) 30
S4 (36, 10) 2
S4 (48, 48) 4
S5 (120, 34) 4
S6 (720, 763) 1

Table A.13 Order 7

group ID number

trivial (1, 1) 746 277
C2 (2, 1) 76 704
C3 (3, 1) 412
C4 (4, 1) 82
C2

2 (4, 2) 7 314
C5 (5, 1) 6
S3 (6, 1) 3 638
C6 (6, 2) 37

C4 × C2 (8, 2) 4
D8 (8, 3) 169
C3

2 (8, 5) 172
D10 (10, 1) 2
D12 (12, 4) 790

C2 ×D8 (16, 11) 10
S4 (24, 12) 277

C2
2 × S3 (24, 14) 14
S4 (36, 10) 24
S4 (48, 48) 45

(S2
3) o C2 (72, 40) 1
S5 (120, 34) 30

S3 × S4 (144, 183) 4
C2 × S5 (240, 189) 4
S6 (720, 763) 4
S7 (5040,−) 1



136 Tables

Table A.14 Order 8

group ID / order number

trivial (1, 1) 1 834 638 770
C2 (2, 1) 8 176 697
C3 (3, 1) 17 297
C4 (4, 1) 1 270

C2 × C2 (4, 2) 188 316
C5 (5, 1) 92
S3 (6, 1) 69 275
C6 (6, 2) 1 249

C4 × C2 (8, 2) 105
D8 (8, 3) 2 238

C2 × C2 × C2 (8, 5) 5 324
C3 × C3 (9, 2) 5
D10 (10, 1) 28
D12 (12, 4) 13 583

C2 ×D8 (16, 11) 263
C2 × C2 × C2 × C2 (16, 14) 15

C3 × S3 (18, 3) 40
C5 : C4 (20, 3) 1
C4 × S3 (24, 5) 4
S4 (24, 12) 3 461

C2 × A4 (24, 13) 4
C2 × C2 × S3 (24, 14) 491
S3 × S3 (36, 10) 368
D8 × S3 (48, 38) 11
C2 × S4 (48, 48) 768

(S3 × S3) : C2 (72, 40) 16
C2 × S3 × S3 (72, 46) 12
C2 × C2 × S4 (96, 226) 14

S5 (120, 34) 277
S3 × S4 (144, 183) 44

PSL(3, 2) (168, 42) 1
C2 × S5 (240, 189) 44
S4 × S4 (576, 8653) 2
S6 (720, 763) 30

S5 × S3 (720, 767) 4
C2 × S6 (1440, 5842) 4
S7 5040 4
S8 40320 1



A.2 Automorphism Groups 137

Table A.15 Order 9

group ID / order number

trivial (1, 1) 52 961 873 376 696
C2 (2, 1) 27 478 363 462
C3 (3, 1) 6 329 218
C4 (4, 1) 53 591

C2 × C2 (4, 2) 33 882 706
C5 (5, 1) 1 547
S3 (6, 1) 7 881 736
C6 (6, 2) 94 521
C7 (7, 1) 18

C4 × C2 (8, 2) 3 286
D8 (8, 3) 59 125

C2 × C2 × C2 (8, 5) 203 597
C3 × C3 (9, 2) 291
D10 (10, 1) 420
C10 (10, 2) 108
C12 (12, 2) 26
A4 (12, 3) 3
D12 (12, 4) 349 142

C6 × C2 (12, 5) 850
D14 (14, 1) 4

C4 × C2 × C2 (16, 10) 18
C2 ×D8 (16, 11) 5 212

C2 × C2 × C2 × C2 (16, 14) 1 345
C3 × S3 (18, 3) 1 286

(C3 × C3) : C2 (18, 4) 1
C5 : C4 (20, 3) 8
D20 (20, 4) 36

C7 : C3 (21, 1) 2
C4 × S3 (24, 5) 105
C3 ×D8 (24, 10) 26
S4 (24, 12) 66 700

C2 × A4 (24, 13) 57
C2 × C2 × S3 (24, 14) 14 140
C4 ×D8 (32, 25) 1

(C2 × C2 × C2 × C2) : C2 (32, 27) 6
C2 × C2 ×D8 (32, 46) 60

S3 × S3 (36, 10) 6 188
GL(2, 3) (48, 29) 1



138 Tables

group ID / order number

D8 × S3 (48, 38) 227
C2 × S4 (48, 48) 12 592

C2 × C2 × C2 × S3 (48, 51) 44
(S3 × S3) : C2 (72, 40) 140

C3 × S4 (72, 42) 34
C2 × S3 × S3 (72, 46) 404
C4 × S4 (96, 186) 4

C2 × C2 × S4 (96, 226) 389
S5 (120, 34) 3 361

S3 × S4 (144, 183) 637
C2 × ((S3 × S3) : C2) (144, 186) 5

PSL(3, 2) (168, 42) 3
D8 × S4 (192, 1472) 5

S3 × S3 × S3 (216, 162) 4
C2 × S5 (240, 189) 673

C2 × S3 × S4 (288, 1028) 24
C2 × C2 × S5 (480, 1186) 14
S4 × S4 (576, 8653) 15
S6 (720, 763) 259

S5 × S3 (720, 767) 34
C2 × S6 (1440, 5842) 31
S5 × S4 2880 4
S6 × S3 4320 4
S7 5040 25

C2 × S7 10080 4
S8 40320 2
S9 362880 1

A.3 Up to Isomorphism

In the main body of this thesis two semigroups are considered to have the same

structure if they are isomorphic or anti-isomorphic. There are situations in which

one wants to know the semigroups up to isomorphism and wants to consider semi-

groups that are only anti-isomorphic as different. The data library Smallsemi

contains the function UpToIsomorphism for this purpose. Here, the most impor-

tant results enumerating semigroups up to equivalence have their counterpart up

to isomorphism. These are the numbers of semigroups depending on the number

of idempotents in Table A.16, and the numbers of monoids in Table A.18. As con-



A.3 Up to Isomorphism 139

Table A.16 Enumeration of non-isomorphic semigroups on [n] by idempotent

n 1 2 3 4 5 6 7 8 9
Id.

1 1 2 5 20 171 5 284 1 224 331 3 667 785 000 105 952 488 687 468
2 3 9 50 309 2 806 58 583 9 207 430 25 412 267 163
3 10 72 590 5 422 61 323 1 150 085 136 799 017
4 46 594 7 772 101 539 1 466 691 27 690 828
5 251 5 668 109 107 1 983 558 36 991 211
6 1 682 59 576 1 626 956 39 865 274
7 13 213 690 871 25 666 762
8 119 826 8 739 857
9 1 228 712∑

1 5 24 188 1 915 28 634 1 627 672 3 684 030 417 105 978 177 936 292

necting link (see Lemma 1.1.3) the numbers of self-dual semigroups are reported

for the same cases.

Table A.17 Enumeration of non-isomorphic self-dual semigroups on [n]

n 1 2 3 4 5 6 7 8 9
Idpt.

1 1 2 5 18 93 930 22 899 1 937 266 613 365 656
2 1 5 24 123 754 6 721 123 988 8 265 721
3 2 16 112 764 5 567 49 969 739 317
4 6 58 542 4 751 41 939 410 158
5 19 254 2 933 31 392 328 937
6 68 1 214 17 396 223 226
7 285 6 513 113 160
8 1 376 38 979
9 7 510∑

1 3 12 64 405 3 312 44 370 2 209 839 623 492 664



140 Tables

T
a
b
le

A
.1

8
E

n
u
m

er
at

io
n

of
n
on

-i
so

m
or

p
h
ic

(s
el

f-
d
u
al

)
m

on
oi

d
s

on
[n

]

n
1

2
3

4
5

6
7

8
9

10

m
on

oi
d
s

1
2

7
35

22
8

2
23

7
31

55
9

1
66

8
99

7
3

68
5

88
6

63
0

10
5

98
1

88
2

10
3
06

3
–,

se
lf
-d

u
al

1
2

5
19

84
50

9
3

90
1

48
95

7
2

26
4

76
4

62
5

84
4
42

1



B Semigroup Properties

This part of the appendix contains a list of standard properties of semigroups,

many of which were mentioned in the thesis, but not actually used. These are in

particular the properties in Table 4.3. For sake of completeness, properties which

are defined in the main body of the thesis are repeated. A semigroup S is . . .

. . . a band if x2 = x for all x ∈ S.

. . . a Clifford semigroup if S is regular and ex = xe for all x ∈ S and e ∈ E(S).

. . . commutative if xy = yx for all x, y ∈ S.

. . . completely regular if every element is contained in a subgroup of S.

. . . a group if S is a monoid and every element in S is invertible.

. . . inverse if for all x ∈ S there exists a unique element y ∈ S such that xyx = x.

. . . a monoid if S contains an identity.

. . . a rectangular band if S is a band and xyx = x for all x, y ∈ S.

. . . regular if for all x ∈ S there exists an element y ∈ S such that xyx = x.

. . . self-dual if S is anti-isomorphic to itself.

. . . a semilattice if S is commutative and a band.

. . . simple if SxS = S for all x ∈ S.

. . . zero simple if S contains a zero z and SxS = S for all x ∈ S \ {z}.



142 Semigroup Properties



C DVD Content

This last part of the appendix contains a DVD with the programs, written to

obtain the computational results in this thesis. The content and how to utilise

it, is described briefly. This should enable readers to repeat computations for

themselves and to verify computational details of the process that led to the various

enumeration results.

C.1 Smallsemi

The data library of semigroups of orders 1 to 8 is described in Section 4.2. A

copy of version 0.6.0 of Smallsemi is available on the DVD. It is located in the

directory pkg/smallsemi. This allows one to start GAP with the path to the

drive containing the DVD as additional root directory (-l command line option)

and load Smallsemi. The data files in this copy of Smallsemi are uncompressed,

so that it will work on any operating system. The DVD contains in addition the

two archives smallsemi0r6p0.tar.gz and smallsemi0r6p0.tar.bz2, which can

be used to install Smallsemi in a Unix environment. For further information see

Section 4.2 and the manual in pkg/smallsemi/doc.

C.2 GAP code

The implementation of Algorithm 1 and its adaptation is available in the

file construct diagonals.g. The functions FunctionDigraphs respectively

PartialFunctionDigraphs were used to verify the numbers of non-equivalent

functions and partial functions in Tables 3.1 and 3.2.

The remaining code was used to create Minion input files for the CSPs from

Chapters 4 and 5 and is contained in the folder search. The latter has two subdi-



144 DVD Content

rectories, aut and monoids, with the code used to obtain the results in Sections 5.5

respectively 5.4. Former versions of some of the files were written by Kelsey.

Brief descriptions of all files are given in the following. The usage of the code

for the enumerative searches is explained in Section C.2.2. The functions to obtain

automorphism groups look a bit different and are therefore explained separately

in Subsection C.2.3.

C.2.1 Auxiliary files

Two special files are minion.g and setup.g. The former contains the interface

between GAP and Minion written by Linton with slight modifications. The latter

allows one to adjust search options by changing the entries of the record FLAGS

contained in it. In particular, FLAGS.3NIL decides whether 3-nilpotent semigroups

are counted, and FLAGS.NTA does the analogue for trivial action monoids in the

search for monoids. An overview of the main purpose of the remaining auxiliary

files is given next.

assoc.g creating a basic record from which Minion input is produced to search

for associative multiplication tables

blocks.g constructing non-equivalent D-class structures for the search of bands;

based on Algorithm 2

diagonals.g constructing non-equivalent diagonals of multiplication tables;

based on Algorithm 1

isosymmetry.g adding lex-leader constraints suitable to find semigroups up to

isomorphism to basic record

notselfdualsymmetry.g adding lex-leader constraints suitable to find semigroups

that are not self-dual to basic record

selfdualsymmetry.g adding lex-leader constraints suitable to find semigroups

that are self-dual to basic record

symmetry.g adding lex-leader constraints suitable to find semigroups up to equiv-

alence to basic record

The non-equivalent D-class structures of bands were precomputed for 2 ≤ n ≤ 10

and stored in the files boundsn.g.



C.2 GAP code 145

C.2.2 Enumeration of semigroups

Table C.1 contains an overview of the files providing code to enumerate different

types of semigroups using various case splits to build a family of CSPs. The table

serves as well as reference stating which code was used for which of the enumeration

results. The description of the auxiliary files can be found in the previous section.

One special case is the file basic.g (in the directory search), which provides

the code to search for semigroups depending on the diagonal, and in addition

the function nrSemigroups, which uses all refinements described in Section 5.3.1.

A function getSemigroups to obtain all multiplication tables of semigroups is

provided as well, though if one just wants the result, it is quicker to use the

function RecoverMultiplicationTable from Smallsemi.

To use any of the code to enumerate semigroups, GAP has to be started from

within the directory search. Moreover, an executable for Minion is needed, which

is assumed to be called by the command minion. The default setting can be

overwritten in the file setup.g, or the variable MINION EXEC can be adjusted within

GAP. Note that for some of the bigger computations more than 4GB RAM – and

consequently 64-bit executables – are required.

All files for the enumerative search listed in Table C.1 contain usually only one

function called search..., where the suffix can depend on the type and on the

case split. Calling that function without arguments will print advice on how to

use it. An example for the search of semigroups using the case split on the number

of idempotents looks as follows.

[andreas@kininvie search]$ gap idempotent.g

[...]

gap> searchByIdempotent(4);

Semigroups of order 4

Idempotents 1 of 4 with 12 symmetries and 19 solution(s)

Idempotents 2 of 4 with 8 symmetries and 37 solution(s)

Idempotents 3 of 4 with 12 symmetries and 44 solution(s)

Idempotents 4 of 4 with 48 symmetries and 26 solution(s)

GAP cpu : 0:00:00.284

Minion cpu : 0:00:00.060

126

gap>



146 DVD Content
T
a
b
le

C
.1

O
ve

rv
ie

w
of

co
d
e

fo
r

th
e

en
u
m

er
at

io
n

of
se

m
ig

ro
u
p
s

fi
le

ty
p
e

of
se

m
ig

ro
u
p

ca
se

sp
li
t

on
u
se

d
fo

r
co

m
m

an
d

s
e
a
r
c
h
/

a
l
l
.
g

al
l
d
iff

er
en

t
se

m
ig

ro
u
p
s

–
T
ab

le
4.

1
s
e
a
r
c
h
A
L
L
S
e
m
i
g
r
o
u
p
s

a
l
l
o
n
e
s
.
g

co
n
st

an
t

d
ia

go
n
al

fi
rs

t
ro

w
b
a
s
i
c
.
g

s
e
a
r
c
h
A
l
l
O
n
e
s

b
a
n
d
s
B
Y
r
e
c
t
.
g

b
an

d
s

m
in

im
al
D

-c
la

ss
T
ab

le
5.

3
s
e
a
r
c
h
B
a
n
d
s

b
a
n
d
s
.
g

b
an

d
s

D
-c

la
ss

st
ru

ct
u
re

T
ab

le
5.

3
s
e
a
r
c
h
B
a
n
d
s

b
a
s
i
c
.
g

a
se

m
ig

ro
u
p
s

d
ia

go
n
al

T
ab

le
5.

1
s
e
a
r
c
h
B
y
D
i
a
g
o
n
a
l

c
o
m
m
i
n
v
.
g

co
m

m
.

in
ve

rs
e

n
u
m

b
er

of
id

em
p
ot

en
ts

T
ab

le
5.

5
s
e
a
r
c
h
C
o
m
m
I
n
v
e
r
s
e
S
e
m
i
g
r
o
u
p
s

c
o
m
m
u
t
a
t
i
v
e
.
g

co
m

m
u
ta

ti
ve

d
ia

go
n
al

T
ab

le
5.

5
s
e
a
r
c
h
A
b
e
l
i
a
n
B
y
D
i
a
g
o
n
a
l

i
d
e
m
p
o
t
e
n
t
.
g

se
m

ig
ro

u
p
s

n
u
m

b
er

of
id

em
p
ot

en
ts

T
ab

le
5.

2
s
e
a
r
c
h
B
y
I
d
e
m
p
o
t
e
n
t

i
n
v
e
r
s
e
.
g

in
ve

rs
e

n
u
m

b
er

of
id

em
p
ot

en
ts

T
ab

le
5.

5
s
e
a
r
c
h
I
n
v
e
r
s
e
S
e
m
i
g
r
o
u
p
s

n
i
l
p
o
t
e
n
t
.
g

n
il
p
ot

en
t

n
u
m

b
er

of
an

n
ih

il
at

or
s

b
a
s
i
c
.
g

s
e
a
r
c
h
N
i
l
p
o
t
e
n
t
S
e
m
i
g
r
o
u
p
s

n
i
l
B
Y
r
a
n
k
.
g

n
il
p
ot

en
t

b
y

ra
n
k

p
ar

ti
ti
on

fr
om

L
em

m
a

2.
1.

2
T
ab

le
A

.1
s
e
a
r
c
h
N
i
l
p
o
t
e
n
t
B
y
R
a
n
k

r
e
g
u
l
a
r
.
g

re
gu

la
r

n
u
m

b
er

of
id

em
p
ot

en
ts

T
ab

le
5.

5
s
e
a
r
c
h
R
e
g
u
l
a
r
S
e
m
i
g
r
o
u
p
s

s
e
m
i
l
a
t
t
i
c
e
s
.
g

se
m

il
at

ti
ce

s
–

T
ab

le
5.

3
s
e
a
r
c
h
S
e
m
i
l
a
t
t
i
c
e
s

s
i
n
g
l
e
.
g

se
m

ig
ro

u
p
s

–
T
ab

le
4.

2
s
e
a
r
c
h
A
l
l
S
e
m
i
g
r
o
u
p
s

s
e
a
r
c
h
/
m
o
n
o
i
d
s
/

b
a
s
i
c
.
g

m
on

oi
d
s

d
ia

go
n
al

T
ab

le
5.

6
s
e
a
r
c
h
M
o
n
o
i
d
s
B
y
D
i
a
g
o
n
a
l

g
r
o
u
p
d
i
a
g
s
.
g

m
on

oi
d
s

u
n
it

gr
ou

p
an

d
d
ia

go
n
al

T
ab

le
5.

7
s
e
a
r
c
h
M
o
n
o
i
d
s
B
y
G
r
o
u
p
A
n
d
D
i
a
g

g
r
o
u
p
.
g

m
on

oi
d
s

u
n
it

gr
ou

p
T
ab

le
5.

7
s
e
a
r
c
h
M
o
n
o
i
d
s
B
y
G
r
o
u
p

s
i
n
g
l
e
.
g

m
on

oi
d
s

–
T
ab

le
5.

6
s
e
a
r
c
h
A
l
l
M
o
n
o
i
d
s

a
Se

e
te

xt
fo

r
ad

di
ti

on
al

fu
nc

ti
on

s
in

b
a
s
i
c
.
g



C.2 GAP code 147

C.2.3 Computing automorphism groups

The folder search/aut contains files to control the lex-leader constraints (4.3)

according to the different cases depending on the type of automorphism group as

described in Section 5.5.

C2symmetry.g requires one automorphism of order 2; no other orders.

V4symmetry.g requires three automorphisms of order 2; no other orders.

C2-3symmetry.g requires seven automorphisms of order 2; no other orders.

C2+4symmetry.g requires at least eight automorphisms of order 2; no other orders.

evensymmetry.g requires at least one automorphism of order 4; none whose order

is not a power of 2.

oddsymmetry.g requires at least one automorphism whose order is an odd prime.

In addition, a copy for some of the files from Section C.2.2 is stored in aut.

The difference to the original files is, that instead of numbers of semigroups, lists

of Booleans corresponding to their automorphisms are returned. This allows to

reconstruct the automorphism group in GAP and identify it using the function

IdSmallGroup.

Again, GAP has to be started from within the directory search. Reading the

file aut/getAutomorphismGroups.g will load a function getAutos. This function

takes n ∈ N as input and returns a list of pairs, each containing a group ID and

the number of semigroups of order n with the specified group as automorphism

group. If the order of the group is greater than 2010, then an ID is not available

and a string describing the structure of the group is given instead. The latter is

computed with StructureDescription.

For 3-nilpotent semigroups of orders 8 and 9 the automorphism groups are

precomputed and stored in the files autos-3nil-8.txt and autos-3nil-9.txt

respectively. For these values of n one can set FLAGS.3NIL to false. Then the

automorphism groups of 3-nilpotent semigroups are not determined by getAutos,

but the precomputed information is used instead.



148 DVD Content

C.3 Instances and Output

To give a complete record of the computations undertaken to obtain the presented

enumeration results, copies of the instances and output files are included on the

DVD. They are located in the directories instances and output respectively. An

overview of the subdirectories is given in Table C.2.

The instances were run with the script runscript.sh in each folder, and the

results were extracted from the output with the script stats.sh. The original

versions of both scripts were written by Kelsey. Neither of the scripts will work

on the DVD itself, since the directory has to be writable. The instances have

been compressed with gzip [Deu96] to fit on the DVD. They can be run without

decompressing them if gzip is available.

Table C.2 Overview of directories containing Minion instances and output files

subdirectory CSP (family) max. order results in

semigroups

ALL Ln 7 Table 4.1
basic LFn

8 Table 5.1
basic-3nil L−3

Fn
8 Table 5.1

idempotents-3nil L−3
U 8 Table 5.2

idempotents LU 8 Table 5.2
single Ln 8 Table 4.2
single-3nil L

−3
n 8 Table 4.2

bands

bandsBYrect LRn
9 Table 5.3

bands-single Lidn 8 Table 5.3
semilattices SLn 10 Table 5.3

monoids

monoids-single Mn 9 Table 5.6
monoidsBYdiagonal MPn−1

9 Table 5.6
monoidsBYdiagonalE Me

Pn−1
9 Table 5.6

monoidsBYgroupE Me
G≤n

10 Table 5.7

monoidsBYgroupNTA Mnta
G≤n

10 Table 5.7
monoidsBYgroupANDdiag MG≤n,F

∗
≤n

9 Table 5.7

monoidsBYgroupANDdiagE Me
G≤n,F

∗
≤n

10 Table 5.7

monoidsBYgroupANDdiagNTA Mnta
G≤n,F

∗
≤n

10 Table 5.7



Bibliography

[ABE+03] E. Aichinger, F. Binder, J. Ecker, P. Mayr, and C. Nöbauer.
SONATA – system of near-rings and their applications.
http://www.algebra.uni-linz.ac.at/Sonata/, 2003.
A GAP 4 package [GAP08], Version 2.

[ABMN09] J. Araújo, P. V. Bünau, J. D. Mitchell, and M. Neunhöffer.
Computing automorphisms of semigroups.
Journal of Symbolic Computation, In Press, Corrected Proof:–, 2009.
http://www.sciencedirect.com/science/article/

B6WM7-4XJP3XV-1/2/fe6e8fcf4f3ab95f67dc757f58891b39.

[BEO02] Ulrich Besche, Bettina Eick, and Eamonn O’Brien.
The SmallGroups Library.
http://www-public.tu-bs.de:8080/∼beick/soft/small/small.

html, 2002.
An accepted GAP 4 package [GAP08].

[CGLR96] James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and
Amitabha Roy.

Symmetry-breaking predicates for search problems.
In Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, editors,

KR’96: Principles of Knowledge Representation and Reasoning,
pages 148–159, San Francisco, California, 1996. Morgan Kauf-
mann.

[CP61] A. H. Clifford and G. B. Preston.
The algebraic theory of semigroups. Vol. I.
Mathematical Surveys, No. 7. American Mathematical Society, Prov-

idence, R.I., 1961.

[Dav53] Robert L. Davis.
The number of structures of finite relations.
Proc. Amer. Math. Soc., 4:486–495, 1953.

[dB59] N. G. de Bruijn.
Generalization of Polya’s fundamental theorem in enumerative com-

binatorial analysis.

149



150 BIBLIOGRAPHY

Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math., 21:59–69,
1959.

[Deu96] P. Deutsch.
GZIP file format specification version 4.3.
Alassin Enterprises, ftp://ftp.isi.edu/in-notes/rfc1952.txt,

1996.

[DK08] Andreas Distler and Tom Kelsey.
The monoids of order eight and nine.
In S. Autexier, J. Campbell, J. Rubio, V. Sorge, M. Suzuki, and

F. Wiedijk, editors, Artificial Intelligence and Symbolic Compu-
tation, 8th International Conference, AISC 2008, Birmingham,
July, 2004, Proceedings, volume 5144 of Lecture Notes in Com-
puter Science, pages 61–76. Springer, 2008.

[DK09] Andreas Distler and Tom Kelsey.
The monoids of orders eight, nine & ten.
Ann. Math. Artif. Intell., 56(1):3–21, 2009.

[DM10] Andreas Distler and James D. Mitchell.
Smallsemi - A library of small semigroups.
http://www-history.mcs.st-and.ac.uk/∼jamesm/smallsemi/,

Feb 2010.
A GAP 4 package [GAP08], Version 0.6.0.

[ER63] P. Erdős and A. Rényi.
Asymmetric graphs.
Acta Math. Acad. Sci. Hungar, 14:295–315, 1963.

[For55] George E. Forsythe.
SWAC computes 126 distinct semigroups of order 4.
Proc. Amer. Math. Soc., 6:443–447, 1955.

[For60] George E. Forsythe.
Review of: ‘On Finite Semigroups’ by John L. Selfridge.
Mathematics of Computation, 14(70):204–207, 1960.
http://www.jstor.org/stable/2003217.

[GAP08] The GAP Group, (http://www.gap-system.org).
GAP – Groups, Algorithms, and Programming, Version 4.4.12, 2008.

[GJM06] Ian P. Gent, Christopher Jefferson, and Ian Miguel.
Minion: A fast scalable constraint solver.
In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo

Traverso, editors, The European Conference on Artificial Intel-
ligence 2006 (ECAI 06), pages 98–102. IOS Press, 2006.

[GJMRD09] A. Grayland, C. Jefferson, I. Miguel, and C. M. Roney-Dougal.



BIBLIOGRAPHY 151

Minimal ordering constraints for some families of variable symme-
tries.

Ann. Math. Artif. Intell., 57(1):75–102, 2009.

[Gri95] P.-A. Grillet.
Semigroups - An introduction to the structure theory, volume 193 of

Monographs and Textbooks in Pure and Applied Mathematics.
Marcel Dekker Inc., New York, 1995.

[Gri03] Pierre Antoine Grillet.
Computing finite commutative semigroups. II, III.
Semigroup Forum, 67(2):159–184, 185–204, 2003.

[Gri07] Pierre Antoine Grillet.
Computing finite semigroups. I. The first row.
Semigroup Forum, 74(1):41–54, 2007.

[Har66] Michael A. Harrison.
The number of isomorphism types of finite algebras.
Proc. Amer. Math. Soc., 17:731–737, 1966.

[How95] John M. Howie.
Fundamentals of semigroup theory, volume 12 of London Mathemat-

ical Society Monographs. New Series.
The Clarendon Press Oxford University Press, New York, 1995.
Oxford Science Publications.

[HP73] Frank Harary and Edgar M. Palmer.
Graphical enumeration.
Academic Press, New York, 1973.

[HR02] Jobst Heitzig and Jürgen Reinhold.
Counting finite lattices.
Algebra Universalis, 48(1):43–53, 2002.

[JMS91] H. Jürgensen, F. Migliorini, and J. Szép.
Semigroups.
Akadémiai Kiadó (Publishing House of the Hungarian Academy of

Sciences), Budapest, 1991.

[Jür89] H. Jürgensen.
Annotated tables of semigroups of orders 2 to 6.
Technical Report TR-231, Department of Computer Science, The

University of Western Ontario, 1989.

[Jür78] H. Jürgensen.
Computers in semigroups.
Semigroup Forum, 15(1):1–20, 1977/78.

[JW77] H. Jürgensen and P. Wick.



152 BIBLIOGRAPHY

Die Halbgruppen der Ordnungen ≤ 7.
Semigroup Forum, 14(1):69–79, 1977.

[KJ56] V. L. Klee Jr.
The November meeting in Los Angeles.
Bull. Amer. Math. Soc., 62(1):13–23, 1956.

[Kos82] A. I. Kostrikin.
Introduction to algebra.
Springer-Verlag, New York, 1982.
Translated from the Russian by Neal Koblitz, Universitext.

[KR85] Václav Koubek and Vojtěch Rödl.
Note on the number of monoids of order n.
Comment. Math. Univ. Carolin., 26(2):309–314, 1985.

[KRS76] Daniel J. Kleitman, Bruce R. Rothschild, and Joel H. Spencer.
The number of semigroups of order n.
Proc. Amer. Math. Soc., 55(1):227–232, 1976.

[Leo91] Jeffrey S. Leon.
Permutation group algorithms based on partitions. I. Theory and

algorithms.
J. Symbolic Comput., 12(4-5):533–583, 1991.
Computational group theory, Part 2.

[LR04] Eugene M. Luks and Amitabha Roy.
The complexity of symmetry-breaking formulas.
Ann. Math. Artif. Intell., 41(1):19–45, 2004.

[MS55] T. S. Motzkin and J. L. Selfridge.
Semigroups of order five.
presented in [KJ56], 1955.

[Mut88] L. R. Mutafchiev.
Limit theorem concerning random mapping patterns.
Combinatorica, 8(4):345–356, 1988.

[Nöb97] Christof Nöbauer.
GLISSANDO: Small Semigroups and Nearrings.
http://www.gap-system.org/Gap3/Packages3/gliss.html, 1997.
A GAP 3 share package [S+97], Version 1.0.

[Neu79] Peter M. Neumann.
A lemma that is not Burnside’s.
Math. Sci., 4(2):133–141, 1979.

[Ple67] Robert J. Plemmons.
There are 15973 semigroups of order 6.
Math. Algorithms, 2:2–17, 1967.



BIBLIOGRAPHY 153

[Ple69] Robert J. Plemmons.
A survey of computer applications to semigroups and related struc-

tures.
SIGSAM Bull., 12:28–39, 1969.

[Ple70] Robert Plemmons.
Construction and analysis of non-equivalent finite semigroups.
In Computational Problems in Abstract Algebra (Proc. Conf., Oxford,

1967), pages 223–228. Pergamon, Oxford, 1970.

[Pol37] G. Polya.
Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und

chemische Verbindungen.
Acta Math., 68(1):145–254, 1937.

[PS03] Karen E. Petrie and Barbara M. Smith.
Symmetry breaking in graceful graphs.
In Principles and Practice of Constraint Programming – CP 2003,

LNCS 2833, pages 930–934. Springer, 2003.

[Rea78] Ronald C. Read.
Every one a winner or how to avoid isomorphism search when cata-

loguing combinatorial configurations.
Ann. Discrete Math., 2:107–120, 1978.
Algorithmic aspects of combinatorics (Conf., Vancouver Island, B.C.,

1976).

[Red27] J. Howard Redfield.
The Theory of Group-Reduced Distributions.
Amer. J. Math., 49(3):433–455, 1927.

[Rio60] J. Riordan.
The enumeration of trees by height and diameter.
IBM J. Res. Develop., 4:473–478, 1960.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh.
Handbook of Constraint Programming (Foundations of Artificial In-

telligence).
Elsevier Science Inc., New York, NY, USA, 2006.

[S+97] Martin Schönert et al.
GAP – Groups, Algorithms, and Programming – version 3 release 4

patchlevel 4.
Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische

Hochschule, Aachen, Germany, 1997.

[Slo09] N. J. A. Sloane.
The on-line encyclopedia of integer sequences.



154 BIBLIOGRAPHY

http://www.research.att.com/~njas/sequences/Seis.html,
2009.

[SYT94] S. Satoh, K. Yama, and M. Tokizawa.
Semigroups of order 8.
Semigroup Forum, 49(1):7–29, 1994.

[Tam53] Takayuki Tamura.
Some remarks on semi-groups and all types of semi-groups of order

2, 3.
J. Gakugei Tokushima Univ., 3:1–11, 1953.

[Tam54] Takayuki Tamura.
Notes on finite semigroups and determination of semigroups of order

4.
J. Gakugei. Tokushima Univ. Math., 5:17–27, 1954.

[Tam73] Dov Tamari.
The associativity problem for monoids and the word problem for

semigroups and groups.
In Word problems: decision problems and the Burnside problem in

group theory (Conf., Univ. California, Irvine, Calif., 1969; dedi-
cated to Hanna Neumann), pages 591–607. Studies in Logic and
the Foundations of Math., Vol. 71. North-Holland, Amsterdam,
1973.

[THA+55] Kazutoshi Tetsuya, Takao Hashimoto, Tadao Akazawa, Ryōichi Shi-
bata, Tadashi Inui, and Takayuki Tamura.

All semigroups of order at most 5.
J. Gakugei Tokushima Univ. Nat. Sci. Math., 6:19–39. Errata on

loose, unpaginated sheet, 1955.

[WWL81] S. K. Winker, L. Wos, and E. L. Lusk.
Semigroups, antiautomorphisms, and involutions: a computer solu-

tion to an open problem. I.
Math. Comp., 37(156):533–545, 1981.


