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Abstract

This thesis contains four studies of the e↵ects of disorder and randomness
on strongly correlated quantum phases of matter. Starting with an itinerant
ferromagnet, I first use an order-by-disorder approach to show that adding
quenched charged disorder to the model generates new quantum fluctuations in
the vicinity of the quantum critical point which lead to the formation of a novel
magnetic phase known as a helical glass.

Switching to bosons, I then employ a momentum-shell renormalisation group
analysis of disordered lattice gases of bosons where I show that disorder breaks
ergodicity in a non-trivial way, leading to unexpected glassy freezing e↵ects. This
work was carried out in the context of ultracold atomic gases, however the same
physics can be realised in dimerised quantum antiferromagnets. By mapping the
antiferromagnetic model onto a hard-core lattice gas of bosons, I go on to show
the importance of the non-ergodic e↵ects to the thermodynamics of the model and
find evidence for an unusual glassy phase known as a Mott glass not previously
thought to exist in this model.

Finally, I use a mean-field numerical approach to simulate current generation
quantum gas microscopes and demonstrate the feasibility of a novel measurement
scheme designed to measure the Edwards-Anderson order parameter, a quantity
which describes the degree of ergodicity breaking and which has never before been
experimentally measured in any strongly correlated quantum system.

Together, these works show that the addition of disorder into strongly
interacting quantum systems can lead to qualitatively new behaviour, triggering
the formation of new phases and new physics, rather than simply leading to
small quantitative changes to the physics of the clean system. They provide new
insights into the underlying physics of the models and make direct connection with
experimental systems which can be used to test the results presented here.
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Chapter 1

Introduction

Nothing in life is perfect and what’s true in life is true for quantum materials.
Randomness and disorder are present to some degree in every substance in the
world, despite every e↵ort to create the cleanest, purest materials possible. Even
small concentrations of impurities in quantum materials can dramatically alter
their properties, for better or for worse.

Since the time of the Crusades, blacksmiths have known that introducing
controlled carbon impurities into swords could vastly improve the properties of
the blade, leading to the development of the famed Damascus steel. Stronger
than any contemporary materials, Damascus steel was later found to contain
carbon nanotubes [1], making it arguably the first commercial application of
nanotechnology. We now know that doping materials can lead to the emergence
of dramatic properties such as superconductivity [2]. Understanding the e↵ects of
disorder is crucial to the continued development of materials and technology but
is also important for our understanding of the underlying physics in strongly
interacting quantum systems. Disorder and impurities often act as excellent
probes of quantum behaviour, changing the properties of the system in question in
measurable ways and giving us valuable information as to the underlying physics.

In this chapter, we will review the theory of phase transitions in clean systems
(classical and quantum) and discuss the problem of disorder. Stage thus set, in
the later chapters we will examine my original contributions to the theory of
phase transitions in disordered systems.
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1.1 Classical Phase Transitions

A phase transition is the process by which a thermodynamically large number
of interacting particles collectively change their state of matter, e.g. from liquid
to solid, liquid to gas, magnetic to non-magnetic or a vast number of other
possibilities.

Classical phase transitions occur at finite temperature, where the transfor-
mation between phases is driven by thermal fluctuations. Consequently, they are
also known as ‘thermal transitions’. At a classical phase transition, the dynamic
and static behaviour of the system decouple from each other and the transition
can be described by a time-independent theory.

Many phase transitions are accompanied by a breaking of some fundamental
symmetry of the system and a corresponding change in how ordered the material
is. Transitions are driven by the competition between energy and entropy as
the system tries to minimise its Helmholtz free energy F = E � TS, where E
is the internal energy of the system, T is temperature and S is entropy. At
low temperatures, the entropic term has a negligible e↵ect and so the system
adopts a configuration that minimises its internal energy, which tend to be highly
ordered states with broken symmetries. At higher temperatures, the system will
transition into a state where it instead maximises its entropy S, which tend to
be more isotropic and symmetrical configurations. For example, in the case of
liquid water, as the temperature is lowered the isotropic, symmetric liquid (large
entropy) freezes into a highly ordered (low entropy) sixfold-symmetric crystal
lattice where the rotational symmetry of the liquid is broken in favour of the
hexagonal symmetry of ice1.

This picture is largely generic, though there are some phase transitions where
the nature of the symmetry breaking present (if any) remains ambiguous [3–5] and
others which don’t break any symmetries at all, such as liquid water into water
vapour or the Kosterlitz-Thouless transition [6] seen in the two dimensional XY
model.

Phase transitions typically fall into two main classes: the discontinuous
first-order transitions and the continuous second-order transitions. First order
transitions carry with them discontinuities in entropy and a latent heat, whereas
second order transitions do not. In general, an nth order transition is characterised
by a discontinuity in the nth derivative of the free energy, however this is not
considered a rigorous definition [7] as some derivatives of the free energy diverge
on approach to a phase transition, e.g. specific heat in ferromagnets.

The nature of a transition is not immutable and can change for di↵erent
values of external parameters such as temperature, pressure, applied magnetic

1There are at least sixteen other distinct types of ice crystal existing under a variety of
conditions which display di↵erent forms of ordering, but the hexagonal crystalline ice 1h is the
most commonly encountered variety here on Earth.
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Figure 1.1 A schematic phase diagram of water in the temperature-pressure
plane showing the approximate regions where each phase occurs.
The blue lines represent phase transitions. The lower red dot is
the triple point at which all three phases can co-exist. The upper red
dot is the critical point where the first-order liquid to gas transition
terminates and becomes second order. Above this point there is no
distinct liquid-to-gas transition and instead a so-called supercritical
fluid exists in this parameter regime.

field etc. For example, the water-to-vapour transition is first-order up until a
critical point, at which the transition becomes second order (shown schematically
in Fig. 1.1). Above this critical point, the distinction between liquid and gas
largely disappears and the phase is known as a ‘supercritical fluid’. In this region
there is no clear change seen in any parameter that can define whether the system
is in a liquid phase or a gaseous phase. Below the critical point, however, crossing
the transition from liquid-to-gas results in a discontinuous jump in density. The
density is an example of an order parameter, a quantity that changes when the
material crosses from one phase to another, and they play an important role in
the theory of phase transitions.

3



1.2 Landau Theory

Almost every phase transition has an order parameter that defines where the
transition takes place. This is some quantity that has a thermodynamic average
of zero in the disordered phase and takes on some finite value in the ordered
phase. Near a second-order or weakly first-order phase transition, we can assume
that the order parameter is small.

The key idea behind Landau theory is that the free energy near a transition
can be Taylor expanded in powers of the order parameter. Implicitly, this assumes
the free energy to be analytic in the order parameter. For this description to be
physical, the free energy must obey the same symmetries as the Hamiltonian. In
practice, this typically leads to only even powers of the order parameter featuring
in the expansion. More generally, any term in the expansion that explicitly breaks
any symmetry in the initial Hamiltonian will be absent.

As an illustrative example, let us consider expanding some generic free energy
F in even powers of some order parameter m like so:

F = ↵m2 + �m4 + �m6 + ... (1.1)

where the coe�cients ↵, � and � are all functions of the microscopic parameters
of the system in question. The coe�cient of the final term in the expansion must
always be positive or else the free energy becomes unbounded from below, which
is unphysical.

If ↵, � and � are all positive then the free energy is minimised by m = 0.
If ↵ < 0 and � > 0 then � is not needed and we see that the free energy is
minimised by a non-zero m = ±p|↵|/2�. The transition is given by ↵ = 0, i.e.
the line along which a non-zero m becomes favoured. As ↵ turns from positive to
negative, F develops two minima which emerge smoothly from m = 0, shown in
Fig. 1.2. The ground state magnetisation continuously increases from zero and
this is a second-order phase transition.

This formalism can also describe first-order phase transitions. Consider the
case of ↵ > 0, � > 0 but � < 0, also shown in Fig. 1.2. We see that the free
energy now acquires two local minima at some m 6= 0. If � is su�ciently negative
(specifically, if � < 0 and �2 � 4↵�) then these minima will drop below the
m = 0 minimum, meaning that the ground state abruptly jumps from m = 0 to
some m 6= 0. This is therefore a first-order transition.

4



Figure 1.2 Schematic free energy diagrams. i) A second-order transition as
↵ goes from positive to negative, with minima located at m 6= 0
smoothly moving out from the centre. ii) A first-order transition
where � becomes su�ciently negative that the two local minima
shown in black dip below the m = 0 minimum and the magnetisation
abruptly jumps from m = 0 to some non-zero m.

1.3 Correlation Length

Approaching the critical point at which a second-order phase transition
occurs, fluctuations of the order parameter on larger and larger length scales
become increasingly important. These are known as critical fluctuations. In
the vicinity of a critical point there is only one physically relevant length scale,
known as the correlation length, which is the largest length scale on which the
order parameter fluctuations occur and takes the following form:

⇠ /
����
T � T

c

T
c

����
�⌫

, (1.2)

where T
c

is the critical temperature at which the phase transition occurs and ⌫
is known as the correlation length exponent.

Close to the phase transition, the correlation length diverges. It becomes
the largest length scale in the system and consequently the only relevant one for
determining the properties of the system. The system e↵ectively self-averages
over large volumes, in other words, and small microscopic fluctuations become
unimportant as only large-scale properties such as dimensionality and lattice
geometry a↵ect the overall behaviour.

This leads to the so-called universal behaviour of second-order phase transi-
tions. In all but a few cases, the nature of the transition is independent of the
microscopic details, since the diverging correlation length essentially overrules all
other properties of the system. This is largely why phenomenological theories of
second-order phase transitions have enjoyed so much success: since no length scale
other than ⇠ matters, our e↵ective theories don’t need to take into account the

5



detailed microscopics of the system as they can only cause quantitative changes.

The diverging correlation length close to a critical point is also responsible for
the phenomenon of critical opalescence, where a normally transparent liquid will
turn opaque when the correlation length becomes comparable to the wavelength
of light, leading to the scattering of light and causing the liquid to take on a
cloudy white appearance. This is a dramatic and very visual demonstration of
the diverging correlation length that occurs near a classical critical point.

1.4 Quantum Phase Transitions

Classical phase transitions are driven solely by thermal fluctuations. If
we cool down our system to T = 0, then, does that mean we end up in
a fluctuationless ground state that exhibits no phase transitions? Classical
theory alone would have us believe so, but quantum theory tells us that such
a fluctuationless state is impossible. Driven by the Heisenberg uncertainty
principle, even a system in its ground state at T = 0 will exhibit quantum
mechanical fluctuations that, in combination with the tuning of some non-thermal
physical parameter, can lead to so-called quantum phase transitions. For T > 0,
even if the phases themselves require a quantum mechanical description (such as
superfluidity or superconductivity), the transition into and out of the phase is
still a classical phase transition in which quantum mechanics plays no role.

Quantum phase transitions [8] di↵er from the classical phase transitions
described earlier in that the kinetic and potential parts of the Hamiltonian do not
commute, meaning the partition function does not factorise. Static and dynamic
behaviour no longer decouple and must be treated on an equal footing, leading to
not only a divergent correlation length in space, but also a divergent correlation
time.

At zero temperature, the correlation length can be expressed in a similar form
as Eq. 1.2 but with some non-thermal quantity g taking the place of temperature:

⇠ /
����
g � g

c

g
c

����
�⌫

, (1.3)

where g is some parameter such as pressure or applied magnetic field and g
c

is
the critical value of this parameter at which the phase transition occurs. The
correlation time is given by:

t
C

/
����
g � g

c

g
c

����
�dz⌫

. (1.4)

where d
z

is the dynamical critical exponent. It is also commonly denoted z,
however in this thesis we shall use d

z

for the dynamical critical exponent and
define z as the lattice co-ordination number.
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The necessity of treating space and time on an equal footing introduces
additional dimensions to what was previously a time-independent problem and
means that quantum phase transitions in d dimensions may often be mapped
onto classical phase transitions in d+ d

z

dimensions.

If d
z

= 1 then the relevant correlation functions scale the same in each spatial
dimension as they do in time. This is often not true for quantum critical points,
and for d

z

6= 1 we end up with a theory where space and time scale di↵erently,
leading to quantum critical points exhibiting much richer behaviour than simply
being a classical critical point in ‘more dimensions’.

A divergent correlation time is not the only extra consideration we need make
in describing a quantum phase transition. The real distinguishing feature of a
quantum phase transition is that it occurs at zero temperature, but it turns out
that we can incorporate both real time and temperature together in a single move.

Imaginary time

In classical statistical mechanics, Boltzmann weightings are given by terms
of the form e�� ˆH where Ĥ is the Hamiltonian and � = 1/k

B

T is the inverse
temperature. In quantum mechanics, evolution in real time is given by e�i

ˆHt/~.
In order to perform quantum statistical mechanics, we can make a Wick rotation
from real time to imaginary time t ! �i⌧ where ⌧ 2 [0, ~�] such that we can
describe these thermal weightings in terms of imaginary time. This allows us to
construct partition functions as path integrals over an imaginary time dimension
of length ~�. The mapping takes the form:

Z = Tr
⇥
e��H

⇤
(1.5)

=

Z
D[�⇤,�] exp

Z ~�

0

d⌧ (�⇤@
⌧

��H)

�
, (1.6)

where the rewriting in terms of a path integral over bosonic coherent states � is as
shown in Ref. [9]. This representation allows us to treat both real-time dynamics
and quantum statistics at the same time. At zero temperature, the length of the
imaginary time dimension is infinite and its contribution can be treated on an
equal footing with the spatial dimensions. At non-zero temperatures, the length
of the imaginary time dimension is finite. The quantum-to-classical mapping can
then lead to classical systems with odd geometries, being infinite in extent in d
dimensions and finite in d

z

.

To obtain any information on real-time dynamics, one must perform an
analytic continuation from imaginary time to real time, a process which is not
well-controlled and can often lead to unphysical results. For example, the analytic
continuation can obscure long-range correlations in imaginary time [10]. The
mapping to the classical system can also generate complex Boltzmann weights
known as Berry phases [11] which have no classical analogue and lead to new types

7



of critical phenomena not seen in classical systems. For fermions, the mapping
can even generate negative Boltzmann weights - this is known as the fermion
sign problem, and is one of the major problems facing modern condensed matter
physics. (It is in the complexity class NP-hard [12], which is featured in the Clay
Mathematics Institute’s Millennium Prize Problems with a $1 million prize for a
solution [13].)

Given that the length of the imaginary time dimension is infinite only at T = 0
and that the quantum phase transition itself only occurs at zero temperature, one
might wonder whether the imaginary time dependence can be neglected whenever
~� is finite and a purely classical description used for all but the extreme T = 0
case. This turns out not to be the case: although the quantum phase transition
itself is restricted to T = 0, there is a large region at finite temperatures where
quantum fluctuations originating at zero-temperature quantum critical points
turn out to be extremely important.

1.5 Quantum Criticality

Despite quantum phase transitions strictly only taking place at T = 0, their
e↵ects may still be felt at finite2 temperatures. From the correlation time t

c

it follows that we can define a corresponding quantum fluctuation frequency !.
Consider a system at temperature k

B

T with some generic quantum fluctuations
of strength ~!. When ~! � k

B

T then the system will undergo a quantum phase
transition. Conversely, for k

B

T � ~!, the system will undergo a classical phase
transition. This criterion will always be satisfied su�ciently close to the transition
for any T > 0 and the transition will always be classical in nature, even if the
phases themselves require a quantum mechanical description.

There is, however, a region of the phase diagram where the quantum and
thermal fluctuations are approximately equal in size. Plotting the boundaries
defined by ~! ⇡ k

B

T defines the so-called quantum critical region: a roughly
conical region extending out from the T = 0 quantum critical point. A schematic
phase diagram is shown in Fig. 1.3. Within this region, the e↵ects of quantum
fluctuations are strongly felt and the behaviour of the system will not be classical.
For example, Fermi liquid theory [9] will not apply in this region even for an ‘ideal’
metal due to the presence of these strong quantum fluctuations [14].

These quantum fluctuations can lead to all sorts of interesting behaviour.
Experimentally, second-order phase transitions are commonly seen to turn first-
order in the vicinity of QCPs in a variety of materials [15–19], and often entirely
new phases are found. Examples of this include the superconductivity seen
in UGe

2

[20–23], the modulated nematic phase seen in Sr
3

Ru
2

O
7

[24–27], the
partially-ordered phase seen in MnSi [28, 29] and the modulated spiral seen in

2Following Ref. [8], I engage in the same ‘almost standard abuse of language’ and refer to
non-zero temperatures as finite.
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Figure 1.3 Schematic phase diagram showing quantum ordered, quantum
disordered and quantum critical regions. The quantum critical point
(QCP) is indicated in red. Above it, the roughly-conical region where
critical fluctuations strongly influence the behaviour of the material
extends up to non-zero temperatures.

PrPtAl [30], to name but a few.

It is this fluctuation-dominated region that makes the study of quantum
phase transitions both useful and interesting. The extended e↵ects of quantum
fluctuations beyond the strictly zero-temperature limit means that understanding
the role of quantum fluctuations at zero temperature can still tell us useful
information about the finite-temperature response of the material.

The hope is that by developing our understanding of quantum criticality
we will learn to control these fluctuations and eventually learn to design new
materials capable of exhibiting macroscopic quantum phenomena all the way up
to room temperature, stabilising phases such as high-temperature superconduc-
tivity. Some coupled light-matter systems already exhibit macroscopic quantum
behaviour at high temperatures, such as polariton condensates where the low
quasiparticle mass leads to an abnormally high condensation temperature as
compared with solid-state systems [31], however these are the exception rather
than the rule. Control of the quantum mechanical properties of solid state
systems remains one of the outstanding challenges in the development of quantum
technologies.
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1.6 Universal Behaviour

Due to the diverging correlation length and the power-law behaviour assumed
by various thermodynamic quantities (such as the specific heat, correlation length,
order parameter scaling and susceptibility, to name but a few), the behaviour of
a system in the vicinity of a second-order phase transition can be completely
described by a set of numbers known as critical exponents. Similar to the
correlation length exponent ⌫, each of these thermodynamic quantities has a
corresponding critical exponent. These are shown in Table 1.1.

Common critical exponents
specific heat C ⇠ |�|↵
magnetisation M ⇠ |�|�
magnetic susceptibility � ⇠ |�|��
field dependence of M M ⇠ |(h� h

c

)/h
c

|1/�
spatial correlation length ⇠ ⇠ |�|�⌫
temporal correlation length ⌧ ⇠ ⇠dz = |�|�dz⌫

Table 1.1 A list of common thermodynamic quantities and how they scale with
their critical exponents, where � = (T � T

c

)/T

c

in the classical case
and � = (g � g

c

)/g

c

in the quantum case. In the fourth line, h is the
external magnetic field. Information from Ref. [9].

The last entry of Table 1.1 shows the role that the dynamical critical exponent
d
z

plays in the relation between the temporal correlation length ⌧ and the spatial
correlation length ⇠ and illustrates the extra e↵ective dimensionality of T = 0
quantum systems.

The di↵erent critical exponents are related to one another through the scaling
relations shown in Table 1.2, where most of the exponents are as shown in Table
1.1 and ⌘ is the anomalous dimension of the correlation function, defined by the
scaling form:

C(r) ⇠
⇢

1

|r|d�2+⌘ |r| ⌧ ⇠

exp(�|r|/⇠) |r| � ⇠
. (1.7)

This expression reflects that the correlation function changes from exponential
to power-law scaling at the length scale ⇠ given by the correlation length. In
other words, when ⇠ diverges at the critical point, we move from short-ranged
exponential decay to long-range power-law correlations. This is only strictly true
at the critical point: even in the ordered phase, the connected correlation function
need not display power-law decay. Its precise form depends on the excitation
spectrum of the system in question.

These relations mean that it is not necessary to measure or calculate each
critical exponent individually - knowledge of any two of the critical exponents
is su�cient to uniquely determine the others and fully describe the scaling of a
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Scaling laws
Fisher ⌫(2� ⌘) = �
Rushbrooke ↵ + 2� + � = 2
Widom �(� � 1) = �
Josephson 2� ↵ = ⌫d

Table 1.2 Scaling laws. Information from Ref. [9]. The final relation is the only
one to involve the spatial dimension and is known as a hyperscaling
relation. Hyperscaling does not hold in d > 4 when mean-field theory
becomes exact and the correlation length exponent no longer has any
dependence on spatial dimensionality.

Table of critical exponents
↵ � � � ⌫

d = 2 Ising 0 1/8 1/4 15 1
d = 3 Ising 0.110(1) 0.6265(2) 1.2372(5) 4.789(2) 0.6301(4)
d = 3 XY 0.0146(8) 0.3485(2) 1.3177(5) 4.780(2) 0.67155(27)
d = 3 Heisenberg -0.122(9) 0.3662(25) 1.390(5) 4.796(1) 0.7073(30)
d = 4 Ising 0 1/2 1 3 1/2

Table 1.3 An illustrative and non-exhaustive list of calculated critical exponents
for a variety of di↵erent universality classes. The numerical values
were sourced from Refs. [32–34] and the numbers in brackets indicate
the uncertainty in the final digit. The d = 4 Ising results are exactly
given by mean-field theory. Wherever any particular exponents were
not given in the references they were calculated from the ones given
using the scaling relations listed in Table 1.2 and the uncertainties
propagated in the standard manner.

given system. To illustrate this, Table 1.3 shows a selection of critical exponents
for a variety of di↵erent models in di↵erent dimensions. Within the uncertainties,
it is possible to use the scaling relations in Table 1.2 to calculate any exponent
from any other two. (The uncertainties listed are in most cases the result of direct
calculation from the sources referenced. Consequently they may be smaller than
the resulting uncertainties obtained if one calculates the exponent from others
listed and propagates their errors accordingly.)

Since the critical exponents are determined from fundamental underlying
physics rather than microscopic details, often very di↵erent physical systems
display the same set of critical exponents. These sets of critical exponents are
called universality classes.

Being able to group phase transitions into universality classes regardless of
the specific material or system in which they are realised is an immensely powerful
tool and one of the main reasons why many areas of theoretical condensed matter
physics work at all. If universal behaviour did not exist and the behaviour of every
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physical system depended critically on its specific microscopic structure, much of
the predictive power of condensed matter theory would be lost. The ability to
instead pick out the most relevant pieces of the underlying physics and discard
the irrelevant degrees of freedom is what allows our models to be so general, not
to mention one of the main reasons they are mathematically tractable to begin
with.

1.7 Renormalisation Group

Arising directly from the idea of focusing only on the most relevant underlying
physics, the main technique we will employ in Chapters 3 and 4 is the
renormalisation group, a powerful analytical technique allowing us to ‘zoom out’
from our microscopic picture of individual quantum particles and instead examine
the global behaviour of a thermodynamically large system. Renormalisation
works because of the diverging correlation length in the vicinity of quantum
critical points, allowing us to eliminate the short wavelength non-universal degrees
of freedom in order to obtain a description of the system entirely in terms of the
long-wavelength universal modes which determine its bulk behaviour. Initially
employed in the context of quantum electrodynamics [35], the renormalisation
group in its condensed matter form was developed in Refs. [36, 37] and has since
become one of the most important tools used in condensed matter theory.

Essentially, renormalisation is a technique used to move away from a micro-
scopic picture to a macroscopic one in a procedure of ‘controllably forgetting’
about the high energy, short wavelength degrees of freedom. Formally, we
typically define a cuto↵ length or energy scale and integrate out the modes
which we are not interested in, thereby leaving an action ostensibly in terms
of (for example) the long wavelength, low energy modes but that has still taken
the higher energy fluctuations into account. See Refs. [38, 39] for a full and
comprehensive review of renormalisation group techniques.

In a renormalisable system, variables fall into three main categories. A
‘relevant’ variable is one which grows in magnitude as we zoom out, and therefore
is important to the long-wavelength behaviour of the system. Conversely, an
‘irrelevant’ variable is one that renormalises to zero, indicating that it has no
bearing on the long-wavelength behaviour which we are interested in (though
it can contribute quantitative corrections). In between these two extremes, a
variable that does not scale at all under the renormalisation group process is
called ‘marginal’ since it isn’t clear from a simple scaling argument whether or
not it is important to the physics we are interested in. By tracking how these
variables evolve under the renormalisation group process (the renormalisation
group flow), we can calculate the long-wavelength behaviour of the model.

A fourth class exists for variables which are themselves irrelevant but have
a significant knock-on e↵ect on other variables, e.g. if a variable � depends on
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the inverse power of a variable ⇤ then although ⇤ may itself be irrelevant, it
must be retained in the theory in order to properly account for the behaviour of
�. These variables are known as ‘dangerously irrelevant’ and contribute to the
leading scaling behaviour despite being themselves irrelevant.

Fig. 1.4 shows a cartoon representation of the renormalisation group process.
Panel i) shows an initial field, panel ii) shows the integration over the high
frequency components (here performed with a low-pass filter) and panel iii) shows
the final rescaling such that the final ‘renormalised’ field resembles the initial field
except that it now contains fewer degrees of freedom.

A key assumption of renormalisation group is that one is free to integrate out
the short-wavelength, high energy modes independently of the long wavelength
universal behaviour of the system. In a disordered system, this assumption is
not necessarily valid [41], as we shall see later. In strongly disordered systems,
the short-wavelength behaviour can implicitly depend on the long-wavelength
behaviour and care must be taken to implement the renormalisation group
procedure properly.

The ‘zooming out’ procedure may equivalently be performed in real space or
in momentum-space [40], and renormalisation more generally can also be applied
in other frameworks such as density matrix renormalisation group [42, 43]. In this
thesis, we focus on momentum-shell renormalisation group where we integrate out
infinitesimal shells of highest momenta modes and compute the e↵ect they have
on the remaining lower-momenta modes. With that in mind, we shall specialise
to momentum-shell renormalisation group and look at an example calculation.

Momentum-Shell Renormalisation Group

Beginning from a partition function defined in terms of some field  in the
following way:

Z =

Z
D[ ]e�S[ ], (1.8)

we can split the field into ‘fast’ high momentum fields  
>

and ‘slow’ low-
momentum fields  

<

such that

 =  
<

+  
>

. (1.9)

We may then integrate out the fast fields by writing the partition function in the
following form:

Z =

Z
D[ 

<

]D[ 
>

]e�S[ <, >]. (1.10)

To obtain an expression for a free energy that only depends on the slow fields,
we need to perform the integral over the fast fields. If there is no cross-coupling
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Figure 1.4 A cartoon representation of the renormalisation process. a) The
initial field and its original spherical Brillouin zone of radius ⇤.
b) The field after removal of the high-frequency modes and its new
smaller Brillouin zone of radius ⇤0. c) The final field after rescaling
the length such that the oscillations look like those of the initial field
and its Brillouin zone with radius ⇤ in the rescaled units. (Figure
based on a similar schematic representation in Ref. [40]. To produce
this cartoon, the elimination of the higher frequencies was performed
with a low-pass filter.)
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between the fast and the slow fields, they can be integrated out independently of
one another but in general the fast and slow fields will be mixed. We can write
our action as a ‘fast’ action, a ‘slow’ action and a contribution which mixes the
fast and slow fields:

S[ 
<

, 
>

] = S
0

[ 
<

] + S
1

[ 
>

] + �S[ 
<

, 
>

], (1.11)

such that we can write:

Ae�
˜

S[ <] = e�S0[ <]

Z
D[ 

>

]e�S1[ >]e��S (1.12)

= e�S0[ <]he��Si
S1[ >]

, (1.13)

where A is some unimportant constant and we compute the average with respect
to S

1

[ 
>

]. Treating this term perturbatively, we may write:

⌦
e��S[ ]

↵
S1[ >]

⇡
⌧
1� �S +

1

2
(�S)2 + ...

�
(1.14)

= 1� h�Si+ 1

2
h�S2i (1.15)

= exp

✓
ln (1� h�Si+ 1

2
h�S2i)

◆
(1.16)

⇡ exp

✓
�h�Si+ 1

2
(h�S2i � h�Si2)

◆
. (1.17)

All that remains is to calculate the averages. Following the established paradigm
of momentum-shell renormalisation group, we do this using Wick’s theorem. This
requires that the ‘bare’ action be quadratic in the fields  and we treat any higher-
order terms perturbatively.

After evaluating the averages and re-exponentiating the remaining ‘slow’ field
terms, we arrive at some new e↵ective action S̃[ 

<

]. The system is renormalisable
if S̃[ 

<

] takes the same functional form as the initial action. It is remarkable that
so many physical systems turn out to be renormalisable in this sense.

We then rescale to get back the ‘resolution’ lost by integrating out this
momentum shell (shown schematically in Fig. 1.4 going from panel b) to panel
c)), and this allows us to derive a set of RG equations showing us how the
coe�cients of the terms in the action change as we successively integrate out
more infinitesimally thin shells. By studying these equations, we can find the
scale-invariant fixed points that determine the collective behaviour of the system.

Gaussian Model

As a relatively simple example, consider a model with Gaussian action (as
described in Ref. [40]). This example can be solved exactly as there is no coupling
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of the fast and slow fields (i.e. �S = 0) and all the integrals are Gaussian.

S =

Z
1

0

(ck2 + r) ̄ dk. (1.18)

We can split the fields into fast and slow as described previously and integrate
out the fast fields exactly to obtain an action of the following form:

S̃ =

Z
e

�dl

0

(ck2 + r) ̄ dk. (1.19)

We then want to rescale so the integration range is restored from 0 to 1, and we
want to make the rescaling such that the k2 prefactor remains unchanged. This
corresponds to the transformations

k ! kedl, (1.20)

| |2 ! e�dl| |2, (1.21)

and we then choose � such that the prefactor of k2 remains unchanged. Under
this rescaling the mass term r becomes:

r ! re2dl ⇡ r(1 + 2dl), (1.22)

and we can finally write down the renormalisation group equation for r describing
how it scales with l:

dr

dl
= 2r. (1.23)

The term 2r is known as the ‘tree-level scaling’ term, and it describes the change
of the bare coe�cient r due to the loss of resolution and subsequent rescaling, i.e.
with each rescaling step r ! 2r. Without any other variables in the problem to
contribute to the scaling of r, we arrive at the result that r is a relevant variable
which increases without bound under the renormalisation group process. This
r ! 1 limit corresponds to the particles in the system becoming completely
uncorrelated with each other. This is because the Gaussian model does not take
into account interactions between particles. Only the (unstable) point r = 0
is immune to this divergence. This is known as a fixed point, and it is the
scale-invariant fixed points which are of critical importance in determining the
properties of the system in question.
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Fixed Points

The Gaussian model in the preceding section is exactly solvable but contains
no interesting behaviour. In general, there will be cross-couplings between fast
and slow fields and an RG equation will take the form F 0(l) = ↵F (l) + � where
the ↵ refers to the tree level scaling and the � is the renormalisation due to
the coupling between fast and slow fields. If ↵ > 0 then the variable F (l) will
initially increase under RG, i.e. it is a relevant variable. Similarly, ↵ < 0 defines
an irrelevant variable which will renormalise to 0. In the case of ↵ = 0 the
variable is marginal and does not scale under the RG - the higher-order vertex
contributions (i.e. the � terms) must then be computed to determine whether
the variable has any e↵ect at all on the macroscopic behaviour of the system.
The � terms have a more important role than this, however - they can also give
rise to non-trivial fixed points where F 0(l) = 0 which allow us to determine the
behaviour of the system.

Once we have a set of renormalisation group equations for all running
variables in the problem, we can solve them simultaneously for all the points
F 0(l) = 0 to obtain the points in parameter space which are stable under
the renormalisation group flow. These are known as fixed points, as if the
running variables take precisely these values they will not change under the
renormalisation group process. In practice, the variables will never take precisely
the fixed-point values but will approach them asymptotically. As the variables
flow closer to the fixed point values, the system begins to look the same at all
length scales, a property known as scale invariance. The most famous examples
of scale invariance are fractals, as shown in Fig. 1.5, where any arbitrarily small
sub-region contains the full information of the entire system.

In Section 1.3 we saw that we can always define a correlation length of a
system. The existence of a well-defined dominant length scale does not naturally
fit with the idea of scale-invariance exhibited at the renormalisation group fixed
points. This implies that at the fixed point, either the correlation length is zero,
or it is infinite. In the vicinity of a second-order phase transition the correlation
length will diverge, and therefore we can identify the renormalisation group fixed
points as potentially indicative of second-order phase transitions.

Following the relevant/irrelevant/marginal classification of variables under
the renormalisation group process, the fixed points come in three di↵erent types:

• Stable fixed points where all variables are either irrelevant or marginal.
These fixed points are attractive and correspond to stable phases.

• Unstable fixed points where all variables are relevant. The fixed point is
repulsive and all variables flow away from it. Strictly at the fixed point, the
system is scale invariant and nothing will flow, however any infinitesimal
perturbation away from the fixed point values will result in the variables
irreparably flowing away from it. These are solutions of the RG equations in
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Figure 1.5 The Sierpinski triangle, a fractal which repeats indefinitely as one
zooms in. Each small subsection contains the complete information
about the full structure. This is a dramatic example of scale-
invariance (or ‘self-similarity’).

the same sense that one can balance a pencil on its sharp end - technically
valid but physically unrealisable.

• Generic fixed points with a mixture of relevant and irrelevant variables.
These correspond to transitions between phases and act to drive the system
towards stable fixed points corresponding to stable phases.

Solving the set of renormalisation group equations for all the variables in the
problem thus allows us to find out what possible phases the model can adopt
and describe the transitions into and out of those phases. This is the goal of a
renormalisation group study of any system - the establishment and investigation
of the fixed points.

The principles of scale invariance and universality lead to the renormalisation
group being an enormously powerful method with which to investigate strongly
correlated quantum systems. But what happens when we are no longer dealing
with pristine, pure materials but instead consider the addition of disorder - how
can we hope to systematically investigate randomness?

1.8 Disordered Systems

The preceding sections have dealt with clean systems, assuming there to be no
impurities or randomness. In any real material, there will be anything from trace
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impurities through to significant inhomogeneities that can drastically change the
properties of the material. Experimentally, even the purest of samples can display
important disorder-induced e↵ects, and that’s not even to mention the materials
which are deliberately doped or disordered in an e↵ort to modify their properties.

Even more so than classical systems, quantum materials can exhibit extreme
sensitivity to the addition of disorder. Sometimes this disorder can be advan-
tageous, as in the case of the doped cuprates [2, 44–47] and pnictides [48–51]
where doping can induce superconductivity, but other times it can destroy the
very features we’re interested in, such as in Sr

2

RuO
4

[52] where disorder rapidly
suppresses the superconducting critical temperature.

The way a material responds to disorder can tell us something about the
physics of the clean system, such as in the case of Sr

2

RuO
4

[52] where the
suppression of T

c

tells us that the material has a non-s-wave order parameter3.
Also, discontinuous changes of system parameters known as quenches can lead to
unusual behaviour unique to disordered systems [55] and act as a probe of the
underlying physics.

The study of disorder in condensed matter physics has a long history. A
series of informal articles putting the problem of disorder in spin glass systems in
historical context may be found in Refs. [56–62] which outline the development of
the tools used to treat classical spin glass problems. Understanding localisation
in strongly interacting disordered systems is a long-standing theoretical problem,
and one that has become more relevant in recent years with the rise of complex
many-body localisation e↵ects both in [63] and out [64] of equilibrium. In this
thesis we shall restrict ourselves to ostensibly equilibrium phases.

The systematic study of randomness is a significant challenge. The addition of
disorder into a material immediately destroys translational invariance, rendering
many common techniques unsuitable. In numerical simulations on small systems,
care must be taken to ensure that the results do not depend on the particular
realisations of disorder studied. In Chapter 5 we shall look at the local e↵ects of
disorder but in the majority of this thesis we are interested in extracting the bulk
behaviour in the thermodynamic limit and so averages over di↵erent disorder
realisations must be performed. Numerically, this boils down to re-running the
simulations many times for many di↵erent disorder distributions, but analytical
methods of disorder averaging are not so straightforward.

There are a variety of methods one may use to analytically study disordered
systems. For example, disorder can be averaged out using the cavity method
[65] in certain systems or handled with Keldysh techniques [66] in others. The
method which we shall use in this thesis is one of the most general and widely-used
techniques for disorder averaging and is known as the replica trick.

3An s-wave order parameter would be robust against disorder-induced scattering, whereas
a p- or d-wave would be subject to strong destructive interference, as seen experimentally.
Sr2RuO4 is believed to be a p-wave superconductor though the evidence remains circumstantial
[52–54].
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The Replica Trick

Most thermodynamic parameters we are interested in will involve calculations
of the logarithm of the partition function, e.g. the free energy is given by F =
�T lnZ. This can lead to problems when trying to calculate disorder averages,
as the average of the logarithm of Z is often extremely di�cult to compute
directly. We could consider performing some perturbative expansion of Z, but
an expansion of Z itself to any given order does not necessarily determine the
expansion of lnZ to the same order.

The replica trick [67–69] allows us to circumvent the di�culties in calculating
the disorder average of lnZ by rewriting the logarithm using the identity:

lnZ = lim
n!0

Zn � 1

n
. (1.24)

Rewriting the logarithm in this manner allows us to transform the di�cult
problem of taking the disorder average of the logarithm of the partition function
into the much simpler (both conceptually and mathematically) task of taking the
disorder average of Zn. The precise form of the cumulant expansion used in this
thesis is shown in Appendix B.

In the clean case, Eq. 1.24 is exact but in the disordered case it is not
necessarily so. In the clean case, n is not required to be an integer and the
n ! 0 limit is well-defined. In the presence of disorder, Eq. 1.24 corresponds
to making n discrete copies of the system with the same disorder realisation and
averaging across all of these replica systems, then in the end taking the limit
n ! 0 to recover the disorder-averaged lnZ. Each replica of the system has the
same disorder realisation, but is allowed to be in a di↵erent ground state.

The reason this method is known as the ‘replica trick’ is that the process
of taking the limit n ! 0 is poorly defined. When taking the disorder average
we assume we create n replica systems where n is an integer greater than zero.
When taking the limit, we then send n continuously to zero. This discrepancy
means we must be extremely careful in taking the replica limit. This step is
the source of most of the controversy relating to the replica trick: the analytic
continuation involved is often poorly controlled, and used without care can lead
to unphysical results such as negative entropy in even the most straightforward
spin glass systems [70]. We shall see later that the way to properly account for
the subtleties in implementing the replica trick is to introduce additional order
parameters and allow for a property known as replica symmetry breaking, which
lifts the implicit assumption that the system has a single ground state. In the
disordered systems we are most interested in, this is often not the case.
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Spin Glasses

The main focus of this thesis is on transitions to and from glassy phases,
which are di↵erent from the phase transitions mentioned in the previous section.
Often, glassy phases do not break any symmetries and so there is no convenient
order parameter such as magnetisation.

The term ‘glass’ generically refers to an amorphous, disordered system lacking
any form of long-range order. Window glass is the obvious example, as the
molecules do not form a crystal lattice structure. The non-crystalline nature of
silicate window glass is in fact widely acknowledged in popular culture through
the erroneous assertion that old windows are thicker at the bottom because the
glass is really just a ‘slow liquid’. This is not true [71], but it illustrates an
important point about glasses in general that makes them distinct from typical
phases: glasses are not strictly equilibrium states. They are the result of a system
‘freezing’ into a given configuration which may or may not be its ground state,
and given enough time the system may still attempt to fall back to its ground
state.

The most commonly encountered glasses in condensed matter physics are
spin glass phases, a variation of which we shall look at in Chapter 2. Spin glasses
are frozen disordered magnets, where the magnetic moments of the electrons are
frozen in a random arrangement. They are ‘glassy’ in the sense that their lack of
magnetic order is analogous to the lack of crystalline order in an amorphous solid
such as window glass. The random arrangement of electron spins di↵ers from a
spin liquid or paramagnetic state in that the spins in a spin glass are pinned and
are not free to move. Above some critical temperature the spin glass phase will
‘melt’ and the material will become paramagnetic again, but when cooled below
this critical temperature the spins will freeze into some random arrangement.

Spin glasses are characterised by a highly degenerate ground state with a
macroscopic number of di↵erent possible configurations. A simple example of how
this degeneracy can arise in a spin system (here via geometric frustration rather
than disorder) is that of antiferromagnetically coupled Ising spins on a triangular
lattice (Fig. 1.6). It is impossible for all of the spins to satisfy all of their
bonds. At least one bond must be in an energetically unfavourable configuration,
a phenomenon known as frustration. Since there are multiple di↵erent ways to
frustrate a single bond, there is a large ground state degeneracy.

Over a long enough time scale, this system will tunnel from one configuration
into another. In a true spin glass, where the degeneracy is caused by
disorder rather than frustration alone, the energy barrier between the di↵erent
configurations is su�ciently large that, in the thermodynamic limit, tunnelling is
completely suppressed. Below the spin glass critical temperature, the available
configuration space becomes fragmented into ‘valleys’ separated by large energy
barriers which prevent the system from changing from one configuration to
another.
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Figure 1.6 Four of the possible arrangements of three Ising spins on a triangular
lattice with antiferromagnetic exchange interactions. The red lines
indicate frustrated bonds. Panels i) and ii) show that if the top-left
and top-right spins are up and down respectively, then the bottom
spin cannot be up without frustrating the leftmost bond) and cannot
be down without frustrating the rightmost bond. Likewise, panels iii)
and iv) show that if the top two spins are swapped, the same problem
occurs in reverse.

Ergodicity

A system is ergodic if it is capable of exploring the entire configuration space
available to it, i.e. every microstate with the same energy is equally probable over
infinitely long timescales. A non-ergodic system is one in which this statement
does not hold and the system is restricted to a certain region of its phase space.
The ergodic hypothesis [72] states that typical physical systems are ergodic, which
is essentially the statement that time averages are equivalent to thermal averages.

Though typically thought of as a characteristic of strongly disordered systems
which ‘freeze’ the system into a small subset of all available states, the breaking of
ergodicity is actually quite common [73]. Take an Ising ferromagnet, for example.
Below the Curie temperature at which the material becomes ferromagnetically
ordered, the magnetisation will spontaneously choose to be ‘up’ or ‘down’ but
once the choice is made the system cannot move from one configuration to the
other.

An ordered ferromagnet is non-ergodic in the sense that, if one computes
expectation values of magnetisation according to the ergodic hypothesis over the
all available configurations (i.e. over both up and down magnetisations) the result
is zero. For any system in the thermodynamic limit this does not reflect its true
behaviour4, and so expectation values must instead be computed over a restricted
volume of phase space, either the up configuration or the down configuration. The

4Strictly, an ordered ferromagnet is only non-ergodic in the theromodynamic limit where
the energy barrier between ‘up’ and ‘down’ configurations becomes formally infinite and the
probability of the system to tunnel from one state to another is zero. In any finite-size system,
there will remain a finite probability for the system to switch from one state to another. This
probability will decrease with increasing system size.
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Figure 1.7 Schematic free energy landscape of a ferromagnetic system (left,
with well defined minima related by a symmetry of the Hamiltonian)
versus a glassy system (right, with lots of metastable local minima
unrelated by symmetries and with large energy barriers between
them). Figure based on a similar figure in Ref. [74].

violation of the ergodic hypothesis in this way is characteristic of spontaneous
symmetry breaking.

In the Ising example, the two phase space regions are related by a symmetry
of the Hamiltonian describing the system. Disordered systems realise a much
richer and more complex form of ergodicity breaking, displaying a macroscopic
number of well-separated phase space regions not linked by any fundamental
symmetries of the Hamiltonian. A schematic of this is shown in Fig. 1.7 where
we compare the free energy landscape of an ordered ferromagnet (non-ergodic,
with the global minima related by the Z

2

symmetry of the Hamiltonian) with
the free energy landscape of a spin glass which has a large number of minima
unrelated by any discernible symmetry of the Hamiltonian.

Order Parameters

Given that glassy phases are, by definition, lacking in order, defining a
quantity that can serve as an order parameter for the breaking of ergodicity in a
glassy phase is challenging. The most commonly used quantity is the Edwards-
Anderson order parameter, first coined in the context of spin glasses [68, 70, 75]
where it took the form:

q
EA

= lim
t!1

lim
N!1

hŜ
i

(0)Ŝ
i

(t)i, (1.25)

where Ŝ
i

is the spin operator on site i, the angled brackets indicate a thermal
average and the overline indicates a disorder average. The Edwards-Anderson
order parameter in this form will be non-zero only if the system is trapped in a
single region of its configuration space. By taking the limit of N ! 1 before
t ! 1, the energy barriers between free energy regions become infinite and win
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out over the infinite timescale. The system becomes trapped in its valley, leading
to a non-zero value of q

EA

.

We can also define a purely thermally-averaged ‘equilibrium’ order parameter
with no time-dependence:

q = hŜ
i

i2, (1.26)

which di↵ers from q
EA

in having contributions from all di↵erent configuration
space ‘valleys’, e.g. the average is over all possible minima in the free energy
landscape.

The forms of the order parameters above were introduced with the sole
motivation of distinguishing spin glasses from paramagnetic phases, but a
ferromagnet is also non-ergodic and will also have a non-zero q

EA

as defined
above. The following more modern definition is trivially zero in the paramagnet,
identically zero in the ferromagnet and non-zero only in the spin glass. It takes
the following form:

q
EA

= lim
t!1

lim
N!1

D
Ŝ
i

(0)Ŝ
i

(t)
E
�
D
Ŝ
i

(0)
E
2

�
. (1.27)

The pure thermally-averaged order parameter q becomes:

q =
h
hŜ

i

ihŜ
i

i � hŜ
i

i hŜ
i

i
i
. (1.28)

In replica language, q
EA

measures long-time correlations within a replica and q
is the equal-time correlation function between multiple replicas:

q
EA

= lim
t!1

lim
N!1

X

↵

D
Ŝ
i,↵

(0)Ŝ
i,↵

(t)
E
�
D
Ŝ
i,↵

(0)
E
2

�
, (1.29)

q =
X

↵�

h
hŜ↵

i

ihŜ�
i

i � hŜ↵
i

i hŜ�
i

i
i
, (1.30)

where ↵ and � label the di↵erent replica systems. This form of q makes it easier
to see where the intervalley contributions come from, and how q physically di↵ers
from q

EA

- if the ground states of replicas ↵ and � are separated by a large energy
barrier, their contribution to q will be much smaller than if their ground states
exist within the same free energy valley. This gives rise to a phenomenon known
as replica symmetry breaking.

Replica Symmetry Breaking

In a glassy system both q and q
EA

will take non-zero values. If q = q
EA

we say the system is replica symmetric. If q 6= q
EA

, we say the system exhibits
replica symmetry breaking. Equivalently, if we define q =

P
↵,�

q
↵�

then replica
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Figure 1.8 A cartoon of the hierarchical free energy landscape of a spin glass.
The entire configuration space (white) first splits into two valleys
(orange and cyan), which then split into further valleys (red, yellow,
green and blue) each of which has its own subset of possible states.
Each colour in the top row (red, yellow, green, blue) corresponds to
a di↵erent replica index.

symmetry breaking is the same as saying that q
↵�

takes di↵erent values depending
on which replicas ↵ and � are being considered.

Replica symmetry breaking (RSB) is the solution to the unphysical behaviour
that is sometimes caused by naive application of the replica trick. If a system
exhibits RSB, it means there is a macroscopic number of degenerate or nearly-
degenerate states in the configuration space, each separated by large energy
barriers. If a system freezes into one glassy state, it may be inhibited from
tunnelling into any other states with the same energy. Typically, the free energy
landscape takes on a so-called hierarchical form, with local minima within local
minima within local minima, and so on. An illustration of this is shown in Fig.
1.8 where the di↵erent replicas are signified by di↵erent colours.

The Edwards-Anderson order parameters test for this. Because q
EA

measures
long-time correlations within a single replica, it contains information about how
likely it is for the system to tunnel from one replica configuration into another.
The other order parameter q measures the overlap between di↵erent replicas,
and specifically q

↵�

measures the overlap between specific pairs of replicas. If all
replicas are equivalent to each other, q

EA

= q and the system is replica symmetric.
If the disorder has led to the fractionalisation of the configuration space, with a
large number of potential replica configurations which are unable to tunnel into
one another, then q

↵�

will vary with ↵ and �, leading to q
EA

6= q and we know
the system exhibits replica symmetry breaking.
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It is precisely this idea that prevents blind application of renormalisation
group techniques from working on disordered systems. If the systems exhibits
replica symmetry breaking, the short-wavelength and seemingly irrelevant degrees
of freedom are in fact completely determined by which replica configuration the
system is in, and therefore are implicitly dependent upon the long-wavelength
properties of the system. The interlinked nature of the short- and long-wavelength
modes in disordered systems can be taken into account by incorporating replica
symmetry breaking into the renormalisation group scheme [41].

In the mean-field theory of spin glasses, RSB arises through q
EA

and q in a
quite natural manner. In renormalisation, one must break replica symmetry by
hand, look for corresponding RSB fixed points and test the susceptibility of the
system to replica symmetry breaking perturbations. RSB does not arise in as
elegant a manner in these systems, but it is important to allow for it in order to
ensure the RG produces physical results.

Although the Edwards-Anderson order parameters were developed for clas-
sical spin glasses, they are relevant to any ‘glassy’ system, classical or quantum.
Once we know (or at least suspect) we have a glassy phase, these order parameters
can be used to help quantify it. To know whether or not we suspect disorder to
cause glassiness, we need to look at the properties of the clean system and see
how stable it is to the addition of disorder.

1.9 Phase Transitions in Disordered Materials

Once we begin looking at the e↵ects of disorder on materials, the natural
question is to ask what e↵ect disorder has (if any) on the nature of the quantum
phase transition itself and the nature of the phases either side of it. It could
be that disorder destabilises one phase in favour of another, or that the phase
boundary stays the same but critical exponents are modified. In the case of
Gri�ths phases, disorder causes entirely new ‘mixed’ phases to appear in between
the phases of the clean system. Our first port of call in determining the relevance
of disorder is known as the Harris criterion - the following discussion is based
upon Refs [76] and [77].

Harris Criterion

The Harris criterion states that disorder is a relevant perturbation to a
renormalisation group fixed point in the clean system if ⌫d < 2 where ⌫ is
the correlation length exponent and d is the spatial dimension. In the case of
quenched disorder this criterion is equally valid for quantum and classical phase
transitions due to the perfect correlation of disorder in time (i.e. d is not replaced
with d+ d

z

).
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Critical points with quenched disorder can be classified by the behaviour of
the average disorder strength [78]. For systems which fulfil the Harris criterion
(i.e. for which ⌫d > 2), the disorder renormalises to zero on large length scales
and the critical behaviour is that of the clean system in the absence of disorder.
If the Harris criterion is violated (⌫d < 2), there are two possibilities:

i) The average disorder strength remains finite at all length scales and the
transition is controlled by a finite-disorder critical point, where the scaling is of
conventional power-law form but the critical exponents have been modified from
the clean system values.

ii) The average disorder strength increases under renormalisation, becoming
more and more relevant at longer and longer length scales. The transition is there-
fore controlled by an exotic infinite-randomness fixed point with unconventional
scaling relations.

The Harris criterion and the classifications arising from it deal solely with
the behaviour of the average disorder strength. This is not su�cient for a full
description of disordered systems - randomness which leads to fluctuations on
finite length scales can give rise to new physics not captured by the behaviour of
the average disorder strength.

The presence of these relevant fluctuations on finite length scales lead to
situations where disorder can cause certain rare regions of the system to be locally
in one phase even when (based on the average disorder strength) the bulk system
is predicted to be in another. These rare regions lead to nonanalyticities in the
free energy known as Gri�ths singularities in the vicinity of the phase transition
and they can dramatically change the behaviour of the system.

Transitions in the presence of rare regions

The presence of rare regions can lead to three di↵erent situations, governed
by the relation between the e↵ective dimensionality of the rare regions d

RR

(which includes imaginary time) and the lower critical dimension of the ordering
transition d�

c

.

i) d
RR

< d�
c

: When the dimension of the rare region is lower than the
lower critical dimension of the ordering transition, the rare regions cannot order
independently of the rest of the system. Their contribution is at most power-law
in the volume of the system, whereas the density of the rare regions decreases
exponentially. The fixed point is a conventional finite-disorder type with power-
law correlations. The rare regions thus lead to exponentially small corrections to
the thermodynamic properties.

ii) d
RR

= d�
c

: When the rare regions are precisely at the lower critical
dimension, they still cannot order independently of the bulk, however their
contribution to the thermodynamics is exponential in the system volume. The
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Figure 1.9 An illustration of an Ising spin system with di↵erent regions of
the system locally in di↵erent phases. The black regions are
paramagnetic and exhibit no long-range order, while the red and blue
regions refer to patches of locally ordered ferromagnetism.

e↵ects of the rare regions can therefore overpower the low density, leading
to Gri�ths singularities in the free energy and non-power-law scaling. The
renormalisation group fixed point associated with this type of transition is the
so-called ‘infinite randomness’ type, where the e↵ects of disorder increase as the
short-wavelength modes are integrated out and the disorder strength diverges.

iii) d
RR

> d�
c

: In this case, the rare regions are able to order independently
of the bulk system. Their contribution to the thermodynamics is such that not
only does it change the behaviour, but in fact it destroys the sharp transition
entirely, smearing it out over a wide region of phase space and leading to the
formation of a new ‘mixed’ phase where rare ordered regions exist within an
otherwise disordered system.

The case in which the transition is smeared out leads to a region known as a
Gri�ths region, or Gri�ths phase. In this region, exponentially rare pockets of
one phase exist within a bulk system which is in another phase. It is this type of
phase that will be the main focus of Chapters 3, 4 and 5.

1.10 Outlook

Having now taken a whistle-stop tour of phase transitions, disordered systems
and the main theoretical tools which we will be using in this thesis, we are now
equipped to move on to look at the original research I have conducted during
my PhD. In this thesis, we will examine a number of di↵erent types of physical
systems subject to a variety of types of disorder.
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• Chapter 2 - We begin with an investigation into the behaviour of how
disorder can couple to quantum fluctuations at finite temperatures. In
this chapter, we examine fluctuation-induced phase reconstruction near
an itinerant ferromagnetic quantum critical point. Using the fermionic
quantum order-by-disorder mechanism, we recover the finding from previous
work that fluctuations near the quantum critical point favour the formation
of an incommensurate spiral phase in the absence of disorder. Upon the
addition of quenched charge disorder and application of the replica trick, the
incommensurate phase becomes stabilised over a slightly larger region of the
phase diagram but it no longer displays long-range order, instead adopting
short-range correlations and a strongly anisotropic correlation length. The
disorder causes local changes in the pitch of the spiral magnetism, resulting
in a novel phase we term a ‘helical glass’.

• Chapter 3 - Having looked perturbatively at quantum fluctuations at finite
temperatures, we now move on to a zero-temperature renormalisation group
study of the Bose glass, a rare-region Gri�ths phase found in the disordered
Bose-Hubbard model. Restricting ourselves to random mass disorder only,
we recap previous work done on this model in the context of a replica
symmetric field theory and for the first time consider the e↵ects of replica
symmetry breaking on the renormalisation group equations. Allowing for
replica symmetry breaking in the most general Parisi form, we find the
Mott insulator to Bose glass transition is governed by a one-step replica
symmetry broken fixed point, signifying a breakdown of ergodicity, and
derive Edwards-Anderson order parameters to quantify this.

• Chapter 4 - Motivated by the need to find experimental systems where
replica symmetry breaking could be experimentally detected, we conduct a
related renormalisation group study of a dimerised quantum antiferromag-
net with random intra-dimer bond disorder, which maps onto a hard-core
Bose-Hubbard model. This model contains magnetic analogues of the Mott
insulating and superfluid phases of the conventional Bose-Hubbard model
as well as fractionally-filled ‘checkerboard’ phases. When disorder is added,
a magnetic analogue of the Bose glass phase intervenes between the Mott
insulating and superfluid phases. Using the full replica symmetry breaking
renormalisation group technique developed in Chapter 3, we show that
without replica symmetry breaking the renormalisation group procedure
does not correctly capture the physics of the Bose glass. In addition, we
find a strong suppression of the compressibility near the tip of the Mott
lobes which we identify with a Mott glass, an incompressible rare-region
phase never before analytically predicted to exist in a three-dimensional
bosonic system.

• Chapter 5 - Switching to a fully numerical study for the first time in
this thesis, we examine the capabilities of current-generation experimental
setups to probe the local properties of glassy phases. Specifically, we
consider the case of the quantum gas microscope. Capable of single-
atom resolved fluorescence imaging of both bosons and fermions, quantum
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gas microscopes can directly image exotic glassy phases. Using a Bose-
Hubbard model with mean-field numerics, we model the experimental
system, reproduce existing experimental results in the clean case and show
that the addition of disorder leads to changes that are well within current
experimental resolution, even at finite experimental temperatures. We
show for the first time that quantum gas microscopes can measure the
thermally-averaged Edwards-Anderson order parameter, serving as a proof-
of-principle that quantum gas microscopes are ideal for investigating the
properties of disordered strongly correlated phases. With such local probes,
many of the theoretical predictions in the rest of the thesis can now be
experimentally tested and an exciting new experimental toolbox is opened
up.

In all of the following, I work in units where all natural constants are equal
to unity, e.g. ~ = 1, k

B

= 1 and c = 1.

30



Chapter 2

Disordered Itinerant
Ferromagnetic Quantum Critical
Points

While the majority of this thesis is concerned with the e↵ects of disorder
in bosonic systems, the earliest work I did as part of my PhD was a study
of the e↵ects of quenched charge disorder on phase reconstruction near an
itinerant ferromagnetic quantum critical point. This work was my introduction
to disordered systems before I moved on to the bosonic work that forms the bulk
of this thesis.

In this work, I look at how disorder can generate new quantum fluctuations
in the vicinity of a ferromagnetic quantum critical point and show that this leads
to a novel glassy phase known as a helical glass which persists up until a tricritical
point at non-zero temperature.

The following work was published in “Helical glasses near ferromagnetic
quantum criticality”, S. J. Thomson, F. Krüger and A. G. Green, Physical Review
B 87, 224203 (2013) [79].
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2.1 Background

The conventional theory of itinerant ferromagnetic quantum criticality is the
Hertz-Millis (or Hertz-Millis-Moriya) theory [80–82], which works by determining
an e↵ective action for a conducting fermionic system in terms of dynamical
fluctuations of a bosonic order parameter and from there allowing calculations
of the free energy and other thermodynamic properties. Although Hertz-
Millis theory is successful at describing many aspects of itinerant ferromagnetic
quantum critical points, it fails to predict some of the more striking phenomena
observed in experiments such as fluctuation-induced first order behaviour and the
emergence of new phases near quantum critical points.

The fermionic order-by-disorder mechanism [83] is one of the proposed ways
to extend and repair the conventional Hertz-Millis theory by including low-
energy particle-hole fluctuations which couple to the order parameter and result
in additional non-analytic corrections to the free energy. These fluctuation
corrections reproduce the experimentally seen first-order behaviour in the vicinity
of quantum critical points as well as the stabilisation of incommensurately ordered
magnetic phases.

The name ‘order-by-disorder’ refers to the competition between internal
energy and entropy rather than to any impurities or randomness. Previous work
dealt purely with clean systems. My contribution to this mechanism, motivated
by Ref. [84], was to consider the addition of quenched charge disorder into the
system. We found that new fluctuation-corrections arise due to the presence
of disorder in the system and these change the nature of the incommensurate
phase from a long-range-ordered spiral ferromagnet to a new fluctuation-induced
short-range ordered helical glass phase unlike anything predicted before in the
literature.

2.2 Stoner Mean-Field Theory

The conventional mean-field theory of itinerant ferromagnetism in a fermionic
Hubbard model is known as Stoner ferromagnetism [85, 86]. Before going on to
more sophisticated extensions, we’ll take a look at the mean-field description of
the paramagnet to ferromagnet transition.

We start from the fermionic Hubbard Hamiltonian:

Ĥ =
X

k,�=±
["(k)� µ] n̂k,� + g

X

i

n̂
i,+

n̂
i,�, (2.1)

where n̂ is the fermionic number operator, � = ± refers to the spin index, "(k) =
k2/2 is the free-electron dispersion, g is the usual Hubbard contact interaction
and we work in units where both the electron mass and ~ are equal to unity.
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As a first step, we employ a mean-field decoupling to rewrite the interaction
term  ̄

+

 
+

 ̄� � ⇡ M( ̄
+

 
+

�  ̄� �), assuming without loss of generality that
M = Mẑ, and that M is uniform across the system. Taking the continuum limit
then leads to the mean-field Hamiltonian:

Ĥ
MF

=
X

�=±

Z

k

("(k)� �gM � µ)n̂k,� + g

Z
d3r M2. (2.2)

This is diagonal in the fermionic operators. One may then express the partition
function in the conventional manner as Z = Tr [exp(��H

MF

)], then use F =
�T lnZ to obtain a mean-field free energy density in the following form:

F = gM2 � T
X

�

Z

k

ln
�
e��("�(k)�µ) + 1

�
, (2.3)

where "
�

(k) = "(k)��gM is the mean-field dispersion in the presence of uniform
ferromagnetism and � = 1/T is the inverse temperature. This free energy can
be expanded in the usual Landau manner as a series expansion in even powers of
the magnetisation M :

F = a
2

M2 + a
4

M4 + a
6

M6... (2.4)

where the coe�cients a
2

, a
4

, a
6

etc are all determined in terms of the microscopic
parameters and are given by:

a
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=
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@M2

����
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f (1)("(k)), (2.5)
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f (3)("(k)), (2.6)

a
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@(M2)3

����
M=0

=
2

6!
g6
Z

k

f (5)("(k)) (2.7)

where f("(k)) = [exp(�("(k)�µ))+1]�1 is the Fermi-Dirac distribution function
and the superscript indicates the number of derivatives with respect to "(k).
The coe�cients can be calculated analytically in the T = 0 limit and at low
temperatures using the Sommerfeld expansion [87]. The integrals can also be
evaluated numerically, however derivatives of the Fermi function become sharply
peaked at low temperatures and it can be di�cult to ensure convergence.

The second order paramagnet-to-ferromagnet transition is given by the a
2

= 0
line, shown in Fig. 2.1. At mean-field level the quartic coe�cient a

4

is always
greater than zero, ensuring the free energy is bounded from below and there is no
first-order transition. Though this means we do not yet require the sixth-order
coe�cient a

6

, we will end up needing this later once we start including the e↵ects
of quantum fluctuations that go beyond mean-field.

Using Eq. 2.5 the condition for ferromagnetism a
2

< 0 can also be expressed
as g⇢("

F

) > 1, where ⇢("
F

) = � R
k

f 0("(k)) is the density of states at the Fermi

33



Figure 2.1 The second-order ferromagnet-to-paramagnet transition as deter-
mined by Stoner mean-field theory, as a function of dimensionless
temperature T̃ = T/µ and interaction strength g̃ = g/µ.

surface. This is the conventional form of the Stoner criterion, linking the onset
of the ferromagnetic phase to the relation between the on-site repulsion and the
density of states.

2.3 Hertz-Millis Theory

Having examined the mean-field model, now we can turn to a field theoretic
approach. The conventional theory of ferromagnetic quantum criticality is the
Hertz-Millis (also known as Hertz-Millis-Moriya) theory [80–82]. The philosophy
behind this approach is to begin with a fermionic Hamiltonian and integrate out
the fermionic degrees of freedom, replacing them instead with a bosonic field that
serves as the order parameter. This then leads to an action which is analytic in
powers of the bosonic field.

Starting from the fermionic Hubbard Hamiltonian in Eq. 2.1, we can express
the partition function as a path integral over the fermionic Grassmann fields:

Z =

Z
D[ ̄, ]e�S[

¯

 , ], (2.8)

S[ ̄, ] =

Z
�

0

d⌧

Z
d3r

�
 ̄@

⌧

 +H( ̄, )
�
. (2.9)

Following the original work of Hertz [80], we perform a Hubbard-Stratonovich
[88, 89] decoupling in the spin channel (which we denote �) and rewrite the
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partition function as:

Z =

Z
D[ ̄, ]D[�]e�S[

¯

 , ,�], (2.10)

S[ ̄, ,�⇤,�] =
Z

k,!

 ̄(G�1 � g� · �) + g

Z

r,⌧

�(r, ⌧)2, (2.11)

where G = (k2 � i! + µ)�1 is the free electron Green’s function, and � =
(�

x

, �
y

, �
z

) is the vector of Pauli matrices. We can then integrate out the fermionic
Grassmann fields to leave an e↵ective field theory written solely in terms of
fluctuations of the bosonic order parameter �. This is the Hertz-Millis e↵ective
action:

Z = D[�]e�S[�], (2.12)

S[�] = �Tr ln
⇥
G�1 � g� · �⇤+ g

Z

r,⌧

�(r, ⌧)2. (2.13)

This expression can be evaluated by expanding the Tr ln term to quartic order
in �. This expansion around � = 0 restricts the resulting action to describing
fluctuations of the bosonic order parameter in the paramagnetic phase only and
it not valid in the magnetically ordered phase. The resulting action after this
expansion has the form:

S =
X

q,!n

✓
r + q2 +

|!
n

|
�(q)

◆
�q,!n��q,�!n + u

Z

r,⌧
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�(r, ⌧)2

⇤
2

+ ... (2.14)

where r and u can be defined in terms of the single particle Green’s function and
the density of states respectively [90].

The dynamic contribution |!
n

|/�(q) is known as a Landau damping term and
arises from the coupling of statics and dynamics at a quantum phase transition. It
takes into account the excitation of particle-hole pairs across the Fermi level which
lead to a damping of the spin fluctuations �q,!n . The precise form of the damping
term shown here relies on the assumption that the electronic quasiparticles obey
Fermi liquid behaviour [90], taking the form �(q) = v

F

q in a ferromagnet (in the
limit |!| ⌧ v

F

q where v
F

is the Fermi velocity) and �
q

⇠ �
0

in an antiferromagnet,
independent of q. More sophisticated calculations which go beyond the Hertz-
Millis and Fermi liquid paradigm predict quantitatively di↵erent forms of Landau
damping [91].

Following, for example, Ref. [82], the quantum critical behaviour of the
itinerant ferromagnet can be studied using perturbative renormalisation group
techniques. As we have already discussed, however, the resulting analysis does
not fully describe many materials. Having sketched Hertz-Millis theory, now we
are in a position to explain its shortcomings.
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2.4 Breakdown of Hertz-Millis Theory

Though successful at explaining many thermodynamic properties, Hertz-
Millis theory does not capture the behaviour of certain materials close to quantum
critical points. In particular, many materials exhibit first-order transitions at
low temperatures [15–19], which Hertz-Millis theory cannot explain. Nor can it
account for the formation of new phases around quantum critical points seen in
experiment and predicted by various other theoretical methods. The avoidance
of quantum critical points has been suggested to be a general principle [92].

The many successes of Hertz-Millis theory [90] suggest that it isn’t irreparably
incorrect, simply incomplete. The hope is that by rethinking the approximations
and assumptions used, it may be possible to repair the theory and correctly
describe the properties of ferromagnetic quantum criticality.

The main reason for the breakdown of Hertz-Millis theory is now known
to be because it does not take into account the so-called ‘soft modes’ [93],
low energy particle-hole fluctuations that couple to the order parameter. The
resulting non-analytic correction to the free energy of the ferromagnet was first
derived in [94] and takes the form F

fl

= M4 ln(M2 + T 2) in three spatial
dimensions, where M is the magnetisation and T the temperature. This term
contributes a lnT divergence to the quartic coe�cient of the Landau free energy
F (4)

fl

⇡ M4 lnT , guaranteeing that at a su�ciently low temperature the quartic
term will turn negative and the transition will become first-order. This suggests
that fluctuation-induced first-order behaviour is a generic feature of ferromagnetic
quantum criticality, with the microscopics of the material in question governing
what constitutes a ‘su�ciently low’ temperature1.

Furthermore, inclusion of the non-analyticity opens up the possibility for
incommensurate ordering as well as fluctuation-induced first-order behaviour.
This has been suggested previously by numerous authors using a series of di↵erent
frameworks [93, 95–102]. For our purposes in this thesis, the quantum order-by-
disorder method provides a clear and intuitive picture as to why Fermi surface
reconstruction is permitted near ferromagnetic quantum critical points (FM
QCPs) and in turn why this leads to incommensurate ordering, so it is to this
method that we turn to explain why incommensurate phases exist near FM QCPs.

1It has been pointed out [91] that should non-Fermi liquid properties of the normal state
become significant before this temperature is reached, the first-order transition may be avoided.
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2.5 The Order-by-Disorder Mechanism

First proposed in the context of condensed matter physics in 2009 [83], the
fermionic quantum order-by-disorder mechanism has its roots in the Coleman-
Weinberg theory of high-energy physics [103]. The central idea of the condensed
matter form of this technique is that certain Fermi surface deformations can
open up more phase space for low-energy particle-hole fluctuations which can
self-consistently act to lower the energy of the system and stabilise new ground
states. Order-by-disorder is essentially equivalent to self-consistent second-order
perturbation theory [104], but this framework is a particularly accessible and
transparent exposition of the physics at hand.

The concept of allowing the system some additional degree of freedom which
it can use to lower its energy is not a new one. It is similar to the idea of entropic
lowering of free energy at non-zero temperatures, where F = E � TS can be
minimised by picking a state of high entropy.

In a quantum condensed matter context, an illustrative example of the order-
by-disorder mechanism can be found in the insulating quantum antiferromagnet.
If all the electron spins were oriented ferromagnetically, virtual hopping between
sites would be prohibited by the Pauli exclusion principle. Confinement to a
single site comes with an energy cost, so this configuration of spins is not ideal.

If instead the electron spins are oriented antiferromagnetically, Pauli exclu-
sion no longer applies. Virtual hopping is allowed and the kinetic energy benefit
gained by relaxing the confinement of the electrons self-consistently lowers the
free energy of the antiferromagnet below that of the ferromagnet. In other words,
quantum fluctuations associated with an additional degree of freedom can stabilise
antiferromagnetic order.

In the case of fermionic quantum order-by-disorder, the fluctuation correc-
tions correspond to deformations of the Fermi surfaces for spin-up and spin-down,
as shown in Fig. 2.2. The excitations happen at or near the Fermi level, i.e. on
the edges of the Fermi surfaces shown in the figure. By deforming the Fermi
surfaces away from equal-sized circles (shaded), the system increases the surface-
area-to-volume ratio and the increased total circumference allows for a larger
number of fluctuations. If the fluctuations lower the free energy, the system will
pick a deformation that maximises the allowed number of fluctuations. These
deformations correspond to di↵erent phases, e.g. if the spin-up Fermi surface
becomes smaller than the spin-down Fermi surface, the system will become
magnetic, or if an anisotropic deformation is favoured the system could exhibit
spiral magnetism or electron nematic order, for example.

The key idea behind the fermionic order-by-disorder mechanism is that one
self-consistently calculates the free energy in the presence of a given type of order
(ferromagnetic, spiral etc.) and checks whether the fluctuations can stabilise
that phase over other competing phases considered. Order-by-disorder cannot a
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Figure 2.2 A two dimensional cartoon of Fermi surface deformations corre-
sponding to i) uniform ferromagnetism and ii) spiral magnetism.
The filled circles correspond to a paramagnetic phase, i.e. equal
numbers of spin-up and spin-down particles which lead to no net
magnetic moment. In both cases, the Fermi surface deformations
lead to an increase the surface area available for low-energy particle-
hole fluctuations. This increase is relatively modest in the case of
ferromagnetism, but larger in the case of the spiral magnet. Other
deformations such as spin nematic phases are possible but are not
considered in this thesis.

priori determine the ground state - one must first guess a likely type of order,
then calculate the fluctuation corrections and check whether it is stabilised or
not. This limitation means that constant feedback is required from experiments
in order to guide the search for new phases in the vicinity of quantum critical
points.

2.6 Fluctuation Corrections

Full details on the calculation of the fluctuation corrections using the order-
by-disorder framework can be found in Refs. [83, 104–107]. I first sketch the main
steps here as they have been presented in previous work before deriving the clean-
case fluctuation corrections in full along with the disorder-induced fluctuations
in Section 2.8.
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Derivation of the fluctuation corrections

Starting from the fermionic partition function defined in Eq. 2.8 and the
associated action, we can perform a Hubbard-Stratonovich decoupling of the
interaction term in both spin and charge channels (denoted � and ⇢ respectively)
to obtain the action:

Z =

Z
D[ ̄, ]D[�]D[⇢]e�S[

¯

 , ,�,⇢], (2.15)

S[ ̄, ,�, ⇢] =

Z

k,!

 ̄
⇥
G�1 + g(⇢� � · �)⇤ + g

Z

r,⌧

(�2 � ⇢2). (2.16)

where as before G = (�i! � k2 + µ)�1 is the free electron Green’s function,
and � = (�

x

, �
y

, �
z

) is the vector of Pauli matrices. Decoupling only in the
spin channel as in Hertz-Millis theory results in an incomplete description of the
fluctuations present in the system, as both ⇢ and � appear here on the same
footing. The fermionic degrees of freedom can be integrated out exactly as in the
Hertz-Millis case, leading to the action:

Z =

Z
D[�]D[⇢]e�S[�,⇢], (2.17)

S[�] = �Tr ln
⇥
G�1 + g(⇢� � · �)⇤+ g

Z

r,⌧

(�2 � ⇢2). (2.18)

In the case of Hertz-Millis, the expansion of the free energy was performed around
the paramagnetic state. In contrast, here we wish to perform an expansion
in terms of the fluctuations �̃ around the static magnetic order parameter M.
With this aim in mind, we make the first major deviation from Hertz-Millis and
decompose the bosonic fields into static (zero frequency) and fluctuation (finite
frequency) components:

⇢(r, ⌧) = ⇢
0

(r) + ⇢̃(r, ⌧), (2.19)

�(r, ⌧) = M(r) + �̃(r, ⌧), (2.20)

leading to an action

S[�] = �Tr ln
h
G�1

M + g(⇢̃� �̃ · �)
i
+ g

Z

r,⌧

(M2 + �̃2 � ⇢2
0

� ⇢̃2), (2.21)

where G�1

M = G�1 + g(⇢
0

�M ·�) is the inverse Green’s function in the presence
of magnetic order. In the following, we do not consider the possibility of charge
ordering, so we set ⇢

0

= const. and absorb it into the chemical potential.

Expanding the action to quadratic order in finite-frequency fluctuations re-
produces the mean-field contribution from Eq. 2.3 plus an additional fluctuation-
correction term. After a lengthy calculation (shown in Section 2.8), the
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fluctuation correction can be shown to be:

Ffl = �2g2
Z
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+
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3

) + f�(k4
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,

(2.22)

where f is the Fermi-Dirac distribution function with f
�

(k) = f("
�

(k)) for brevity
and the asterisk on the integral indicates momentum conservation, k

1

� k
2

=
k
3

� k
4

. It is possible to see from this term the particle-hole excitation structure
discussed earlier - the Fermi functions that enter here in the numerator create
particle-hole pairs with opposite spin and equal-and-opposite momenta (enforced
by the momentum conservation).

Corrections to the Ginzburg-Landau coe�cients

In the case of the uniform ferromagnet, the fluctuation corrections to the
quadratic and quartic coe�cients can be calculated from Eq. 2.22 in the low-
temperature limit and found in Refs. [104, 106, 107]. They are given by:

a
2,f l

⇡ � 16
p
2

3(2⇡)6
(1 + 2 ln 2)g4, (2.23)

a
4,f l

⇡ 16
p
2

3(2⇡)6
(1 + ln T̃ )g6, (2.24)

where T̃ = T/µ is the dimensionless temperature. The ln T̃ contribution to the
quartic coe�cient guarantees the presence of a first-order transition at a low
enough temperature.

Taking these fluctuation corrections into account leads to the phase diagram
shown in Fig. 2.3 in the (1/g̃, T̃ ) plane, where g̃ = g⇢

F

and ⇢
F

is the density of
states at the Fermi surface. We find that the transition turns first order below
a tricritical point located at approximately T̃

tcp

⇡ 0.33. However, the slope
of the phase boundary below the tricritical point is unphysical. While it is not
unreasonable to expect the fluctuations to stabilise ferromagnetic order in a region
which was previously paramagnetic, the phase boundary should still terminate
at a finite value of 1/g̃. To obtain physical behaviour, we need to include terms
beyond the leading fluctuation corrections.

Resummation of higher-order terms

The previous approach has relied upon expanding the free energy in terms
of the order parameter M , however this is only valid when M is small, i.e. in
the vicinity of the tricritical point. At lower temperatures, the subleading terms
diverge more strongly and the validity of our expansion breaks down, leading to
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Figure 2.3 After incorporating the leading fluctuation corrections, the transition
turns first-order below a tricritical point but the phase boundary
displays unphysical behaviour at low temperature.

Figure 2.4 The first-order phase boundary after including the resummation of
higher-order divergences. The unphysical asymptotic behaviour is
repaired and the transition now terminates at T̃ = 0 at a finite value
of 1/g̃.
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the unphysical asymptotic behaviour in the T̃ ! 0 limit shown in Fig. 2.3. Higher
order terms in the expansion must be retained in order to accurately compute
the low temperature properties and ultimately to get the true T̃ ! 0 behaviour
we must retain all orders of M .

The result from Ref. [107] can be used instead to resum the leading
divergences, generating a resummed fluctuation correction of the form:

F
fl

=
1

2
�g̃2m4 ln (m2 + T̃ 2), (2.25)

where � = 16
p
2/3(2⇡)6, m = Mg/(⇢

F

µ) and  is some constant which controls
where the first-order transition terminates on the 1/g̃ axis at T̃ = 0. This term
arises only because it is not possible to resum all of the divergences exactly except
at T = 0. This form of resummed fluctuation correction was suggested in Ref.
[107] as a suitable function that interpolates between the leading corrections near
the tricritical point but gives the same T̃ = 0 intercept as the full resummation
of all divergences. Following the value used in Ref. [79] I will set  = 0.001 in the
remainder of this chapter.

The results of including this resummation are shown in Fig. 2.4 where we
see a more physically realistic phase boundary with the first-order transition
terminating on the T̃ = 0 axis at finite interaction strength g̃.

Thus far we have only allowed for the possibility of uniform ferromagnetism
and we have seen that the fluctuations both stabilise ferromagnetism over a
larger region of the phase diagram and change the nature of the transition at
low temperatures. If fluctuations can change the order of the phase transition by
lowering the ground state energy, it stands to reason that fluctuations could go
further and stabilise new phases that are not favoured at mean-field level.

2.7 Fluctuation-Induced Spiral Magnet

Motivated by the suggestion that incommensurately ordered spiral ferromag-
netic phases can be stabilised by fluctuations in the vicinity of ferromagnetic
quantum critical points [83, 97, 104, 106], we can repeat the analysis of the
previous section by allowing for a more general magnetisation

m(r) = m[x̂ cos(Q · r) + ŷ sin(Q · r)], (2.26)

where without loss of generality we assume Q = Qẑ, where ↵̂ is the unit vector
in the ↵ = {x, y, z} direction, and we continue to express the magnetisation
in dimensionless units m = Mg/(⇢

F

µ). The free energy can now be expanded
around the tricritical point in both m and Q:

F = (a
2

+ b
2

Q2 + c
2

Q4)m2 + (a
4

+ b
4

Q2)m4 + ... (2.27)
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Similarly to the case of the homogeneous ferromagnet, analysis of the coe�cients
a
2n

, b
2n

and c
2n

then allows us determine when (and if) the system favours a
modulated magnetic state, characterised by m 6= 0 and Q 6= 0. In the simplest
instance, in order for a non-zero Q to be favoured we require b

2

< 0.

Free energy

At mean-field level we again find that F = gm2�T
P

�

R
k

ln(e��("�(k)�µ)+1)
but with the key di↵erence that "

�

(k) is now the free fermion dispersion in the
presence of spiral order, given by:

"
�

(k) = k2 + �
p

(k
z

q)2 +m2, (2.28)

where q = Q/k
F

. We can derive expressions for the coe�cients in Eq. 2.27 by
Taylor expanding the free energy in two variables. The coe�cient of the first
mixed term involving both m and q becomes:

b
2

=
g4

3!

Z

k

✓
k · q
k
F

q

◆
2

f (3)("(k)). (2.29)

This coe�cient contains the third derivative of the Fermi function, similarly to
a
4

, the the coe�cient of m4. This suggests already that perhaps there is some
relation between the coe�cient of m2q2 and the bare m4 coe�cient from the
homogeneous case. To see this further we need to evaluate the k- and q-dependent
prefactor. This can be dealt with in the low temperature approximation, where
for temperatures T̃ ⌧ µ, the derivatives of the Fermi function are dominated by
contributions close to the Fermi energy, e.g. the first derivative is a narrow peak
centred at the Fermi energy. We may then approximate |k| = k

F

, leading to:

k · q
k
F

q
⇡ cos ✓, (2.30)

where ✓ is just the relative angle between k and q which can be straightforwardly
integrated over. By writing the coe�cients in this manner and expressing the
free energy as an integral over the solid angle ⌦ in three spatial dimensions,
e.g. F (m, q) = hF (

p
k2

z

q2 +m2)i
⌦

, we find that the coe�cients of m2 and q2

are indeed related to one another. In general, all nth order coe�cients are
proportional.

In particular, this means that the m2q2 coe�cient is proportional to the m4

coe�cient. Since it is the m4 coe�cient which has the logarithmic divergence
at low temperature, the m2q2 term also inherits this same ln T̃ divergence.
This implies that rather than the ferromagnetic transition simply turning first-
order at the tricritical point, instead a spiral phase becomes favoured over
the homogeneous ferromagnet. Specifically, Refs. [104, 106] show that the
proportionalities between the coe�cients are b

2

⇡ 2

3

a
4

, c
2

⇡ 3

5

a
6

and b
4

⇡ a
6

.
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Fluctuation corrections

Fluctuations can be calculated self-consistently in the presence of spiral order
by following the same procedure as for the homogeneous ferromagnet but now
allowing for the order parameter shown in Eq. 2.26. The process again leads to
a correction to the free energy of the same form as Eq. 2.22 with the important
di↵erence that the dispersion relation appearing in all terms under the momentum
integral "

�

(k) = k2+�
p
(k

z

q)2 +m2 is now the dispersion in the presence of spiral
order.

As in the case of the homogeneous ferromagnet, the fluctuation corrections
must be resummed to obtain physical behaviour in the T̃ ! 0 limit. To do this,
we use the same functional form as of the resummed free energy correction in the
homogeneous case, where m is now the spiral order parameter, and expand the
full free energy in powers of q:

F(m, q) = f
0

(m) + f
2

(m)q2 +
1

2
f
4

(m)q4 + ... (2.31)

where, after writing the free energy as an angular average over k
z

using hk2n

z

i =
1/(2n+ 1), we can write the coe�cients as:

f
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, (2.32)
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(2.34)

where f
0

(m) is the resummed, fluctuation-corrected free energy expression for the
q = 0 homogeneous ferromagnet [79]. As before,  = 0.001 is a constant which
controls the location of the T̃ ! 0 termination of the first-order phase transition.

Minimising F with respect to q leads us to find that the optimum value of
the spiral ordering wavevector is given by q2 = �f

2

/f
4

. Plugging this back into
Eq. 2.31 gives an expression which need be minimised only in terms of m:

F(m) = f
0

(m)� 1

2
f
2

(m)2/f
4

(m2) + ... (2.35)

We can compare this finite-q free energy with the free energy of the homogeneous
ferromagnet to see which state the system favours. From this, we can construct
the phase diagrams shown in Fig. 2.5.

We find that the first-order transition from the paramagnet to the homo-
geneous ferromagnet is pre-empted by a transition into the spiral ferromagnetic
phase. Quantum fluctuations have stabilised the incommensurate spiral over a
region of the phase diagram where it did not exist at mean-field level. The
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Figure 2.5 The resulting phase diagram as a function of dimensionless
temperature T̃ = T/µ and inverse interaction strength 1/g̃ =
1/(g⇢

F

) showing the fluctuation-induced spiral magnetic order
emerging near a ferromagnetic quantum critical point. The black
dashed line is the fluctuation-induced first-order ferromagnetic
transition, which is pre-empted here by the transition into the
modulated spiral state.

transition from the spiral to the homogeneous ferromagnet is second-order and
occurs at the a

2

= 0 line, however the anisotropies present in any real system
will render this transition weakly first-order. In addition to anisotropies, any real
material will also have some form of randomness or disorder present, and that is
where my work began.

2.8 Disorder-induced fluctuations

My original contribution to the fermionic order-by-disorder mechanism was
to investigate how disorder couples to the quantum fluctuations in the vicinity
of the quantum critical point. In the following, we specify to quenched charge
disorder. This is a convenient type of disorder for such a study as at mean-field
level it does not change the nature of either the paramagnetic or ferromagnetic
phases, and as such the only e↵ects it can have on the nature of the phases present
is through disorder-induced fluctuations.
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Replica Field Theory

We begin with the fermionic Hubbard Hamiltonian as before, however this
time we write it entirely in real-space such that we can include the disorder like
so:

H =

Z
d3r

"
X

⌫=±
 †
⌫

⇥r2 � µ+ v
c

(r)
⇤
 
⌫

+ g †
+

 
+

 †
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#
, (2.36)

where the charge disorder v
c

(r) is local, uncorrelated between sites and is
Gaussian distributed with zero mean and with a variance �2

c

.

v
c

(r) = 0, (2.37)

v
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�(r� r0). (2.38)

We can write an action as a path integral over fermionic coherent states in the
usual manner, leading to:
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(2.39)

We again employ a Hubbard-Stratonovich transformation to decouple the
interaction and introduce two bosonic auxiliary fields � and ⇢ representing spin
and charge respectively:
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where  ̄ = ( 
+

, �)T and  = ( 
+

, �). To average over the random disorder,
we use the replica trick (see Appendix B):
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n
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After application of the replica trick, we arrive at the replica action with disorder-
averaged coe�cients:
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where ↵ and � label the replicas. The first part of this equation is just the clean
action replicated n times, but the disorder-averaging procedure has generated
an additional disorder vertex with a coe�cient �2

c

that is just the variance of
the disorder distribution. This vertex is non-diagonal in both replica index
and imaginary time. We may then proceed to decompose the fields into static
and fluctuation terms exactly as before, with the same spiral magnetic order
parameter:

m(r) = m[n
x

cos(q · r) + n
y

sin(q · r)], (2.43)

where q = qn
z

. Again, we include the dispersion of the spiral magnet in the free-
fermion action in order to self-consistently calculate the fluctuation corrections
in the presence of spiral order.

Integration over fermionic degrees of freedom

The free-fermion action may be diagonalised by a unitary transformation:
✓
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with tan ✓k = gM/(k
z

Q). This corresponds to transforming the fermionic fields
into the rotating spiral frame.

The fluctuation-independent part of the resulting action, from the transfor-
mation of the  ̄↵(r, ⌧) [@

⌧

�r2 � µ+ g(⇢↵ � �↵ · �)] ↵(r, ⌧) term in Eq. 2.42,
can be written as:
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where !
n

= (2n+1)⇡T denote fermionic Matsubara frequencies and G
⌫

(k,!
n

) is
the fermionic Green’s function in the presence of spiral order, given by:
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where we have absorbed a q2 term into the chemical potential. In the q ! 0 limit,
we recover the theory for the homogeneous ferromagnet, as we would expect.

The fluctuation terms resulting from transforming this same part of the action
become:
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Figure 2.6 The various diagrams representing integration over the fermionic
fields (solid lines) to obtain an e↵ective field theory in terms of the
bosonic fields (dashed lines).

where �k = k� k0 and �!
n

= !
n

� !0
n

.

The disorder vertex S
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remains most compactly expressed in terms of the initial variables, rather than
transforming into the rotating frame. It is easier to leave it in the initial frame
and later define a set of mixed correlation functions to allow us to compute the
required expectation values.

We can now integrate out the fermionic fields to obtain an e↵ective bosonic
action which may be written as the sum of the mean-field and fluctuation
contributions:

S̃
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where the superscript (c) signifies that only the connected diagrams contribute.
Fig. 2.6 shows a schematic representation of the diagrams we are required to
evaluate in integrating out the fluctuation fields.
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Longitudinal and Transverse Fluctuations

To obtain the fluctuation corrections, we must integrate out the fluctuation
fields �(q, ⌘n) and ⇢(q, ⌘n) from the fluctuation-dependent part of the action,
where ⌘

n

denotes a bosonic Matsubara frequency. We can split the correction
terms into longitudinal and transverse fluctuations like so:
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where the longitudinal matrix elements, which account for charge fluctuations
and longitudinal magnetic fluctuations, are
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and the transverse terms, which only describe transverse magnetic fluctuations,
are
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The ⇧
⌫1,⌫2 terms are Lindhard functions containing two Green functions, while

the �
⌫1,⌫2,⌫3 and ⌦

⌫1,⌫2,⌫3,⌫4 are analogous terms containing three and four Green
functions respectively:
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The q-dependent prefactors contained within them which describe the e↵ect of
disorder are:
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The ⇧ terms arise from the clean case fluctuations (the lower-left panel of Fig.
2.6) while the ⌦ and � terms arise from the disorder fluctuation integrals (the
upper and lower loops respectively in the lower-left panel of Fig. 2.6). The
coe�cients h

⌫,�⌫ actually break the proportionalities between the coe�cients of
the Landau expansion discussed earlier in this chapter, however their contribution
turns out to be negligible compared to that of h

⌫,⌫

and so the previous results
linking the proportionality of various terms are assumed to still hold.

After the integration over the fluctuation fields, we reach the following
expressions:
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which we can then evaluate by performing the summation of Matsubara
frequencies to obtain the final fluctuation-corrected free energy.
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2.9 Evaluating the Free Energy

Mean-field

The mean-field free energy requires no integration over fluctuation fields
and after appropriate Matsubara frequency summation we recover the mean-field
clean case result plus a mean-field disorder term:
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The mean-field disorder term is always positive, therefore destabilising the
ferromagnet in favour of the paramagnet. This term leads only to a small
quantitative change in the phase boundary and does not change the nature of
either phase.

Clean case fluctuations

The Matsubara sums in Eq. 2.66 can be evaluated to generate the clean-case
fluctuation term:
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where, as before, f is the Fermi-Dirac distribution function with f
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of Refs. [83, 104], which leads to the final non-divergent form of the fluctuation
correction:
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as used earlier in the chapter and in Refs. [83, 104, 106, 107].
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Disorder-induced fluctuations

The leading fluctuation corrections due to disorder are given by:
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In practice, evaluation of this term can be made simpler by writing K
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combinations of derivatives of �
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0 with respect to the chemical potential and
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We may now carry out the expansion of the free energy in powers of q, as before,
while retaining the full functional form of the m-dependence to take into account
the resummation of higher-order divergences. This must be done numerically. All
coe�cients remain smooth and well-controlled throughout the region of interest.
The resulting phase diagram is shown in Fig. 2.7.

The presence of quenched charge disorder has not destroyed the incommensu-
rate phase, but has in fact slightly enhanced the area over which it is stabilised by
the fluctuations. Numerically, we find that the fluctuations contribute a positive
correction to the m2 coe�cient, destabilising the homogeneous ferromagnet, but
the dominant contribution is a negative correction to the m2q2 term which acts
to enhance the stability of the incommensurately ordered phase.

The quenched charge disorder considered here cannot have changed the na-
ture of the ferromagnetic or paramagnetic phases, but it has resulted in additional
disorder-induced fluctuation corrections. In the clean case, the fluctuation cor-
rections generate a long-range ordered spiral magnet. While the disorder-induced
fluctuations cannot change the nature of the ferromagnetic or paramagnetic
phases, they do change the nature of the fluctuation-induced incommensurate
phase.
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Figure 2.7 The phase diagram of an itinerant ferromagnet with quenched charge
disorder in the vicinity of the (avoided) quantum critical point,
plotted with disorder strength �

2

c = 0.8. The black dashed lines
represent the spiral magnetic region in the clean case. Upon the
addition of disorder, the incommensurate phase is stabilised over
a slightly larger area and its nature is changed from a long-ranged
ordered spiral phase to a novel helical glass with local deformations
in the pitch of the spiral due to the e↵ects of disorder.

2.10 The Helical Glass

Goldstone Modes

To see how the disorder a↵ects the fluctuation-stabilised spiral phase, we need
to examine its e↵ects on the Goldstone modes of the system. The approach thus
far has treated the Goldstone modes in a slightly naive way, and has assumed the
Hamiltonian to be invariant under rotation of the spiral ordering wavevector.

The resulting Goldstone modes associated with such rotations are artefacts of
this theoretical approach. In any real system, there will be anisotropies generated
by the crystal field which, among other e↵ects, will act to pin the spiral ordering
wavevector along a particular lattice direction. Here, we add a cubic anisotropy
term of the following form:

F
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m
↵

)2. (2.76)

This can be derived, for example, by expanding around the tight-binding
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dispersion at low filling fractions. For � > 0 this is minimised by having the
spiral wavevector point along one of the equivalent crystal axes. This pinning
along a crystal axis does not change the form of the saddle-point equation used
earlier to minimise q. Here, as before, we choose q = qẑ without loss of generality.

Now that we have restricted the direction of the spiral ordering wavevector,
we have eliminated the Goldstone modes associated with continuous rotations
of the direction of q. The only remaining Goldstone modes are rotations in the
phase of the ordering wavevector. The spiral order parameter becomes:

m(r) = m[x̂ cos (qz + �(r)) + ŷ sin (qz + �(r))]. (2.77)

The Goldstone modes of the spiral phase correspond to continuous deformations
�(r) of the phase of the spiral order parameter.

By expanding the action around the saddle point value q2 = �f
2
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in terms of this phase slip �(r), we find that these deformations can be captured
by a classical, anisotropic 3d-XY action of the following form:
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which can be derived by re-inserting Eq. 2.77 into the free energy expression in
Eq. 2.31, after re-expressing the q2 terms in the free energy as gradient terms
and allowing for a spatially varying phase �(r).

The charge disorder that we consider here generates a random mass disorder
for the ferromagnet, i.e. it appears in the coe�cient of the m2 term in the Landau
expansion. This disorder leads to some quantitative changes but otherwise has
no e↵ect on the long-range magnetic correlations in the ferromagnetic phase.
However, from the saddle point equation for q, we see that what is a relatively
weak random mass disorder in the ferromagnetic phase has a much stronger e↵ect
in the spiral, inducing a spatial variation in the spiral ordering wavevector q.

In conjunction with the cubic anisotropy, this disorder in the pitch of the
spiral leads to a much stronger random anisotropy disorder in the Goldstone
modes �(r). We can see this by plugging Eq. 2.77 into the anisotropy term Eq.
2.76, allowing for variations in the pitch of the spiral q ! q+�q(r) and expanding
in powers of �q. The net result of this procedure is that the disorder generates a
random anisotropy term for the phase of the spiral:
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where ↵(r) ⇠ �q(r)z is the random phase and g(r) = (1/4)[(@
y

↵)2 � (@
x

↵)2].
This random anisotropy is only induced in the fluctuation-stabilised phase, not
in the homogeneous ferromagnet. This demonstrates that the disorder has a
distinctly di↵erent - and much stronger - e↵ect on the spiral phase than on the
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ferromagnet. It has previously been shown that random anisotropy disorder of
this type is su�cient to destroy long range order in dimensions d < 4 [108–110].
The disordered spiral phase is therefore not a long-range ordered phase.

It is possible that the system may display quasi-long-range-order, though this
is unlikely [111]. Weak random anisotropy disorder [112] in O(N) magnets with
N < N

c

= 9.44 has been shown to lead to algebraic quasi-long-range-order for
d
lc

< d < 4 with a lower critical dimension d
lc

⇡ 4 � 0.00158(N � N
c

)2. In the
case of the XY system considered here, d

lc

(N = 2) ⇡ 3.91. Similar lower critical
dimensions have been found using non-perturbative functional renormalisation
group for the case of random field disorder [113], adding up to the conclusion that
it is very likely the disordered spiral displays short-ranged magnetic correlations.

Correlation Length

To obtain an expression for the correlation length, we use the result of Ref.
[114] which shows that the correlation length of a 3d-XY model with random
anisotropy disorder may be written as:
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where ⇢
s

is the spin sti↵ness, the random anisotropy disorder takes the form
D cos(n� + ↵(r)) and K

n

= hcos(n�)i
0

is computed in the absence of disorder.
For the random anisotropy we consider here, n = 2. We may extend this result
to our anisotropic 3d-XY model by rescaling the z co-ordinate, allowing us to
write down an expression for the correlation length in the plane perpendicular to
q and along the direction of the spiral:
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Note that in the limit of zero disorder, �2

g

! 0, the correlation length diverges
and long range order is recovered. This correlation length is highly anisotropic,
with a ratio given by:
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Figure 2.8 shows the pronounced anisotropy of the correlation length. The
anisotropy is not entirely a surprise, since the ‘background’ ordering of the phase
is a spiral ferromagnet, but the strong dependence on both temperature and
interaction strength is unusual. The same is true for the ordering wavevector.
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This potentially o↵ers a new avenue for the detection of helical ordering in
addition to, or instead of, neutron scattering. Establishing the presence of such
a correlation length (in the disordered system only) and/or ordering wavevector
that scales so strongly with temperature and some relevant experimental tuning
parameter would be a strong indication for the presence of this type of phase.

2.11 Discussion

This result shows that disorder couples to fluctuations around ferromagnetic
quantum critical points in a highly unusual way, destroying long range order
and leading to the formation of an unusual glassy phase. This phase di↵ers
from typical glasses in that the short-range nature of its ordering stems entirely
from the coupling of disorder to the soft modes of the system, rather than any
frustration or frozen-in magnetic randomness.

Due to this unique formation method, the helical glass discussed here is
di↵erent to other disordered spirals previously seen in the literature [115, 116].
This form of spiral ordering is not due to a mean-field Dzyaloshinskii-Moriya type
interaction, nor to any form of nesting instability. The resultant glass produced by
the addition of quenched charge disorder is therefore unique. A possible candidate
for this phase has been found in CeFePO [84] which exhibits unusual glassy
dynamics (seemingly short-ranged correlations and glassy relaxation times) in
the vicinity of a putative quantum critical point, but curiously does not show
typically glassy e↵ects under field cooling. The experimental results show what
appears to be a long-range ordered AFM state, however this could be the helical
glass in a region of the phase where the correlation length is larger than the sample
size, rendering the order e↵ectively long-ranged on the scale of the experimental
samples.

The material MnSi also displays an unusual partially ordered phase around
its avoided quantum critical point [28, 29], but this phase is distinct from the
helical glass which is described in this chapter. Disorder in this phase leads to
the generation of skyrmions, or vortices in the orientation of Q. The e↵ects of the
disorder on the helical glass are on the pitch of the spiral, not the direction of it,
corresponding to a vortex line defect. It has been argued that fluctuations of any
type of line defects should lead to a T 3/2 contribution to the electrical resistivity
[117], and though the specifics of our system are di↵erent, the same logic should
hold equally well in the case of the helical glass.

In the future it would be extremely interesting to see what e↵ects disorder
may have on fluctuations around spin density wave quantum critical points such as
those thought to exist in certain superconducting materials, however application
of the order-by-disorder framework to anything other than ferromagnetic systems
has so far proven problematic. The parent materials of the high-temperature
superconductors usually require doping in order to trigger superconductivity, and
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Figure 2.8 Three dimensional plots showing the variation of a) the ordering
wavevector q, b) the inverse xy correlation length and c) the
correlation length anisotropy across the helical glass region. The
dramatic variation of these quantities across the helical glass region
is unusual and very distinctive. Figure reproduced from Ref. [79].
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though the e↵ects of doping are typically considered to be limited to structural
changes (i.e. applying stresses and strains to the chemical structure of the lattice)
or simple increases and decreases in carrier concentrations, it seems likely that the
disorder added in the doping process leads to non-trivial quantum fluctuations
that may have a significant e↵ect on the physics in the vicinity of these putative
quantum critical points.

2.12 Conclusions

The main conclusions of the work presented in this chapter are as follows:

• The addition of quenched charge disorder into an itinerant ferromagnet
leads to the destruction of the fluctuation-stabilised spiral phase previously
seen in the vicinity of the quantum critical point, and instead leads to the
establishment of an unusual short-range-ordered helical glass phase.

• The helical glass displays an unusual variation of ordering wavevector q,
correlation length and correlation length anisotropy across the region where
it is stabilised. This variation is distinctive and within reach of current
experiments.

• In the vicinity of the helical glass to ferromagnet transition, the correlation
length diverges. For experimental samples smaller than the correlation
length, the system will appear to be long-range ordered but with unusual
pseudo-glassy properties such as those seen in Ref. [84].

In the context of this thesis, the main importance of this work has been
to establish that disorder can couple to quantum fluctuations stemming from a
zero-temperature quantum critical point, yet still lead to significant changes in the
behaviour of the material at finite temperatures. The helical glass phase discussed
here is unique in that the e↵ects of disorder are limited to the fluctuation-induced
phase and do not a↵ect the phases of the clean system. This calculation serves as
a demonstration of the e↵ects of disorder-induced quantum fluctuations at finite
temperatures.
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Chapter 3

Replica Symmetry Breaking in
the Bose Glass

The Bose-Hubbard model is cosmetically similar to the fermionic Hubbard
model studied in Chapter 2, with the di↵erence being that rather than describing
spin-1/2 fermions, its degrees of freedom are instead spinless bosons. Originally
examined prior to the fermionic Hubbard Hamiltonian [118], the model of
spinless bosons on a lattice was later re-introduced in its modern form to
study superconducting systems where Cooper pairs of fermions tunnel between
superconducting islands, for example in granular superconductors or Josephson
junction arrays. The model rose to prominence after a seminal study [119] showed
that it captured the essential physics of the superfluid-insulator transition and
was more mathematically tractable than other metal-insulator models.

At zero temperature, the clean Bose-Hubbard model contains two possible
phases: a gapped, incompressible Mott insulator (MI) and a gapless, compressible
superfluid (SF). When disorder is added into the system, an intermediate phase
known as the Bose glass (BG) intervenes. The Bose glass is a Gri�ths phase
characterised by rare superfluid regions existing within an otherwise Mott-
insulating background. These rare ordered regions render the system globally
gapless and compressible. The MI-to-SF quantum critical point is completely
destroyed and instead replaced with a pair of MI-to-BG and BG-to-SF quantum
critical points.

The nature of the Bose glass is still poorly understood, despite decades of
theoretical work. My contribution to this problem was to investigate just how
‘glassy’ the Bose glass really is. We found that the Bose glass is characterised
by non-zero Edwards-Anderson order parameters and the MI-to-BG transition is
controlled by a finite-disorder fixed point which exhibits exact one-step replica
symmetry breaking. The original work presented in this chapter was published
in “Replica symmetry breaking in the Bose glass”, S. J. Thomson and F. Krüger,
Europhysics Letters 108, 30002 (2014) [120].
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3.1 Background

The problem of disorder in strongly interacting bosonic systems has had
a long and often controversial history. The question of disorder in the Bose-
Hubbard model became relevant after it was investigated in the context of the
superfluid-insulator transition [119, 121, 122] and contrasted with the much more
di�cult to deal with fermionic metal-insulator transition. The fermionic problem
lacked the simple superfluid order parameter of the Bose-Hubbard model and
incorporated numerous other complications that obscured the essential physics of
the superfluid-insulator transition.

Despite its origins, the relevance of this problem is not limited to toy
systems of interacting bosons as a poor substitute for fermionic metal-insulator
transitions. It turns out that the physics underpinning this model is in fact
very generic and is able to describe a wide class of phenomena. Bose-Hubbard-
like models have also been used in coupled light-matter systems (in the form
of the Jaynes-Cummings-Hubbard model [123] and Rabi-Hubbard model [124])
and as we’ll see in the following chapter, the hard-core Bose-Hubbard model
also describes dimerised quantum antiferromagnets. With the advent of modern
optical lattice technology, the obvious experimental system nowadays in which
to realise the conventional Bose-Hubbard model is that of ultracold atoms in an
optical lattice, however there are now a wide variety of experimental systems
capable of realising Bose-Hubbard-like physics.

The superfluid-insulator transition in a bosonic system can be expressed
simply as the competition between kinetic energy (which favours delocalising
the particles) and an on-site contact repulsion (which favours localising them).
The transition between gapless superfluid and gapped Mott insulator is well
described by a mean-field theory across most of the parameter space, with the
exception of certain multicritical points which we shall largely avoid in this thesis.
The addition of disorder into the Bose-Hubbard model was an interesting and
logical next step, as disorder also acts to localise the particles. In this particular
system, however, the disorder does more than simply destabilise the superfluid in
favour of the localised insulating phase: it instead leads to the emergence of an
entirely di↵erent phase known as the Bose glass which displays some unexpected
properties and has been the subject of intense study ever since.

The Bose glass is a Gri�ths phase, as introduced in Chapter 1. It is
characterised by the presence of rare disconnected superfluid regions within a
Mott-insulating background and is a gapless, compressible insulating phase. The
Bose glass can be thought of as a ‘smeared’ MI-SF transition where regions of both
phases coexist and the system is essentially a Mott insulator with disconnected
superfluid pockets. For increased values of hopping, the ‘puddles’ eventually join
up through a percolation transition and the system becomes superfluid.

For strong enough disorder (� ⇡ U) we move from the interaction-dominated
regime to the disorder-dominated regime where Anderson localisation starts to
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Figure 3.1 A sketch of the phase diagram of the Bose-Hubbard model. i)
The clean case phase diagram, showing Mott insulating (MI) lobes
with integer filling surrounded by a superfluid (SF) region. ii) The
disordered phase diagram, showing how the Mott lobes shrink and
the Bose glass (BG) phase intervenes everywhere between the MI
and SF.

play a role, resulting in a phase known as an Anderson or Lifshitz glass [125].
In this thesis, we do not consider such strong disorder. A table of properties
of the phases relevant to this thesis is shown in Table 3.1 - foreshadowing the
findings of this chapter and in agreement with Ref. [126], the table displays the
Edwards-Anderson order parameter and shows it takes a non-zero value in the
glassy phases.

Although the Bose glass has been the subject of extensive theoretical work
using analytic techniques spanning stochastic mean-field theory [127], strong
coupling expansions [128–130] and renormalisation group [119, 120, 122, 131–
137], as well as numerical techniques including quantum Monte Carlo [138–143],
density matrix renormalisation group [144] and other methods [126, 145, 146],
there are still many outstanding questions regarding the nature of the Bose glass.

For a long time, it remained unclear whether the Bose glass always intervenes
between the MI and SF in the presence of disorder, or whether there could
be a direct MI-SF transition, most likely at the tip of the Mott lobe where
the universality class changes [119]. This was the subject of some controversy,
but eventually a rigorous ‘theorem of inclusions’ was developed [147, 148] which
forbade a direct MI-SF transition in the presence of even infinitesimal disorder.
Due to the nature of a phase dominated by arbitrarily large rare regions, finite-
size e↵ects can present a serious problem to numerical simulations and it is likely
that the direct MI-SF transition seen by many was an artefact of the strange
suppression of compressibility in the vicinity of the multicritical points, seen even
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Phases of the disordered Bose-Hubbard model
 ⇢

SF

q
EA

Mott insulator 0 0 0
Bose glass X 0 X
Mott glass 0 0 ?
Superfluid X X ⇡ 0

Table 3.1 A table of properties of the phases being considered in this chapter
showing how they di↵er from one another. The Bose glass has a
finite compressibility  and Edwards-Anderson order parameter q

EA

but zero superfluid sti↵ness ⇢

SF

, while the homogeneous superfluid
has a finite compressibility and superfluid sti↵ness but the Edwards-
Anderson order parameter is zero. (In a disordered, inhomogeneous
superfluid, q may be non-zero but small [126].) All three quantities
are zero in the Mott insulator. The Mott glass has vanishing
compressibility and superfluid fraction, and likely has a non-zero q.
The Mott glass will be dealt with in more detail in Chapter 4.

in the clean case [127].

Later work [149–154] has suggested the presence of an incompressible Mott
glass at these multicritical points, suggesting that many of the previous works
which used compressibility as the means of distinguishing the glass transition
at the tip of the lobes would necessarily have missed the MG and may have
interpreted their results as a direct MI-SF transition. We shall look at this in
more detail in Chapter 4 in the context of dimerised antiferromagnets described
by a hard-core Bose-Hubbard model, but for the purposes of this chapter we are
first concerned with establishing the nature of the Bose glass phase itself and
extracting an order parameter.

3.2 Clean Bose-Hubbard Model

The Hamiltonian in its modern second-quantised form is as follows:

Ĥ = �t
X

hiji
(b̂†

i

b̂
j

+ b̂†
j

b̂
i

)� µ
X

i

n̂
i

+
U

2

X

i

n̂
i

(n̂
i

� 1), (3.1)

where b̂†
i

and b̂
i

are respectively the usual bosonic creation and annihilation
operators and n̂

i

= b̂†
i

b̂
i

is the number operator on site i. The hopping amplitude
is given by the coe�cient t, the chemical potential by µ and the on-site Coulomb
repulsion by U .

This Hamiltonian has a global U(1) symmetry, such that it is invariant under
the transformation b̂

j

! ei✓b̂
j

. In the clean system, the model contains a gapped
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Mott insulator (MI) phase which respects this symmetry, and a gapless superfluid
(SF) in which the U(1) symmetry is spontaneously broken.

We can see this by considering the limiting cases of interaction-dominated
(t = 0) and hopping-dominated (U = 0) regimes. For t = 0, the Hamiltonian
reduces to a purely local Hamiltonian, the eigenstates of which are n-particle
Fock states |ni, where the number n depends on the ratio µ/U .

Ĥ
0

=
X

i


�µn̂

i

+
U

2
n̂
i

(n̂
i

� 1)

�
! eigenstate of

Y

i

|n
i

i . (3.2)

This gives a gapped spectrum with no long range order. This is the Mott
insulating phase, characterised by an integer number of particles per site and an
energy gap to excitations. The particles are localised on their respective lattice
sites and cannot move throughout the lattice.

In the opposite regime where U = 0, the Hamiltonian is e↵ectively that of
a non-interacting gas of bosons which can be diagonalised in momentum space
via Fourier transform, leading to a gapless spectrum and eigenstates that may be
written as a product over sites of coherent states.

Ĥ
t

= �t
X

hiji
(b̂†

i

b̂
j

+ b̂†
j

b̂
i

)� µ
X

i

n̂
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(3.3)

=
X

q

("
q

� µ)n̂
q

, (3.4)

where "
q

= �2t
P

�

cos (qe
�

) with e
�

the unit vector along the � axis of the lattice.
This leads to a gapless dispersion for q = 0. In the truly non-interacting case,
though all of the bosons will condense into the lowest mode there will be no long-
range order and no superfluid sti↵ness. The presence of non-zero but arbitrarily
small interactions, however, will lead to the establishment of long-range order.
This is the superfluid phase, characterised by the uninhibited motion of particles
throughout the lattice and the spontaneous breaking of the U(1) symmetry (i.e.
the eigenstates of this Hamiltonian are coherent states which pick out a phase).

Given that we have two very di↵erent states here depending on whether U
or t dominates, we can expect to see a quantum phase transition between these
states as a function of t/U . To capture this, we first turn to a mean-field theory.

3.2.1 Mean-Field Theory

In the clean system, the MI-SF transition is well-described by a mean-field
(MF) theory [10]. We can make a mean-field decoupling in terms of the superfluid
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order parameter  
i

and write the Hamiltonian as a sum over sites:

H
MF

=
X

i


�µn̂

i

+
U

2
n̂
i

(n̂
i

� 1)� zt( ⇤b̂
i

+  b̂†
i

) + zt ⇤ 
�
, (3.5)

where z = 2d is the lattice co-ordination number, using b̂
i

!  + �b̂ with  =
hb̂

i

i, neglecting terms quadratic in �b̂
i

and relabelling �b̂
i

back to b̂
i

. This MF
decoupling gives rise to terms which break the U(1) symmetry for  6= 0 and do
not conserve the number of particles.

As shown in Ref. [10], any interacting system of this form which breaks U(1)
symmetry will will develop a non-zero sti↵ness to any further rotations of the order
parameter. The situation where  6= 0 therefore corresponds to a superfluid state
with a non-zero superfluid sti↵ness, therefore the mean-field decoupling here is
precisely the right one to describe the Mott insulator to superfluid transition.
The precise form of the mean-field decoupling used here assumes  to be the
same on every site, precluding phases such as supersolids which are assumed not
to exist in this model, though they can exist in related models with finite-range
interactions and di↵erent lattice geometries.

We can obtain the ground state energy by computing the expectation value
of the Hamiltonian in the Fock basis. We first rewrite the Hamiltonian as H

MF

=P
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h
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�1)+zt ⇤ and we treat

the other piece as a perturbation due to the presumed smallness of  at the phase
transition. The zeroth-order piece of the Hamiltonian h(0) is diagonal in the Fock
basis, giving a contribution to the energy:

E(0)

m

= �µm+
U

2
m(m� 1) + zt| |2, (3.6)

where m is the integer that minimises E(0)

m

for a given value of µ/U and I drop
the site index as all sites are identical. The correction due to the additional terms
may be calculated by second-order perturbation theory:
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� E(0)

m

= �(zt)2| |2
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◆
. (3.7)

We can use the usual Landau formalism to write the free energy in even powers of
the order parameter  to get E = const.+R| |2+W | |4+ .... The second-order
MI-SF transition is given by the point at which the coe�cient r = R/zt changes
sign, i.e. the r = 0 line. Combining the zeroth-order and perturbative correction
to the energy calculated above, we find a dimensionless mass coe�cient:

r =
R

zt
= 1 + zt

✓
m

U(m� 1)� µ
+

m+ 1

µ� Um

◆
. (3.8)
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Figure 3.2 The mean-field phase diagram of the clean Bose-Hubbard model given
by Eq. 3.8, showing the first three Mott insulating (MI) lobes of
integer filling m and the surrounding superfluid (SF) region.

We can plot the r = 0 line for a variety of di↵erent integer fillings m and we
obtain a phase diagram with the familiar Mott-lobe structure, shown in Fig. 3.2.

3.2.2 Dual Field Theory

Strong-Coupling Expansion

Since we ultimately want to examine the disordered Bose-Hubbard model,
and as the glassy phases we are interested in cannot be captured by this mean-
field approach, we need to utilise a more sophisticated method.

Following Refs. [120, 135, 136], I outline the construction of a strong-coupling
dual field theory [10, 128, 130], with an eye to eventually employing a momentum-
shell renormalisation group analysis to extract the behaviour of the system. The
mass term we shall derive in the strong coupling theory to signify the mean-field
MI-SF transition is identical to the mass term derived in the previous section.
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The idea behind the development of this strong-coupling expansion is to
partially resum the interaction vertex and express the action in terms of some
new auxiliary fields which take into account the e↵ects of interactions at quadratic
order. It can be viewed as a type of dual field theory, mapping a strongly
interacting problem (where the quartic terms are vital) onto a Gaussian action
where the quartic terms are irrelevant (in the renormalisation group sense).

To construct our strong coupling field theory, we first express the action as a
path integral over bosonic coherent states:

Z =

Z
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,�], (3.9)
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where b̂
i

|�
i

i = �
i

|�
i

i. We then employ a Hubbard-Stratonovich transform to
decouple the hopping term (see Appendix A and Refs. [9, 10] for more details).

Though this is essentially the same technique as used in Chapter 2 to
decouple the interaction term of the fermionic Hubbard Hamiltonian, here it
is used di↵erently. Decoupling the hopping in this manner is what allows
us to express the action in terms of the dual fields with partially resummed
interaction vertex, rather than being a spiritually mean-field manoeuvre as in
the aforementioned decoupling of the fermionic Hubbard Hamiltonian interaction
term. Once we have performed the decoupling, we can write the partition function
as Z =

R D[�⇤,�, ⇤, ] exp[�(S
0

+ S
� 

)] where:

S
0

=

Z
0

�

d⌧

"
X

i

(�⇤
i

@
⌧

�
i

� µ|�
i

|2) + U
X

ij

|�
i

|4
#
, (3.11)

S
� 

=

Z
�

0

"
X

ij

 ⇤
i

T�1

ij

 
j

+  ⇤
i

�
i

+ �⇤
i

 
i

#
. (3.12)

We can now trace out the original fields to obtain a partition function of the form
Z = Z

0

R D[ ⇤, ] exp[�(S(0)
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where T
⌧

is the time-ordering operator and the average is taken with respect to
the local action S

0

.
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Calculating the local terms

The average in Eq. 3.14 can be re-expressed as an operator average taken
with respect to the local Hamiltonian:
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. (3.15)

This Hamiltonian is not quadratic, meaning Wick’s theorem cannot be employed
to take the average in Eq. 3.14 and instead it must be calculated in full. This
is the step which allows us to incorporate the interactions into the propagator of
the dual field theory. As an operator average:
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Expanding both the logarithm and the exponential to quartic order leads to:
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In principle, we could expand Eq. 3.17 to any order and construct an action with
arbitrarily high order terms, however quartic order will prove to be su�cient for
our purposes. Taking the quadratic terms alone for the moment:
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With a change of variables ⌧
1

= ⌧ , ⌧ 0 = ⌧
1

� ⌧
2

and an expansion of  (⌧ � ⌧ 0) =
 (⌧)�@

⌧

 
i

(⌧) ·⌧ 0+(1/2)@2
⌧

 
i

(⌧) ·(⌧ 0)2, we arrive at a contribution to the e↵ective
quadratic action of the form:
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where the coe�cients are given by:
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At T = 0 we know the possible states of the system and so we can directly
calculate G = G

m

in the vicinity of the mth Mott lobe. Computing the time-
ordered expectation values gives:
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Performing the integral over ⌧ in Eq. 3.20 then leads to the final result:
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K
1

and K
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may be calculated explicitly in the same manner, or one may use
the fact that they are given by derivatives of G, e.g. K

1

= �@G/@µ and
K
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= �(1/2)@2G/@µ2. This is a consequence of demanding that Eq. 3.19 remain
invariant under the time-dependent U(1) gauge transformation b̂
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ei�(⌧),
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!  
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ei�(⌧) and µ ! µ + i@�/@⌧ . As discussed in Ref. [10], although the
time-dependent µ generated by this transformation means we are no longer in a
physical parameter regime, it is useful for enabling us to determine K

1

without
need for explicit evaluation of Eq. 3.21.

The relationship between the frequency coe�cients K
1

and K
2

and the zero-
frequency Green’s functionG

m

leads to an important consequence. WhenK
1

6= 0,
the higher-order term K

2

may be neglected as it is irrelevant with respect to K
1

.
The derivative in K

1

evaluates to zero when the MI-SF phase boundary shown
in Fig. 3.2 has a vertical tangent, i.e. at the tip of the Mott lobes. Since the
dynamical critical exponent is determined by the scaling of lowest-order non-
zero frequency term, the disappearance of K

1

tells us that the universality class
changes at the tip of the lobes. Specifically, the K

1

= 0 points are described by
a relativistic quantum field theory which maps onto the N = 2 quantum rotor
model, while the K

1

6= 0 points obey the non-relativistic theory where K
2

may be
neglected. For the remainder of this chapter, the frequency dependence will be
unimportant, however we shall see in Chapter 4 that correct treatment of these
frequency terms is critical for accurate calculations of certain thermodynamic
properties.
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Evaluating the Hopping Terms

The hopping term S(0)

 

must be treated using a continuum expansion in the
long-wavelength limit, since the hopping matrix is singular and cannot be directly
inverted. The singularity of the matrix is pathological to the case of nearest-
neighbour hopping and the continuum limit approach is a way of avoiding the
singularity without complicating the model with the addition of longer-range
hopping terms:
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where z = 2d is the lattice co-ordination number. The corresponding term in the
dual action is:
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This yields the contribution:
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Combining with Eq. 3.19, this leads to an e↵ective real-space quadratic action of
the form:
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Calculating the quartic vertex

We can similarly calculate the coe�cient of the quartic vertex W by taking
the relevant terms from Eq. 3.17, e↵ectively making a direct computation of the
local connected two-particle Green’s function.
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which, after taking the continuum limit, gives an expression of the form
W

R
r,⌧ | (r, ⌧)|4. The full calculation of W is lengthy but is essentially only a

more elaborate version of the calculation of the single-particle Green’s function
and can be evaluated in the same manner. I do not reproduce the calculation
here but instead quote the final result from Refs. [130, 135]:
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The coe�cient W is always greater than zero, confirming that all transitions
captured by this action are second-order.

Final Dual Field Theory

We then perform a rescaling, employing dimensionless units for imaginary
time and length such that ⌧ ! V ⌧ and r ! ⇤r where ⇤ is the momentum cuto↵
we shall eventually employ. We then rescale the other coe�cients as r = R/K
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which is the same as the mass term derived from the mean field theory in Eq. 3.8
and consequently leads to the same phase diagram as shown in Fig. 3.2.
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Figure 3.3 i) Diagrammatic representation of the interaction vertex w in Eq.
3.37. ii) The contribution to the renormalisation of the mass
coe�cient r from the interaction vertex w. iii) The diagrams
contributing to the renormalisation of the interaction vertex itself.

3.3 Clean Case Renormalisation Group

We use a momentum-shell renormalisation group (RG) approach to extract
the behaviour of the dual field theory. As described schematically in Chapter 1,
we integrate out the highest energy modes which correspond to momenta in the
infinitesimal shell e�dl  |k|  1. To regain resolution, we rescale the momenta
k ! kedl, frequencies ! ! !ezdl and the fields  

↵

!  ��dl
↵

. All of the following
is done to one-loop order.

We decompose the fields into ‘fast’ and ‘slow’ like so:
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We then take the trace over the ‘fast’ fields and compute the correction of order
dl to the ‘slow’ action. The diagrams we evaluate are shown in Fig. 3.3. As in
previous work [120, 135, 136], we make the change of variables I

0

= 1/(1 + r)
where I

0

is the asymptotic inverse mass. The renormalisation group equations
are:

dr

dl
= 2r + 2I

1

w, (3.42)

dI
0

dl
= �2I

0

+ 2I2
0

� 2I
1

I2
0

w, (3.43)

d�
1

dl
= (2� d

z

)�
1

, (3.44)

d�
2

dl
= (2� 2d

z

)�
2

, (3.45)

dw

dl
= (4� d� d

z

)w � (I
2

+ 4I
3

)w2, (3.46)
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where d
z

is the dynamical critical exponent, I
1

=
R
!

⌦(k = 1,!) = 1/
p
�2
1

+ 4�
2

(1 + r),
I
2

=
R
!

⌦(k = 1,!)2 = 2�
2

I3
1

and I
3

=
R
!

|⌦(k = 1,!)|2 = (1/2)I
0

I
1

. Away from
the tips of the Mott lobes, the dynamical critical exponent d

z

is equal to 2 in
order that �

1

does not scale under the RG. At the tips of the Mott lobes where
K

1

= 0 we instead require that �
2

not scale under the RG and so there we find
d
z

= 1.

In all of the following we work in d = 3. Although w is an irrelevant variable
away from the tip for d > 2, we include it for completeness to check for any
dangerously irrelevant couplings. We find none: as expected, the RG including
the interaction vertex leads to marginally more stable MI regions than predicted
by mean-field theory but otherwise makes no qualitative di↵erence. It has been
previously established that mean-field theories overestimate superfluid coherence
in this model so this finding is not surprising. In the following, we shall neglect
this vertex and consider a simplified model including only the quadratic terms of
the clean action.

To draw the phase diagram (Fig. 3.4), we interpret the RG flow such that
when I

0

reaches some arbitrary cuto↵ value greater than 1, the flow is into the
superfluid phase, whereas when I

0

flows to zero, the flow is into the Mott insulator.
The position of the phase boundary drawn does not strongly change with the
choice of cuto↵, as the flow is extremely fast.

3.4 Replica Field Theory

Now we add disorder into the model in the form of a site-dependent chemical
potential µ

i

such that the Hamiltonian becomes:

Ĥ = �t
X

hiji
(b̂†

i

b̂
j

+ b̂†
j

b̂
i

)�
X

i

µ
i

n̂
i

+
U

2

X

i

n̂
i

(n̂
i

� 1). (3.47)

In the following, we consider only random site disorder such that µ
i

= µ+ "
i

where the random variation "
i

is drawn from a symmetric box distribution of
width 2� = 2�/U . Physically, in an ultracold atomic lattice this form of disorder
could be applied by superimposing a speckle pattern over the lattice potential
[155–158], or by varying the lattice depth from site to site using a spatial light
modulator (SLM) [159–161].

It is important for what follows that we use a bounded disorder distribution.
Unbounded disorder will destroy the Mott lobes entirely and cause some of
the quantities we calculate to become ill-defined. Note also that we do not
consider hopping disorder in the following: the Hubbard-Stratonovich transform
performed in Eq. 3.12 becomes much more complicated once disorder enters in

72



Figure 3.4 The mean-field MI-SF transition line (dashed) shown alongside
the phase boundary drawn from renormalisation group (solid).
The mean-field theory overestimates the superfluid coherence and
consequently underestimates the size of the Mott lobes. The RG
predicts larger Mott lobes, in qualitative agreement with quantum
Monte Carlo and other beyond-mean-field methods.
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the hopping matrix, so we restrict our analysis to on-site disorder only. A full
renormalisation group analysis including hopping disorder was performed in Ref.
[135].

Through the same procedure as in Section 3.1 we may derive an action for
the system of the form:

S =
X

↵

Z

k,!

(k2 +�i�
1

! + �
2

!2 + r) †
↵

(k,!) 
↵

(k,!) + w

Z

r,⌧

| (r, ⌧)|4 + ...

(3.48)

where all coe�cients are now functions of the disorder. We take the disorder
average using the replica trick, arriving at a disorder-averaged action:

S =
X

↵

Z

k,!

(k2 +�i�
1

! + �
2

!2 + r) †
↵

(k,!) 
↵

(k,!) + w

Z

r,⌧

| 
↵

(r, ⌧)|4
�

� g

2

X

↵,�

Z 0

ki,!,!
0
 †
↵

(k
1

,!) 
↵

(k
2

,!) †
�

(k
3

,!0) 
�

(k
4

,!0) + ... (3.49)

where g = (r2�r2) is the variance of the mass coe�cient induced by the presence
of disorder and the overline indicates the disorder average. The new disorder
vertex, controlled by the coe�cient g, is o↵-diagonal in both replica index and
imaginary time (transformed to frequency in Eq. 3.49 above). This non-locality
is a consequence of the perfect correlation of the disorder in imaginary time and
it a generic feature of T = 0 systems with quenched disorder [119, 121].

In Ref. [119], this same e↵ective action was dealt with using a double power
series expansion in "

⌧

and " = 4� d� "
⌧

(i.e. like a regular epsilon-expansion but
with an additional "

⌧

variable due to the perfect correlation in imaginary time).
They find that the renormalisation group equation for g takes the form:

@g

@l
= ("+ "

⌧

)g +Bg2 + ... (3.50)

where B > 0 and therefore g increases without bound, signifying runaway flow to
some infinite randomness fixed point not captured by their calculation. In other
words, it is not possible to deal with this using a standard epsilon-expansion and
we must find a more suitable variable to use that does not su↵er from such a
runaway flow.

3.4.1 Replica Symmetric System

First, I briefly recap the previous replica symmetric analysis [135, 136] where
we take the action in Eq. 3.49 and put it through the renormalisation group
machinery. The addition of a disorder vertex means the RG equations must be
modified, with an additional RG equation for g and additional contributions to
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Figure 3.5 A list of all the diagrams computed in calculating the renormalisation
group equations, based on Ref. [135]. i) Diagrammatic represen-
tation of the interaction vertex (left) and disorder vertex (right).
The interaction vertex is diagonal in replica index, whereas the
disorder vertex is not (indicated by dashed lines). ii) The diagrams
which contribute to the renormalisation of the mass coe�cient r.
iii) Diagrams which renormalise the interaction vertex w, which is
ultimately found to be an irrelevant variable. iv) Diagrams which
renormalise the disorder vertex g.

the other equations arising from this new vertex. The resulting diagrams are
shown in Fig. 3.5.

The replica-symmetric RG equations are as follows, again using the substi-
tution I

0

= 1/(1 + r):

dr

dl
= 2r + 2I

1

w � I
0

g, (3.51)

dI
0

dl
= (I2

0

g � 2)I
0

+ 2I2
0

, (3.52)

dg

dl
= (4� d)g + 4g2I2

0

� 4I
1

gw, (3.53)

d�
1

dl
= (2� d

z

)�
1

+ I2
0

�
1

g, (3.54)

d�
2

dl
= (2� 2d

z

)�
2

+ I2
0

(I
0

�2
1

+ �
2

)g, (3.55)

dw

dl
= (4� d� d

z

)w � (I
2

+ 4I
3

)w2. (3.56)

We see that w is still an irrelevant variable in the presence of disorder so we
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neglect it from here on in. For our current purposes we can also neglect all of the
frequency dependence since in the absence of w, the frequency terms decouple
from the disorder and mass coe�cients and so they have no e↵ect on the replica
structure, the main focus of this chapter. We’ll see in Chapter 4, however, that
inclusion of the frequency dependence is in fact crucial to an accurate description
of certain thermodynamic properties of the phase and the frequency terms are
retained in the numerical solutions of the RG equations used to generate the
phase diagrams shown in Figs. 3.7 and 3.11.

The variance of the disorder distribution g still diverges everywhere under the
RG, meaning this is not an appropriate variable to use to distinguish the di↵erent
phases present. Instead, following Refs. [135, 136], we employ the relative variance
� = I2

0

g ⇡ (r2 � r2)/r2, the RG equation for which is given by:

d�

dl
= (4I

0

� d)�+ 6�2. (3.57)

This new variable no longer diverges uncontrollably. By inspection, the fixed
point solution is �⇤ = (d� 4I

0

)/6. Since Eq. 3.52 tells us that I
0

is an irrelevant
variable, we can set it to zero in the equation for �⇤ and we find that there is
a fixed point at �⇤ = d/6 corresponding to a threshold below which the relative
variance renormalises to zero and above which it diverges. The relative variance
� is therefore capable of distinguishing between the Mott insulator (� ! 0 and
r ! 1) and the Bose glass (�! 1).

The flow diagram in the (I
0

,�) plane is shown in Fig. 3.6. It exhibits three
fixed points: P

MI

= (0, 0) is the attractive fixed point corresponding to the Mott
insulator phase, P

MI/SF

= (1, 0) is an unstable fixed point corresponding to the
clean-case MI-SF transition and P

MI/BG

= (0, d/6) is the unstable fixed point
corresponding to the MI-BG transition in the presence of disorder. Even for
infinitesimal disorder, the flow is away from P

MI/SF

and towards P
MI/BG

.

The strong-coupling approach does not capture the BG-SF transition: there
is no corresponding fixed point and this transition is beyond the reach of our
calculation. For su�ciently large values of hopping the system will always
transition back into a superfluid with long-range order, but the method presented
here can only access the transition out of the Mott insulator.

The relative variance � diverges in the Bose glass phase. Using this criterion,
we can generate the phase diagram: we know the dependence of I

0

and �
on the microscopics of the system, so we can plot the phase diagram in the
(t/U, µ/U) plane and establish which regions are characterised by a diverging
relative variance (identifying this with the BG) and in which regions it flows to
zero (MI). The result is show in Fig. 3.7. We see that the Mott lobe shrinks
commensurately with the disorder strength, illustrating why unbounded disorder
(or any � > 0.5) is a problem for our calculation, as it would destroy the Mott
lobes entirely.
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Figure 3.6 The renormalisation group flow diagram in d = 3 of the replica-
symmetric system in the (I

0

, �) plane, with fixed points P

MI

at (0, 0),
P

MI/SF

at (1, 0) and P

MI/BG

at (0, d/6).

3.4.2 Replica Symmetry Breaking

Characteristic of glassy systems, replica symmetry breaking (RSB) is the
property whereby the coe�cient of the replica-mixing vertex (here denoted g)
is not a constant, but itself depends on the replica indices. This properly
is indicative of the non-ergodic nature of glassy systems and is linked to the
breakdown of self-averaging. RSB is essentially a measure of the free energy
landscape of a system, and can be understood in terms of long-time correlation
functions. If a system exhibits RSB, its free energy landscape is characterised by
deep valleys separated by infinitely tall energy barriers into which the system can
‘freeze’ and even over an infinite timescale will never escape from.

Motivated by previous work on the analogous fermionic Anderson glasses [162]
and on random-mass disordered ferromagnets [163, 164] and in the knowledge that
renormalisation of a disordered system without allowing for replica symmetry
breaking is a dangerous game [41], we now go on to test for the presence of
replica symmetry breaking in the disordered Bose-Hubbard model.

Following the general Parisi hierarchical form [70, 74], we set g ! g
↵�

and
the action becomes:
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Figure 3.7 A renormalisation group calculation of the MI-BG phase boundary
in d = 3 with a disorder strength of � = �/U = 0.2 using the
replica-symmetric field theory. The black dashed line is the mean-
field clean-case phase boundary for comparison.
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Z
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,!) †
�

(k
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,!0) 
�

(k
4
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Physically, g
↵�

can be loosely thought of as a new coe�cient that measures
the overlap between di↵erent replicas [74]. Replica symmetry breaking occurs
when g

↵�

varies for di↵erent choices of ↵ and �, i.e. some replicas have small (or
even zero) overlap with each other, corresponding to the suppression of tunnelling
between di↵erent free energy minima, resulting in glassy freezing.

In the Parisi scheme the parameter g
↵�

takes the form of a blockwise-diagonal
matrix (as shown in Fig. 3.8) where the values along the diagonal are equal to the
variance of the induced mass distribution g̃ = (r2 � r2). In a replica symmetric
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Figure 3.8 i) Schematic representation of Parisi hierarchical replica symmetry
breaking, showing how the matrix g

↵�

breaks into a blockwise-
diagonal structure. ii) The values are largest along the diagonal
and get progressively smaller towards the edges. iii) In the n ! 0
replica limit, the series of steps g

k

becomes becomes reflected in the
u = 1 line and contracted such that it becomes a continuous function
defined only on the interval u 2 [0, 1]. The hierarchical structure of
the Parisi ansatz requires that g(u) be a monotonically increasing
function with g(1) = g̃. The function need not be continuous, but is
shown as such for illustrative purposes.

system, the o↵-diagonal entries are also equal to g̃, however in the presence of
replica symmetry breaking the matrix g

↵�

adopts the hierarchical structure shown
in Fig. 3.8 where the o↵-diagonal entries get progressively smaller the further
away from the diagonal they are.

Replica Limit

In the replica limit n ! 0, the matrix g
↵�

becomes a monotonically increasing
function g(u) defined on the interval u 2 [0, 1] where g(1) ⌘ g̃ is the coe�cient
of the replica diagonal terms. We can then perform functional RG on g(u) and
extract its form at the MI-BG transition.

In taking the replica limit, we make use of the following standard identities

79



for Parisi matrices, denoting g
↵=�

by g̃:

g
↵ 6=� ! g(u), (3.59)

X

↵�

g
↵�

= g̃ + (n� 1)
X

↵ 6=�
g
↵ 6=�

! g̃ +

Z
1

0

g(u)du, (3.60)

X

↵�

g2
↵�

= g̃2 + (n� 1)
X

↵ 6=�
g2
↵ 6=�

! g̃2 +

Z
1

0

g(u)2du, (3.61)

X

�

g
↵�

g
��

! (c̃; c(u)), (3.62)

c̃ = g̃2 �
Z

1

0

du g(u)2, (3.63)

c(u) = 2

✓
g̃ �

Z
1

0

dv g(v)

◆
g(u)�

Z
u

0

dv [g(u)� g(v)]2. (3.64)

Further details on Parisi matrix algebra are included in Appendix C.

Renormalisation Group Equations

We can repeat the same renormalisation group analysis as before, now
allowing for the more complicated replica structure. We now have separate
renormalisation group equations for the diagonal entry of the Parisi matrix g̃
and for the function g(u) which parameterises the o↵-diagonal components of the
Parisi matrix.

The RG equations for the bare variables become:

dr

dl
= 2r � I

0

g̃ � g̃

Z
⌦(!) +

Z
⌦(!)

Z
1

0

g(u)du, (3.65)

dg̃
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= (4� d)g̃ + ⇢
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g̃2 �

Z
1
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◆
+ 4g̃2I2
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, (3.66)
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1

0
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◆
g(u)�

Z
u

0

(g(u)� g(v))2
◆
, (3.69)

where ⌦(!) = ⌦(k = 1,!) and again we make use of the rescalings I
0

= 1/(1+r),
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�̃ = I2
0

g̃ and �(u) = I2
0

g(u). The inclusion of RSB does not a↵ect the frequency
structure to any order, as only g̃ enters into the RG equations for the frequency
coe�cients. The RG equations for the rescaled variables are:

dI
0

dl
= (�̃� 2)I

0

+ 2I2
0

+ ⇢(�̃� h�i), (3.70)

d�̃

dl
= (4I

0

� d)�̃+ 6�̃2 + 2⇢
h
�̃(�̃� h�i) + 2(�̃2 � h�2i)

i
, (3.71)

@
l
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� d)�(u) + 2(2�̃+ �(u))�(u)

+ 2⇢


5�(u)(�̃� h�i)� 2

Z
u

0

dv(�(u)� �(v))2)

�
, (3.72)

where h�i = R
1

0

�(u).

RSB Fixed Point

To determine the replica structure at the MI-BG fixed point, we can follow
the method outlined in Refs. [165, 166] and di↵erentiate Eq. 3.72 with respect to
u. We find that the only two possible solutions are �0(u) = 0 or (4I

0

� d)+ 4(�̃+
�(u)) + 10⇢(�̃ � h�i) � 8⇢(u�(u) � R

u

0

�(v)dv) = 0. Di↵erentiating the second
solution again with respect to u leads to the conditions:

4�
0
(u)(1� 2⇢u) = 0, (3.73)

! u
c

=
1

2⇢
or �0(u 6= u

c

) = 0. (3.74)

The only solutions to the fixed point equation for �(u) are either a constant
function, or a step-like function with the step at u

c

, as shown in Fig. 3.9.

Refs. [163, 164] considered random-mass disorder in ferromagnets and
employed a very similar analysis but did not fix the position of the step, which led
to the non-universal behaviour they found in their critical exponents. Repeating
this analysis and fixing the step position in the same manner as in Eq. 3.74 shows
that both of their non-universal fixed points in fact reduce to a single RSB fixed
point which gives universal exponents, however this fixed point is unphysical. For
more details, see Appendix E.

If we allow the �(u) to be a step-like function with a single step at u
c

, we
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Figure 3.9 An illustration of the form of the Parisi function �(u) after solving
using Eq. 3.74. It becomes a step function with the first part of the
step denoted �

0

, the second part denoted �

1

and the step located at
u

c

= 1/(2⇢

0

).

find the following RG equations:
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where �
0

is the first piece of the step and �
1

is the second, as shown in Fig. 3.9,
with �

0

< �
1

. Numerically, we find that the only solutions are those for which
�
0

= 0,�
1

⌘ � = �̃. We’re left with a single RG equation:

d�

dl
= (4I

0

� d)�+ 6�2(1 + ⇢u
c

) (3.78)

= (4I
0

� d)�+ 9�2 using u
c

= 1

2⇢

. (3.79)

The solutions to this are:

�⇤ = 0 or �⇤ =
d� 4I

0

9
. (3.80)

So, for I
0

= 0, we find the new RSB fixed point solution is �⇤ = d/9, in contrast
to the replica symmetric �⇤ = d/6 fixed point found in previous work.

Phase and Flow Diagrams

The new RSB fixed point lies at a lower disorder strength than the RS fixed
point (d/9 rather than d/6), already suggesting that this fixed point should pre-
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Figure 3.10 Renormalisation group flow diagrams in the replica-symmetry
broken case, with approximate separatrices drawn as guides to
the eye. i) RG flow in the (I

0

, �) plane showing P

MI

= (0, 0),
P

MI/SF

= (1, 0) and the new P

RSB

= (0, d/9) which occurs
at a lower disorder strength than the previous replica symmetric
fixed point shown in Fig. 3.6. ii) RG flow in the (�

0

, �

1

) plane
showing the instability of the system towards 1-step RSB. The
replica symmetric fixed point is shown on the diagonal at (d/6, d/6)
and the clean fixed point at (0, 0). Any perturbation away from
�

0

= �

1

results in flow away from the replica symmetric fixed point.
For �

0

> �

1

, the flow is to the clean fixed point as this unphysical
disorder distribution renormalises to zero. For �

1

> �

0

, the flow
is controlled by a new RSB fixed point at (0, d/9).

empt the replica symmetric transition and be the physical one that controls the
phase transition, but to be sure of this we must conduct further analysis. Figure
3.10 shows renormalisation group flow diagrams in the (�

0

,�
1

) plane and in the
(I

0

,�
1

) plane.

Plotting the flow in the (�
0

,�
1

) plane, we see that for �
0

= �
1

(the replica
symmetric solution along the diagonal), the situation exactly reproduces the
replica symmetric model with an MI-BG fixed point at (d/6, d/6). If we allow
any infinitesimal perturbation such that �

0

6= �
1

we find that the system flows
to a new RSB fixed point at (0, d/9). Note that for the unphysical situation of
�
0

> �
1

(everything below the diagonal) the system flows to the Mott insulating
fixed point, indicating that this unphysical type of disorder renormalises to zero
and has no e↵ect.

Plotting the phase diagram for the situation of 1-step RSB (Fig. 3.11), we
find that it is almost identical to the replica symmetric case with only exceedingly
minor quantitative di↵erences. This means that experimentally testing for RSB
cannot be achieved by mapping out the phase diagram alone. The phase diagram
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Figure 3.11 The phase diagram for the disordered Bose-Hubbard model in d = 3,
showing the negligible di↵erence between the RS and RSB phase
boundaries. Since this di↵erence is quantitative and extremely
small, experimental determination of the phase diagram alone
is insu�cient to distinguish whether the physical system exhibits
replica symmetry breaking.

in Fig. 3.11 di↵ers from that shown in Ref. [120]. The latter is incorrect. An
arithmetic error led to a rescaling of the hopping axis such that it exaggerated
the di↵erence between the replica symmetric and replica symmetry broken phase
boundaries. This error has no e↵ect on the conclusions stated in Ref. [120], as
the phase boundaries were already considered to be su�ciently close together
that there was no practical method for distinguishing the two. There is also a
further quantitative shift in boundaries due to including the frequency terms in
the renormalisation group equation used to plot Fig. 3.11 which were not retained
in Ref. [120].

Additionally, the correlation length exponent ⌫ turns out to be the same for
both RS and RSB situations. We can linearise the RG equations around the RSB
fixed point P rsb

MI/BG

, yielding ��0
0

(`) = d·��
0

for a deviation ��
0

= �
0

�d/9 from the
critical point, which gives rise to the same correlation length exponent ⌫ = 1/d
as in the RS situation [136]. Other experimentally measurable parameters are
therefore required.

Stability of RSB

While our results show that the disordered Bose-Hubbard model displays an
inherent and seemingly strong instability towards 1-step RSB, our calculation
cannot prove that the requisite perturbation exists to physically break replica
symmetry. Indeed, a rigorous proof of this seems impossible, though this is
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no di↵erent to every other case of spontaneous symmetry breaking in physics.
It has, however, been argued [164, 167] that such replica symmetry breaking
perturbations exist in any disordered system, and our results from Chapter 4
certainly suggest this to be the case.

Though there is some evidence that 1-step RSB is su�cient to capture
qualitative e↵ects of glassy physics [168], no spin glass systems exhibit this type
of exact 1-step RSB. This suggests that to 2-loop or higher order, the nature
of the replica symmetry breaking would change and perhaps become something
more complex. It is unlikely that the inclusion higher-order vertices would undo
the finding of RSB, although without explicitly calculating their contributions it
is impossible to know for sure.

The accuracy of the replica symmetric approach (in terms of the phase
diagram and scaling of the correlation length exponent) is not unprecedented
in the literature. For example, the Cardy-Ostlund random-field XY model in
d = 2 also displays an instability towards replica symmetry breaking [41] but
certain properties can be accurately computed within a replica symmetric theory
[169].

3.5 Order Parameters and Experimental Tests

In Chapter 4 we look more closely at the e↵ects of replica symmetry
breaking on bulk thermodynamic probes, but here let us look at the more
conventional glassy correlation functions known as the Edwards-Anderson order
parameters. The Edwards-Anderson order parameters are a well-established piece
of theoretical lexicon from the spin glass community [70, 75].

By analogy with spin glass systems, the Edwards-Anderson order parameters
take the following form in the Bose glass:

q
EA

= lim
⌧!1

⇣
h⇢

i

(⌧)⇢
i

(0)i � h⇢
i

(⌧)i h⇢
i

(0)i
⌘
, (3.81a)

q = h⇢
i

(⌧)i2 � h⇢
i

(⌧)i2. (3.81b)

where we define the density ⇢
i

(⌧) = I�1

0

| 
i

(⌧)|2 such that h⇢
i

(⌧)i = ⇢
0

⇠ m in
the MI state. In the Mott insulator, both order parameters are zero, but both
become finite in the Bose glass [126].

The first order parameter is the long-time density-density correlation func-
tion, while the second is an equal-time density-density correlation function. They
can be recast in the language of replicas, as discussed in more detail in Chapter
1, where we saw that q

EA

measures long-time correlations within a single replica
and q measures equal-time correlations between di↵erent replica systems. In a
replica symmetric system, q = q

EA

, but the two order parameters will become
di↵erent once replica symmetry is broken. This corresponds to the free energy
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landscape becoming truly ‘glassy’, i.e. ergodicity is non-trivially broken and
thermal averages are no longer equal to long-time averages. The system can
become stuck in local minima for thermodynamically long timescales and so
whether or not the system can tunnel between replicas determines whether the
order parameters are equal to each other or not.

We may define the quantity � = q
EA

� q to quantify the degree of ergodicity
breaking [70]. Using the one-loop one-step RSB solution, we obtain q

EA

= ⇢2
0

�̃ and
q = ⇢2

0

h�i. For the present one-step RSB solution we obtain � = ⇢
0

(�
1

��
0

)/2 =
⇢
0

�
1

/2.

Experimentally measuring these order parameters is challenging. Though a
proposal exists for measuring replica correlation functions on physical replica
systems using ultracold atomic gases [126], this experiment has never been
performed. At the time when the work in this chapter was originally performed,
there seemed to be no easily accessible experimental method to test for the
presence of replica symmetry breaking in ultracold atomic gases. The long-time
correlations in particular are impossible to perform in an ultracold atomic gas
due in part to the short lifetime of current traps, but more so to the fact that all
suitable measurement techniques are destructive.

Further consideration of potential ways to test for replica symmetry breaking
led to the development of the work presented in Chapter 5 where we use mean-
field numerical simulations to reproduce the experimental results achieved by
single-atom resolution fluorescence imaging in quantum gas microscopes and show
that these setups are able to measure the Edwards-Anderson order parameter in
the form suggested by Ref. [126]. It may be possible to experimentally test for
replica symmetry breaking using this method, however our mean-field simulations
are not su�ciently complex to be able to take this possibility into account. We
shall show in Chapter 4 that replica symmetry breaking is vital for our model to
correctly describe the thermodynamics of a disordered Bose-Hubbard-like system,
but before we get to that we can perform a further check on the feasibility of
replica symmetry breaking in the Bose glass.
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Figure 3.12 i) RG flow of the degree of ergodicity breaking �(`) for four
di↵erent values of initial RSB perturbation "(0). The limit of
"(0) ! 0 corresponds to approaching the RS fixed point from the MI
side. The divergence of �(`) as "(0) ! 0 is indicative of a diverging
susceptibility �

RSB

. ii) Susceptibility �

RSB

plotted against "(0),
confirming that it diverges as "(0)�1/3 at the transition.

3.6 Susceptibility to RSB

So far, the renormalisation group analysis shows a clear instability to RSB in
the Bose glass phase, however the RG flow of the disorder strength in this regime
diverges uncontrollably and a stable Bose glass fixed point exhibiting RSB is not
accessible with this strong-coupling calculation. Following the analysis of Ref.
[41], we calculate a susceptibility towards an infinitesimal RSB perturbation in
the Mott insulating regime where an exact weak-coupling fixed point exists and
the vanishing disorder vertex under RG ensures that the e↵ects of disorder remain
small across all length scales.

We define the susceptibility to a replica symmetry breaking perturbation as:

�
RSB

= lim
`!1
"!0

�(`)

"(0)
, (3.82)

where �(`) is the degree of ergodicity breaking defined previously and "(0) is
some infinitesimal perturbation away from replica symmetry such that the limit
"(0) ! 0 corresponds to approaching the replica symmetric fixed point from
within the Mott insulating regime.

In computing �
RSB

directly, both limits "(0) ! 0 and ` ! 1 must be
taken simultaneously, which is a somewhat ambiguous process. A more well-
defined procedure is to instead evaluate the susceptibility at the point `

max

where
�(`)/"(0) is maximum. As shown in Fig. 3.12, both the height and position of
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this maximum diverge as "(0) ! 0 and we find a scaling form of the susceptibility
�
RSB

⇠ "(0)�� with � = 1/3 in d = 3. This generalises to a scaling form of
� = 1/d for all d � 3.

The divergent susceptibility to replica symmetry breaking even in the weak-
coupling regime where the renormalisation procedure is well-controlled confirms
that replica symmetry breaking is a physical feature of this model, that any
infinitesimal perturbation away from perfect replica symmetry will inevitably
lead to replica symmetry breaking and that the replica symmetry broken fixed
point is the one which controls the physical phase transition.

3.7 Discussion

The presence of replica symmetry breaking in the Bose glass has been
controversial, and there are a number of commonly raised objections which bear
further examination.

• Where does the ultrametricity associated with RSB come from
in this model? - In conventional spin glass literature, the existence of a
fragmented free energy manifold with many local minima stems from the
inability of the system to uniquely satisfy all bonds, e.g. the geometric
frustration shown in Fig. 1.6. In the Bose-Hubbard model, the glassiness
enters in terms of boson number density but there’s no clear picture one
can adopt to understand where the fragmented free energy landscape truly
comes from. Instead, we must appeal to the well-established mapping
between bosons and spin systems (Ref. [10] and which we shall encounter in
detail in Chapter 4) where we see geometrical frustration emerge naturally
from the type of disorder we consider here.

• Do RSB perturbations really exist? - This analysis can never truly say
whether RSB perturbations exist or not, only that if any such infinitesimal
perturbation away from replica symmetry does occur, the system will make
use of it. Though there are arguments for why RSB perturbations should
occur in disordered systems [164, 167], there is no rigorous proof. However,
there is no rigorous proof of any form of spontaneous symmetry breaking -
just as one can supercool water below its freezing point if one is su�ciently
careful, it may well be possible to encounter a disordered system that
(despite divergent RSB susceptibility) somehow does not break replica
symmetry. Our analysis, however, suggests that such a replica-symmetric
fixed point would be highly unstable.

• Could RSB arise as an artefact of an incorrect approximation?
- This is a particularly interesting possibility. Applying renormalisation
group techniques to a disordered system is a matter of some subtlety due
to the implicit dependence of short length scales upon the long [41]. Could
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it be that allowing for RSB is still not enough to correct the problem
of renormalising a glassy system, or even that this calculation somehow
enforces RSB upon the system? This is possible, but in light of other
works which have used similar methods and found stable replica-symmetric
solutions (e.g. Ref. [170] and Appendix D), it seems unlikely. Additionally,
the divergent RSB susceptibility is a strong indication that the calculation
is realistic. The most consistent story currently available is that RSB is a
genuine physical feature of the system.

• Does RSB really matter, given that the phase boundary is
virtually unchanged and it’s not clear what it does? - Though
the lack of some immediately obvious e↵ect of RSB on the phase diagram
or correlation length exponents was disappointing, we shall see in Chapter 4
that allowing for RSB can have a dramatic e↵ect on certain thermodynamic
properties which were not considered in this chapter.

In this chapter, we have shown the existence of replica symmetry breaking
in the Bose glass and demonstrated that the replica symmetric system is
highly unstable to any infinitesimal RSB perturbation. The breaking of replica
symmetry is linked to the breaking of ergodicity in the system, and we have
demonstrated the existence of glassy Edwards-Anderson order parameters which
can in principle be measured to test for RSB. We shall see in Chapter 5 that the
thermally averaged order parameter q is accessible by quantum gas microscopes,
however the long-time correlation function q

EA

is not. Motivated by the need
to find an alternative experimental environment which demonstrates the same
physics and allows measurement of temporal correlation functions, we now turn
to dimerised quantum antiferromagnets in Chapter 4.
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Chapter 4

Bose and Mott Glasses in
Dimerised Antiferromagnets

As part of the previous work on the breaking of replica symmetry in the
Bose glass which was presented in Chapter 3, it became apparent that the
measurements required to test our predictions were possible in principle but
often highly impractical to conduct on ultracold atomic gases. Most imaging
measurements are destructive, meaning quantities such as two-time correlation
functions are impossible to measure on a single system.

Dimerised quantum antiferromagnets (AFMs) provided an alternative envi-
ronment in which to explore the same physics. Motivated by experiments on
bromine-doped dichloro-tetrakis-thiourea-nickel (DTN) [171], the work presented
in this chapter is an investigation into the properties of disordered dimerised
quantum AFMs seen through the lens of the hard-core Bose gas formalism.

It turned out that this would lead to a very clear and dramatic demonstration
of the importance of replica symmetry breaking in the Bose glass. Without
including RSB, the field theory formalism presented in the previous chapter does
not correctly recover a finite compressibility in the Bose glass. With RSB, we find
the compressibility becomes finite at the MI-BG transition, but also find that the
compressibility is strongly suppressed at the multicritical point at the tip of the
Mott lobe. We identify this anomalous suppression of compressibility with a rare
Mott glass phase never before analytically predicted to exist in this model.

The work in this chapter was published in “Bose and Mott glasses in dimerized
quantum antiferromagnets,” S. J. Thomson and F. Krüger, Physical Review B:
Rapid Communications 92, 180201(R) (2015) [154].
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4.1 Spin Dimer Systems

Bose-Einstein condensation of the spin degrees of freedom in magnetic
insulators is a well-established phenomenon, having been observed in a wide
variety of clean materials such as TlCuCl

3

[172–174], Cs
2

CuCl
4

[175, 176],
BaCuSi

2

O
6

[177, 178], SrCu
2

(BO
3

)
2

[179, 180], NiCl
2

-4SC(NH
2

)
2

[181] and
Ba

3

Mn
2

O
8

[182–184].

The central idea is that a dimer (i.e. a pair of spins) can adopt either a
spin-0 singlet configuration or any of three spin-1 triplet configurations. Loosely
speaking, one can treat the singlet as a ‘vacuum’ and the triplets as three distinct
species of boson. Similar bosonisation methods have been explored in various
contexts, such as the Matsuda-Matsubara transform [185], Schwinger bosons (see,
e.g. Ref. [9]) or the Holstein-Primako↵ formalism [186]. The latter has been used
to describe e↵ects seen in dimerised quantum antiferromagnets [171], however
its reliance on expanding around a broken symmetry state seems inherently
unsatisfactory. Here in this chapter we use a bond operator technique derived
independently of but exactly equivalent to that presented in Refs. [187–191],
which does not rely on an expansion around a broken-symmetry state.

The bosonic excitations out of the spin-0 vacuum are known as triplons,
however they are su�ciently similar to the magnetic excitations seen in ordered
antiferromagnets (known as magnons) that in the majority of the literature the
two terms are used interchangeably [192]. This distinction becomes further
muddled in a glassy state with locally ordered regions so for the purposes of
this thesis I will also use the terms ‘magnon’ and ‘triplon’ interchangeably.

Just as regular bosons can form a Bose-Einstein condensate, so too can
these triplons condense in a magnetic system (for reviews, see Refs. [192, 193]).
Typically the spins of the triplons are taken as being aligned along the z direction
and condensation of these triplons corresponds to the establishment of long-
range order in the x-y plane. The correspondence between the spin system
and the bosonic description is shown in Table 4.1, based on Ref. [192]. The
Mott insulating phase of the regular Bose-Hubbard model is instead a singlet
state of the dimerised model, while the superfluid phase is a long-range ordered
antiferromagnet. In an external field, this is a canted antiferromagnet but in zero
applied field this condensed state becomes a perfect Néel antiferromagnet.

As the excitations of the magnetic system can be described by this e↵ective
bosonic model, it should come as no surprise that the addition of disorder
leads to very similar e↵ects to those presented in Chapter 3. Specifically, a
magnetic Bose glass phase has been predicted to occur, characterised by rare
patches of magnetic order in an otherwise spin-singlet background. Such phases
have been experimentally observed in several materials [194–197], but the case
of bromine-doped dichloro-tetrakis-thiourea-nickel (DTN) [171] is perhaps the
most interesting. There, the authors find not only evidence for a magnon
Bose glass, but also find a glassy phase with vanishing magnetic susceptibility

92



Correspondence between Bose gas and spin system
Bose gas Spin system
Bosons Triplons (spin excitations)
n̂
i± ±Ŝz

i

U(1) symmetry O(2) symmetry
h (r)i hŜx

i

+ iŜy

i

i
Chemical potential µ̃ Applied field h
SF density ⇢

s

Transverse spin sti↵ness
MI state Magnetisation plateau
SF state Long-range xy-plane order
Compressibility  Magnetic susceptibility �

Table 4.1 The properties of the hard-core Bose gas with nearest-neighbour
interactions can be mapped onto analogous properties of a system of
spins. This correspondence will be formally derived in the following
sections. Here, Ŝ

↵

i

refers to the overall spin of the dimer, not the
spin of the individual spin-1/2 particles within the dimer. This table
is based on that shown in Ref. [192] and extended to include more
parameters.

(compressibility, in the bosonic language) which they identify with a Mott glass
(which we met previously in Table 3.1 in Chapter 3).

4.2 The Mott Glass

The Mott glass is an unusual incompressible glassy phase first analytically
predicted in one dimensional fermionic systems [162, 198] using functional
renormalisation group techniques. It was then seen in real-space renormalisation
group calculations of the O(2) quantum rotor model in one dimension [149, 151,
199, 200] and evidence for this phase has also been seen in quantum Monte Carlo
calculations performed on spin models and related Bose-Hubbard-like systems in
both one and two dimensions [150, 152, 153, 201]. A related - and very possibly
identical - incompressible glassy phase in the O(2) quantum rotor model known
as a random-rod glass has been shown to exist only in the presence of particle-
hole symmetry [131, 202, 203]. The only experimental observation thus far of a
Mott glass is that of Ref. [171], which includes a full quantum Monte Carlo study
that backs up their conclusion.

The Mott glass remains a curious phase that has arisen in a variety of di↵erent
theoretical scenarios in di↵erent systems and with di↵erent types of disorder.
Some work suggests that the Mott glass requires finite-range interactions and
could not be stabilised in the regular disordered Bose-Hubbard model; yet
other work suggests that finite-range interactions are not necessary but that
the essential ingredient is instead o↵-diagonal disorder [150]. The e↵ects of
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dimensionality are not known, other than that evidence for it now exists in one
[149, 150, 162, 198–200], two [153, 201] and three [154, 171] dimensions.

There has never been a comprehensive study of the Mott glass itself across all
its possible realisations, and in this chapter I do not attempt one. Whatever the
root cause of the phase, it seems certain that something not yet fully understood
is happening in these systems. In fact, there is reason to be suspicious as to
whether all the phases given the name ‘Mott glass’ are really phases with the
same underlying physics or simply phases with similar cosmetic properties but
di↵erent fundamental physics.

In the Bose-Hubbard model, there is a large amount of evidence that the
Mott glass exists at and around the special multicritical points where particle-
hole symmetry is restored. In the hard-core boson model which describes the
experiments on DTN [171], the zero-field limit where the Mott glass is seen
corresponds to one of these multicritical points. Given the proximity of the Mott
glass to the these high-symmetry points, it seems very likely that its physics has
something to do with the change in the nature of excitations precisely at the tip
of the Mott lobes [119].

Motivated by the experimental observation of a Mott glass in a system that
can be well-described by a hard-core Bose-Hubbard model with finite range
interactions and local disorder [171], in this chapter we derive a strong-coupling
replica field theory for this system following the procedure laid out in Chapter 3
and calculate the magnetic susceptibility (or compressibility, in boson language)
to see if we see any evidence for a Mott glass in this model.

4.3 Mapping to Hard-Core Bosons

We start from the following Hamiltonian, which is reminiscent of a typical
Heisenberg Hamiltonian for dimers in the presence of a magnetic field but with
an additional anisotropy term which couples to the square of the z-projection of
the total spin of the dimer:

H =
X

ijmn

J
ijmn

Ŝ
i,n

· Ŝ
j,m

�D
X

i

(Ŝz

i,1

+ Ŝz

i,2

)2 � h
X

i

(Ŝz

i,1

+ Ŝz

i,2

), (4.1)

where i, j label the dimers and m,n label the component spins of the dimers. The
coe�cient J

ijmn

is always greater than zero and becomes J
0

for the intra-dimer
coupling, J

1

for the nearest-neighbour inter-dimer coupling and J
2

for the next-
nearest-neighbour inter-dimer coupling, as shown in Fig. 4.1. The anisotropy D
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Figure 4.1 An illustration of the inter-dimer and intra-dimer couplings defined
in Eq. 4.1. All couplings are positive (antiferromagnetic).

is the dimer equivalent of a single-ion anisotropy and is of the standard form used
in dimerised magnetic systems.

Using the method first developed in Ref. [187], we map the fermionic spins to
bosonic creation and annihilation operators corresponding to singlet and triplet
dimer configurations as follows:

ŝ† |0i = |0, 0i = 1p
2
(|"#i � |#"i), (4.2)

t̂†
0

|0i = |1, 0i = 1p
2
(|"#i+ |#"i), (4.3)

t̂†
x

|0i = � 1p
2
(|""i � |##i), (4.4)

t̂†
y

|0i = ip
2
(|""i+ |##i). (4.5)

where |0i represents the vacuum. This allows us to rewrite the spin operators as:

Ŝ↵
1

=
1

2

h
ŝ†t̂

↵

+ t̂
↵

† � i✏
↵��

t̂†
�

t̂
�

i
, (4.6)

Ŝ↵
2

=
1

2

h
�ŝ†t̂

↵

� t̂
↵

† � i✏
↵��

t̂†
�

t̂
�

i
, (4.7)

where the subscripts 1 and 2 number the spins within a single dimer and ✏
↵��

is
the Levi-Civita symbol. The Hamiltonian is no longer diagonal in this basis, so
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we make a rotation to the following basis:

t̂†
0

|0i = t̂†
z

|0i = |1, 0i , (4.8)

t̂†
1

|0i = |1, 1i = |""i , (4.9)

t̂†�1

|0i = |1,�1i = |##i . (4.10)

The presence of the anisotropy term D allows us to project out the |1, 0i state.
As long as h < D, this state is energetically unfavourable and can be projected
out.

Following the harmonic approximation used in Ref. [188–191], we can use the
hard core constraint ŝ†ŝ + t̂†

↵

t̂
↵

= 1 (where the summation over ↵ is implied)

to rewrite the singlet operators as ŝ† = ŝ =
p

1� t̂†
↵

t̂
↵

, allowing us to write a
Hamiltonian entirely in terms of the triplet creation and annihilation operators.

H = �
X

i,�=±
µ
�

n̂
i�

+ V
X

hi,ji

X

�1,�2

�
1

�
2

n̂
i�1n̂j�2

+t
X

hi,ji

h
(t̂†

i� � t̂
i+

)(t̂
j� � t̂†

j+

) + H.c.
i
, (4.11)

where t = (J
1

� J
2

)/2, V = (J
1

+ J
2

)/2 and µ
�

= (J
0

� D) + �h. We have
also used the hard core constraint to rewrite products of number operators using
n̂2

b

= n̂
b

and n̂
b

n̂
c

= 0 and we have shifted the energies by a constant such that
the singlet state has zero energy.

We can also do the same mapping without the anisotropy term, leading to
an additional contribution coming from the coupling to the t̂

z

triplet:

H
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j,z
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i,z

⌘
. (4.12)

This additional contribution contains the same physics as Eq. 4.11, but coupled
to the triplet with zero z-projection rather than to the bosonic vacuum. Since
this term adds no significant new behaviour but does significantly increase the
algebraic complexity, we include the anisotropy term in Eq. 4.1 which allows us
to project out these terms.

The form of Eq. 4.11 is that of an extended Bose-Hubbard model with
hard-core repulsions. The extended Bose-Hubbard model is well studied and
the e↵ect of the finite-range interactions is to stabilise fractionally-filled Mott
insulating phases that depend upon the underlying lattice geometry. For example,
in a square lattice this repulsion can stabilise half-filled checkerboard and stripe
phases, whereas in a triangular lattice it will stabilise fillings of 1/3, 2/3 and so
on.
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The stabilisation of fractional filling factors adjacent to superfluid regions
leads naturally to the question of whether the model exhibits supersolid behaviour
at the transition from fractionally-filled Mott lobes to the superfluid states. Many
studies indicate this [204–211], though other authors claim that in reality this
model does not contain a supersolid phase but instead a first-order transition
from Mott insulator to homogeneous superfluid [212].

In its current form, our renormalisation group calculation is not sensitive to
the nature of the condensed phase, nor can it distinguish whether the MI-SF
transition should be first-order. Should there be a first-order transition in the
vicinity of the fractionally-filled lobes, then that may introduce additional factors
that supersede our work here. Consequently, in the later parts of this chapter
where the behaviour at the tip of the lobe becomes important we focus on the
m = 0 central Mott lobe as we know our calculation remains well-controlled and
captures all of the essential physics in this region.

4.4 Clean Mean Field Theory

Using a Gutzwiller variational wavefunction, we can calculate a mean-field
energy expression and determine the ground-state phase diagram by minimising
it. The wavefunction we use is given by:

| i =
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i
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i =
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+ �
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�
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⌘
|0i , (4.13)

where �
i

= ±1 describes the antiferromagnetic ordering. We can extract a mean-
field energy from this wavefunction by calculating E

MF

= h |H| i.
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using
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i

â
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which make use of the fact that for the product-state Gutzwiller ansatz
wavefunction we employ here, hâ

i

â
j

i = hâ
i

ihâ
j

i.
The phase diagram resulting from Eq. 4.14 is shown in Fig. 4.2. We see

a large central m = 0 Mott insulating lobe flanked on either side by half-filled
checkerboard m = ±1/2 states of t̂

+

bosons and t̂� bosons for h > 0 and h < 0
respectively, followed by the fully polarised m = ±1 Mott insulating states when
|h| is su�ciently large. Numerically solving Eq. 4.14 in a finite-sized system
using simulated annealing methods reveals the presence of supersolid regions in
the vicinity of the tips of the half-filled Mott lobes. The renormalisation group
methods we are going to develop in the next sections are not sensitive to this
type of ordering and as it may be that the supersolid regions are pre-empted by
first-order transitions [212], we do not consider them from here on in.

4.5 Strong Coupling Field Theory

The field theory is constructed in the same way as in the previous chapter,
di↵ering only in the microscopics (manifesting as di↵erences in the Green’s
functions) and that there are two bosonic fields rather than one, though after
the Hubbard-Stratonovich transform this di↵erence is largely irrelevant. I shall
sketch the derivation of the strong coupling field theory here, highlighting the
di↵erences, but for full details on the derivation of the field theory and the
following renormalisation group equations, see Chapter 3.

We can again write down the action as a path integral over coherent states
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Figure 4.2 The mean-field phase diagram of Eq. 4.1 recast in the language of
a hard-core lattice gas of bosons, as in Eq. 4.11, with y

0

= (J
1

+
J

2

)/[2(J
0

� D)] ⌘ 1 for the purposes of the figure. There are five
Mott insulating (MI) regions corresponding to the bosonic vacuum
(m = 0), half-filled (m = ±1/2) and fully polarised (m = ±1). The
superfluid (SF) phase refers to the presence of long-range x-y order,
corresponding to canted antiferromagnetism for all h 6= 0 and perfect
Néel order for h = 0.
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in the usual way:
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After a Hubbard-Stratonovich transform to decouple the hopping term:

S
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Because of the structure of the initial action, we only require a single Hubbard-
Stratonovich field to perform the decoupling, despite the presence of two bosonic
fields in the initial action. This is because we choose the Hubbard-Stratonovich
field  

i

to be conjugate to the linear combination (�
i� � �⇤

i+

). The Hubbard-
Stratonovich transform is not unique (see Appendix A), however this form gives
a simple physical description of the expected ordering transitions.

We can now trace out the original fields to obtain the partition function in

terms of the new fields, denoting this as Z = Z
0

R D[ ⇤, ]e�(S

(0)
 +S

0
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, (4.26)
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i�(⌧)� t̂†
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(⌧)) + h.c.)

#+

0

. (4.27)

Note that as this problem is strongly interacting, Wick’s theorem cannot be
employed and the averages must be taken with respect to the Hamiltonian in the
zero-hopping limit. At T = 0 we know precisely what phases are in the model
and with that knowledge we can calculate the averages directly.
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Single particle Green’s functions

Expanding up to quadratic order:
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with
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where G = G
m

(! = 0) is the zero-frequency piece of the single-particle Green’s
function and the frequency coe�cients K

1

and K
2

can be written in terms of
derivatives of G just as in Chapter 3.

We may calculate the Green’s functions as before, but this time we must
distinguish the uniformly-filled states from the checkerboard states and calculate
G separately in each region. In calculating the Green’s functions for the m =
±1/2 lobes we must take into account that there are two possible checkerboard
configurations (corresponding to each of the two sublattices being either filled or
empty) and sum over both accordingly, but aside from this minor extension the
calculation proceeds exactly as in Chapter 3. The Green’s functions G

m

(!) in
each of the five regions are given by:

G
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Hopping terms

The hopping term S(0)

 

can be treated using a continuum expansion in the
long-wavelength limit.
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where z = 2d is the lattice co-ordination number. The corresponding term in the
dual action is:

S(0)

 

⇡
Z

k

✓
1

zt
+

1

z2t
k2

◆
 ⇤(k) (k), (4.34)

with k = (k,!) for brevity. Combining with the local terms leads to an e↵ective
quadratic action of the form:
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where K
3

= 1/z2t, R = R
m

= 1/zt + G
m

(! = 0) and the temporal gradient
coe�cients K

1

and K
2

are defined as before.

Calculating the interaction vertex

Repeating the above procedure to quartic order, we can also calculate the
coe�cient of the interaction vertex U = U

m

, which is related to the local two-
particle Green’s function.
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(4.36)

which may again be written as U
R
r,⌧ | (r, ⌧)|4 after expanding to quartic order.

Calculation of this coe�cient U = U
m

is significantly simpler than calculation
of the corresponding vertex in Chapter 3 due to the hard-core constraint, though
it is still lengthy so I present only the final answer here:
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Each of these expressions is always positive. There are suggestions that the
transition in the vicinity of the tips of the m = ±1/2 lobes could be first-order
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[210] or that there could even be a supersolid phase present [204–211], though
other work suggests that the checkerboardm = ±1/2 phase is thermodynamically
unstable [212]. The positivity of U here suggests that either the transition remains
second-order, or that e↵ects not captured by our analysis are responsible for
turning it first order.

As in Chapter 3, we obtain the final strong coupling field theory by performing
a rescaling, employing dimensionless units for imaginary time and length such
that ⌧ ! V ⌧ and r ! ⇤r where ⇤ is the momentum cuto↵. We then write the
other coe�cients as r = R/K

3

, �
1

= (K
1

/K
3

)V , �
2

= (K
2

/K
3

)V 2 and u = U/K
3

to obtain the final action.
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(4.40)

This expression has precisely the same form as Eq. 3.37 and di↵ers only in
the microscopic details. In the context of the renormalisation group calculation to
follow, this expression di↵ers from Eq. 3.37 only in the ultraviolet-scale starting
values of the flow parameters. The universal behaviour of the phase transitions
is the same as that of the conventional Bose-Hubbard model, with the specific
di↵erences due to the addition of finite-range interactions being taken into account
by the Green’s functions.

4.6 Clean Renormalisation Group

Because Eq. 4.40 has the same form as Eq. 3.37 in Chapter 3, the derivation
of the renormalisation group equations is the same as for the conventional Bose-
Hubbard model and they are again given by:
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where, as before, I
0

= 1/(1+ r), d
z

is the dynamical critical exponent, ⌦(k,!) =
(k2� i�

1

!+�
2

!2+ r), I
1

=
R
!

⌦(k = 1,!) = 1/
p
�2
1

+ 4�
2

(1 + r), I
2

=
R
!

⌦(k =
1,!)2 = 2�

2

I3
1

and I
3

=
R
!

|⌦(k = 1,!)|2 = (1/2)I
0

I
1

.

As previously, we can retain the interaction vertex u and calculate the e↵ect

103



it has. The clean phase diagram di↵ers only quantitatively from the Gutzwiller
mean-field phase diagram in Fig. 4.2 and the interaction vertex leads only to a
small quantitative shift of the phase boundaries, as shown in Fig. 4.3. Again, we
may safely neglect the interaction vertex from here on in.

4.7 Disordered Renormalisation Group

We can perform the disorder average exactly as in Chapter 3 and obtain a
replica field theory of precisely the same form:
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which leads to the same one-step replica symmetry breaking solution as we saw
previously. The RG equations, almost unchanged from Chapter 3, are:
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Here we retain the frequency terms, as it turns out they are crucial to
getting the compressibility correct (see next section). We do, however, make
one important change - now that we are retaining the frequency terms it is clear
that d

z

= 2 is not the correct choice of critical exponent in the disordered case.
To ensure that �

1

does not scale under the RG, we require d
z

= 2+�
1

where �
1

is
also a running variable under the RG scheme. This does not a↵ect the structure
of the phase diagram (neither here nor in Chapter 3) since the phase diagram is
determined entirely from the flow of I

0

and �
1

and the frequency terms play no
role in the setting the phase boundaries. The frequency terms do, however, play
a significant role in calculating thermodynamic quantities and so it is important
that we use the correct d

z

taking into account its dependence on disorder.

The RG flow diagram is identical to Fig. 3.10, so I do not reproduce it
here. The phase diagram may be determined in the same manner as before,
characterising the glassy phases by the divergence of the relative disorder
variance �

1

, resulting in boundaries shown in Fig. 4.4. Similarly to the
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Figure 4.3 The phase boundaries determined by the renormalisation group
calculation (solid lines) plotted against the Gutzwiller mean-
field phase boundaries (dashed lines). The mean-field solution
overestimates the phase coherence and generates Mott lobes which
are slightly too small, though there is no qualitative di↵erence in the
topology of the phase diagram.
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Figure 4.4 The MI/BG phase boundary determined by the renormalisation
group calculation (solid black lines) plotted against the clean MI/SF
phase boundary determined by the Gutzwiller mean-field theory
(dashed lines). The shaded areas are the Mott insulating regions. As
in Chapter 3, we see a shrinkage of the MI regions in the presence of
disorder and the emergence of a (magnetic) Bose glass phase between
the MI and the SF. As in Chapter 3, the BG-SF transition is not
captured by this strong-coupling field theory and is not shown.

regular Bose-Hubbard model from Chapter 3, we see that the MI regions shrink
commensurately with the strength of disorder. Note that in this case, the
m = ±1/2 lobes appear significantly less stable to the e↵ects of disorder than the
central m = 0 lobe or the fully polarised m = ±1 regions, though this may be in
part a cosmetic feature due to our choice of y

0

= 1 used in plotting the figure.
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4.8 Compressibility

Motivated by experimental results on the dimerised quantum antiferromagnet
DTN [171] and various numerical simulations [150, 152, 153, 201] of Bose-Hubbard
models which have reported zero or anomalously low compressibility in the
vicinity of the d

z

= 1 tips of the Mott lobes, we wish to examine in detail
these particle-hole symmetric points where the universality class changes. Due to
complications arising from the possibility of first-order or supersolid behaviour in
the vicinity of the m = ±1/2 lobes, we restrict our analysis to the central m = 0
lobe; however, our conclusions are valid for every Bose-Hubbard-like system with
a continuous phase transition at the lobe tips.

The compressibility was first calculated in the context of this RG framework
in Ref. [136] for the conventional soft-core Bose-Hubbard model where it was
found to take the form:

 ⇡ 1
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✓
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4g

r2

◆
. (4.50)

This expression was derived from an asymptotic approximation in which only
the r and g terms were retained in the action and gives rise to a compressible
phase whenever the relative variance � ⇡ g/r2 diverges. Close to the transition,
this expression for the compressibility has a scaling form of  ⇠ (x � x

c

)� with
� = 4/D � 1, where x� x

c

is the distance to the transition.

In light of the results suggesting a small or zero compressibility at the tips
of the Mott lobes where the linear frequency coe�cient �

1

vanishes, it seemed
likely that any approximation which neglected the frequency dependence would
not be sensitive to any such change in behaviour at the tip of the lobes. In order
to examine the change in behaviour at the tips of the lobes, here we derive the
compressibility retaining all frequency terms.

The compressibility is typically written as the derivative of the average
occupation with respect to chemical potential, and is related to number fluc-
tuations through the formula: 
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i). In the
spin (triplon) case, the derivative is instead with respect to the dimensionless
magnetic field which plays the role of chemical potential µ̃ = h/(J
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�D) and the
compressibility may be directly calculated from the replica field theory via the
expression
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We can calculate this by expanding out the disorder and interaction vertices to
obtain a total compressibility in terms of three contributions: the mean-field 

0

,

107



the interaction term 
u

and the disorder-induced compressibility 
g

.
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Explicit expressions for the three contributions are as follows:
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where we neglect terms higher than quadratic order in frequency1. Now that
all expectation values are taken with respect to the quadratic action S

0

, Wick’s
theorem may be employed to evaluate the above expressions.

1The frequency terms may be retained to infinite order and the following results still hold,
though this complicates the presentation slightly so I show only up to quadratic order here.
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Replica Symmetric Solution

As a first approximation, we can attempt to evaluate the compressibility using
the replica symmetric field theory. Based on the results of Chapter 3, it appeared
that the replica symmetric theory was qualitatively correct and di↵ered only in
small quantitative ways from the full replica symmetry-broken field theory.

First, let us briefly examine 
0

. Earlier we defined the quantity
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where r > 0. Evaluating 
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we find that:
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Taking these derivatives, we find that 
0

vanishes identically. The same is true
for 

u

and all the replica-symmetric contributions to 
g

, since both of these
contributions are proportional to two further derivatives of the above expression.

The identical vanishing of the compressibility cannot be a correct result,
as we know from many other independent methods that the Bose glass is a
compressible phase. In this instance, the replica symmetric field theory leads
to a completely incorrect answer. It turns out that by incorporating the replica
symmetry breaking solution, however, we can repair this calculation and obtain
a physically reasonable solution.

The importance of replica symmetry breaking

Let’s take a closer look at the disordered term 
g

allowing for some generic
form of replica symmetry breaking using the following definitions:

g
↵↵

= g̃, (4.62)
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g(u)du ⌘ hgi. (4.63)

In the case of replica symmetry, g̃ = hgi. In the presence of replica symmetry
breaking, these quantities di↵er. Splitting Eq. 4.59 into two pieces 

g1

and 
g2
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and evaluating, we find:


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where ⌦(k,!) = (k2 � i�
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!2 + r) is as defined earlier in the chapter. The
importance of RSB is already visible in Eq. 4.65. The second term in the equation
- the RSB term - comes with a di↵erent frequency and momentum structure to
the replica-symmetric term, meaning it no longer respects the proportionality in
Eq. 4.61. Proceeding to evaluate 

g1

gives:
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where S
d

is again the surface area of a d-dimensional hypersphere. We can
similarly evaluate the other contribution to the disorder-induced compressibility,

g2

, to obtain:
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Here, the RSB terms vanish identically. Putting the pieces together, we find that

g2

exactly cancels the replica symmetric contribution to 
g1

, leaving us with
the remaining piece that is only non-zero in the presence of replica symmetry
breaking:


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The replica o↵-diagonal terms are the only ones which do not cancel due to the
RSB diagrams having an additional internal frequency integral and consequently
not following the same frequency structure as the other terms and therefore not
vanishing due to the proportionality in Eq. 4.61. Without replica symmetry
breaking, �̃ = h�i and the compressibility is exactly zero everywhere in the
disordered system. (In the clean system, r < 0 and the proportionality in Eq.
4.61 no longer holds.)

Replica symmetry breaking is therefore crucial to include if we are to obtain
a compressible Bose glass state. This result is only possible because the frequency
structure of the replica symmetry broken terms is di↵erent from that of the replica
symmetric ones, and this result will also hold for all Bose-Hubbard-like models
which display the same frequency structure.
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Scaling form of the compressibility

Using the 1-step RSB detailed in Chapter 3 and in Ref. [120] and inserting
into Eq. 4.69, we find:


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S
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c
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2
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1
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2
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Substituting for u
c

and defining �̃ ⌘ � we arrive at the final expression:
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In the vicinity of P
MI/BG

we can linearise the RG equations and solve two of
them analytically, yielding

I
0

(l) = c
0

e�(2�
d
6)l, (4.72)
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9
+ ��ed l. (4.73)

From our choice of a scale-dependent z(l), we ensure that �
1

(l) is not renor-
malised. The RG equation for �
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(l) becomes:
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Using the ansatz �
2

(l) = f(l) exp[�(2 + d/9)l], we can then solve this equation
to get a final expression for the scaling of �

2

(l):
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�2
1

exp[�(2� d/6)l] + c
1

exp[�(2 + d/9)l]. (4.75)

Linearising this result around P
MI/BG

, we find that the compressibility vanishes
as

 = (`⇤) = C(x� x
c

)
2
d� 1

6 , (4.76)

which gives  = C(x � x
c

)
1
2 near the transition in d = 3. The results from

numerical integration of the renormalisation group equations are shown in Fig.
4.5 where we find excellent agreement with the scaling exponent of 1/2 in the
vicinity of the phase transition. Close to the tip of the lobe, we see an anomalous
suppression of the range of this universal behaviour though it still always holds
su�ciently close to the transition. We can go arbitrarily close to the tip and
always find an exponent of 1/2 close to the transition.

111



Figure 4.5 i) Scaling behaviour of  close to the transition for a variety of
di↵erent µ̃ values. The blue lines are guides to the eye with gradient
1/2. Note the anomalous suppression of the range of universal
behaviour close to the tip at small µ̃ values. ii) Vanishing of C

on approach to the particle-hole symmetric tip of the Mott lobe.
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Vanishing compressibility

Fitting the numerical integration of the renormalisation group equations with
this scaling form allows us to numerically extract the coe�cient C close to the
transition. On approach to the tip of the Mott lobe, we find that the coe�cient
C vanishes (Fig. 4.5), signifying the transition into an incompressible state that
still nonetheless has a diverging relative variance �.

This strongly suggests that the transition at the tip is in fact into an
incompressible Mott glass rather than a Bose glass. This was also suggested
in Ref. [153] where the authors termed the phase an ‘anomalous Bose glass’ as
their numerics could not resolve whether the compressibility was truly zero, only
that it was strongly suppressed. Although our RG is not valid strictly at the tip
of the Mott lobe, our analysis provides strong evidence that the compressibility
does truly vanish at this point.

The suggestion of an incompressible phase in a Bose-Hubbard model with
random-mass disorder has been slightly controversial, with some claiming that
it must necessarily violate the theorem of inclusions [147, 148] which appears
to say that an incompressible phase with compressible inclusions must itself be
compressible. This isn’t true and the resolution to this objection is found in the
symmetries of the multicritical point at the tip of the Mott lobe.

In zero applied field and with a symmetric disorder distribution, there
is perfect symmetry between the spin-up and spin-down triplets. In the
thermodynamic limit there will be an exactly equal number of each in the system.
Any infinitesimal change in applied field will increase the number of one species
of triplet, but due to the symmetry at this point there will be a precisely equal
decrease in the occupation number of the other series of triplet. In other words,
the compressibility @hn̂i/@µ̃ = 0 because hn̂i does not change on average across
the entire system. Even though the system still contains locally compressible
regions, the bulk behaviour of the system is incompressible due to this perfect
symmetry. This result does not violate the theorem of inclusions.

In any finite size system, this symmetry will no longer be exact and
the compressibility will not vanish identically, which is why the Monte Carlo
simulations in Ref. [153] do not find a compressibility of exactly zero.

This result has implications beyond the zero-field limit of the spin model,
however. As the field theory used in Chapter 3 is precisely the same as the
one used here, barring changes in the ultraviolet-scale starting values of the flow
parameters, we should expect to see the same behaviour at the tips of the Mott
lobes in the regular Bose-Hubbard model and by extension all Bose-Hubbard-like
models which obey this form of field theory. How can we reconcile this with the
theorem of inclusions?

The answer is that this form of field theory predicts an emergent particle-
hole symmetric point at the tip of every Mott lobe, even in the case of chemical
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potential disorder. At these points, there is always a mapping one can do such
that the integer filling of the Mott lobe is the ‘vacuum’ with excitations above
this vacuum behaving like particles and excitations below it behaving like holes.
Precisely at the tip in the disordered case, there is always an equal number of
particles and holes and there is always a perfect cancellation between the change
in number of particles and change in number of holes as the chemical potential
is varied. The Mott glass is therefore generic to all Bose-Hubbard-like models
which display particle-hole symmetric points, emergent or otherwise.

4.9 Discussion

There are two key results from this section, both of which build upon the
work in Chapter 3.

• The importance of replica symmetry breaking - Replica symmetry
breaking, contrary to even our own intuition (see Ref. [120] where we stated
there to be no relation between compressibility and RSB) turns out to be
crucial for the thermodynamics of the system.

• The Mott glass - An incompressible Mott glass phase was found to exist
in this model, and by extension must also be present in the regular Bose-
Hubbard model as the field theories are identical. This phase has been
suggested to exist in two and three dimensions by numerics and in three-
dimensional antiferromagnets by a single experiment [171], but this is the
first analytic prediction of a Mott glass in anything other than a d = 1
fermionic system or rotor model [149, 162, 198–200].

One key question remains: is replica symmetry breaking a real, physical
e↵ect? RSB was first invoked in the renormalisation of disordered systems
[41, 163, 164] to take into account the possibility of there being a large
number of metastable states, but also because the entire procedure underlying
renormalisation begins to break down as soon as the possibility of a ‘glassy’ or
non-ergodic free energy landscape is allowed. Here, however, we required replica
symmetry breaking to obtain a physical result before we even attempted the
renormalisation group procedure. In this calculation, it was required in order
to correctly compute the thermodynamic averages involved in calculating the
compressibility.

Replica symmetry breaking arises here because blindly averaging across all
minima in the free energy landscape is akin to averaging the ‘up’ and ‘down’
ground states of a homogeneous ferromagnet. Without allowing for a symmetry
breaking field to restrict the averaging procedure to particular regions of the
free energy landscape, the averaging procedure washes out all of the physics we
are interested in. In a glassy system where the ultrametricity is not caused by
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any symmetry of the Hamiltonian, we do not know the form of the symmetry-
breaking field we need to apply to correctly restrict our averages. By allowing the
system the freedom to spontaneously break replica symmetry, we allow it to self-
consistently restrict the thermodynamic averages to the correct regions of the free
energy landscape. RSB plays the role of the external field in the ferromagnetic
example.

This work shows that incorporating RSB into the field theory is a requirement
in order to obtain physically meaningful predictions and is a good indicator
that RSB is a real physical e↵ect. It doesn’t, however, definitively prove that
RSB is not just a trick required to make a potentially incorrect model work.
Experimental measurements of the Edwards-Anderson order parameters and/or
independent confirmation from another theoretical method will be required in
order to know for sure. Quantum Monte Carlo, for example, would be an ideal
tool to numerically test for replica symmetry breaking. In light of previous works,
however, and the resemblance of our results to the experimental findings of Ref.
[171], it seems very likely that RSB is real and that the nature of the Bose glass
is somewhat more complex than was previously thought.

Direct measurement of the Edwards-Anderson order parameters is still
complicated in a spin system, however, due to the lack of single-site addressability
in the relevant experimental materials. While the Edwards-Anderson order
parameters are measurable in certain bulk measurements [126], and other glassy
e↵ects are certainly measurable, a method which allows us to directly probe the
boson number occupancy on a single-site level could be enormously illuminating
and allow the Edwards-Anderson order parameters to be directly measured.
Recent developments in quantum gas microscopes suggest that this is now
possible, and this will be the subject of Chapter 5.
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Chapter 5

Imaging Glassy Phases Using
Quantum Gas Microscopes

In Chapters 3 and 4 I showed how density fluctuations are linked to
the compressibility of disordered lattice gases of bosons, giving rise to replica
symmetry breaking and non-zero Edwards-Anderson order parameters. All
currently available experimental measurements of properties of the Bose glass,
both in ultracold atomic gases and related magnetic systems, are based on
inferences drawn from measurements of bulk properties, but it is the local
e↵ects of disorder that are important for the glassiness in this model [119]. The
development of optical lattice technology [213, 214] and the advent of single-atom
resolved fluorescence imaging [215–217] mean that it should be entirely possible
to directly image the number fluctuations in the glassy phases and extract the
Edwards-Anderson order parameters.

Here, I outline a proposal to directly image the Bose glass, show that this
proposal is within reach of current experimental technology and present numerical
calculations that serve as predictions for the experiments. I show that at mean-
field level, the Edwards-Anderson order parameter is already a good indicator of
the Bose glass and that direct measurement of this parameter is well within the
capability of current-generation quantum gas microscopes.

This work was conducted collaboratively with Dr Graham Bruce and much
of the numerical data presented here was gathered by Liam Walker as part of
his final-year MPhys project, with input from project co-ordinator Dr Jonathan
Keeling and programming assistance from Ti↵any Harte of the University of
Oxford.

The results of this work may be found in “Measuring the Edwards-Anderson
order parameter of the Bose glass: a quantum gas microscope approach”, S. J.
Thomson, L. S. Walker, T. L. Harte and G. D. Bruce, arXiv:1607:05254 [218].
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5.1 Why quantum gas microscopes?

In the previous chapter we looked at the e↵ects of disorder on the bulk
properties of bosonic systems, however we are no closer to being able to measure
the Edwards-Anderson order parameters introduced in Chapter 3. Although
measuring two-time correlation functions is unlikely to be possible in ultracold
atomic gas measurements (as the measurements are typically destructive), the
thermally-averaged order parameter q only requires knowledge of the local
properties of a system at any given moment in time:

q = hn̂
i

ihn̂
i

i � hn̂
i

i hn̂
i

i. (5.1)

This complete knowledge of the exact quantum state of each individual lattice
site is a tall order and all but impossible in condensed matter systems, however
quantum gas microscopes are ideally suited for just this sort of measurement.
Single atom resolution fluorescence imaging of ultracold gases of bosons was
achieved in 2009 [215–217] and of fermions in 2015 [219–223]. Although
disorder has been investigated in numerous experiments on ultracold atomic
gases [156, 157, 224–226], these measurements have all inferred the presence of a
Bose glass from bulk measurements. Never before has anyone used a single-atom
resolution quantum gas microscope to directly image disordered phases and from
there extract information about the density fluctuations which characterise them.

The basic idea behind the quantum gas microscope is that ultracold atoms
are trapped in an optical lattice generated by counter-propagating laser beams.
During the imaging procedure the lattice depth is suddenly ramped up, pinning
the atoms onto their respective lattice sites and allowing their density to be
imaged using fluorescence imaging techniques. This is most commonly done in
two spatial dimensions, and this is the case we will consider here, however one-
and three-dimensional lattices are also possible [227].

Disorder can be introduced either by superimposing a speckle potential on top
of the lattice [155–158], or by using a spatial light modulator (SLM) to modulate
the lattice depth from site to site creating an e↵ective chemical potential disorder
[159–161]. The advantage of the SLM is that it allows the generation of arbitrary
disorder, e.g. bimodal distributions or spatially correlated disorder, however the
imperfect device response of the SLM can introduce an additional unintended
disorder on top of the intended pattern [228].

In a real experimental system, adding any form of disorder will simultaneously
modify not only the on-site chemical potential, but also the hopping amplitude
and the strength of the on-site repulsion [156]. In the following it will be assumed
that the dominant e↵ects can be modelled by looking at local chemical potential
disorder alone and that any additional e↵ects will lead to small quantitative
changes but no new physics.

All of the work presented in this chapter is mean-field in nature and aimed
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at simulating the experimental quantum gas microscope setup and showing that
current generation experiments can resolve q. The results in this chapter will be
presented in two parts. First, we shall look at characterising the various phases
in the model in small lattices at a uniform chemical potential and we will see that
the Edwards-Anderson order parameter q exists as a mean-field order parameter
which is capable of distinguishing the Bose glass from the Mott insulator and
superfluid phases. Then, we shall take into account the harmonic trapping
potential present in experiments and show that current generation quantum gas
microscopes have su�cient resolution to measure q and unambiguously identify
the Bose glass.

5.2 Experimental setup

Here I will briefly summarise the experimental setup from the point of view
of the minimum detail required in order to theoretically model the system. For
a more thorough review of the details of the experimental apparatus, see Refs.
[229–231].

In an optical dipole trap, the oscillating electric field of the laser light induces
an oscillating dipole moment in the atom. This oscillating dipole moment then
interacts with the laser light to generate a trapping potential proportional to the
intensity of the applied laser light, V / |E|2/(!�!

0

) where ! is the frequency of
the laser and !

0

is the resonance frequency of the atom. In a real atom, there will
be many resonance frequencies and the trapping potential generated will depend
on the specific state of the atom. The precise details of optical dipole trapping
may be found in Ref. [229], but for our purposes we will assume the atoms to be
two-level systems with only one transition of frequency !

0

.

The laser light is typically far from resonance with the atomic transition,
meaning that there are no couplings between the field and the atom other than
the dipole moment and the potential can be treated as a regular conservative
potential. For laser light with a frequency greater than the resonance frequency
of the atoms, the resulting potential will be repulsive. Conversely for light with a
frequency less than the resonance frequency of the atoms, the resulting potential
will be attractive. The advantage of using a purely optical trapping mechanism
is that it is completely controllable and the trapping geometry can be changed
by changing the intensity profile of the laser beams.

In quantum gas microscopes, the optical confinement takes the form of an
optical lattice generated by the interference of counter-propagating laser beams,
with the resulting potential shown in Fig. 5.1. Each local minimum acts as
a lattice site which the atoms are tightly bound to. Optical lattices can be
generated in any dimensionality by setting up counter-propagating laser beams
in each dimension. The resulting lattice potential takes the form of a sine wave
with a lattice spacing given by half the wavelength of the laser beams used to
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Figure 5.1 i) The lattice pattern generated by interfering two counter-
propagating beams of uniform intensity and wavelength �. The
resulting lattice is homogeneous, with a lattice spacing of �/2. ii) An
exaggerated cartoon of the shape of a real optical lattice made from
two orthogonal pairs of counter-propagating beams - a corrugated
lattice with spacing �/2 with a slowly varying background harmonic
potential on top resulting in an inhomogeneous lattice. In reality the
harmonic contribution is much more slowly varying than shown in
this image, but still significant enough to cause measurable e↵ects.

Figure 5.2 The same two patterns as in Fig. 5.1 except now with added on-site
disorder. This disorder will modify the local chemical potential as
well as the tunnelling (hopping) amplitude, however in the following
we will assume that the main e↵ects can be modelled as chemical
potential disorder only.
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generate it. Due to the Gaussian profile of the laser beams (i.e. they are more
intense at the centre and less so at the edges), the optical lattice is not entirely
uniform and will have a weakly varying harmonic potential in addition to the
corrugated standing wave pattern.

This inhomogeneity across the lattice is visible in experiments and results
in the lattice ‘filling up’ with atoms from the centre where the local chemical
potential is largest. Our model must therefore take this into account if we are
to properly compare with experimental images. Provided the potential varies
slowly enough, we can use the local density approximation and assume that the
atoms at any given local chemical potential act as though they were part of a
bulk system uniformly at that chemical potential. In our model, we add disorder
by superimposing another randomly varying pattern over the top of the optical
lattice beams (see Fig. 5.2), resulting in small local deformations of the optical
lattice which we can identify with on-site chemical potential disorder.

Upon exposure to near-resonant laser light, the atoms will fluoresce and
emit light. Detection of this light allows the position of each individual atom
to be located. This requires extremely high resolution optics with a di↵raction
limit comparable to the lattice spacing. Though it is possible to image three
dimensional optical lattice systems, most experiments are performed in two
dimensions. Depending on the experimental setup, the atoms can either be loaded
into a two dimensional optical lattice from the beginning or loaded into a three-
dimensional lattice, and then all the atoms not in the imaging plane can be
removed. This is typically done by the application of a magnetic field gradient
and a microwave frequency sweep which simultaneously flips the spins of all of
the atoms except the plane of interest, a technique known as spatially selective
magnetic resonance. The remaining atoms can then be removed by a resonant
laser pulse.

Throughout the imaging procedure, in order to keep the atoms confined the
trap depth must first be ramped up by a factor of several hundred, freezing the
atoms in place on their respective lattice sites and prevented any further hopping
or movement while the image is taken. Essentially, the atoms are probabilistically
projected onto an independent Fock state on each optical lattice site and this
forms the basis of the method which we use to model the imaging process. The
imaging light is slightly detuned from resonance to reduce any additional heating
from the imaging process, preventing the atoms from gaining enough energy to
move from their respective lattice sites.

The most important feature of the imaging procedure which we must capture
in any attempt at modelling the experimental setup is parity projection. Should
there be more than a single atom per optical lattice site, pairs of atoms can
undergo a light-assisted collision during imaging and will be removed from the
trap. In practice, this means that any lattice site occupied by an even number
of particles will appear empty under fluorescence imaging, and any lattice site
occupied by an odd number of particles will appear as though occupied by a
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single particle. The imaging technique can only distinguish between even and
odd occupancies, in other words, and though there are some recent techniques
which can go beyond this parity constraint [232, 233], in all of the following we
assume it to be an important experimental constraint and model it accordingly.

One key di↵erence between most theoretical methods and the experimental
setup is the way the particle number enters. In most theories we work in the grand
canonical ensemble where the particle number is not fixed and we can change it
by varying the chemical potential µ. In experiments, the number of particles in
the trap varies slightly from run to run but throughout the course of an individual
experiment it is fixed, subject to minor fluctuations induced by three body losses
and other forms of collisions in the trap. Essentially, the way around this is to
treat the central region of the harmonic trap (where the potential varies mostly
slowly) as the ‘core’ region and treat the region around the edges of the harmonic
trap as a particle reservoir similarly to Ref. [234], allowing us to use calculations
in the grand canonical ensemble to model the region of interest at the centre of
the trap.

With this brief survey of relevant experimental details that must be taken into
account in our analysis, now we can move on to look at the theoretical analysis
itself.

5.3 Theoretical Framework

Again, we start from the typical Bose-Hubbard Hamiltonian, which is a good
description of spinless bosons hopping on a hypercubic lattice:
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where all the symbols have the usual meanings as defined elsewhere in this thesis
and µ

i

= µ + "
i

represents the chemical potential disorder, where "
i

is in the
following drawn from a box distribution of width 2�. In all of the following we
use � = 0.3U .

The conventional mean-field theory we looked at in Chapter 3 works well
for calculating phase boundaries and bulk properties of the Mott insulator and
superfluid, but it does not capture the properties of the Bose glass. In calculating
the phase diagram using this method, we eliminated the possibility of local
variations in chemical potential, and the mean-field decoupling used no longer
makes a great deal of sense in the presence of disorder. Instead, we need to use
an alternative form of mean-field theory which preserves information about the
local properties of the system and will ultimately allow us to extract those for
comparison with experiment.

Analogously to Refs. [145, 146, 235] we use a local mean-field theory based
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around the Gutzwiller ansatz [236] wavefunction:
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from which we can calculate a mean-field energy and minimise it with respect
to the variational parameters f

ni,i. The wavefunction is normalised such thatP
ni
|f

ni,i|2 = 1 8i. The Gutzwiller ansatz is a mean-field wavefunction which
becomes exact in the limits of infinite dimensionality, zero hopping or infinite-
range hopping (equivalent to infinite dimensionality). Here we use it to simulate
experiments in two spatial dimensions where it is known to be a reliable and
accurate method other than at the multicritical points at the tips of the Mott
lobes where mean-field theory breaks down.

The usual criticism of the Gutzwiller ansatz is that while it is a very capable
method of modelling local properties, it often gets bulk properties wrong in the
thermodynamic limit. Here, we will make this work for us, simulating small
experimentally feasible system sizes and deliberately only looking at the same
local properties accessible to the experiments, thus keeping the Gutzwiller ansatz
well within its regime of validity. After obtaining the values of the variational
parameters f

n,i

, we can then probabilistically calculate the occupancy of each
lattice site and generate simulated ‘snapshot’ images that mimic those produced
by quantum gas microscopes, using hn̂

i

i = P
ni
n
i

|f
ni,i|2.

From the typical theoretical perspective, this manoeuvre is unusual. In
probabilistically generating snapshots, we are deliberately throwing away in-
formation about the system contained in the Gutzwiller coe�cients. There is
method in this madness: rather than using these exact values, we instead wish
to generate snapshots equivalent to what the experiment would see in order to
determine whether the measurements we propose are experimentally feasible.
Where possible, we follow closely the experimental setup of Ref. [217] to ensure
our mean-field theory takes into account as realistic a description of current
experimental capabilities and limitations as possible.

The mean-field energy expression is given by taking the expectation value of
the Hamiltonian with respect to the Gutzwiller ansatz wavefunction. The on-site
terms give the contribution E(0) as follows:
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The hopping term is slightly more complicated, involving neighbouring sites, and
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gives:
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where the expectation values can be computed like so:
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since any terms containing products of operators on di↵erent sites always factorise
and can be dealt with separately. In the clean case where all sites are identical,
the energy expression becomes site-diagonal and reduces to:
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subject to the normalisation constraint
P

n

|f
n,i

|2 = 1 8i.
In practice, it is numerically more e�cient to write the wavefunction | 

g

i
to explicitly include normalisation which allows us to minimise the resulting
energy expression using unconstrained minimisation algorithms, as opposed to
implementing a computationally more costly constrained minimisation algorithm
which attempts to enforce normalisation upon the Gutzwiller coe�cients.

We used a conjugate gradient algorithm to minimise the variational wave-
function [237]. The wavefunction itself was truncated at 6 particles per site, at
which point the coe�cient of the sixth Fock state f

6,i

was e↵ectively zero for
every site, giving us confidence that this truncation was a sensible one. As a
consistency check, the clean case simulations were performed using the disorder
code with disorder strength set to zero and were found to identically match the
results from using the site-diagonal clean-case expression and exactly reproduce
the usual mean-field phase boundary previously described in Chapter 3.

Unless otherwise stated, data presented in all of the following was generated
from Python code written by Liam Walker as part of his MPhys project [238].
The majority of the data presented here was taken on the CM-CDT EPSRC
Computer Cluster.
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5.4 Snapshot Generation

After minimising the mean-field energy expression, occupancy of lattice sites
can be calculated probabilistically. Taking into account the parity of the imaging
procedure, the probability of imaging a given site i as empty is

P
even

n

|f
n,i

|2
and the probability of imaging the site as occupied is simply

P
odd

n

|f
n,i

|2. In all
of the following we simulate two-dimensional lattices for comparison with the
experiments.

A simulated snapshot of a variety of 25 ⇥ 25 lattices at di↵erent points in
the phase diagram is shown in Fig. 5.3. Sites occupied by an odd number of
particles are shown in orange and sites with an even occupancy are shown in
white. This image di↵ers from the usual ‘snapshot’ images of Bose glass phases
generated by computational methods (see, e.g. Ref. [146]) in that a probabilistic
density is imaged, rather than an exact numerical mean occupancy or superfluid
order parameter. This corresponds to what one would see in a single experimental
image. Larger snapshots can also be used - up to lattice sizes of 100 ⇥ 100 we
find quantitative changes on the order of a few percent at the expense of a large
increase in computation time.

All of the following analysis is performed upon these snapshot images, with
the intention that we do not perform any analysis using information not accessible
to the measurements themselves (i.e. exact Gutzwiller coe�cients of the Fock
states).
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Figure 5.3 Simulated snapshots in a 25⇥ 25 flat lattice at various points in the
phase diagram, produced in Wolfram Mathematica using Eq.5.12.
Orange indicates a site with a single particle, while white indicates
either one or two particles. The precise values of dimensionless
hopping and chemical potential at which the snapshots were taken
are: i) t̃ = 0.01, µ̃ = 1.6, ii) t̃ = 0.04, µ̃ = 1.25, iii) t̃ = 0.04, µ̃ = 0.9,
iv) t̃ = 0.04, µ̃ = 0.7, v) t̃ = 0.04, µ̃ = 0.1, vi) t = 0.01, µ̃ = 0.4.
Snapshots i) and vi) are taken in the Mott insulator phases where
the filling is uniform. Note that panel i) appears blank due to parity
- actually every site is occupied by exactly two particles. The other
four snapshots were taken in the superfluid phase and show a non-
integer average number of particles per site.
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5.5 Edwards-Anderson as a mean-field order
parameter

To make contact with the experimental results, we will ultimately need to
run simulations that take into account the presence of the background harmonic
trapping potential responsible for the ‘wedding cake’ structure of the experimental
fluorescence images. First, however, we shall show that the Edwards-Anderson
order parameter already exists at mean-field level and is capable of distinguishing
the Bose glass from the Mott insulator and superfluid. In all of the following, we
use 25⇥ 25 lattices.

Compressibility

One of the first quantities measured in quantum gas microscopes was the
compressibility [217], used to distinguish the incompressible Mott insulator from
the compressible superfluid. In the zero-temperature Bose-Hubbard model, we
may define a dimensionless local compressibility:

 =
1

�

@hn̂
i

i
@µ

=
1

�

@
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P
ni
n
i

exp[��E
ni ]

Z
�
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X

ij

(hn̂
i

n̂
j

i � hn̂
i

ihn̂
j

i) , (5.13)

which is equivalent to the variance of our snapshot images. Due to the parity
limitation inherent in most quantum gas microscopes, the variance will saturate
at a maximum of 

max

= 0.25 (i.e. the maximum variance that any binary
distribution can have). In a superfluid with a Poisson distribution (i.e. deep in the
superfluid phase), the measured compressibility will saturate at this maximum
value, as shown in the experimental results of Ref. [217].

By averaging the variance over an appropriate number of snapshots (typically
around ten) we can construct a phase diagram in the (t/U, µ/U) plane. The
results in both the clean and disordered cases are shown in Fig. 5.4. In the
clean case, the boundary of zero compressibility matches up exactly with the
conventional mean-field phase boundary, as expected, confirming that even a
25 ⇥ 25 lattice is large enough to give reliable results. The phase diagram can
be constructed from larger lattices with a commensurate increase in computation
time, however there is only a negligible di↵erence in simulated quantities.

In the disordered case we see that the Mott lobes shrink, as expected,
and a highly compressible phase encroaches upon what was previously a Mott
insulator. The MI-BG phase boundary as determined from the replica symmetric
renormalisation group developed in Chapter 3 is shown overlaid1 - there is a minor

1The replica symmetric RG is used here as the interaction vertex W is relevant in two
dimensions. The one-step RSB result was derived in three dimensions where W is irrelevant
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Figure 5.4 Phase diagram constructed by extracting the variance (compressibil-
ity) of a 25 ⇥ 25 lattice for a grid of values of t and µ. i) The
clean case, showing incompressible Mott lobes in excellent agreement
with the conventional mean-field theory (dashed line). ii) After
addition of disorder, the incompressible Mott lobes shrink and are
now completely surrounded by a compressible phase. This plot was
produced by averaging over ten disorder realisations. The black data
points are the  = 0 boundary determined from the numerics, joined
with an interpolating function. The grey lines show the MI-BG
boundary as determined from the renormalisation group calculation
in Chapter 3. As before, the mean-field theory produces qualitatively
correct results but slightly underestimates the size of the Mott lobes.

quantitative di↵erence, as expected, but the Gutzwiller ansatz performs well and
gets the main features correct.

Even in the clean case, we see a strong suppression of compressibility in the
vicinity of the tip of the lobe where the mean-field approach is furthest from its
region of validity (in agreement with other models, such as Refs. [127]), though
in neither case does the compressibility strictly vanish as predicted in Chapter 4.
This is not a surprise, as the Mott glass calculation relies on e↵ects not captured
at a mean-field level and which were not expected to be present in a Gutzwiller
ansatz calculation.

Already, we see that a measurement of compressibility in a disordered
system should produce a quantitative di↵erence large enough to be picked up
in experimental measurements, however this alone is not su�cient to uniquely
identify the Bose glass. A finite compressibility could simply be a superfluid
phase - let us now test for that.

and thus was not included in the calculation. Given the negligible e↵ect of RSB on the location
of phase boundaries and the fact that we cannot be sure RSB even exists in two dimensions,
the use of the replica symmetric RG is appropriate here.
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Figure 5.5 Phase diagram constructed by extracting the superfluid sti↵ness of
a 25 ⇥ 25 lattice for a grid of values of t and µ. i) The clean case,
showing a clear separation between the Mott lobes and the superfluid.
ii) Upon adding disorder, the region of zero superfluid sti↵ness
increases in size, in contrast to what happened to the compressibility,
indicating the presence of a compressible non-superfluid phase in the
regions where the e↵ects of disorder are strongest. This figure was
produced from a single disorder realisation.

Superfluid sti↵ness

Although not experimentally measurable in any straightforward way, the
superfluid sti↵ness is a quantity which characterises the response of the system
to a phase twist and is only non-zero in a phase which exhibits long-range phase
coherence. In this model, only the superfluid exhibits such long-range phase
coherence and consequently the superfluid sti↵ness ⇢

SF

is expected to be zero in
both the Mott insulator and the Bose glass. In our framework, it is given by
[145, 235]:

⇢
SF

=
E(�)� E(0)

Nt�2

. (5.14)

Essentially this tests for the increase in energy when a superfluid with long-
range phase coherence is forced to have a spatially varying phase, and is exactly
analogous to the spin sti↵ness in a magnetic material. In our model, following
Refs. [145, 235], we implement the phase twist by adding a direction-dependent
complex tunnelling amplitude along one axis of the lattice t ! t exp[±i�] where
the ± refers to left- and right-moving particles respectively.

We can again map out the phase diagram in terms of superfluid sti↵ness,
here using a value � = 0.05, shown in Fig. 5.5. Strictly, the expression shown
in Eq. 5.14 should be a derivative, implying the need to take the limit � ! 0,
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however it can be well-approximated using a small finite value of the phase twist,
as in Ref. [235]. For our purposes, as we are interested in determining the region
where ⇢

SF

⇡ 0 rather than in extracting the precise numerical value of ⇢
SF

, this
approximation is su�cient.

The clean-case result performs as expected, with a clear boundary between
the MI and SF phases visible in superfluid sti↵ness. The disordered case is less
sharp (due to finite-size e↵ects) but there is still a clear region for small hopping
values around integer values of µ where the superfluid sti↵ness is arbitrarily small,
and then a smooth increase in ⇢

SF

when the tunnelling amplitude is increased.

The superfluid sti↵ness is not strictly zero except at zero hopping, which is
likely a finite-size e↵ect. In a one-dimensional system [145, 235] calculation of
the superfluid sti↵ness using the Gutzwiller ansatz results in a region of exactly
zero superfluid sti↵ness which is associated with the Bose glass, however in one
dimension even a single site with gapped excitations will destroy long-range phase
coherence and result in zero superfluid sti↵ness. In two dimensions there are far
more possible paths from one side of the lattice to the other and as a result one
must go to intractably large lattices to obtain a strictly zero superfluid sti↵ness
in this region.

Between the compressibility measurement (experimentally possible) and the
superfluid sti↵ness (experimentally not), we see that the region surrounding the
shrunken Mott lobes is highly compressible and has a vanishingly small superfluid
sti↵ness. Together, these quantities are good indications that the phase in this
region is indeed the Bose glass, however identifying it on the basis of two variables,
one of which is not experimentally measurable, is unsatisfactory and not su�cient
for a quantum gas microscope to be able to distinguish the BG phase. Now
that we have confirmed that the Bose glass exists in this mean-field model,
we are equipped to look for a single order parameter capable of unambiguously
identifying it based purely on the local number fluctuations that a quantum gas
microscope can measure.

Edwards-Anderson Order Parameter

Here we return to the Edwards-Anderson order parameter, previously
discussed in Chapters 1 and 3. In the Bose-Hubbard model, the thermally
averaged order parameter q takes the form:

q = hn̂
i

ihn̂
i

i � hn̂
i

i hn̂
i

i, (5.15)

which depends only upon local properties which are measurable by a quantum
gas microscope. In Ref. [126] the authors identify q with q

EA

; however, in keeping
with the convention established earlier in this thesis, I restrict the usage of the
symbol q

EA

to mean the long-time correlation function rather than the thermally-
averaged correlation function q.
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Figure 5.6 Phase diagram showing the value of q across the t̃, µ̃ plane. i)
In the clean case, q ⇡ 0 everywhere with only lingering statistical
fluctuations causing non-zero q in regions of the superfluid.The black
dashed line is the mean-field MI-SF boundary. ii) In the disordered
case, q is strongly visible in the Bose glass regions at small hopping,
with a continuous crossover to the superfluid for larger values of
hopping as predicted in Ref. [126]. This plot was produced by
averaging over ten disorder realisations. Similarly to Fig. 5.4, the
black data points are the q = 0 boundary extracted from the numerics
and joined with an interpolating function, while the grey lines are
the results of the renormalisation group calculation in Chapter 3.
All following plots showing q values use the same colour scale.

Strictly, q is the same on every single site and one could measure n̂
i

repeatedly
solely on site i within a single disorder realisation to obtain hn̂

i

i, and then perform
the disorder average of this over multiple disorder realisations without measuring
any other lattice site. In practice, it is far more e�cient to take into account that
every lattice site has a di↵erent (random) disorder strength and so by averaging
over the sites within a single snapshot, we essentially already perform a disorder
average. For a su�ciently large system, there is no benefit to be gained by
averaging over multiple disorder realisations and in fact the measurement can be
performed with a single disorder realisation, with multiple runs needed only to
extract the thermal averages.

Phase diagrams produced using q are shown in Fig. 5.6. The clean case is
uninteresting, as q = 0 across the entire phase diagram other than small statistical
fluctuations. In the disordered case, however, we see a clear and unmistakable
region of q 6= 0 in precisely the regions where we expected to see it. As in the
case of compressibility, due to parity the value of q saturates at q

max

= 0.25. In
fact, numerically it appears that q is always bounded from above by the value of
the compressibility .
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For larger values of hopping, q smoothly goes to zero making it impossible to
identify a BG-SF transition using q. This is because even after the establishment
of global superfluid coherence, the disorder still causes lingering inhomogeneities
in the superfluid that are visible in the density snapshots. The same result was
also found in Ref. [126]. In practice, one must define a cuto↵ q

crit

where we
identify q < q

crit

as being characteristic of an inhomogeneous superfluid and
q > q

crit

as characteristic of a Bose glass.

The choice of cuto↵ is rather arbitrary, but for q
crit

⇡ 0.2 or greater
we can certainly be confident we are in the Bose glass phase. In principle,
we could use a di↵erent disorder distribution such as the bimodal hopping
disorder looked at in Ref. [201] which might produce a sharper transition from
the glass to the superfluid. However, since it is not currently possible to
experimentally implement hopping disorder alone in a quantum gas microscope
setup and the implementation of bimodal disorder would require a spatial light
modulator (whereas on-site chemical potential disorder can be added to existing
experimental setups relatively easily) we do not investigate this possibility any
further.

Although we know that the transition from the Mott insulator to the
superfluid is always via the Bose glass in the disordered case, the phase diagram
in Fig. 5.6 shows a strong suppression of q in the vicinity of the tips of the lobes.
The strong suppression of the compressibility at the tips of the lobes even in the
clean case carries over to the disordered model as well (Fig. 5.4) and as  acts as
an upper bound on q, we find that q is also strongly suppressed in the vicinity of
the tip. Importantly, it is not zero (as indicated in Fig. 5.6) but likely too small
for experiments to reliably detect here. As we saw in Chapter 3, the universality
class changes at the tip of the lobe and consequently the Gutzwiller mean-field
approach breaks down in the vicinity of it and is less accurate. It may be that it
is simply not a good description of the transition at the tip in two dimensions.

Whatever the reason for the suppression of q at the tips of the Mott lobes,
the physics of this point is beyond the scope of our simple mean-field model and
would require a full quantum Monte Carlo treatment to simulate accurately. In
the regions where our model can be trusted to make accurate predictions (which
coincide with the experimentally relevant values of hopping), we find a well-
defined Bose glass phase and have shown that at mean-field level q is capable of
clearly distinguishing the Bose glass from the Mott insulator and the superfluid.

At the time this work was performed, we believed it to be the first
identification of an Edwards-Anderson order parameter as a mean-field order
parameter for the Bose glass. After preparing the manuscript that became Ref.
[218], we were made aware of previous attempts to define similar order parameters
in mean-field models [239, 240], though neither the order parameters nor the
techniques used are the same as those presented here. The method presented
in this chapter more directly relates the Bose glass order parameter to density
fluctuations and the idea of extracting it from quantum gas microscope images
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remains unique to our work in Ref. [218]. While it goes without saying that
the Gutzwiller approach will not get the critical behaviour correct, the ability to
uniquely identify the Bose glass based on local properties means that a mean-
field theory structured around such local properties is ideally suited for such
an identification. Within the context of this thesis, however, it has one other
important limitation.

5.6 Replica Symmetry Breaking

As in Ref. [126], we can define an ‘overlap’ order parameter in replica space:

q
↵�

= hn̂
i,↵

ihn̂
i,�

i � hn̂
i,↵

i hn̂
i,�

i, (5.16)

where ↵ and � label di↵erent independent copies of the system with the same
disorder realisation. In principle, by keeping the same disorder distribution
between experimental runs and taking multiple measurements, an experiment can
explore the entire space of replicas and reconstruct this order parameter. If q

↵�

varies with the choice of ↵ and �, this would constitute experimental observation
of replica symmetry breaking, a feat previously achieved in random lasers [241]
but never in any condensed matter system.

Our mean-field numerics presented here always converge to the same
minimum and as such, every ‘replica’ configuration is exactly the same. This
ostensibly contradicts the results of Chapters 3 and 4, however this is not
too surprising. While the density fluctuations which lead to the Bose glass
are accessible by this mean-field description, it is unlikely that this variational
wavefunction is able to fully explore the true configuration space of the model2.
Quantum Monte Carlo simulations may be able to better probe this replica
landscape.

Should experiments or Monte Carlo be able to distinguish replica symmetry
breaking e↵ects, this may also provide a way to more clearly distinguish the
Bose glass from inhomogeneous superfluid regions with a small but non-zero
value of q. The superfluid should truly thermalise and display no glassy freezing,
inhomogeneous or not, therefore only the Bose glass will exhibit replica symmetry
breaking. If q

↵�

is non-zero but independent of ↵ and �, the phase is likely to
be a superfluid. If q

↵�

depends on the choice of replica indices than the phase
breaks ergodicity and must be a glassy phase.

2Alternatively, it could be that there is no RSB in two dimensions and that mean-field theory
in three dimensions may find evidence for RSB, however this was outwith the scope of the work
presented here.
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5.7 Harmonic Trap

So far we have only considered ‘flat’ lattices, i.e. lattices at a uniform average
chemical potential. In real quantum gas microscope experiments, the Gaussian
profile of the laser beams results in a background harmonic confining potential.

Following Ref. [217] as closely as possible, we look at a 60⇥ 60 lattice. The
variation of chemical potential in the presence of the harmonic trap is:

µ
loc

(r) = µ
0

� 1

2
m(!2

x

x2 + !2

y

y2), (5.17)

where m is the mass of the atoms, in this case rubidium 87Rb. There is a slight
asymmetry present in the experimental results due to !

x

6= !
y

. In our simulations
we use a trap frequency ! ⌘ p

!
x

!
y

= 2⇡ ⇥ 77.3Hz which is the the geometric
mean of the two trapping frequencies used in the experiment

Clean case

In the zero-temperature clean limit, we reproduce the ‘wedding-cake’ struc-
ture seen in the experimental images of Ref. [217], minus the thermal fluctuations
which are present in the experiment. Simulated snapshots at the same values of
µ
0

as the experiments are shown in Fig. 5.7 and all harmonic trap snapshots are
taken at t/U = 1/300 unless otherwise stated.

Disordered case

Once disorder is added into the model, we again see the same structure in Fig.
5.7 but now with density fluctuations due to the appearance of superfluid regions
in the trap. Our simulations in the presence of disorder now look qualitatively
very much like the finite-temperature experimental results from Ref. [217]. In our
zero temperature simulation, the areas which display density fluctuations must
be regions of Bose glass, but in a real experiment there will be both disorder and
thermal fluctuations and it is important that we distinguish between them.

Finite temperature e↵ects

As the density fluctuations due to disorder bear such a strong cosmetic
resemblance to the experimentally observed fluctuations due to temperature, we
need to check that q is still zero even in a clean, finite-temperature system. To
that end, we move to a simplified version of the model in the limit of zero hopping
where the thermal occupation of the lattice sites can be described by Boltzmann-
weighted Fock states (as used in Ref. [217] to model the temperature of their
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Figure 5.7 Simulated snapshots of the density distributions in the harmonic
trap, comparing the the e↵ects of temperature T̃ = k

B

T/U . and
disorder � = �/U . In the clean case (top row) there are no
fluctuations and the Mott insulating rings are almost perfectly
ordered. Cosmetically, the disorder-induced density fluctuations
(middle row) look a lot like the temperature-induced density
fluctuations (bottom row), so it is important that our order
parameter q is able to distinguish thermal fluctuations from true
disorder-induced glassiness. The data for this figure, and all
harmonic trap figures to follow, was taken by Liam Walker [238].
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system) according to the probability function:
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n

] is the
partition function for a homogeneous system with chemical potential µ(r) and
inverse temperature � = 1/T̃ .

The results of the finite-temperature simulations are shown in Fig. 5.7.
Cosmetically, these simulated snapshots bear a close resemblance both to the
disordered zero-temperature snapshots but also to the thermal defects seen
experimentally.

As discussed in Refs. [235, 242, 243], strictly there is no Mott insulator
at finite temperature and it is replaced with a compressible non-superfluid
phase, however the compressibility of this phase is so small that for all intents
and purposes the non-superfluid phase may still be considered a (quasi-) Mott
insulator. As the experiments we are interested in comparing with see no signs
indicative of normal fluid behaviour [217], we do not consider it any further.

Edwards-Anderson Order Parameter

From the density snapshots in the presence of the harmonic trap, we can now
calculate the regions in the trap which have non-zero values of q, as shown in Fig.
5.8. Upon the addition of disorder, we would now expect to see alternating Mott
insulating and Bose glass rings, which is exactly what our simulations show.

We can extract q in multiple di↵erent ways, either using an angular average
over contours of equal chemical potential or by calculating it on each lattice site
individually. In the first case, the angular average acts as a disorder average as
each site has the same bare chemical potential µ(r) but a di↵erent random o↵set
from it. This allows an experiment to detect regions of Bose glass using a single
disorder realisation with multiple runs required only in order to build up thermal
averages. This is convenient as it resetting the disorder distribution must be
done manually, so being able to resolve the Bose glass with the fewest possible
measurements is advantageous.

That said, there are inherent problems in taking angular averages on a square
grid. The resulting plot of q is blocky and this procedure can lead to strange
artefacts even in the clean case where the ‘ring’ being averaged over contains
regions of two di↵erent MI states, which our order parameter picks up as a non-
thermal density fluctuation and gives a false positive result. A much cleaner, if
experimentally more challenging, method is to construct q on each lattice site
individually using multiple disorder distributions. This results in a much more
accurate numerical value of q.
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Figure 5.8 A comparison of the site-averaged q with the azimuthally averaged q.
i) A simulated density snapshot taken at µ̃

0

= 2.1. ii) Azimuthally
averaged q produced from 10 thermal averages over a single disorder
realisation showing clear regions of Bose glass. The advantage to this
is that it requires less measurements as the angular average over sites
of constant chemical potential essentially does the disorder average
for us. The disadvantage is that the inner regions are averaged
over fewer sites than the outer regions and the overall appearance
of the plot is rather blocky. iii) Site averaged q produced from 10
thermal averages over 10 disorder realisations. Experimentally more
challenging as it requires 10 di↵erent disorder distributions, this one
is free from the artefacts of the azimuthally averaged figure. Data
for this figure was taken by Liam Walker.

Both of these methods are shown in Fig. 5.8, with panel ii) showing the
angular-averaged result of a single disorder distribution and ten thermal averages
and panel iii) showing the site-averaged result of ten disorder distributions each
with ten thermal averages. Even the large number of measurements required in
the latter case remains within reach of experiments. This is a clear indication
that current-generation quantum gas microscopes are capable of detecting the
Bose glass in an experimentally feasible number of runs.

Before we can conclude that q is a good experimental order parameter, we
need to see how it looks in the case of the finite-temperature simulations. Fig.
5.9 shows the site-averaged q for a variety of combinations of temperature and
disorder strength. Though by construction q is identically zero in the clean
system even at finite-temperature, over a finite number of measurements we still
see a small non-zero value due to statistical fluctuations. By comparison with
the disordered case, however, the signal from thermal fluctuations is at least an
order of magnitude smaller across all lattice sites, confirming that q is capable of
distinguishing thermally-induced density fluctuations from true disorder-induced
glassiness.

This was the goal of our simulations and is our main result - proof that q
can be directly measured in a quantum gas microscope. The Edwards-Anderson
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Figure 5.9 A comparison of thermal fluctuations and disorder-induced fluc-
tuations. Panels v) to viii) were generated using ten thermal
averages and ten disorder averages, where applicable. Panels i) to
iv) show simulated density snapshots, as in Fig. 5.7, at a range
of temperature and disorder strengths. In particular, panels ii),
iii) and iv) are cosmetically very similar and it is not possible to
tell whether the fluctuations are caused by temperature or disorder.
Panels v) to viii) show plots of site-averaged q to illustrate which
regions of the trap are Bose glass. Panel v) is entirely blank as
there are no fluctuations of any kind. Panel vi) is almost blank
aside from statistical fluctuations that lead to a very small non-zero
value of q. Panel vii) shows clearly that q 6= 0 in the Bose glass at
zero temperature, where all of the fluctuations are disorder-induced
and panel viii) puts both thermal and disorder-induced fluctuations
together and shows that temperature reduces the magnitude of q.
Eventually the Bose glass will ‘melt’ and q ! 0 as the temperature
is increased. Data for this figure was taken by Liam Walker.

order parameters have never been directly measured in any strongly-interacting
quantum system to date, and the possibility of directly measuring q in ultracold
atomic gases with designer Hamiltonians will open up an entirely new tool with
which to probe the behaviour of disordered quantum systems.

In the remainder of this chapter we will quantify a few experimental
limitations and suggest further ways to increase the visibility of q in real physical
systems. In particular, panel viii) of Fig. 5.9 shows that the combination of
both disorder and finite-temperature leads to a suppression of q over the zero-
temperature case - just how damaging are the e↵ects of temperature to the
measurements proposed here?
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Figure 5.10 The visibility ⌫ decreases as the temperature T̃ increases and the
Bose glass ‘melts’. The black points indicate the value of the
visibility obtained from averaging ten snapshots of q as shown in
Fig. 5.8ii) and the red line is a guide to the eye fit of these points.
The dashed grey line indicates the lowest experimentally achieved
temperature shown in Ref. [217]. Figure produced using analysis
code written by Liam Walker.

Visibility

Remaining with the simplified zero-hopping model, we can calculate q in the
disordered, finite-T model and see how the Bose glass ‘melts’, i.e. how the visible
signal of q is diluted with temperature and eventually the signal vanishes. Using
a standard metric of visibility:

⌫ =
q
RMS

hqi , (5.19)

where q
RMS

is the root-mean-square value of q and ⌫ e↵ectively measures the
contrast within an entire image, we can extract how distinct the finite-q regions
are from the zero-q regions. Fig. 5.10 shows a plot of visibility versus temperature.
As the temperature is increased, thermal fluctuations grow in magnitude and
eventually dominate over the disorder-induced density fluctuations, washing out
the glassy order parameter almost entirely. Importantly, this result is not
crucially dependent on the visibility metric we use - various other metrics all
give qualitatively similar results.

In practice, beyond a temperature of around T̃ = 0.1 the measured q is too
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faint to be reliably distinguished. The lowest temperature reported in Ref. [217]
was T̃ = 0.074 and so even the very early single-atom resolved quantum gas
microscope experiments were already well within the region where the Bose glass
can be distinguished, with more recent experiments now capable of even lower
temperatures.

5.8 Alternative trap geometries

The biggest problem with the experiments as they are conventionally set up
is not the temperature, but rather the fact that the Bose glass only occurs in
very narrow rings due to the relatively steep gradient of the harmonic trapping
potential, limiting the region over which they can be measured. This would
rule out measurements of longer length-scale properties such as the spacing of
superfluid regions or direct observation of the glass to superfluid transition, still
the subject of intense theoretical debate. Thus far we have shown what the
current experiments would be able to see and how well they will be able to see
it - now we deviate from previously performed experiments and briefly suggest a
way to make the Bose glass visible over a larger region.

Using di↵erent combinations of laser beams, it is possible to change the
trapping geometry. With spatial light modulators and other such apparatus,
any arbitrary trapping potential can be generated. Here we consider a slowly-
varying ‘shallow’ trap with hard walls at either side acting as boundaries. This
could be generated by superimposing a blue-detuned beam on top of the confining
potential to cancel out most of the curvature, followed by applying a Laguerre-
Gauss beam to generate the boundaries at the edges. The advantage to this
trapping potential is that the gradient is much smaller, meaning the features of
interest are more spread out across the physical system rather than being confined
to rings of only a few lattice sites’ width.

The results of our simulations are shown in Fig. 5.11. Instead of the wedding-
cake ringed structure, we now have a large region of approximately homogeneous
phase. This now opens up the possibility of looking experimentally at relatively
large segments of Bose glass phase and extracting properties such as the spacing
of the rare superfluid regions or the scaling of the compressibility close to the
phase transition.

5.9 Conclusion

The work presented in this chapter is a proof of concept study to show that
current generation quantum gas microscopes are capable of spatially resolving the
Bose glass phase. Using a mean-field wavefunction in two dimensions, we find
the clean case calculations are in good agreement with the available experimental
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Figure 5.11 The weakly varying trap produced by setting ! ! !/5 allows for
larger regions of the Bose glass phase than a typical harmonic
trap. i) A single simulated density snapshot, with µ̃

0

= 2.1. ii)
The Edwards-Anderson order parameter of this new trap geometry,
generated from ten disorder realisations each with ten thermal
averages. This shows that the entire region in panel i) is Bose
glass. With this identification, we could now begin to look into
longer wavelength properties of the Bose glass in more detail. Data
for this figure was taken by Liam Walker.

data [217] and this allows us to state with confidence that the density fluctuations
predicted by the disordered calculation are realistic and that we expect reasonable
quantitative agreement with experiments.

Here, we have shown that quantum gas microscopes can distinguish the Bose
glass from the MI and SF phases and that spatially resolved experiments with
single-site addressability allow for the Edwards-Anderson order parameter to be
precisely measured. The proposed order parameter q takes a large non-zero value
in the Bose glass phase, as well as a smaller non-zero value in inhomogeneous
regions of the superfluid.

The ability to measure the Edwards-Anderson order parameter also opens
up the possibility for experiments to explicitly test for the presence of replica
symmetry breaking in the model, a feat achieved on random laser systems
comparatively recently though outwith the scope of the mean-field numerics
presented here. The controllability and single-site addressability a↵orded by
quantum gas microscopes allows a far more detailed probe of glassiness and the
replica structure of strongly correlated quantum systems than bulk measurements
on spin glasses and other solid state systems.

The result from this work is a call to arms for experimentalists to test these
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predictions with the aim of achieving the first unambiguous observation of the
Bose glass phase, but also the establishment of a new tool to probe disorder
in strongly correlated quantum systems. Similar single-site addressability is
currently coming on line in STM systems and may soon allow this sort of
measurement to be performed on solid state systems, however STMs as they
currently stand are not yet capable of performing the measurements suggested
here. For the foreseeable future, only ultracold atomic gases can o↵er the full
control and detail required for these measurements.
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Chapter 6

Conclusion

The problem of disorder in strongly interacting quantum systems has been
experiencing something of a renaissance in recent years, spurred on by new
advances in both experimental and theoretical techniques. We are moving
from the age of passively understanding quantum phenomena in materials
to actively manipulating them. From high-temperature superconductors to
quantum computers, disorder and impurities play important roles in many of
the most exciting quantum technologies of our time. If we can harness the e↵ects
of disorder in quantum materials, we may be able to create new designer materials
with properties carefully tailored to enhance the quantum mechanical behaviour
we are most interested in making use of.

The recent enthusiasm for investigating disorder is, a touch ironically, a
testament to the precision and purity achieved by experiments. Experimenters
can now create almost perfectly clean systems to which disorder and impurities
can be added in a highly controlled way, even at the level of single lattice sites
or atoms, allowing us to study the role of disorder in unprecedented detail. As
one experimenter remarked to me recently, “I’ve spent my entire career trying to
remove disorder from my experiments, and now you’re telling me to put it back
in?”.

On the theoretical side, the discovery of many-body localisation (MBL)
[63, 244] has led to a great deal of interest in the interplay between disorder and
interactions in many-body systems. MBL is an extreme form of disorder-induced
localisation in interacting quantum systems where every degree of freedom
becomes non-ergodic, in contrast to typical glassy systems where only some
degrees of freedom break ergodicity. The question of precisely how disorder can
lead to the breaking of ergodicity in strongly interacting quantum systems has
therefore become highly relevant.

There is still a great deal about disordered quantum systems which we do
not understand, even in quantum glass phases which have been investigated for
years. In this thesis, I have studied a number of di↵erent aspects of quantum
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glass phases in order to help put our understanding of them on a firmer footing.
Here, I’d like to summarise my work in the wider context of the field as a whole
and discuss possible extensions of this work and future directions of interest.

Quantum critical fluctuations

In Chapter 2 we saw disorder that had no e↵ects at mean-field level could
nonetheless lead to significant changes in the quantum critical behaviour of an
itinerant ferromagnet. Quenched charge disorder, which had no e↵ect on the
nature of the paramagnetic or ferromagnetic phases, led to local changes in the
pitch of the fluctuation-induced spiral phase which in turn caused the magnetic
correlations to become short-range. The resulting ‘melted spiral’ phase was
named a helical glass and is characterised by the highly unusual temperature-
dependence of the correlation length and spiral ordering wavevector.

This is a particularly interesting example of the role of disorder in a quantum
system in that the disorder only leads to changes in the fluctuation-induced phase
due to the way that it disorder couples to the Goldstone modes, as opposed to
introducing more conventional disorder e↵ects such as spin-glass-like frustration.
In candidate material CeFePo [84], signs of glassy behaviour were detected but
there appeared to be an additional long-range ordered phase in between the
ferromagnetic and putative glass phase. This could well be the helical glass
in a region of the phase diagram where its correlation length is larger than the
sample size however no follow-up work has been done to test for this.

This was the only work I did during my PhD which involved fermionic
quantum order-by-disorder and it is largely unconnected to the rest of the work in
the thesis. Further work on the order-by-disorder front has been performed since
my involvement [245, 246], though it has been confined to clean systems. Perhaps
the biggest outstanding challenge in the field of fermionic order-by-disorder is the
extension to antiferromagnetic quantum critical points, for which the fluctuation
corrections are extremely di�cult to compute.

In the broader context of itinerant ferromagnetic quantum criticality, disorder
remains an active area of interest. A comprehensive review may be found in Ref.
[247]. Of the outstanding questions in the field, two of the most interesting ones
from the point of view of disorder are i) Gri�ths e↵ects in ferromagnetic metals
and ii) the potential role of disorder in suppressing the soft modes associated
with the fluctuation-induced behaviour, in contrast to the disorder considered in
Chapter 2. The work in this thesis was a perturbative treatment of weak disorder
facilitated by the order-by-disorder framework, however future dedicated studies
of these strong disorder e↵ects could perhaps lead to a more complete description
of the interplay between disorder and critical fluctuations.

144



Glassiness and non-ergodic e↵ects

In Chapter 3, I showed the presence of one-step replica symmetry breaking
in the Bose glass phase, a hallmark of ‘true’ glassy freezing behaviour and a sign
of the non-trivial breaking of ergodicity. It is thought that the disordered Bose-
Hubbard model exhibits many-body localisation at non-zero temperatures, where
thermal excitations are allowed to occur.

The crossover between quantum glass and many-body localised phases is
largely unexplored and is an extremely interesting open question. Understanding
the physics behind the Bose glass and studying its finite temperature behaviour
could lead to further understanding of the MBL-to-glass transition, and indeed
some very recent experiments have begun to find evidence for many-body
localisation in disordered Bose-Hubbard models [248].

By itself, the work in Chapter 3 simply showed that the Bose glass was more
exotic in nature than previously realised. The real importance of this result was
not realised until the work presented in Chapter 4 in which I showed that replica
symmetry breaking was vital to a correct description of the thermodynamics of
the Bose glass and its magnetic analogues. This result acts as a strong signature
of the non-trivial nature of the ergodicity breaking in this system and a warning
sign to any calculations of the thermodynamic properties of quantum glasses that
did not allow for the possibility of replica symmetry breaking.

This is particularly interesting in the context of the MBL-to-glass crossover.
In an MBL phase, all degrees of freedom are non-ergodic whereas in the Bose glass
this is likely only true for some degrees of freedom. This leads on to enough new
questions to fill a whole other thesis. How does a material move from a quantum
glass to an MBL phase? Do the degrees of freedom successively freeze out, or is
there a sharp transition at which point the system moves from glassy dynamics
to a true MBL phase? Is MBL perhaps just an extreme case of a quantum glass
phase that occurs under conditions which freeze out every degree of freedom, or
is it really qualitatively di↵erent in some way?

More generally, given the implications of replica symmetry breaking for
thermodynamic quantities, what signature would it have on other properties
such as specific heat capacity, a quantity easily accessible to quantum Monte
Carlo simulations on such systems? Within our framework, finite temperature
poses significant problems for the calculation of the Green’s functions, meaning
that a numerical approach is likely required here.

In light of these questions and the potential link with MBL, it would be
interesting to calculate the entanglement entropy of disordered Bose-Hubbard-
like systems at both zero and non-zero temperature to look for any qualitative
changes. In a system which displays MBL, the entanglement entropy follows
a distinctive area-law scaling form. Analytic calculations of the Renyi entropy
have been performed in similar models [249], though never with disorder, and
there is no fundamental reason why they could not be conducted to study these
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glassy phases. The biggest problems here would likely come from the extension to
non-zero temperatures, but while this is a significant technical challenge it isn’t
fundamentally impossible.

The Mott glass

The strong indications we see in Chapter 4 for the presence of a novel
incompressible Mott glass phase at the multicritical points at the tip of the
Mott lobes is intriguing and deserved of further study. It was previously thought
that the Mott glass can only exist under very specific conditions, with numerous
studies each claiming a slightly di↵erent set of di↵erent conditions to be necessary.
Our work here suggests that the Mott glass is not so fragile as has previously been
proposed and that the emergent symmetries of the Bose-Hubbard model at the
multicritical points are su�cient to stabilise it.

This also provides a potential explanation for the lasting controversy as to
whether there was a direct Mott insulator to superfluid transition at the tip of
the Mott lobes. Though it is now known there is no direct transition [147, 148],
any technique which used compressibility as the metric to signify the presence
of a glassy phase would have missed the Mott glass and may have erroneously
identified the MG-SF transition as an MI-SF transition, leading to the wrong
conclusion.

There are various future directions in which this work could be taken. The
obvious one would be a more detailed functional renormalisation group study
specific to the z = 1 multicritical point in the model, again allowing for full
Parisi replica symmetry breaking in its most general form but this time including
the full e↵ects of the interaction vertex on the replica structure. It could be that
there is no new physics here and that the Mott glass comes about purely through
the statistical emergence of particle-hole symmetry at the tip of the Mott lobes,
or it could be that the restoration of this symmetry leads to qualitatively new
physics not captured by the analysis in Chapter 4. This is a question that would
also be interesting for future quantum Monte Carlo studies.

To really understand the Mott glass phase itself, a comprehensive review of
all Mott glass works will be necessary, as it has appeared in such a wide variety of
models. In particular, it will be important for future work to ascertain whether
they really are all driven by the same underlying physics or whether the name
‘Mott glass’ is just a convenient name which is currently being used to describe a
number of di↵erent e↵ects leading to incompressible Gri�ths phases in disordered
systems.
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New experimental probes of disordered quantum gases

The work in Chapter 5 has suggested a way for future experiments
to investigate the local properties of strongly interacting quantum systems,
motivated by the experimental feasibility of directly measuring the Edwards-
Anderson order parameter, a feat never achieved in any condensed matter
system to date. Though the work in this chapter was explicitly concerned
with a bosonic system, the mechanics of the experimental setup are easily
transferable to disordered fermionic systems. This could lead to a sophisticated
and highly configurable setup with which to probe the e↵ects of disorder on
model Hamiltonians such as those thought to be important for high-temperature
superconductivity.

The numerical approach presented here could be extended in many ways.
Di↵erent types of disorder could be investigated, such as hopping disorder or
disorder with a bimodal (rather than a continuous) distribution. The bimodal
distribution may allow for a clearer onset of q and a more visible experimental
signature. Pure hopping disorder would eliminate the density inhomogeneities
which lead to a non-zero q in the superfluid, meaning that q 6= 0 only in the Bose
glass phase. This would allow q to very clearly delineate the boundary of the
Bose glass phase and better distinguish it from the MI and the SF.

While some very early testing not included in this thesis has shown promising
results, the problem with hopping disorder is that it predominantly a↵ects the
area around the tip of the Mott lobe where our mean-field approach is least
accurate and the value of q is the smallest. There is still work to be done
in determining precisely what form of disorder would lead to the most visible
experimental signature of the Bose glass and precisely what experimental setup
one would have to construct to realise this type of disorder. The work presented
here was confined to the types of disorder which could be realised relatively
easily by current experiments, but now that we have shown that the Edwards-
Anderson order parameter can be measured in these setups, future work can go
on to suggest di↵erent and better experimental systems in which to improve upon
the measurements suggested in this thesis.

Additionally, finite temperatures could be more fully included in our numerics
beyond the zero-hopping limit and we could even add time-dependence to the
Gutzwiller coe�cients. This would allow us to investigate some non-equilibrium
measurements which quantum gas microscopes are capable of performing, such
as transport measurements. Importantly, however, the Gutzwiller approach does
not fully take into account interactions or any possibility of entanglement and
therefore cannot capture any many-body localisation e↵ects, which make it ill-
suited for investigating some of the most interesting open questions.

The goal of these numerics, however, was never to formally study the
disordered Bose-Hubbard model in two dimensions. The point of this calculation
was simply to show that quantum gas microscopes are capable of more than
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that which they have been used for thus far, with the hope of motivating future
experiments on highly controllable disordered systems which o↵er a new window
into disordered strongly correlated quantum systems.

Were we to pursue the numerical analysis angle, a technique that goes beyond
this mean-field analysis would be required. In one dimension, density matrix
renormalisation group and matrix product states are well-established techniques
and these would be much more suitable methods to look in more detail at the
non-ergodic e↵ects. In two dimensions, the best available numerical tool is still
quantum Monte Carlo. If we want a more quantitatively accurate tool with
which to simulate quantum gas microscopes and look for more complex physics,
quantum Monte Carlo is currently the most appropriate option available.

Outlook

My hope is that in the future, the work in this thesis will be built
upon by myself and others and that the necessary experimental and numerical
investigations will be conducted to either support or negate the conclusions
presented here. In particular, I would be very keen to see quantum gas
microscopes begin to be used in the near future to conduct some of the
experiments suggested in Chapter 5.

Longer term, I think the question of the glass-to-MBL transition is one of the
most exciting open questions in the field. Our lexicon of localisation phenomena
in disordered systems has become much richer with the discovery of many-body
localisation, and with that increase in knowledge has come an increase in the
number of interesting questions we may ask.

This body of work represents the bulk of my original research conducted
during the four years of my PhD studies. Taken together, the unifying theme of
all of my work has been that the addition of disorder leads to rich new physics with
sometimes counter-intuitive e↵ects. Using a mixture of perturbative techniques,
renormalisation group and mean-field numerics I’ve investigated the behaviour
of an itinerant ferromagnet, lattice gases of bosons and insulating dimerised
antiferromagnets. I’ve shown how disorder can lead to the formation of new
phases, I’ve studied the properties of several of these phases and throughout I’ve
maintained contact with experiments, building upon results previously known
and suggesting new ways in which future experiments could probe the glassy
phases studied in this thesis.

The systematic study of randomness in strongly interacting quantum systems
will always be a di�cult problem. The work presented in this thesis represents
my contribution thus far to the e↵orts to solve this problem.
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Appendix A

Hubbard-Stratonovich Transform

The Hubbard-Stratonovich transform is a powerful technique that allows us
to decouple a term in the action at the cost of introducing an auxiliary field. It
was first used by Stratonovich [88] and later popularised by Hubbard [89]. The
technique relies on a deceptively simple result:

⇡N

detA
e�

†A�1
� =

Z
d †d e� 

†A + †
�+�

†
 . (A.1)

This is simply a Gaussian integral. By performing this ‘in reverse’, so to
speak, we may use it to decouple a quartic interaction so the resulting expression
is only quadratic, as used repeatedly in the main body of the thesis. This then
lets us integrate out the original fields, leaving a partition function entirely in
terms of the new auxiliary fields. An alternative representation may be found in
Ref. [40] in the context of an Ising model.

In Chapter 2, I employ this transformation to decouple the hopping term, but
in Chapters 3 and 4 I use it to decouple the interaction term. This transform is
not a blunt instrument and can be used in many di↵erent ways. It is not unique
[9] and there are multiple inequivalent choices of auxiliary fields corresponding to
the di↵erent decouplings one may choose. As discussed in more detail in Ref. [9],
the Hubbard-Stratonovich transform is mathematically exact, however di↵erent
choices of decoupling dictate the form of the low-energy field theory obtained in
the end. Di↵erent decouplings will be more suited to solving certain problems,
and so the decoupling must be performed with an eye for the problem one wishes
to solve (e.g. decoupling in the pairing channel to study superconductivity
problems). An unphysical decoupling will result in a meaningless (or at best,
di�cult to interpret) low-energy e↵ective field theory.
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Appendix B

The Replica Trick

We take the disorder average using the replica trick:

F = �T ln(Z) = lim
n!0

Zn � 1

n
. (B.1)

The cumulant expansion used repeatedly in the main body of the thesis is as
follows:
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By inserting the appropriate expression for the action, performing the averages
and discarding any irrelevant terms, the disorder-averaged actions in Chapters 2,
3 and 4 may be calculated in precisely this manner.
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Appendix C

Parisi Matrix Algebra

Consider an n⇥n matrix P = (P )
↵,�

in replica space. To parameterise k-step
replica symmetry breaking, we define the sequence:

n = m
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> m
k+1

= 1, (C.1)

with m
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such that all blocks are of integer length.

A Parisi matrix can be defined as:
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with auxiliary n ⇥ n square matrices Ã
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are blockwise diagonal with m
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blocks defined as:
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Subtracting the smaller matrix ensures the Parisi form is adhered to. These
matrices describe the shaded areas shown in Fig. 1: the matrix p

0

Ã
0

has entries
p
0

in the light grey regions and is zero elsewhere. All other o↵-diagonal shaded
regions can be described similarly in terms of the corresponding p
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matrices.

The Parisi matrices form a closed group (under multiplication and inversion),
and their algebra can be derived from that of the block matrices A

i

.

A
i

A
j

= m
max(i,j)

A
min(i,j)

. (C.4)

This leads to:
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We can show the Parisi matrices form a closed group under multiplication, as
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well as derive the form of the inverse matrix Q via:
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where it can be shown that:
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Therefore the product of two Parisi matrices remains a Parisi matrix, and the
group is closed under multiplication.

Analytic Continuation

We can describe the elements of a Parisi matrix by the piecewise continuous
function p(u) = p

i

for m
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 n < m
i

. We can take the continuum limit of this
as follows:
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This results in the following expressions for the matrix elements of the inverse
Parisi matrix R:
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Replica Limit

Taking the replica limit n ! 0 turns the previous expressions into the
following:

r̃ = p̃q̃ � hqpi, (C.15)

r(u) = (p̃� hpi)q(u) + (q̃ � hqi)p(u)�
Z

u

0

dv(p(v)� p(u))(q(v)� q(u)),

(C.16)

with hpi = R
1

0

du p(u).

Computing the Elements of the Inverse

To compute the matrix elements of the inverse matrix Q explicitly, we set
R = PQ = 1, thereby obtaining r(u) = 0 and r̃ = 1. We then have to solve the
following two equations:

r̃ = p̃q̃ � hpqi = 1, (C.17)
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To solve these for q̃ and q(u), we take the derivative of the second equation and
define [p](u) =

R
u

0

dv(p(u)� p(v)) and [p]0(u) = up0(u) such that:

0 = (p̃� [p](u)� hpi) q0(u) + (q̃ � [q](u)� hqi) p0(u). (C.19)

This can be rewritten as:
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Or in other words, we see that:

[(p̃� [p](u)� hpi) (q̃ � [q](u)� hqi)] = c. (C.21)

where c is some constant which we can proceed to determine. With the knowledge
that r(u) = 08u, we can compute r(1) and note that the above expression appears
in r(1), leading us to the condition that 0 = 1� c, or c = 1. With this in mind,
setting u = 0 in the above equation gives us the condition (p̃� < p >)(q̃� < q >
) = 1, which we can use to rearrange the above equation for q[u] to obtain:

[q](u) = � 1
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p̃� hpi � [p](u)
. (C.22)
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Now that we’ve found [q](u), we can obtain q(u) through di↵erentiating the above,
recalling that [q]0(u) = uq0(u) and integrating appropriately:

q(u) = q(0)� 1
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We can determine q(0) by setting u = 0 in Eq. (18), resulting in the final
expression for q(u):
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We can then set u = 1 in Eq. (18) to obtain the full expression for q̃:

q̃ =
1

p̃� hpi
✓
1� p(0)

p̃� hpi �
Z

1

0

dv

v2
[p](v)

p̃� hpi � [p](v)

◆
. (C.25)

Consistency Check: Replica-Symmetric Case

In the replica-symmetric case, all o↵ diagonal elements take the same value,
so we set all o↵ diagonal elements to be p

0

and keep the diagonal elements as p̃.
We then note the following simplifications:
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Plugging these into the previous expressions, we obtain:
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These are exactly as we’d obtain by inverting the replica-symmetric matrix by
hand.
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Appendix D

Comment on Dotsenko et al
(1995)

In Ref. [164], the authors conduct a renormalisation group study of the critical
properties of a random-mass disordered p-component Heisenberg ferromagnet
and showed that the RG flows of the system were unstable to replica symmetry
breaking. Two di↵erent one-step RSB fixed points were found. In both cases the
critical exponents depended on a parameter of the disorder distribution (denoted
x
0

) which remained undefined and led to non-universal critical exponents. The
authors speculated that either x

0

could be determined to higher-order in their
epsilon expansion, or that perhaps the disorder in their system led to non-
universal exponents.

Here I show that x
0

can be uniquely determined from the existing equations
in Ref. [164] and that once this value has been found, both of the one-step RSB
fixed points the authors have found reduce to the same point which turns out to
be unphysical.

Eq. 2.12 in Ref. [164] gives the fixed point equation as:

g(x)� 4g(x)2 � (4 + 2p)g(x)g̃ + 2pg(x)

Z
1

0

dyg(y) + p

Z
x

0

dy [g(x)� g(y)]2 = 0.

(D.1)

The authors conclude, from “taking the derivative over x twice” that g0(x) = 0
and that therefore g(x) is constant or step-like. For g(x) to have a step-like
structure, there has to be a value of x for which the gradient g0(x) is not required
to be zero, denoted x

0

. This position went undetermined in Ref. [164].
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Repeating their analysis and taking one derivative with respect to x yields:

g0(x)
✓
1� 8g(x)� (4 + 2p)g̃ + 2p

Z
1

0

dyg(y) + 2xpg(x)� 2

Z
x

0

dyg(y)

◆
= 0,

(D.2)

for which g0(x) = 0 is one solution, as is (...) = 0. Taking this second bracketed
term and performing a further derivative with respect to x gives:

g0(x)(2px� 8) = 0, (D.3)

! x
0

=
4

p
. (D.4)

So the value of x
0

which determines the position of the step in the step function
has to be x

0

= 4/p. This appears to be an oversight as there is no physical reason
to dismiss this solution [165, 166].

Plugging this into their values for the step heights at the first fixed point,
which the authors later find to be unphysical, gives the results:

g
0

= � 4� px
0

16(px
0

� 1)
= 0, (D.5)

g
1

= g̃ =
px

0

16(px
0

� 1)
=

1

12
. (D.6)

And for the second fixed point, considered by the authors to be the physical one:

g
0

⇡ 0, (D.7)

g
1

= � 4� p

16(p� 1)� px
0

(8 + p)
=

1

12
, (D.8)

g̃ =
p(1� x

0

)

16(p� 1)� px
0

(8 + p)
=

1

12
. (D.9)

The values at both fixed points are entirely equal, therefore they really only have
a single one-step RSB fixed point which does not depend on the undetermined
x
0

and consequently leads to universal exponents.

However, there is now a further problem. These fixed points only have 1-step
RSB solutions for 0  x

0

 1, however this requires p � 4. The analysis of
Ref. [164] shows that the clean system is in fact stable to disorder for p > 4, so
the only disordered fixed point remaining with putative RSB is the one where
x
0

= 4/p = 1.

The authors also state there are “several other one-step RSB solutions....which
we do not reproduce here because they are always unstable,” however checking
this reveals a family of solutions, all of which are either unphysical or reduce back
to the replica symmetric results. The case of p = 4 is somewhat anomalous as
the g(x) = 0 everywhere except x = 1 which corresponds to the replica diagonal
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entries of the Parisi matrix where it can never equal zero.

I make no further comment except to note that Ref. [250] in their study of
quantum (anti-)ferromagnets find no evidence of RSB for 1 < p < 4 and instead
find their fixed points are replica symmetric and stable to RSB perturbations. The
authors contrast their result with Ref. [164] and suggest this di↵erence must stem
from a physical di↵erence between quantum and classical ferromagnetic systems,
In light of the above analysis I instead suggest that stability to RSB perturbations
is the correct result and that the critical behaviour of these systems is entirely
replica symmetric.

159



160



Bibliography

[1] M. Reibold, P. Paufler, A. A. Levin, W. Kochmann, N. Pätzke, and D. C.
Meyer, Nature 444, 286 (2006).

[2] J. G. Bednorz and K. A. Müller, Zeitschrift für Physik B Condensed Matter
64, 189 (1986).

[3] S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak, Phys. Rev. B
63, 094503 (2001).

[4] J. A. Mydosh and P. M. Oppeneer, Rev. Mod. Phys. 83, 1301 (2011).

[5] H.-H. Kung, R. E. Baumbach, E. D. Bauer, V. K. Thorsmølle, W.-L. Zhang,
K. Haule, J. A. Mydosh, and G. Blumberg, Science 347, 1339 (2015).

[6] J. M. Kosterlitz and D. J. Thouless, Journal of Physics C: Solid State
Physics 6, 1181 (1973).

[7] G. Jaeger, Archive for History of Exact Sciences 53, 51 (1998).

[8] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod. Phys.
69, 315 (1997).

[9] A. Altland and B. D. Simons, Condensed Matter Field Theory (Cambridge
University Press, 2006).

[10] S. Sachdev, Quantum Phase Transitions (Cambridge University Press,
1999).

[11] M. V. Berry, Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences 392, 45 (1984).

[12] M. Troyer and U.-J. Wiese, Phys. Rev. Lett. 94, 170201 (2005).

[13] Clay Mathematics Institute Millenium Prize, http://www.claymath.org/
millennium-problems/p-vs-np-problem, last accessed: 14/05/2016.

[14] A. J. Schofield, Contemporary Physics 40, 95 (1999).

[15] C. Pfleiderer, S. R. Julian, and G. G. Lonzarich, Nature 414, 427 (2001).

161

http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1007/BF01303701
http://dx.doi.org/10.1103/PhysRevB.63.094503
http://dx.doi.org/10.1103/PhysRevB.63.094503
http://dx.doi.org/10.1103/RevModPhys.83.1301
http://dx.doi.org/10.1126/science.1259729
http://dx.doi.org/10.1007/s004070050021
http://dx.doi.org/10.1103/RevModPhys.69.315
http://dx.doi.org/10.1103/RevModPhys.69.315
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1103/PhysRevLett.94.170201
http://www.claymath.org/millennium-problems/p-vs-np-problem
http://www.claymath.org/millennium-problems/p-vs-np-problem
http://dx.doi.org/10.1080/001075199181602
http://dx.doi.org/10.1038/35106527


[16] Y. J. Uemura, T. Goko, I. M. Gat-Malureanu, J. P. Carlo, P. L. Russo,
A. T. Savici, A. Aczel, G. J. MacDougall, J. A. Rodriguez, G. M. Luke,
S. R. Dunsiger, A. McCollam, J. Arai, C. Pfleiderer, P. Böni, K. Yoshimura,
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[99] J. Rech, C. Pépin, and A. V. Chubukov, Phys. Rev. B 74, 195126 (2006).

[100] D. V. Efremov, J. J. Betouras, and A. Chubukov, Phys. Rev. B 77, 220401
(2008).

[101] D. L. Maslov and A. V. Chubukov, Phys. Rev. B 79, 075112 (2009).

[102] A. V. Chubukov and D. L. Maslov, Phys. Rev. Lett. 103, 216401 (2009).

[103] S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).
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H. P. Büchler, and P. Zoller, New Journal of Physics 10, 073032 (2008).

[127] U. Bissbort andW. Hofstetter, EPL (Europhysics Letters) 86, 50007 (2009).

[128] J. K. Freericks and H. Monien, Phys. Rev. B 53, 2691 (1996).

[129] B. V. Svistunov, Phys. Rev. B 54, 16131 (1996).

[130] K. Sengupta and N. Dupuis, Phys. Rev. A 71, 033629 (2005).

[131] R. Mukhopadhyay and P. B. Weichman, Phys. Rev. Lett. 76, 2977 (1996).

[132] I. F. Herbut, Phys. Rev. Lett. 79, 3502 (1997).

[133] I. F. Herbut, Phys. Rev. B 57, 13729 (1998).

[134] P. B. Weichman and R. Mukhopadhyay, Phys. Rev. B 77, 214516 (2008).
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