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Abstract

1. Range migrations in response to climate change, invasive species and the emergence

of novel ecosystems highlight the importance of temporal turnover in community

composition as a fundamental part of global change in the Anthropocene. Temporal

turnover is usually quantified using a variety of metrics initially developed to capture

spatial change. However, temporal turnover is the consequence of unidirectional

community dynamics resulting from processes such as population growth, colonisation

and local extinction.

2. Here, we develop a framework based on community dynamics, and propose a new

temporal turnover measure.

3. A simulation study and an analysis of an estuarine fish community both clearly

demonstrate that our proposed turnover measure offers additional insights relative to

spatial-context-based metrics.

4. Our approach reveals whether community turnover is due to shifts in community

composition or in community abundance, and identifies the species and/or

environmental factors that are responsible for any change.
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1 Introduction

A large number of metrics have been developed to measure community dissimilarity

(Anderson et al., 2011, Jost et al., 2011, Vellend et al., 2011, Sæther et al., 2013, Legendre

and Gauthier, 2014) in the century since Jaccard (1901, 1912) first proposed a method of

quantifying differences in assemblage composition. This variation in the identities of species

found in different sites, as measured by Jaccard dissimilarity and other turnover metrics,

was dubbed β-diversity by Whittaker (1960, 1972), to distinguish it from within assemblage

diversity (known as α-diversity). Although the emphasis, to date, has been on measuring

β-diversity across spatial contexts, growing concern about threats to biodiversity underlines

an urgent need to quantify and understand temporal turnover (Dornelas et al., 2013). Recent

analyses have shown that although the α-diversity of local communities is not changing

consistently through time, with many assemblages showing increasing trends and others

showing decreasing trends (Vellend et al., 2013, Dornelas et al., 2014), the rate of change

in community composition (temporal β-diversity) is greater than predicted by null models of

baseline temporal turnover (Dornelas et al., 2014, Supp and Ernest, 2014).

One approach to quantifying temporal turnover is to use metrics such as the Jaccard and

Bray-Curtis (Bray and Curtis, 1957) indices, initially developed to capture spatial change.

However, temporal turnover has features, such as unidirectional change, not usually present

in investigations of spatial β-diversity (Dornelas et al., 2013). Moreover, temporal turnover is

the consequence of community dynamics resulting from processes such as local immigration

and extinction, population growth and density dependence. Ideally, then, temporal turnover

should recognise the dimensionality of temporal change and the ecological processes that lead

to shifts in community composition through time.

Here we formalise the concept of temporal turnover. We present a novel framework
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for measuring temporal turnover based on the dynamics of species abundance within a

community. The turnover measure we propose is directly derived from a general form of

a population dynamics model which describes the extent to which each population, and

consequently the community to which these species belong, changes over time. Our framework

highlights the fact that the concept of turnover can be dissected into two key ecological

aspects: change in community composition and change in community size (or capacity) sensu

its abundance (Brown, 1981). In addition to providing new insights into the ecological basis

of measures of temporal turnover, our approach has important practical applications because

it allows the user to identify which species and/or which environmental factors play a key

role in the change of the species community. We demonstrate how the turnover measure

performs using a simulation and by analysing an estuarine fish community time-series from

the Bristol Channel, UK. We also discuss the relationship between our approach and existing

methods of α- and β-diversities. For β-diversity, we identify links between our measure and

those previously developed to capture the nestedness and turnover components of β-diversity

(Baselga, 2010, 2012, 2013).

2 A measure of temporal turnover

The temporal changes that all ecological communities experience are a cumulative

consequence of changes in the abundance of each species in the community. Population

ecology describes the dynamics of species abundance by differential equations, modelling the

change rate of the population size of a given species. We can consider this rate of change in

abundance as, literally, the temporal turnover of the species in question. This assumption

is the basis of our approach. The temporal turnover of the whole community can then be

defined as an additive effect of turnover in each species, since the total abundance of the

community is the sum of the species abundances in the community. Keeping these points
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in mind, we propose a new measure of temporal turnover of communities, and identify two

key ecological components of this turnover: change in community composition and change in

total abundance.

Throughout the paper we consider an ecological community consisting of s species whose

abundance varies over time governed by the population’s background state at each time t.

We use the term expected abundance to denote the background state, which is often described

using other terms such as mean abundance, model expectation and (ideal) population size

(a more precise definition will follow in Section 3). We recognise that observed abundances

reflect both expected abundance and natural variability. This recognition allows us, when we

have observations, to separate the effect of natural variability from the expected abundance

in which features of turnover can be found. As such, here we construct a framework on the

expected abundance, instead of the observations themselves.

Let λi(t) > 0 be the expected abundance of the i-th species at time t. Note the fact that

the observed abundance can be zero even though the expected abundance is assumed to be

always positive. A species with very low expected abundance (close to zero) tends to be absent

in observations most of the time. We can therefore deal with the case of species absence,

adopting expected abundance as the basis of our framework. The expected total-abundance

of the community is then the sum of each species’ expected abundance as λ(t) =
∑s

i=1
λi(t).

This fact is always valid regardless of whether the species abundances within a community

are independent or not, and serves as the basis of our discussion below.

We begin by examining the dynamics of the populations that make up the community.

Consider an equation for the expected abundance of the i-th species as

λi(t + dt) = (1 + αi(t)dt)λi(t), (1)

This article is protected by copyright. All rights reserved. 
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where αi(t) is the instantaneous change rate at time t that drives the increase or the decrease

of the species abundance; the abundance increases when αi(t) > 0, and decreases when

αi(t) < 0. If the equation (1) is solved, the Malthusian growth model (Malthus, 1798)

specifies the expected abundance, λi(t), and the instantaneous change rate, αi(t), becomes

the growth rate of the population. The rate can also be modelled by other processes such

as those, birth, death, immigration and emigration rates, bi(t) > 0, di(t) > 0, mi(t) > 0

and ei(t) > 0 respectively, like αi(t) = bi(t) − di(t) + mi(t) − ei(t). This of course leads

λi(t) to another type of model. As such, in order to keep our framework below general, we

do not specify any functional form of the expected abundance, λi(t), at this stage, but it

will be discussed in Section 3. Note that when those rates are offset relative to each other,

αi(t) = bi(t) − di(t) + mi(t) − ei(t) = 0, the population’s abundance is stable for the time

increment dt, since its expected abundance becomes constant, λi(t + dt) = λi(t).

The reasoning given above implies that change rate is a legitimate indicator to quantify,

literally, the turnover of the i-th species, based on its abundance, for the time increment dt.

However, as the change rate is in most cases unknown, it needs to be determined by the

trajectory of the expected abundance, λi(t) > 0, itself as

αi(t)dt =
λi(t + dt) − λi(t)

λi(t)
=

dλi(t)

λi(t)

= d log (λi(t)) .

Here and elsewhere in the paper log refers to the natural logarithms.

We now consider the community scale, represented by the expected total-abundance of

the species in the community λ(t) =
∑s

i=1
λi(t), applying the same analogy used for the

population scale. Although the continuous form of the expected abundances, λi(t), i =

1, 2, . . . , s, is unknown, we can estimate it using observations at discrete time points. We
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therefore rewrite Equation (1) in a discrete form representing a community dynamics model

over a relatively short time interval, between times t and t + h (h > 0), within which the

difference equation is still valid. By integrating the instantaneous change rate, αi(t), over the

time interval, the community dynamics can be described as

λ(t + h)
.
=

s
∑

i=1

(

1 +

∫ t+h

t

αi(v)dv

)

λi(t)

=

s
∑

i=1

(

1 +

∫ t+h

t

d log(λi(v))

)

λi(t)

=

s
∑

i=1

(

1 + log

(

λi(t + h)

λi(t)

))

λi(t).

The change rate and the instantaneous change rate may therefore hold the following

relationship for the short time period h,

λ(t + h) − λ(t)

λ(t)

.
=

s
∑

i=1

log

(

λi(t + h)

λi(t)

)

pi(t), (2)

where pi(t) is the relative abundance of the i-th species at time t, that is determined as

pi(t) =
λi(t)

λ(t)
.

The collection of the relative abundances of the community — the relative abundance

distribution p(t) = {p1(t), p2(t), . . . , ps(t)} — satisfies the conditions that pi(t) > 0 and

∑s
i=1

pi(t) = 1.

Now we can formally define the turnover measure, which we call D. From Equation (2),

This article is protected by copyright. All rights reserved. 
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we define the turnover measure between times t and u, (u > t) as

D(t : u) =

s
∑

i=1

di(t : u) =

s
∑

i=1

log

(

λi(u)

λi(t)

)

pi(t) (3)

= −
s

∑

i=1

log

(

pi(t)

pi(u)

)

pi(t) + log

(

λ(u)

λ(t)

)

(4)

= D1(p(t) : p(u)) + D2(λ(t) : λ(u)).

As shown above, temporal turnover, D, is an abundance based measure, and is additively

dissected into two quantities, D1 and D2. Figure 1 illustrates a schematic picture of our

framework for measuring the temporal turnover discussed above.

The proposed turnover measure has the following properties:

1. −∞ < D < ∞;

2. D = 0 ⇐⇒ D1 = 0 and D2 = 0 ⇐⇒ p(t) = p(u) and λ(t) = λ(u);

3. D1 ≤ 0 (cf. Kullback and Leibler (1951));

4. D2 > 0 ⇐⇒ λ(u) > λ(t), D2 < 0 ⇐⇒ λ(u) < λ(t).

Note that Property 2 holds when the instantaneous change rate (Equation 1) of the every

species in the community is equal to zero, αi(t) = 0, i = 1, 2, . . . , s.

The implications of Equation (4) are worth consideration. First, it suggests that the

temporal turnover is additively decomposed into two parts: the first term (D1) related to the

amount of change in community composition, and the second term (D2) being dependent only

on the amount of change in community size sensu its abundance. This fact highlights two

important aspects in evaluating the turnover of species community: 1) change in community

composition and 2) change in total abundance.

Second, it is interesting that the Kullback–Leibler divergence (Kullback and Leibler, 1951)

is subsequently derived from the definition (Equation 3) as D1. Kullback–Leibler divergence

This article is protected by copyright. All rights reserved. 
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quantifies the difference between two relative abundance distributions of the community at

different time occasions, p(t) and p(u). Thus, the first term, D1, is interpreted as the part

evaluating the compositional change of the community.

The basis of our framework, equation (2), highlights a key feature of temporal turnover

— the arrow of time. If λ(t + h) and λ(t) are swapped, the instantaneous change rate αi(t)

takes a different form. In other words, the interpretation of the temporal turnover measure

is asymmetrical to time — a feature that contrasts with spatial turnover. Although the

proposed turnover measure, D, could be applied to spatial contexts, by assigning t and u to

different locations, it is important to note that its interpretation will differ from the temporal

one. This is because of the asymmetrical structure inherent in temporal turnover whereas

symmetricity is usually assumed when studying spatial turnover.

3 Specifying the expected abundance λi(t)

We introduced the idea of the expected abundance earlier, but have not specified it yet.

Since we can only observe species abundances and never observe the expected abundance in

ecological investigations, we need to determine the expected abundance from the observations.

Here, we denote the observed abundance of the i-th species at time t as ni(t), lower case,

and treat it as a realisation of a random variable Ni(t), upper case, which follows the Poisson

distribution with the time varying mean parameter λi(t). We adopt the convention of using

lower and upper cases for non random and random variables respectively. The expected

abundance is then specified as the expectation (or the mean) of the random variable as

λi(t) = E [Ni(t)]. A range of approaches are available for estimating the expected abundance,

λi(t), from observations, {ni(t)}; the choice is largely dependent on the researcher and data

characteristics, such as the number of observations. We give here a short summary of common

approaches, widely used in population and community ecology.

This article is protected by copyright. All rights reserved. 
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Many methods of estimating the expected abundance rely on the maximum likelihood

principle. For instance, recalling the assumption we made, an approach widely used in the

ecological literature is to use the observation itself as λ̂i(t) = ni(t). Here, the hat sign means

its estimate. Using the observation as the estimate of the expected abundance can be regarded

as the maximum likelihood estimate (MLE) when we have only one observation obtained for

estimating the expected abundance at time t. Note that this may violate some properties of

the turnover measure discussed in Section 2, when ni(t) = 0 is involved. Another choice is

taking the average of the observations by assuming the expected abundance to be constant,

λi(t) = λi, over the observation period, t = 1, 2, . . . , tn, the MLE of which choice is then

given as λ̂i =
∑tn

t=1
ni(t)/tn.

An alternative approach is to model expected abundance, λi(t), in relation to relevant

environment factor(s). Although this approach requires more data than those outlined

above, a range of regression type models are available. Examples include generalised linear

models (GLMs; McCullagh and Nelder, 1989) and generalised additive models (GAMs;

Hastie and Tibshirani, 1990), that delineate the relationship between species abundance and

environmental factors as well as other species’ abundances (Kedem and Fokianos, 2002).

This approach also entails specifying the link function and the distribution function that the

abundance, Ni(t), follows, with common examples including Poisson, Negative Binomial and

others, see Zuur et al. (2009), Hilbe (2011) for details. This type of modelling approach

offers more detailed insights in terms of interpreting community change as is discussed in the

next section. We stress that the choice of estimation approach will depend on the extent

to which information is available for study, and that ni(t) = 0 does therefore not necessary

mean λ̂i(t) = 0 unless the observation is used as the estimate. Many other approaches are,

of course, applicable and not limited to those discussed above. For example, determining

the trajectory of abundance, Ni(t), by (stochastic) differential equations, as did Ives et al.

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
(2003), Mutshinda et al. (2009, 2011), is also a sensible approach.

4 Identifying the influential drivers

An advantage of modelling species expected abundance, λi(t), is that it becomes possible to

identify drivers that influence the turnover measure, D. Equation (3) reveals how this can

be done. We illustrate this using a common model class, GLMs with the log link function,

such as Poisson and Negative Binomial distributions, as an example.

Suppose that the expected abundance of the i-th species, λi(t), is modelled by a GLM

with the log link as

log(λi(t)) =
m

∑

j=1

βijxj(t), (5)

where {xj(t)} are environmental variables, and {βij} are the parameters to be estimated.

From Equations (3) and (5), we have the turnover measure, D, described in an additive form

as

D(t : u) =

m
∑

j=1

s
∑

i=1

βij(xj(u) − xj(t))pi(t). (6)

Since the contribution of the species and the environment factors are all additive, putting

di(t : u) =

m
∑

j=1

βij(xj(u) − xj(t))pi(t) and

dj(t : u) =

s
∑

i=1

βij(xj(u) − xj(t))pi(t),

the contribution ratio of the i-species and of the j-th environment variable to the turnover

This article is protected by copyright. All rights reserved. 
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measure, D, is respectively defined as

ri(t : u) =
|di(t : u)|

∑s
i=1

|di(t : u)|
, (7)

rj(t : u) =
|dj(t : u)|

∑m
j=1

|dj(t : u)|
. (8)

These quantities show what proportion each factor contributes to the absolute amount of

the turnover. Whether this type of additive decomposition is available is largely dependent

on how the species expected abundance, λi(t), has been modelled. Although our example

makes use of a GLM, as long as the right-hand-side of model (5) is additive in terms of the

environment variables, as it is in GAMs, the additive decomposition (Equation 6) is available,

and consequently the contribution ratios, Equations (7) and (8), can be obtained. A key

fact is that the turnover measure D can be additive in terms of species i and environment

factor j, given an appropriate model form and a link function. A similar idea can be found

in calculating the contribution of individual species based on the Bray–Curtis index (for

example, simper of an R package ‘vegan’, Oksanen et al., 2014) although, calculating the

contribution of environment variables may not be straightforward since the Bray–Curtis index

is, in general, non additive with respect to the environment variables.

5 Simulation study

To illustrate how our turnover measure works, and the kind of information that can be

obtained, we perform a simulation study, and compare the results with those produced using

two popular turnover metrics: Jaccard (Jaccard, 1901) and Bray–Curtis (Bray and Curtis,

1957). We simulate an ecological community within which each species hold inter-species

relationships keeping the zero-sum community condition (Hubbell, 2001), apart from an

imposed abrupt change to represent a disturbance as per Dornelas (2010).

This article is protected by copyright. All rights reserved. 
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5.1 Simulated data

In the simulation study, we assume an ecological community of 30 species (s = 30), within

which species abundances at time t, N(t) = (N1(t),N2(t), . . . ,Ns(t))
⊤, are dependent on

each other in a sense of zero-sum community (Hubbell, 2001). The abundances distribute as

a multinomial distribution, N(t) ∼ Mn(n(t),p(t)), and the covariance between any pair of

species, i and i′, is given as Cov [Ni(t),Ni′(t)] = −n(t)pi(t)pi′(t) for i 6= i′. We generate series

of abundance values (200 time steps for each of the 30 species), {N(t) = n(t) : 1 ≤ t ≤ 200},

for the whole community with an artificial change taking a place at t = 100 as

Pr (N(t) = n(t);n,p) =



















Mn(n,p) t < 100,

Mn(n′,p′) t ≥ 100,

where n and n′ are the total abundance of the community and p and p′ are the relative species

abundances. In other words, the simulated community is a zero-sum community whose total

size is respectively n and n′ before and after the time point t = 100. The initial values of

the relative species abundances, p, are obtained using the program provided by Dornelas

(2010). We consider three types of changes in community size at time t: stable (n = n′),

an increase (n < n′) and a decrease (n > n′). For the compositional change, we consider

two cases: no-alteration (p = p′) and alteration (p 6= p′) in the relative species abundances.

The scenarios to be considered are specified by a combination of those states, but we have

omitted the trivial case, stable and no-alteration (n = n′ and p = p′), so that there are five

scenarios to be examined. See Appendix C for the detailed explanation.

This article is protected by copyright. All rights reserved. 
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5.2 Calculating turnover metrics

For each of our five simulated community time series, {ni(t) : 1 ≤ t ≤ 200, i =

1, 2, . . . , 30;n, n′,p,p′} (n = 200, n′ = 180, 200, 230), the three turnover metrics: our measure

D, Jaccard and Bray–Curtis indices, are calculated in two different ways. One is based on a

GLM and the other is based on the simulated raw data, λ̂i(t) = ni(t).

First, we fit a GLM with a Poisson distribution as

log (λi(t)) = θi1 + θi2I(t ≥ 100), (9)

where θi1 and θi2 are the parameters to be estimated by maximising the likelihood. The

fitted model (Equation 9) is exact re-parametrisation of the simulation data to capture the

abrupt change introduced at time t = 100. Once the expected abundance is estimated,

λ̂i(t), the estimated relative abundance p̂i(t) can be calculated as p̂i(t) = λ̂i(t)/λ̂(t), where

λ̂(t) =
∑s

i=1
λ̂i(t). The turnover metrics: our turnover measure, Jaccard and Bray–Curtis

are then calculated. However, these indices are originally defined on observations, {ni(t)}, so

we introduce a model-based version of Jaccard (Jλ) and Bray–Curtis (BCλ) indices for this

study. See Appendix B.

Second, we also calculated the three turnover metrics based on the simulated data, in

other words the observation ni(t) itself, λ̂i(t) = ni(t). In doing so, we adopt the convention

log(0/pi(u))0 = 0 for D1 of Equation (4) when the i-th species is newly observed in the

community at time u, and also we omit the case where the i-th species becomes absent at

time u, log(pi(t)/0)pi(t) = ∞, although this treatment may conceal the cases D1 = −∞, it

is still useful for illustration purposes. Alternatively, an arbitrary very small value, ε ≈ 0,

could be used for λ̂i(t) when ni(t) = 0 to avoid numerical difficulties.

This article is protected by copyright. All rights reserved. 
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5.3 Result

For illustration purposes, here we show the result (Figure 2) of the scenario, a decrease in

the total abundance (n = 200 > n′ = 180) and an alteration (p 6= p′) in the relative species

abundances. See Figures A1–A4 in Appendix C for other scenarios. Since we are interested

in documenting cumulative changes, all turnover metrics are calculated against the first point

of the time series (i.e. the baseline). To reduce sensitivity to the exact nature of the baseline

chosen, taking an average over some time points could also be a possible option.

In this simulation, the Jaccard index of dissimilarity, calculated on the raw simulated

data (1 − J) and on the model (1 − Jλ), reveals no turnover of the community structure.

In contrast, the Bray–Curtis index, BC (original metric as in Bray and Curtis (1957)) and

BCλ (as in Appendix B) does detect a shift in turnover. This contrast reflects the fact that

species richness of the simulated community has remained relatively constant throughout,

the dominant species are observed constantly but the low abundance species are observed

occasionally, whereas the abundances of the species within the community shifted at the

perturbation point, t = 100. This analysis also highlights differences between the metrics

based on the observations and those based on the model. The model-based ones tend to be

robust against the variation due to observations, a feature that could be useful for detecting

this kind of abrupt change.

Our new turnover measure offers additional insights relative to the Jaccard and

Bray–Curtis indices discussed above. D1 (the green line) quantifies the change in the

community composition. With D1 the absolute divergence from zero indicates change has

occurred in the relative abundance distribution of the community. For example, the addition

of an invasive species to a community, leading to the local extinction of a native species

would be detected by this metric. The change in community abundance is indicated by D2

(the blue line). When D2 is positive the community abundance has increased, and when

This article is protected by copyright. All rights reserved. 
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it is negative community abundance has decreased. For those scenarios involving decreased

community abundance, n > n′ (Figures 2 and A1 in Appendix C), D2 is actually negative

suggesting the community abundance decreased, whereas the Bray–Curtis index struggles to

show such a difference, whether the community abundance is increased or decreased, because

of it accounts for absolute differences. Once again the model-based measure of turnover, D

and D2, provide a clear indication of the perturbation. A mass mortality event associated

with a chemical spill, for example, would be detected by this metric.

6 Application

6.1 Data

We further explore the performance of our new turnover measure using an exceptionally

complete estuarine community time series. Sampling took place at Hinkley Point ‘B’ power

station on the southern bank of the Bristol Channel in Somerset, UK (51◦14′14.05′′N,

3◦8′49.71′′W). Monthly quantitative sampling of a fish community commenced in January

1981, and more than 80 species have been observed over the last three decades (1981 – 2012)

(Henderson and Holmes, 1991, Henderson and Seaby, 2005, Henderson, 2007, Henderson

and Bird, 2010, Henderson et al., 2011). Ambient environmental factors, namely water

temperature and tide height, have also been recorded. See Henderson and Bird (2010) for

details of the survey and its methodology.

6.2 Model

Following Shimadzu et al. (2013), we fit the same GAMs to the 45 core species that are

consistently present in the assemblage (Magurran and Henderson, 2003). The GAM for each

This article is protected by copyright. All rights reserved. 
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i-th abundant species is

log(λi(t)) = βi0 + fi1(Year) + fi2(Tide.height) + fi3(Water.temp) + fi4(Month),

where the βi0 is a constant and fij(·) is a smoothing spline function. For the remaining 36

species that occur infrequently we fit a constant model as the simplest model,

log(λi(t)) = βi0.

Once the expected abundance is estimated, λ̂i(t), the estimated relative abundance p̂i(t) can

then be calculated as p̂i(t) = λ̂i(t)/λ̂(t), where λ̂(t) =
∑s

i=1
λ̂i(t).

6.3 Result

For illustration purposes, we present the turnover result for the month August over the period

(Figure 3). The top panel (Figure 3a) shows the extent to which the fish community changes

each year relative to the first observation, August 1981. The turnover measure D (the red

line) shows a reasonably stable fluctuation a little below the zero level over the period, and

also suggests cyclical variation, since the late 1990s. The two components of the turnover

measure, one related to the change in community composition D1 (the green line) and the

other related to the change in community abundance D2 (the blue line), tell a more detailed

story. The green line (D1) shows the changes in the relative abundance distribution of the

community, quantified as the departure from zero. The continuous decrease indicates that

the species composition of the community has been gradually changing since 1981. On the

other hand, the blue line (D2) resembles the cyclic variation of the red line (D) but with an

increase over the period. This indicates that the community size has been getting slightly

larger, relative to the 1981 level, since the late 1990s.
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In Figure 3b, the contribution ratios of some species resemble the cyclical variation in D

and D2. The middle panel illustrates each species’ contribution ratio defined by Equation (7).

Each coloured area represents the proportion of contribution to the change of the turnover

measure D made by the species. A closer look reveals at least five species to be influential

in the community: Trisopterus minutus, Pomatoschistus minutus, Merlangius merlangius,

Solea solea and Sprattus sprattus (see the legend in Figure 3b). The key role of these five

species is reflected in their large contribution ratio (Equation 7), inducing the departure

of the turnover measure D from the zero level (Figure 3a). The large area in Figure 3b

assigned to Trisopterus minutus means that it has been particularly influential over the

period. Interestingly, Pomatoschistus minutus and Merlangius merlangius appear to be offset

— as one increases in contribution ratio the other decreases, and their cyclical variations seem

to correspond to the turnover measure D and D2 in the late 1990s. Sprattus sprattus, a known

dominant species in the community, has a largely constant contribution since the late 1980s.

The bottom panel (Figure 3c) shows the contribution ratio of the three environmental

factors: year (blue), tide height (green) and water temperature (yellow). The influence of

each factor varies through time. The peaks in the year effect match with those of D and D1,

implying the fact that this community has been under the strong influence by some particular

speices whose abundance fluctuates in a relatively regular cycle.

7 Relationship with α-diversity measures

The framework that we have proposed is conceptually linked with α-biodiversity measures.

Measuring biodiversity using Shannon’s entropy is equivalent to examining community

change rate, but between two particular occasions: the reference time and the time when

the community composition has become uniform. Consider a case where the community

consisting of s species at the reference time t and at a particular time u, (u > t) when the
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relative abundance distribution of the community is homogeneous, p(u) = 1/s. The turnover

measure D (Equation 2) is then reduced to

D(t : u) = − log(s) −

s
∑

i=1

pi(t) log(pi(t)) + log

(

λ(u)

λ(t)

)

.

If the community abundance stays the same, λ(t) = λ(u), the turnover measure is further

simplified as

D(t : u) = D1(t : u) = − log(s) −
s

∑

i=1

pi(t) log(pi(t)).

This is exactly Shannon’s entropy with a constant shift, − log(s). In other words, the two

terms on the right-hand-side are, respectively, a species richness measure and a heterogeneity

measure. Interestingly, this links back to the introduction of Shannon’s entropy for measuring

biodiversity by Margalef (1957, 1958). Combining the above reasoning with our framework

discretising differential equations, it is clear that Margalef’s idea of using Shannon’s entropy

bridges theoretical and empirical work within biodiversity research. Theoretical population

ecology has modelling of the change rate of populations as its heart. As we have explained

above, empirical studies that calculate Shanon’s entropy are doing something that is

mathematically equivalent to investigating the change rate, but using field data.

There have been many attempts to achieve generality in the heterogeneity component

of biodiversity, although by doing so the theoretical link with the community change rate

as mentioned earlier is lost. Hill (1973) is one of the first researchers to notice that

community heterogeneity can be measured by changing the emphasis on species dominance

in a community. In terms of the turnover measure, D, a generalisation equivalent to Hill

(1973) can further be made on the change in community composition, D1. Since Hill’s

number is the natural log scale of Rényi’s entropy (Rényi, 1961), Rényi’s divergence that

encompasses Kullback–Leibler divergence as a special case may be used as a measure of the
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change in community composition, D1. There have also been a variety of divergence measures

examined in information theory, for example see Kawada (1987), Read and Cressie (1988),

Cichocki and Amari (2010).

β-diversity is often discussed in the context of partitioning of diversity with other types

of diversity measures, such as γ- and α-diversities (Whittaker, 1960, Lande, 1996, Jost,

2007, Chao et al., 2012). In this context Marcon et al. (2012) have derived a β-diversity

measure, based on Shannon’s entropy and its decomposition, using weighted Kullback–Leibler

divergence. Reeve et al. (2014) have also studied diversity partitioning in the spatial context,

and have discussed a β-diversity measure that considers species similarity by taking the

exponent of Kullback–Leibler divergence. However, we stress that our turnover measure, D,

has been derived directly from the community dynamics. Moreover the derivation of D is

independent of biodiversity partitioning.

8 Bray–Curtis index and its decomposition

Temporal β-diversity (temporal turnover) represents the change in biodiversity between two

occasions. The Bray–Curtis index is an abundance-based metric of community dissimilarity,

initially developed to measure spatial change but now increasingly used in the temporal

context. Although it is, to be precise, defined using observed abundances, not on the

expected abundance, there is a direct link between the turnover measure we propose and

the Bray–Curtis index (see Appendix B for the original definition). In fact, the Bray–Curtis

index, BC, can be rewritten as a function of our turnover measure, D, as

BC
.
=

∑s
i=1

|di|

2 + D
, (10)
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where |di| is the absolute value of di = log(λi(u)/λi(t))pi(t), and recall that the turnover

measure D is the sum of these di’s over the species i (i = 1, 2, . . . , s) which make up

the community, so that D =
∑s

i=1
di (Equation 3). Figure 4a illustrates this functional

relationship (Equation 10). The vertical striped area shows where the value of Bray–Curtis

index (BC) can lie, given the value of the turnover measure (D), as the numerator of Equation

(10) varies depending on the extent to which the species in the community increase or

decrease. The black solid line represents the lower bound of Bray–Curtis index, the case

where the abundances of all species have increased. The lower bound clearly shows that

the Bray–Curtis index is asymmetrical against the community abundance change. In other

words, the Bray–Curtis index tends to amplify the effect of decreases in community abundance

compared to its increase.

Baselga (2010, 2012, 2013) studied a decomposition of β-biodiversity metrics, such as

Jaccard, Sørensen (Sørensen, 1948) and Bray–Curtis indices, and showed that they can

be additively decomposed into two components. In particular, the Bray–Curtis index can

be dissected into balanced variation in abundance and the abundance gradient components

(Baselga, 2013). We note here that our decomposition (Equation 4) has parallels with but is

not equivalent to these components. In fact, the balanced variation in abundance, dBC−bal,

and the abundance gradient, dBC−gra, are functions of the turnover measure, D = D1 + D2.

The balanced variation in abundance is described as

dBC−bal
.
=







































D+e−D2 , (D < 0)

−D−, (D > 0)

(11)

where D+ =
∑s

i=1
(λi(u) − λi(t))+/λ(t) and D− =

∑s
i=1

(λi(u) − λi(t))−/λ(t). Here (·)+
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and (·)− respectively denotes its positive or negative part; note that D = D+ + D− but

clearly D1 6= D2 6= D+ or D−. This means that the balanced variation in abundance can

be interpreted as the proportion of abundance increased or decreased. Figure 4b illustrates

that there is little relationship between the balanced variation in abundance, dBC−bal, and

the change in the species composition, D1.

The abundance gradient is also described as

dBC−gra
.
=







































|D|

2 + D
qe−D2, (D < 0)

D

2 + D
q, (D > 0)

(12)

where q =
∑s

i=1
min(λi(u), λi(t))/λ(t). This is proportional to Bray–Curtis index itself, and

is its lower bound. Figure 4c illustrates the relationship between the abundance gradient,

dBC−gra, and the change in the total abundance, D2. For the detailed derivations of Equations

(11) and (12) from Baselga (2013) paper, see Appendix A.

Legendre (2014) has recently reviewed approaches to partitioning β-diversity, and

identified two major classes: the Baselga family that we have discussed above, and the

Podani family (Podani and Schmera, 2011, Carvalho et al., 2013); see also Legendre and

De Cáceres (2013) for the discussion on partitioning β-diversity. Since the Podani family is

mathematically related to the the Baselga one, it can also be described as a function of our

turnover D. The R package ‘BAT’ (Cardoso et al., 2014) can be used to partition β-diversity.

9 Conclusion

We have developed a framework for measuring the temporal turnover of species communities

based on community dynamics resulting from processes, such as local immigration, extinction
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and population growth. Our framework decomposes turnover into two classical ecological

rules (Brown, 1981): change in the community composition associated with allocation

rules and change in community abundance due to capacity rules. The new temporal

turnover measure combines these two aspects in an additive manner. The formal study

of the framework highlights the links with other widely used methods of measuring α- and

β-diversity.

The performance of the new turnover measure was examined by a simulation study and the

analysis of an estuarine fish community. A comparison with other common indices, namely the

Jaccard and Bray–Curtis indices, demonstrated that our measure offers new insights into the

ecological basis of community change. In addition the simulation study has clearly shown that

the approach we have described in this paper can provide useful information in investigating

the community change based on observational data. Furthermore, we have demonstrated that

our framework offers an important practical advantage in allowing researchers to identify the

species and/or environmental factors that play important roles in community change through

time.

Taken together, these features of this new approach suggest that it will be a useful

framework for quantifying and interpreting temporal turnover in ecological communities at

a time when the natural world is facing unprecedented threats (Butchart et al., 2010).
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Marcon, E., Hérault, B., Baraloto, C. and Lang (2012). The decomposition of Shannon’s

entropy and a confidence interval for beta diversity, Oikos 121: 516–522.
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Figure 1: A schematic figure of the framework for measuring temporal turnover with four
species (Sp1, Sp2, Sp3 and Sp4) in a community at times t, t + 1, . . . , t + 5. For clarity, the
x-axis represents observed-abundance, but note the fact that zero observed-abundance does
not necessarily mean zero expected-abundance in the framework (for details see Section 3).
The proposed turnover measure D = D1 + D2 (Equation 4) quantifies the turnover of the
species community due to two key ecological processes: change in community composition
(D1) and change in total abundance (D2). For times t to t + 3 — a new species Sp4 comes
in at t + 1, both Sp3 and Sp4 drop out at t + 2 and only Sp3 comes back at t + 3 — the
turnover is quantified by D1 as there are changes in community composition but not in total
abundance (D2 = 0). Between times t + 3 and t + 4, the situation is opposite: there are
changes in total abundance but not in community composition. Hence, the turnover of this
period is quantified by D2 as D1 = 0. Both community composition and total abundance
change between t + 4 and t + 5, the turnover of which is quantified by D1 and D2 both.
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Figure 2: Simulation results of the scenario with a decrease (n = 200 > n′ = 180) and
alteration (p 6= p′). All turnover measures are calculated against the first time point. The
top row shows the relative abundances before (a) and after (b) the artificial change introduced
at t = 100; (c) the simulated respective abundance series over 200 time steps; (d) the new
turnover measure, D (red), D1 (green) representing the change in the community composition
and D2 (blue) representing the change in the community abundance. The solid lines are
calculated based on the model (Equation 9), and the dashed lines are based on the simulated
data; (e) the outcome of Jaccard index, 1− J (dashed line, simulated data based) and 1− Jλ

(solid line, model based); (f) the outcome of Bray–Curtis index, BC (dashed line, simulated
data based) and BCλ (solid line, model based). 
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Figure 3: Illustrative results of the turnover analysis on the fish community at Hinkley
Point in August over the period (1981 – 2012). Each year is compared against the first
observation, August 1981. (a) The turnover measure (D: the red line) and its components,
the composition change (D1: the green line) and the community size change (D2: the blue
line); (b) The contribution ratios of each species in the community. Top five species with
high contribution ratio are listed in the legend, and other colour/shading represent(s) the
rest of 76 species; (c) the contribution ratios of each environmental factors: year (blue), tide
height (green) and water temperature (yellow).. 

0000994
Typewritten Text

0000994
Typewritten Text
This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a)

D

B
C

−0.20 −0.15 −0.10 −0.05 0.00

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5

(b)

D1

B
a
la

n
c
e
d
 v

a
ri

a
ti
o
n
 c

o
m

p
o
n
e
n
t 
  
( 

d
B

C
−b

a
l )

−0.2 0.0 0.2 0.4 0.6

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

(c)

D2

A
b
u
n
d
a
n
c
e
 g

ra
d
ie

n
t 
  
( 

d
B

C
−g

ra
 )

Figure 4: (a) Functional relationship of the turnover measure, D, and Bray–Curtis index,
BC. The vertical striped area, {(D,BC) :

∑s
i=1

|di|/(2+D)}, is the values of the Bray–Curtis
index can take, given the value of the turnover measure. The boundary (the black solid line)
represents BC = |D|/(2 + D) as |D| ≤

∑s
i=1

|di|; (b) The relationship between the balanced
variation in abundance, dBC−bal, and the change in the species composition, D1; (c) The
relationship between the abundance gradient, dBC−gra, and the the change in the community
abundance, D2.
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communities

Hideyasu Shimadzu Maria Dornelas Anne E. Magurran

Centre for Biological Diversity and Scottish Oceans Institute,
University of St Andrews, UK

A The derivation of Equations (11) and (12)

Putting λi(u) = xij and λi(t) = xik, we have eqn 1 – 3 in Baselga (2013) as

A =

s
∑

i=1

min(λi(u), λi(t))

B =

s
∑

i=1

λi(u) − min(λi(u), λi(t)) =

s
∑

i=1

(λi(u) − λi(t))+

C =
s

∑

i=1

λi(t) − min(λi(u), λi(t)) = −
s

∑

i=1

(λi(u) − λi(t))−

where (·)+ and (·)− respectively denotes its positive or negative part. The Bray–Curtis index
is then described as

dBC =

∑s
i=1

|λi(u) − λi(t)|

λi(u) + λi(t)
=

B + C

2A + B + C

=
min(B,C)

A + min(B,C)
+

|B − C|

2A + B + C

A

A + min(B,C)

= dBC−bal + dBC−gra.

The balanced variation for each case is respectively given as

Case I: min(B,C) = B (B < C ⇐⇒ D < 0)

dBC−bal =
B

A + B
=

∑s
i=1

(λi(u) − λi(t))+
λ(u)

=

∑s
i=1

(λi(u) − λi(t))+
λ(t)

λ(t)

λ(u)

.
= D+e−D2 ,

Case II: min(B,C) = C (C < B ⇐⇒ D > 0)

dBC−bal =
C

A + C
= −

∑s
i=1

(λi(u) − λi(t))−
λ(t)

.
= −D−.

The abundance gradient for each case is respectively given as
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Case I: min(B,C) = B (B < C ⇐⇒ D < 0)

dBC−gra =
|B − C|

2A + B + C

A

A + B
=

|λ(u) − λ(t)|

λ(u) + λ(t)

∑s
i=1

min(λi(u), λi(t))

λ(u)

=
|λ(u) − λ(t)|

λ(t)

λ(t)

λ(u)

∑s
i=1

min(λi(u), λi(t))

λ(u) + λ(t)
.
= |D|e−D2

q

2 + D
,

Case II: min(B,C) = C (C < B ⇐⇒ D > 0)

dBC−gra =
B − C

2A + B + C

A

A + C
=

λ(u) − λ(t)

λ(u) + λ(t)

∑s
i=1

min(λi(u), λi(t))

λ(t)
.
= D

q

2 + D
.

B Model-based Jaccard and Bray–Curtis indices

For the simulation study, we calculate two common indices: Jaccard (Jaccard, 1901)
and Bray–Curtis (Bray and Curtis, 1957) indices for comparison. As these indices are
originally defined on observations, {ni(t)}, we introduce a model-based version of Jaccard
and Bray–Curtis indices as follow.

Jaccard index (J)

J =

∑s
i=1

I(ni(t) > 0)I(ni(u) > 0)
∑s

i=1
I(ni(t) + ni(u) > 0)

Model-based Jaccard index (Jλ)

Jλ =

∑s
i=1

P (Ni(t) > 0)P (Ni(u) > 0)
∑s

i=1
P (Ni(t) + Ni(u) > 0)

=

∑s
i=1

(1 − exp(−λi(t))) (1 − exp(−λi(u)))

s −
∑s

i=1
exp(−λi(t) − λi(u))

Bray–Curtis index (BC)

BC =

∑s
i=1

|ni(t) − ni(u)|

n(t) + n(u)
,

where n(t) =
∑s

i=1
ni(t).

Model-based Bray–Curtis index (BCλ)

BCλ =

∑s
i=1

|λi(t) − λi(u)|

λ(t) + λ(u)
,

where λ(t) =
∑s

i=1
λi(t).

Podani et al. (2013) note a link between Jaccard and Ruzicka (Ruzicka, 1958) indices,
taking ni(t) = 1 for species presence and ni(t) = 0 for its absence. The same link also exists
between Sørensen and Bray–Curtis indices, but not between those, Jaccard and Bray–Curtis
indices that we have used. This type of continuity is not crucial in our study since the
relative ordering is, whether Jaccard or Sørensen (say L) index is used, retained because of
their monotonic relationship, L = 2J/(J + 1).
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C Simulation results

We have studied the five simulation scenarios with the three states in changes of community
size: stable (n = n′), an increase (n < n′) and a decrease (n > n′); and of community
composition: no-alteration (p = p′) and alteration (p 6= p′), when an artificial change
taking a place at time t = 100. The scenarios are specified by a combination of those
states, but we have omitted the trivial case, neutral and no-alteration (n = n′ and p = p′),
so that there are five scenarios to be examined. The scenario 3 is presented in the main text.

Scenario Abundance change Composition change

1 n > n′ p = p′

— n = n′ p = p′

2 n < n′ p = p′

3 n > n′ p 6= p′

4 n = n′ p 6= p′

5 n < n′ p 6= p′

For example, the interpretation of Scenario 1 here is that the total community size
(abundance) decreases n to n′ by an artificial change taking a place at time t = 100, but the
community composition, the relative species abundances p, stays as the same (p = p′).

This article is protected by copyright. All rights reserved. 
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Figure A1: Simulation results of the scenario with a decrease (n = 200 > n′ = 180) and
no-alteration (p = p′). All turnover measures are calculated against the first time point.
The top row shows the relative abundances before (a) and after (b) the artificial change
introduced at t = 100; (c) the simulated respective abundance series over 200 time steps; (d)
the new turnover measure, D (red), D1 (green) representing the change in the community
composition and D2 (blue) representing the change in the community abundance. The solid
lines are calculated based on the model (Equation 9), and the dashed lines are based on the
simulated data; (e) the outcome of Jaccard index, 1 − J (dashed line, simulated data based)
and 1−Jλ (solid line, model based); (f) the outcome of Bray–Curtis index, BC (dashed line,
simulated data based) and BCλ (solid line, model based).
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Figure A2: Simulation results of the scenario with an increase (n = 200 < n′ = 230) and
no-alteration (p = p′). All turnover measures are calculated against the first time point.
The top row shows the relative abundances before (a) and after (b) the artificial change
introduced at t = 100; (c) the simulated respective abundance series over 200 time steps; (d)
the new turnover measure, D (red), D1 (green) representing the change in the community
composition and D2 (blue) representing the change in the community abundance. The solid
lines are calculated based on the model (Equation 9), and the dashed lines are based on the
simulated data; (e) the outcome of Jaccard index, 1 − J (dashed line, simulated data based)
and 1−Jλ (solid line, model based); (f) the outcome of Bray–Curtis index, BC (dashed line,
simulated data based) and BCλ (solid line, model based).
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Figure A3: Simulation results of the scenario with being stable (n = n′ = 200) and alteration
(p 6= p′). All turnover measures are calculated against the first time point. The top row shows
the relative abundances before (a) and after (b) the artificial change introduced at t = 100; (c)
the simulated respective abundance series over 200 time steps; (d) the new turnover measure,
D (red), D1 (green) representing the change in the community composition and D2 (blue)
representing the change in the community abundance. The solid lines are calculated based
on the model (Equation 9), and the dashed lines are based on the simulated data; (e) the
outcome of Jaccard index, 1 − J (dashed line, simulated data based) and 1 − Jλ (solid line,
model based); (f) the outcome of Bray–Curtis index, BC (dashed line, simulated data based)
and BCλ (solid line, model based).
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Figure A4: Simulation results of the scenario with an increase (n = 200 < n′ = 230) and
alteration (p 6= p′). All turnover measures are calculated against the first time point. The top
row shows the relative abundances before (a) and after (b) the artificial change introduced
at t = 100; (c) the simulated respective abundance series over 200 time steps; (d) the new
turnover measure, D (red), D1 (green) representing the change in the community composition
and D2 (blue) representing the change in the community abundance. The solid lines are
calculated based on the model (Equation 9), and the dashed lines are based on the simulated
data; (e) the outcome of Jaccard index, 1− J (dashed line, simulated data based) and 1− Jλ

(solid line, model based); (f) the outcome of Bray–Curtis index, BC (dashed line, simulated
data based) and BCλ (solid line, model based).
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D Some R codes

We provide some R codes to calculate our turnover measure and to produce the some figures
presented in the main text.

DD

Calculates the turnover measure, D, D1 and D2 against any reference time point (the default
is the first time point).

Usage
DD(x)

DD(x, ref.t = 1, zero.rm = FALSE)

Arguments
x a data frame (t, i) that contains the estimated expected abundances,

λ̂i(t).
ref.t reference time point, t, the turnover measure is calculated against. The

default value is ref.t=1, the first time point.
zero.rm a logical value indicating whether pi(u) = 0 should be stripped before the

computation proceeds. The default value is zero.rm=FALSE. To avoid
any NaN produced when observations are used as the estimated expected
abundances, try zero.rm=TRUE.

Values
A data frame that contains the turnover measure D, D1 and D2 in each column.

Example

results <- list()

for(1 in 1:n) results[[i]] <- glm(y ~ x1 + x2, family="poisson")

x <- do.call(cbind, lapply(results, predict, type="response"))

DD(x)

Code

DD <- function(x, ref.t=1, zero.rm=FALSE){

lmb <- apply(x, 1, sum)

D2 <- log(lmb/lmb[ref.t])

x.p <- t(apply(x, 1, function(z)z/sum(z)))

Pt <- x.p[ref.t,]

if(zero.rm==FALSE){

D1 <- -t(apply(x.p, 1, function(z)ifelse(Pt==0, 0, log(Pt/z)))) %*% Pt

}else{

D1 <- -t(apply(x.p, 1, function(z)ifelse(Pt==0|z==0, 0, log(Pt/z)))) %*% Pt

}

D <- D1 + D2

data.frame(D, D1, D2)

}
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cr.cal

Calculates the contribution ratios of the species ri(t : u) or the contribution ratios of the
environment factors rj(t : u) from a list object, each branch of which must contain a GLM
or a GAM object.

Usage
cr.cal(x)

cr.cal(x, id=1, ref.t=1)

Arguments
x a list contains a GLM or a GAM output.
id a numerical value indicating whether the contribution ratios of the

species, ri(t : u), (id=1) or the contribution rations of the environmental
factors, rj(t : u), (id=2) to be calculated. The default value is id=1.

ref.t reference time point, t, the turnover measure is calculated against. The
default value is ref.t=1, the first time point.

Values
A data frame containing the cumulative contribution ratios that can be passed to the
function cr.plot to draw a contribution ratio diagram.

Example

x <- list()

for(1 in 1:n) x[[i]] <- glm(y ~ x1 + x2, family="poisson")

cr.cal(x)

Code

cr.cal <- function(x, id=1, ref.t=1){

lmb <- do.call(cbind, lapply(x, predict, type="response"))

lmb.p <- t(apply(lmb, 1, function(z)z/sum(z)))

lmb <- lapply(x, function(z)as.matrix(predict(z, type="terms")))

lmb <- lapply(lmb, function(z)t(t(z)-z[ref.t,]))

lmb <- array(unlist(lmb), dim=c(nrow(lmb[[1]]), ncol(lmb[[1]]), length(lmb)))

if(id==1){

absDi <- abs(apply(apply(lmb, c(1,3), sum), 1, "*", lmb.p[ref.t,])) # sp

}else{

absDi <- t(abs(apply(lmb, c(1,2), "%*%", lmb.p[ref.t,]))) # env

}

ri <- apply(absDi, 2, function(z)z/sum(z))

ri.cum <- t(apply(ri, 2, cumsum))

data.frame(ri.cum)

}
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cr.plot

Plots a contribution ratio diagram (eg. Figures 3b and 3c).

Usage
cr.plot(Y)

cr.plot(Y, x=NULL, col.pal=NULL, k=5, ...)

Arguments
Y a data frame (t, i) or (t, j) that contains the contribution ratios of each

species, ri(t : u), or each environmental factor, rj(t : u).
x the coordinates of points in the plot.
col.pal the colour palette to be used. The length needs to be the same as

ncol(Y). The default choice is rainbow.
k the number of species or environment factors to be listed in the legend

of the figure. The default value is k=5.
... further arguments passed to or from other methods.

Example

Y <- cr.cal(x)

names(Y) <- col.names

cr.plot(Y)

Code

cr.plot <- function(Y, x=NULL, col.pal=NULL, k=5, ...){

k <- min(ncol(Y), k)

if(is.null(col.pal)){col.pal <- rainbow(ncol(Y))}

Y <- data.frame(0, Y)

if(is.null(x)) x <- c(1:nrow(Y))

matplot(x, Y, type="n", ylab="Contribution Ratio", ...)

for(j in 2:ncol(Y)){

polygon(c(x, rev(x)), c(Y[,j-1], rev(Y[,j])), col=col.pal[j-1], border=NA, ...)

}

lgd.list <- apply(apply(Y, 1, diff, na.rm=T), 1, sum, na.rm=T)

legend("topright", legend=names(rev(sort(lgd.list)))[1:k],

col=col.pal[order(lgd.list, decreasing=T)][1:k],

pch=15, pt.cex=2, bg="white", ...)

}
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