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Abstract

Life-history traits in fish populations are highly correlated. A subset of these corre-

lations are called allometric scaling, they refer to biological processes which can be

described using body size as independent variable. Particularly, allometric scaling re-

lated with food consumption (Q) and biomass production (P ) has gained the attention

of ecologists for several decades. This thesis proposes a quantitative framework for

food consumption, which allows both the identification of the mechanisms underlying

the allometric scaling for Q and the development of a predictive model for consump-

tion to biomass ratio (Q/B) in fish populations. This thesis is based on the fact that

food consumption can be inferred from first principles underlying the von Bertalanffy

growth model. In addition, it has been noticed in the literature that biomass pro-

duction and food consumption show similar allometric scaling dependence, therefore,

both can be derived from these first principles. Thus, a similar quantitative frame-

work was used to produce models for P/B in fish populations. Once functional forms

for production and food consumption were identified, a third model was developed for

the ratio between production and consumption (P/Q). This ratio is usually named

ecological efficiency because it determines how efficiently a population can transform

ingested food into biomass. Several authors have noticed that P/Q remains invari-

ant (independent of body size) across species. From a theoretical point of view, the

results presented here allow the first quantitative explanation for the existence of

the allometric scaling for Q/B and the invariance of P/Q across fish species. These

results, together with the explanation for allometry in P/B reported in the litera-

ture, suggest that the regular across-species pattern for the trio {P/B, Q/B, P/Q}
can be explained by basic principles that underpin life-history in fish populations.

This quantitative framework for the trio {P/B,Q/B, P/Q} is based on an explicit

dependence with body size, which simplifies the estimation of these quantities. Model

complexity depends, in part, on which data are available. Models were applied to real
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data from commercially important species fished in Chile. Statistical properties of

the new models were evaluated by an intensive resampling approach. The simplest

possible model for the trio {P/B, Q/B, P/Q} rests on the assumption of a stable age

distribution. These quantities have a key importance in ecosystem modelling because

they determine population energetics in terms of food intake by predation and the

transformation of this energy into population biomass of predators. Application of

the new models produces results which were comparable to those given by standard

methods. This thesis is a result of multidisciplinary research which attempts to make

a contribution to the understanding of the mechanisms underlying the allometric

scaling of food consumption and production in fish populations. It proposes models

for the trio {P/B, Q/B, P/Q} and thus, has the potential to be widely applicable in

fisheries science.
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Notation

The following notation is listed here for an easy reference, being used throughout this

thesis.
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Parameters
and functions

Definition

Size and age

a Age
a0 Size at age 0 of the von Bertalanffy growth function
am Age at maturity
a1 Age-at-first capture
a∞ Maximum age
= Parameter of the trade-off between l∞ and k
h Scaling factor for the trade-off between l∞ and k
k Growth rate coefficient of the von Bertalanffy growth function
l Body length
lm Length at maturity
l∞ Asymptotic body length
lmax Maximum length
lh Length at 50% of selectivity
l0 Length at zero age
t Time
w Body mass
w∞ Asymptotic body mass
y Year
α Parameter of the length-weight relationship
β Parameter of the length-weight relationship
σ2 Variance of the length-at-age
τ Otolith radium

Metabolism

A Assimilation rate parameter
b Parameter of the gross conversion efficiency in Pauly’s model
b2 Parameter of the gross conversion efficiency in the empirical model
α2 Parameter of the gross conversion efficiency in the empirical model
c Catabolism parameter
d Allometric scaling factor for anabolism
f Faeces
H Anabolism parameter
I Assimilation
K Gross conversion efficiency
p Proportionality constant of surface
s Effective physiological surface

xix



Parameters
and functions

Definition

Metabolism

s2 Specific dynamic action
T Temperature factor
T c Mean annual temperature of the body water
u Excretion
η Allometric scaling factor for for catabolism
ι Surface power exponent

Population

B Biomass
f(l) Probability density function of lengths in the population
F Fishing mortality
N Cohort size
M Natural mortality rate
Py(a) Probability mass function of the age a
Q Instantaneous consumption rate of a group of individuals
R Recruitment
S Selectivity
Z Total mortality rate
φ Proportionality constant between CV and am

ω Shape parameter of the selectivity
ψ Proportionality parameter linking fishing and natural mortality

Consumption

G Annual ration
Gd Daily ration
q Instantaneous consumption rate of an individual
µ Aspect ratio of the caudal fin
%, ν Binary variable indicating the type of food

Others

n Number of fish sampled
r Correlation coefficient
ε Failure probability
$ Indicator function
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Abbreviations Definition

Abbreviations

vB von Bertalanffy
VBGF von Bertalanffy growth function
C Consumption-to-biomass ratio of a group of individuals
λ Production-to-biomass ratio of a group of individuals
ρ Production-to-consumption ratio of a group of individuals
Eqn Equation
g Grams
CV Coefficient of variation
CI Confidence interval
s.d Standard desviation
FR Freshwater environment
MA Marine environment
MLE Maximum likelihood estimator
pmf Probability mass function
pdf Probability density function
S-R Stock-recruitment relationship
MFZ Management fishing zones
TAC Total allowed catch
TL Total length
IFOP Instituto de Fomento Pesquero
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Glossary

• Age at first capture: is the minimum age at which fish could be targeted by

the fishery.

• Allometry: growth of a part of an organism in relation to the growth of the

whole organism or some part of it. The measurement or study of this growth.

• Allometric scaling: the study of biological processes where the independent

variable is the body size.

• Anabolism: the phase of metabolism in which simple substances are synthe-

sized into the complex materials of living tissue.

• Apparent specific dynamic action: is the increased metabolic rate a fish

experiences following ingestion of a meal.

• Assimilation: the conversion of nutriments into living tissue; constructive

metabolism.

• Bias: systemic inaccuracy in data due to the characteristics of the process

employed in creation, collection, manipulation, and presentation of data, or

due to faulty sample design of the estimating technique.

• Biomass production: total amount of somatic tissue accumulated in a pop-

ulation during a given time period.

• Bootstrap: randomization test which involves generating subsets of the data

on the basis of random sampling with replacement.

• Catabolism: the metabolic breakdown of complex molecules into simpler ones,

often resulting in a release of energy.
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• Cohort: group of fish in a stock, which were generated during the same spawn-

ing season and are born at the same time.

• Conditional probability: the probability of one event, A, occurring given

that another, B, is already known to have occurred.

• Cross-sectional estimator: a random variable or function used to estimate

population parameters from cross-sectional data.

• Cross-sectional data: observations of many individuals (subjects, objects) at

a given point in time.

• Daily ration: amount of food consumed per individual per day.

• Ecological efficiency: the ability of the organisms at one trophic level to

convert to their own use the potential energy supplied by their foodstuff at the

trophic level directly beneath them.

• Excretion: the act or process of discharging waste matter from the blood,

tissues, or organs.

• Expected value: for continuous random variables with a density function it

is the probability density-weighted integral of the possible values. For discrete

random variables this is equivalent to the probably-weighted sum of the possible

values.

• Fitness: the relative ability of an organism to survive and transmit its genes

to the next generation.

• Gross conversion efficiency: is a measure of the ability of an organism to

convert ingested food into new tissue.

• Invariant: is a mathematical concept meaning a quantity which remains un-

changed under certain classes of transformations. In case of life history invari-

ant, the transformation is the jump from one specie to another or, alternatively,

the displacement along space described by life history parameters.

• Knife-edge-selectivity: assumption where fixed fishing mortality rate is in-

flicted on all age/length groups above a certain age/length.

xxiii



• Life history: the sequence and timing of events that occur between birth and

death.

• Lifespan: the average or maximum length of time an organism can be expected

to survive.

• Longitudinal estimator: a random variable or a function used to estimate

population parameters from longitudinal data.

• Longitudinal data: observations of a given unit made over time. Such data

can usually be represented as a time-series.

• Maximum Likelihood estimator: is a popular statistical method for fitting

a statistical model to data, and providing estimates for the model’s parameters.

• Pristine condition: is the state of a stock in a pure condition before fishing

exploitation.

• Probability density function: mathematical function which allocates prob-

abilities of particular observations occurring. The probability density function

may be used to construct a frequency distribution of certain events occurring

either discretely or continuously.

• Probability mass function: a function which gives the relative frequency of

each possible value of the random variable in an experiment involving a discrete

set of outcomes.

• Recruitment: the residue of those larvae that have: (1) dispersed; (2) settled

at the adult site; (3) made some final movements toward the adult habitat; (4)

metamorphosed successfully, and (5) survived to be detected by the observer.

• Scaling: how the structure and behaviour of a system vary with its size.

• Selectivity: ability to target and capture fish by size and species during har-

vesting operations, allowing bycatch of juvenile fish and non-target species to

escape unharmed. In stock assessment, it is conventionally expressed as a rela-

tionship between retention and size (or age) with no reference to survival after

escapement.
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• Stable age distribution: the proportions of the population in different age

classes when the rate of increase has converged to a constant.

• Steady-state condition: where all the biomass renewal is compensated with

total mortality.

• Trade-off : an exchange of one thing in return for another, especially relin-

quishment of one benefit or advantage for another regarded as more desirable.
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The von Bertalanffy Growth
Function

Throughout this thesis I use the concepts underlying the the von Bertalanffy growth

function (VBGF) to derive models of production and consumption in fish populations.

In this section I show the mathematical derivation and basic physiological principles

underpinning the VBGF.

Several equations have been proposed to describe animal growth. However, most

of them provide only a phenomenological description of growth. Of the mathematical

functions applied to fish, the VBGF is used more widely by fisheries scientists (Chen

et al, 1992). Perhaps, because it was derived from general principles underpinning

biological mechanisms, it is simple to apply and it provides a good description for the

growth of most fish species.

According to Bertalanffy (1938), growth in animals is conceived as a net result

of two opposing processes, anabolism and catabolism. Anabolic processes involve

synthesis of protein, while catabolic processes degrade it. One of the fundamental

principles of the VBGF outlines that catabolism occurs in all living cells and results

in the break down of body substances; it is therefore proportional to the mass of an

individual. Anabolism is the processes of building up and thus, it is proportional to

respiratory rate. Such general principles lead to the following differential equation for

growth processes:

dw

da
= Hw(a)d − cw(a)η (1)

where w(a) is the body mass at age a, and H and c are the proportionality constants

for anabolism and catabolism, respectively. Terms d and η are referred to as the

xxvi



allometric scaling factors for anabolism and energy cost, respectively. To make use

of this equation, it is necessary to define the terms d and η. Eqn (1) indicates the

net growth result of two processes with opposite tendencies, one increasing body

mass, the other decreasing body mass. Note this definition of Eqn (1) implies that

growth may be negative (when anabolism < catabolism) or it ceases when catabolism

is equal to anabolism. von Bertalanffy explicitly stated that the surface area limits

anabolism and thus it is proportional to a power function of length. Catabolism

occurs in all living cells of an animal and is thus directly proportional to the mass of

the individual’s body. Thus, the above equation can be now written in the form:

dw

da
= Hs− cw(a) (2)

where s refers to the limiting physiological surface of the organism. In these terms, H

can be seen as the rate of synthesis of mass per unit of “physiological surface” and c

is the rate of destruction of mass per unit of mass. This equation can be solved if we

can make an assumption of the relation between w and s. von Bertalanffy expresses

both s and w in terms of the linear dimension, length (l) of the organism. If it is

assumed that the organism is growing isometrically, then we can write:

s(l) = plι

w(l) = αlβ (3)

where p and α are proportionality constants and ι and β are power factors of physio-

logical surface and weight, respectively. In the original formulation of VBGF (Berta-

lanffy, 1938) it was considered that ι = 2 and β = 3. Therefore, growth rate in a

linear dimension is:

dw

da
=

d(αl3)

da

= 3αl2
dl

da
(4)

substituting Eqn (4) and (3) on Eqn (2) gives:

dl

da
=

Hpl2

3αl2
− cαl3

3αl2

=
Hp

3α
− cl

3
(5)
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and, setting E = Hp
3α

, k = c
3

we have:

dl

da
= E − kl (6)

the solution of which is:

l(a) =
E

k
−

[E

k
− l0

]
e−ka (7)

where l0 is the length of an organism at zero age. Now, as a → ∞, l(a) → E
k
; that

is, as the organism increases in age its length increases to an asymptote which is

the greatest possible length that the organism, under given conditions, can attain.

von Betalanffy denotes this maximum length by l∞, so that the previous equation

becomes:

l(a) = l∞ − (l∞ − l0)e
−ka (8)

the corresponding equation for growth in weight is obtained by substituting w in

terms of l in the above expression,

w(a) = w∞ −
[
(w∞ − w0)e

−ka
]3

(9)

where w∞ and w0 are the weights corresponding to lengths l∞ and l0.

Note that parameter k is proportional to the catabolism parameter c and therefore

it is proportional to the rate of destruction of body material per unit of weight

and time. Taking into account that the greater part of catabolism involves protein

breakdown (Berverton and Holt, 1957), von Bertalanffy took the rate of excretion of

some starving animals (including fish) as a measurement of their catabolic rate. Thus,

experimental estimates of k were obtained which match well with those obtained by

fitting the VBGF to length at age data. This fact, as von Bertalanffy pointed out,

is substantial evidence that parameter k has a physiological meaning. VBGF has

parameters that are fully interpretable from basic principles and thus, it is possible

to infer consumption rates from individual growth. Further analysis in this thesis will

use these first principals to propose models of consumption and production in fish

populations.
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Eqns (8) and (9) are not often used in the fishery literature. A simplified model is

usually applied by parameterizing w0 in terms of time. In this context, parameters k

and w∞ can be used to specify an age a0 at which an organism would have been of

zero age. Thus setting w(a) = 0, and a = a0 in Eqn (9) gives

w0 = w∞
(
1− eka0

)3
(10)

and substituting Eqn (10) on Eqn (9) we have

w(a) = w∞
[
1− e−k(a−a0)

]3
(11)

similarly, Eqn (8) becomes

l(a) = l∞
[
1− e−k(a−a0)

]
(12)

Figure (1) shows a diagram of the “specialized VBGF” in length.

Figure 1: “specialized” von Bertalanffy growth function in length

Eqns (11) and (12) are the original models proposed by Bertalanffy (1938) and

are known as ”specialized VBFG” because ι and β are set at specific values. Pauly
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(1981) demonstrated that Eqn (2) could also be solved for values other than ι = 2

and β = 3. Eqn (2) can be solved if we can make an assumption of the relationship

between ι and β. Temming and Herrmann (2009) demonstrated that d = ι/β in Eqn

(1). Parameter d simply represents allometric scaling of anabolism. Parameter ι is

usually restricted to 2 < ι < 3 whereas β is typically ≈ 3 in fish species. For the

analytical solution, η = 1 and parameters H, c and ι are re-parameterized in terms of

D = β(1− d), H = βkw
(1−d)
∞ and k = c/β. For details see (Temming and Herrmann,

2009). Solving Eqn (1) for these new parameters yields:

w(a) = w∞
[
1− e−Dk(a−a0)

] 1
1−d (13)

Similarly, VBGF in length is:

l(a) = l∞
[
1− e−Dk(a−a0)

] 1
β(1−d) (14)

Models in Eqns (13) and (14) are usually refered to as the ”Generalized VBGF”,

because they can be reduced to their corresponding specialized form (Eqns 11 and

12) by setting up d = 2/3 and β = 3.
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Chapter 1

General Introduction

When we think of the branching process of speciation through evolutionary time,

we realize that the process is not totally random. The set of species that we find in

any section taken across this branching process, are result of certain rules established

by natural selection, and the processes of mutation and genetic drift. Despite the

enormous complexity of ecological systems, the existence of such rules implies that at

least some ecological processes can be described by simple relationships. One subset

of these rules is known as ”allometric scaling”, which refers to those regularities seen

across-species that are function of individual body size. In a historical context, most

research efforts have addressed allometric relationships in which the response vari-

able is an individual level attribute such as metabolic rate (Kleiber, 1932), lifespan

(Charnov and Berrigan, 1990), sexual maturity (Jensen, 1996) and growth (Charnov

et al, 1993). However, allometric scaling is also common at higher levels of organiza-

tion, such as the population, community and ecosystem (Marquet et al, 2005). This

fact underscores the importance of body size at all levels of organization, and opens

the way for synthesis and integration across these levels.

At the population level, allometric scaling of biomass production and food con-

sumption have been widely used in estimating these quantities for empirical models.
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Banse and Mosher (1980) compiled empirical estimates of annual production (P )

and biomass (B) across a wide range of animal taxa, including fish, and Palomares

and Pauly (1998) compiled similar information on food consumption (Q) and B,

for fish populations. In both compilations these estimates were standardized and

re-expressed as ratios of annual production to biomass (P/B) and annual food con-

sumption to biomass (Q/B). Although derived from heterogeneous sources, these

estimates of P/B and Q/B show surprisingly regular patterns with individual body

size. For example, if P/B and Q/B are plotted against the individual body size on a

log-log scale, the points fall along a straight line with negative slope.

Not only have the regularities of allometric scaling been intensely studied in ecology,

Beverton and Holt (1959), pioneers in the study of meta-analysis in fish biology,

collected life history parameters for a large number fish species belonging to different

taxa. They pointed out three important quantities which remain constant across fish

species: the ratio between the instantaneous mortality rate (M) and the parameter

k of the von Bertalanffy growth function (VBGF), the product of M and the age

at sexual maturity (am), and the ratio between the length at maturity (lm) and

the asymptotic length (l∞). This trio was called “the Beverton-Holt life history

invariants” by Charnov (1993). ”Invariant” is a mathematical concept meaning a

quantity which remains unchanged under certain classes of transformation, and which

provides a way to identify the conditions under which two mathematical objects are

equivalent (Olver, 1995). In the case of the life history invariants, the transformation

is the jump from one species to another or, alternatively, the displacement along the

space described by life history parameters. The existence of such invariants, as in the

case of mathematics, is a reflection of a fundamental symmetry among the objects

(Charnov, 1993). Other authors (Slobodkin, 1960; Welch, 1968; Turner, 1970) have
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demonstrated that ecological efficiency, denoted by the ratio P/Q, is also, relatively

constant across species that have similar trophic habits. Thus, P/B and Q/B seem

to obey an allometric scaling pattern whereas P/Q is a life history invariant in fish

populations.

These regularities have puzzled ecologists for many decades, but we are now begin-

ning to understand the mechanisms that produce them (Brown and Gillooly, 2003).

West et al (1997) were able to explain the allometry of metabolism at the individual

level, by noting that the networks which transport material within living bodies have

a fractal-like structure. Charnov (1993) and Jensen (1996) have shown that allomet-

ric scaling that involves lifespan, sexual maturity and growth can be explained as a

trade-off between reproduction and survival. At the population level, the scaling of

P/B across species can be explained by the fact that the ratio of body size at sexual

maturity to asymptotic body size is constant (Roa and Quiñones, 1998) for individu-

als whose growth can be described in terms of the VBGF. However, the mechanisms

underpinning the allometry for food consumption described in Palomares and Pauly

(1998) and the constancy of ecological efficiency remain unknown. Here, I propose a

mechanistic explanation for these constancies based on the VBGF. I focus principally

on fish species, although the model can be easily extended to other taxa. Although,

several equation have been proposed to describe growth in fish, only few of them are

derived from fundamental principles (West et al, 2001). The VBFG is a mechanistic

growth model is conceived as a net result of two opposing fundamental processes,

anabolism and catabolism. Anabolic processes involve synthesis of protein, while

catabolic processes degrade it. Thus, the VBGF is a convenient model for processes

related to biomass production and food consumption because it generally provides

a good description of fish growth and individual food consumption can be inferred
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from its principles (Temming, 1994; Essington et al, 2001). This study, taken together

with the work of Roa and Quiñones (1998), describes a connection between allometry

in population energetics, (namely, in P/B, Q/B and P/Q) and the von Bertalanffy

principles for individual growth.

The estimation of these population energetic ratios is not just of theoretical interest.

P/B is important in population dynamics because it is the rate at which population

biomass is replaced. The estimation of Q/B is of basic importance in multispecies

models that incorporate trophic interactions (Ross, 1986). And P/Q is an important

quantity in ecosystem models because it indicates the efficiency with which a pop-

ulation transforms ingested food into biomass. According to Koziowski and Weiner

(1997) empirical patterns in allometry can be explained in two ways. Across-species

allometries may reflect some functional relationship between body size and physio-

logical attributes. However, they may also be by-product of some other underlying

mechanism or machanisms. Understanding these underpinning mechanisms may help

us connect population energetic processes such as P/B, Q/B and P/Q with individ-

ual body size. Therefore, one way to develop predictive models for these quantities is

to explicitly consider the way in which they depend on body size. This is particularly

important because existing methods for P/B and Q/B generally rely on the empiri-

cal equations derived from allometric relationships that were described above (Banse

and Mosher, 1980; Palomares and Pauly, 1998), or on ad-hoc models such as that

developed by Mertz and Myers (1998) for P/B, and by Pauly (1986) for Q/B and

P/Q. The empirical equations for P/B and Q/B are easy to apply, but they generally

lack theoretical support and they cannot account for shifts in population structure.

The ad-hoc models rely on assumption involving steady-state of the biomass (where

all renewal is compensated with mortality) and/or stable age distribution (constant
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recruitment and age-dependent mortality). They may also include several parame-

ters which cannot be interpretable in biological terms. These limitations suggest that

alternative approaches, estimating P/B, Q/B and P/Q based on size structure of

populations, should be explored.

Modelling population processes by using their size structure can permit a smooth

integration of single-species fishery models into ecosystem models. The ecosystem

models that have been developed for aquatic systems generally rely on a size-based

approach (see Jennings and Blanchard, 2004; Hall et al., 2006). This approach al-

lows single and multispecies models to be unified and generalised by adding explicit

dependence on size. This thesis has two main objectives. First, I use the physiolog-

ical principles of anabolism of the VBGF to explore the mechanisms that underpin

allometry in Q/B and the invariance of P/Q. Second, I propose predictive mod-

els for Q/B, P/B and P/Q based on population size structures. I also quantify

the uncertainty associated with these new using computationally-intensive statistical

techniques. Finally, I illustrate how these models can be applied to a number of

commercially important fish that are exploited in Chilean waters.

This thesis proposes a quantitative framework for population energetics processes

that helps to explain reported allometric scaling relationships and provides simpli-

fied methods for the estimation of P/B, Q/B and P/Q in wild populations. It is

structured into six chapters plus an appendix. Chapter 1 is a general introduction

and chapter 6 is a general discussion. Chapter 2 provides a mechanistic explanation

for the Q/B allometry in fish by using physiology of growth. Chapter 3 proposes a

model for Q/B in fish populations derived from the framework developed in chap-

ter 2, which explicitly related Q/B and population size structure. In chapter 4, I

develop a model for P/B that is derived from the allometric principles discussed in
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Roa and Quiñones (1998), which connects P/B with population size structure. This

quantitative framework for P/B also allows for across-species comparisons. Chapter

5 describes a simple model for P/Q in fish population based on body size and using

equations for P and Q derived in previous chapters. This model provides a theoretical

explanation for the constancy of P/Q across species. Finally, the appendix explains

how the growth parameters used to illustrate the models in chapters three, four and

five were estimated.
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Chapter 2

Allometric scaling of consumption
rates

Chapter based on: Wiff. R and R. Roa-Ureta. 2008.– “Predicting the slope of the allometric scaling

of consumption rates in fish using the physiology of growth” Marine and Freshwater Research. 58,

912-921

2.1 abstract

Allometric scaling has been observed in many aspects of fish biology. Empirical

studies have shown that individual and population rates of food consumption for single

and multi-species datasets show positive allometry. However, the ratio of population

consumption to biomass shows negative allometry when evaluated across species. In

this paper, a theoretical explanation is proposed that predicts the magnitudes and

signs of the allometric slopes for consumption and consumption/biomass within and

among species. It is proposed that the ultimate cause of the allometries related to

food consumption in fish lies in the physiology of growth. In the context of von

Bertalanffy growth, the allometric slopes are caused by the constraints imposed on

anabolism by the surfaces absorbing oxygen, by the volumetric relationship between

linear body size and body mass, and by a dimensionless growth parameter.

10
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2.2 Introduction

Life-history traits of fish correlate with body size. These relationships are com-

monly described as allometric scaling laws. Scaling laws might involve parameters of

mortality and growth (Pauly, 1980; Charnov et al, 1993), sexual maturity and lifespan

(Charnov and Berrigan, 1990; Jensen, 1996; Frisk et al, 2001), biomass production

(Banse and Mosher, 1980; Downing and Plante, 1993) and food consumption (Palo-

mares and Pauly, 1998). Charnov (1993) and Jensen (1996) have shown that allomet-

ric scaling that involves mortality, sexual maturity and growth can be explained as

a trade-off between reproduction and survival. Scaling of the biomass-to-production

ratio across species can be explained by the fact that the ratio of body size at sexual

maturity to asymptotic size is constant and that growth can be described by the von

Bertalanffy equation (Roa and Quiñones, 1998). In the case of food consumption

rates, empirical studies have shown that individual consumption rates vary allomet-

rically during ontogeny, with a slope close to 0.8 for some fish species (Cui, 1987;

Elliott and Hurley, 1998). Palomares and Pauly (1998) compiled estimates of con-

sumption standardised to biomass (Q/B ratio) for different populations and found

that this ratio was related allometrically to body size. What is lacking, however, is

a framework that allows these empirical relationships to be compared among indi-

viduals and populations, and that identifies the biological processes underlying these

regularities in food consumption. In this paper, we propose a quantitative framework

that predicts the slopes of the allometric scaling of food consumption for fish, both

within and among species and at the individual and population levels. We show that,

if growth is modelled according to the principle of von Bertalanffy, the underlying

processes are a direct consequence of the physiology of growth.
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2.3 The model

Von Bertalanffy’s principle states that the rate of growth of an individual, whose

size in linear dimensions is l, is determined by the difference between the build-up of

body mass resulting from energy input, which is defined by a quadratic equation in

l, and energy expenditure resulting from maintenance, which is described by a cubic

equation in l:

dw

da
∝ l(a)2 − l(a)3 = Hw(a)d − cw(a)η = Hw(a)2/3 − cw(a) (2.1)

where a is age, l(a) and w(a) are length and body mass at age a, and the other

terms are constants. Terms d and η are referred to as the allometric scaling factors

for anabolism and energy cost respectively. In the original formulation of the von

Bertalanffy growth function (VBGF) Bertalanffy (1938) d = 2/3 and η = 1. In a

more general setting, d can take a value other than 2/3, leading to a generalised

VBGF, w(a) = w∞
[
1 − exp(−Dk(a − a0))

] 1
1−d , where D = β(1 − d) being β the

power parameter of the length-weight relationship(W (l) ∝ lβ), w∞ is the asymptotic

body mass, k is the growth rate coefficient defined by k = c/β and a0 is the age at

wa = 0.

The instantaneous consumption rate (q) of an individual at weight w is related to

its assimilation rate (A) by q(w) = (H/A)wd (Temming, 1994; Essington et al, 2001).

According to Temming (1994), H can be recast in terms of the generalised VBGF as

H = βkw
(1−d)
∞ . Thus, an expression for the instantaneous consumption rate in which

all parameters have a clear biological meaning is:

q(w) =
βkw

(1−d)
∞

A
wd (2.2)
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The instantaneous consumption (Q) of a cohort of size N is:

Q(w) =
Nβkw

(1−d)
∞

A
wd (2.3)

Note that N(a) = Re−Za, where Z is the mortality rate and R is recruitment. Note

here mortality is assumed constant through ages and thus, no density dependant

variations are considered. The biomass (B) of a cohort of weight w is given by

B(w) = Nw, so the Q/B ratio is:

Q

B
(w) =

βkw
(1−d)
∞

A
wd−1 (2.4)

This equation represents the instantaneous Q/B ratio of a cohort of weight w. This

ratio is a function of individual properties in the case when all individuals composing

the cohort were born on exactly the same date and have identical growth parameters.

In that case, a cohort’s consumption (g−1) is the same as the consumption of an

individual (g−1). Cohort abundance does count, even in an instantaneous formulation,

if the individuals do not have the same birth date and/or identical growth parameters.

We address this issue later by incorporating population size structure.

Eqn (2.4) can be recast in terms of body length using a suitable length-weight

relationship, such as w(l) = αlβ, where α and β are constants. Eqn (2.4) then

becomes:

Q

B
(l) =

βkl
β(1−d)
∞
A

lβ(d−1) (2.5)

At a particular point in time (t∗), a population is composed of multiple cohorts of
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different ages, overlapping in space and time. Thus, Q/B for a population can be

determined by summing the contributions of each cohort to Q/B at t∗:

Q

B
(w)

∣∣∣∣∣
t∗

=
∑

a

βakaw
(1−da)
∞,a

Aa

w(da−1)P (a) (2.6)

where Py(a) is the proportional contribution of a cohort of age a to the population

at time t∗, Py(a) = N(a)/
∑

a N(a),
∑

a Py(a) = 1. The term Py(a) can be seen as

the age structure and it is determined by the magnitude of recruitment and the mor-

tality rate experienced by this cohort. Thus, Py(a) represents the discrete probability

distribution of the population at time t∗. If all cohorts share the same VBGF and

assimilation parameter (A), then we can accumulate the effect of age:

Q

B
(w)

∣∣∣∣∣
t∗

=
βkw

(1−d)
∞

A

∑
a

w(a)(d−1)Py(a)

=
βkw

(1−d)
∞

A
E

[
w(d−1)

]
(2.7)

where E[w(d−1)] is the expectation of w(d−1) in the population at time t∗. The equiv-

alent population Q/B in terms of body length is:

Q

B
(l)

∣∣∣∣∣
t∗

=
βkl

β(1−d)
∞
A

∑
a

lβ(d−1)
a Py(a)

=
βkl

β(1−d)
∞
A

E

[
lβ(d−1)

]
(2.8)

It is apparent that the population Q/B depends on the expected value of body

size across a population body size distribution. Note that Q/B can be estimated

from Eqn (2.7) and (2.8) given a representative sample of weight or length from a
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population. These models represent the population Q/B at a particular point in time.

However, if suitable data are available, the dynamic behaviour of Q/B can be obtained

by ordering the separate Q/B estimates in time. Point and integrated estimates of

Q/B (obtained by integrating consumption, then biomass and dividing both; see

Pauly (1986) for details) are comparable if the mortality rate remains constant across

cohorts and between discrete recruitment events.

2.4 Theoretical predictions

Our objective was to see if we could predict the observed slopes of the empirical

relationships between consumption and body mass using the equations derived in the

previous section. The slopes are: (i) log individual consumption against log body size

over a lifespan; (ii) log individual consumption against log body size among species;

and (iii) log consumption to biomass ratio against log body size among populations.

These relationships are usually used as empirical models to predict consumption in

data-poor species and they modelling may help to understand the physiological basis

for allometry scaling in consumption rates. For (i) the process is straightforward.

Isolating w in Eqn (2.2) and applying logarithms to both sides yields:

log
[
q(w)

]
= log

[
βkw

(1−d)
∞

A

]
+ dlog[w] (2.9)

Generalisation to multi-species or multi-population cases is achieved by adopting

different values of the growth (k,w∞, d) and assimilation parameters (A) for each

species/population; thus:

log
[
q(w)

]
j
= log

[
βjkjw

(1−dj)
∞,j

Aj

]
+ djlog[wj] (2.10)
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In the same manner, taking logarithms of both sides of Eqn (2.7) yields:

log

[
Q(w)

B(w)

]

j

= log

[
βjkjw

(1−dj)
∞,j

Aj

]
+ log

[
E

(
w(d−1)

)

j

]
(2.11)

If length rather than body mass is used, the result is:

log

[
Q(w)

B(w)

]

j

= log

[
βjkjl

βj(1−dj)
∞,j

Aj

]
+ log

[
E

(
lβ(d−1)

)

j

]
(2.12)

Note that the first term on the right-hand side of Eqns (2.9) to (2.12) is composed

entirely of parameters that were assumed to be size and age invariant. Our purpose

in leaving the body size in Eqn (2.10) to (2.12) is to isolate the effect of body size on

individual consumption. Thus, isolating body mass on (Eqn 2.9) yields:

∂log(q)

∂log(w)
= d (2.13)

Thus, if we plot log (consumption) against log (body mass) during an individual’s

lifespan, the slope of the relationship is an estimate of parameter d. Although this

result might appear trivial, our interest is in comparing the value of d obtained in this

way with that assumed in the original formulation of the VBGF. As we will discuss

later, parameter d is explained by von Bertalanffy in terms of dependence of mass-

specific anabolism on surface area, and thus it may be derived from basic principles

underlying the physiology of growth.

Now consider a collection of pairs of estimates of consumption and weight for each

species at a particular point during their ontogeny, let us say q∗, w∗. For technical

convenience, we assume, as Peters (1983) and Charnov (1993) did, that the transition
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from species to species can be represented as a continuum in space, so that differential

operators can be applied. In linear equations, the discrete slope (∆y/∆x) is an

approximation of the continuous slope (∂y/∂x), regardless of the value of ∆x. Thus,

Eqn (2.10) yields:

∂log(q∗)j

∂log(w∗)j

= dj (2.14)

Where q∗ is the individual consumption evaluated at a particular body mass (w∗).

The ecological implications of this solution can be interpreted as follows: if we take

individuals at a given point in their lifespan from j different fish species and plot their

consumption against weight, the slope will be the parameter d of the VBGF. As we

discuss later, d can be interpretable in terms of the basic principles which underpin

the physiology of growth.

We now consider the theoretical basis for the allometric relationship between Q/B

and asymptotic size found by Palomares and Pauly (1998) by comparing population

consumption across j species at the asymptotic body size (w∞, l∞). The first term

on the right-hand side of Eqns (2.11) and (2.12) is composed of the product between

k and w∞ or l∞. As these parameters are known to be highly correlated across

species (Beverton and Holt, 1959; Pauly, 1980; Charnov, 1993), it is convenient to

analyse the effect of one or the other in an isolated manner (Gallucci and Quinn,

1979). Charnov (1993) proposed that there was a trade-off l∞ = =k−h between

these three parameters that constrained k and l∞. In biological terms, that means

that animals that grow faster (higher k) tend to reach a smaller asymptotic size

and vice versa. Thus, it is possible to re-parameterise Eqn (2.11) and eliminate k.

Taking into account the length-weight relationship w∞ = αlβ∞, we get k = = 1
h l
− 1

h∞ ,
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k = = 1
h α−

1
βh w

− 1
βh∞ . Expressing Eqns (2.11) and (2.12) in terms of asymptotic body

size we get:

log

[
Q(w)

B(w)

]

j

=

(
1− d− 1

βh

)

j

log[w∞,j] + log

[
βj=

1
h
j α

1
βh

j

Aj

]
+ log

[
E(w(d−1))j

]
(2.15)

log

[
Q(w)

B(w)

]

j

=

(
β(1− d)− 1

h

)

j

log[l∞,j] + log

[
β=

1
h
j

Aj

]
+ log

[
E(lβ(d−1))j

]
(2.16)

Thus, the slope of the log-log plot of Q/B against w∞ or l∞ should be:

∂log(Q/B)j

∂log(w∞)j

=

(
1− d− 1

βh

)

j

(2.17)

∂log(Q/B)j

∂log(l∞)j

=

(
β(1− d)− 1

βh

)

j

(2.18)

It is possible to drop the j subscript because parameters d, β and h are relatively

constant across fish species. The parameter d is explained by Bertalanffy (1957) in

terms of the dependence of mass-specific anabolism on surface area, and Bertalanffy

(1957) assumed that d = 2/3. The specific value of β can be explained in terms of the

cubic dimensional relationship between the length and weight of nearly homogeneous

bodies; for most metazoan species β has a value of approximately three (Peters, 1983).

Note that solutions of the Eqns (2.17) and (2.18) rely on the independence between

w∞ and l∞ with E(w(d−1)) and E(lβ(d−1)), respectively. Although the assumption of

independence is debatable in this chapter two alternative considerations were taken

into account. First, E(w(d−1)) and E(lβ(d−1)) are mostly determined by size/age-

dependent mortality rate, variations in recruitment and increasing size variability
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over time (growth depensation). This highlighted the fact that population size struc-

ture is greatly dependant on the dynamics of the population rather than on the

asymptotic individual size (Pfister and Stevens, 2002). Second, (2.15) and (2.16) al-

lowed the understanding of the underlying mechanism in the scaling of Q/B reported

by Palomares and Pauly (1998) where asymptotic size was used as an independent

variable.

Pauly (1980) noted that estimates of the dimensionless parameter h cluster around

1/2. Therefore, we can drop the subscript j from the right-hand sides of Eqns (2.17)

and (2.18). With a ’typical fish’ having d = 2/3, β = 3 and h = 1/2, it is possible to

predict the slopes resulting from Eqns (2.14), (2.17) and (2.18) across a large group

of fish species:

∂log(q∗)j

∂log(w∗)j

=
2

3

∂log(Q/B)j

∂log(w∞)j

= −1

3

∂log(Q/B)j

∂log(l∞)j

= −1

However, we are interested in evaluating how variations of these parameters can

help to explain the empirical observations. Eqns (2.15) and (2.16) yield further predic-

tions. As 0 < d < 1, the expected individual body size in the population is inversely

related to Q/B. Furthermore, mortality rate is directly related to Q/B because it

tends to reduce the expected body size in the population. In addition, the same

allometric slope will hold for any body size that is a constant proportion of asymp-

totic body size. For instance, maximum body size and size at maturity are constant

proportions of asymptotic body size (Charnov, 1993), making these quantities good
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candidates for further empirical explorations. A further adjustment is necessary to

account for the allometric relationship found by Palomares and Pauly (1998) in the

relationship between Q/B and asymptotic size in fishes. Pauly (1980) argued that the

surface rule of Bertalanffy (1957) very rarely applies in fish, so that d should take val-

ues other than 2/3. To support this hypothesis, Pauly (1981) introduced the concept

of a ’physiologically limiting surface’ that determines anabolic rate. Pauly (1981) ex-

plained that in fish the synthesis of body substance is a matter of adequate food and

oxygen supply because fishes derive the energy for the synthesis of body substances

exclusively from the oxidation of energy-rich assimilates. Therefore, the physiologi-

cally limiting surface might be represented by the area of the gills, the surface area of

the gut, or by the area of any other internal surface across which assimilates and/or

oxygen have to be transported. Pauly (1981) concluded that the intrinsic properties

of fish gills make them the most appropriate candidate for the physiological limiting

surface because this is where oxygen is incorporated into the body. Pauly (1981)

gathered data on gill area and mass for 40 species of fishes and calculated an average

d value of 0.789 (s.d.=0.04). In contrast, Froese (2006) used a meta-analysis of 3929

mass-length relationships from 1773 species of fish to obtain a median value of 3.025

(95%CI=3.011, 3.036) for β. Palomares and Pauly’s (1998) compilation of Q/B and

VBGF parameters was used to estimate the trade-off parameter h in order to make

theoretical predictions of the slopes for the relationship between Q/B and asymptotic

body size. We followed Charnov’s (1993) suggestion that h has to be estimated from

a functional regression (Ricker, 1973) between log(l∞) and log(k) to obtain a value

of h = 0.700 (s.d.=0.074). Using these values for d, β and h in Eqns (2.13) to (2.18)

yields the following predictions:
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∂log(q)/∂log(w) = 0.789

∂log(q∗)j/∂log(w∗)j = 0.789

∂log(Q/B)j/∂log(w∞)j = −0.261

∂log(Q/B)j/∂log(l∞)j = −0.790

2.5 Empirical predictions

Essington et al (2001) assembled consumption rate estimates for 36 fish species/location

combinations. These results include a wide range of fish sizes with estimates coming

from bioenergetics models. The average value for d (slope of log (individual con-

sumption) v. log (body mass)) was 0.801 (s.d.=0.22). We used 23 estimates of d

for different species of fish reared under laboratory conditions and fed until satiation

(Grove and Crawford, 1980; Cui and Lui, 1990; Elliott and Hurley, 1998; Andersen

and Riss-Vestergaard, 2003) to obtain a mean value for d under laboratory condi-

tions of 0.733 (s.d.=0.16). The overall average of d from these two analyses is 0.774

(s.d.=0.202). We also compiled estimates of individual daily food consumption for

86 different species/locations of marine and freshwater fishes, chosen to include a

wide range of adult fish sizes to evaluate the ∂log(q∗)j/∂log(w∗)j prediction. Three

methodologies had been used to obtain these data: (i) laboratory studies; (ii) in situ

field studies; and (iii) indirect estimates from bioenergetics and mass balance models.

When the data came from laboratory experiments, we chose those estimates in which

fish were fed until satiation and animals that were reared under a non-stressing ther-

mal regime. For all methods, we chose estimates based on wet body mass. Overall,

the mean value of ∂log(q∗)j/∂log(w∗)j was 0.804 (95%CI= 0.742, 0.867). Further

details about these data are in Appendix (2.7). Finally, we used the compilation
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of 108 population estimates of food consumption per unit of biomass of marine and

freshwater fish reported by Palomares and Pauly (1998). The empirical slopes were:

∂log(Q/B)j/∂log(w∞)j = −0.209(95%CI = −0.285,−0.135)

∂log(Q/B)j/∂log(l∞)j = −0.747(95%CI = −0.974,−0.520)

(2.19)

Our theoretical predictions match these empirical predictions remarkably well (Fig.

2.1, Table 2.5).
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Figure 2.1: Empirical estimates and theoretical predictions of consumption for fish.
The black and dashed lines show the empirical and theoretical predictions respectively.
(a) Slopes (parameter d) resulting from a plot of log (individual consumption) v. log
(body mass); the line indicates the average slope. Estimates of d from bioenergetics
models (open symbols are the data from Essington et al (2001)) and laboratory studies
(filled symbols are the data from Grove and Crawford (1980); Cui and Lui (1990);
Elliott and Hurley (1998)). (b) log (daily individual consumption) v. log (average
body mass); the line is the least-square regression of the data (Appendix 2.7). (c) log
(population consumption-to-biomass ratio) (Q/B) v. log (asymptotic mass); the line
is the least-square regression of the data (data from Palomares and Pauly (1998)).
(d) log (population consumption-to-biomass ratio) (Q/B) v. log (asymptotic length);
the line is the least-square regression of the data (data from Palomares and Pauly
(1998)).
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2.6 Discussion

We propose a quantitative framework to analyse the scaling of food consumption by

fish within and among species at both the individual and population level. Regulari-

ties in consumption rates at these levels appear to be a consequence of the constraints

imposed by anabolism, represented by the value of d in the VBGF. Our explanation

depends on the invariance of the parameters d, β and h, and on the VBGF. It implies

that allometric scaling can be entirely explained by the physiology of growth. This

reductionist approach supports the idea that the same underlying process underpins

within- and among-species relationships.

2.6.1 Invariance of d, β and h

Although the original formulation of the VBGF set d at 2/3, consumption allometry

in fish rarely scales to this value. We found that Pauly’s (1981) gill area surface, which

sets d at ∼ 0.8 is appropriate to predict patterns in consumption rates in fish at both

intraspecific and interspecific levels. In addition, Q/B allometry variations should be

driven mostly by changes affecting the trade-off parameter h, because d and β show

only small variations across fish species. Thus, species or populations with similar

h values should fall on the same line of the Q/B-asymptotic body mass allometry.

Beverton and Holt (1959) showed that h for most fish species is in the range 0.4-

0.8. They seemed to believe that life-history invariants involving h would hold within

specific groups (e.g. Clupeiformes). Charnov (1993) added that h is inversely related

to the ratio of length at maturity to asymptotic length (lm/l∞). Populations with

similar lm/l∞ should have similar values of h and therefore similar Q/B dependence

with asymptotic body size. One explanation for the relationship that Palomares

and Pauly (1998) found with asymptotic body size is that most of the species they

analysed belonged to the same taxonomic group (order Perciformes), and should
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show little variation in lm/l∞ and therefore h. Nevertheless, the predictive capacity

of Q/B in the empirical equation of Palomares and Pauly (1998) might be improved

by applying different regressions to taxonomic groups with similar lm/l∞ values, and

therefore h. In conclusion, the regularity found by those authors is probably not a

consequence of the demography or ecology of the populations that were studied, but

rather of the invariance in: (i) the parameter of the process-limiting anabolism d;

(ii) the parameter of volumetric increase in body mass β; and (iii) the dimensionless

growth parameter h in the VBGF.

2.6.2 Growth model dependence

Our analysis is conditional on a specific model for growth. An alternative model

based on constraints to transport energy and materials to the cell was developed by

West et al (2001), although, ultimately, it is very similar to von Bertalanffy’s model.

The main difference is that the value of d is 3/4 rather than 2/3. The growth model

in West et al (2001) with β = 3 and h = 1/2 yields the following predictions for

allometric scaling in fish:

∂log(q∗)j/∂log(w∗)j =
3

4

∂log(Q/B)j/∂log(w∞)j = − 5

12

∂log(Q/B)j/∂log(l∞)j = −5

4

Debate continues (see Doods et al, 2001; Savage et al, 2004) about whether the

universal metabolic scaling factor on which d is based should be 2/3 or 3/4. However,

Makarieva et al (2005) and Kozlowski and Konarzewski (2004) have criticised the

theoretical reasoning for the choice of d = 3/4 in the growth model of West et al

(2001) on the grounds that it leads to mathematical inconsistencies. Nevertheless,



27

Economo et al (2005) recently proposed a theory to explain the relationship between

the ratio of food assimilation to biomass (I/B) and body size in fish and mammals

that is based on the model of West et al (2001). They were able to predict the I/B

slope in fish, but not in mammals. This was probably because of the rigid dependence

of the model of West et al (2001) on a value of 3/4 for d, because anabolism in

mammals appears to be surface dependent (Doods et al, 2001; White and Seymour,

2003). Growth models other than those of von Bertalanffy and West et al. have

been applied to other species groups. For example, squid grow according to Schnute’s

(1981) model (Arkhipkin and Roa-Ureta, 2005). For those species, the theory in this

paper might apply with modifications.

2.6.3 Factors affecting food consumption

A comprehensive understanding of food consumption by fish is difficult because it

depends on a great number of internal (physiological) and external (environmental)

factors (Silverstein et al, 1999). When food is continuously available, individual

consumption patterns will be limited only by digestive constraints on how much food

can be processed per unit of time Hall (1987). Feeding rates estimated under these

conditions can be considered to be the physiological maximum for a species, setting a

limit to the pressure a species can place on its food resource. Nevertheless, we did not

find significant variations between the slopes in consumption patterns for fish reared

under laboratory conditions and wild fish. This is consistent with Jobling’s (1980)

conclusion that fish fed a variety of diets appear to regulate their food consumption

to maintain a relatively constant energy intake. Grant and Kott (1999) proposed

that day-to-day variation in food intake might be independent of prey availability,

suggesting that consumption rates of wild fish might be self-regulated and ultimately

determined by factors that affect metabolic rates. Environmental temperature is one
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of the most important abiotic factors affecting nearly all biological rates (Charnov

and Gillooly, 2004), and has been identified as the most important factor shaping

consumption rate patterns (e.g. Finstand, 2005). For example, the empirical equation

of Palomares and Pauly (1998) relates Q/B to habitat temperature. However, Elliott

and Hurley (1998) found that there were no statistical differences in the slopes of the

relationship between daily consumption and body mass for fish of different body sizes

reared under 15 different temperature regimes in the range 3.8 - 21.6 oC. The pooled

value of these slopes (0.763) is close to our prediction of 0.798 (see Table 2.5).

2.6.4 Intraspecific and interspecific allometries

Most allometric studies assume that intraspecific and interspecific patterns are

virtually identical, perhaps because interspecific comparisons are abundant, whereas

empirical intraspecific allometries are scarce (Koziowski and Weiner, 1997). In the

present paper, we show the conditions under which intraspecific and interspecific

consumption allometries can be compared. Koziowski and Weiner (1997) concluded

that interspecific allometries reflect some functional relationship between body size

and physiological parameters. In this reductionist approach, interspecific allometries

are seen as the statistical results of body size optimisation under constraints. This

means that interspecific allometries per se do not reflect ecological processes in terms

of population dynamics. In a related field, Andersen and Beyer (2006) showed that

the slope of the interspecific plot of log (number of individual) on log (body size)

was solely a consequence of processes at the individual level. Their work, and that

of Koziowski and Weiner (1997) and Roa and Quiñones (1998), suggests that many

complex ecological patterns might be a consequence of basic and purely individual

phenomena. Our analysis follows the same philosophy and suggests that the allometry

in population consumption/biomass ratio is determined by processes operating at the
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individual level.

2.7 Appendix Chapter 2

Compilation of estimates of daily individual consumption and average body mass in

fish. Superscript FR and MA in each method indicate Freshwater and Marine fishes,

respectively.
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Chapter 3

Modelling food
consumption-to-biomass ratio
(Q/B)

3.1 abstract

Consumption-to-biomass ratio (Q/B) has a key importance in population ener-

getics because its determines the amount (in mass) of preys eaten by each gram

predator’s biomass. Models proposed to estimate Q/B usually used ad-hoc methods

or they rely on the empirical relationships between this quantity and other life his-

tory attributes. We propose a general quantitative framework for the estimation of

the (Q/B) for fish populations. This framework is based on an explicit dependence

of Q/B on body size, modelled with the von Bertalanffy growth function, in which

all parameters have a clear biological meaning. Four models of different complexity

that allow information from different sources to be combined were proposed. The

statistical properties of a Q/B estimator based on length structure were assessed by

resampling methods under several different scenarios of parameter uncertainty. The

potential use of these models is illustrated by applying them to a two commercial im-

portant fish species. The results were comparable to those obtained using standard
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methods. Simulation results indicated that, individual growth parameter estimates

should have a coefficient of variation of less that 15% if the estimate of Q/B is to

have negligible bias, correct coverage probabilities of confidence intervals, and high

precision. The models presented here offer a promising way to estimate Q/B for fish

populations in which, new individuals recruit to the population in a discrete event

every year and where this recruitment may vary among years.

3.2 Introduction

One of the key parameters required by ecosystem models is the ratio of a popu-

lation’s food intake rate (Q) to its biomass (B). The Q/B ratio can be seen as the

number of times a population eat its own weight during a certain period of time (usu-

ally a year). Estimating Q/B in fish populations is a laborious and difficult task that

is usually done using ad-hoc methods or empirical equations (Palomares and Pauly,

1998). Methods for estimating consumption rates at the individual level have been

well studied (see Richter et al., 2004). However, estimating population consumption

rates remains problematic for most fish species because the existing methods have

important limitations. These methods fall roughly into two categories: (i) methods,

like those of Pauly (1986), in which experimental and field data are combined to esti-

mate Q/B by integrating consumption and biomass over age. (ii) methods that use

an empirical relationship between Q/B and some body size attribute (Palomares and

Pauly, 1998). Method in category (i) rely on the assumption of a stable age distribu-

tion, a continuously reproducing population where fishing mortality is independent

of age or size. They also include parameters which cannot be interpreted biologically.

The empirical methods in category (ii) are easier to apply, but they generally lack

theoretical support and they cannot account for shifts in population structure. These

limitations suggest that complementary approaches are needed.
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The relationship between the growth rate of an individual fish and the amount of

food it ingests has been noticed by several authors (e.g. Dawes, 1931; Paloheimo and

Dickie, 1965; Condrey, 1982; Andersen and Riis-Vertergaard, 2003). The existence

of this relationship implies that food consumption can be inferred from growth rate

(Berverton and Holt, 1957; Ivlev, 1945). In this reductionist approach, food acqui-

sition is primarily limited by properties of the organism and, consequently, growth

rate is a feature of organism design. Thus, a number of authors (e.g. Temming, 1994;

Pauly, 1986; Aydin, 2004) have proposed models to estimate food consumption from

feeding experiment and size-based attributes derived from modelling growth. These

models have been widely used to explain processes at the individual level. What

is lacking, however, is a quantitative framework that connects individual processes

to population attributes. Here we propose such a framework for estimating Q/B by

modelling individual growth using the von Bertalanffy Growth Function (VBGF) and

incorporating population attributes by using population size structure. This allows

changes in Q/B due to shifts in population structure to be modelled. We propose

four different models that involve different assumptions about population dynamics.

Which model is most useful will depends on what data are available.

3.3 Formulation

In chapter 2 (section 2.3) we developed a model for instantaneous individual con-

sumption rate, based on the principles underlying the VBGF. We will now use this

model as starting point to develop an estimator for Q/B. Based on chapter 2, an

expression for the instantaneous individual consumption rate, in which all parameters

have a clear biological meaning is:
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q(w) =
βkw

(1−d)
∞

A
wd (3.1)

The instantaneous consumption rate Q(w) of a cohort of size N in which all fish have

weight w is:

Q(w) =
Nβkw

(d−1)
∞

A
wd (3.2)

The biomass B(w) of such a cohort at age can be defined B(w) = Nw, so the

instantaneous Q(w)/B(w) ratio is:

C(w) =
Q(w)

B(w)
=

βk

A

[
w

w∞

]d−1

(3.3)

If all individuals have identical growth parameters and all recruitment occurs at

one point in time, then the consumption to biomass ratio Q(w)/B(w) (hereafter

C(w)) of a cohort is identical to that of an individual, and is dependent only on

individual growth and assimilation rate. Unfortunately, Eqn (3.3) is not applicable

to real populations because fish in a cohort do not all have the same weight and fish

populations are composed of multiple overlapping cohorts.

We deal with this as follows: Let wt∗ be the body mass of a randomly selected

individual in the population at time t∗ and let ft∗(wt∗) be the probability density

function (pdf) of wt∗ . We suppose that t∗ is a pre-determined point in year y. For the

sake of brevity, we drop the t∗ and write the pdf of w at time t∗ in year y as fy(w).

C(w) is then also a random variable and, the expected value of C(w) at time t∗ in

year y can be written as:
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E
[
Cy(w)

]
=

∫ w∞

w0

C(w)fy(w)dw

=
βk

Aw
(d−1)
∞

∫ w∞

w0

w(d−1)fy(w)dw

=
βk

Aw
(d−1)
∞

Efy [w
(d−1)] (3.4)

Here we assume that the population is composed of individuals who share the same

growth parameters (t0, w∞, d, k) and assimilation rate (A). If length is treated as a

deterministic function of weight, Eqn (3.3) can be recast in terms of body length

(l) using a suitable length-weight relationship such as w = αlβ, where α and β are

parameters. Eqn (3.3) then becomes:

C(l) =
βk

A

[
l

l∞

]β(d−1)

(3.5)

where l∞ is the asymptotic body length. We can write the expected value of C(l) at

time t∗, in the year y, as follows:

E
[
Cy(l)

]
=

∫ l∞

l0

C(l)fy(l)dl

=
βk

Al
β(d−1)
∞

∫ l∞

l0

lβ(d−1)fy(l)dl

=
βk

Al
β(d−1)
∞

Efy [l
β(d−1)] (3.6)

where fy(l) is the pdf of lengths in the population at time t∗ in year y.

Eqns (3.3) and (3.5) are based on the generalized VBGF. A particular solution can

be found by using the specialized VBGF (where d is set at 2/3) and isometric growth

(where β = 3). In this case, Eqns (3.4) and (3.6) become:
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E
[
Cy(w)

]
=

3kw
1/3
∞

A
Efy [w

(−1/3)] (3.7)

E
[
Cy(l)

]
=

3kl∞
A

Efy [l
−1] (3.8)

For brevity, we will now use Cy to represent E[Cy(w)] or E[Cy(l)]. It is apparent

that estimation of Cy hinges on estimation of the expected value of the inverse of

body size (weight or length). The modelled value of Cy represents the expected

consumption to biomass ratio and its has units of time−1. When age is measured in

years (and thus k has units of year−1), Eqns (3.7) and (3.8) represent the number of

times a population consumes its own weight per year (assuming that Cy is constant

throughout the year). In order to actually implement the model described in Eqn

(3.8), it is necessary to have estimates of individual growth parameters (k and l∞),

assimilation rate (A) and the expected inverse of body size (Efy [l
−1]).

A can be estimated from the daily ration, in an analogous way to that which Pauly

(1986) used to estimate parameters defining conversion efficiency. The best way to

do estimate Cy depends on what data are available to estimate the expected inverse

body size, and we will explore this in the next section.

3.4 Modelling Efy [l
−1]

3.4.1 No sampling bias: Exact length data

If exact lengths of sampled fish are available, and all fish are equally likely to be

sampled, the mean value of l−1 in a sample of size n provides a simple, unbiased

estimate of Efy [l
−1]:

Êfy [l
−1] =

1

n

n∑
i=1

1

li
(3.9)
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where li is the length of the ith sampled fish. Thus, an estimator of Cy of a sample

at time t∗ in the year y can be estimated as:

Ĉy =
3kl∞

A

1

n

n∑
i=1

1

li
(3.10)

Variance and confidence intervals (conditional on k, l∞ and A) can be estimated using

standard results for the sample mean.

3.4.2 No sampling bias: Grouped length data

In fisheries where exact observations are not available, but there is information on the

frequencies nj in a number (j = 1, . . . , J) of length intervals spanning the observed

lengths, the data can be considered as draws from a multinomial distribution with J

classes in which the probability of a fish being in class j is given by:

pj =

cj∑
cj−1

fy(l)dl (3.11)

Here cj−1 and cj are the lower and upper bands respectively of the jth length interval.

The unknown fy(l) can be replaced by its empirical distribution function by using

the plug-in principle (Pawitan, 2001). Thus, the nonparametric maximum likelihood

estimator (MLE) of the cell probabilities in this case is:

p̂j =
nj∑J
j=1 nj

(3.12)

Using this, we can estimate Efy [l
−1] as follows:
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Êfy [l
−1] =

J∑
j=1

nj∑J
j=1 nj

l−1
j

=
1

n

J∑
j=1

njl
−1
j (3.13)

where lj is the midpoint of the jth length interval (j = 1, . . . , J). The variance of

Êfy [l
−1] can be estimated by non-parametric bootstrap (Efron and Tibshirani, 1993)

by sampling with replacement from the body length sample. Cy of a sample can be

estimated from such data as follows:

Ĉy =
3kl∞

A

1

n

J∑
j=1

njl
−1
j (3.14)

If all individuals are equally likely to be sampled, the model of the equation (3.14),

is an estimator of the population Cy. When there is length selectivity, this model is

an estimator of Cy for the fraction of the total population that is caught.

3.4.3 Parametric fy(l), under sampling bias

An estimator of Efy [l
−1] can be obtained by modelling the pdf of lengths fy(l) in the

population at the time t∗ in the year y. If we have knowledge of the functional form

for fy(l), then Efy [l
−1] can be estimated by:

Êfy [l
−1] =

∫ l∞

l0

l−1f̂y(l)dl (3.15)

where f̂y(l) is an estimator of the distribution of lengths in the population (fy(l)).

Usually we cannot estimate fy(l) directly using sampled lengths from commercial fish-

eries because these have been subject of size-biased selectivity. If we have knowledge
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of the discrete age structure, Py(a), the probability mass function (pmf) of the age a

of a randomly chosen fish in the population, fy(l) can be written as:

fy(l) =
∑

a

Py(a)Py(l | a) (3.16)

where Py(l | a) is the pdf of length l given age a in the population of fish in the

year y, and Py(a) is the age structure and can be seen as the relative abundance of

a cohort of the age a in the population. Py(a) is determined by the magnitude of

the recruitment and mortality rates experienced by a cohort up to the moment of

observation. Accurately observations of this quantity are rarely available, and thus

it is usually obtained using model-based approaches.

Substituting Eqn (3.15) in Eqn (3.16), the expected l−1 is then defined by:

Efy [l
−1] =

∫ l∞

l0

l−1
∑

a

Py(a)Py(l | a)dl (3.17)

3.4.3.1 Estimation

Suppose the ages and lengths of a random sample of caught fish from year y is available

in a matrix ny(l, a), whose elements are the numbers of fish sampled at each discrete

length l and age a. In this case ny(l, a) is multinomial:

lnL(Θ | n) =
∑

l

∑
a

ny(l, a)ln[Py(l, a | caught)] (3.18)

The pdf Py(l, a | caught) has parameters θ can be expressed as the product of three

factors: a size dependent selectivity function, Sy(l), the relative abundance Py(a) of

age-a fish, and the conditional probability Py(l | a) of being in the discrete length

interval l at age a:
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Py(l, a | caught) =
Sy(l)Py(a)Py(l | a)∑

l Py(l)Sy(l)
(3.19)

We assume that selectivity is only size-biased and has a functional form with increas-

ing selectivity-at-length, Sy(l) = [1 + e−ω(l−lh)]−1, where lh is the length at 50% of

selectivity and ω is a shape parameter that describes the slope of the curve. Py(l | a)

can be modelled as:

Py(l | a) =
1

σa

√
2π

exp

[−(E[la]− l)2

2σ2
a

]
(3.20)

where E[la] is the expected length l of a fish of age a according to the von Bertalanffy

growth function, E[la] = l∞(1 − e−k(a−t0)) and σ2
a is the variance in length-at-age.

In wild populations, σ2
a increases with age, a process known as growth depensation

(Gurney and Veitch, 2007). Here we assume the coefficient of variation (CVσ) is

constant across ages: σa = CVσ × E[la]. Here parameters to be estimated are those

related with selectivity and growth depensation, thus θ = {ω, lh, CVσ}.

3.4.3.2 Simplifying Efy [l
−1]

If the matrix ny(l, a) is not available, a simplification of Eqn (3.17) can be done

by treating Py(l | a) as a deterministic function. A first simplifying assumption is

to assume that there is no variability in the length-at-age relationship. Under this

assumption, all individuals of the same discrete age have the exactly the same length.

Thus Efy [l
−1] can be simplified to:

Efy [l
−1] =

∫ l∞

l0

l−1
∑

a

Py(a)Py(l | a)dl

=
∑

a

l−1
a Py(a) (3.21)
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where l(a)−1 is the inverse of the unique length of all individuals. This can be ex-

pressed in terms of the von Bertalanffy growth model as l(a) = [l∞(1− e−k(a−a0))]. In

this case

Efy [l
−1] =

∑
a

[l∞(1− e−k(a−a0))]−1Py(a) (3.22)

A second simplifying assumption is to model the expected l−1 assuming a stable age

distribution which implies constant recruitment over time and the same mortality

rate Zy for all recruit ages. In this case, abundance decays exponential Ny(a) =

Re−Zya, where R is a constant recruitment. In this case Py(a) = Ny(a)/
∑

a Ny(a) =

e−Zya/
∑

a e−Zya. Thus, if there is no variability in length-at-age and constant recruit-

ment, Efy [l
−1] is given by:

Efy [l
−1] =

∑
a

[
[l∞(1− e−k(a−a0))]−1 e−Zya

∑
a e−Zya

]
(3.23)

3.5 Estimators for Cy

To estimate Cy, we assuming that estimates of the von Bertalanffy growth parame-

ters and the assimilation rate A is available. At least three models from the previous

section 3.4 can be used to estimate population Cy when there is sampling selectivity.

The choice, depends on what additional data are available. First, if a random sam-

ple of age-at-length and an independent estimate of the proportion at age P (a) are

available, we estimate Cy from:

Cy =
3kl∞

A

∫ l∞

l0

l−1
∑

a

Py(a)Py(l | a)dl (3.24)
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This model allows us to considerer variation in recruitment and length-at-age (here-

after referred as “model with variable length-at-age”). If age and length data are not

available but it is possible to get an independent estimate of P (a), assuming that all

individuals of each age will have the same length, we can estimate Cy by:

Cy =
3kl∞

A

∑
a

[l∞(1− e−k(a−to))]−1P̂y(a) (3.25)

We refer to this as “model with fixed length-at-age”.

In a data-limited situation, where no information on age and length nor an indepen-

dent estimate of Py(a) is available, it is still possible to estimate Cy by assuming a

stable age distribution. This implies constant recruitment, constant mortality rate

across ages and the same length for each age:

Cy =
3kl∞

A

∑
a

[
[l∞(1− e−k(a−a0))]−1 e−Zya

∑
a e−Zya

]
(3.26)

This model is comparable to the model of Pauly (1986) because they are obtained

from the same assumptions on age distribution. Hereafter, the model of equation

(3.26) will be referred as “model under stable age distribution”.

Note that there are three sources of uncertainty in the estimator Cy: growth param-

eters, assimilation efficiency A, and E[l−1]. In the following sections we will estimate

the uncertainty in the estimator Cy by a resampling approach.

3.6 Model sensitivity

We chose Eqn (3.14) to evaluate the sensitivity of a model in which length samples

are obtained with knife-edge selectivity (when all individual above certain length or

age are selected). We implemented a simulation similar to that presented by Roa et
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Parameter Value Reference

cv size-at-age cvσ 0.0773 Wiff et al. (2006)

Growth (mean values) Wiff et al. (2007)
k(year−1) 0.186
l∞(cm) 111.45
t0(year) -0.912

Correlation coefficient rk,l∞ -0.971

Mortality M(year−1) 0.24 Ojeda et al. (1986)

Daily ration D(grams ∗ day−1) 7.28 re-estimated from Pool et al. (1997)

Table 3.1: Parameters for pink cusk-eel (Genypterus blacodes) used to generate sim-
ulated data to test the statistical properties of the proposed model.

al. (1999) using a population with known age, growth, daily ration (amount of food

consumption per fish per day), size structure and mortality rate, and therefore with

known Cy. Parameter values (table 3.1) were chosen to mimic the population of the

pink cusk-eel (Genypterus blacodes) off southern Chile. The known Cy was given by:

Cy,true =
∑
a=1

Py(a)
N(a)G(a)

B(a)

=
∑
a=1

Py(a)
G(a)

w(a)
(3.27)

which is the deterministic core of the simulation. Here, Na is the abundance of the

age group a, G(a) is the annual ration (daily ration scaled to a year), and Py(a) is

the proportion of each cohort in a particular year.

The length structure was constructed as a mixture of normal probability distribu-

tions using Py(l | a) from Eqn (3.20), each distribution representing a specific age.

The proportion of individuals at each length in year y, fy(l), can be calculated from
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the marginal distribution of lengths as in Eqn (3.16). That equation represents the

known and discrete length structure of a population (Roa et al., 1999) in which each

cohort is represented by a Gaussian length distribution (Py(l | a), Eqn 3.20). Py(a) is

the pmf of the age a of a randomly chosen fish in the population. The parameters k

and l∞ were fixed at the values shown in Table (3.1). Simulation stochasticity came

from two sources. First, using the probability integral transform (Casella and Berger,

1990) we selected a uniform random number in the interval [0,1] and mapped it back

into the cumulative distribution function of the Eqn (3.16), thus selecting a length

value for each trial. We repeated this process until we obtained a random length

distribution of pre-defined size (nsample =500, 1000, 3000, 5000, and 10 000).

Based on the life history parameters reported for pink cusk-eel (Table 3.1), Eqn

(3.16) was evaluated for ages 1-16 covering a length range of 10-1120 mm. The

second source of stochasticity came from the pair of growth parameters {k, l∞} which

were drawn from a bivariate Gaussian distribution with mean vector equal to the

population parameters and variance given by their reported covariance matrix. Three

different levels of CV , namely 5%, 15%, and 30% for k were used.

The bivariate distribution of {k, l∞} was truncated to produce positive values for

both random variables. This is equivalent to assuming a strictly positive growth

rate dl/da. Two scenarios for recruitment were evaluated to compute the proportion

of a given age in a particular year, Py(a): constant recruitment; and uniform ran-

dom variation in recruitment over the interval [0.5R; 1.5R], where R is an arbitrary

recruitment equal to 100.

The simulation described above involves six scenarios: all possible pairwise com-

binations of constant and variable recruitments and three different values of the CV
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of k. The simulation can be divided into two iterative processes. First we sampled a

random length distribution and growth parameters {kj; l∞,j} for a given sample size

in each iteration j. Second, to incorporate uncertainty associated with estimation of

{k, l∞}, the pair of growth parameters was resampled to obtain a pair {kj,i; l∞,j,i}
using the constant CV of k defined in the iteration j. The uncertainty in the length

structure on each i iteration was taken into account by using a simple non-parametric

bootstrap (Efron and Tibshirani, 1993) sampling with replacement from the vector

of body lengths. Iterations j and i were repeated 1000 and 3000 times respectively,

giving a total of 30 000 runs for each sample size. 95% confidence intervals were com-

puted using the percentile method (Efron and Tibshirani, 1993) in each j iteration.

The simulation process is illustrated in Figure (3.1).

Four statistical properties where used to evaluate the performance of Cy, following

the approach of (Roa et al., 1999). The first of these was, the proportion of times in

which 95% of the simulated confidence interval contained the true Cy,true:

coverage probability = 1− ε (3.28)

ε is the failure probability ,described by ε = 1
n

∑n
j=1 $(j), where n is the total number

of j iterations and $ is an indicator function as:

$(j) =





1, if (true− lower) < 0

1, if (upper − true) < 0

0, otherwise

Second, was the bias:

bias = resampled mean− true (3.29)
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Third, the shape of the 95% confidence interval:

shape =
upper −median

median− lower
(3.30)

Fourth, the length of the 95% confidence interval:

length = upper − lower (3.31)

In equations (3.28)-(3.31), ”true” is the value of Cy from equation (3.27), while

”lower”, ”upper”, and ”median” refer to the lower and upper bounds, and the median

of the 95% confidence interval from the resampling method described. The simulation

algorithm was written in MATLAB 6.5.
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3.7 Practical applications

To illustrate the method, we applied the models developed in the previous sec-

tion to two fish species using data from the Chilean austral zone (41o28’ - 57o00’S).

The species considered were pink cusk-eel and southern hake (Merluccius australis).

These species are intensely fished in the austral zone of Chile by a multiespecies de-

mersal fishery consisting of industrial vessels operating trawls and longlines. Length

structures were taken from the routine sampling program of the Instituto de Fomento

Pesquero (IFOP). A time series of annual average length structures (in which each

fish was measured to the nearest cm) was constructed between 1982 and 2003 by

combining data across fishing gears and genders for each species. Wiff et al. (2007)

reported differences in growth for pink cusk-eel within areas in the austral zone and so

the data were divided into two fishing zones: Northern-austral zone (41o28’- 47o00’S)

and Southern-austral zone (47o00’- 57o00’S).

Estimates obtained using the methods described here were compared with estimates

from a model proposed by Pauly (1986), in which Cy for a population with stable age

distribution:

Cy =

∫
[(dw/da)e−Zy(a−a0)K−1]da∫

[we−Zy(a−a0)]da
(3.32)

where K is the gross food conversion efficiency represented by K(w) = 1− (w/w∞)b,

and b is a constant, and from the empirical equation proposed by Palomares and

Pauly (1998):

log10(C) = 7.964− 0.204log10(w∞)− 1.965T + 0.083µ + 0.532% + 0.39ν(3.33)

where T is a temperature factor expressed as T = 1000/(T c + 273.15), and T c is

the mean annual temperature of the water body. µ is the aspect ratio of the caudal
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fin, % and ν are binary variables indicating the types of food consumed: h = 1 for

herbivores, ν = 1 for detritivores, otherwise % and ν are equal to 0.

The mean temperatures registered during oceanographic surveys of the distribution

of the species analyzed carried out between 2001 and 2004 was 5oC. A value of 1.6

of S for southern hake was taken from FISHBASE (Froese and Pauly, 2008), while

µ for eel-like fish such as pink cusk-eel is 0. Both species are piscivorous (Pool et al.,

1997) and therefore % = 0 and ν = 0.

The estimates presented are based on the specialized VBGF (in which the an-

abolism term d is set at 2/3). We also estimated Cy under the generalized VBGF

to evaluate the effect of the choice of VBGF. Parameters of the generalized for both

populations of pink cusk-eel were estimated using the age and growth data in Wiff et

al. (2007). It was impossible to get a value for the parameter d from age and growth

data (Pauly, 1981), so we fixed this parameter at d = 0.789 based on the theoretical

considerations in discussed in chapter 2 (Wiff and Roa-Ureta, 2008). We then applied

the generalized model of Eqn 3.4 with the stable age distribution assumption to both

populations.

A matrix n(l, a), containing a random sample of length and age, was available from

data routinely collected by IFOP. More details of the sampling process can be found

in Céspedes et al. (2007). Using the likelihood of Eqn (3.18), we obtained estimates of

the parameters for the functional form of P (l | a). The population value of Ĉy for pink

cusk-eel was evaluated for 1978 to 2004 for individuals between 3 and 16 years old,

and for southern hake for the years 1977 to 2005, covering individuals between 4 and

24 years old. The estimated proportions at age by year (P̂y(a)) and total mortality

Ẑy and their variances, were taken from the stock assessment program carried out by
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IFOP -see Wiff et al. (2006) for pink cusk-eel and Quiroz et al. (2007) for southern

hake. The VBGF parameters {k̂, l̂∞} and their variances and correlations, were taken

from Ojeda and Aguayo (1986) for southern hake and from Wiff et al. (2007) for pink

cusk-eel. In the case of southern hake, no variances were available and instead we

assumed a CV of 5% for each parameter. The parameters A and b parameter of

Pauly’s model were estimated from the daily ration Gd and the growth parameters

as described by Pauly (1986). Following Ivlev (1945) the food growth conversion

efficiency (K) was estimated as the growth increment per food ingested K(w) =

(dw/da)/Gd, and then A was estimated from Temming’s (1994) model (K(w) =

A[1 − (w/w∞)(1−d)]) and b was estimated from Pauly’s (1986) models (K(w) = 1 −
(w/w∞)b). Daily rations of 7.12 and 5.72 g×d−1 for pink cusk-eel and southern hake,

respectively, were re-estimated from the information provided by Pool et al. (1997).

We accounted for uncertainty in Ĉy by resampling pairs of estimates of {k̂, l̂∞} from

a bivariate normal distributions with covariance matrices given by the asymptotic

estimates of variances and correlation. Due to a lack of available information on

the variance of the parameter A, we assumed it to have no error. For Eqn (3.14),

uncertainty in Ê[l−1] was introduced using a non-parametric bootstrap (Efron and

Tibshirani, 1993), by sampling with replacement from the observed body lengths

in different samples. For the model under sampling selectivity (Eqns 3.24 to 3.26),

uncertainty was incorporated by resampling from a multivariate normal distribution

using the parameter estimates from the fitting process described for P̂y(l | a) and from

the stock assessment output for P̂y(a) and Ẑy. Uncertainty in the growth parameters

and mortality rate in Pauly’s model for Cy was accounted for as described above.

Ninety-five percent confidence intervals (CI) were obtained by the percentile method

(Efron and Tibshirani, 1993) based on 5000 iterations. The resampling algorithm was
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written in MATLAB 6.5.

3.8 Results

3.8.1 Model sensitivity

All subsequent remarks about simulation results refer to figure (3.2), unless indi-

cated otherwise, and sample size refers to number samples from the distribution of

body lengths. The CIs for Cy based on Eqn (3.14) showed a coverage probability

close to the nominal 95 % for all sample sizes and recruitment scenarios. For both

recruitment scenarios and for all sample sizes, the CI for the bias estimator included

0. For all sample sizes, the median resampling bias was negligible when the CV of k

was 5% and 15%. CI for shape included 1 in their range indicating that, on average,

the estimator produced symmetric CIs. Median shape was close to 1 for CV (k) of

5% and 15%, and tended to decrease with increasing sampling size. Median length

also tended to decrease, stabilising at samples of 3000 or greater for CV (k) of 5% and

15%. Length increased with bigger CV (k). In the scenario with the highest variation

in growth parameters (CV (k) = 30%) the median bias tended to be higher with a

larger CI and the shape parameter tended to be positive, indicating an asymmetric.

This effect was probably a result of truncating the probability distribution to produce

only positive values for growth rate. In general, the scenario with variable recruitment

showed a smaller coverage probability, higher bias and more asymmetric CI than the

constant recruitment scenario. Overall, the resampled Cy from Eqn (3.14) appeared

to be reliable for reasonable low CV (k) and it performed well under constant and

variable recruitment scenarios.
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3.8.2 Practical applications

When there was variable length-at-age (Eqn 3.24), Ĉy was 1.1 yr−1 for the northern

and population of pink cusk-eel, 0.9 yr−1 for the southern population and 0.87 yr−1

for southern hake. These values showed only small variations over the years analyzed

(Fig. 3.3). Ĉy for the caught fraction of the population increased monotonically

across years in both species. For pink cusk-eel it increased from 0.85 yr−1 in 1982 to

1.1 yr−1 in 2003 for the northern population, and from 0.73 yr−1 to 0.93 yr−1 for the

southern population (Fig. 3.3 a,b). In the case of southern hake, the increase was

from 0.59 yr−1 in 1982 to 0.64 yr−1 in 2003. In all cases, Cy when length-at-age was

fixed (Eqn 3.25) was on average 1% smaller that Cy from Eqn 3.24, although both

time series showed the same pattern of variation. Cy under the stable age distribution

assumption (Eqn 3.26) were higher than those from Eqn 3.24, and followed different

trajectories through the time.

For both species, Pauly’s model gave estimates that were on average 10-11% lower

that the stable age distribution model estimates for pink cusk-eel. In the case of

southern hake, estimates from Pauly’s model were 8% lower than those from the

stable age distribution model. Cy from the empirical equation of Palomares and

Pauly (1998) was 1.3 year−1 for northern pink cusk-eel, 1.2 yr−1 for southern pink

cusk-eel, and 1.6 yr−1 for southern hake. On average, Cy using the generalized VBGF

was 4% lower than with the specialised VBGF for northern pink cusk-eel and 2% lower

for the southern population (Fig. 3.3 b,e).
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Figure 3.3: Results of the application of the different methods for estimating Cy

for three fish populations off southern Chile. Left-hand plots include estimates for
the caught fraction, and fixed and variable length-at-age. Right-hand size include
estimates under stable age distribution and with Pauly’s model. (a,b) Pink cusk-eel
(Genypterus blacodes), northern population, (c,d) Pink cusk-eel, southern population,
(e,f) Southern hake (Merluccius australis). In each case the vertical bars represent
the 95% confidence intervals computed by resampling and dots are the median values.
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3.9 Discussion

3.9.1 Comparison with Pauly’s model

The models for estimating Cy proposed here contrast with the model proposed by

Pauly (1986) in which the Cy is computed as a ratio of integrals and age distribution

must be assumed constant in order to arrive at a tractable estimator. Pauly’s model

estimates the expected Cy at a defined point in time, assuming that age is a con-

tinuum variable (with an infinite numbers of age-classes between age-at-recruitment

and terminal age). Thus Pauly’s model applies to a continuously reproducing pop-

ulations with constant recruitment. The main differences between Pauly’s (1986)

models and those presented here are: recruitment occurs in discrete events and may

change through time; all parameter have a clear biological meaning; and there is an

explicit dependence of Cy on body size. The assumption of a continuously reproduc-

ing population in Pauly’s models does not naturally allow for any hypothesis other

than constant recruitment, unless a function relating recruitment and time is avail-

able. Although, little is known about how recruitment varies over time for most fish

stocks, the disadvantage in introducing variability in recruitment in this way is that

it implies Cy also changes continuously in time. The model described here rest on the

assumption of discrete recruitment and provide an estimate of Cy at a point in time.

This is appropriate if recruitment is discrete, as is usually the case for fish popula-

tions inhabiting temperate environments, where population dynamics is commonly

modelled by assuming that recruitment occurs at a pre-defined moment each year,

that growth parameters are the same for all individuals in the population and re-

main invariants over time, and that average total mortality across ages Z̄ is constant

within each year. These widely accepted assumptions in fishery modelling imply that

the population value for E[l−1] and Cy will be constant between recruitment events.
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Under this scenario, Cy estimates need to be updated in the same time interval as

recruitment occurs. A continuous time model is more appropriate for tropical fish

populations. In addition, many fish species at low latitudes have several reproductive

events during the year (van Leeuwen et al., 2007), resulting in an age distribution

that is almost continuous at any particular point in time.

The differences between Pauly’s model and the ones presented here will also depend

on the functional form used to define gross conversion efficiency (K), because this

determines the value of b in Pauly’s model or A in our models. In Pauly’s approach the

constant b has no clear biological meaning, whereas all of the parameters in Temming’s

gross conversion efficiency model (Temming, 1994; Temming and Herrmann, 2009) can

be interpreted in this way.

3.9.2 Interpretation of Cy time series

The populations used to illustrate our method have been intensively fished, result-

ing in a considerably reduction in the average lengths of caught fish over time (Wiff

et al., 2007). Cy is inversely related to average length, so exploitation is probably

the main reason for the monotonic increase in Cy for the caught fraction of all of the

populations we studied (Fig. 3.3). Only small differences were observed between the

variable and fixed length-at-age models. This is a consequence of the small CV for

the length-at-age in the analyzed species. Growth rate is known to vary between indi-

vidual whiting cohorts, and this may be the result from genetic differences in growth

rate potential or interactions with conspecifics (Smith and Fuiman, 2003). Mitton

and Lewis (1989) have pointed out that genetic variability is associated with fish

populations inhabiting less stable environments, with short generation time, quick

maturation, small maximum size and small eggs. However, the species considered
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here inhabit relatively a stable demersal environment and they are characterized by a

long lifespan, late maturation and large maximum size. Therefore, we would expect

low genetic variability and a small CV in the length-at-age. However, short-lived fish

species, such as small pelagics, are likely to show a much higher variability in the

length-at-age and this should be included in models of Cy, to avoid any potential

bias.

Time series of Cy estimated with stable age distribution assumption (constant re-

cruitment, constant mortality rate and fixed length-at-age) were higher and had a

different trajectory compared with those obtained when length-at-age and recruit-

ment were variable (Fig. 3.3). This is probably because the assumption of constant

mortality result in an overestimation of total mortality, because the same fishing

mortality for fully recruited fish is applied for all individual above a certain length

or age. Mortality rate has a direct effect on Cy because it tend to reduce the ex-

pected body size in the population. For both species and all methods, Palomares and

Pauly’s (1998) empirical method resulted in an overestimation of Cy. This empirical

method derives from data points estimated with a model with stable age distribution

assumption, and thus an overestimation of Cy is expected for the reasons mentioned

above.

3.9.3 Effect of the form of the VBGF

In the original formulation of the VBGF (Bertalanffy, 1938), the anabolism scaling

parameter d is set at 2/3; the resulting model is known as the specialized VBFG.

However, Essington et al (2001) compiled estimates for d, and concluded that its

value differs from 2/3 for fish species. If d is allowed to take values other than 2/3, we

have the generalized VBGF. We have used the models proposed here to investigate
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the effect of the choice of the VBGF on estimates of Cy. However, parameters for the

generalized VBGF cannot be taken directly from publish sources, because they refer

almost exclusively to the specialized VBGF. This is probably due to the impossibility

of obtaining estimates for d solely from size-at-age data (Pauly, 1981). In order to

estimate the other parameters of the generalized VBGF, d has to be fixed to a-priori

defined value. Pauly (1981) proposed that for fish the slope of the linear relationship

between gill area and body mass (0.789) can be used as an approximation for d,

and Wiff and Roa-Ureta (2008) concluded that this assumption was adequate for

modelling consumption in fish (for details see chapter 2). Thus, we set d = 0.789 in

the generalized VBGF we used for pink cusk-eel. In practice, the estimates of Cy were

hardly affected by the form of the VBGF, probably because both versions provided

equally good descriptions of the age and growth data for pink cusk-eel.

3.9.4 Modelling environmental factors

One criticism of many population models, including those related with consump-

tion, is that they do not account for environmental variation. Temperature is one

of the most important environmental variables affecting nearly all biological rates

(Charnov and Gillooly, 2004), and it has been identified as the most important fac-

tor shaping patterns of consumption (e.g. Finstand, 2005). For example, the em-

pirical equation of Palomares and Pauly (1998) relates Cy to habitat temperature.

Although in the methods develop here environmental factors are not explicitly incor-

porated, they can be considered as implicitly included because growth parameters

and length structure can vary over time. Although the general framework of the

VBGF (Bertalanffy, 1938) does not explicitly incorporate time-dependance in factors

such as ambient temperature or food availability (Xiao, 2000), it can be modified to

do so by modelling the seasonal growth (Xiao, 1999).
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3.9.5 Dependence on mortality

The estimates of Cy are highly dependant on the mortality rate experienced by

a population up to the moment of observation. Pauly (1986) made Cy explicitly

dependent on mortality by modelling a continuous age distribution. In our models,

we have used the population length-structure to estimate of Cy. This failure to

account for mortality explicitly may seem counter-intuitive, but mortality rates are

implicitly in Efy [l
−1]. Nevertheless, it is widely recognised that mortality rate is the

most important, but least well-estimated, parameter in fisheries models (Hewitt and

Hoening, 2005), and it is often one of the main sources of error in stock assessment

(Hampton, 2000). Although, it is possible to estimate Efy [l
−1] from fisheries data

without assuming any value for natural mortality, this will only provide an unbiased

estimate of Cy for the caught fraction of the population, which may not be useful

in the context of ecosystem modelling. When the length structure is size-biased, an

estimate of Efy [l
−1] for the entire population can only be obtained if the proportion-

at-age (Py(a)) is known. Alternatively, an unbiased sample of the population’s size-

structures may be available from the results of size selection experiments (e.g Fryer

et al., 2003) or by direct observation, as is done in shellfish fisheries (e.g Hartill et al.,

2005).

3.10 Conclusions

We have proposed a quantitative framework for estimating the consumption to

biomass ratio for fish populations that accounts explicitly for size. Using this frame-

work, it is possible to take account of changes in this ratio that occur as a result of

shifts in population size structure. Many models of aquatic ecosystems use a size-

based approach (see Jennings and Blanchard, 2004; Hall et al., 2006), and the models
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proposed here offer a promising avenue for extending single species fisheries models

into an ecosystem context.
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Chapter 4

Modelling production-to-biomass
ratio (P/B)

4.1 abstract

Production-to-biomass ratio (P/B) has assumed a fundamental role in the quan-

tification population and ecosystem dynamics, since this ratio determines the renewal

rate of the population biomass. Several methods have been proposed to estimate P/B,

but they usually rest on strong assumption about population dynamics or they belong

to empirical equation which attempt to predicts P/B from other more easy-to-obtain

demographic attributes. Here, a simplified model for the P/B in fish population is

proposed. The model considers an explicit dependence of P/B on individual length,

which is modelled with the von Bertalanffy growth function (VBGF). Two models

are proposed; their applicability depends on what data are available. The first model

relies on the assumption of knife-edge selectivity (when all fish above certain length

or age are sampled), while the second that there are no variation on the length-at-

age (for each age there is just one length) and a stable age distribution (constant

recruitment and mortality at age). The sensitive of P/B estimates to the different

assumptions were assessed using a simulation approach with resampling. We illustrate

the application of the model by applying it to data from 16 Chilean fish populations

83



84

which support important fisheries. In both models, P/B estimates show negative bias

when assumptions about knife-edge-selectivity and fixed length-at-age are not met.

Failures of the assumption of knife-edge selectivity may introduce significant bias, but

violation of the assumption of fixed length-at-age causes negligible bias. Application

of the model to real data indicates that P/B increases with mortality rate and the

growth parameter of the VBGF. Fast-growing fish have a higher P/B than long-lived,

slow-growing species. This model provides a simplification of the methods available

for P/B estimation that allow a detailed exploration of the dependence of P/B on

body size in fish.

4.2 Introduction

Biomass production is the total amount of somatic tissue accumulated in a pop-

ulation during a given time period (Allen, 1971). Production per unit of biomass

(P/B) is an important indicator in population dynamics because it is the replace-

ment rate of the population biomass. Widely applied methods for estimating P/B

are based on empirical relations between this quantity and body size attributes such

as observed mean or maximum body mass and average body mass at maturity (Banse

and Mosher, 1980; Downing and Plante, 1993; Randall and Minns, 2000). A more

direct approach is to use estimates of production and biomass to estimate the ratio.

Methods for estimating production can be either aggregated or structured by age,

length or another physiological variable. In aggregated models, no direct account

is taken of recruitment, individual growth, mortality rate (e.g Shaefer, 1954; Pella

and Tomlinson, 1969; Fox, 1970), while in age-structured models all these factors

are taken into account by considering the trajectory of numbers and body mass in

the population over longitudinal observations (Hamilton, 1969; Allen, 1971). Despite
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the extensive literature on production models, methods for estimating P/B have im-

portant limitations. Those derived from empirical relations are easy to apply but

they are not useful for assessing shifts in population structure due to exploitation.

Age-structured models have a solid theoretical background but they require extensive

knowledge of individual and population parameters. These limitation suggest that

alternative approaches would be useful.

Allen (1971) provided a family of equations for the expected P/B obtained by

integrating separately production, then biomass and dividing the two. Thus, data

supporting the modelling for production and biomass is explicitly accounting for time.

This kind of data is usually refereed as “longitudinal”. The resulting longitudinal

estimator of P/B in Allen (1971) have a varying degree of complexity depending on

the chosen model for mortality and individual growth. Nevertheless, no analytical

expression for P/B has been obtained with Allen’s longitudinal equation using the

VBGF. This may have limited the application of Allen’s model to fish populations,

because their growth is commonly described by the VBGF. An alternative to Allen’s

approach is to consider the cohort production of biomass, and the biomass, at a

fixed moment in time in order to model expected P/B directly (see for example

Roa and Quiñones, 1998). We call this, the cross-sectional definition approach to

estimating P/B. Cross-sectional analysis refers to those processes modelled at a

given moment in time. It has the potential to simplify the estimation of this ratio

in animal populations by adding explicit dependence of P/B on body size described

by the VBGF. Therefore, here we propose such model for estimating P/B in fish

populations where individual growth is described by the VBGF.
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4.3 Formulation

Production rate is, by definition, a rate of change of a non-negative quantity with

time. Instantaneous biomass production of a cohort of identical individuals from a

population in which recruitment is concentrated at one point in the time is:

P (a) = N(a)
dw

da
(4.1)

where P (a) is production at age a, N(a) is numerical abundance at age a (N(a) =

Re−Za where R is recruitment and Z is the mortality rate), and w is body mass.

Note here mortality is assumed constant through ages and thus, no density dependant

variations are considered. We call N(a) the “cohort size and decay term” because it

reflects size with parameter R and decay with parameter Z. The biomass (B) of a

cohort at age a can be defined by:

B(a) = N(a)w(a) (4.2)

These models are simple deterministic definitions. For individuals which are all

born on the same date, that grow at the same rate and whose number changes con-

tinuously through time, the cohort biomass is the product of individual body mass

and the number of individuals. The production of biomass is the product of the in-

stantaneous rate of individual growth and the number of individuals. The P/B ratio

of a cohort of identical individuals that are born on the same date is:

λ(a) =
P (a)

B(a)
=

1

w

dw

da
(4.3)
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This equation represents production-to-biomass ratio (or biomass turnover, λ(a)

hereafter), of a cohort at a particular age during its lifespan. This λ(a) is the individ-

ual standardized growth rate, and it does not depend on mortality rate and cohort

size only because all individuals are assumed to be exactly identical in growth, date

of birth, and survival probability (Van Straalen, 1985). Expressions for dw/(wda)

can be found from specific growth functions. Here, we rely on the VBGF to describe

the relationship between age and individual body size (see appendix 4.8). If length

is treated as a deterministic function of weight, Eqn (4.3) can be recast in terms of

body length (l) using a suitable length-weight relationship such as w(l) = αlβ, where

α and β are parameters. Then Eqn (4.3) becomes:

λ(l) = βk

[
l∞
l
− 1

]
(4.4)

where l∞ is the asymptotic length parameter of the von Bertalanffy growth model

(l(a) = l∞[1 − e−k(a−a0)]). For details on the derivation of Eqn (4.4) from Eqn (4.3)

see Appendix 4.8.

Similarly, as discussed in chapter 3 with Q/B estimator, Eqn (4.4) is not directly

applicable to real populations because individuals of a cohort are not identical and

because at any given point in time there are multiple co-existing cohorts. To make our

equations useful for analysing populations, we adopt a stochastic representation of

body length. So let lt∗ be a random variable representing body length of an individual

at time t∗, and let ft∗(lt∗) be the probability density function (pdf) of lt∗ . We suppose

that t∗ is pre-determined in the year y and for brevity drop the t∗ subscript on lt∗

and use year y instead of time t∗. We therefore write the pdf of l at the time t∗ in

the year y as fy(l). λ(l) is then also a random variable. Thus if l is continuous, the

expected value of λ(l) at time t∗ in the year y is written as:
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λy =

∫ l∞

l0

λ(l)fy(l)dl

=

∫ l∞

l0

βk

[
l∞
l
− 1

]
fy(l)dl

= βkl∞

∫ l∞

l0

fy(l)l
−1dl − βk

∫ l∞

l0

fy(l)dl

= βk

[
l∞Efy

[
l−1

]− 1

]
(4.5)

where l0 is usually the length at born and E is the expectation operator. As mentioned

in the introduction, this approach contrasts with Allen’s (1971), in which λ is com-

puted as a ratio of integrals and in which case, the cohort size and decay term (N(a))

becomes explicit in the formulation. Allen’s ratio-of-integrals approach and related

methods are longitudinal, whereas our integral-of-ratio approach is cross-sectional. λ

modelled here has units of time−1 which is consistent with the definition of biomass

turnover.

Eqn (4.5) represents the expected biomass produced per gram of population biomass.

It is apparent that estimation of λ depends on estimation of the expected value of

the inverse of body size. If parameters β, k and l∞ are assumed to be known, then

data enters the estimation of λ in Eqn (4.5) via Efy [l
−1] exclusively.

Since the estimator for Cy (chapter 3) and λy have the same dependence on expected

length, any of the models described in chapter 3 for Efy [l
−1] may be applied here. We

chose two of these possible estimators. First, we use the model for Efy [l
−1] with no

sampling selectivity for non-grouped data (section 3.4.1) to evaluated the assumption

of knife-edge selectivity (where all fish are caught after a certain length or age) on the

estimation of λy. In order to produce the simplest possible estimator of λy, we chose

the model for Efy [l
−1] with stable age distribution (fixed length at age and constant
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recruitment) in section (3.4.3). Accordingly, the first model is:

λ̂y = βk

[(
l∞
n

n∑
i=1

1

li

)
− 1

]
(4.6)

where li is the length of the ith sampled fish and n is the sample size.

For the model of Eqn (4.6) to be implemented, it is necessary to have a random

sample of li from the population, estimates of individual growth parameters k and

l∞, and β from the length-weight relationship. Eqn (4.6) is an unbiased estimator of

λy if the lis are a random sample of lengths in the population. This assumption may

be violated in fish populations, because usually the length sample is size-biased by

the gear selectivity. Thus, to implement the model of Eqn (4.6) the length sample

must not be biased by selectivity or at least, if there is selectivity, it should be a

knife-edge selectivity (when all fish above certain length or age are sampled). In this

case inferences concern only fish of selected ages.

The second model proposed under the assumptions of fixed length-at-age and stable

age distribution. In this case Efy [l
−1] is the same than in Equation (3.24) and thus

λy can be expressed as follows:

λy = βk

{ ∑
a

[ 1

(1− e−k(a−a0))

e−Zya

∑
a e−Zya

]
− 1

}
(4.7)

This estimate is deterministic because it assumes no variation in length-at-age, re-

cruitment, nor mortality.

4.4 Simulation Tests

In this section we evaluate the potential bias caused by violation of two assumptions

of the model. First, we evaluate the bias from violation of the assumption of fix
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length-at-age of the model of Eqn (4.7). Second, we evaluated bias due to failure of

the assumption of knife-edge selectivity on the model of Eqn (4.6).

27 populations of different lifespans were simulated. Life history parameters defin-

ing these populations were obtained from functional form constraining the relationship

between two life history parameters (trade-off equations) reported for fish as follows:

First, populations from 4 to 30 years old of maximum ages (a∞) were generated.

Then, for each population the natural mortality rate (M) was calculated as function

of a∞ by M = 3/a∞ (Hewitt and Hoening, 2005). Growth coefficient k was calculated

as k = (2/3)M (Charnov, 1993). Asymptotic length (l∞) was deducted from k using

the trade-off equation reported by Charnov (1993) for fish as l∞ = =k−h, where =
and h were set up at 3.5 and 0.5 respectively. For simplicity, in all populations we

assumed constant recruitment and constant mortality (M = Z), a0 = 0 and β = 3.

For each population true λ was calculated by:

λtrue = βk

[
l∞Etrue

[
l−1

]− 1

]
(4.8)

where the true expectation was:

Etrue[l
−1] =

∫ l∞

l0

l−1
∑

a

Py(a)P (l | a)dl (4.9)

where Py(a) = e−Ma/
∑

a e−Ma. P (l | a) was modelled as a Gaussian distribution of

length-at-age, in the same manner as it was modelled in chapter 3, Eqn (3.20). Here

the standard deviation of the length-at-age σa is assumed to have a linear relationship

with the expectation of the length-at-age (E[la]) where the coefficient of variation,

CVσ is the constant of proportionality.
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The relationship between CVσ and other life history parameters is poorly known

in fish populations. This makes it difficult to define a trade-off equation a priori

for CVσ, as we did above for other parameters. However Mitton and Lewis (1989)

pointed out that populations with shorter lifespans (smaller maximum size) show

higher variability in sizes between individuals of the same cohort, in comparison with

populations with longer lifespans. Thus, CVσ is inversely related with a∞ across pop-

ulations. Here, we modelled the trade-off between CVσ and a∞ by a linear equation

as CVσ = φ/a∞, where φ is a proportionality constant.

We evaluated the bias (in percentage) on the assumption of fixed length-at-age by

the following equation:

bias1 = 100

[
λfixed − λtrue

λtrue

]
(4.10)

where λfixed refers to λ with fixed length-at-age of the Eqn (4.7). The value of the

constant φ is unknown and therefore we evaluated bias of the Eqn (4.10) under six

values for φ namely 0.5, 1, 1.5, 2, 2.5 and 3.

To evaluate the knife-edge selectivity assumption we generated a population size

structure for each one of the 27 population described. The pdf of length in each

population was modelled by f(l) =
∑

a Py(a)P (l | a) under the same assumptions de-

scribed above. For simplicity, φ was set at 2 for all populations. Using the probability

integral transform (Casella and Berger, 1990) we selected a uniform random number

in the interval [0,1] and mapped it back into the cumulative distribution function of

f(l), thus selecting in each trial a length value. Each length sample was chosen by

applying a selectivity function. We repeated this process until we obtained a random

length sample of 1000 individuals. Using this length sample we evaluate Eqn (4.6)

generating a λ value under selectivity (λs) for each iteration. We repeat this process
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for 1000 iterations. Then the median value of λs was computed for each one of the

27 population described. Then bias was computed as:

bias2 = 100

[
median(λs)− λtrue

λtrue

]
(4.11)

The simulated selectivity was assumed to be size-biased only and it had a functional

form with increasing selectivity-at-length, S(l) =
[
1 + e−ω(l−lh)

]−1
, where lh is the

length at 50% of selectivity and ω is a shape parameter that describes the slope

of the curve. For each population, lh was fixed to E[l(a1)], where l is the length

described by the VBGF and a1 is the age-at-first capture. a1 increased with a∞ as

follows: populations were separated into groups of 3 according to their lifespan. Thus

9 groups were created for a∞ of {4, 5, 6} to {28, 29, 30}. For each one of these group

the same a1 was assigned. Group of a∞ of {4, 5, 6} a value of a1 = 2 was assigned.

Then, a1 had increment of 1 in each one of the group of a∞. Thus, the last group of

a∞ of ages {28, 29, 30} received a a1 = 10. bias2 was evaluated for each population

under 6 scenarios for ω parameter namely 0.05, 0.1, 0.2, 0.3, 0.4, 0.5.

Thus, for bias1 and bias2 a total of 6 × 27 scenarios were evaluated each time, de-

pending on the lifespan and φ or ω value chosen.

4.5 Applications

We illustrate the application of the model in Eqn (4.7) by applying it to 16 pop-

ulations from Chile which support important fisheries. These populations are com-

posed of 13 species of demersal and pelagic fish with different life history strategies.

Although the model was proposed in principle for fish species, we also show its ap-

plicability by estimating λ for 3 species of crustaceans. The model was applied in

two ways. First, we estimated the population λ with no fishing mortality (Z = M)
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covering individual of ages 1+. These results were then compared with estimates for

a ’typical fish’ having k = (2/3)M , β = 3 and a0 = 0.

In order to evaluate the effect of the fishing exploitation on λ estimates, we compiled

yearly age-averaged fishing mortality estimates (F̄ ) and then we computed λ under

exploitation (Z̄ = M + F̄ ), between the a1 and a∞ reported in each population. Only

the last 5 years of average fishing mortality data in each population were used. A

detail of the database used is in Table (4.1)

We also analysed four cases where the data in Table (4.1) were artificially impover-

ished to evaluate the sensitivity in the estimates of λM from Eqn (4.7). To compute

λM , information about VBGF, M , β and a∞ is needed. Case 1 represents the situa-

tion where all parameters needed to compute λM are unknown. Case 2,3 and 4 each

assuming a further parameter is known. Case 2 is the same as case 1 but β is now

known. Case 3 is the same as case 2 but M is now known. Case 4 is the same as case

3 but a∞ is now known. When each of these parameters were considered unknown, we

estimated them as follows. We used the procedure described in Froese and Binohlan

(2003) to obtain estimates of the VBGF. Froese and Binohlan (2003) is an empirical

method to derive preliminary parameters of the VBGF from other known life history

traits such as maximum length (lmax) and age at first maturity (am). Thus, for each

species in Table (4.1), parameters of the VBGF were obtained from lmax and am avail-

able in the IFOP database. For case 1, only information on lmax and am was available

to obtain an estimate of λM . Once the VBGF was obtained, a∞ was computed as the

age where 95% of l∞ is reached, M was derived from the trade-off equation described

by Charnov (1993) where M = (3/4)k. For case 1, β was fixed to 3 for each species

according to Froese (2006). Bias in the estimates of λM , when using real and derived

parameters for the VBGF was computed for each case scenario and species. The bias
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was computed as the difference (in proportion) between estimates of λM using real

and simulated data.

4.6 Results

4.6.1 Bias evaluation

A negative bias was found when the assumption of fixed length-at-age was used

(bias1, Fig. 4.1a). The magnitude of the bias decreased with lifespan for any values

of φ assumed. However, bias was also dependent of the value of φ applied. When φ

was higher there was a relative higher CVσ on the length-at-age relationship for each

population simulated and thus the model became more biased. Bias was higher in

species with relatively short lifespan. For populations with maximum ages between

4 and 10 years, there was a bias between -7 and -3% and for species with lifespans

between 11 and 30 years, bias was almost negligible with values in the range of -2 to

-0.5%.

We found also a negative bias when evaluating failure of the assumption of knife-

edge selectivity (bias2, Fig. 4.1b). When the selectivity function increased slowly

across lengths, for ω = 0.05 and ω = 0.1, the bias was relatively constant across

populations with values around -6% and -11%, respectively. When individuals were

selected faster according to length (ω > 0.1) the magnitude of the bias decreased

with lifespan. For ω > 0.1 and maximum ages between 4 and 15 years old, bias was

around -25 and -10, respectively. On the other hand, for maximum ages older than

15 years, variations in bias between ω values became smaller, ranging between -6%

and -11%.
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Figure 4.1: Estimated bias of the model proposed. In both cases the dashed line
indicates an unbiased estimation. (a) Evaluating the assumption of fix length-at-age
(bias1). φ is the proportionality constant between coefficient of variation of the length-
at-age (CVσ) and maximum age (a∞). (b) Evaluating the assumption of knife-edge
selectivity (bias2). ω is the slope parameter of the selectivity function.
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4.6.2 Applications

Production-to-biomass ratio in populations not subject to exploitation (λM) in-

creased when M and k values are higher (Fig. 4.2). For fast-growing fish with high

natural mortality rate such as anchoveta and araucanian herring λM was 1.508 and

1.119 year−1, respectively. These values were high in comparison long-lived, slow-

growing species such as orange roughy and splendid alfonsino where λM was 0.242

and 0.347, respectively (Table 4.1). Crustaceans show higher λM in comparison with

fishes of similar life history parameters (Table 4.1). In general, species agreed well to

the theoretical line described for M , k and λM (Fig. 4.2).

Production-to-biomass ratio estimated with total mortality (λZ) was high in fast-

growing species, although its decrease was not as clear as in λM when moving to

slow-growing species (Fig. 4.4). λZ was bigger than λM in species where age-at-

first capture (a1) is 1, such as anchoveta, araucanian herring, patagonian grenadier,

swordfish, yellownose skate, splendid alfonsino and southern hake (Fig. 4.4). Bigger

differences between λZ and λM were produces in species with low age-average fishing

mortality, such as yellow and red squat lobster and orange roughy (Table 4.1, Fig.

4.4).
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Figure 4.2: Estimation of production-to-biomass ratio with no fishing mortality (λM)
according to the von Bertalanffy growth parameter (k) and natural mortality (M)
for the 16 species describes in Table (4.1). Solid line indicates the λ of a ’typical fish’
(k = (2/3)M , β = 3, a0 = 0). Numbers inside each symbol indicate the species: (1)
O. roughy (2) S. hake (3) P. toothfish (4) S. alfonsino (5) J. mackerel (6) Cardinalfish
(7) Y. skate, (8) Swordfish (9) P. cusk-eel (10) Y.S. lobster (11) P. grenadier (12) R.
shrimp (13) C. hake (14) R.S. lobster (15) A. herring (16) Anchoveta.
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Results for the sensitivity analysis of artificially impoverished data sets are shown

in Figure 4.3. The lack of different pieces of information needed to estimate λM

produces a different behaviour across species. For the scenario where all pieces of

information were unknown (case 1), estimates of λM were highly affected in species

such as southern hake, splendid alfonsino and swordfish. In these species, λM values

were twice as large as those estimated with the real parameters. On the other hand,

estimates of λM in species such as cardinalfish, common hake and araucanian herring

were almost unaffected when impoverished data sets were used. For all crustacean

species impoverished data sets produced underestimation of λM . When knowledge of

parameters was increasingly improved (case 1 to case 4), bias decreased accordingly

in most fish species. Conversely, in crustacean species an opposite bias behaviour is

observed; when information is improved the bias increased.
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Figure 4.3: Sensitivity analysis for impoverished data sets. Case 1 represents the
situation where all parameters needed to compute λM are unknown. Case 2,3 and 4
each assuming a further parameter is known. Case 2 is the same as case 1 but β is now
known. Case 3 is the same as case 2 but M is now known. Case 4 is the same as case
3 but a∞ is now known. (a) Production-to-biomass ratio with no fishing mortality
(λM). The numbers indicate the cases and the circles and solid lines represent the
real data estimates. (b) Relative bias for each case scenario.
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Figure 4.4: Estimation of production-to-biomass ratio (λ) for the 16 species described
in Table (4.1). Open symbols indicate estimation with age-average total mortality
(λZ) for the last five years of available data in each species (Table 4.1). Filled sym-
bols represents production-to-biomass ratio estimates with no fishing mortality (λM).
Species on the abscissa are sorted according to their growth rate parameter k (in
parenthesis).
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4.7 Discussion

Production-to-biomass ratio is an important quantity in assessing harvested pop-

ulations because it determines the population capacity for exploitation and recovery

(Peters, 1983). In theory, to maintain a stock under steady-state condition, all mor-

tality must be compensated by the total renewal and thus λy = Zy, (Allen, 1971).

Consequently, a λy estimator modelled in this manner is equivalent to the total mor-

tality rate that could have been applied in a given year that would have left a stock

at equilibrium. Therefore, production-to-biomass ratio is directly proportional to the

mortality rate. Indeed, short-lived species that are characterized by high natural mor-

tality rate and high values for the individual growth parameter (k) will present high

production to biomass ratio as demonstrated here (Fig. 4.2). This is also supporting

a well known idea that short-lived species can support more fishing mortality in a

sustainable way in comparison with slow-growing species (Beddington and Kirkwood,

2005). Here, we explored the effect of introducing fishing mortality on λy for species

with different life histories. Although fast-growing species show high λy of the ex-

ploited fraction (Fig. 4.4), the effect of fishing mortality is not easily interpretable.

For the species analyzed, fishing mortality does not necessarily reflect the population

renewal because it is regulated by a total allowable catch according to the Chilean

general law of fishing and aquaculture which does not require λy = Zy. Each species

has it own age at first capture with makes that λZ is aggregated over a different age

interval. Nevertheless, the model presented here could be useful as an independent

indicator of the total mortality needed to maintain a stock under steady-state (where

all renewal is compensated by mortality). Our methods might also be useful for stocks

which are not closely monitored (e.g. Paramo and Roa, 2003) or whose exploitation

is incipient.



103

For those species where the data available is particularly poor, estimates of λM can

be obtained using only information on lmax and am. In these cases, estimation of λM

can be divided in three steps: first, parameters of the VBGF can be derived from

lmax and am using the method described in Froese and Binohlan (2003). Second,

values for M and a∞ can be derived from parameters of the VBGF. Third, β of

the length-at-weight relationship can be either fixed to 3 or estimated by empirical

method described in Froese (2006). Bias in λM estimates using such a procedure

may vary across species. For the species of interest, bias in λM is highly dependent

on how reliably the growth parameters are estimated by the method in Froese and

Binohlan (2003). Such method was proposed for a ’typical fish’ inhabiting temperate

waters. This may be the reason why the data-poor case produces considerable bias in

fish species such as southern hake, splendid alfonsino and swordfish which are species

with particular life histories. On the other hand, estimates of λM for crustacean

species were underestimated in all data-poor cases presented. Thus, we think Froese

and Binohlan (2003) method can be a useful manner to obtain parameters needed

to estimate λM in data-poor situations, as long as the study species behaves as a

’typical’ temperate fish. Nevertheless, the application of the Froese and Binohlan

(2003) method may cause severe bias for crustaceans and fish with these particular

life histories.

4.7.1 Longitudinal vs cross-sectional estimators

Models proposed here for λ are based on observations at a given point in time.

Models for such observations are usually named as cross-sectional estimators. His-

torically, most of the models proposed to estimate λ are longitudinal, which mean

they attempt to model processes occurring on the time scale. This implies that

production-to-biomass ratio models have included time explicitly (Allen, 1971) or
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implicitly (Mertz and Myers, 1998). Predominance of longitudinal models for λ prob-

ably obey to the axiom summarized by Berverton and Holt (1957) in which changes

in biomass production are studied during a period of time in a form of a conservation

equation which counted new individuals and individual growth as positive terms and

natural mortality and catch as negative terms.

In practice, the incorporation of time is generally not feasible in estimating biomass

production, because model are usually implemented using time-average information

of dynamics processes. Thus, longitudinal models for λ usually use time-averaged

number-at-age and growth-at-age (Mertz and Myers, 1998). Production is a rate

quantity and thus it can be defined over time by longitudinal models. However,

biomass is not a rate quantity and therefore it only admits a point in time defini-

tion and thus it can be naturally defined by cross-sectional models. Longitudinal

models for λ necessarily need to treat separately production and biomass by turning

biomass on an longitudinal quantity by using the average biomass over a time period.

Time introduces an extra complication in modelling λ because then production and

biomass need to be computed separately before calculating their ratio. Considering

λ at a point in time however, the cohort size and decay term cancel out during in-

termediate stages of analysis. The analysis then is simplified, and the cross-sectional

population information is recovered by the expected inverse body length in the pop-

ulation (E[l−1]) at some particular point in time. Although this approach provides

a non-dynamical estimation for λ, when available, the dynamical behavior can be

recovered by simply ordering in time the separate estimates.

Under some assumptions, longitudinal and cross-sectional estimators for λ are com-

parable. For a population where recruitment occurs on discrete events, say every ∆t

time period, size structure will remains constant inside this ∆t in case that individual
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growth parameters and mortality rate are constant and age-invariant for ∆t. Under

these particular conditions, λ will remain constant between recruitment events at any

point in time during this ∆t, basically because growth parameters and Efy [l
−1] will

be constant between recruitment events. Thus, if Efy [l
−1] is constant for ∆t only one

observation is needed to get the expected value of λ during ∆t.

Note that production and well as biomass will change between recruitment events

when they are analyzed separately. Both quantities depend on the number of individ-

ual at age which is certainly a quantity which decreases between recruitment event.

In closed populations (with no immigration/emigration) increases of abundance are

only giving by recruitment at the beginning of the year, but inside recruitment event

it will be noted a decreased in abundance due to mortality. Thus when analyzed

separately, production and biomass are quantities that change continuously inside re-

cruitment events. Considering λ at a point in time however, the cohort size and decay

term cancel out during intermediate stages of analysis, when equations derived apply

to individuals and single cohorts as demonstrated by Van Straalen (1985). Thus, in

cross-sectional models, λ does not dependent on abundance. It is only depending in

the expectation of the inverse body length.

4.7.2 Model assumptions

To implement the model presented here, an estimate of the von Bertalanffy growth

parameters, length-at-weight parameter (β) and the expected inverse body length

(E[l−1]) are required. In the context of fisheries science, growth-related parameters

are relatively easy to obtain, while unbiased estimates of E[l−1] may not be readily

available in data-sparse situations. Here, we propose two ways of estimating E[l−1].

First, we proposed a design-based approach where E[l−1] can be estimated simply



106

and unbiasedly from a sample of lengths in the population. Second, a model-based

approach was proposed by modelling the length distribution in the population. The

first approach, relies on the assumption of knife-edge selection in the fisheries at the

length at first capture (lc). One can thus sample the commercial catch to estimate

E[l−1] for those fish above lc. In this approach, we may not need to have knowledge

of population processes such as recruitment, total mortality and variability of the

length-at-age, because they are implicity on the length sample. This approach, may

be important in the context of fisheries science where estimation of such processes

are particularly difficult to obtain. Nevertheless, if the fishing gear is size-selective,

biased estimates of E[l−1] (and thus biased estimates of λ) may be obtained. Unbiased

samples of lengths may be available from research surveys (Gedamke and Hoening,

2006). If the survey fully selects individuals larger that a certain length, say lc, and

the fish recruited to the fishery are bigger or equal to lc, one can simply compute

unbiasedly (E[l−1]) for those fish in the survey above lc.

For those cases where gear selectivity plays a key role in determining the length

sample, a second approach for modelling E[l−1] was proposed. In order to ensure

to a tractable equation for E[l−1], the size distribution was modelled by assuming

stable age distribution (constant recruitment and mortality across ages) and fixed

length-at-age. Both these assumptions are routinely used in ecological modelling as

the mathematics is simple and they imply an important reduction on the parameters

needed to implement the models. Nevertheless, stable age distribution is rarely real-

ized in nature, except perhaps as an average over several generations (Charnov, 1993),

because recruitment and mortality are likely to vary with time. Although recruitment

variability will not cause bias in the average size in the population (Gedamke and

Hoening, 2006), it may lead to autocorrelated errors in a time series of estimates.
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A more realistic approach is to assume that recruitment varies with time. Variations

in recruitment can be easily introduced if results of an stock assessment models are

available. In other cases, a stock-recruitment (S-R) relationship is needed. There

is a large literature relating to stock size and recruitment in fish populations. Two

popular models have been widely used to define the S-R relationship namely the

Beverton-Holt (Berverton and Holt, 1957) and Ricker models (Ricker, 1954). If pairs

of estimates of stock size and recruitment are available, S-R relationship can be easily

fitted to this data and thus a functional form between stock and recruitment is known.

If such data is available, variation in recruitment can be easily inferred from stock

size and thus λ estimates under variable recruitment can be computed.

In many cases, however, such data are absent and it is then difficult to obtain

realistic values for parameters of the S-R functional forms. An alternative is to

reparameterize the S-R relationship in terms of pristine condition (before any fishing

mortality has been applied in the population) on stock size and recruitment as done by

Francis (1992) in case of Beverton-holt’s model and Cubillos (1994) for Ricker model.

The advantage of these formulations depends on one dimensionless parameter, namely

“steepness”, which characterized the shape of the S-R relationship and it is unaffected

by the actual stock size. Thus, density dependent variability in recruitment can be

parameterized in terms of the steepness parameter. Although, in practice, steepness

is a difficult parameter to estimate reliably, it has been shown to have a relationship

with other life history attributes such as the VBGF (Beddington and Kirkwood, 2005).

Thus, is possible to “guess” a value for steepness from other more readily obtainable

parameters. Beddington and Kirkwood (2005) have demonstrated that steepness

parameter can be used to relax the assumption of constant recruitment in case of

data-poor situations. A similar approach can be implement to extent the model
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proposed here for case where recruitment is allow to vary with density-dependant

processes.

4.8 Appendix 1 Chapter 4

How to derive Eqn (4.5) from Eqn (4.4)

Here we will show how production to biomass ratio (P/B) in age: P (a)
B(a)

= 1
w(a)

dw
da

(Eqn 4.3) can be expressed in terms of length as: P (l)
B(l)

= kβ( l∞
l
− 1) (Eqn 4.4).

The von Bertalanffy growth model in mass is described by:

w(a) = w∞
[
1− e−k(a−a0)

]β
(4.12)

where k is the growth rate coefficient, w∞ is the asymptotic weight, a0 is the age at

w = 0 and β is the exponent of the length-weight relationship.

Finding the derivative dw/da by the chain rule:

dw

da
= βw∞

[
1− e−k(a−a0)

]β−1
ke−k(a−a0) (4.13)

Solving the growth function in Eqn 4.12 for e−k(a−a0) yield:

w(a)[
1− e−k(a−a0)

] = w∞
[
1− e−k(a−a0)

]β−1
(4.14)

and

1−
[

w(a)

w∞

] 1
β

= e−k(a−a0) (4.15)
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therefore, we can write dw/da in terms of:

dw

da
= kβ

w(a)[
1− e−k(a−a0)

]
(

1−
[
w(a)

w∞

] 1
β

)
(4.16)

Thus, P/B of a cohort can be expressed in terms of body weight as:

P (w)

B(w)
=

kβ[
1− e−k(a−a0)

]
(

1−
[

w

w∞

] 1
β

)
(4.17)

by assuming that length is describing by the von Bertalanffy growth function (l(a) =

l∞(1 − e−k(a−a0))), and the body mass being a deterministic function of mass by

w(l) = αlβ, P/B can be written in terms of the body length as:

P (l)

B(l)
= kβ

l∞
l

(
1−

[
αlβ

αlβ∞

])
(4.18)

= kβ

(
l∞
l
− 1

)
(4.19)
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4.9 Appendix 2 Chapter 4

References for parameter in table 4.1.

References by species are organized by (a) Natural Mortality, (b) Fishing Mortality (c)

weight at length parameter (d) Growth parameters.

(1) Orange roughy (Hoplostethus atlanticus) (a,d) Gili et al (2000) (b) Costa-

Feltrim (2008a) (c) Lillo et al (1999). (2) Southern hake (Merluccius australis) (a)

Ojeda et al. (1986) (c,b) Ojeda and Aguayo (1986) (d) Quiroz et al (2007) (3) Patag-

onian toothfish (Dissostichus eleginoides) (a,b) Wiff et al (2006a) (c,d) Oyarzun et

al (2003) (4) Splendid alfonsino (Beryx splendens) (a,d) Gili et al (2000) (b) Wiff

et al (2006b) (c) Lillo et al (1999). (5) Jack mackerel (Trachurus symmetricus mur-

phy) (a,b) Serra and Canales (2007) (c) Froese and Pauly (2008) (d) Kochkin (1994).

(6) Cardinalfish (Epigonus crassicaudus) (a,c,d) Galvez et al (2000) (b) Wiff et al

(2005). (7) Yellownose skate (Dipturus chilensis) (a) Quiroz and Wiff (2005) (b,c)

Wiff and Quiroz (2007) (d) Licandeo et al (2006)(average value between genders). (8)

Swordfish (Xiphias gladius) (a,d) Cerna (2009) (b,c) Serra et al (2007). (9) Pink

cusk-eel (Genypterus blacodes) (a) Ojeda et al. (1986) (b,c) Wiff et al (2006c) (d)

Wiff et al (2007). (10) Patagonian grenadier (Macruronus magellanicus) (a,b)

Canales et al (2006) (c,d) Chong et al (2007). (11) Common hake (Merluccius

gayi) (a) Arancibia and Cubillos (1993) (b) Canales et al (2007a) (c) Froese and

Pauly (2008) (d) Aguayo and Ojeda (1987) (average value between genders). (12)

Araucanian herring (Strangomera bentincki) (a,c) Costa-Feltrim (2008b) (d) Cu-

billos et al (2001). (13) Anchoveta (Engraulis ringens) (a,d) Canales and Leal (In

press) (b) Canales et al (2007b) (c) Froese and Pauly (2008). (14) Yellow squat lob-

ster (Cervimunida Johni) (a,b) Montenegro et al (2008a) (c)Acuna et al (1998) (d)
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Arancibia et al (2005) (average between genders). (15) Red shrimp (Heterocarpus

redii) (a,b) Montenegro and Zilleruelo (2008) (c) Acuna et al (1998) (d) Arancibia et

al (2005) (average between genders). (16) Red squat lobster (Pleuroncodes mon-

odon) (a) Quiroz et al (2006) (b,c) Montenegro et al (2008b) (d) Arana (1990).
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57-67.



120

Wiff, R., Quiroz, J.C., and Ojeda, V. (2006a). Investigación evaluación de stock y

CTP Bacalao 2006. Reporte tecnico Instituto de Fomento Pesquero (IFOP-Chile).

Doc. BIP-2006.

Wiff, R., Canales, C., and Tasheri, R. (2006b). Investigación evaluación de stock y

CTP alfonsino 2006. Reporte tecnico Instituto de Fomento Pesquero (IFOP-Chile).

Doc. BIP-2006.

Wiff, R., Quiroz, J.C., and Ojeda, V. (2006c). Investigación evaluación de stock y

CTP congrio dorado 2006. Reporte tecnico Instituto de Fomento Pesquero (IFOP-

Chile). Doc. BIP-2006.

Wiff, R., Ojeda, V., and Quiroz, J.C. (2007). Age and growth in pink cusk-eel

(Genypterus blacodes) off the Chilean austral zone: evaluating differences between

management fishing zones. Journal of Applied Ichthyology 23, 270-272.

Wiff, R., and Quiroz, J.C. (2007). Investigación evaluación de stock y CTP raya

volant́ın 2007. Reporte tecnico Instituto de Fomento Pesquero (IFOP-Chile). Doc.

BIP-2007.



Chapter 5

A simple formulation for
production per unit of food
consumed

5.1 abstract

Production-to-consumption ratio (P/Q) is usually named as ecological efficiency,

because it reflects how efficiently a population can transform ingested food into

biomass. Usually this ratio is estimated by computing production and consump-

tion separately, introducing an extra complexity in the estimation. We proposed a

simple approach to estimate this ratio by modelling simultaneously P and Q. The

model assumes that populations are made up of multiple co-existing cohorts, in which

individual growth can be described by the specialized von Bertalanffy growth func-

tion (VBGF). Although models with different complexity can be explored, we focus

on the simplest possible estimator, which rests on the assumption that the population

has a stable age distribution (constant recruitment and mortality rate). We applied

this model to two species, Pink cusk-eel(Genypterus blacodes) and the Southern hake

(Merluccius australis), that are targets of commercial fisheries in the south-east Pa-

cific. Uncertainty in the estimates was evaluated using a resampling approach. We
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propose an approximate estimator for calculating P/Q, based on the assumption that

some physiological and growth parameters ratios are invariant across species. On av-

erage, P/Q was around 0.3 for both species. The rule-of-thumb indicates that, in

the absence of exploitation, P/Q is 0.35 for carnivorous and 0.26 for herbivorous fish.

This model provides unbiased estimates for P/Q in fish that may improve population

and ecosystem models.

5.2 Introduction

The ratio between biomass production and food consumption (P/Q) is an impor-

tant quantity in ecosystem modelling because it reflects how efficiently a population

can transform ingested food into biomass. This quantity is usually estimated by

computing production and consumption separately. However, production and con-

sumption are difficult quantities to estimate accurately in fish populations, because

they require knowledge about individual growth rate, number of individuals at differ-

ent ages and the amount of food ingested-at-age. In a different approach, P/Q has

been computed by estimating the efficiency with which individuals convert ingested

food into body tissue and then, using the average of these values as an unbiased

estimate for the whole population (e.g Tang et al, 2007).

Pauly (1986) proposed a model for the estimation of P/Q in which production was

replaced with total mortality, thus simplifying the estimation. This model, however,

relies on the assumptions that population biomass is at steady-state (all the renewal is

compensated by mortality) and the parameters defining individual consumption have

no clear biological meaning. These limitations suggest that alternative approaches

need to be explored. In this paper we propose a simplified method for estimating P/Q

in fish populations in which P and Q are modelled simultaneously and it is assumed
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that individuals grow according to the von Bertalanffy growth function (Bertalanffy,

1938). The von Bertalanffy growth function is particularly convenient for modelling

P/Q because it is commonly used to describe fish growth, and consumption rates can

be inferred from first principles discussed in chapter 2 (Wiff and Roa-Ureta, 2008).

The resulting provides an unbiased estimator of P/Q for fish populations in which all

parameters have a clear biological meaning.

5.3 P/Q for a cohort

By definition, the population production-to-consumption ratio (P/Q, hereafter des-

ignated ρ) is the biomass production per unit of food consumed (Pauly, 1986). Here

we propose a model for ρ where a population is composed of cohorts of identical

individual and which recruitment is discrete and occurs at one point in time. As in

chapter 4, and according to Allen (1971), under these conditions P for a cohort of

age a can be expressed as the product between individual growth rate and number

at age. Under the same assumptions as were discussed in chapter 3, consumption Q

of a cohort is simply the production of this cohort divided the the size-specific gross

efficiency K. Thus, is a cohort is composed by identical individuals in terms of grow

parameters and gross efficiency and recruitment occurs at one point in time, ρ is the

same for all individual in the cohort:

ρ(w) =
P (w)

Q(w)
= K(w) (5.1)

This equation represents ρ for a cohort at a particular weight during its lifespan. Gross

efficiency in this terms can be explained as the individual efficiency in transforming

ingested food into biomass. Note that if individuals have the same growth rate and

they are all recruited at the same point in time, the value of ρ for the cohort is the
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same as the value of ρ for an individual, because N(a) cancels out in P and Q when

taking the ratio (Eqn 5.1). Therefore, a model for ρ in a cohort can be obtained if a

functional form for K(w) is known. In this case, the population can be represented

by simply overlapping multiple cohorts at a particular time t∗. In the next section we

explore possible functional forms for K(w), and then we extend the cohort estimate

of ρ to incorporate population structure.

5.4 Gross food conversion efficiency

Gross food conversion efficiency (K) is the growth increment in weight per unit

of food consumed. K is an interval quantity because increments in grow are not

instantaneous with the amount of food ingested. However, K can be approximated

as an instantaneous quantity by using continuous individual growth models. This

relationship implies that food consumption can be inferred from growth rate.

Empirical estimates confirm that K declines with increasing body size, but its also

affected by other factors such as ration size (Condrey, 1982), type of food (Pandian

and Marian, 1985), temperature and salinity (Kinne, 1960).

A basic formula for modelling K comes from the allometric model:

K(w) = α2w
b2 (5.2)

where w is a growth function with unit of mass. The parameters α2 and b2 are usu-

ally estimated by linearizing Eqn (5.2) by log transformation, and regressing empirical

values of K against body weight. This model has three clear problems: (1) the param-

eters have no biological meaning, (2) the model implies K > 1 when α
−1/b2
2 > w > 0,

which is nonsensical. K > 1 implies that production is bigger than consumption, but

animals cannot grow more than they eat, (3) it implies that, except when w = 0, K is
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always > 0 implying that animals never stop growing during their (infinite) lifespan.

In the light of these problems, Pauly (1986) proposed a model that constrains K

using the asymptotic weight (w∞):

K(w) = 1−
[

w

w∞

]b

(5.3)

However, this is still a purely phenomenological description of K. The parameter

b cannot be interpreted biologically and the model still has an important boundary

problem: it implies a K value near to 1 when w is near 0, which is thermodynamically

impossible.

Temming (1994) proposed a simplification of Pauly’s model based on the theoretical

concepts behind the generalized von Bertalanffy growth function (VBGF). They use

the definition of gross conversion efficiency, K = growth/consumption to establish a

link between K and the VBGF.

In Temming’s formulation, anabolism is assumed to be directly proportional to the

consumption rate q, with A the proportionality constant:

q =
1

A
× anabolism (5.4)

from growth rate from the VBGF defined in chapter 2, dw/da = Hwd − cw, in

which cw reflects catabolism (energy losses) and Hwd is the anabolism term (energy

assimilation), d determines the allometric scaling of consumption. Expressing K in
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terms of VBGF:

K(w) =
growth

consumption

=
dw/da

q

=
Hwd − cw

1
A
Hwd

(5.5)

Note in chapter 2 the anabolism term can be expressed by anabolism = βkw
(1−d)
∞ wd

when k = c/β. Under these definitions, Temming’s model is defined by:

K(w) = A

[
1−

( w

w∞

)1−d
]

(5.6)

where A is a parameter defining the fraction of ingested food that is available for the

build up of body substance. Note that this equation is closely related to (Eqn 5.3)

when b = (1− d) and A = 1. However, Temming’s model avoids the boundary prob-

lems associated with this equation. In addition, all parameters have a clear biological

interpretation, A and d can be estimated from a variety of sources of information.

It is impossible to get meaningfully estimation of d from age and growth data

(Pauly, 1981), so this parameter must be estimated using empirical methods, as

described in chapter 2 (Wiff and Roa-Ureta, 2008). Temming (1994) suggested that

the nitrogen content of the organism’s diet could also be used to obtain an independent

estimate of A, because it is strongly correlated with absorption efficiency (Pandian

and Marian, 1985). Another option for estimating A is to use the daily ration of

food consumed, in an way analogous to the method proposed by Pauly (1986) for

estimating b for equation (5.3) (see Cubillos et al (2003) for further details).

If weight is a deterministic function of length, Eqn (5.6) can be recast in terms of

body length using a suitable length-weight relationship such as w(l) = αlβ, where α
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and β are parameters. Eqn (5.6) can be parameterized in terms of body length as:

K(l) = A

[
1−

( l

l∞

)β(1−d)
]

(5.7)

5.5 ρ for a population

From Eqn (5.1) it is clear that ρ(l) = K(l) for a cohort of identical individuals. If

the cohort estimator ρ(l) is to represent ρ(l) for the population we need to incorporate

population attributes. We can deal with this as follows: let lt∗ be the body length

of a randomly selected individual in the population at time t∗ and let ft∗(lt∗) be the

probability density function (pdf) of lt∗ . We suppose that t∗ is pre-determined in the

year y and for brevity drop the t∗ subscript of l and index t∗ by year y. We therefore

write the pdf of l as fy(l). Then, K(l) is a random variable, and if l is continuous,

the expected value of ρ(l) at time t∗ in year y can be written as:

ρy(l) =

∫ l∞

l0

K(l)fy(l)dl

=

∫ l∞

l0

A

[
1−

( l

l∞

)β(1−d)
]
fy(l)dl

=

∫ l∞

l0

Afy(l)dl −
∫ l∞

l0

A

l
β(1−d)
∞

lβ(1−d)fy(l)dl

= A

[
1− Efy(l

β(1−d))

l
β(1−d)
∞

]
(5.8)

where l0 is the length at recruitment and l∞ is the asymptotic length. Since this

model is based on the generalized VBGF, a particular solution for it can be obtained

by using the specialized VBGF in which d is set at 2/3, and growth is assumed to be

isometric (β = 3). In this case Eqn (5.8) becomes:
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ρy(l) = A

[
1− Efy(l)

l∞

]
(5.9)

It is apparent that the estimation of ρ now hinges on the estimation of the expected

value of body length. To implement the model of Eqn (5.9), it is necessary to have

estimates of l∞, A and the expected body length (Efy(l)) in the population in year y.

There is more than one way of estimating ρ. The choice depends on what data

are available to estimate Efy(l). As we have shown in chapter 2, if the exact lengths

of sampled fish have been observed, and all fish are equally likely to be sampled, an

unbiased estimate of Efy(l) can be obtained from the mean l in a sample of size n.

However, most fisheries use gear that is selective and so the sampled lengths are likely

to be size-biased. Efy(l) can be obtained from samples of this kind, by modelling the

probability density function (pdf) of lengths fy(l) in the population at time t∗ in the

year y.

A similar modelling approach implemented in chapter 3 (section 3.4) for the ex-

pected inverse body length can be used here for modelling Efy(l). Note that equations

in section 3.4 were proposed to model Efy(l
−1), and thus they should be modified to

include the expected length. These modifications can be obtained by replacing length,

instead of inverse length, in Eqns (3.9, 3.13, 3.15, 3.15).

Here, we assume that no data are available to define processes such as recruitment,

variability of the length at age or mortality rate at age. Our purpose is so doing

this is to propose the simplest possible estimator for ρy with least demanding on

data knowledge. Accordingly, we modelled Efy(l) with fixed length at age and stable

age distribution. According to chapter 3, under this assumptions, abundance in
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each successive age class decays exponentially so that Ny(a) = Re−Zya, where R is

(constant) recruitment and Zy is the average total mortality across all ages. In this

case the abundance proportion of each age in year y is Py(a) = Ny(a)/
∑

a Ny(a) =

e−Zya/
∑

a e−Zya. Thus Efy(l) with no variability in length-at-age and a stable age

distribution is given by:

Efy(l) =
∑

a

l∞(1− e−k(a−a0))
e−Zya

∑
a e−Zya

= l∞
∑

a

e−Zya − e−a(Zy+k)+ka0

∑
a e−Zya

= l∞

[
1−

∑
a

e−a(Zy+k)+ka0

∑
a e−Zya

]
(5.10)

To estimate ρy we start by assuming that estimates of the von Bertalanffy growth

parameters (l∞, a0, k), Zy and A are available. In this case, we can estimate ρy by

combining Eqns (5.9) and (5.10):

ρy(l) = A

[
1− Efy(l)

l∞

]

= A

[
1−

l∞
(
1−∑

a
e−a(Zy+k)+ka0∑

a e−Zya

)

l∞

]

= Aeka0

[ ∑
a

e−a(Zy+k)

∑
a e−Zya

]
(5.11)

There are three sources of uncertainty in the estimator ρy, namely growth parameters,

assimilation parameter and total mortality. In the following section we will show

some applications of the model and determine likely uncertainty using a resampling

approach.
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5.6 Approximate estimator for ρ

We can derive an approximate value for ρ under certain assumptions about population

dynamic if we define the likely trade-off between mortality and growth parameters.

First, since the categories in Eqn (5.11) can be made as narrow as desired, we replaced

the sum with a more mathematically tractable integral to get:

ρy(a) = Aekt0

[ ∫ ∞

0

e−a(Zy+k)da∫∞
0

e−Zyada

]
(5.12)

This equation represents the gross efficiency for the population in year y for all indi-

viduals recruits (age 0) to those in the infinite age. Here, age 0 is taken to be the onset

of feeding in the larval stage, which is the point at which tissue growth commences.

For simplicity, we assume that mortality rate is constant across ages. Solving the

integral in the denominator of Eqn (5.12) by substitution yields:

∫ ∞

0

e−Zyada =
−e−Zya

Zy

∣∣∣∣
∞

0

=
−1

Zy

[
e−Zy∞ − e−Zy0

]
(5.13)

with e−Zy0 = 1 and e−Zy∞ = 0, then:

∫ ∞

0

e−Zyada =
1

Zy

(5.14)

ρy(a) = Aeka0Zy

[ ∫ ∞

0

e−a(Zy+k)da

]
(5.15)

solving by substitution the integral of the righthand side of the Eqn (5.15):

∫ ∞

0

e−a(Zy+k)da =
−e−a(Zy+k)

(Zy + k)

∣∣∣∣
∞

0

=
−1

(Zy + k)

[
e−∞(Zy+k) − e0(Zy+k)

]
(5.16)
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with e−Zy0 = 1 and e−∞(Zy+k) = e−Zy∞e−ka = 0 since e−Zy∞ = 0, then:

∫ ∞

0

e−a(Zy+k)da =
1

(Zy + k)
(5.17)

replacing Eqn (5.17) on Eqn (5.15):

ρy =
Aeka0Zy

(Zy + k)
(5.18)

At age zero, the VBGF can be expressed as
(
1 − l0

l∞

)
= eka0 , where l0 is the length

at age 0. Mertz and Myers (1998) deduced that l∞ >> l0 for fish species. Thus

l0/l∞ ≈ 0 and ekt0 → 1. Therefore an approximation version of Eqn (5.18) can be

written as:

ρy ≈ A
Zy

(Zy + k)
(5.19)

Average total mortality across all ages (Zy) can be expressed as the sum of natural

(My) and fishing mortality (Fy). A similar simplification for ρ is done by Aydin

(2004), although it is was proposed only for cases considering steady-state condition

(where all mortality is compensated by renewal).

The way in which natural mortality rate may vary between years is poorly known,

and therefore it is often assume to be time-invariant (i.e. My = My+1 = M). If M

is assumed to be constant across years and the population is not under exploitation

Fy = 0, ρ is also time-invariant and can be defined by:

ρ ≈ A
M

(M + k)
(5.20)
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This equation can be simplified further if there is a relationship (trade-off) between

M and k. Beverton and Holt (1959) pioneered the comparative study of fish life-

histories and showed the existence of patterns of growth and mortality across species.

These patterns were reviewed by Charnov (1993), who found that M/k tends to be

constant with a dimensionless value of 3/2. Accordingly, we can write k = (2/3)M

and Eqn (5.20) becomes:

ρ ≈ A
3

5
(5.21)

In this case ρ is completely dependant on the value of A. Temming (1994) defined

this parameter as the ”fraction of ingested food that is available for the build up of

body substance”. Indeed, this parameter serves to scale the anabolism term in the

VBGF to give the net food (energy) ingested. According to Temming and Herrmann

(2009) A must be the proportion of food consumption that is not lost as faeces (f),

excretion (u) and apparent specific dynamic action (s2, the increased metabolic rate

a fish experiences following ingestion of a meal) (Brett and Groves , 1979; Andersen

and Riss-Vestergaard, 2003). Thus, A can be expressed as:

A = 1− (f + u + s2)

{f +u+s2} appears to be a relatively constant proportion of the food ingested across

a wide range of fish species (Brett and Groves , 1979) within the same trophic group

(carnivorous/herbivorous)(Turner, 1970). According to Brett and Groves (1979) f ,

u and s2 for carnivorous fish have average values of 0.2, 0.07 and 0.14. Thus, for

carnivorous fish
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A = 1− (0.2 + 0.07 + 0.14)

= 0.59

Herbivorous fish have received less attention than carnivorous fish, but they are char-

acterized by a generally low absorption efficiency of the food because large fraction of

their normal diet is indigestible (Wootton, 1990). On average, faecal loss is about 0.4

and excretion about 0.03 (Brett and Groves , 1979). According to Jobling (1981) spe-

cific dynamic action does not vary significatively different between herbivorous and

carnivorous fish and it is about 0.14. Therefore a general value of A in herbivorous

fish is:

A = 1− (0.4 + 0.03 + 0.14)

= 0.43

Using these values for A, we can therefore estimate that ρ is around 0.35 for carniv-

orous fish and approximately 0.26 for herbivorous

If a fish population is exploited, fishing mortality can be introduced explicitly into Eqn

(5.19). A convenient way to evaluate the effect of fishing mortality in ρy, is expressing

the age-average fishing mortality as a proportion of natural mortality (F̄y = ψyM).

Using again the Beverton-Holt’s trade-off between M and k we get:

ρy ≈ A
(M + F̄y)

(M + F̄y + k)
≈ A

(M + ψyM)

(M + ψyM + 2
3
M)

≈ A
(1 + ψy)

(5
3

+ ψy)
(5.22)

where ψy is a proportionality constant linking fishing and natural mortality. Incor-

poration of exploitation is directly related with population gross efficiency because a
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higher value F̄y produce higher values of ψy. Furthermore, mortality rate produces a

non-linear increment in ρy because it tends to reduce the expected body size in the

population. For example, in highly exploited population we can assume that the fish-

ery remove the same amount of biomass that natural mortality (Pauly, 1996), thus

F̄y = M . Under this condition ψy = 1 and ρy ≈ A3
4
. Figure (5.1) shows this non-

lineal behavior of ρy according to increments in ψy for carnivorous and herbivorous

fish.

Figure 5.1: Production per unit of food consumed (ρ) in carnivorous and herbivorous
fish population in relation to the relative increments in fishing mortality (F ) with
respect to the natural mortality (M).
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5.7 Applications

To illustrate the model, we applied Eqn (5.11) for pink cusk-eel (Genypterus bla-

codes) and southern hake (Merluccius australis). The parameters {k̂, â0}, Â and a

time series of Zy were taken from the same database used in chapter 3 (section 3.6).

Conversely, uncertainty on ρ estimates was incorporated using the same resampling

procedure described in chapter 3.

5.8 Results of applications

Results from the application of the models are shown in Figure (5.2). Pink cusk-eel

from the northern population has an average ρy of 0.306 with a 95%CI of [0.295,0.318].

The southern population of pink cusk-eel has an average ρy of 0.328 and a 95%CI

of [0.319,0.338]. In case of Southern hake the average ρy and 95%CI were 0.308 and

[0.286,0.331], respectively. Time-series of ρy estimates for both species can be divided

into three periods. The first period, from 1977 to 1984, has relative low estimated

for ρy. Between 1985 and 1993 there was a significant increment in ρy. From 1993 to

2005 the values ρy oscillated around the average value of the time series.

5.9 Discussion

The model presented here differs with that proposed by (Pauly, 1996) in two main

aspects: 1. We incorporated Temming’s gross efficiency model, which allows all

parameters relating to food consumption to be interpreted in biological terms. 2.

We relaxed the assumption of steady-state conditions for the biomass. The use of

Temming’s model allowed us to propose a rule-of-thumb estimator for ρ, by defining

an a priori value for A as done in Temming and Herrmann (2009). Relaxing the

steady-state assumption allowed us to consider a non-equilibrium relationship between
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Figure 5.2: Estimates of production per unit of food consumed in three populations
of Chile. (a) Pink cusk-eel (Genypterus blacodes), northern population, (b) Pink
cusk-eel, southern population, (c) Southern hake (Merluccius australis). In each case
vertical bars represent the 95% confidence intervals computed by resampling and dots
are the median values.
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the renewal and decay of biomass. As a result, variations in age structure can be

incorporated via total mortality. Thus, if a time-series of total mortality estimates is

available, dynamical behaviour in ρ can be incorporated by ordering the estimates of

this quantity at different points in time. Smaller individuals have higher ρ because

they are more efficient in transforming the ingested food into biomass. Thus, mortality

has a direct effect on ρ because it tends to reduce the expected body length in the

population. Incorporation of dynamic behaviour on ρ may improve the evaluation

of time-dependant perturbations in ecosystem models, such as ECOPATH (Polovina,

1984; Christensen and Pauly , 1992), because this parameter is often assumed to be

time- and species-invariant (Walters et al , 1997; Ainsworth et al , 2008).

The simplest models proposed here rest on the assumption of a stable age distri-

bution. Nevertheless, stable age distributions are rarely realized in nature, except as

an average over several generations (Charnov, 1993), because recruitment and age-

specific mortality are likely to vary over time. Whether or not it is possible to relax

this assumption depends, on what data are available to model the proportion of each

age in each year (Py(a)) and length at a given age (Py(l | a)). Estimates of Py(a)

can be obtained, for example, from the output of a fisheries stock assessment models.

In addition, Py(l | a) can be modelled from age and growth, if it can be assumed

that the population is made up of a mixture of co-existing cohorts, each of which has

a length-at-age that can be represented by a Gaussian distribution (Fournier et al ,

1990).

Several authors have noticed that production per unit of food consumed remains

constant across species (Slobodkin, 1960; Welch, 1968; Turner, 1970). No theoretical

analysis has yet been proposed to explain this constancy, although it has been hypoth-

esized that it may be a consequence of compensation between the efficiency with which
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food can be assimilated and the efficiency with which energy can be channeled into

growth (Welch, 1968). Here we proposed a theoretical explanation for this constancy

which depends on processes that occur within and among individuals. Individual

fish of the same trophic habits (carnivorous/herbivorous) seem to absorb the same

proportion of their food ingested, and thus A is relatively constant across individuals

of different species. Among individuals, the trade-off between natural mortality and

growth, tends to result in ρ being constant across populations. Although this model

presents a new avenue for exploring this constancy, the assumption of stable age dis-

tribution makes that the constancy found here for ρ should be interpreted as the

expected value for fish of the same trophic habits averaged across several generations.

In general, carnivorous fish absorb their food relatively efficiently, because protein,

which is a large component of their prey, is usually assimilated to a greater degree than

other dietary components (Brett and Groves , 1979). Welch (1968) used experimental

data to show that carnivorous animals have a higher ρ than herbivorous. Here, we

have used theoretical analysis to show that ρ is approximately 0.35 for an unexploited

population of carnivorous fish and 0.26 a for herbivorous species. Although the results

of these empirical and theoretical analyses coincide, we found that empirical values

for ρ (0.32 and 0.30) for two fish species were smaller than the predicted theoretical

value. Tang et al (2007) reported values of ρ, for four carnivorous fish populations that

ranged from 0.13 to 0.3. These lower than expected values may be because theoretical

value of ρ is calculated across the entire lifespan from the onset of larval feeding until

the terminal age. A value of ρ calculated for only older and/or larger individuals will

have smaller than the theoretical value, because ρ decreases exponentially with age

or size (Slobodkin, 1960).
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Chapter 6

General Discussion

6.1 Extending the allometry in food consumption

to mammals

Birds, mammals and insects show determinate growth, in which adult body size is

more or less unchanging. For example, mammals mature upon reaching adult size.

Although the VBGF was originally proposed for animals such as fish and reptiles that

do not cease growing after they have reached maturity, this growth function has also

been used to describe growth in mammals (e.g. Griffiths and Brook, 2005). If the

VBGF does apply to mammals, the allometric theory for food consumption proposed

in previous chapters, may also be applied, with modifications, to this taxon. First,

the physiological considerations that determine the parameter d in fish (chapter 2)

need to be modified. Mammals are warm-blooded organisms. Heat output takes

place through the body surface, and heat output must be balanced to maintain the

body temperature constant. Thus, according to the principles underlying the von

Bertalanffy equation, the body surface in mammals is physiologically limiting and

the relationship between surface area and mass can be used as a proxy for d.
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Reynolds (1997) compiled data on the relationship between surface area and body

mass for 56 aquatic and terrestrial species of mammals, and found no statistical dif-

ferences in the mass-specific surface area relationship between marine and terrestrial

mammals. The overall slope resulting from this inter-specific analysis was ∼ 2/3. Fur-

ther theoretical predictions of Q/B allometry for mammals need an estimation for

weight at length parameter β and the trade-off parameter h. Calder (1996) noticed

that β for mammals is close to 3. No estimates of h have been made for mammals, so

we assume that it has the same value as for fish, h = 1/2. Inserting this values into

Eqns (2.14) and (2.17), yields the predictions:
∂log(q∗)j

∂log(w∗)j
= 2/3 and

∂log(Q/B)j

∂log(w∗)j
= −1/3

where w∗ is any weight which is a constant proportion the asymptotic body size.

Although available empirical information from mammals to support this theoretical

results is less extensive than that for fish, Farlow (1976) compiled a large data set

of daily consumption estimates (expressed in kcal/day) for 85 herbivorous and 102

carnivorous mammals. The slope of the relationship between log(daily individual con-

sumption) and log(average mass) across species and populations provided an estimate

for
∂log(q∗)j

∂log(w∗)j
, of 0.728 (95%IC=0.689, 0.768) for herbivores and 0.697 (95%IC=0.672,

0.722) for carnivores. Humphreys (1981) compiled estimates of daily Q/B (expressed

as assimilation) for 47 species and/or populations of mammals. These provide an esti-

mate
∂log(Q/B)j

∂log(w∗)j
, of -0·336 (95%IC=-0·384,-0·289). The theoretical prediction matches

the data well, offering an interesting opportunity to extend the allometric model in

food consumption to mammals. Although both compilations involved transformation

of the data, (either into kcal, in the case of individual consumption, or from assim-

ilation in the case of population consumption), this is not an impediment to using

the equations in Chapter 2, because both transformations only affect the intercept of

the allometric relations and not the slope. This is supported by the work of Pandian
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(1967) and Pandian and Marian (1985) who reported that ingestion is proportional

to consumption, and that the proportionality constant linking these values is related

to the parameter A in Chapter 2.

6.2 Latitudinal versus cross-sectional estimators

Latitudinal data refer to observations of a given unit made over time and thus, such

data can be represented as a time-series. On the other hand, cross-sectional data refer

to observations of many individuals at a given point in time. Models presented here,

use size structure at a given point in time and thus they can be refereed as cross-

sectional models. On the historical context, most of the estimators proposed for the

trio {P/B,Q/B, P/Q} have been based on latitudinal models.

General principles, like those proposed in this thesis, provide a broader context for

modelling this trio. In the case of P and Q, different methods have been proposed

to cope with their application at the individual and population levels. Some authors

use the value of P or Q to define an instantaneous rate (Kimmerer, 1987; Pauly,

1986), or a rate average over a time interval (Clarke, 1946; Majkowski and Waiwood,

1981), or a quantity integrated over a time interval (Allen, 1971; Majkowski and

Hearn, 1984). In each case, the first reference relates to production and the second

to food consumption. Different authors have also considered the case of discrete and

continuously reproducing populations (Kimmerer, 1987; Pauly, 1986), and the need

to explicitly account for mortality rate in the model’s formulation (Kimmerer, 1987;

Buckel et al, 1999). P and Q can also be inferred from individual growth principles

and thus mathematical models for these quantities are similar. This is probably the

reason why both processes have been modelled by a variety of divergent approaches.
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The different approaches used to model P/B and Q/B are, in part, a consequence

of the basic mathematical nature of these processes. P and Q are rate quantities,

and therefore they accept an longitudinal (interval of time) definition. However,

population biomass B is not a rate quantity and thus it does not make much sense

to define it over an interval of time. It only admits a “point in time” definition and

thus cross-sectional estimators can be applied. Allen (1971) tackled this problem,

by turning the denominator in P/B into an interval quantity, by using the average

biomass over a time period and calculating production over the same interval. This

approach has two clear disadvantages: using averages result in a loss of information

on biomass and production changes within the time period; and the resulting model

is hardly tractable analytically and thus the explicit dependence of P/B and Q/B on

body size is lost. The other option is to convert P and B into point in time quantities

and treat both as cross-sectional estimators, as we have done here. Fortunately, P

and Q admit a point in time definition. Changes over time can be introduced by

simply ordering the discretised cross-sectional estimates of P/B and Q/B. Time-

average properties on these estimators can also be obtained by considering the time-

average expected inverse body length in the population (E[l−1]). This flexibility in

mathematical definition for P and Q also makes it possible to formulate ecological

efficiency P/Q explicitly in terms of body size. Thus, by using point definitions for

P and Q the trio {P/B, Q/B, P/Q} can be made explicitly dependant on body size.

6.3 Life history invariants and the regularity of

P/B, Q/B and P/Q across species

In this thesis, I have demonstrated that the across-species regularities in Q/B and

P/Q depend on specific dimensionless quantities. Q/B allometry depends on the

invariance across species of the parameter h, which defines the trade-off between
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asymptotic length l∞ and the growth parameter k (chapter 2). At the population

level, P/Q remains invariant across species if the ratio between the natural mortality

rate M and k is constant for the taxa involved. Similarly, Roa and Quiñones (1998)

demonstrated that allometric scaling in P/B holds if the ratio between length at

maturity lm and l∞ remains constant across species. As I pointed out in chapter

2, invariance in h is ultimately caused by the constancy of lm/l∞ across species.

Therefore, the allometry of the trio {P/B,Q/B, P/Q} is, at least in part caused by

the invariance of the two dimensionless numbers lm/l∞ and M/k. Accordingly, the

emerging question is: are these numbers invariants across species?

As pointed out on the introduction, “the Beverton-Holt life history invariants”

indicates that three quantities did appear to be constant across species: the ratio

between the instantaneous mortality rate (M) and the parameter k of the VBGF,

the product of M and the age at sexual maturity (am), and the ratio between the

length at maturity (lm) and the asymptotic length (l∞). The Beverton-Holt life

history invariants have been obtained by maximization of evolutionary fitness through

optimization of the net reproductive rate (Charnov, 1993) or by a simple ecological

trade-off between survival and mortality (Jensen, 1996). Therefore, the across-species

constancy of the trio {P/B, Q/B, P/Q} is ultimately a consequence of the Beverton-

Holt life history invariants. This result enables us to make a theoretical connection

between population level energetics, namely the trio {P/B, Q/B, P/Q}, and the basic

principles governing the the Beverton-Holt life history invariants.

6.4 Applicability of the models

In recent years, the emphasis in fisheries science has shifted single-species as-

sessment to more holistic multi-species and ecosystem-based approaches (Essington,
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2007). The trio {P/B, Q/B, P/Q} has a key importance in ecosystem modelling,

because it determines population energetics in terms of food intake by predation and

the transformation of this energy into the population biomass of predators. A di-

versity of analytical tools for evaluating fisheries on an ecosystem context have been

proposed. Two of these tools have been widely applied in the recent years and they

can be divided into two main groups: the multispecies virtual population analysis

(MSVPA) (Anderson and Ursin, 1977) and the trophic mass-balance models (Walters

et al, 1997). MSVPA are deterministic models based on the seminal work of Anderson

and Ursin (1977). They represent an explicit extension of the age-structured single

species stock assessment models to include multiple species through predator-prey

interactions. In MSVPA models, natural mortality for prey species is extended by

explicitly including another source of mortality related with predation. On the other

hand, mass-balance model is a simpler approach for analysis of trophic interactions

in fisheries resource systems. These models facilitate the calculation of ecosystem

indicators and the exploration of management policies implications of the food web

interactions (Essington, 2007). Thus, they are a valuable complement to the ex-

perimental and observational approaches that are traditionally used to investigate

ecosystem function. One of the most popular software for mass-balance model is

named ECOPATH. Originally proposed by Polovina (1984), and further developed

by Christensen and Pauly (1992), ECOPATH is a mass balance model which pro-

vides a static picture of ecosystem trophic structure. Nowadays, a common practice

is to implement ECOPATH altogether with ECOSIN which is a dynamic food web

model that simulates food web responses over time to natural and anthropogenic

disturbances (Walters et al, 1997).
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MSVPA utilizes extensive time series of catch-at age data and it needs to estimate

complex parameters such as the suitability coefficients in order to extent the natural

mortality for preys species. Suitability is a parameter reflecting the diet composition

of the predator relative to the available food (Jurado-Molina et al, 2005). On the

other hand, ECOPATH with ECOSIN (EwE) requires estimates of P/B and Q/B

for each member of the food web and it provides an estimate of P/Q as an output.

P/Q values are usually used as an indicator to constrain an acceptable global so-

lution for the model (Kavanagh et al, 2004). Models developed on this thesis may

improve both approaches for evaluating fisheries on an ecosystem approach. First,

predation mortality models in MSVPA can be directly derived from Q/B model pre-

sented here, because it represents the global mortality a predator put on their preys.

Thus, predation mortality can be inferred from Q/B rates which is driven by ba-

sic principles underpinning VBGF and dynamics of size/age structure of predators.

Second, in order to implement EwE, P/B is assumed to be equivalent to the total

mortality, while Q/B is usually obtained from the empirical allometric equation pro-

posed by Palomares and Pauly (1998). The estimation of P/B in this way rest on

the assumption that the system is at a steady-state (where all biomass renewal is

compensated by mortality), while deriving Q/B from an empirical equation does not

allow for the effects of variation in the age and/or size distribution of the population.

Underlaying assumptions of EwE is that fishing mortality does not allow surplus pro-

duction of the biomass, whereas single-species fishing theory implies that fishing leads

to surplus by leaving on the water smaller and younger fish which are highly efficient

in transformed their ingested food into biomass. Model proposed here for the trio

{P/B, Q/B, P/Q} can cope with this inconsistence between single and multispecies

fishing theory, because they are size/age dependant models who explicit accounted

for shifts in population structure due fishing exploitation.
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Exploitation affects surplus production as fishing gear is highly size-selective. Fish-

ing constantly removes larger, less-efficient fish, leaving in the water smaller and more

“hungry” individuals. Since P/B, Q/B decay exponentially with size, smaller fish

have higher P/Q which means they are highly efficient in transforming their ingested

food into biomass. The EwE model does not take into account this shift in popu-

lation structure, of the species to be modelled, due to fishing (Walters et al, 1997).

In developing ECOSIM Walters et al (1997) assume that changes in surplus produc-

tion are entirely driven by changes in predator/prey functional responses. In other

words, ECOSIN considers changes in population structure but these are only effects

of the vulnerability function of the predator/prey dynamics. Thus ECOSIN incorpo-

rates phenomenological shifting of the population structure where all possible causes

(including fishing exploitation) are confounded on the predator/prey functional re-

sponses. Aydin (2004) noted the same inconsistencies in EwE and he tackled this

problem by making the trio {P/B, Q/B, P/Q} explicitly dependant on age structure.

He extended the model of Pauly (1986) for Q/B and Allen (1971) for P/B to include

age structure. He integrated biomass, consumption and production of a single recruit

over its lifespan, assuming equilibrium conditions on recruitment and total mortal-

ity, in a similar manner yield-per-recruit is computed in single species fishing theory

(Quinn and Deriso, 1999). Aydin (2004) derived similar equations for consumption

per recruit as those proposed by Pauly (1986) and the same equations as those derived

by Allen (1971) in case of production. In this thesis, I deal with these inconsistencies

between between single and multispecies fishing theory. However, there are still sev-

eral fundamental differences between the models proposed by Aydin (2004) and those

developed in this thesis. First, Aydin (2004) studied both Q/B and P/B as latitudi-

nal models whereas in this thesis they are treated as cross-sectional models. Second,
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models proposed by Aydin (2004) underpin a phenomenological description for sur-

plus production. As discussed above, latitudinal models introduce time-complexity

in to the analyse when relationships between the trio {P/B, Q/B, P/Q} and body

size/age are difficult to determine. Latitudinal models are easily tractable only by

assuming a stable age distribution. For these models, the exploration of alternative

hypotheses on age distribution are only suitable when difficult-to-obtain quantities

such as the number of recruits per year and/or a stock recruitment relationship are

available. On the other hand, the phenomenological description for surplus produc-

tion in Aydin (2004) makes it difficult to connect the processes occurring at individual

level with basic principles governing the physiology of growth. Cross-sectional models

based on first principles, like those presented here, may cope with these difficulties.

The modelling framework presented here permits explicit connections between the

trio {P/B,Q/B, P/Q} and body size where all parameters are derived for first prin-

ciples governing individual growth. This framework allows also the exploration of

hypotheses others than the stable age distribution. This framework naturally allows

the exploration of fishing exploitation in EwE, as fishing mortality is well known to be

highly size dependant. Thus, incorporating size-dependence in P/B and Q/B allows

an exploration of the way in which size-based metrics respond to the effect of fishing.

These models may help make community ecology, rather than population ecology, the

fundamental ecological science underlying fisheries (Harwood, 2007).

Recently, Gascuel and Pauly (2009) proposed a model called ECOTROPH which is

a trophic-level based ecosystem model. ECOTROPH assigns the biological production

of all the ecosystem components onto trophic levels, regardless of species or body size.

This model treats all ecosystem functions as a continuous flow of biomass from lower

to higher trophic levels. In the assumptions of ECOTROPH, P/B is seen as a measure
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of the speed of the flow and it is equal to the total mortality. In the model, biomass is

accessible to fishing exploitation by considering a selectivity coefficient as a function

of trophic level. Thus, ECOTROPH can be used to simulate virtual ecosystems facing

various exploitation patterns. The main difference between ECOTROPH and models

such as EwE, is the latter is based on energy flow between boxes representing species,

while ECOTROPH considers continuous trophic classes only, regardless of species or

groups thereof. However, in both modelling approaches, the ecosystem is represented

as a trophic flow moving from lower to upper trophic levels, with losses due to non-

predatory mortality, catches, excretion and respirations. Overall, the two approaches

differ more in their parameterisation than in their conceptualisation of predation and

related processes. For EwE, a value is based on the knowledge of P/B and Q/B

for each (group of) species with trophic levels estimated as outputs. Conversely,

ECOTROPH is based on trophic level estimates and it does not require either P/B

or Q/B values. This leads to a reduction in the number of parameters needed to

implement ECOTROPH but also to a loss in flexibility and realism. Models proposed

in this thesis are based on single species fishing theory where variations on population

structure are caused by recruitment and size-dependant fishing mortality. Therefore,

these models attempt to improve input parameters of ecosystem models based on

species like those discussed above. Nevertheless, the ecosystem model approximations

based on species or trophic level should be seen as a complementary tool to understand

the ecosystem functioning (Gascuel and Pauly, 2009).

The allometric theory for the trio {P/B, Q/B, P/Q} discussed in this thesis has

other applications in ecosystem modelling. For example, Brose et al (2006) demon-

strated that allometric scaling at the population level might explain the stability and
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persistence of complex food webs. This stability is a consequence of the fact that in-

dividual and populations processes are not random across species. Instead, they are

determined by allometric scaling relationships. Thus, the across-species regularities

presented here for {P/B, Q/B, P/Q} may enhance the stability of ecosystem models

by constraining general solution to the underlying rules described by the allometric

theory.

The same quantitative framework also makes it possible to identify the underlying

mechanism that produce allometric scaling, and it provides simplified models for

estimating these quantities. As a result, it has which the potential to be widely

applied in fisheries science.

6.5 Further generalizations

The allometric theory for food consumption proposed here can be generalized in,

at least, two different ways. First, it can be extended to cover taxa other than

fish, in which the physiological constraints that determine d may be different (as I

discussed in section 6.1). Traditionally, a distinction has been made between the

value of 3/4 predicted by nutrient distribution networks (West et al, 1997) and the

value of 2/3 predicted by Euclidean surface-area-to-volume considerations (Heusner,

1982). However, these approaches exclude the possibility that d is neither 3/4 nor

2/3 and that it value may differ between taxa. White et al (2007) presented empirical

arguments against the dogmatic idea of adopting a single value for d. Here I follow

the same philosophy, and argue against the concept that there is a single exponent

for food consumption. By allowing more flexibility in this parameter we are able to

explore the way in which physiological processes might determine the value of d for

different taxa.
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Second exploration of this allometric theory deals with the intercept of this rela-

tionship. The allometric scaling that I described in Chapter 2, only explored the

mechanisms that might determine the slope of the relationship between food con-

sumption and body size. However, Economo et al (2005) have shown the slope and

intercept of allometric scaling can be predicted from theory.

The applicability of the models presented here for estimating the trio {P/B, Q/B, P/Q}
depends mostly on what data are available to estimate of the expected length in the

population. Two different approaches can be implemented to estimate this value.

One is a design-based approach, which can be used if an unbiased sample of length is

available. The other is model-based approach that is more appropriate to estimate the

expected length in the population. The model that is least demanding on data, relies

on the assumption of stable age distribution. An unbiased sample of fish lengths can

only be obtained from a specially design experiment for gear selectivity (Gedamke and

Hoening, 2006), while stable age distribution is rarely realized in nature (Charnov et

al, 1993). However, Gedamke and Hoening (2006) noticed that an unbiased estima-

tor of expected length can be obtained by combining length data from survey-design

experiment with length data from commercial fisheries. The stable age distribution

assumption can be relaxed by re-parameterizing the stock-recruitment relationship

(Beddington and Kirkwood, 2005), in a way that does not require extensive data

knowledge (as discussed in chapter 4).

The approximate estimator for P/Q that is developed in Chapter 5 considers in-

dividuals of all ages from the onset of larval feeding to the terminal age together.

However, practical application of this rule may require an estimation of P/Q with a

starting age other than the larval stage, for example the age at recruitment. Chapter

5 can be generalized for this rule-of-thumb by integrating from ages other than 0.
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An elegant way to deal with this is to express the lower limit of age integration as a

proportion of terminal age.

6.6 Concluding remarks

The main purpose in this thesis has been to propose a quantitative framework for

analysing food consumption. This framework allows the mechanism underlying the

allometric scaling of food consumption be identified and provides a predictive models

for Q/B in fish populations. A similar quantitative framework was then used to

produce models for P/B, which naturally allows for across-species comparison. Once

functional forms for production and food consumption had been identified, a third

model was proposed for ecological efficiency, the ratio of production to consumption.

From a theoretical point of view, the results presented here allow the first quantitative

explanation for the existence of the allometry for Q/B and invariance for P/Q across

fish species. These results, together with those of Roa and Quiñones (1998), provide

an explanation for allometry in P/B, and suggest that the regular across-species

patterns in the trio {P/B, Q/B, P/Q} can be explained by basic principles which are

connected with the Beverton-Holt life history invariants. This result is particularly

important because it connects previously separated fields in theoretical ecology. The

development of a quantitative framework for the trio {P/B, Q/B, P/Q} clarified their

explicit dependence on body size, and simplified the estimation of these quantities.

The resulting estimators were applied to real data and their statistical properties

evaluated using a computer-intensive resampling approach. These quantities have a

key importance in ecosystem modelling and thus, these new models have the potential

to be widely applied in fisheries science. This thesis bring together disciplines, such as

physiology, macroecology and fisheries science, that have traditionally been viewed as

distinct. I hope that their integration might improve both population and ecosystem
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models.
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Appendix A

Age and Growth in pink cusk-eel

Appendix based on: Wiff. R, V. Ojeda and J.C Quiroz. 2007.– “Age and growth in pink cusk-

eel (Genypterus blacodes) off the Chilean austral zone: evaluating differences between management

fishing zones” Journal of Applied Ichthyology. 23, 270-272

A.1 abstract

The pink cusk-eel (Genypterus blacodes) is a benthic-demersal fish which support

an important fishery in Chile. However, there is a lack on basic fishery and biological

information for this specie. Here, the von Bertalanffy (vB) growth parameters for pink

cusk-eel (Genypterus blacodes) were estimated for the Chilean austral zone (41o28-

57o00 S) by gender and management fishing zones. A total of 47 026 samples were

collected between March 1982 and May 2004, with total length ranging from 19 to

154 cm. Age determinations, based on the reading of saggital otoliths, were between

1 and 14 years in males and between 1 and 16 years in females. Statistical differences

in growth were found between the sexes and management fishing zones. For the

combined sexes the vB growth parameters for the northern-austral zone (41o’28 -

47o00’S) were: l∞ = 111.452 cm, k = 0.186 year−1, a0 = −0.912 year; and for

the southern-austral zone (47o00’ - 57o00’S): l∞ = 123.447 cm, k = 0.147 year−1,
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a0 = −1.779 year.

A.2 Introduction

The species forming the genus Genypterus are benthic-demersal fishes inhabiting

the continental shelf and slope in the southern hemisphere. Although five or six

species are caught for commercial purposes, most are considered bycatch. The pink

cusk-eel (Genypterus blacodes) is the most important in terms of catch amounts and

target intentions, supporting important fisheries in Australia, New Zealand, Argentina

and Chile. Knowledge about the ecological processes in this species is fragmentary at

best, due to a lack of basic biological and fishery information. Nevertheless, it is still

possible to characterize these individuals according to their average life-span, relative

low fecundity and sedentary behaviour, in which the adults spend most of their time

buried in the soft bottom sediments (Ward et al, 2001). According to the compiled

logbooks, in Chilean waters the pink cusk-eel fishery is developed between Talcahuano

(36o44’S) and south of Cabo de Hornos (57o00’S). Nevertheless, catches are mostly

in the austral zone (41o28’ - 57o00’S). Historically, the pink cusk-eel has been caught

as an incidental species in the demersal multispecies fishery off southern Chile, where

the fishing effort is mainly directed to southern hake (Merluccius australis). Catches

are carried out by industrial vessels operating with bottom trawls and longlines as

fishing gear. As of 1992 the pink cusk-eel fishery has been managed by total allowed

catch (TAC) in the austral zone. These TACs have fluctuated around 5000 tonnes per

year and are divided by two management fishing zones (MFZ): the northern-austral

zone (41o’28 - 47o00’S) and the southern-austral zone (47o00’ - 57o00’S).

Although Chong and Aguayo (1990) reported preliminary results on growth param-

eters for G. blacodes in Chile, these parameters are questionable principally because
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of the shorter temporal and spatial scales covered. For actual stock assessment frame-

work the representative growth parameters throughout the years as well as the sex

and MFZ are required (Wiff et al, 2005). By using the extensive data made available

by the Instituto de Fomento Pesquero (IFOP), the principal aim of this manuscript

was to estimate the von Bertalanffy (vB) growth parameters for sex and MFZ.

A.3 Materials and methods

The process included a total of 47 026 sagittal otoliths aged from March 1982 to

May 2004. Total length (TL) of each fish was measured to the nearest centimetre.

The samples came from two fleets and the two MFZs. Experienced readers determined

the ages from the external surface whole otolith. To determine age the otoliths were

remoistened in water at least 24 h before reading and their proximal surface polished.

They were then immersed in water or oil on a black background and read with reflected

light under a stereomicroscpe at 10x. An annulus or annual ring consisted of an

opaque and translucent ring or band. The translucent rings were formed principally

during the southern winter (April to September, Chong and Aguayo (1990)). For each

MFZ and sex, a relationship between otolith radium (τ) and TL was described by

back calculation using the Fraser-Lee method (Francis, 1990). Fitted back calculation

equations for the northern-austral zone were: males TL = 1.25τ − 9.1 (r2 = 0.65);

females TL = 1.45τ − 22.3, (r2 = 0.74). For the southern-austral zone: males

TL = 1.03τ +7.8 (r2 = 0.48); females TL = 1.30τ −8.9, (r2 = 0.60). The VBGF was

used to describe fish length as a function of age of pink cusk-eel corresponding to:

l(a) = l∞
[
1− e−k(a−a0)

]
(A.1)

where l(a) is the total length at age a; l∞ is the asymptotic length; k is the growth
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coefficient that determines how fast l approaches l∞ and a0 is the theoretical age for

l = 0. These parameters were estimated by using the minimum squares method. The

differences between vB growth parameters for MFZs and sex were assessed by the

Hotelling test (Zar, 1984), under the null hypothesis of H0 : Θ1 = Θ2 where Θ1 y

Θ2 are particular vector parameters coming from the fitted models to n1 and n2 data

sets.

A.4 Results

The fitted parameters are summarized in Table (A.4). In both MFZs, the oldest

ages observed corresponded to 14 and 16 years for males and females respectively.

At any given age, the individuals from the northern-austral zone were smaller and

had higher growth rates than those from the southern-austral zone (Fig. A.1). In

both MFZs, the females were larger and had smaller growth coefficients compared

with males at the same age (Table A.4). By using the Hotelling test we determined

that the differences between vB parameters were statistically significant (P < 0.05)

between sexes in the same MFZ as well for the same sex between MFZs. Comparing

length at a given age, an average difference of 4.6 cm of TL was found for combined

sexes between MFZs. These differences show a decrease with age. At lower ages (1-3

years) we found greater differences (8.6-5.1 cm) followed by a stabilization difference

of around 4 cm from ages 4-16.
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Figure A.1: von Bertalanffy curve fitted to pink cusk-eel, Genypterus blacodes, in
Chilean austral zone. Continuous line =model fitted; vertical lines = 5-95% percentile
of length-at-age; symbol = median length-at-age. (a) females; (b) males; (c) both
sexes combined; (d) fitted curves by sexes and management zones.

A.5 Discussion

The differential growth by sexes is also demonstrated for G. blacodes off both

Argentina (Renzi, 1986) and New Zealand (Horn, 1993). The asymptotic lengths and

maximum ages estimated here were smaller than those reported for G. blacodes in

Australia and New Zealand. In Australia the maximum age appearing routinely in

the fishery is 21 years (Withell and Wankowski, 1989); in New Zealand it is 26 years
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in males and 27 years for females (Horn, 1993). In Chilean waters for both MFZs, we

found significant proportions of 3- to 4-year-old individuals vulnerable to trawling.

Although the same ages are vulnerable in New Zealand waters (Horn, 1993), in Chile

it appears likely that that full recruitment does not occur until about age 6 (Wiff et

al, 2005), while in New Zealand the full recruitment is around 14 years old.

Significant differences were found between our parameter estimations and those

estimated by Chong and Aguayo (1990), who used samples registered during 1984 and

non-considering separation between MFZs. In fact, the asymptotic lengths for each

sex found by Chong and Aguayo (1990) are higher (134.8 cm for females; 117.5 cm

for males) and the growth coefficient slightly lower (0.141 year−1) for females; (0.179

year−1 for males) in comparison with our estimated values. Over time, a decrease

in size is often observed in heavily exploited species, which may be what is being

observed in the pink cusk-eel fishery. Supporting this point, Wiff et al (2005) showed

a decrease in average length through the years in the trawl fishery. Between 1982 and

2004 the average length decreased from 95 to 80 cm TL in the southern-austral zone

and from 85 to 78 cm TL in the northern-austral zone. For the same fishing gear

and period the proportion of catch (in weight) under the length at maturity increased

between 1982 and 2004, from 0.1 to 0.45 in the southern-austral zone and from 0.2 to

0.5 in the northern-austral zone. These results give an idea of the high exploitation

rates of the pink cusk-eel population off southern Chile.

Differences in growth rates of Genypterus species from adjacent areas have been

demonstrated for fishes off South Africa (Payne, 1985) and New Zealand (Horn, 1993).

Off the Chilean austral zone, Wiff et al (2005) estimated and compared by MFZs the

population attributes such as average individual length, cohort dynamics, resilience

and sex ratios. Wiff et al (2005) concluded that the population dynamics for these
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MFZs exhibited extremely different patterns. Here we provide further evidence for

this difference, showing that individual growth traits can vary by zones.
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