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Abstract

Background: Social learning is potentially advantageous, but evolutionary theory predicts that (i) its benefits may be
self-limiting because social learning can lead to information parasitism, and (ii) these limitations can be mitigated via
forms of selective copying. However, these findings arise from a functional approach in which learning mechanisms
are not specified, and which assumes that social learning avoids the costs of asocial learning but does not produce
information about the environment. Whether these findings generalize to all kinds of social learning remains to be
established. Using a detailed multi-scale evolutionary model, we investigate the payoffs and information production
processes of specific social learning mechanisms (including local enhancement, stimulus enhancement and
observational learning) and their evolutionary consequences in the context of skill learning in foraging groups.

Results: We find that local enhancement does not benefit foraging success, but could evolve as a side-effect of
grouping. In contrast, stimulus enhancement and observational learning can be beneficial across a wide range of
environmental conditions because they generate opportunities for new learning outcomes.

Conclusions: In contrast to much existing theory, we find that the functional outcomes of social learning are
mechanism specific. Social learning nearly always produces information about the environment, and does not always
avoid the costs of asocial learning or support information parasitism. Our study supports work emphasizing the value
of incorporating mechanistic detail in functional analyses.

Keywords: Multi-scale approach, Agent-based model, Information parasitism, Mechanism specificity, Group foragers,
Self-organization

Abbreviations: LE, Local enhancement; OL, Observational learning; SE, Stimulus enhancement

Background
Social learning is of considerable interest as both a means
of behavioral adaptation and a prerequisite for cultural
inheritance [1, 2]. Researchers have hypothesized that
particular social learning mechanisms promote complex
culture because those mechanisms generate sufficiently
high-fidelity copying to allow culture to increase in com-
plexity across generations [3–12]. Social learning mecha-
nisms would therefore appear to play a critical role in the
evolution of complex culture.
The term ‘social learning mechanism’ refers largely

to the kinds of cues that individuals pay attention to
when learning from conspecifics [2]. For instance, ‘local
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enhancement’ and ‘stimulus enhancement’, respectively,
prime individuals to approach particular locations, or to
interact with particular kinds of objects in the environ-
ment, because other individuals have been observed to be
in those locations or to have interacted with those objects
[2]. In contrast, ‘production imitation’ [13] leads individ-
uals to copy a process or method of interacting with a
particular object. There now exists considerable empirical
support for the existence of these and several other social
learning mechanisms [2].
In spite of this established mechanistic variation, most

theory on the evolution of social learning does not con-
sider mechanisms explicitly. Instead, the aim is to rep-
resent social learning in a general way. Behavior and
learning are therefore specified on a functional level, for
instance in terms of payoffs in a game-theoretic fashion
[14], with social and asocial learning typically compared as
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alternative learning strategies [15–20]. To do so, modelers
make assumptions about the payoffs and information that
are generated by social and asocial learning. Innovation
and asocial learning are assumed to produce information
about the environment, but at a cost [15]. In contrast,
social learning is typically implemented as a strategy that
‘avoids the costs’ of asocial learning by copying existing
behavior, but does not produce information about the
environment. This ‘avoiding costs’ scenario makes sense
given that social learning may increase the rate of learning
(alleviate time costs), lead to less energy expenditure (alle-
viate energy costs), and/or avoid risks such as poisoning
(reduce risk costs).
The payoffs and information production of the above

models, lead to an important result, namely ‘informa-
tion parasitism’. There is an incentive to copy, because
social learning enables the costs of asocial learning to be
avoided. However, there is a catch: in such formulations
social learning does not generate new information about
the environment. In changing environments, negative
frequency-dependence is therefore generated, whereby
the random (non-selective) social learning deployed is
only advantageous when rare, and at the mixed equilib-
rium social learning does not increase average fitness in
the population [15]. This outcome is known as Rogers’
paradox, and has led to the expectation that social learn-
ing should be selective, with respect to when, from whom,
or what, individuals copy [2, 6, 14, 21, 22]. The success
of this theory is reflected in the fact that the trade-off
between social and asocial learning, and resultant infor-
mation parasitism, is now a common expectation with
respect to the evolution of social learning in general [2].
However, the above summarized theory is subject to

limitations. First, as mechanisms are not specified, the
theory cannot be used to understand how different social
learning mechanisms, and resultant cultural phenomena,
evolve. Secondly, given the neglect of mechanism, it is
difficult to know if the predictions of the game-theoretic
style models are truly general, or if they result from spe-
cific, and possibly biologically unlikely, assumptions of the
model architecture such as assumptions about payoffs and
information production.
These concerns are reinforced by recent theoretical

analyses which show that consideration of behavioral
mechanisms can make a difference to functional out-
comes, or payoffs, in evolutionary analyses [23–26]. These
findings suggest caution is warranted when generalizing
across the various social learning mechanisms. More-
over, there are specific reasons for thinking that social
learning need not lead to information parasitism [27].
Models with mechanistic detail provide ‘proofs of princi-
ple’ revealing that social influences can occur during the
learning process so that social and personal information
are integrated, rather than trading-off against each other

[1, 27–30]. Thus, as suggested by definitions of local and
stimulus enhancement and empirical evidence thereof
[2], much ‘social learning’ is actually well-characterized
as socially guided individual learning, which means that
the use of social information need not imply that the
learner has not monitored the state of the environment.
Such findings suggest that instead of generating infor-
mation parasitism, social influences can under some cir-
cumstances enhance information production, generating
opportunities for new learning outcomes [27, 31], most
obviously where social learning supports cumulative cul-
tural learning [32].
It is possible to study how social learning enhances

information production in game-theoretic models, but
this requires special strategies that determine when indi-
viduals should copy others [20, 33, 34]. Conversely, in
detailed mechanistic models, such outcomes are possible
without special strategies [27, 31, 35], raising the possi-
bility that the model architecture in the game-theoretic
approach may overemphasize the importance of complex
decision rules, and even simple strategic biases. To date,
however, mechanistic models have not tended to incor-
porate evolution. It therefore remains an open question
whether, and in what socio-ecological contexts, individ-
uals that learn socially will explore or innovate less than
individuals that learn asocially due to the effects of infor-
mation parasitism, and whether special social learning
strategies are required to generate opportunities for new
learning outcomes.
Here, we aim to examine how different social learning

mechanisms relate to information production and payoffs,
and how information production affects the evolution of
mechanisms. Given the aforementioned game-theoretic
predictions, we assume that any form of social learning
could in principle avoid costs and generate information
parasitism. However, in our model we do not prede-
fine whether social learning enables the costs of asocial
learning to be avoided, nor whether social learning will
trade-off with information production. Instead, we imple-
ment different social learning mechanisms in multi-scale
evolutionary models, which allows us to study how pay-
offs and information production arise. In this approach
[24, 36–41], the mechanisms are defined at a local spatio-
temporal scale in local socio-ecological contexts in terms
of effects of learning during behavioral events, based on
existing models of reinforcement learning [42] and defini-
tions of social learning mechanisms [2].We then study the
outcome of learning mechanisms across larger timescales
(information production and payoffs), and its effect on
lifetime reproductive success (fitness) of individuals. In
this way we establish how mechanisms at the local scale
map onto information production and payoffs at a socio-
ecological scale. The latter correspond to the payoffs and
information production that are assumed in the above
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mentioned game-theoretic style models. Our approach
therefore enables us to assess whether the evolution of
the local mechanisms leads to the evolution of the payoffs
and information production that are commonly assumed
in the above game-theoretic models.
We build on previous multi-scale theory on group

foraging where ‘learning what to eat’, ‘the evolution
of foraging’ and the ‘evolution of grouping’ have been
thoroughly examined in comparable ecological settings
[24, 27, 28, 31, 35, 39, 41]. Here we focus on group foragers
learning what and how to eat in patchy environments.
We consider this a suitable context for primates, which
are a relevant taxa for which to consider the evolution
of social learning mechanisms and cultural phenomena.
We compare three different social learning mechanisms,
namely local enhancement, stimulus enhancement and
observational learning.
In our model, local enhancement arises spontaneously

due to grouping, because if individuals approach each
other and stay together they automatically affect each
other’s learning opportunities [28]. Such coarse-grained
local enhancement occurs indirectly as a group-level pro-
cess. In contrast, stimulus enhancement and observational
learning are direct results of the specific sensing and deci-
sion making of an individual [2, 43]. Here, following van
der Post et al. [27], stimulus enhancement is modelled
as an increase in the probability that a forager processes
and consumes a resource type after observing another for-
ager interacting with that resource type. Observational
learning, following Franz and Mathews [29], is here rep-
resented by an increase in the skill with which a forager
processes a specific resource type after observing another
forager processing that resource type. This implementa-
tion of observational learning includes a potentially large
set of social learning mechanisms, including production
imitation [2].
Using this model, starting from the baseline of no social

learning, we investigate if and how the different kinds
of social learning mechanism evolve in group foragers
learning what and how to eat. We pursue three goals.
First, bymanipulating the difficulty of developing process-
ing skills and the rate of environmental change, we aim
to gain a greater understanding of the conditions under
which different social learning mechanisms are beneficial.
Second, we examine whether, and under what circum-
stances, information parasitism arises, by investigating
when the evolution of social learning leads to a corre-
sponding reduction in the exploration rate, and whether
that reduction occurs because there is an incentive for for-
agers to avoid the costs of exploration. Finally, we examine
whether, and under what circumstances, social learning
can generate opportunities for novel learning outcomes,
enabling information production that goes beyond the
capabilities of asocial learners.

Methods
Our model is an event-based, individual-based model
with a spatially-explicit environment and is freely
available at https://bitbucket.org/dvanderpost/aapjes_
bmc_eb_2016. The key design feature of the model is that
we define behavioral decision making and the outcome
of behavioral events, including learning, at a local spatio-
temporal scale. We then study the meso- and macro-scale
consequences of that local behavior to establish the
mapping between different mechanisms at a local scale
and information processing and payoffs at a larger scale.
While the model is formulated ‘keeping primates in mind’,
and a large number of parameter values are based on
estimates of natural primate systems, we expect our con-
clusions to generalize to other animal taxa, particularly
those with similar movement patterns and repertoire
sizes. The model is based on previous models of learning
in group foragers [27, 28, 31], but now includes skill
learning, observational learning, dynamic populations
and group sizes, and evolving parameters. The following
model description is limited to those aspects needed
to gain a reasonable understanding of the results, with
key parameters listed in Table 1. For further details see
Section 1 in Additional file 1.

Table 1 List of key parameters

Name Description Values

R Number of resources species 250

Qr Maximum energy reward of resource N(0.1, 0.1)
type r

Hr Practice time needed before obtaining
half the maximal reward 0.1..10

Sr Scalar for the sigmoid function
describing how rewards increase
with practice 1..4

EC Rate at which resource
types are replaced by new types 0..R types per year

N Population size 100

G Maximum number of foragers in a group 20

COPY_SPACE Distance at which foragers
can observe what their neighbors 20
are doing

K Effectiveness of
observational learning 0.1

λi Reinforcement learning rate 0..1

εi Exploration rate 0..1

γi Stimulus enhancement 0..1

ωi Probability to OBSERVE neighbor 0..1

τi Duration of OBSERVE 0.01..1 min

Upper case letters and names: invariant parameters that do not change during
simulations. Greek letters: parameters that can evolve but are invariant during a
forager’s lifetime. Subscripts: i = forager identity; r = resource type

https://bitbucket.org/dvanderpost/aapjes_bmc_eb_2016
https://bitbucket.org/dvanderpost/aapjes_bmc_eb_2016
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Model overview
We first give a short overview of the model, followed by
further details.
Entities: The model is composed of groups of foragers

and patches made up of resource items, which are situated
in continuous space (Fig. 1a and Additional file 2).

State variables: Resources items are defined by a posi-
tion, and a type which is characterized by quality Qr , and
two parameters defining how difficult the resource type
is to process (Hr and Sr), or ‘task difficulty’. Hr defines
the practice time (or experience) needed to develop half
of the maximal skill for that resource type, and Sr defines

Fig. 1Model details. a Simulation snapshot. Each forager is indicated by a SEARCH area (gray semi-circle), REACH (gray circle) and a movement
trajectory (red to blue line). When a foragers observes another forager the foragers are connected by an olive-green line. For illustration purposes, the
resource items are shown as colored circles, and patches by a larger gray circles. Each patch can be assumed to be a distinct patch type, with unique
resource types (different colours within a patch). b Illustration of decision-making algorithm. Rectangles are actions and ellipses are decision-making
points. After completing one of the actions at the right hand side, all foragers start the decision-making process at the top left (SAFE?). RAND is a
random number between 0 and 1, and ωi is the probability to do OBSERVE. MOVETOFOOD is always followed by EAT. MOVE consists of at many 1
meter steps to complete a distance of δi . c Illustration of how rewards eir change with time spent practicing that skill for different resource types
(Eq. 5): resources for which not much practice is needed (solid lines, low H) and those for which a lot of practice is need (dashed line, high H); and
resources for which rewards increase fast immediately (black lines, low S) and those for which they increase slowly initially (gray lines, high S).
d Illustration of how selectivity (Eq. 1) affects which subset of resources are chosen: overall resource quality distribution given by N(0.1, 0.1)
(light gray) and subsets chosen when selectivity is low (dark gray, aie = 0.1) and high (black, aie = 0.3), given σi = 5 and assuming the forager knows
all resources perfectly
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the shape of the function of how skill increases with expe-
rience (see ‘Skill learning’ below). Patches are emergent
from clumps of resource items in space, and have a type
defined by a set of 5 resource types that only occur in
patches of that type. Foragers are defined by a position
and heading, a current action and a time to its completion,
short-term memory about movement and foraging goals,
and long-termmemory about the rewards associated with
resources and resource processing skill. Foragers can dif-
fer in their information about resources and skill levels,
as well as in their propensity for learning as defined by
parameters that can mutate (see Table 1).
Processes and scheduling:The implemented processes

in our model can be organized hierarchically as: (i) local
decision making and movement of foragers; (ii) learn-
ing; (iii) life-history updating and demographics; and (iv)
environmental updating.
Local decisionmaking is governed by a decision-making

algorithmwhich encodes sensing, decisionmaking, move-
ment, grouping and the updating of short-term memory.
In simulations with grouping, foragers belong to a par-
ticular group, and follow behavior rules that ensure that
groups move cohesively through the environment. All for-
agers are placed in a queue according to the time their
action ends. The forager with the least time remaining is
next to choose an action and is put back in the queue
according to the time its new action ends. In this event-
based setup, actions of foragers can overlap in time, and
some foragers can complete multiple quick actions (e.g.
move) while others are engaged in actions that take more
time (e.g. searching for food).
The learning algorithms include representations of indi-

vidual and social learning, and update long term memory
about properties of resources that foragers interact with
as a consequence of their decisions.
Life-history updating occurs at regular time intervals

and includes: (i) metabolism or energy expenditure; (ii)
digestion of consumed resources; (iii) deaths and (iv)
births of foragers; and (v) splitting of groups. After a
forager dies, a forager is selected from the remaining pop-
ulation to reproduce, thus maintaining a fixed population
size. Foragers are selected to reproduce in relation to their
energy levels, where a doubling in energy leads to an 8-
fold increase in the probability to reproduce. Offspring
inherit the parameter values of their parents with a chance
of mutation (see Table 1). In simulations with grouping,
groups grow due to births until they reach a maximum
size, and then split randomly into two equally sized daugh-
ter groups. Groups shrink due to deaths and disappear
when the last group member dies.
Environmental updating occurs at regular intervals and

involves the ‘growth’ of all resource items at the begin-
ning of each year and ‘environmental change’ that changes
an existing resource types into an unknown (for foragers)

new resource type. ‘Resource consumption’ occurs when
foragers consume resources as determined by ‘local deci-
sion making’.
Spatio-temporal scaling: The environment is a contin-

uous space of about 40 km2, foragers take steps of a meter
at a speed of 0.5 m/s, and patches are 20 meters in diam-
eter (Fig. 1a and Additional file 2). Foragers can observe
resources up to 2 meters away, and can observe which
resources their neighbors are interacting with at 20meters
(a best case scenario for social learning, Additional file 3).
There are no constraints on observing group members
for grouping purposes in order to ensure cohesive groups,
but the spread of groups tends to be in the order of 5–
40 meters. All movement occurs in continuous space and
there are no constraints on direction.
The timescale is defined in terms of the foragers’ behav-

ioral actions that vary in duration from about a few sec-
onds to a minute. In the model a year is defined as 360
days, and a day is 12 h or 720 min, where we focus on day-
light time in a day. Thus foragers can complete many hun-
dreds of behavioral actions in a day and learn from them.
Energy expenditure (metabolism) occurs every minute.
Digestion occurs every 100min (DIGESTIONTIME). For-
agers can live maximally for 20 years, but can die before
that at any minute.

Resources
In our default setting, resource items of 250 resource types
are distributed in 24500 patches with 1200 items each.
There are 50 patch types, and a patch type is character-
ized by the presence of five resources types that only occur
in that patch type (as in trees with fruit, leaves, flowers
etc). In order to generate variation across patches of a
given type, each patch of a given type is defined by three
resource types which are randomly selected from the five
resource types that characterize that patch type.
While these parameter values typically underestimate

the diversity of natural environments, we strike a prag-
matic balance between model complexity and simulation
environments that are too simple, and where learning
hardly plays a role [28]. We compare this ecological con-
text with randomly distributed resources without patches,
and pure patches where each patch type has only one
resource type.
Resource items disappear when consumed by foragers,

and are then unavailable for consumption. Resource
‘growth’ happens once a year, when all resource items
that have been consumed by foragers reappear in the
exact same position (for computational reasons) and with
the same type. Environmental change occurs randomly
at any minute with a given probability and changes a
randomly selected resource type into another newly gen-
erated resource type which is unfamiliar to the foragers.
For ease of interpretation we express this as a rate,
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namely how many resource types change per year (EC).
All resource items of the disappearing type change into
the new resource type. We vary EC across simulations to
determine the effect of environmental change. We com-
pare this kind of environmental change to one where
resources do not disappear and change into new ones, but
where resources remain familiar but change in quality.
The quality of a resource type Qr is drawn from a ran-

dom distribution with mean 0.1 and standard deviation of
0.1 (Fig. 1b light gray), and all items of a given resource
type have the same quality. Thus we generate variation in
quality across resource types which enables the learning
process to be studied as an optimization process. Quality
defines the maximal reward that a forager can obtain from
a resource type when it has sufficient experience with pro-
cessing that resource type. Task difficulty is defined byHr ,
the practice time (or experience) needed to obtain half of
the maximal reward of that resource type, and Sr , which
defines how the reward increases with experience (see
‘Skill learning’ below). Sr varies randomly between 1 and
4 (integer values only) and Hr is varied across simula-
tions to determine an overall difficulty of learning in the
environment.

Local decision making
Foragers can choose between several local actions,
namely, MOVE, SEARCH, MOVETOFOOD, EAT,
MOVETOGROUP, OBSERVE and NOTHING, which
are selected according to a decision-making algorithm
(Fig. 1b). In the algorithm, individuals start by checking
if they are safe (CHECKSAFE), which implies having a
sufficient number of neighbors (9) in SAFESPACE (17
meters). During CHECKSAFE, foragers can also observe
neighbors within COPYSPACE (20 meters), and can
monitor the resources with which those neighbors inter-
act (Fig. 1a). These observations are relevant for stimulus
enhancement (SE) and observational learning (OL).
If not safe, foragers do MOVETOGROUP, which means

that a forager moves towards the center of its group, cal-
culated as the mean position of the other members of
its group (Fig. 1b, first line). Once safe, the forager then
aligns its own heading with the average direction of other
members of its group in ALIGNSPACE (20 meters). This
attraction-alignment algorithm ensures that foragers stay
together but travel in a relatively efficient manner through
the environment.
If safe, foragers do OBSERVE (τi minutes) with proba-

bility ωi, which leads to observational learning (OL, see
below; (Fig. 1b, second line). Otherwise, with probability
1 − ωi, foragers will select one of the remaining actions.
If foragers are not HUNGRY (stomach content is at a
maximum capacity of 20 resource items), foragers will
do NOTHING (1 minute; Fig. 1b, third line). Stomach
contents are reset to zero at DIGESTIONTIME.

If HUNGRY, and if they have already selected a resource
item for consumption (FOODTARGET), foragers will
EAT (1 min.), or MOVETOFOOD if the item is beyond
reach (0.9 meters) and EAT once the item is within reach
(Fig. 1b, fourth line). If foragers do not yet have a FOOD-
TARGET but their last action was SEARCH, this means
they did not find any resource items in view sufficiently
attractive and then they will MOVE forward δi meters in
the direct the foragers is facing (Fig. 1b, fifth line). If they
did not yet SEARCH, they will SEARCH (Fig. 1b, sixth
line). During SEARCH up to 20 resource items in view
(2 meters) are assessed in sequence (Fig. 1a, grey semi-
circles). The 20 items are randomly selected from those in
view. The search terminates as soon as an item is chosen
for consumption, or when none of the items is chosen.

Food choice algorithm
During SEARCH, a forger’s decision to EAT a given
resource item is determined by its (i) exploration ten-
dency PE (see below), (ii) personal information about the
rewards associated with that resource type (air), and (iii)
whether the forager has been socially stimulated by see-
ing another forager eat that resource type PS (see below).
During evaluation of a resource item, these three factors
come together to determine the probability PF to choose
to eat that item as follows:

PF = P(r|air , aie, σi,PE ,PS)
= min

[
1.0,

(
air
aie

)σi

+ PE + PS
]

(1)

where air is the reward forager i expects from resource
type r (personal information based on reinforcement
learning), aie is an assessment of the quality of resources
that can be found in the environment (see below), and σi
scales selectivity, i.e. how likely an individual selects when
air < aie. Since associations are initially zero (air = 0),
unknown resource types can only be sampled via PE or PS.
For solitary foragers this means that PE must be greater
than zero. For grouping foragers, PS could in principle
replace PE as the means to sample unknown resources.
Once air > 0,

(
air
aie

)σi
contributes to the probability of

choosing a certain resource type, which is maximal when
air > aie and less than one if air < aie. If air > aie, the for-
ager is certain to choose the resource item, irrespective of
PE and PS. The impact of PE and PS is therefore greatest
when resource are relatively unfamiliar (air < aie).
Selectivity is adjusted relative to environmental condi-

tions by adjusting aie (Fig. 1d, compare dark gray and
black). When a forager’s stomach is not full at DIGES-
TIONTIME, the forager decreases its environmental
expectation: a′

ie = (1.0−φi)aie; otherwise the expectation
is increased: a′

ie = (1.0 + φi)aie, where φi determines the
rate with which aie is changed. Each time the forager is too
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selective, it does not fill its stomach and reduces its selec-
tivity, and vice versa. As a result, aie is tuned in order to
optimise energy intake, within the constraints of the algo-
rithm. Qualitatively, this selection algorithm can give rise
to the optimal food choice rule [44] where only resources
above a certain perceived quality are eaten and all others
are ignored (zero-one rule). Note however that our algo-
rithm works on perceived quality and not actual quality
since the foragers are learning about resource quality and
are not omnipotent. Moreover, σi can evolve, so that while
the zero-one rule is possible, it need not evolve.
Satiation aversion: foragers develop temporary aver-

sions after becoming satiated (stomach filled) with a given
resource type. Satiation aversion causes foragers to com-
pletely ignore that resource type for one DIGESTION
cycle (100 minutes) after which the aversion disappears.
Satiation is common in foragers like primates that con-
sume many secondary ‘toxic’ compounds [45], and/or
require a balanced diet [46]. This model specification
ensures that foragers consume a diverse set of resource
types [31].

Learning
In the absence of any social influences on learning, learn-
ing in our model is composed of (i) exploration, (ii)
reinforcement learning about rewards associated with
resources, and (iii) skill learning. All foragers start life
without any knowledge about resources, and so do not
have any expectation about energy rewards (air = 0) nor
any resource processing skill. To enable foragers to sam-
ple (partially) unfamiliar resource types, and hence to start
learning, we implemented exploration. After processing
resource items, foragers develop skill, which increases the
rewards they can obtain from resources items of that
type. After consuming resource items, foragers develop
expectations about rewards via reinforcement, and can
use those to decide what to eat.
Exploration: The probability that a forager explores an

item of resource type r is:

PE = P(r|εi, cir) = εi(1 − cir) (2)

εi is the exploration rate, and cir is the certainty with which
forager i assesses the reward of resource type r. Certainty
was included to ensure that foragers do not continue
exploring when already highly familiar with resources. For
completely unfamiliar resources cir = 0 and there is no
certainty. However, when rewards from resource types no
longer change, for instance because skill levels are high,
certainty becomes high, and foragers end up with a low
tendency to explore that resource type. Certainty cir is
updated as follows:

c′ir = (1− λi)cir + λi

(
1 − min

(
1.0,

∣∣∣∣eir − air
eir

∣∣∣∣
))

(3)

where eir is the reward forager i obtains from resource r,
and the same learning rate (λi) and discrepancy (eir − air)
are used as during updating of expected rewards (see
Eq. 6).
Skill learning: A forager i’s skill sir for processing a spe-

cific resource r is a function of experience tir and ‘task
difficulty’:

sir = tSrir
HSr
r + tSrir

(4)

which is 0 when tir = 0 and tends to 1 when tir becomes
very large. tir is the total time a forager i has spent process-
ing a resource type r in its life, and increases each time the
forager processes and consumes a resource item of type r.
Skill sir determines the reward eir forager i obtains from

resource type r as a function of resource quality Qr :

eir = Qrsir + N(0,Z) (5)

where N(0,Z) represents environmental noise, where a
value is drawn from a normal distribution with mean 0
and a standard deviation of Z (0.005). Resource types with
high H (Fig. 1c, dashed lines) take longer to learn, while
resource types with high S have a shallow increment in
rewards during initial learning (Fig. 1c, gray lines).
Reinforcement learning about expected rewards:

The rewards that foragers associate with each resource
type r are updated via reinforcement as follows:

a′
ir = air + λi(eir − air) (6)

where association air is the reward that forager i asso-
ciates with resource type r, eir is the energy obtained
from resource type r, and λi is the learning rate. This
corresponds to a Rescorla-Wagner model [42] where all
stimuli have the same salience. Associations are initially
non-existent (i.e. zero), and the reward is obtained imme-
diately after consumption of the resource leading to direct
reinforcement.

Social influences on learning
Local enhancement (LE): arises spontaneously through
grouping behaviour, since individuals are inclined to
approach locations in which othermembers of their group
are found, and thereafter to interact with resources in
those regions. We therefore do not directly implement
local enhancement, but it emerges spontaneously as soon
as foragers move in groups [28]. The local enhancement
that we consider is coarse grained, and does not direct
individuals to particular resources, or to features of those
resources.
For the two other social learning mechanisms, during

CHECKSAFE a random ‘demonstrator’ is selected from
any neighbors in COPYSPACE (see ‘Local decision mak-
ing’) that are processing and consuming a resource. The
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impact of the demonstrator depends on the social learning
mechanism.
Stimulus enhancement (SE): In addition to selecting

resources according to their expected reward and the
tendency to explore a given resource type asocially, SE
increases a forager’s probability to consume resource type
r by:

PS = P(r|γi, d) = dγi (7)

where γi indicates the strength of SE, and d = 1 if forager i
observed a neighbor consuming resource r within the last
30 min. and otherwise d = 0. Only one resource type r is
subject to SE at a time. SE does not directly affect expected
rewards or skill.
Observational learning (OL): occurs during the action

OBSERVE at rate ωi (see ‘Local decision making’) and
allows forager i to increase its processing skill for a specific
resource type, in proportion to the time spent observing,
where the change in experience 
tir is:


tir = max[K
oik
M

(tkr − tir), 0.0] (8)

where K scales the increase, determining how effective
skill copying is, and oik is the effective time forager i
observes neighbor k: oik = min[ τi, pk], where τi is the
maximum time forager i decides to spend observing its
neighbor, and pk is the time left for neighbor k to com-
plete its present action. Greater observation time leads to
greater skill acquisition, where maximal observation time
is the maximal time it takes to process and consume a
resource (M). The increase in the skill level is bound to
the skill level of the observed individual, and there is no
skill gain if the skill level of the observed individual is
lower than, or equal to, the forager’s own skill level. A
forager does not know in advance whether a ‘demonstra-
tor’ is highly skilled or not. Observation does not provide
information about rewards.

Energy budget, population turn-over and selection
The energy budget is determined by (i) energy gain due
rewards from food intake which depends on learning
at every DIGESTIONTIME, (ii) a per minute energy
metabolism cost (METABOLISM, see Section 1 in
Additional file 1), and (iii) an energy costs of 5000 for a
reproduction event, which represents a substantial part
of total energy. Energy accumulates if energy intake from
food exceeds metabolism and reproduction costs.
Foragers die of old age (at 20 years), stochastically deter-

mined deaths, or starvation. Births occur as a function of
energy reserves each time a forager dies, keeping the pop-
ulation constant at size N (100), where probability that
forager i reproduces is:

PR = P(i|N) = hWi∑N
j=1 hWj

(9)

where hi is an individuals energy level, N is the popula-
tion size, and W (=3) scales the strength of the selection
function.
The learning and foraging parameters δi, φi, σi, εi, λi,

γi, ωi, τi, are specific to forager i. Parameter combinations
that lead to greater energy levels lead to faster rates of
reproduction. An offspring inherits its parent’s parame-
ters, with a chance of mutation (0.05). In case of mutation,
a new parameter value is drawn from a normal distribu-
tion centered on the parent’s parameter value, and with
a standard deviation that is one fifth of the maximum
value of the parameter (see Table 1). Thus parameters can
vary between individuals and can evolve over time via
inheritance to offspring, mutation and natural selection.
The mutation rate was selected operationally such that
parameters evolve consistently within a reasonable time
frame.
Foragers are born in their parent’s group. There is no

migration between groups. The population is inviable if
the average energy level does not rise above the minimum
energy needed to give birth.

Emergent dynamics
Since we only define local sensing and behavioral actions
of foragers, the development of a forager’s repertoire
emerges from its interaction with the environment over
time. This environment includes the resources and their
distribution, which affects the temporal autocorrelations
in encounters with resources. The movement of foragers
is characterized by inter-patch travel where no resource
items are found, and intra-patch search, assessment and
consumption of resource items. Within each patch, a for-
ager has access to the resource types that are present
in that patch. Over their lifetime, foragers encounter all
patch types and all the resource types they contain, many
times, thus there is ample opportunity to consume all
resource types repeatedly. On reaching a patch, a for-
ager’s experience with those resource types will depend on
previous encounters with those resource types, and if it
consumed those resources in the previous digestion cycle
it could be satiated with respect to those resource types.
The dynamics of foraging are characterized by learn-

ing and food choice [28, 31]. Foragers move through the
environment and when they encounter resource items,
the food choice algorithm determines whether any are
consumed (Eq. 1). Foragers start out exploring various
unknown resources (via PE and/or PS), and as they gain
experience about rewards, personal information tends
to become more dominant in their food choices. Per-
sonal experience is updated after consumption events and
includes air , the assessment of rewards (Eq. 6) and the
increment of skill (Eq. 4) which in turn increases the
reward obtained (Eq. 5). Due to consumption of many
resources, the expectation of the environment aie will
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increase, increasing the fraction of resources for which
aie is greater than air . This increases selectivity towards
resources with high air , and can lead to reduced food
intake (i.e. a forager’s stomach is no longer full at diges-
tion). At this point aie decreases again. Thus the forager’s
expectation of the environment aie tends to equilibrate on
a value in relation to values of air , such that the intake
of resource items is close to the maximum of 20. This
ensures that the forager is eating selectively but still eat-
ing close to the maximal number of resource items within
each digestion cycle (DIGESTONTIME). The ratio of air
to aie is therefore similar across simulation types, irrespec-
tive of how fast air increases due to differences in skill
development time.
The combination of (i) food choice biased to resource

types with high air (selective foraging), and (ii) learning
via updating of air and tir , generates a positive feedback.
This positive feedback generates a familiarity bias and

a development process that is contingent on stochastic
initial conditions, leading to idiosyncratic learning histo-
ries and somewhat arbitrary variation between foragers
in their knowledge of the environment. Therefore, while
learning is biased towards high quality resources, due to
an intrinsic familiarity bias in the process, learning can
get ‘stuck’ on a self-stabilizing repertoire as soon as this
repertoire fulfills the intake needs of the forager [28]. This
familiarity bias becomes strong in environments with pure
patches, and when foragers do not become satiated after
eating a lot of a given food type [28, 31]. We therefore
focus on patches with several resources and satiation as a
default case, which stimulates foragers to develop diverse
diets.
The familiarity bias implies that foragers have greater tir

for some resources than others, and also a more accurate
assessment air of rewards eir . Since λi typically evolves
to high values (see Section 4 in Additional file 1), air is
generally an accurate estimate of eir . The main cause for
differences in familiarity is therefore differences in tir and
these determine differences in eir and air . As a result, the
impact of social influences on learning therefore concern
(i) biases on choosing resource types, which indirectly
affect tir in the case of LE and SE, and (ii) direct gains in
tir in the case of OL.
In groups, the actions of neighbors and group-level

dynamics can have indirect and direct influences on food
choices and learning [28]. Due to the need to stay in a
group (imposed in the model), there is a strong ‘consen-
sus’ or ‘conformity’ effect, where the decision of neighbors
to stop or not stop in a patch can affect the feeding
opportunities of foragers and hence their learning trajec-
tories. Moreover, the direct observation of neighbors and
its effects, depends on what neighbors have decided to
eat, or depends on copying opportunities [27]. In turn, the
effect of a social stimulus will depend on what an observer

already knows, and whether it can find the resource type
of interest. If a forager would already choose a resource
item on its own accord (air > aie) then PS would not
matter and the social influence would be redundant.
Moreover, PS can increase the rate of food intake and

feedback on selectivity via the updating of aie.
Thus the impact of evolving parameters, in particular

those of exploration and social learning, are not prede-
fined in the model and are the object of study. In pre-
vious work, which can be considered a baseline for, and
pseudo-replicate of this study in terms of the foraging
and grouping parameters, the evolutionary attractors have
been established [24, 39, 41]. Our results here are consis-
tent with those findings (see Section 4 in Additional file 1).
Here we go beyond these existing models and study how
foraging and (social) learning parameters co-evolve.

Simulations and analysis
To analyze our model we distinguish between differ-
ent classes of parameters (see Section 2 in Additional
file 1). Of the 50 parameters, 22 are independent fixed
parameters that are either empirical estimates relevant
for primates, or are computationally motivated but still
empirically reasonable. 17 additional parameters either
follow logically from, or are constrained in some way
by, independent fixed parameters, and are also empiri-
cally reasonable. This group of 39 fixed parameters sets
the empirically motivated spatio-temporal scaling con-
text, including life-history, that is relevant for primates
and other small-medium mammals, in which the learning
mechanisms that we study are embedded.
Within this context, we focus on the key parameters

of interest, namely the 4 evolving parameters that define
exploration (εi), stimulus enhancement (γi) and observa-
tional learning (ωi and τi), and the 8 fixed parameters that
define grouping (social context for local enhancement and
other social influences on learning). To do so we ran evo-
lutionary simulations with solitary populations (S, where
grouping is switched off ) in order to establish an aso-
cial baseline, and then ran three kinds of simulations with
grouping: (i)GLE , grouping where only local enhancement
occurred; (ii) GSE , grouping where stimulus enhancement
(γi), but not observational learning, could evolve freely;
(iii) GOL, grouping where observational learning (ωi and
τi), but not stimulus enhancement, could evolve freely.
In all cases, the exploration rate (εi) could evolve freely.
The remaining 4 evolving parameters (δi, σi, φi, λi) ensure
that the foraging and reinforcement learning parameters
are not arbitrarily defined, but co-evolve with the main
parameters of interest.
To study the effect of the environmental context we vary

(i) the task difficulty of resources (Hr) and (ii) the rate of
environmental change (EC). As a default we considered
patchy environments with multiple resource types in each
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patch (mixed patches). For additional sensitivity analy-
sis we tested the main qualitative results in environments
with (i) patches with a single resource type (pure patches),
(ii) randomly distributed resource types (random), and
(iii) environmental change where resource types change
in quality Qr , but remain known to foragers (comparable
to [20, 29]). We do not vary parameters that define life-
history characteristics and spatio-temporal scaling as this
is beyond the scope of our species of interest.
Our analysis included two main steps. First we ran evo-

lutionary simulations for 1000 years. In simulations with
solitary populations evolvable parameters were initialized
on randomly selected values. Simulations with grouping
parameters were initialized with evolved parameters from
solitary simulations, but could continue to evolve. We
repeated this process in each kind of environment, and in
each case repeated 10 simulations with different random
seeds.
We measured the impact of a particular learning mech-

anism in terms of average energy levels in the population.
To determine the evolved values of parameters we analyze
parameter values from ancestors (obtained from ancestor
traces) at the end of simulations (year 850–950). We used
the averages of 10 simulations to represent the ‘evolved
parameters’ for a given condition, and compared their
consistency across the different environmental settings
(see Section 4 and 6 in Additional file 1). In this way we
established ‘evolutionary attractors’ for the set of evolv-
ing parameters. In our results we focus on exploration
and social learning parameters (εi, γi, ωi and τi). The
results of other evolving parameters do not change the
interpretation of the results (see Section 4 in Additional
file 1).
Second, to determine why parameters evolved to par-

ticular values, and to establish the impact of particular
learning mechanisms, we conducted additional analysis
using two kinds of non-evolutionary simulations without
mutations. ‘Parameter sweep’ simulations were used to
study the effect of systematically varying the value of a sin-
gle parameter (local sensitivity analysis), both across and
within groups while keeping other parameters fixed on
average evolved values that where relevant for a particu-
lar social learning mechanisms and ecological condition.
‘Switch’ simulations were used to study the effect of intro-
ducing a particular learning mechanism into a popula-
tion of foragers initialized with another mechanism. This
was done by initializing the population with the average
evolved values of parameters for the initial mechanism,
with values of parameters relevant for the second mecha-
nism set to zero. The parameter values were then changed
to those of the average evolved values of the second
mechanisms at the time where the switch was desired.
In these shorter simulations (80–140 years) we measure

diet repertoire statistics in more detail: (i) total energy

intake =
r=R∑
r=1

direir , where dir is the total number of items

of resource type r that were consumed by forager i, and
eir is the per item reward obtained; (ii) repertoire quality

=
r=R∑
r=1

pirQr , and (iii) average skill =
r=R∑
r=1

pirsir , where pir is

the proportion of resource r in individual i’s diet. Section 3
in Additional file 1 provides further detail about different
simulations types.
In sum, while the analysis contains a large number of

parameters, the vast majority of these provide a realis-
tic simulation context, and the parameter space for the
remaining few is fully explored within realistic bounds.

Results
Energy levels
We find that the three different social learning mecha-
nisms lead to different evolved energy levels (Fig. 2a and
b). Comparison of solitary foragers (SOL) withGLE , which
represents grouping effects alone, reveals that grouping
either reduces or has no clear effect on energy levels
compared to solitary foraging (Fig. 2c and d, solid lines).
This happens because grouping leads to greater local com-
petition, as well as coordination problems which reduce
foraging efficiency (see Section 5 in Additional file 1).
Thus, the coarse-grained local enhancement (LE) that
arises in our model does not have a net positive effect on
energy levels relative to solitary foraging.
In contrast, both stimulus enhancement (SE) and obser-

vational learning (OL) evolve (see Section 6 in Additional
file 1 for evolved parameter values), and lead to a large
increase in energy levels relative to groups with only local
enhancement (Fig. 2a and b, compare dot-dashed and dot-
ted lines to solid lines). These increases can more than
compensate for the negative effects of grouping on forag-
ing success (Fig. 2c and d, dotted and dot-dashed lines).
The impact of OL exceeds that of SE (Fig. 2c and d, com-
pare dot-dashed to dotted lines), and the combination of
SE and OL does not add much relative to OL on its own
(results not shown).
These results remain qualitatively the same as we vary

foraging task difficulty (H, Fig. 2a), and the rate of environ-
mental change (EC, Fig. 2b). Both H and EC increase the
difficulty of learning, reducing energy levels (Fig. 2a and
b, all lines). H increases the time it takes to obtain high
rewards from resources, and EC reduces the time avail-
able to develop skills on resources. As H becomes large
(Fig. 2c), and as the environment changes more rapidly
(Fig. 2d), energy levels in GSE drop below those of SOL
(dotted lines). This implies that the effects of competi-
tion and/or coordination problems in groups (see Section
5 in Additional file 1), increase as H and EC increase. For
OL, energy levels drop below SOL when the environment
changes too rapidly (Fig. 2d, dot-dashed line). However, as



Post et al. BMC Evolutionary Biology  (2016) 16:166 Page 11 of 19

Fig. 2 Energy levels and exploration rates. a Average evolved energy levels in environments with varying task difficulty (H). b Average evolved
energy levels in environments with varying rates of change (EC). c Difference in evolved energy levels between solitary (SOL) and other conditions in
environments with varying task difficulty (H): i.e. all other lines minus the dashed line in top left graph. d Difference in evolved energy levels between
solitary (SOL) and other conditions in environments with varying rates of change (EC): i.e. all other lines minus the dashed line in top right graph.
SOL = solitary; GLE = groups with only local enhancement; GSE = groups with stimulus enhancement; GOL = groups with observational learning;
Each point (energy level) is the average energy of the whole population between year 950 and 1000 from 10 full evolutionary simulations

H becomes large, OL leads to a large increase in energy
intake relative to the other learning mechanisms (Fig. 2c,
dot-dashed line). This effect of OL enables group living
that would otherwise be inviable (Fig. 2a, dot-dashed line
is above horizontal dashed line at H = 10).

Exploration rates
The three different social learning mechanisms lead to the
evolution of different rates of exploration (Fig. 3a). Rela-
tive to solitary populations, exploration rates remainmore

or less the same in groups with LE or OL, but SE leads to
very low exploration rates. Below we expand on why SE
leads to low exploration rates and how SE and OL lead to
increased energy levels.

Stimulus enhancement
The finding that SE can lead to increased energy lev-
els, without implementation of any special social learning
strategy, contradicts the prediction of the aforementioned
game-theory that average payoffs in the population do not
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Fig. 3 Exploration rates. a Evolved exploration rates. SOL: solitary; GLE : groups with only local enhancement; GSE : groups with stimulus enhancement;
GOL : groups with observational learning. Data from ancestors between year 850 and 950 from 10 simulations per condition. Box plots show the
minimum, 1st quartile, median, 3rd quartile and maximum of means of 10 simulations. b Hypothetical scenarios with respect to group-level and
within-group optimal exploration rates. Solid line: fitness with respect to group-level variation in exploration rates, where the black dot reflects the
optimal ‘cooperative’ exploration rate for all foragers in a group; Other lines: fitness with respect to within-group (i.e. individual-level) variation in
exploration rates, where the black dot reflects the optimal ‘selfish’ exploration rate for individuals within a group; Dashed line: Information parasitism
scenario where the individual-level optimum is below the group-level optimum, and hence individuals have an incentive to explore less than other
members of the group; Dotted line: Hypothetical opposite to information parasitism where the within-group optimum is above the group-level
optimum and individuals have an incentive to explore more than other group-members; Dot-dashed line: Neutral scenario where there is no real
individual-level optimum and no incentive to explore less or more than other group-members. The latter two scenarios are inconsistent with
information parasitism. c Comparing energy intake between group-level (solid) and within-group variation (dashed) from simulations. Inset is a
zoom in of main panel. These results are consistent with the dot-dashed line in B and indicate the absence of information parasitism. Data are means
and standard deviation of energy intake obtained using ‘parsweep’ simulations using data from years 40 to 140 from 10 simulations

increase as social learning evolves (Rogers’ paradox), as
would be expected if there was information parasitism.
However, this raises the question of how the low evolved
exploration rates in case of SE are to be explained? To
answer this question, we considered two hypotheses.
First, we test the hypothesis that low exploration rates

evolve due to information parasitism. Information para-
sitism can only arise if there is an incentive to explore less
than group members because social learning enables the
costs of exploration to be avoided. To determine if there
is such an incentive, we compared the optimal group-level
exploration rate to the optimal individual-level explo-
ration rate. The optimal group-level exploration rate is
where the information production (as a public good) is
optimized and forms the baseline against which we can
compare the success of information parasites.
A hypothetical group-level fitness optimum is shown in

Fig. 3b (black dot on solid line), relative to which there
are three hypothetical predictions for individual-level fit-
ness at the group-level optimum. First, given informa-
tion parasitism there should be an incentive to explore
less than other group members, fitness should decline
as exploration rate increases, and the individual-level fit-
ness optimum should be at a lower exploration rate than
the group-level optimum (Fig. 3b, black dot on dashed
line). Second, fitness could increase with exploration rate,
which would result in the individual-level fitness optima
being at a greater exploration rate than the group-level

optimum (Fig. 3b, black dot on dotted line). Third, there
could be no incentive at all to explore more or less than
group members, and so individual-level fitness would be
constant (Fig. 3b, horizontal dot-dashed line). The last two
cases are inconsistent with information parasitism.
Using ‘parameter-sweep’ simulations (see ‘Simulations

and analysis’), we systematically varied the exploration
rate across groups to determine the group-level optimum,
and within groups to determine the individual-level opti-
mum. Other parameters were set to average evolved levels
of simulations with SE. We find that the group-level and
individual-level optima are similar when considering a
large range of exploration rates (Fig. 3c, main graph, solid
and dashed lines; the optima are where energy intake
is maximal, i.e. at the very lowest exploration rates). A
detailed examination of very low exploration rates (Fig. 3c,
inset), revealed that in simulations with group-level vari-
ation only, the group-level optimum is found at low but
positive exploration rates (solid line). For individual-level
variation, exploration rates can be zero because foragers
can copy the explorative choices of neighbors (Fig. 3c,
inset, dashed line). Critically, however, we do not observe
differences in energy intake in this range of exploration
rates (Fig. 3c, inset, dashed line is horizontal). Thus, dif-
ferences between foragers in the number of explorative
events are so small that they do not result in different
energy intake. Our results are therefore consistent with
the scenario where there is no incentive to explore less (or
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more) than fellow group members and as a consequence
no information parasitism (Fig. 3, horizontal dot-dashed
line).
Having found no evidence for the information para-

sitism hypothesis, we turn to the second hypothesis: SE
is beneficial because it generates opportunities for new
learning outcomes and low exploration rates evolve in
order to optimize this effect of SE. This leads to two
predictions: (i) the outcome of learning with SE will be
beyond what can be achieved in groups with only local
enhancement (GLE), and (ii) this alleviation of limitations
is maximized at low exploration rates.
To determine whether limitations on learning outcomes

are alleviated by SE and how this depends on exploration
rates, we focus on repertoire quality and skill levels. Using
‘parameter-sweep’ simulations (see ‘Simulation and anal-
ysis’) we determine how skill levels and repertoire quality
depend on exploration rates. We do this for groups with
only local enhancement (GLE) and groups with SE (GSE),
and compare them to determine whether the addition of
SE alleviates limitations on learning.
For groups with local enhancement we find that high

repertoire quality requires sufficiently high exploration
rates, otherwise high-quality resource types are not dis-
covered (Fig. 4a, solid line). However, skill levels decline as
exploration rates increase (Fig. 4b, solid line), since learn-
ing effort becomes spread over many resource types in
the environment due to an increase in repertoire diversity.
Thus, the comparatively high evolved exploration rates in
GLE (Fig. 3a) are a compromise between limitations on
achieving a combination of high repertoire quality and
high skill level.
In contrast, for GSE high repertoire quality at low explo-

ration rates is possible (Fig. 4a, dotted line) and repertoire
quality exceeds the highest level attained in GLE (Fig. 4a,
compare dotted to solid line). As a result a combina-
tion of high repertoire quality and high skill levels can be
achieved, revealing that the limitations that exist in GLE
have been alleviated by the addition of SE. This allevia-
tion of limitations is optimized at low exploration rates,
explaining why exploration rates evolve to low values
when SE evolves (Fig. 3a).
The alleviation of limitations can be understood by

results that were obtained using ‘switch’ simulations (see
‘Simulations and analysis’) where we started with groups
with only local enhancement, and after a 40 year burn-
in period, subsequently implemented SE. We find that
SE leads to an immediate increase in repertoire quality
(Fig. 4c, gray line increases immediately after year 40), but
an immediate short-term decrease in the average skill of
consumed resources (Fig. 4d, gray line decreases imme-
diately after year 40). That SE leads to a bias to consume
high-quality resource types can be understood by the fact
that neighbors are selective and consume resources of

relatively high-quality. Copying opportunities are there-
fore automatically biased to high-quality resource types
(as in [27]). Since different foragers know about different
high-quality resource types, by copying each other they
select an even higher-quality subset of resource types,
explaining how high-quality repertoires can be achieved
even when exploration rates are low.
However, because a neighbor’s high-quality choices are

unfamiliar to the forager that copies, the average skill level
of consumed resources initially drops (Fig. 4d), leading to
an initial decrease in average reward (results not shown).
Initially, SE is therefore maladaptive, although this may
depend on the difficulty of learning. On the longer term,
foragers develop skill for those unfamiliar high-quality
resource types, and become better able to assess their
value. Hence both repertoire quality and average skill lev-
els continue to increase over a period of 20 years (Fig. 4c
and d, gray lines increase between year 40 and 60).
These results confirm that low exploration rates evolve

in order to optimize the beneficial effects of SE that arise
because SE generates opportunities for novel learning out-
comes. The introduction of social learning through SE
therefore leads to enhanced information production.

Observational learning
The advantage of OL is the potential for faster skill devel-
opment. Foragers deploying OL therefore develop greater
skill levels, across the full range of exploration rates inves-
tigated (Fig. 4b, dot-dashed line). For individuals reliant
on LE and SE, high exploration rates typically lead to low
skill levels (Fig. 4b, solid and dotted lines), because diets
are broadened and development time becomes spread out
across a greater number of resources types in the envi-
ronment. OL directly mitigates this effect by speeding up
skill development, with the consequence that increasing
values of εi have a weaker effect on repertoire quality and
average skill compared to LE and SE (Fig. 4a and b, dot-
dashed line). Thus, for OL exploration rates do not evolve
to low levels (Fig. 3a), and we again do not find evidence
for information parasitism.
The relative benefits of OL are not retained across all

rates of environmental change (Fig. 2d, compare dot-
dashed to dotted and solid lines), which implies that when
environments change rapidly, even with OL skill cannot
always accumulate. However, if environmental change is
slow enough, foragers can accumulate skill by copying
each other and inexperienced foragers can catch up with
experienced ones throughOL. Themore difficult that skill
development is (i.e. the greater the value ofH), the greater
the potential impact of OL relative to SE and LE, which
reflects the value of OL in facilitating skill development
for difficult tasks (Fig. 2c, compare dot-dashed to dot-
ted and solid lines). Thus by creating opportunities for
rapid skill development, OL allowsmore efficient resource
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Fig. 4 Effect of SE and OL. Top: average repertoire quality (a) and average skill level of consumed resources (b) as a function of exploration rate.
Shown are means and standard deviation using data from years 40 to 140 from 10 simulations. Simulations as in Fig. 3C (group-level variation).
Bottom: ‘switch’ simulations showing the immediate and long term effects of SE on repertoire quality (c) and average skill levels (d)

exploitation, with corresponding increases in repertoire
quality and energy intake.

Generalizations
To examine whether our results generalize to envi-
ronments with different resource distributions, we also
considered environments with randomly distributed
resources and environments with pure patches. We again
find that (i) SE leads to enhanced energy levels, and (ii)
OL increases energy levels even further (see Section 7 in
Additional file 1). As before, very low exploration rates
evolve when SE, but not OL, is introduced.
We also considered a type of environmental change

where resources do not disappear, but only change in

quality Qr (see Section 8 in Additional file 1). This kind of
environmental change has a much milder impact, because
learned skills are not rendered redundant since resource
types no longer disappear. We therefore find that energy
levels decline to a much lesser extent than when resource
types disappear, and OL can help optimize behavior quite
extensively. As before, SE, but not OL, leads to the evolu-
tion of lower exploration rates.

Discussion and conclusions
Overall we find a high degree of mechanism specificity
with respect to the impact of the evolution of social
learning on rates of exploration, energy returns and skill
learning. Our results indicate that (coarse-grained) local
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enhancement does not directly benefit foraging success,
and probably should be regarded as a byproduct of group-
ing, which likely evolves for reasons unconnected to social
learning. In contrast, stimulus enhancement and observa-
tional learning can be highly beneficial through enhancing
foraging efficiency across a wide range of ecological set-
tings, including those with rapid environmental change
(Fig. 2a and b). Moreover, our analyses do not support
the assumption that the evolution of social learning leads
to information parasitism in general. Rather, for group
foragers learning what and how to eat, the evolution of
social learning generates opportunities for new learning
outcomes.

Information parasitism and general models
To evaluate the predictions of game-theory models of
social learning, we focused on the exploration rate as the
parameter determining ‘asocial learning’, since exploration
determines the number of resources that are sampled and
for which foragers develop reward assessments and skill.
For ‘social learning’ we focused on the parameters defin-
ing the different mechanisms. If the game theory models
correctly capture what is going on in our model, then we
predict that there should be an incentive to explore less
than group members, and that exploration rates should
decline when social learning evolves. This should hap-
pen if social learning avoids the costs of exploration. The
second prediction is that, because reduced exploration
would lead to reduced information production, the aver-
age payoffs in the population should not increase as social
learning evolves (Rogers’ paradox). Both these predic-
tions are relevant if there are no special social learning
strategies, as is the case in our model.
Based on our results, we conclude that the predictions

of the game theory models about information parasitism
do not generalize to the case we study. Our results show
that the evolution of OL and SE actually lead to increased
payoffs in the absence of any special social learning strate-
gies, in contradiction of Rogers’ paradox. Moreover, we
find that exploration rates do not decline in the case of
LE and OL. For SE, exploration rates decline because this
enhances skill development. We therefore do not find any
evidence for an incentive to explore less than group mem-
bers, nor that information acquisition via social learning
leads to reduced exploration rates, for any of the social
learning mechanisms.
To understand why information parasitism does not

arise in our model, we re-evaluated how the details of
the learning mechanisms related to the main game the-
oretic assumptions that generate information parasitism.
We conclude that the main reason why information para-
sitism does not arise in our model is because we explicitly
implemented a learning process that is gradual. In con-
trast, in game theory models a lifetime behavior [15], or

a given behavioural action [20], becomes fully developed
in one time step and information production is very dis-
cretized. With gradual learning, information production
is not limited to exploration, but is the combined out-
come of explorative sampling, reinforcement learning and
skill development. In our opinion, there are two main
implications that follow from the assumption of gradual
learning.
The first implication is that, if learning is gradual,

observable foraging behaviour is not necessarily fully
developed and therefore social learning does not auto-
matically avoid the costs of exploration. This is because
without any special copying strategies, foragers not only
copy choices involving fully developed behaviors, but also
exploratory choices involving developing and unfamil-
iar behaviors, and experience the same costs as those
group members making exploratory choices. In contrast,
in game theory models it is either directly assumed that
these costs are avoided (e.g. [15]), or indirectly, when
assuming that individuals cannot copy individuals that
are in the process of developing or discovering a new
behaviour (e.g. [20]). For foragers in our model to avoid
copying explorative choices of group members, we would
need assume that foragers are capable of distinguishing
between neighbors performing fully developed and explo-
rative behaviors, and then bias their copying to only copy
fully developed behaviors. Since foragers in our model
have no a priori information about what constitutes a
fully developed behavior, making this distinction does
not appear to be straightforward. In contexts with grad-
ual learning, the assumption that individuals can avoid
copying explorative choices therefore implies a relatively
complex copying strategy. We therefore argue that the
general relevance of the assumption that social learning
‘avoids costs’ of asocial learning is questionable in contexts
where learning is a gradual and protracted process.
The second implication of gradual learning is that infor-

mation production is nearly unavoidable during social
learning because there is no clear trade-off between social
learning and information production. Instead, social
influences are integrated into the learning process, and
even non-explorers can produce information. Even if only
one forager of the group is exploring (εi > 0), all other
foragers that copy the explorer can still produce infor-
mation for the group through reinforcement learning and
skill development. Selective foraging decisions make this
information available to other foragers. Thus, even if there
was an incentive to explore less than group members,
reduced exploration would not necessarily lead to reduced
information production.
In sum, the major predictions and assumptions of the

game-theoretic models are not supported by our analy-
sis, suggesting that their conclusions may not always be
robust. Instead, our results emphasize that the evolution
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of social learning can be highly mechanism specific: only
stimulus enhancement leads to the evolution of low explo-
ration rates, and only local enhancement is not obviously
beneficial. This raises an open question about which social
learning mechanisms are being represented in modeling
approaches that only define social learning at a func-
tional level and where mechanisms are not specified.
Our findings therefore contribute to a body of theory
which emphasizes the importance of including mecha-
nistic detail in evolutionary analyses [23–26, 47, 48] and
supports the idea that models are not necessarily general-
izable just because they lack detail [40, 49].
Due to the specificity of our model, we cannot con-

fidently predict model outcomes beyond the context of
group foraging in environments with a diverse set of
resources. Future multi-scale research will have to deter-
mine whether or not in other learning contexts, and/or
with other learning mechanisms, the payoffs and informa-
tion production processes that lead to information para-
sitism, are generated. By comparing various such models
we can begin to identify generalities across contexts and
mechanisms, and assess to what extent they correspond
with the assumptions and predictions of game-theoretic
models. In this way we could move away from a process
where generalizations are assumed, to one where they are
demonstrated.
We hope that our model and its outcomes will stim-

ulate empirical studies to test whether and under which
conditions our findings are valid in real world systems.
Following the approach we have taken for the analysis of
our model, empirical studies might be able to vary indi-
vidual exploration rates experimentally to infer related
individual and group-levels benefits (Fig. 3b). Indepen-
dently of the specific approach, important new insights
could be gained through experimental investigations of
which learning conditions, and for which social learn-
ing mechanisms, trade-offs arise between exploration and
social information use.

The (co-)evolution of social learning mechanisms
As LE arises due to grouping, and (at least, as imple-
mented here) SE and OL can only exist in groups,
researchers seemingly need to take the evolution of group-
ing into account when considering the evolution of social
learning. Our results can be therefore be interpreted with
respect to two evolutionary scenarios, in which grouping
evolves because of the effects of social learning, or group-
ing evolves for other reasons, such as alleviating predation
risk [50], as is typically thought to be the case in primates
[51, 52].
In the context we study, grouping would probably not

evolve for the benefits of LE in the context of learning
what and how to eat in groups, since LE does not enhance
foraging success (Fig. 2a and b). In most cases, LE due

to grouping is either neutral (environments with pure
patches, no environmental change and/or very low task
difficulty), or maladaptive, compared to solitary foraging.
As coarse-grained LE is nearly inevitable [28] and LE in
general appears to be widespread in nature [2], we con-
clude that LE is probably not an adaptation, but rather is
a byproduct of grouping that evolves for some other rea-
son. This conclusion potentially resolves the ‘conundrum’
surrounding LE [53]: how can we understand the preva-
lence of LE when it is seemingly not adaptive? However,
we cannot rule out the possibility that LE could be adap-
tive in other contexts, such as food patch detection in
small groups [39].
In the present skill learning context, grouping could,

however, evolve for the benefits brought about through
SE and OL, as energy levels in groups with SE and OL
can exceed those in solitary foragers (Fig. 2a and b). In
that case, SE and OL, and enhanced capabilities thereof,
would need to co-evolve with grouping, but would not
be expected to evolve where resource types are replaced
too rapidly. However, where grouping evolves for reasons
other than social learning, we would expect SE and OL to
evolve under a wide range of conditions, including rapid
environmental change, and where resource processing is
sufficiently difficult (i.e. large H).
SE and OL are beneficial because they generate oppor-

tunities for novel learning outcomes. That SE is beneficial
in the context of skill learning is striking, given that SE
does not directly involve any copying of skill. The ben-
efits of SE arise because stimulus enhancement enables
groups to develop high-quality repertoires (Fig. 4a, com-
pared dotted to solid line) by generating an automatic bias
to copy the high-quality choices of neighbors, enabling
exploration rates to evolve to low values. The low explo-
ration rates favors skill development (Fig. 4b), leading to
a combination of high-quality repertoires and high skill
levels that is not possible in groups without copying. Sim-
ilarly, observational learning leads to the accumulation of
skill in groups, which substantially exceeds the capacities
of single foragers. OL tends to have a far greater impact
on energy levels than SE, suggesting than SE may become
redundant once OL can evolve (Fig. 2a and b). It is possi-
ble that observational learning in animals arises through a
combination of the mechanisms that we implement as SE
and OL.
The cognitive prerequisites of SE and OL may be

an important determinant in their evolution. While not
implemented in our model, we anticipate that OL might
exert greater demands on cognitive processing than SE.
For instance, at the extreme, OL could represent pro-
duction imitation, perhaps even requiring theory-of-mind
or perspective taking. Conversely, SE is not likely to be
cognitively demanding, and may well be explained by
domain-general attention processes [54]. Consistent with
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findings of Arbilly and Laland [53], we thereby expect SE
to be widespread in nature.
To the extent that the evolution of OL requires the

evolution of specialized cognitive capabilities, those capa-
bilities are candidates for social learning adaptations.
Two different scenarios are plausible here. First, the cog-
nitive prerequisites of OL may be domain-specific and
evolve primarily to implement the specific social learn-
ing mechanism. In this case, the costs of these cognitive
prerequisites (not considered here) will directly affect the
evolution of the mechanism. Second, the cognitive pre-
requisites of OL may be domain general and may evolve
for other reasons. In this scenario, the evolution of a
specific social learning mechanism becomes tied to the
evolution of those other aspects of behavior (e.g. social
cognition, physical cognition, other learning processes)
that are affected by cognitive abilities. In the latter case, a
comprehensive understanding would require researchers
to study the evolution of OL together with other relevant
factors that could plausibly lead to selection on the associ-
ated cognitive capabilities, and hence the co-evolution of
multiple traits.
Developmental mechanisms are also an important con-

sideration in the evolution of SE and OL. We implement
SE and OL as tendencies that are fixed over a lifetime.
However, animals could plausibly ‘learn to socially learn’
[55], including through domain-general mechanisms [54].
If such learning would be governed by immediate rewards,
however, our analysis points to difficulties in how it would
arise. To the extent that our model is realistic, it implies
that the immediate direct effect of SE is a reduction in
average rewards since foragers tend to become biased to
resources for which they have low skill (Fig. 4d), while
the direct effect of OL is a time cost and no reward. In
principle, foragers could therefore learn to associate the
choices of others with low rewards, in which case learn-
ing to socially learnmight be more challenging than it first
appears, at least in a ‘skill learning’ context. Where this
occurs, we would predict SE and OL to be underpinned
by attentional or motivation biases, which, together with
the aforementioned cognitive pre-requisites of OL,may be
regarded as social learning adaptations. The question of
whether the evolution of social learning requires the evo-
lution of social-learning-specific adaptations remains one
the major unresolved issues in the field, but it is likely that
the answer will depend on the social learning mechanism
involved.
Finally, because they can generate opportunities for

novel learning outcomes, we draw attention to the capac-
ity of SE and OL to play an important role in opening
up novel ecological niches that are not accessible for soli-
tary foragers, or to groups without SE or OL. This is clear
from the way that OL enables groups to become viable at
very high task learning difficulty (H = 10, Fig. 2a). Since

the threshold at which resources become too difficult
to exploit through asocial processes alone is somewhat
arbitrary, a similar argument can be made for SE, but
with a more limited scope. Particularly OL, but also SE,
enable skill levels in groups to accumulate beyond the
level obtainable in groups without copying, even in chang-
ing environments. Where this skill accumulation occurs
beyond the level that solitary foragers can achieve (as in
H = 10), then it can potentially open up novel niches. In
this kind of scenario, group foragers could exploit niches
with increasingly difficult resource processing. If such
niche expansion occurs as a function of accumulated skill,
then viability becomes dependent on group knowledge,
i.e. cultural niche construction [56].
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