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Abstract 
 
Humans exhibit a number of suboptimal behaviours in the wake of a loss. For 

example, gamblers often ‘chase’ their losses in an attempt to break even. 

Similarly, investors tend to hold on to losing stocks too long in the hope that the 

declining share price might make a recovery. However, the neural mechanisms 

that instantiate such behaviour are poorly understood. I begin the introductory 

chapter with a basic historical overview of fundamental economic concepts, 

interleaving intersecting ideas from psychology and neuroscience. This leads to 

a more in-depth exploration of the notion that loss-related behavioural biases 

might provide insight into the neural mechanisms that underlie risky choice. 

From this, I argue that rats represent a viable animal model of risky decision-

making for neuroeconomic research. The original research presented in 

Chapters 2 – 5 pave the way toward advancing our current understanding of 

loss-related biases in behaviour with rat models of risky decision-making. By 

employing insight from psychology and economics, I developed two models of 

rat behaviour that can be used to study the neural substrates of loss valuation. I 

presented the experimental paradigms in Chapters 2 and 5, while 

demonstrating novel loss-related correlations between the midbrain dopamine 

system and observed loss behaviour in Chapters 3 and 4. The results 

presented in Chapter 5 demonstrate that rats are capable of producing 

behavioural patterns akin to loss aversion and the disposition effect. This work 

has also highlighted a number of areas for future research. In Chapter 6, I 

explore potential theoretical implications of the results discussed in previous 

chapters. In summary, this thesis uses experimental risky decision-making 

tasks in rats to advance our current knowledge of the ways in which concepts 

such as loss aversion critically influence our internal representation of value. 
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Chapter 1  

 

General Introduction 
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Abstract 

When deciding between two risky options, it is often the case that we change 

our behaviour in the face of a loss. If the resulting outcome leaves the 

individual worse off than an alternative, then it is considered suboptimal. 

Neoclassical economic theories typically label the resulting suboptimal choice 

as ‘irrational.’ This introductory chapter outlines key topics in understanding 

‘rational’ and ‘irrational’ economic choices. Beginning with a basic historical 

overview of fundamental economic concepts, intersecting ideas from 

psychology and neuroscience are discussed. Kahneman and Tversky’s (1979) 

Prospect Theory stands as a turning point, marking the beginning of a truly 

interdisciplinary pursuit toward understanding the ways in which concepts such 

as loss aversion and risk aversion critically influence our internal representation 

of value.  
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Introduction 

While neuroeconomics as a discipline remains only in its infancy, the 

intersection of the biological sciences with the economic sciences has a longer 

history than one might expect. In 1828, the Scottish Botanist Robert Brown first 

observed the natural oscillations of microscopic pollen grains that occurred 

after the granules had been submerged in water (R. Brown, 1828). The 

mathematics of this continuous random motion was later developed by Albert 

Einstein (1905) to become a pillar of physics, but not before French 

mathematician Louis Bachelier (1900) applied the principle to the stock market. 

Thus the notion that a ‘random walk’ could describe the movements of tiny 

submerged particles of biological matter just as well as the fluctuations of asset 

prices in the stock market was born.  

From pollen grains to neurons, this thesis is written with the specific intention of 

informing the study of economics with experimental evidence from psychology 

and neuroscience, and vice versa. In an effort to engage the reader in a critical 

interdisciplinary enterprise, this chapter will begin by offering an introductory 

historical review of the relevant concepts, models and assumptions from 

economics and finance. While not exhaustive, this introduction is intended to 

provide the non-specialist with a general impression of the field and its 

formalisms, while simultaneously highlighting areas of economic theory that 

have been (or could be) improved by incorporating a behaviourist tradition. 

Beginning with conceptual and formal notions of valuation and risk, this section 

will guide the reader through progressively more comprehensive theories of 

economic decisions making. Throughout, theoretical prescriptions of rationality 
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will be juxtaposed with empirical observations of behaviour. This is done with 

the intention of imparting the reader with a clearer understanding of the 

fundamental struggle in neuroeconomics: finding the optimal point between the 

prescriptive power of formal theoretical models and the descriptive accuracy of 

behavioural models. The chapter will then shift focus to a collection of studies 

that implicate neurobiological mechanisms in the modulation of the economic 

parameters and behavioural biases reviewed in the preceding sections. Taken 

together, these studies constitute the backbone of the newly established 

neuroeconomics literature and reveal an obvious dearth in their ability to 

describe ‘loss’ and ‘risk’ using current behavioural and neuroscientific 

paradigms.  

Homo Economicus: Rational Economics  

The field of economics represents a long tradition of breaking decisions down 

into quantifiable variables with the goal of objectively representing decision 

outcomes and mathematically prescribing the best course of action to achieve 

that outcome. In both psychology and economics, there is an intuitive 

understanding that what is good in the immediate sense is not necessarily good 

in the long run. Thus, the first step in terms of modelling an optimal decision 

becomes defining a value function that estimates how good or bad an action 

will be in the future.  

Expected Value 

Pascal (1670) was the first to formalize the objective measurement of decision 

outcomes in terms of expected value (EV), which has formed the basis of 

normative economic models. 
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Table 1: Pascal’s Wager 

 God exists  
(50%) 

 

God does not exist 
(50%) 

Expected Value of  
Choice Set 

Believe ∞  ×  0.5    (Infinite) −𝑥  ×  0.5      (Finite)  (∞  ×  0.5) + (−𝑥  ×  0.5) =   ∞ 

Do not believe −∞  ×  0.5 (Infinite)       𝑥  ×  0.5            (Finite)  −∞  ×  0.5 + (𝑥  ×  0.5) =   −∞ 

Table 1 displays ‘Pascal’s Wager,’ which examines the expected value, or payoff, of believing in God 
versus not believing in God. Given any probability that God exists (displayed here as a 50/50 chance), the 
infinite gain of believing is greater than the infinite loss of not believing.   

Pascal theorized that a decision maker would maximize long-term future 

payoffs by choosing the action that leads to the outcome with the highest 

expected value, which is based on its current value (positive or negative) and 

the likelihood of it occurring (probability). A decision-maker can maximize her 

payoff by simply multiplying these two variables for each alternative within a 

decision set, and then by choosing the option with the greatest resulting 

expected value, where: 

EV = Value  ×  Probability  ( 1 ) 

Therefore, a payoff of high magnitude that has an extremely low likelihood of 

occurring in the future (e.g. winning the lottery) would have a lower EV than a 

second payoff with a smaller magnitude but that will occur with relative certainty 

(e.g. gaining interest on savings). As simple as it may appear, this formulation 

has far-reaching implications for economic theory both past and present.  

The probability distribution that results from calculating EV can be used to 

describe a given outcome or a set of outcomes. Mathematically, the 

distribution’s first moment (mean) represents the ‘expected value’ of the set of 

outcomes, while its second moment (variance or its square root, standard 
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deviation) denotes the ‘expected risk.’ Variance (𝜎!) is a measure of a 

distribution’s dispersion and is equal to the mean of the squared deviations 

from the expected value, formally expressed as: 

𝝈𝟐 = 𝑽𝒊!𝑬𝑽 𝟐𝒏
𝒊!𝟏   

𝑵
 ( 2 ) 

Above, the expected value (EV) is subtracted from the observed value (V) at 

time i, and the total sum of the squared result from time i to n is divided by the 

total number of observations, N.  Thus, variance is a measure of the relative 

certainty with which one can say that an outcome will be near the mean, with 

low variances reflecting a group of numerically similar outcomes. The variance 

of the outcome distribution is therefore conventionally regarded as an objective 

measure of a decision’s riskiness. Importantly, this definition represents a 

divergence of the term ‘risk’ from its more colloquial meaning of the potential for 

a loss.1 Instead, economic risk denotes how certain one is about whether the 

                                                
1 A considerable muddling of concepts arose as psychologists, neuroscientists 
and economists began integrating theory and research. A particularly confusing 
disconnect can be seen between the definit ion of the term ‘risk.’ Psychologists’ 
view of risk often hinges upon the magnitude of a potential loss (e.g. loss of job, 
loss of l i fe). Risk within economics or f inance has a much narrower, mathematical 
definit ion, and is often conceptually closer to the colloquial notion of 
‘uncertainty.’ While the two definit ions do partially overlap, this oversight may 
underlie several l ines of diverging evidence, especially with regard to aberrant 
risk processing. For example, Attention Deficit Hyperactivity Disorder (ADHD) is 
often invoked as stereotypical impulsive behaviour, which is defined by poor risk 
assessment. However, the definit ion of risk assessment clearly depends on one’s 
definit ion of risk—an impulsive individual is often understood as someone who 
acts with a sense of spontaneity and often with disregard to the magnitude of any 
potential losses that may result. Thus, an economist is more l ikely to attribute 
ADHD to abnormal discounting of delays or cost-benefit analyses (first moment) 
rather than incorrect risk evaluations (second moment), per se. Since 
pathological conditions are often advantageous in revealing the hidden structure 
and connectivity of many functions in the brain, it is imperative that the field 
collaborate in order to remedy such ambiguity.  
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outcome will be close to the mean expected value in a given range of 

possibilities (the known unknowns). If there is a narrow range of possible 

outcomes in a decision set, then one can be relatively certain that the outcome 

will lie near the mean (expected value). Alternatively, a decision with outcomes 

spanning a wide range of expected values would be considered risky, because 

one is relatively uncertain about whether the actual outcome will be similar to 

the mean expected value. It is also of note that economists formally distinguish 

decisions under uncertainty, which indicates a known probability distribution but 

an unknown outcome, from decisions under ‘ambiguity,’ which implies that the 

probability distribution itself is at least partially unknown (the unknown 

unknowns).  

While Pascal’s formulation of expected value was able to explain a great deal 

of behaviour, it failed to describe the circumstance typified by the ‘St 

Petersburg Paradox,’ in which a probability distribution had an infinite expected 

value. The St Petersburg paradox was described as a game in which a coin 

was flipped, and the player must bet on how many flips were needed before it 

landed on heads. The game ends when heads is flipped, and the player wins 

£2 for every toss that occurs before then (i.e. £2 for each tails flip). According to 

Pascal’s formulation, the expected value of this gamble is the sum of all the 

possible outcomes multiplied by their respective probabilities, or: 

𝑬𝑽 = 𝟏
𝟐
×  𝟐 + 𝟏

𝟒
×  𝟒 + 𝟏

𝟖
×  𝟖 +⋯ = 𝟏 + 𝟏 + 𝟏 +⋯ = ∞   ( 3 ) 

 So if a player could play the game enough times, she could bet any finite 

amount of money and still beat the house. Put differently, a player should pay 
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an infinite amount of money to play the game. Since this answer obviously did 

not describe true behaviour, it was clear that expected value alone was not 

sufficient to describe realistic economic behaviour. 

Expected Utility 

In 1738 a mathematician named 

Daniel Bernoulli published a solution 

to the St Petersburg Paradox, which 

entailed the transformation of 

expected value into expected utility 

based on a person’s current wealth 

(Bernoulli, 1738). Bernoulli observed 

that expected value did not take into 

consideration whether or not the 

player was a pauper or a prince – 

and that one’s state of wealth had implications for (a) the pleasure one gained 

from a marginal increase in wealth, and therefore (b) one’s willingness to take a 

financial risk. In other words, a pauper would receive more utility from a £100 

outcome, which might double his current wealth; whereas a prince would 

receive marginally less utility from the same £100 increase in wealth. This 

formulation has become known as ‘utility,’ (u) and is often expressed as a 

logarithmic2 transformation of wealth: 

                                                
2 Importantly, any nonlinear transformation that results in a concave uti l i ty 
function is allowed here (some work better than others in specific circumstances), 
but it is common to represent uti l i ty with the logarithmic function as a tribute to 
Bernoull i ’s original proposal, which used the logarithmic function.  

Figure 1: Marginal Utility 

       

Figure with permissions from (Craig R. Fox & 
Poldrack, 2014) demonstrates the marginal utility 
of a $1K gamble experienced by an individual with 
wealth W1 compared to an individual with a higher 
starting wealth, W2. The marginal increase of the 
same objective amount is experienced differently 
between the two individuals. The person with W1 
perceives the $1K increase (and any respective 
decrease) as large relative to the person with W2. 
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𝒖 𝒙 =   𝚯𝐥𝐨𝐠 𝝎 + 𝒙    ( 4 ) 

This function takes the log of the value of the increase in wealth, ω, from a 

possible outcome, x, and multiplies it by some parameter Θ. The Θ parameter 

dictates the curvature of the line when x is mapped onto the x-axis. Here, the 

utility of a gamble would take the form of a concave value function seen in 

Figure 1, where the utility of a gamble increases at a decreasing rate. To make 

this clear, if the utility function were linear, a gamble that would increase a 

person’s wealth from £10 to £20 would provide the same amount of pleasure 

as it would when increasing wealth from £100,000 to £100,010. In contrast, a 

logarithmic function implies that the hedonic experience gained from an 

increase in wealth decreases as wealth increases. As will be explained further 

in the section on Prospect Theory, if an individual’s behaviour fits with a 

logarithmic utility function, the set of choices can be described as risk averse.  

The resulting relative units of wealth, referred to as ‘marginal wealth,’ are 

expressed as ‘utils’. Given this utility function, one can calculate the expected 

utility (EU) of a future action (A) by summing all the utilities of each possible 

outcome (x) multiplied by the respective probabilities of x occurring given A 

(PA): 

𝑬𝑼 𝑨 =    𝑷𝑨 𝒙 𝑼 𝒙    ( 5 ) 

This allows for the direct comparison of actions based on their expected utility, 

and highlights economic models’ reliance on a ‘common currency’ in order to 

compare individuals’ subjective utility across all types of goods, services, 
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actions, and contexts. For example, common abstract units are necessary to 

evaluate a worker’s choice between a cash bonus and extra vacation days. 

Although the cash bonus may hold more expected monetary value, the extra 

vacation day may hold more expected utility to the overworked employee. In 

order to achieve this common scale mathematically, economists transform 

cardinal values into ordinal utilities. In other words, the expected utility model 

changes objective values into rank-ordered preferences. For this transformation 

to hold true in expected utility theory, a number of axioms, or formal 

assumptions, have been developed and refined over the past three centuries 

since its original formation by Bernoulli (1738). With the conclusion that 

behaviour is subject to an individual’s preferences that cannot be explained 

purely by objective measures, economists had (perhaps unknowingly) created 

a common interest with the cognitive sciences.  

The separate fields forged independent pursuits of many of the same questions 

– only from different angles and with different terminology. For example, B.F. 

Skinner (1953) formulated his theory about operant conditioning (i.e. how 

individuals form preferences) at the same time that Houthakker’s (1950) 

General Axiom of Revealed Preferences (GARP) formalized how individual’s 

preferences form behaviour. 

General Axiom of Revealed Preferences (GARP) 

Of particular interest to behaviourists is Houthakker’s (1950) General Axiom of 

Revealed Preferences (GARP). GARP defines a rational decision-maker as 
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one that is internally consistent across decisions.3 To clarify GARP rationality, 

take for example the situation in which little Stevie must choose how to spend 

his £15 allowance.  At the movie theatre, tickets to see Star Wars and Star Trek 

both cost £5. Over the course of the week, Stevie is observed buying 2 tickets 

for Star Wars and 1 ticket for Star Trek. The next week, Star Wars tickets are 

offered at the matinee price for £3 while Star Trek tickets increase to prime time 

price at £6. Little Stevie would be acting irrationally if he decided to spend his 

next £15 allowance on 2 Star Trek tickets and 1 Star Wars ticket, since it is 

inconsistent with his previously revealed preference for Star Wars over Star 

Trek. Satisfaction of this axiom is both essential and sufficient in order for 

individuals to be described with a single, continuous and monotonic utility 

function. This is critical in that it allows economists to infer that an individual’s 

preferences—which are inherently unobservable—are revealed by observable 

choices. A person who satisfies GARP behaves as if she had multiplied utility 

by probability in her head and chosen the outcome with the highest expected 

value. In other words, unquantifiable internal subjective utilities become 

quantifiable (or at least able to be rank-ordered) when GARP is satisfied. It is of 

note that psychologists make similar inferences when assessing individuals’ 

preferences. For example, ‘real-life’ risk preferences are inferred from scores 

on experimental tasks such as the Balloon Analogue Risk Task (BART) or from 

questionnaires like the Domain-Specific Risk-Taking (DOSPERT) Scale. The 

key difference being that experimental analyses of such psychological 

preferences remain largely unconstrained by the demands of mathematical 

                                                
3 It is of note that satiety effects are explicit ly assumed away in GARP. In other 
words, Houthakker recognized that an individual’s preferences may change with 
increased consumption of a good, but chose to ignore that in the model.   
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formalisms, and thus hold dissimilar validation requirements (i.e. replication of 

results vs. mathematical proof)4. Note that the level of risk aversion implied by 

any given utility formation described above is based on the objective probability 

of the event occurring. 

Subjective Expected Utility 

Savage (1954) took expected utility theory a step further by incorporating 

subjective probabilities and utilities into the model. Savage’s model implies that 

each individual has a unique expectation of how likely an event is to actually 

occur, and this expectation influences the likelihood of choosing a particular 

outcome.  This accounts for the fact that individuals rarely if ever have 

complete knowledge of the true likelihood of an event, which causally attributes 

to variance in preferences. The model is as follows, where Subjective Expected 

Value (SEV) simply takes the subjective transformation of probability multiplied 

by value. This is extended to Subjective Expected Utility (SEU):  

𝑺𝑬𝑽 = 𝑺 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚   ×  𝒗𝒂𝒍𝒖𝒆    ( 6 ) 

𝑺𝑬𝑼 𝑨 =    𝑺(𝒑𝒂)×𝒖(𝒙𝒂)  ( 7 ) 

In SEU, the utility of an action, A, is the aggregate of all possible outcome 

utilities (u(xa)) multiplied by their respective subjective probabilities (S(pa)). Note 

the transformation into standard notation from equation 6 to equation 7. In plain 

words, subjective expected utility is the combination of a person’s preferences 
                                                
4 Notable exceptions to this exist (e.g. Reinforcement learning, signal detection 
theory), but generally the argument holds true given that there is yet no 
universal, all-encompassing mathematical ‘theorem of psychology.’ 
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(outcome utilities) with his or her personal beliefs (subjective probabilities). The 

fact that subjective probability is distinct from utility implies context-independent 

risk attitudes. In other words, subjective utility theory allows for trait risk 

preferences. This also represents an important link to reinforcement learning 

theories, which reason that personal beliefs/subjective probabilities are the 

culmination of past experiences. 

Subjective Expected Utility Theory, like Expected Utility Theory, requires that a 

number of axioms be satisfied for a decision-maker to be considered rational 

(see Fishburn, 1986). Again, these axioms are simply a set of criteria that need 

be fulfilled in order for the mathematical calculation of utility to hold true. Some 

axioms are stronger than others, and some can be relaxed if suggested by 

empirical data. However, in general when an axiom is violated this indicates 

that no single monotonic utility function exists to describe the individual’s 

behaviour.  Thus, the definition of a ‘rational’ economic agent lies in the 

conformity of the agent’s behaviour to a single utility function and not in the ‘fit’ 

of an agent’s behaviour to any particular function or model. Satisfaction of the 

axioms simply confirms that a single utility function exists for the individual – it 

implies nothing about functional form. This point will be demonstrated further in 

the following section. Axiomatic models can therefore be viewed as tools to 

assess whether or not a function exists to describe an observation – a tool that 

has recently been extended to the behaviour of neurons (Caplin & Glimcher, 

2014). However, when deviations from axioms are systematic and 

multiplicative, this implies that the model itself (i.e. Subjective Expected Utility 

Model) likely requires modification. 
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Homo Sapiens: Irrational Economics  

Despite the appealing simplicity and power of GARP as a means of 

mathematically modelling utility preferences, an alternative body of empirical 

research demonstrates that humans and animals systematically deviate from 

rational decision-making. It quickly became apparent that people consistently 

violated the axioms of Savage’s subjective expected utility theory. Two famous 

examples of this are known after their proposers as the ‘Allais paradox’ (Allais, 

1953) and the ‘Ellsberg paradox’ (Ellsberg, 1961), which reliably elicit ‘irrational’ 

choices when decisions are made under risk. 

There exist a number of well-documented psychological effects known to 

robustly bias economic behaviour, such as: when choices are framed as a loss 

compared to a gain, called loss aversion or more generally the framing effect 

(Johnson, Hershey, Meszaros, & Kunreuther, 1993; Krupenye, Rosati, & Hare, 

2015; Levin, Schneider, & Gaeth, 1998), temporal discounting, when choice 

outcomes are delivered at different points in the future (Ainslie, 1975; Berns, 

Laibson, & Loewenstein, 2007; Kable, 2013), and the ‘sure thing principle,’ 

when information about previous outcomes are known vs. unknown (Savage, 

1954; Shafir, 1994; Tversky & Shafir, 1992; Waite, 2001). From this 

extensive—yet not nearly exhaustive—list of examples, it is apparent that 

choices often cannot be modelled as context-independent.  It is generally 

argued that the observed choices in these examples represent decision making 

errors – which may have arisen from a variety of factors such as cognitive 

limitations or inattention – and therefore such decisions should not be 

considered true revealed preferences.  
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Such decision-making errors are exemplified by reverse-reward experiments in 

psychology, where the delivery of a larger volume of reward requires the 

subject to choose the smaller reward option (e.g. choosing the 3 candy option 

results in 5 candies being delivered), and vice versa.  Preschool children 

(Carlson, Davis, & Leach, 2005), chimpanzees (Boysen & Berntson, 1995), and 

cockerel chicks (Hershberger, 1986) all demonstrate immense difficulty in 

learning to overcome this conflict between Pavlovian approach and 

instrumental response. Thus, this represents a decision-making error rather 

than a revealed preference. Since the inference that preschool children 

generally prefer 3 candies to 5 candies is obviously incorrect here, it should be 

concluded that cognitive factors directly impose constraints upon ones ability to 

reveal a true preference through choice.   

An analogous dissociation between internal preferences and revealed choices 

also arises in the context of addiction. Although an individual may no longer 

want to consume a substance, his or her actions directly conflict with this 

desire. Berridge (1996) makes the distinction between wanting and liking. 

Berridge demonstrates that incentive motivation, or wanting, arises from 

separable psychological and neural processes as incentive palatability, or 

liking. The dopaminergic midbrain is purported to modulate wanting, while the 

opioid system is implicated in hedonic pleasure of reward (Symmonds & Dolan, 

2012).  Further studies have corroborated this, providing evidence for 

pharmacologically and neurophysiologically dissociable behaviours arising from 

reward salience/motivation and hedonic pleasure in rodents (Wilson, Laidlaw, 

Butler, Hofmann, & Bowman, 2006) and primates (Rolls, Sienkiewicz, & Yaxley, 

1989). Furthermore, Tindell and colleagues (2009) demonstrate that 
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manipulations of physiological state can alter the dominant value mechanism 

regulating choice. In this study, a previously non-preferred salt reinforcer 

triggered neurons in the ventral pallidum (previously associated with the 

preferred sucrose reward) to fire when rats were put into a salt-deprived state.  

The neuronal activity here, if equated to a measure of subjective utility, reflects 

a preference reversal where firing rates do not represent the preferred sucrose 

reward but rather the item that fulfils a homeostatic need. This suggests that 

the brain’s representation of value is based on information from multiple 

systems that have the ability to conflict and create reversals depending on 

psychological and physiological state. In summary, these examples 

demonstrate that psychological and physiological limitations often prevent an 

individual from revealing his or her true preferences, leading to behaviour that 

would be characterised as 'irrational' under Expected Utility Theory. Given 

these constraints, the universal applicability of the Expected Utility model has 

been called into question, which highlights an opportunity for coordinated 

efforts toward modification with the psychological sciences.  

Prospect Theory 

The multiple-systems approach has also been argued for decisions resulting in 

asymmetrical effects of gains and losses. Both Expected Utility Theory and 

Subjective Expected Utility Theory assume that preferences among potential 

prospects reflect ‘description invariance.’ For example, imagine an individual is 

asked to choose between option A) a 50/50 gamble of either £1000 or £0 and 

option B)  £500 for sure. The individual’s stated preference is assumed not to 

change based on the manner in which the available options are described. 
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Given that both options have the same expected value (𝐸𝑉! = 0.5  ×  £1000 +

0.5  ×  £0 = £500  𝑎𝑛𝑑  𝐸𝑉! = 1  ×  £500 = £500), a preference for option B 

implies that the subject is risk averse to the variability of outcomes in option A. 

Kahneman and Tversky (1979) tested the postulated description invariance of 

70 subjects by comparing subjects’ preference between A and B to preferences 

between C and D, where option C) is a 50/50 gamble of either £0 or losing 

£1000 and option D) represents losing £500 for sure. As before, options C and 

D have the same expected value and therefore any preference between the 

two will reveal either a relative preference or aversion toward risk. The only 

difference in the choice between A and B and the choice between C and D is 

that the former is framed as a gain while the latter is framed as a loss. 

Kahneman and Tversky (1979) found that while 84% of subjects indicated a 

preference for option B over option A (i.e. risk aversion), 69% of subjects 

preferred option C over option D (risk seeking).  

Using a similar paradigm, the authors also found evidence in support of a 

second violation of description invariance whereby subjects exhibited risk-

seeking behaviour for large, but highly unlikely gains (e.g. winning the lottery), 

yet risk-averse behaviour for large, but highly unlikely losses (e.g. purchasing 

home insurance). These dichotomies can be conceptualized as a ‘four-fold 

pattern’ of risk attitudes, outlined in Table 2 below: 

Table 2: Prospect Theory risk attitudes 

 Medium – High 
Probability of Occurring 

 

Low Probability of 
Occurring 

Loss Risk Seeking Risk Averse 

Gain Risk Averse Risk Seeking 

Table 2: modified from Kahneman & Tversky (1979), the four-fold pattern of risk attitudes for gambles 
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framed as losses or as gains with a medium-high or low likelihood of occurring. 

 
In response to this, Kahneman and Tversky (1979) proposed Prospect Theory 

as a framework for utility maximization under risk that accommodated for 

cognitive biases and boasted a better fit to empirical data. Prospect Theory 

also received a considerable amount of attention for its ability to account for the 

Allais paradox. Tversky and Kahneman (1992) later developed an axiomatic 

version, Cumulative Prospect Theory, which is arguably the most successful 

approach to behavioural economics thus far (cf. Gigerenzer & Selten, 2001; H. 

A. Simon, 1959).  

By drawing heavily from the field of psychology, Kahneman and Tversky (1979) 

constructed Prospect Theory with three distinctive attributes that allow it to 

better describe individual behaviour. First, Prospect Theory incorporates a 

variable reference point (Figure 2a), which typically refers to the ‘status quo’ 

rather than to wealth as does Bernoulli’s utility formulation. To make clear the 

Figure 2: Prospect Theory 

                    

Figure with permissions from Fox and Poldrack (2009, p. 149), (A) represents a value function over 
losses and gains, with the ‘kink’ at the origin representing a steeper curve for losses than for gains, 
and (B) a weighting function for probabilities with ‘S-shape,’ implying that values at the extremes 
behave differently. The value function results in a utility curve that is concave for gains (implying 
risk-averse behaviour) and convex for losses (implying risk-seeking behaviour). Furthermore, the 
origin is not fixed at zero, but rather is variable, subjective, and often equal to the status quo. The 
weighting function captures the observation that individuals tend to overweight probabilities near 
zero (e.g. impossible) and underweight probabilities near one (e.g. certain). 
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notion of a reference point, consider the example where Robert unexpectedly 

earns a bonus of £1,000. Robert is quite satisfied with his bonus until he 

discovers that colleagues of his, Peter and Katy, both received bonuses of 

£3,000. As a result, Robert now finds himself quite unsatisfied with his bonus. 

Tversky and Kahneman (1981) might assert that, in comparing himself with 

Peter and Katy, Robert’s reference point for gains and losses shifts from a 

baseline of zero (as the bonus was unexpected) to £3000 (the status quo). This 

implies that what was previously modelled as a gain of £1000 is now treated as 

a loss of £2000. Prospect Theory’s second important distinction is that outcome 

probabilities are weighted by an ‘S-shaped’ probability function so that very 

unlikely outcomes have a stronger effect relative to very likely outcomes 

(Figure 2b). This fits with the ‘Four-Fold pattern’ of risk attitudes in Table 2 

above. Finally, loss aversion is modelled by computing utility for losses and 

gains with separable functions, as seen in equation 8 below: 

𝒖 𝒙 = −𝝀(−𝒙)𝜷, 𝒙 < 𝟎
𝒙𝜶, 𝒙 ≥ 𝟎

   ( 8 ) 

The utility function detailed here dictates that gains are subjected to a (risk 

aversion) coefficient (α), while losses are influenced by a (risk-seeking) 

coefficient (β) and a loss-aversion coefficient, λ. In sum, these parameters 

result in a concave utility function over gains and a convex function over losses, 

with a kinked shape around the reference point indicating a steeper slope for 

losses than for gains (Figure 2a).  

In equation 8, note the distinct parameters for loss-aversion and risk-aversion. 
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While the two terms can certainly interact5, they should not be confused. Risk 

aversion distinguishes between option probabilities while holding value 

constant, whereby choice reflects a preference for a certain option over an 

uncertain option. By contrast, loss aversion describes the robust tendency of 

individuals to make decisions as if negatively valenced outcomes were twice 

the amount than they actual are with respect to comparable gains. With regard 

to equation 8 above, consider the individual who is evaluating the utility of the 

outcomes of a gamble that had a 50/50 chance of winning or losing £5. 

Assuming a risk-neutral attitude and a loss aversion coefficient of 2 (i.e. λ = 2, α 

= 1 and β = 1), the individual will multiply the utility of a £5 gain (𝑢(𝑥) = 5) and 

a £5 loss (𝑢(𝑥) = −2×5 = −10) by their respective probabilities of 50% in order 

to establish an expected utility for the gamble.  Therefore, an individual is more 

sensitive to the prospect of a loss than to the prospect of a gain in Prospect 

Theory.  

The λ coefficient of loss aversion is commonly cited at 2.25, which is the 

average provided by Tversky and Kahneman (1992). Gächter, Johnson, and 

Herrmann (2010) report that individuals’ loss aversion estimates remain 

constant between decisions involving risk (e.g. gambles) and decisions that are 

riskless,(e.g. contrasting willingness to pay vs. willingness to accept for a good, 

see equation 10). However, numerous studies report substantial variation in λ 

across individuals (Haigh & List, 2005; Johnson, Gächter, & Herrmann, 2006) 

and decision attributes (Neumann & Böckenholt, 2014; Sayman & Öncüler, 

                                                
5 Indeed, the effects of the two terms can interact in a way that one can even fully 
account for the other. For example, Novemsky and Kahneman (2005) 
demonstrate that loss aversion accounts for a large proportion of observed risk 
aversion in gambles involving small losses and gains. 
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2005). Thus, despite its prevalence, it is unclear what loss aversion is exactly. 

Some researchers, such as Johnson and colleagues (2006) and Camerer 

(2005), suggest that loss aversion could represent: 1) a stable attribute of 

preference decisions, 2) something akin to a personality trait, 3) an affective 

response , or 4) the result of conflicting dual systems underlying losses and 

gains.  Addressing the true nature of loss aversion presents an exciting 

opportunity for the collaboration of psychology, neuroscience, and economics.  

All three fields stand to gain by establishing the cognitive and neural 

mechanisms underpinning this source of variability. In order to fully consider 

this question, it would be useful to first gain an understanding of how loss 

aversion manifests in financial markets as well as the tools that have been 

utilized to measure it.  Thus, we first shift our focus to the marketplace, after 

which point we will revisit the nature of loss aversion in the context of current 

neuroscientific research thereafter.  

Efficient Markets: Rational Finance 

Here, instead of goods and gambles, we consider assets (stocks and bonds) 

and trades. It is interesting to note that while economics often considers the 

prices of goods and services, the primary focus in financial markets lies in 

highly abstract representations of value and ownership. For example, buying 

100 shares of Apple, Inc. stock in July of 2015 would have cost an investor 

$1,275.00. In return, that investor would be the proud owner of 0.0000000175th 

of Apple Inc. Thus, although a stock fundamentally represents a share of 

ownership in a company, an investor may struggle to fully comprehend it as a 

tangible good. From a psychology standpoint, assets are far closer in nature to 
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a secondary reinforcer (e.g. currency) than a primary reinforcer (e.g. food).  

Moreover, given that fluctuations in stock prices generally approximate random 

walks (see Introduction), and that there is no contract associated with a stock 

(i.e. the company is under no contractual obligation to pay out dividends, etc.), 

the true value of a holding is neither fixed nor certain. An asset can become 

virtually valueless in an instant. Given this unique set of features, financial 

markets are particularly conducive to the study of cognitive mechanisms that 

bias loss- and risk-related behaviour. 
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Risk-Return Models 

Finance is defined as a subfield of economics; while the two share similar 

normative ideals, finance has naturally developed its own traditions and field-

specific methodologies. While expected utility is the primary computation of 

future subjective value in economics, the finance tradition generally relies on a 

similar but mathematically distinct construct: namely, the risk-return model 

proposed by Markowitz (1959). In its most basic form, the return, r, on an 

investment is calculated as the percentage of profit gained from a trade, by: 

𝑹 =   𝑷𝒓𝒊𝒄𝒆𝑺𝒂𝒍𝒆!𝑷𝒓𝒊𝒄𝒆𝑩𝒖𝒚
𝑷𝒓𝒊𝒄𝒆𝑩𝒖𝒚

  ×  𝟏𝟎𝟎   ( 9 ) 

The return is therefore a measure of the change in price between buying and 

selling with relation to the original purchase price. As with expected value, 

taking the product of an investment’s returns and respective probabilities 

provides an estimation of expected return (ER). Importantly, the variability in 

returns on an investment over a given time period is regarded as a measure of 

the asset’s risk. This is expressed as either the standard deviation (σ) or 

variance (σ2), and represents the spread of the distribution of returns around 

the mean. It is therefore a general truism that greater risk confers the potential 

for greater return.  

Markowitz (1959) states that one can construct an ideal portfolio based on 

preferred risks by eliciting the amount that an investor is willing to pay (WTP) 

for assets over varying degrees of risk and return (see Figure 3), using: 

𝑾𝑻𝑷 = 𝑬𝑹 − 𝒃(𝝈𝟐)   ( 10 ) 
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Thus, when b represents an individual’s risk preference, an investor’s WTP for 

one unit of decreased risk will be reflected in the difference between expected 

return (ER) and subjectively weighted risk (σ or σ2). Take, for example, the 

decision in which an investor chooses how to divide her portfolio between ‘risk-

free’ government bonds that offer 

a certain return of 5%, and stocks 

that have a higher rate of return 

(between 5-15%) but also greater 

associated risk. This example is 

depicted in Figure 3, where the 

investor chooses point X, dividing 

her money between the two 

assets. A risk-averse investor 

would position X toward the left, 

and a risk-tolerant investor would 

position X toward the right. Therefore, b-Values offer a direct measure of an 

individual’s risk preference from observed choice behaviour.   

Efficient Markets 

In parallel with the normative economic models implying the existence of a 

rational Homo Economicus, there also existed a similar sentiment regarding 

financial markets. Although it was not formally defined until the 1970’s, much of 

the financial discourse centred around the notion that markets were efficient 

(Sewell, 2011; Shiller, 2003).  

Fama (1970, p. 383) made the fundamental assertion that the price of a stock 

Figure 3: Risk-Return Models 

            

Figure 3 with permissions from Glimcher (2008). An 
investor chooses between how to divide her portfolio 
between ‘risk-free’ government bonds that offer a sure 
return of 5%, and stocks that have a higher rate of 
return but also a greater associated risk. The investor 
chooses point X, dividing her money between the two 
assets. A risk-averse investor would position X toward 
the left, and a risk-seeking investor would position X 
toward the right. b-Values offer a direct measure of an 
individual’s risk preference from observed choice 
behaviour.  
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acts as a signal to the market about the economic health of the company, and 

that in an efficient market, this signal “fully reflects” all available information. 

Importantly, this notion includes all types of information (e.g. financial, social, 

political, etc.) that might have a direct or indirect effect on the marketplace. As 

an example, consider the situation where the CEO of a company is publically 

accused of cheating on his wife. Although this information may have little to do 

with the financial abilities of the company itself (and indeed, the accusation 

need not necessarily even be true), an ensuing fall in stock prices would reflect 

a loss of shareholders’ trust in the company’s leadership. Thus prices are a 

reflection of the information that investors have, as well as their expectations 

about how other investors will react to that information.  

By this logic, changes in price will reflect a combination of: new information, 

investors’ own reactions to new information, and investors’ expectations about 

other investors’ reactions to the new information. While the composite reaction 

itself may be unpredictable, it can be assumed that the price change will fully 

depend on the new information and thus be independent of previous 

information (and previous price).  Therefore, the idea of efficient markets 

became coupled with the concept introduced in the beginning of this chapter, 

namely that stocks prices follow the ‘random walk’ pattern of Brownian motion 

defined by Einstein in 1905. In other words, stock prices are completely 

random, denoting that future prices are completely independent of current 

prices. This represents a particularly grim conclusion for the individual whose 

job it is to predict future market trends. Indeed, given an efficient market in 

which prices are a reflection of all information, all investors privy to all prices by 

definition have access to all information. Therefore, ‘bargain’ stock prices do 
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not exist, and any attempt of one investor to outperform another investor is 

futile, and only adds to the overall randomness of prices. Fama (1965, p. 10) 

stated bluntly: 

If, as the empirical evidence seems to suggest, the random-walk 

theory is valid, then chartist theories are akin to astrology and of 

no real value to the investor. 

Despite these rather self-defeating implications, the efficient markets 

hypothesis found a great deal of success in the field and remains a strong 

theoretical pillar. In support of the efficient market hypothesis, a number of 

researchers have highlighted the fact that even professional money managers 

do not beat the market (Rubenstein, 2001).  

The efficient market hypothesis refutes the idea that irrational investors (often 

referred to as ‘noise traders’) can influence market prices in any meaningful 

way, since rational investors would quickly identify and take advantage of any 

deviation from fundamental value (Friedman, 1953). There also exists the 

possibility of beating the average by reacting to new or insider information more 

quickly than the time it takes for the market to adjust to its new average. It is 

generally accepted that while an investor may occasionally beat the market by 

reacting quickly to new information, it is not possible to sustain this on the 

average. Proponents of the efficient market theory and the Capital Asset 

Pricing Model (Markowitz, 1959) conclude that although it may not be possible 

for investors to beat the market on average, it is still possible to perform at 

average by maintaining a sufficiently diversified portfolio.  
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Inefficient Markets: ‘Noise Traders’  

Fama (1970) himself admits that a purely efficient market, where all information 

is freely known, is not an accurate description of any real world markets. In fact, 

he supplied a number of examples of markets exhibiting variable levels of 

efficiency in his (1970) paper, including the scenario in which information is 

monopolistically held and exploited. In general, behaviourists such as Barberis 

and Thaler (2003) argue that the effect that ‘noise traders’ have on market 

prices is not always cancelled out by quick-acting rational investors (otherwise 

referred to as ‘arbitrage traders’ in the finance literature).  The authors argue 

that arbitrage, or the ability of rational investors to take advantage of mispricing 

from noise trading, is both risky and costly. In real markets, arbitrage does not 

fully cancel out the effects arising from psychological biases, as asserted by 

Friedman (1953). 

There also exists a long-standing debate about whether or not the average 

stock’s movement over time carries momentum, meaning it is more likely to 

continue on its current trajectory than to reverse directions, or whether its 

movement more closely approximates a random walk.  While many argue that 

asset fluctuations are entirely random (notably, Malkiel, 1973), others provide 

evidence for serial autocorrelation (Bondt & Thaler, 1985; Campbell, Lo, & 

MacKinlay, 1997; Shiller, 2003), suggesting that psychological factors such as 

herding behaviour and heuristics lead to serial correlation in prices over time.  

Within psychology, the term ‘heuristic’ refers to an intuitive reduction in choice 

sets due to the limited computational or attentional capacity of a decision-

maker. Tversky and Kahneman (1974, p. 1124) assert that: 
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[P]eople rely on a limited number of heuristic principles which 

reduce the complex tasks of assessing probabilities and 

predicting values to simpler judgmental operations. In general, 

these heuristics are quite useful, but sometimes they lead to 

severe and systematic errors.  

In colloquial terms, a heuristic is a rule of thumb based on subjective beliefs. 

When a heuristic consistently leads to a departure from rationality, it creates 

what is called a ‘cognitive bias.’ Cognitive biases tend to be extremely robust – 

even prior knowledge of the bias often cannot effectively preclude its 

expression. This is akin to perceptual illusions such as Jastrow’s (1899) duck-

rabbit, whereby one’s previous knowledge of cognitive psychology and 

perception does not change one’s inability to see both the duck and the rabbit 

at the same time. When even very small departures from rationality arise as 

systematic reactions to market dynamics, the aggregate influence across 

thousands of investors can be powerful. Thus, many finance experts are eager 

to capture the effect that these systematic deviations have in predictive asset 

pricing models. 

The Disposition Effect 

Shefrin and Statman (1985) labelled one such bias the ‘disposition effect,’ 

which describes investors’ inclination to sell profitable stocks too soon while 

holding on to losing stocks for too long. This effect is extremely robust and has 

been observed in both professionally managed and individual investment 

accounts (Shapira & Venezia, 2001), as well as across investor classes (P. 

Brown, Chappel, da Silva Rosa, & Walter, 2006), cultures (G. Chen, Kim, 

Nofsinger, & Rui, 2007) and genders (Feng & Seasholes, 2008). However, the 
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underlying causes of the disposition effect remain unclear. 

In the past, it was argued that the disposition effect could be attributed to 

investors’ irrational belief in ‘mean-reversion,’ i.e. that the direction of the stock 

will eventually flip and revert back to the mean (for review, see Mukherji, 2011; 

Poterba & Summers, 1988). If this explanation were correct, investors would be 

just as likely to realize gains and losses, as the investor would assume both an 

increase and a decrease in price would quickly return to average. However, the 

observation that investors tend to realize gains at a much higher rate (about 

50%) than losses allowed Odean (1998) to refute this explanation.  

Shefrin and Statman (1985) initially argued that this behaviour was instead a 

product of Prospect Theory utility, whereby an investor holding a stock that 

goes down in price after purchase would use the original price as a reference 

point. This places the investor in the steeper, convex loss domain of the 

Prospect Theory utility curve (i.e. the lower left-hand quadrant of Figure 2a). 

Compared to the concave gain domain, the now risk-seeking investor requires 

an even lower price before she is willing to sell. This process could potentially 

perpetuate itself until the stock no longer had value, or until the investor 

changes the reference point (e.g. by lowering expectations). The opposite 

would be true for individuals holding a winning stock, whereby the investor 

would find herself in the concave risk-averse gain domain (i.e. the upper right-

hand quadrant of Figure 2a). Less willing to risk losing the current gain, the 

investor would be biased toward selling the winning stock too soon. Through 

this process, Prospect Theory provides an explanation for why individuals hold 

losses too long while selling winners too soon.  
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A number of alternative explanations for the disposition effect have also arisen. 

For example, Thaler (1998) highlighted the affective processes that impede 

action in the face of a loss, stating that selling a losing stock is more painful 

than holding on to a ‘paper loss.’ Alternatively, others have hypothesized that 

the act of selling at a gain bears inherent utility, while respective disutility is 

derived from selling at a loss (Barberis & Xiong, 2012; Barberis & Xiong, 2009; 

Frydman, Barberis, Camerer, Bossaerts, & Rangel, 2014). Hirshleifer (2001) 

postulates a third alternative in which investors avoid selling losing stocks 

because the act of doing so represents a self-signal that they have performed 

poorly. Hirshleifer’s hypothesis aligns with the concept of self-justification in 

cognitive dissonance theory (Festinger, 1957). Given that poor performance 

may be seen as a reflection of low ability, the investor is motivated toward self-

deception in order to maintain a notion of high self-regard. In all three of the 

alternative explanations introduced above, the investor disassociates the 

outcome of holding a gain/loss from the outcome of selling a gain/loss. In other 

words, even though an investor has already lost real money when she is 

holding a stock that has plummeted in value, this notion of financial loss is 

qualitatively different than that experienced upon actually selling the losing 

stock.   

The ‘Realization Hypothesis,’ in which individuals conceptually separate a 

paper gain/loss from a realized gain/loss, has found traction in recent 

neurobiological research. Frydman and colleagues (2014) reported a large 

spike in fMRI BOLD activity in the ventral striatum (an area critically involved in 

reward processing) after participants decided to sell at a gain compared to 

when they decided to hold at a gain. In short, the researchers found that a 



 32 

realized gain elicits quantifiably distinct reward-related neural activity compared 

to a paper gain. This study constitutes an important link between economics, 

psychology and neuroscience, because if clues to the origins of the disposition 

effect lie in subcortical structures such as the ventral striatum, then further 

testing in the laboratory may reveal important predictions about behaviour in 

the marketplace. 

Economic Animals 

In order to fully explore the neural mechanisms underlying behaviour in the 

laboratory, it is often ethically and economically preferable to use simpler 

organisms (e.g. rodents or birds). This is generally justified with regard to 

reward-related behaviour, because while cortical structures between 

mammalian species show potentially meaningful functional and 

cytoarchitechtonic differences, subcortical brain areas responsible for 

representing and learning from reward are remarkably evolutionarily preserved 

(this concept is developed in detail in the following section, and the reader is 

referred to Figure 5 for illustrative comparison of the reward system between 

species). Indeed, these underlying similarities may even help explain the 

successful migration of rational economic models of the early 20th Century into 

models of optimal reward-related decision making behaviour in the ecological 

literature (e.g. Optimal Foraging Theory) beginning in the 1960’s (Cowie, 1977; 

Mäki, 2009; Stephens & Krebs, 1986). This also suggests that laboratory tasks 

with animals such as rats could potentially represent valid behavioural and 

neural models of economic decision-making. 
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In order to explore the viability of modelling economic behaviour in rats, 

researchers (e.g. Collier, Hirsch, & Hamlin, 1972; Kagel et al., 1975) in the 

1970’s began explicitly developing 

laboratory-based economic tasks. In 

one experiment, which Kagel and 

colleagues (1981) called a 

‘consumer demand’ task (Figure 4), 

rats bar-pressed for food pellets up 

to a limit of 350 presses (Z’). The 

experimenter either decreased 

‘budget’ by decreasing the amount 

of lever presses allowed to 250 

while holding the payoff magnitude 

constant (Z), or increased the ‘price’ 

by requiring more presses per unit of 

reward (Z’’). Doubling the price resulted in the same effect on demand for water 

as did decreasing the allowable budget. Thus the authors concluded that rat 

consumption patterns obey the basic principles of consumer demand theory. 

Similar studies report analogous findings with preferred and non-preferred 

substitutes, essential and non-essential commodities, and changes in wealth 

and labour-supply (Collier et al., 1972; Kagel & Battalio, 1980). These studies, 

which represent some of the first direct tests of economic theory using 

laboratory rats, provide robust evidence that maximizing behaviour under 

environmental constraints is not a capability unique to humans. 

More recent research demonstrates that we may also share our ‘irrational’ 

Figure 4: Rat Demand Curves 

   

Figure 4 with permission from Kagel, Battalio, 
Rachlin, and Green (1981, p. 4): Demand curve 
for rats between two ‘goods’, where doubling the 
required bar presses for a given magnitude of 
water (x-axis) from Z to Z’’ had the same effect on 
demand for water as halving the amount of fluid 
that paid out per bar press. This bar press per unit 
of reward measure corresponds with the definition 
of ‘price’ in consumer demand theory. 
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behavioural biases with our evolutionary ancestors. For example, Chen and 

colleagues (2006) reveal that non-human primates are also similar to humans 

when they behave irrationally. By creating a token economy with fruit, the 

authors find that while capuchin monkeys respond rationally to changes in 

wealth and price, they exhibit both reference dependence and loss aversion 

(refer to previous section on ‘Prospect Theory’) when risk is also incorporated. 

Work by the same group found that capuchins also exhibit framing effects – 

becoming risk seeking when gambles were presented as a loss and risk-averse 

if the gamble was presented as a gain (Lakshminaryanan, Chen, & Santos, 

2008). These studies further support the notion that the mechanisms underlying 

choices that involve the potential for loss extend beyond the human species. 

Researchers can take advantage of the fact that animals behave similarly to 

humans in many contexts. Like Kagel (1975) and his contemporaries, one can 

test theoretical assumptions of economic theories without the confounding 

‘human factors’, such as prior assumptions about how an economy works or 

differing levels of numeracy amongst participants. In this way, animal 

paradigms offer clear advantages to neuroeconomic study. However, there are 

also disadvantages and operational obstacles to working with laboratory 

animals. For example, it is not possible to describe the outcome values and 

probabilities of a potential gamble to an animal – it must learn the 

contingencies of an action through trial and error. Furthermore, it is extremely 

difficult to operationalize resource loss in an animal task, for one can easily 

reward an animal with food or drink, but it is difficult to then retract the reward 

once it has been consumed. The development of tasks that overcome such 

challenges will be key in facilitating a comprehensive characterization of the 
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neural structures and functions that give rise to economic choices.  

Reward Learning and Expectation in the Brain 

Up to present, animal work has been instrumental in achieving our current 

understanding of how rewards are learned and represented in the brain. While 

a number of mechanisms underlie valuation and choice during decision-

making, the dopamine system plays a central role in the neural processing of 

reward-related behaviour (Fibiger & Phillips, 1986). From an anatomical 

standpoint, the rat (and to a lesser extent the pigeon) dopaminergic system 

shows striking similarities to the human system (see Figure 5).  Dopamine 

neurons primarily 

originate in the ventral 

tegmental area (VTA) 

and the substantia nigra 

pars compacta (SNc). 

Bilaterally, the rat has 

between 40,000 and 

45,000 dopamine 

neurons in the VTA and 

SNc combined, while 

healthy young adult 

humans have 400,000 – 600,000 (Puig et al., 2014). The striatum represents 

the most densely innervated target area of midbrain dopamine projections 

(Björklund & Dunnett). Postsynaptic target cells express D1- (low dopamine 

affinity) or D2-like (high dopamine affinity) receptors that function as slow-acting 

  

Figure 5 reproduced* from (Puig, 
Rose, Schmidt, & Freund, 2014): 
Comparative neuroanatomy of the 
dopamine system in the primate, 
rat and pigeon.  Dopamine 
neurons originate in two main 
midbrain nuclei, the ventral 
tegmental area (VTA) and 
substantia nigra pars compacta 
(SNc), and project to many areas 
(projections shown in red), 
especially the striatum and 
prefrontal cortex (PFC). Striatal 
areas are shaded in blue, cortical 
areas are shaded in gray, and the 
hatched areas represent PFC (or 
its structural equivalent in birds, 
the nidopallium caudolaterale; 
NCL). *Figure reproduced under 
Creative Commons Attribution 
License (CC BY).  
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G-protein coupled neuromodulators (Santana, Mengod, & Artigas, 2009). 

Dopamine neurons demonstrate two types of firing patterns: 1) phasic, quick 

bursts of action potentials and 2) tonic, slow ramping currents. It is theorized 

that the two modes of firing fulfil separate functions (i.e. transmit different types 

of information) with respect to reward prediction and motivation (Howe, Tierney, 

Sandberg, Phillips, & Graybiel, 2013; Tobler, Fiorillo, & Schultz, 2003), which 

may also be facilitated by the asymmetrical D1- and D2-like receptor affinities 

for dopamine.  

Robust evidence supports the theory that the midbrain dopamine system elicits 

a phasic learning signal, or Reward Prediction Error (RPE), in response to 

expectations about reward (Schultz, Apicella, & Ljungberg, 1993; Schultz, 

Dayan, & Montague, 1997; Schultz & Dickinson, 2000). Unexpected rewards 

reliably evoke an increase in phasic dopamine activity (positive reward 

prediction error) in dopaminergic midbrain areas such as the VTA and nucleus 

accumbens (NAc), while the omission of an expected reward consistently 

inhibits activity in these areas, resulting in a negative reward prediction error. 

The error signal has been shown to equate to the expected (mean) value of a 

reward distribution divided by its standard deviation (Preuschoff & Bossaerts, 

2007; Schultz, 2010; Tobler, Fiorillo, & Schultz, 2005). Thus, the prediction 

error signals a normalized value of how much an obtained reward differs from 

expectations. By modulating synaptic plasticity in midbrain dopamine neurons, 

it is theorized that this signal selectively reinforces rewarded behaviour while 

discouraging unrewarded behaviour (Suri & Schultz, 1999; Sutton & Barto, 

1998). In this manner, dopaminergic modulation allows an organism to reliably 

update expectations about an outcome that lead to better predictions (and 
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thereby better information on which to base decisions) about similar encounters 

in the future.  

Given that the majority of research presented above was in animals, Zaghloul 

and colleagues (2009) used single neuron recording during deep-brain 

stimulation in Parkinson’s disease patients to establish whether reward 

prediction errors could be observed in 

humans as well. In this study, the 

authors employed a probabilistic 

gambling task where participants 

could choose from a relatively safe or 

risky deck of cards to earn 

hypothetical money. As has been 

observed in previous animal studies, 

Zaghloul and colleagues found that 

neurons in the substantia nigra 

responded to unexpected gains and 

losses with increased or decreased 

activity, respectively (see Figure 6). However, since Parkinson’s Disease is 

characterized by extensive targeted cell loss in the substantia nigra, it could be 

argued that the results depicted here may not reflect those of a healthy 

individual (Aarts, 2012). Furthermore, the authors are not explicit about whether 

subjects perceived losses within the task as a monetary loss (e.g. Begin: $50 

è Outcome: -$5 è End: $45) or as a non-reward (e.g. Begin: $50 è 

Outcome: ‘Loss’ è End: $50). The later would more closely approximate 

animal studies on reward prediction error. Either way, this study provides 

Figure 6: Activity of Single Neurons in the 
Substantia Nigra of Parkinson’s Disease 
Patients after a Financial Gain and Loss  

 

Figure 6 with permissions from Zaghloul, et al. 
(2009) depicts the single unit activity of 
substantia nigra neurons of Parkinson’s 
Disease patients during a probabilistic choice 
task. (A-B) Increased activity after unexpected 
gains and suppressed activity after unexpected 
losses, (C-D) Small increase activity after an 
expected loss – no change after expected gain. 
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evidence that the human brain holds some representation of the expected 

value of an outcome, and that midbrain dopamine activity responds to any 

deviation from that expected value. 

Put in the context of the stock market, reward prediction errors may offer some 

intriguing insight. Similar to midbrain activity in gambling tasks, one would 

predict that phasic dopamine signals would respond with a relative increase in 

firing rates after a large unexpected gain on a trade, and vice versa after a 

large unexpected loss. Dopamine neurons then encode the difference between 

expected and experienced reward, which provides a learning signal for 

updating expectations about subsequent events. The dopamine-modulated 

relative increase in expected outcome could potentially be responsible for the 

fluctuation of an individual’s reference point. In the case of gain omission, as is 

the case when firms choose to withhold dividends for a certain period for 

example, dopamine activity would be suppressed, and a negative reward 

prediction error would provide a learning signal not to repeat the investment 

action that lead to the omission outcome. Indeed, Michaely, Thaler, and 

Womack (1995) found that firms significantly underperformed compared to the 

market one year after announcement of such a dividend omission. The 

opposite was also true for those announcing the initiation of dividend payments. 

Given that past market performance is a notoriously poor predictor of future 

prices, and that monitoring of individual stocks does not accurately represent 

portfolio-level performance, this reinforcement-learning signal may lead to 

maladaptive investment behaviour.  

Since stock prices are in constant motion and few reliable signals of 
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increasing/decreasing future prices exist, observed prices would rarely – if ever 

– perfectly match predicted values. This implies that reinforcement learning 

prediction errors may have a sustained effect on investor behaviour, as price 

stochasticity requires constant updating by large increments. In reinforcement 

learning (Sutton & Barto, 1998), a primary reinforcement signal can itself 

become reinforcing (i.e. a secondary reinforcer). When applied to the market 

place, reinforcement learning theory suggests that the act of trading itself could 

become a reinforced behaviour. If this were the case, successful investors 

would be biased to trade more frequently and unsuccessful investors to trade 

less often. Evidence for this hypothesis presents itself in work by De, Gondhi, 

and Pochiraju (2010), who find that investors were indeed more active after 

experiencing recent success. In this way, reinforcement learning may act as a 

fundamental motor of investment decisions. 

Over time, repeated maladaptive learning signals from the nervous system may 

become more established as investors learn action-outcome associations. In 

laboratory tasks, rats learn to associate actions (such as running down a 

runway to retrieve reward) with outcomes that lead to a rewarding state (e.g. 

consuming a sugar pellet), which is called an action-outcome association 

(Tolman, 1932). Similarly, Karlsson, Loewenstein, and Seppi (2009) 

demonstrate that investors log on to examine their trading accounts more often 

when markets are doing well than when markets are doing poorly. This 

suggests that investors also have a neural representation of an action-outcome 

association between accessing the online portfolio and the likelihood of 

experiencing a gain or loss. While action-outcome association learning is 

necessary and adaptive in many contexts, the resulting behaviour in the above 
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example would potentially bias investors toward holding on to losing stocks too 

long and selling winning stocks too quickly (i.e. exhibit the disposition effect).  

Value Representation in the Brain  

When given a choice between outcomes, including mixed gambles (i.e. those 

involving both wins and losses) and decisions that involve costs (e.g. effort, 

monetary, or foraging costs), outcome valuation allows an individual to ascribe 

a subjective value to a possible outcome based on its attributes (e.g. 

desirability, valence, salience and risk) as well as any previous experiences 

associated with that outcome. Thus, valuation represents the first stage of a 

simple three-stage neural decision process (see Figure 7) proposed by Platt 

and Plassmann (2014).  

 

 
Figure 7 with permissions from Platt and Plassmann (2014, p. 239): In 
stage 1, observed and predicted attributes of options are consolidated 
into a subjective value signal. In primates, this occurs primarily in areas 
highlighted in yellow such as the dorsolateral prefrontal cortex (dlPFC), 
the anterior cingulate cortex, the orbitofrontal cortex and the striatum. In 
stage 2, the subjective value signal is transformed into action signals in 
the parietal cortex (green) for the motor systems to carry out the choice. 
Once the outcome is actually experienced, outcome values are signaled 
in stage 3 in areas highlighted in red, such as the insula striatum and 
orbitofrontal cortex. These stages are not required to operate in the order 
presented, and could potentially operate in parallel.  
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Once the value signals are computed, they are passed on to comparator 

regions and subsequently converted to action values so that motor areas can 

realize choice. In the final stage, the brain encodes the value of actually 

experiencing (e.g. of receiving or consuming) the chosen outcome. This final 

stage then feeds back to the first stage to update predicted values as 

reinforcement learning. It has been proposed that the vmPFC, OFC and 

striatum encode the subjective value of rewards, while the lateral interparietal 

area (LIP) translates subjective values into action values. The insula, striatum 

and OFC are implicated in signalling experienced reward.  

When evaluating the value of one option within a set of options, it is important 

to note that one option's value will invariably be affected by the other alternative 

options' values. Tobler, Fiorillo, and Schultz (2005) observed 

electrophysiological recordings of single midbrain dopamine neuron activity in 

awake Macaque monkeys responding to liquid rewards. The researchers found 

that activation of dopamine neurons increased monotonically as a function of 

reward magnitude and probability (i.e. the components of expected value) with 

both predicted and unpredicted rewards. Thus, when given a choice between a 

set of alternatives, the outcomes associated with the other choices become 

reference points for the subjective value that one assigns to a chosen outcome. 

It is of note that dopaminergic activity did not adapt to the absolute value of 

rewards, but rather to the standard deviation of the most probable potential 

outcomes. This evidence suggests that the brain consolidates information by 

representing reward in a context-depend manner within the dopamine system, 

offering critical insight as to why one’s choices are often subconsciously 

influenced by the options surrounding it. For example, given a choice between 
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three competing brands, consumers will often choose the middle option – which 

can mean either the option with the middle price point or the option literally 

spaced in the middle of the visual field (Sigurdsson, Saevarsson, & Foxall, 

2009; Simonson, Nowlis, & Lemon, 1993). 

While research regarding the neural encoding of reward consistently points to 

targets of dopaminergic midbrain areas as primary modulatory substrates, 

much less is known about how the brain encodes resource losses. Taking 

insight from Prospect Theory’s (Kahneman & Tversky, 1979) oft cited concept 

that losses loom twice as large as gains (see Figure 2), researchers have 

proposed two different hypotheses regarding the neural representation of 

losses. Loss aversion suggests that either: a) there is an affective response 

that biases evaluations involving losses in a dual system (Ashraf, Camerer, & 

Loewenstein, 2005; Kuhnen & Knutson, 2005), or b) gains and losses are 

handled asymmetrically within a single system (for review, see Kable & 

Glimcher, 2009). These two competing hypotheses of whether the valuation 

system is guided by a single system or dual-systems are fuelled by 

contradictory findings that have sparked a heated debate within the field.  

On the one side, studies such as Tom et al. (2007) provide human 

neuroimaging evidence in support of the single-process theory that focus on 

valuation centres in the ventromedial prefrontal cortex (vmPFC) and striatum. 

Tom and colleagues (2007) gave participants a series of gambles that they 

chose to either accept or reject. Each gamble was associated with an equal 

(50/50) probability of winning or losing. The authors suggest that BOLD 

responses in the vmPFC and ventral striatum at the time of decision selection 
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exhibit ‘neural loss aversion.’ In other words, the same areas that encode 

reward not only show decreased activity to losses, but the decreases in loss-

elicited activity were also greater than equivalent increases in gain-elicited 

activity. Furthermore, the study did not find any correlation between losses and 

activity in regions associated with negative emotions (e.g. amygdala or anterior 

insula).  

Contrary to these findings, Gan and colleagues (2010) investigated whether 

costs were tracked by dopamine release in the rat nucleus accumbens with the 

use of fast-scan cyclic voltammetry. Rats were placed in a decision-making 

paradigm, whereby reward magnitude and effort-based cost were each 

manipulated. The results demonstrated that, while phasic dopamine in the 

nucleus accumbens of rats did track probability-weighted reward magnitudes 

as in Tobler et al. (2005), extracellular dopamine levels did not correlate with 

changing costs or a net cost-benefit utility function. Therefore, midbrain 

dopamine neurons appear to encode information about the benefits of an 

outcome but not specifically its costs or net utility. 

Instead, a number of studies implicate the amygdala and anterior insula as the 

counterpart to reward in neural loss processing, particularly with respect to loss 

aversion. A recent study by McHugh and colleagues (2014) recorded both local 

field potentials and hemodynamic tissue oxygen signals, which are putatively 

equivalent to human BOLD signals (Lowry et al., 2010), in the basolateral 

amygdala of freely moving mice during a fear-conditioning (foot shock) task. 

The authors found an increased hemodynamic response to an unexpected foot 

shock and suppressed activity following an unexpected foot shock omission. 
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Furthermore, greater evoked hemodynamic and theta signals were predictive of 

better discrimination ability between aversive and nonaversive stimuli in 

subsequent sessions. This is in line with theories implicating theta oscillations 

in enhanced information transfer (Buzasaki, 2002) and attentional gain 

(Sejnowski & Paulsen, 2006). While these findings are intriguing in that they 

parallel dopaminergic reward prediction errors in the midbrain, it is unclear 

whether the (pre-synaptic) measurements in this study truly confirm that the 

aversive prediction errors generate from the amygdala.  

De Martino, Camerer, and Adolphs (2010) found that patients with Urbach-

Wiethe disease, a rare neurological disease that causes selective bilateral 

lesions of the amygdala, have difficulty processing fear. Similarly, rhesus 

monkeys with amygdala lesions have been shown to exhibit a lack of fear in 

approaching novel stimuli compared to non-lesioned monkeys (Mason, 

Capitanio, Machado, Mendoza, & Amaral, 2006). This led the authors to 

investigate whether the patients also exhibited loss aversion differently than 

healthy controls. Indeed, the study showed that amygdala-lesioned patients did 

not exhibit loss aversion under an experimental paradigm closely paralleling 

that of Tom et al. (2007), whereas healthy controls did. Interestingly, the 

authors also showed that despite this absence of loss aversion, patients with 

amygdala damage did still exhibit risk aversion (a preference for safer rather 

than riskier gambles) similarly to healthy controls. The researchers were able to 

conclude, therefore, that the amygdala is critical in the processing of losses in a 

manner that is independent of risk evaluation.  

Loss aversion is also fully predicted by the somatic marker theory, which 
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implicates anterior insula in the integration and experience of emotional and 

somatosensory information (Bechara & Damasio, 2005; Craig, 2002; Damasio, 

1994). Furthermore, the anterior insula has been associated with fear (Adolphs, 

Tranel, & Damasio, 1995), anticipatory anxiety (Chua, Krams, Toni, 

Passingham, & Dolan, 1999), as well as the anticipation of monetary losses 

(Kahn et al., 2002) and aversive physical (Buchel & Dolan, 2000) and visual 

stimuli (Simmons, Matthews, Stein, & Paulus, 2004). Given that the anterior 

insula mediates negative affect and the anticipation of negative outcomes, 

emotion may therefore contribute to a greater impact in the perception of losses 

than of gains, which supports the dual-system perspective. In further support of 

this hypothesis, Sokol-Hessner and colleagues (2009) found that losses elicited 

greater physiological arousal than gains in human participants, consistent with 

loss aversion. Moreover, participants were able to attenuate behavioural and 

physiological effects of loss aversion through intentional cognitive-regulation 

efforts. A second study not only correlated behavioural and physiological 

expressions of loss aversion with BOLD activation in the amygdala, but also 

demonstrated that successful cognitive-regulation strategies reduced activity in 

the amygdala (Sokol-Hessner, Camerer, & Phelps, 2013). Importantly, the 

changes in BOLD signals in the amygdala associated with cognitive regulation 

correlated with responses to losses, but not to gains, and also coincided with 

increased activity in prefrontal regions and the striatum.  

Upon experiencing an outcome, a rat study conducted by Steiner and Redish 

(2012) argues that the OFC encodes information about counterfactual options 

when a loss is incurred, thereby representing something akin to ‘regret.’ The 

authors designed an economics-based task to induce regret in rats, while 
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recording from single neurons in the OFC and ventral striatum. Regret was 

defined as the revaluation of a previous choice in terms of the current choice. A 

four-armed “Restaurant Row” task was implemented, wherein each arm 

contained an equal amount of different flavoured pellets (e.g. cherry, 

chocolate). As a rat approached the entrance to one arm, the pitch of a tone 

indicated the length of wait time required before the reward could be 

consumed. The rat then had the choice of waiting the given amount of time or 

moving on to the next arm. The wait time varied randomly between 1-45 

seconds. Due to time constraints, any skipped arm that was comparably better 

than the subsequent arm was considered a missed opportunity, and cause for 

regret. Disappointing sequences, or sequences where a non-preferred outcome 

resulted from chance rather than from the rat’s decision, were analysed as 

controls to regret. For example, a disappointment-inducing sequence would 

result when a non-preferred outcome was (correctly) skipped, but followed by a 

similarly non-preferred outcome. By contrast, a regret-inducing sequence would 

occur when the rat (incorrectly) skipped a preferred outcome for a comparably 

less-preferred outcome. Intriguingly, in regret-inducing circumstances (as 

opposed to disappointing circumstances as controls), representations of the 

previous zone/arm were most strongly signalled in the OFC and ventral 

striatum. The representation of regret in these areas more closely related to the 

missed action rather than the missed outcome. This was likened to human 

regret, in which people tend to ruminate over actions taken or not taken rather 

than the missed outcome itself (Gilovich & Medvec, 1995). Together, these 

studies represent a robust argument in favour of neural separation of losses 

and gains. 
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Thus it is possible that rewards and losses are initially encoded in distinct brain 

areas and subsequently integrated into one comparison signal via a third 

region. Evidence from fMRI and lesion studies would suggest that a decision’s 

benefits are signalled primarily by the ventral striatum (Basten, Biele, 

Heekeren, & Fiebach, 2009; B. Knutson & Cooper, 2005; Roesch, Singh, 

Brown, Mullins, & Schoenbaum, 2009), while the costs associated with a 

particular outcome are relayed by the amygdala and insula (De Martino et al., 

2010; Yacubian & al, 2006). The combined signal would then act as a net 

value, akin to the economic concept of expected value. Thereafter, researchers 

have hypothesized that these two signals are combined in the vmPFC or OFC 

into a reward- or action-value signal, depending on the type of decision6 

(Gläscher, Hampton, & O'Doherty, 2009; Kolling, Behrens, Mars, & Rushworth, 

2012; Lebreton, Jorge, Michel, Thirion, & Pessiglione, 2009). Further fMRI 

evidence shows that the combined valuation signal then accumulates in the 

parietal cortex until a decision threshold is met (Basten et al., 2009).  

Clark and Dagher (2014) recently incorporated the separable dopamine signals 

into a Prospect Theory utility model of risky decision-making. In this model (see 

Figure 8a), the utility of potential gains and losses are computed separately 

(gains in the vmPFC and striatum and losses in the amygdala and insula) and 

then integrated into a decision value in the striatum. The degree of loss 

aversion, characterized by the steeper slope of the value function over losses, 

is determined by the balance between opposing tonic and phasic action-
                                                
6 There is some debate regarding value assignment in the prefrontal cortex, 
especially with regard to different types of decisions (e.g. economically 
constructed binary goods-based decisions vs. explore-exploit decisions with 
greater ecological plausibil i ty). See Rushworth and colleagues (2012) for a 
comprehensive discussion. 
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selection signals.   

 

This model offers an intriguing application of the dual dopamine signals in loss 

aversion (i.e. the steeper curve for losses than for gains). However, its authors 

make the assumption that risk is equivalent to the proportion of potential 

losses, and not to the uncertainty, or variance, of the potential outcomes. Thus, 

the model does not explicitly incorporate dopamine as a risk signal in the 

economic sense, per se. Unfortunately, the authors also refrain from 

speculating about how dopamine might play a role in the two other key aspects 

of Prospect Theory, namely: 1) the ‘s-curved’ weighting function (see Figure 

2b) and 2) the variable reference-point. Despite its apparent incompleteness, 

the model offers a good starting point from which to base further investigations.  

Note that in the Clark and Dagher (2014) model above, it remains unclear how 

a given outcome’s risk is represented in the system. For example, the model 

 

 
 

Figure 8 reproduced* from (Clark & Dagher, 2014): 
(A) The brain is hypothesized to compute utility from 
potential gains and losses in different substrates. In 
the model, utility from gains is computed in the 
vmPFC/striatum and utility from losses is computed 
in the amygdala/ insula. These separate utility 
signals are then integrated into a decision value in 
the striatum. Note that the likelihood (i.e. probability) 
and risk (i.e. variance) are either 1) also represented 
separately for gains and losses or 2) are computed 
elsewhere upstream. The combined decision value in 
the striatum reflects loss aversion, whereby the 
losses in the steeper red domain result in greater 
disutility than the utility of equivalent gains in the 
flatter blue domain. (B) The model hypothesizes that 
tonic and phasic dopamine activity fulfil distinct 
modulatory functions, whereby tonic dopamine 
controls the steepness of the value curve in the loss 
domain and phasic dopamine controls the steepness 
of the value curve in the gain domain. 

*Figure reproduced under Creative Commons 
Attribution License (CC BY).  
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does not detail how the riskiness of an outcome reduces/increases phasic or 

tonic dopamine activity. The following section will explore the implications of 

different model classes on the representation of risk in the brain.  

Encoding Risk in the Brain 

Two competing models of risky decision-making are utility-based models (see 

Expected Utility & Prospect Theory), and risk-return models (refer to Risk & 

Return Models). Utility-based theories assume that decision makers weight the 

value of various options and then sum the weighted value of all available 

outcomes in order to decide which option is best. In contrast, risk-return models 

focus first on the average return of an option and its associated risk, and 

thereafter undertake a comparison of all options based on risk-corrected mean 

returns. Often times, the two models’ behavioural predictions are very nearly 

the same, which makes it difficult to determine which one more closely 

resembles the true neural processes underlying risky decision making—or even 

if either of the two models are biologically plausible.  

Although relatively little is known about the neural encoding of risk, a number of 

studies measuring hemodynamic responses of risky decisions point to the 

anterior insula, anterior cingulate cortex, nucleus accumbens, and inferior 

frontal gyrus as key areas in mediating risk (e.g. Mohr, Biele, Krugel, Li, & 

Heekeren, 2010; Paulus, Rogalsky, Simmons, Feinstein, & Stein, 2003; 

Preuschoff, Bossaerts, & Quartz, 2006; Tobler, O'Doherty, Dolan, & Schultz, 

2007). The amygdala has also been implicated in risk tracking, but primarily in 

decision-making under ambiguity when probabilities are unknown (M. Hsu, 

Bhatt, Adolphs, Tranel, & Camerer, 2005; Rutishauser, Mamelak, & Schuman, 
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2006). Significant activations typically disappear when probability distributions 

are learned over time or explicitly stated (Bossaerts, 2010), but nonetheless 

represent important excitatory inputs for risky decision-making.  

 Tonic activation of the dopamine neurons within these areas may play an 

important role in the physiological modulation of risk in expected reward. Fiorillo 

and colleagues (2003) found that for binary reward outcomes (e.g. reward or no 

reward), both reward value and reward risk (as variance or entropy) were 

encoded by monkey midbrain dopamine neurons. Whereas the value of a 

conditioned stimulus correlated as expected with phasic burst firing, the authors 

found that sustained tonic responses encoded risk between stimulus onset and 

reward delivery. This tonic activity was highest when a reward was maximally 

uncertain. Kuhnen and Knutson (2005) used functional imaging to investigate 

the neural mechanisms underlying financial risk taking in humans. The authors 

asked participants to choose between two risky stock options with the potential 

for both large gains or large losses, or a safe bond option corresponding to a 

certain but small gain. The study showed that nucleus accumbens activity 

increased prior to risky choices and risk-seeking mistakes, serving as a 

predictor of future risky decisions. Further studies have corroborated these 

findings, suggesting that increased activation of the nucleus accumbens may 

increase one’s tendency to choose options associated with higher risk and 

greater reward (B. Knutson, Wimmer, Kuhnen, & Winkielman, 2008; Matthews, 

Simmons, Lane, & Paulus, 2004; Rao, Korczykowski, Pluta, Hoang, & Detre, 

2008). In support of this association, selective inactivation of the rat nucleus 

accumbens has been shown to elicit the opposite reaction. Stopper and 

Floresco (2011) found that inactivation of the nucleus accumbens shell using 
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localized microinjections of a dopamine antagonist reduced the tendency of 

rats to choose large/risky options versus small/safe options. This evidence 

suggests that dopamine release in the nucleus accumbens is not limited to a 

singular role of signalling reward prediction error via phasic bursts. Instead, 

tonic dopaminergic activity in the nucleus accumbens offers a putative signal 

about the variance, or uncertainty, of receiving an expected reward. The shared 

presence of these two separable signals in a common neurotransmitter and 

brain area is in line with the Markowitz (1959) mean-variance approach – 

although not specifically at the exclusion of utility models. In conclusion, 

although much work is being done in this area, it remains unclear which class 

of model (if any) more nearly approximates the brain’s integration of risk and 

reward into a decision value. 
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Discussion 

In the preceding sections, it has been established that decision-making under 

uncertainty requires an individual to dynamically update and contextualize 

information about the potential magnitude, valence, likelihood, and desirability 

of an outcome.  It is hypothesized that in the brain, this information is integrated 

into a coherent standardized representation of subjective action value that an 

individual then maps over all potential outcomes in a preference-weighted 

manner. However, the subjective treatment of objective variables such as 

magnitude and probability often make it unlikely that an individual will achieve a 

utility-maximizing behavioural response, as defined by classic rational models 

(Expected Utility). For example, a decision maker in a risk-seeking frame (Levin 

et al., 1998; Tversky & Kahneman, 1981) may preferentially weight the 

subjective value of an uncertain option to bias its selection over more certain 

options with equal or greater expected value. It remains unclear how valuation 

mechanisms within the brain instantiate such behaviour.  

While interdisciplinary collaborations in neuroeconomics have made great 

strides in understanding the neural representations of expectations about 

rewards and punishments, little is understood about the mechanisms that 

encode financial losses as well as the mechanisms that allow the prospect of a 

loss to bias representations of value, risk and ultimately behaviour. With this in 

mind, the following chapters represent a collection of original research intended 

to facilitate the study of resource loss on the brain and behaviour. 

We sought to achieve a number of specific goals with the research presented in 

the following chapters. Most generally, we intended to establish the viability of 
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rat decision-making tasks to neuroeconomics research. The majority of 

neuroeconomic research is carried out in primates (humans and to some extent 

in monkeys). This may be due to an implicit assumption that higher order 

cognitive faculties are required for the economic decisions of interest, or 

possibly to the difficulties that arise in operationalizing economic decisions. For 

example, it is not difficult to elicit a mental representation of gains and losses 

from human participants. One must only signal that a loss (e.g. -$5.00) has 

occurred within the task. However, eliciting an abstract representation of 

resource loss is much more difficult in animal work. In general, it is not possible 

to retract a reward once it has been consumed. Previous researchers (e.g. N. 

W. Simon, Gilbert, Mayse, Bizon, & Setlow, 2009; Zeeb, Robbins, & 

Winstanley, 2009) have resolved this issue by substituting punishers (e.g. 

footshocks) and opportunities costs (e.g. timeouts). Given our lack of 

knowledge regarding the neural substrates that encode loss, it is unclear 

whether such substitutes are supported by the same mechanisms as is 

resource loss in the brain. Therefore, it could be argued that neither pain nor 

frustrative non-reward represent valid substitutes.  

The research presented in the upcoming chapters aims to address this 

specifically by developing and validating two novel implementations of resource 

loss. The first operationalization of loss is based on expectations of potential 

gain, while the second is based on notions of a reference point (see ‘Prospect 

Theory’) between perceived gains and losses. Once it is established that rats 

form a representation of loss in each of these tasks, we also aim to determine 

whether or not rats exhibit similar loss-related behavioural biases (e.g. loss 

aversion) to humans and primates (Barberis & Xiong, 2009; M. K. Chen et al., 
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2006). While rational economic behaviour has been observed in rat tasks 

(Kagel et al., 1975), suboptimal behavioural biases such as loss aversion and 

the disposition have never before been explicitly elicited from rats. The 

preceding review suggests that such behavioural biases may occur due to 

conflicting neural processes in the dopaminergic midbrain, and that there are 

marked similarities between the rat and primate midbrains. Therefore, a final 

aim of this research is to implement the novel rat paradigms to further elucidate 

neural mechanisms that instantiate suboptimal behaviour in decisions that 

involve losses. 
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Chapter 2  

 

A novel gambling task to capture resource loss in rats 
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Abstract 

Previous research has established a role for the dopaminergic midbrain in 

reward-related behaviour (e.g. reward prediction errors), but evidence 

implicating the dopamine system in the encoding of losses is conflicting. This 

critical lack of understanding may be attributable to difficulties in 

operationalizing resource loss in laboratory tasks – especially those with animal 

subjects. Thus, we developed a rat gambling task that utilizes a novel 

operationalization of resource loss in order to facilitate better translations 

between behavioural and neural research in animals and humans. In the task, 

thirsty rats (N=29) were trained to sustain a nosepoke for up to a maximum of 2 

seconds in order to receive liquid reward. At each 100-millisecond interval of 

the nosepoke, the total volume of potential reward increased while the 

cumulative probability of winning that potential reward decreased. Thus, 

animals decided between longer poke durations for larger uncertain rewards or 

shorter poke durations for smaller certain rewards over a 0-2 second 

continuum. Rats also chose between three different contingencies of reward 

magnitude and probability on free-choice trials. The experimental results 

indicated that rats predictably altered behaviour to changes in either reward 

probability accrual rates or reward magnitude accrual rates, which suggests 

that rats were sensitive to contingency manipulations in the task. Furthermore, 

rats spent less time poking in error and moving to collect reward on trials 

immediately preceded by a loss compared to those preceded by a win. This 

supports the notion that rats adjusted behaviour to compensate for a loss. Rats 

also alter contingency choice and subsequent stay-shift behaviour after a loss, 

exhibiting a loss-stay/win-shift pattern of behaviour. 
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Introduction 

With the knowledge that individuals often act as if losses are twice as impactful 

as equivalent gains (Kahneman & Tversky, 1979), a topic of considerable 

debate amongst neuroeconomics researchers is whether the brain encodes 

gains and losses via a single, bivalent system or via multiple competing 

systems. Evidence for both the single (e.g. Tom et al., 2007) and competing 

(e.g. Kuhnen & Knutson, 2005) system theories can be found. Methodological 

differences between human and animal research on loss aversion may 

contribute to the lack of resolution over this topic. On the one hand, human 

research benefits from its ability to exact abstract representations of monetary 

loss from participants, while animal research relies on operationalized notions 

of loss such as pain (e.g. a foot-shock or an air-puff) or opportunity cost (e.g. a 

time-out). On the other hand, animal research allows researchers to investigate 

the neural mechanisms driving behaviour at the level of single neurons, while 

commonly employed measures of neural activity in humans generally must 

sacrifice either temporal (e.g. functional Magnetic Resonance Imaging, or fMRI) 

or spatial (e.g. Electroencephalograph, or EEG) resolution. Given these trade-

offs, animal research has been limited in its ability to translate to studies of 

human loss aversion up to this point, and vice versa.  Thus, the development of 

an animal model of risky decision-making that incorporates resource loss 

represents a critical undertaking in allowing researchers to better understand 

the neural mechanisms subserving loss aversion.  

Previous rodent models of risky decision-making demonstrate limited face and 

construct validity to human paradigms with regard to their operationalization of 
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losses. Whereas outcome gains are easily integrated into an animal model by 

resource gain (e.g. by varying the number of food pellets given to hungry rats), 

simulating outcome losses has proven to be a critical obstacle given that 

animals tend to consume outcome gains immediately. For example, rats in the 

previous risky decision making tasks could gain food pellets, but they could not 

arrive at an overall loss by the end of testing session, as would be the case if 

humans were to lose money in a gambling paradigm. 

One way in which previous studies have attempted to model loss in rats is by 

substituting punishers for rewards,7 such as food pellets saturated with quinine 

to make them less palatable than sugary rewards (e.g. van den Bos, 2006). 

Alternatively, some task designs introduce opportunity costs in the form of 

‘time-outs,’ during which time rats cannot work for reward (e.g. Zeeb et al., 

2009). In using either punishment or frustrative nonreward, the previous rat 

models do not incorporate true resource loss, which may confound translations 

of results into humans. By means of a simplistic example, consider an 

experiment in rats in which footshocks are employed as a substitute for 

resource loss. In the event that neural measures taken during the task suggest 

a significant interaction exists between one system encoding gains and a 

separate system encoding losses, the experimenters would not be able to rule 

out the possibility that one system measures value and the other measures 

pain. While one might argue that the emotional response elicited in the contexts 

of resource loss and punishment both demonstrate substantial overlap (Prelec 

                                                
7 In the reinforcement learning literature, a clear distinction is made between the term ‘reward’, which is 
associated with hedonic experience, and the term ‘reinforcer’, which refers to learning invoked by reward. 
Both terms are applicable in this task, but we use the term reward in order to generalize to the wider 
interdisciplinary audience. 
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& Loewenstein, 1998), one cannot conclude from this that the same 

mechanisms encoding the (negative) value of a punishment also encode the 

(negative) value of a financial loss.   

However, this is not to say that emotion should or even could be decoupled 

from risky decision-making tasks. Positive and negative states of affect and 

arousal play an important role in guiding decision making in many contexts, 

including financial decisions (Kuhnen & Knutson, 2011).  Indeed, tasks that 

elicit emotionally engaging responses to choice sets and outcomes are often 

more predictive of naturalistic everyday risky decision making than those that 

do not (for review, see Schonberg, Fox, & Poldrack, 2011). Thus, while it is 

important to incorporate affect and arousal in the task, it is still necessary to 

dissociate them from value. 

The Balloon Analogue Risk Task (BART), developed by Lejuez and colleagues 

(2002), represents one human risky decision-making task that is both 

particularly emotionally engaging and also reliably predictive of naturalistic risk 

taking such as stealing, smoking and substance abuse (Bornovalova, 

Daughters, Hernandez, Richards, & Lejuez, 2005; Lejuez et al., 2007; Lejuez et 

al., 2003). In this task, participants are asked to pump up a series of virtual 

balloons with the goal of cashing out before a given balloon ‘pops’. The 

participant accrues reward with each successful pump of the balloon, but will 

lose any accrued reward in the event that the balloon explodes. Different 

coloured balloons represent differing probabilities of popping as the balloon is 

pumped up, which must be learned over the course of the session. The 

suspense of increasing pumps and the surprise of an exploding balloon 
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naturally elicit affective engagement from participants. Jentsch and colleagues 

(2010) adapted this idea in a rodent BART, but with an additional dimension of 

uncertainty. Rats were presented with two levers, one that added an increment 

of reward and one that cashed out for reward delivery. The researchers varied 

the risk of losing a trial with the ‘add’ lever and the ‘cash out’ lever. In other 

words, the cash out lever was not risk-free, as is the case with the human task. 

Therefore, in the decision moment, subjects did not always have the dilemma 

of taking reward in hand versus potential increased reward. Furthermore, each 

additional bar press resulted in only one unit increase in reward, which meant 

that rats had little incentive to continue bar-pressing beyond the first press. 

Jentsch and colleagues found that inactivation of the rat mPFC increased the 

variability of responding in the task, leading to increased suboptimal behaviour, 

while OFC inactivation decreased response rates altogether. However, the 

authors did not specifically contrast behaviour after a gain with behaviour after 

a loss in either the baseline or inactivation conditions. Therefore, it is unclear 

how losses affected subsequent behaviour within the task. 

In the rat decision-making model carried out in this paper, strategic choices 

were based on manipulations of reward probability and magnitude. Similar to 

the BART, losses were operationalized as the omission of any accrued reward 

up to the point of an unsuccessful gamble. To implement this, we trained thirsty 

rats to nosepoke in a standard operant testing chamber to earn sweet liquid 

reward. The longer a rat poked, the greater the potential volume of reward, but 

also the greater the probability the reward would be cancelled and it would 

receive nothing.  In essence, at each moment during the nosepoke the rat is 

faced with a dilemma, for it could hold the poke longer to earn more reward, but 
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in so doing it also risks losing the reward already earned in the trial. This is the 

equivalent of the decision to ‘let a bet ride’ in human gambling contexts and 

may elicit a closer decision-making scenario to that of the human BART than 

other rodent versions of the task. The specific goal of this design was to elicit 

an internal representation of the volume of reward that was lost (i.e. loss 

encoding). It is possible that such a representation would also generate a 

negative emotional state (Kuhnen & Knutson, 2011) as well as a fictive reward 

prediction error8, i.e. a reward prediction error for an unchosen option 

(Boorman, Behrens, & Rushworth, 2011).  

Within the task, rats were faced with two types of decisions involving 

uncertainty: 1) the decision among nosepoke holes associated with varying 

rates of reward magnitude and probability, and 2) the decision at each 100 

msec interval of a poke to either unpoke and collect accrued reward or to 

continue poking for the chance at accruing more. Once rats’ performance had 

stabilized, we made the following hypotheses regarding nosepoke durations 

and hole choices on free-choice trials in the task:  

1. Each response will be contingent on manipulations of expected reward 
via probability of loss/reward-accrual rates, where risk-aversion will limit 
both poke durations and choice of the high-risk/reward contingency.  

2. Following a loss, rats will change behaviour in a way that is consistent 
with loss aversion in repeated gambles (Heilbronner & Hayden, 2013; 
Kahneman & Tversky, 1979): increasing risk-seeking behaviour by 
poking longer and choosing the high-risk/reward contingency more 
often. 

                                                
8 It should be noted that there is a psychological distinction between learning 
from fictive prediction errors that represent options that were not chosen (regret) 
vs. options that were chosen but not obtained (disappointment), and that these 
two likely have distinct neural substrates (for review, see Platt & Hayden, 2011). 
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Methods 

Animals 

Subjects were 29 male outbred Lister Hooded rats (Harlan U.K.) that were 

housed in groups of four in a climate-controlled colony room on a reverse 12-

hour light: 12-hour dark cycle (6PM lights off). Baseline data are pooled from 

two cohorts of 16 and 13 rats with similar training protocols. The discrimination 

task and pharmacological manipulation with cis-Flupenthixol described below 

were conducted with the cohort of 16 rats only. After three weeks of habituation 

to experimenter handling, rats were placed on restricted water access for the 

duration of behavioural training and testing with ad libitum food access in the 

home cage. Rats were tested 5 days a week. Water access was restricted to 1 

hour on weekdays following testing, but was available ad libitum on weekends 

from Friday at 4PM until Sunday afternoon (typically between 2-4PM). Rats’ 

weights were monitored so that no animal dropped below 85% of its maximum 

body weight and showed growth throughout the experiment. All procedures 

were carried out under the Project License number 60/4040, conformed to the 

United Kingdom Animals (Scientific Procedures) Act (1986) and were approved 

by the Animal Welfare Ethics Committee of the University of St Andrews. 

Apparatus 

Testing was carried out in four 34mm × 29mm × 25mm Perspex inner 

chambers with metal bar flooring that were located within 60cm × 74cm × 55cm 

sound-attenuating outer shell boxes (Med Associates Inc., St Albans, VT) with 

closed caption video cameras and ventilation fans. The right metal wall of the 

inner testing chamber contained five square nosepoke holes, each 
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accommodating a recessed green LED light as well as an infrared sensor to 

record nosepokes. A recessed custom-built liquid reward magazine delivering 

0.3% w/v sodium saccharin solution at a rate of 0.05 ml/sec was located on the 

left metal wall of the inner testing chamber. The reward spigot was fitted with a 

lickometer (Med Associates Inc., St Albans, VT or Weignen 1989) to record 

licking behaviour, as well as a white LED (approximately 2072 mcd luminosity) 

and a piezoelectric buzzer (2900Hz, 85dB) to signal reward availability. Two 

electronically controlled syringe pumps (model PHM – 100, Med Associates 

Inc., St Albans, VT) dispensed liquid from 50 ml glass syringes with stainless 

steel plungers (Rocket Medical plc, Herts, U.K.) and an 18-gauge needle 

connected to the reward spigot by Teflon tubing. This setup allowed for 

precision in the timing and flow rate of reward delivery.  

Behavioural testing was interfaced by the MED-PC™ data experimental control 

system (Med Associates Inc., St Albans, VT) with an IBM® computer running 

Windows™ 98 at a temporal resolution of 2 msec. Summary measures were 

also available in an online display on the computer screen along side real-time 

video feeds.  Behavioural events were also time-stamped (2 msec resolution) 

and recorded for offline data analysis and session reconstruction. 

Task Design 

After three weeks in which rats were habituated to human handling, the animals 

were placed on water restriction and submitted to 30 min training sessions in 

the testing chambers with no fixed trial limit. First, thirsty rats were trained over 

2 days to associate a tone-light cue with delivery of 0.15 ml sweet liquid reward 

(sodium saccharin 0.3% w/v). Rats were subsequently trained over two 
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sessions to nosepoke in the three middle nosepoke holes of the five-hole array 

in order to receive the tone/light cue followed by the reward. Rats were then 

trained to sustain gradually longer nosepokes for up to 2 sec over 18 sessions.  

Task schematic 

 

Figure 9: Task Schematic. Rats were presented with blocks of trials in which forced- and free-choice trials 
were pseudorandomly interleaved in a proportion of 3:1. Lit LEDs indicated the available hole(s) in which a 
rat could poke on any given trial, and the locations of the holes associated with each contingency were 
counterbalanced across testing chambers. All LEDs in nosepoke holes were extinguished after the rat 
began poking into one of the lit nosepoke holes, but no changes in stimuli occurred if an animal poked into 
an unlit hole (error). If the animal either withdrew its snout from the nosepoke hole before a loss, or it 
successfully reached the full 2 sec limit without losing, a tone-light cue emanating from the reward 
magazine would indicate the availability of reward for collection. Movement time (MT) to reward was 
measured from the onset of the conditioned stimuli to licking onset at the reward spigot. The amount of 
reward earned was a function of nosepoke length (refer to plot at top right of figure), and the animal could 
commence licking at the reward spigot until the full amount was delivered. If a loss occurred during the 
course of a nosepoke, both cue and reward were omitted. A 15 sec timer was activated from the onset of a 
nosepoke response, and a trial ended either when the timer elapsed or with the end of a lick bout (an inter-
lick interval > 300 msec) after reward delivery, in which case a new trial began immediately. The animals 
were free to complete as many trials as possible over the course of the 30-minute session. 

Figure 9 depicts the risky decision making task, in which rats could earn reward 

for any duration of nosepoke in a lit hole that lasted between 0.1 and 2 sec. 

The amount of reward delivered after a successful nosepoke depended on the 

 

MT 
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rate of reward accrual corresponding with the given nosepoke hole. Each 

nosepoke hole was associated with a rate of risk and reward accrual so that 

increasing nosepoke durations (max 2 sec) resulted in greater volumes of 

potential reward, but also a greater likelihood that that reward would be 

cancelled. Therefore, at each moment during a poke, a rat must consider 

whether to continue poking for more reward (akin to ‘letting the bet ride’), or to 

unpoke and keep any reward that it had accrued up to that point (akin to 

‘cashing out’). The rats chose between a high risk/high reward hole, a medium 

risk/medium reward hole, and a low risk/low reward hole, depending on which 

holes were lit and therefore available on any given trial. Poking into unlit holes 

was counted as an error. Rats had two ways of adjusting their behaviour in 

order to maximize reward within the task: 1) they could vary the duration of a 

nosepoke in order to maximize reward volume and minimize the probability of 

loss on a given trial, and 2) on free-choice trials, they could choose the 

nosepoke hole with optimal contingencies of reward probability/volume based 

on previous experience. As in training, testing sessions lasted 30 minutes with 

no fixed trial limit. 

The task was constructed so that even the steepest reward discounters would 

experience a discernable trade-off between the rate of reward accrual and the 

decreasing likelihood of receiving accrued reward. For example, a rat poking 

only until the first 100ms tick in the hole associated with low rate of reward 

accrual and low probability of losing had a 99.5% chance of success, whereas 

the probability of success dropped to 89% at the first 100ms tick in the hole 

associated with a high rate of reward accrual and high probability of losing. The 

expected value of poking in each contingency is displayed in Figure 10. 
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Expected value of future reward as a function of poke duration 

 

Figure 10: The expected value of future reward as a function of poke duration in stage III (mixed 
probability and magnitude of reward). In the low contingency, a rat would expect a low rate of reward 
accrual but also a low probability of losing over the duration of the nosepoke. Thus, one might expect a rat 
to poke for the full 2 sec duration in the low contingency in order to maximize expected reward. In the high 
contingency, the expected likelihood of losing outweighs any potential increase in reward accrual just 
before a 1 second poke duration. Thus, one might expect a rat to unpoke on average at about 900 msec. 
The medium contingency falls between the low and high contingencies. 

Discrimination task 

In order to confirm that rats were able to discriminate variation in rates of 

reward accrual and probability of winning between the contingencies, we 

manipulated the contingencies so that either only reward probability (stage I), 

only reward volume (stage II), or both reward probability and reward volume 

(stage III) varied across the holes in a subset of 15 rats. Stages I and II each 

took place over 15 sessions, and Stage III lasted 26 sessions.  
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Mixed contingencies 

After the discrimination task was carried out, all testing was performed with 

contingencies of mixed probability of reward and volume accrual rates. For 

ease of comprehension, these contingencies will be referred to as: 

• Low Contingency: Low reward accrual rate and low probability of losing 

• Medium Contingency: Medium reward accrual rate and medium 

probability of losing 

• High Contingency: High reward accrual rate and high probability of 

losing 

Behavioural measurements 

Baseline data were from the last five days of stable performance. Given that 

rats were not limited in the number of trials that they were able to complete in a 

session, we calculated percentage choice (rather than absolute number of 

choices) using the number of trials chosen in a given contingency over the 5-

day period divided by the total number of free-choice trials over that period. The 

percentage of stay/shift trials was calculated as the total number of decisions to 

stay/switch after a previous trial across the 5 days, divided by the total number 

of free-choice trials across the 5 days.  The following variables were also 

measured and analysed per rat per trial separately across conditions: error rate 

per forced-choice trial, time spent (sec) in incorrect nosepoke holes, lick rate 

(Hz), and movement time to reward (sec).  

Data Analysis 

Session reconstruction with time-stamped data was performed using a program 

written by EMB in AWK programming language. Subsequent data analysis was 

carried out using Microsoft® Excel for Mac 2011 as well as R version 3.2.2 and 
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SPSS® version 21 for Mac. Discrimination task behaviour was analysed using 

the average percentage each contingency was chosen (on free-choice trials) 

across rats and days during the last five testing sessions in each stage. 

Repeated-measures ANOVAs were performed with contingency (three levels: 

high, medium, low) as the within-subject variable. The medium contingency 

was often utilized as a point of contrast between the low and high 

contingencies, and therefore while it is omitted from many graphical depictions 

of the data, it is always included in the underlying analysis. Baseline behaviour 

was analysed using repeated measures ANOVAs with contingency (three 

levels: high, medium, low) and session (5 levels: five testing sessions) as 

within-subject variables. Baseline performance was considered to be stable 

once there was no significant main effect of session over the previous five days 

of testing (Figure 12a). Greenhouse-Geisser adjusted degrees of freedom and 

Sidak-corrected p-values were applied where appropriate. All means are 

reported with standard errors and any significant main effects are reported with 

associated planned contrasts. 

In order to avoid potential ceiling-effects using proportion data, arcsine 

transformations were used on all variables expressed as a percentage (Zeeb et 

al., 2009), although data are shown as raw values. Missing data were replaced 

with series means. Given that average poke durations could be biased by 

truncated loss trials, descriptive statistics and ANOVA’s including average poke 

duration are calculated based on successful trials only. All analyses measuring 

responses to a previous win or loss are defined as those trials immediately 

preceded by a win or loss, omitting the first trial of a session.  
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We also conducted survival analyses of poke duration and contingency choice 

by fitting a Cox proportional hazard model to the data. This analysis is carried 

out on a trial-by-trial basis, rather than averaging across subjects and sessions. 

The Cox proportional hazard model is a semi-parametric model that makes no 

assumption about the shape of the baseline curve (e.g. linear), and takes the 

following form: 

ℎ 𝑡, 𝑥 𝑡 = ℎ! 𝑡 exp 𝛽!𝑥! +⋯+ 𝛽!𝑥!  

where the hazard rate of x occurring, h(t,x(t)), on trial t is conditional on p 

predictors. The β coefficients are estimated from the data. The associated 

survival function represents the cumulative proportion of the sample that has 

not experienced an event x by time t. Alternatively, this can be understood as 

the probability that an event will not occur until time t.  

While the model’s primary assumption is that the hazard associated with any 

given covariate is proportional across time, it can be extended to incorporate 

time-varying covariates and stratified to accommodate within-subject designs. 

By stratifying across subjects, the models fit here include individual baseline 

hazards for each animal, which accounts for the variance in survival rates 

contributed by individual subjects.  

Results 

Discrimination Task 

Rats demonstrably altered choice behaviour on free-choice trials in stages I - III 

(Figure 11). Rats’ choices minimized losses in stage I by choosing the low risk 
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nosepoke hole (Contingency: F(2,8)=576.80, p<.001, 𝜂!!=.99), maximized reward 

in stage II by choosing the high reward-accrual nosepoke hole (F(2,8)=79.50, 

p<.001, 𝜂!!=.95), and appeared to prefer a trade-off of high risk for high reward 

in stage III (F(2,8)=262.00, p<.001, 𝜂!!=.99). It is of note that stage III most nearly 

resembles stage II (reward maximizing) rather than stage I (risk minimizing). 

These results confirmed that the rats were sensitive to manipulations of reward 

accrual and risk in the task. 

Contingency choice during manipulations of probability, reward, and 
mixed probability & reward accrual rates 
 

 

Figure 11: Rats (N=16) predictably and reliably preferred the low-probability of losing (orange circles) 
contingency in stage I and the high-reward contingency (blue circles) in stage II. Although there was some 
initial uncertainty in responses to the mixed risk and reward in stage III, rats quickly began to prefer the 
contingency with the trade-off of higher risk for higher reward (blue circles). Error bars represent SE. 
*p<.05, **p<.01, ***p<.001. 

Baseline Behaviour – Mixed Risk And Reward 

On free-choice trials, rats (N=29) demonstrated consistent choices across the 

three contingencies (Figure 12a), with a clear preference for the high 

contingency (Contingency: F(2,56)=38.28, p<.001, 𝜂!!=.58). We found no 
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significant main effect of Session on the proportion of contingency choices 

across the last the last 5 days of testing (F(4,112)=1.76, p=NS), which is 

suggestive of stable baseline behaviour. Average poke duration (Figure 12b) 

varied detectably among the three contingencies (F(2,56)=3.70, p<.05, 𝜂!!=.12), 

whereby animals tended to poke slightly longer in the low (568 ± 77 msec) and 

medium contingency (574 ± 67 msec) compared to the high contingency (501 ± 

64 msec). However, post-hoc tests revealed no significant difference between 

the high and low contingencies (p=.25). Average poke durations did not 

significantly differ across sessions (F(4,112)=2.17, p=NS), indicating that the task 

had elicited consistent nosepoke behaviour across days.  

Similarly, the rate at which rats licked the reward spigot was fastest in the high  

contingency (7.94 ± 0.15 Hz) and slowest in the low contingency, although this 

effect is weak (7.50 ± 0.24 Hz; Contingency: F(2,56)=5.14, p<.05, 𝜂!!=.16, 

Session: F(4,112)=2.28, p=NS). It is of note that all volumes of reward were 

delivered at the same rate on every trial (i.e. larger rewards equated to longer 

delivery times, see Methods), and therefore it was not strictly necessarily for 

animals to adjust lick rates according to reward volume, per se. 
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Baseline differences in behaviour between the high and low 
contingencies 
A          B 

   
C          D 

   
Figure 12: (A) Rats consistently preferred the high contingency on free-choice trials, despite the relative 
certainty of receiving reward in the low contingency. (B) Poke durations tended to be shorter in the high 
contingency, although this difference was not significant. (C) Rats made fewer errors on forced-choice 
trials and (D) moved more quickly to collect reward in the high contingency. Error Bars are 95% CI’s.  

On forced-choice trials, animals poked in error in an unlit hole (Figure 12c) 

about 1.5 times more often (2.31 ± 0.21 pokes/trial) during trials in the low 

contingency compared to the medium (1.68 ± 0.17 pokes/trial) and high (1.46 ± 

0.13 pokes/trial) contingencies (Contingency, F(2,56) = 27.79, p < .001, 𝜂!! = .50), 

as though the rats were experiencing frustrative nonreward. This behaviour 

was stable throughout the last five baseline testing sessions (Session, F(4,112) = 

1.95, p = NS). As depicted in Figure 12d, movement time to collect reward also 

decreased monotonically as the level of reward accrual/probability of losing 
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increased, with rats moving significantly faster to collect reward in the high 

contingency and slower in the low contingency (F(2,56)= 23.92, p<.001, 𝜂!!=.46).  

Loss-related behaviour 

Our primary topic of analysis focused on behavioural responses to losing in the 

task. We began by establishing whether or not rats’ behaviour was significantly 

altered by a loss vs. a win in the task on the aggregate level, and we 

proceeded by conducting trial-by-trial analyses of any potential behavioural 

response strategies with respect to contingency choice (e.g. win-stay/lose-

shift). 

To begin, we compared behaviour on trials that were immediately preceded by 

a win trial vs. loss trial. To identify whether rats differentiated between wins and 

losses in the task, paired-sample t-tests were carried out by previous outcome 

on the following three behavioural measures: Lick rate (Hz), MT (sec), and time 

spent poking in error (sec). A visual comparison of these analyses is provided 

in Figure 13. 

We found that two of the three measures reflected significant differences in 

behaviour on trials immediately preceded by a loss compared to those 

preceded by a win. Rats moved significantly more quickly to collect reward after 

a loss than a win (MT: t(28) = 3.14, SEM = 0.05, p < .01). Animals also spent 

more time poking in incorrect (i.e. unlit) holes on trials with a previous loss 

outcome vs. those with a previous win outcome (Error Time: t(28) = 4.32, SEM 

= 0.06, p < .001). However, we found no significant difference in lick rate 

between the two trial types (Lick Rate: t(28) = 1.10, SEM = .05, p = .28).  
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Behavioural responses to losing in the task 

 

Figure 13: Behavioural responses to losing in the task. The difference between trials that are immediately 
preceded by a win and those preceded by a loss are displayed for three behavioural measures: Lick rate 
(Hz), Movement Time (MT, sec), and error time (sec). Negative numbers signify a reduction in the 
measure on a loss trial vs. win trial. Rats significantly reduced both MT (p<.01) and the time spent poking 
in error (p<.001) after a loss. There was no significant difference in lick rate after a loss vs. a win (p=.28). 
Error bars represent 95% CI’s. 

Stay-shift behaviour 

We next analysed whether or not rats’ choices followed a strategy that was 

contingent upon the previous outcome, such as a win-stay/lose-shift pattern. 

Here, we began by conducting a simple paired-sample t-test on the proportion 

of stay trials after a win vs. loss. As depicted in Figure 14a, the results indicated 

that rats’ decision to return to the previous contingency was significantly 

affected by the previous outcome, t(28) = 3.02, p < .01. After a win, rats 

perform right around chance, choosing to stay on 32.4% (SEM = 1.4%). After a 

loss however, rats are 10% more likely to stay compared to a win. In other 

words, rats develop a win-shift/lose-stay strategy.  

It was also possible that rats shifted more away from some contingencies than 

others. Therefore, we next analysed whether or not rats stayed/shifted more as 
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a function of the previous contingency. Figure 14b illustrates the results of a 

repeated-measures ANOVA of the percentage of stay trials with Previous 

Contingency (3 levels: low, medium, and high) as a within-subject factor. A rat’s 

decision to return to the previous hole on a free-choice trial was strongly 

affected by the contingency associated with that hole (F(2,56) = 34.79, 𝜂!  ! =  .55, 

Greenhouse-Geisser adjusted p < .001). If the previous hole was the high 

contingency, rats stayed on 51% of trials. Compared to the high contingency, 

rats stayed on average 16.7% (SEM = 5.1%) fewer trials in the medium 

contingency (p < .01) and 37.5% (SEM = 5.2%) fewer trials in the low 

contingency (p < .001). 

Effects of previous outcome on stay behaviour 

A           B 

  

Figure 14: (A) In contrast to a typical win-stay/lose-shift strategy, we find that rats exhibit win-shift/lose-
stay behaviour. Here, rats return to the same contingency about 10% more often after a previous loss 
than a previous gain (p<.01). (B) Whereas rats rarely returned to the low contingency after a loss (13.9% 
± 2.3% of trials), this proportion increased linearly as the rate of risk/reward-accrual associated with each 
contingency increased.  The linear trend was significant: F(1,28) = 10.62, 𝜂!  ! = .28, p < .01. The dotted lines 
denote chance at 33.3. Error bars represent 95% CI’s. 

Given this unexpected behaviour, we sought to establish whether the lose-

stay/win-shift strategy was attributable to rats’ preference for the high 
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contingency. Given that rats had a higher probability of losing in the high 

contingency, a preference to return to the high contingency would naturally lead 

to lose-stay/win-shift behaviour. In order to establish whether lose-stay/win-shift 

behaviour was attributable to the previous contingency, we fit a Cox hazard 

model to the data based on the number of free-choice trials that occurred 

between ‘stay’ choices. For example, if a rat chose to switch on the first two 

free-choice trials and then to stay on the third, the analysis would model the 

likelihood of a rat’s stay choice ‘surviving’ to the third consecutive free-choice 

trial, given any number of covariates (e.g. previous win/loss). If the rat chose to 

stay on a trial, the counting process would reset to zero. The model was 

stratified over subjects, and previous outcome (2 levels: win and loss) and 

previous contingency (3 levels: low, medium, and high) were entered as time-

varying covariates in the model.9 A PreviousOutcome*PreviousContingency 

interaction term was also added to the model. The reader is referred to Table 4 

of Appendix 1 for further particulars of the model coefficients. 

                                                
9 Due to their abil ity to change over the course of the counting process, these 
covariates would normally not satisfy the assumption of proportional hazards over 
t ime. A typical method of remedying this is to multiply each event by the log of 
t ime, represented in this model as the trial count. 
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Survival curves for stay behaviour as a function of previous contingency 

 

Figure 15: Survival curves for each contingency on free-choice trials are depicted above. Previous 
contingency was a significant predictor (p<.001) of stay ‘survival’, or the number of free-choice trials that 
elapsed before a rat was likely to return to the same contingency as the previous trial. The high 
contingency is associated with the steepest survival curve, which indicates that rats are more likely to 
choose to stay sooner in that contingency (p<.001) in contrast to the medium contingency. The relatively 
flat curve associated with the low contingency (p<.001) indicates that rats are only 40% likely to return to 
that contingency by the 15th free-choice trial. 

As Illustrated in Figure 15, Previous Contingency was a significant predictor in 

the model (p < .001). In contrast to the medium contingency, rats were much 

more likely to return to the high contingency on a free-choice trial (p < .001), 

and much less likely to return to low contingency (p < .001). Therefore, the 

results of this analysis corroborate previous findings from the analysis of stay 

trial proportions (Figure 14b). 
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A  Low Contingency  B  Medium Contingency 

  
C  High Contingency 

 
 
While Previous Outcome did not emerge as a significant predictor in the model, 

there was a significant effect of the interaction term between Previous Outcome 

and Previous Contingency on stay behaviour (p < .05). Figures 16a-c depict the 

survival curves of staying on free-choice trials with a previous win vs. a 

previous loss in each different contingency. The analysis suggests that rats 

tended to increase stay behaviour after a loss in the low and medium 

contingencies, while decreasing staying more after a loss in the high 

contingency. However, only the contrast of the interaction at the high 

contingency was significant (p < .01), and therefore trends in the other two 

contingencies should be interpreted with caution. However, these results 

Figure 16: The interaction between previous 
contingency and previous outcome was a 
significant factor in the model (p<.05), 
whereby (A) survival analysis of stay trials in 
the low contingency indicated that rats were 
more likely to return (i.e. would ‘survive’ 
longer) after a win than after a loss. However, 
the contrast of this interaction level did not 
reach significance (p=.10). (B) Although there 
was a marginal increase of stay trials after a 
loss in the medium contingency, this did not 
lead to a significant interaction. (C) In 
contrast, rats were significantly more likely to 
stay after a win compared to a loss in the high 
contingency (p<.01).  
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suggest that loss-stay behaviour cannot be entirely explained by rats returning 

to the more preferred high contingency after a loss. 

It should also be noted that the relatively low number of stay trials with a 

previous loss in the low contingency likely contributed to low power in modelling 

an interaction factor as depicted in Figure 16a. Of the 3525 free-choice trials 

used as data in the model, only 12 trials (0.34%) represent stay trials after a 

loss in the low contingency. This number increases to 52 trials (1.48%) in the 

medium contingency and to 172 trials (4.88%) in the high contingency.  

Effect of losing on poke duration 

Our final analysis of baseline loss-behaviour was carried out in order to 

determine whether a previous loss affected the duration a rat was willing to 

poke on a current trial. We performed a 2-way repeated-measures ANOVA on 

poke duration with Previous Outcome (2 levels: win and loss) and Contingency 

(3 levels: High, Medium, and Low) as within-subject factors. This analysis 

revealed that Contingency had a significant main effect on poke duration, F(2,56) 

= 5.48, 𝜂!  ! = .16, Greenhouse-Geisser adjusted p = .01. Planned contrasts 

indicated that this significant effect was attributable to differences in poke 

duration between the high and medium contingencies (p < .01) rather than the 

low and medium (p = .12) or low and high (p = .96). The effect of Previous 

Outcome on poke duration fell short of significance (F(1,28) = 3.97, p = .06). Nor 

did we find a significant interaction between Previous Outcome and 

Contingency, F(2,56) = 1.14, p = .33.  
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We furthered this analysis by fitting a Cox proportional hazards model to the 

data. This analysis has the potential for greater power given that that: 1) it can 

account for censored poke durations (i.e. premature unpokes due to losses) 

and, 2) it is computed on a trial-by-trial basis. Therefore, we fit a model based 

on poke duration with Previous Outcome (2 levels: win and loss) and 

Contingency (3 levels: low, medium, and high) as time-varying covariates. For 

example, if the rat nosepoked for a duration of 1.2 sec, the analysis would 

model the likelihood that any given poke would ‘survive’ from 0 to 1.2 sec, 

given any number of covariates (e.g. contingency). The model was stratified 

over subjects. The model survival curves for each contingency are illustrated in 

Figure 17.  

A             B 

  

Figure 17: (A) Poke duration significantly varies as a function of contingency (p<.001). In contrast to the 
medium contingency, rats poke longer in the low contingency (p<.01) and shorter in the high contingency 
(p<.001). (B) Poke durations are significantly shorter on trials immediately preceded by a loss compared 
to those immediately preceded by a gain.  

Contingency was found to be a highly significant factor in the model (p < .001), 

with longer expected poke durations in the low contingency (p < .01) and 

shorter expected poke durations in the high contingency (p < .001) in contrast 
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to the medium contingency. Note that this result (Figure 17a) differs to that of 

the ANOVA illustrated in Figure 12b. This is likely due to the increased power 

of the Cox proportional hazard model, which arises from its ability to 

incorporate censored data (i.e. both wins and losses). Previous Outcome also 

emerged as a significant factor in the model (p < .01), whereby poke durations 

were shorter on trials immediately preceded by a loss compared to a win. 

Although the contrast between previous outcome and the low contingency was 

significant (p < .05), the main effect of the interaction term was not significant (p 

= .14). A table detailing further particulars of the model coefficients can be 

found in Table 3 of Appendix 1. 
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Discussion 

The research presented here has been carried out with the specific intention of 

increasing the translational validity of animal decision-making research to work 

on risk-taking in humans. We have developed a novel task (Figure 9) that 

operationalizes loss in a way that is on par with human tasks (e.g. the BART) 

that are highly predictive of naturalistic risky decision-making, such as the use 

of illegal substances (Bornovalova et al., 2005). We demonstrate that rats are 

sensitive to manipulations of reward volume and probability, and that losses 

significantly affect subsequent behaviour in the task. Interestingly, we find that 

rats develop a lose-stay/win-shift strategy in the task, and that this strategy 

cannot be fully explained by preference for returning to the high contingency 

(which is associated with a greater likelihood of losing).  

We began by systematically manipulating either the magnitude or the 

probability of potential reward a rat could receive by nosepoking in one of three 

nosepoke holes. Although perhaps unsurprising given the rich history of 

operant work in rats (e.g. Chung & Herrnstein, 1967), we found that rats’ choice 

behaviour between the nosepoke holes was exquisitely sensitive to our 

contingency manipulations of reward probability and magnitude (Figure 11). 

Rats predictably chose the low-risk contingency when we manipulated the 

probability of losing only (Stage I) and the high-reward contingency when we 

manipulated the magnitude of reward only (Stage II). This suggests that rats 

learned how to adjust their choices to maximise reward given these 

contingency variations. When both risk and reward were varied simultaneously, 
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rats preferred trading off a higher probability of loss for a higher magnitude of 

reward.  

We predicted that rats’ choice allocation between contingencies would be a 

reflection of individual preferences for the trade off between probability of loss 

and reward. For example, more risk averse rats would choose the low 

contingency more often than more risk seeking rats. Instead, we found that 

choice of the high contingency remained high for all rats throughout baseline 

testing (Figure 12a) despite high loss rates, and that choice of the low 

contingency remained very low despite very low loss rates. The observed 

choice allocation reflects expected reward rates in each contingency with 

respect to rats’ rather short average poke durations (see Figures 12b and 17a). 

At poke durations of 500 – 600 msec, the expected reward was highest in the 

high contingency, followed by the medium and then the low contingencies. 

Instead of choosing the contingency with the highest rate of reward at that 

nosepoke, rats ‘matched’ their allocation of choices to the rate of reward in 

each contingency. Such deviations from optimal reinforcement maximization 

behaviour (i.e. not allocating 100% of choices to the option with the highest 

reward rate) have been observed previously in a number of tasks, species, and 

environments in an effect typically referred to as the ‘matching law’ (Chung & 

Herrnstein, 1967). This effect describes the robust tendency of an individual’s 

choice allocations to reflect environmental contingencies of reinforcement rate 

rather than to reward maximization (Herrnstein, 1990). The model in Figure 10 

suggests that, given a 500 msec poke, the matched allocation of contingency 

choices should be: 64.3% in the high hole, 28.6% in the medium hole, and 

7.1% in the low hole. Rats’ behaviour matches this very closely. Had rats 
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averaged longer nosepoke durations (e.g. the maximum 2 seconds), then one 

would predict the greatest proportion of choices in the medium contingency, 

followed by the high and then the low. Thus, rats appear to have matched 

choices with the reward rates at their preferred nosepoke duration rather than 

to allocate choices to maximise reward or according to their individual risk 

preferences.  

We also predicted that rats would vary nosepoke lengths to maximise expected 

reward within each contingency, but also as a function of risk preference with 

shorter nosepokes reflecting risk-aversion and longer nosepokes reflecting risk-

seeking preferences. We found that rats modestly varied nosepoke length as a 

function of rates of reward magnitude/probability (Figure 17a), although the 

discrepancy between contingencies was much smaller than expected. 

However, it is of note that this result was not clear from the analysis of session 

averages (Figure 12b), which excluded the censored poke durations of loss 

trials from analysis. ‘Probe’ trials with no chance of losing could be incorporated 

in order to facilitate such analyses in the future. While the survival analysis of 

nosepoke duration did reveal an optimal ordinal pattern of nosepoke durations 

given the average nosepoke length (compare to Figure 10), nosepoke 

durations fell unexpectedly short of optimal. For example, rats should have 

poked for the full 2 sec maximum in order to maximize reward in the low 

contingency instead of 575 msec. This rather large discrepancy between 

optimal nosepoke length and observed length suggests that there was a 

missing factor from the Expected Reward calculation modelled in Figure 10. It 

is of note that rats responded in a similarly suboptimal manner in the rat BART 

task presented by Jentsch and colleagues (2010), whereby rats completed 
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much fewer bar presses than optimal even in no-risk conditions. Cognitive 

effort costs and discounting of future reward represent two plausible 

explanations for this behaviour. For example, the cognitive effort (Shenhav, 

Botvinick, & Cohen, 2013) involved in maintaining a nosepoke, e.g. without 

checking for reward at the reward spigot, may have been very high. This would 

effectively increase the ‘cost’ of each successive tick during any given 

nosepoke. Alternatively, rats’ shorter than expected nosepokes may reflect 

temporal discounting of future rewards. Delay discounting is a well-established 

characteristic of impulsive behaviour in humans (Green, Myerson, Oliveira, & 

Chang, 2014; Holt, Green, & Myerson, 2003), non-human primates (Hayden & 

Platt, 2007; Rajala, Jenison, & Populin, 2015) and rats (Calvert, Green, & 

Myerson, 2010; Valencia-Torres et al., 2012). If rats were steeply discounting 

delayed rewards, then a sooner reward would hold relatively more subjective 

value than a discounted delayed reward, which would result in shorter 

nosepoke durations. If either cognitive effort costs or delay discounting were 

meaningful factors contributing to shorter than expected nosepoke durations, 

then future studies could increase the rate of reward accrued at each tick in 

order to offset costs/discount rates. 

A central aim of the study was to develop a task that would facilitate the study 

of loss on behaviour and within the nervous system of rats. Thus, it was 

important to demonstrate that rats differentiated between wins and losses 

within the task. Multiple behavioural measures indicated that rats were indeed 

sensitive to losing in the task. Specifically, we found that rats’ behaviour was 

altered on trials immediately preceded by a win vs. those preceded by a loss 

(Figures 13 and 14a). Furthermore, it was clear from our analysis that rats 
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poked significantly shorter on trials with a previous loss compared to a previous 

gain. Together, significant differences in MT, error time, and poke duration 

suggest not only that rats differentiated between wins and losses in the task, 

but also that a loss outcome on the current trial affected behaviour on the 

subsequent trial.  

Of note was also rats’ unexpected development of a lose-stay/win-shift 

strategy, which is illustrated in Figure 14a. Although the task was not 

specifically designed to reinforce such behaviour, we found rats were more 

likely to return to a contingency after a loss compared to a gain. Lesion studies 

in rats have demonstrated that the acquisition of stimulus-response 

associations such as win-stay or win-shift strategies is critically dependent 

upon the nigrostriatal pathway (Da Cunha et al., 2003; McDonald & White, 

1993), which becomes the focus of investigations in future chapters.  

One possible explanation for loss-stay behaviour involves preference of the 

high contingency (Figure 14b) and could only be partially addressed here. 

Given that rats prefer the high contingency but that they are also more likely to 

lose in the high contingency, it follows that they are also more likely to return to 

a losing contingency on average. However, survival analysis indicated that rats 

are actually less likely to stay after a loss vs. win in the high contingency 

(Figure 16c). Whereas previous analysis (Figure 14a) suggested that there was 

a significant main effect of Previous Outcome on stay choices overall, previous 

outcome did not emerge as a significant predictor in the Cox proportional 

hazard model. This suggests that the addition of another factor (e.g. Previous 

Contingency or the PreviousContingency*PreviousOutcome interaction) may 
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have accounted for a large proportion of the variance previously attributed to 

Previous Outcome. Unfortunately, low numbers of loss-stay trials in the low 

contingency (Figure 16a) may have sufficiently reduced power to preclude any 

conclusion here.  Future work might address this by increasing the lowest 

probability of losing to ensure more losses in the low contingency. 

Another potential alternative explanation for the development of this behaviour 

is that rats may have treated losses as a varying response requirement (e.g. 

variable interval reinforcement schedule) rather than a lost trial. If this were the 

case, they would return to the previous contingency to respond again for 

reward. Alternatively, rats may have returned to a contingency after a loss due 

to the training protocol that was implemented before testing. Before testing, rats 

were gradually trained to sustain longer and longer nosepokes. If a rat failed to 

sustain a nosepoke for the required length of time, it received no reward. Thus, 

rats may have interpreted a loss in the task as a failure to sustain the requisite 

nosepoke length. Again, however, this would not explain why rats are less likely 

to stay after a loss in the high contingency, nor why rats poked shorter after a 

loss compared to a gain. Future studies should make the loss more explicit to 

avoid this potential confound.  

Finally, we found that rats made significantly more choice errors (i.e. poking in 

an unlit hole) in the least-preferred low contingency (Figure 12c). Since this 

behaviour was stable across testing sessions, it is likely that such errors 

represent a lack of inhibition or an expression of frustration rather than an 

absence of understanding in the task. For example, this could have resulted 

from an animal initiating a nosepoke first in a more-preferred contingency 
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rather than the low contingency on forced-choice trials. This would be in line 

with work on frustrative nonreward (e.g. Amsel, 1958), whereby frustration with 

task demands elicits increases in non-instrumental responses (e.g. increased 

grooming or error responses). However, the inverse error rate could provide a 

key behavioural measure of preference (or dislike) in the event that this is 

otherwise ambiguous. 

In conclusion, we have developed a rat gambling task that elicits risky decision-

making behaviour that could be more readily translated to human behaviour 

than previous task designs have allowed. Decisions about whether to continue 

poking for more reward occur on the millisecond-timescale, which is conducive 

to future research using neuroscience methods with high temporal resolution 

such as in vivo electrophysiology. Alternatively, decisions about which 

contingency to select on free-choice trials lend themselves to behavioural 

researchers in fields such as neuroeconomics. Future work is necessary to 

establish the optimally effective levels of reward magnitude and probability 

associated with each contingency and to disambiguate the separate effects of 

risk and reward on choices within the task. Given the flexibility of the task 

design, however, future iterations of the task present promising opportunities 

for ascertaining fundamental insights into loss-related behaviour in the brain.  
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Chapter 3  

 

Loss-stay behaviour in rats with more Substantia Nigra 
pars compacta neurons is mitigated by dopamine 
antagonism 
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Abstract 

The nigrostriatal pathway has been implicated in reward-related motor learning, 

but it is uncertain whether it also plays a role in loss-related motor learning. 

Given the loss-related changes in behaviour observed in Chapter 2, we sought 

to identify whether pharmacological manipulation of dopamine availability could 

alter responding after a loss in the gambling task. A cohort of rats (N=16) was 

trained on the task presented in Chapter 2. Once baseline behaviour had 

become stable, we administered systemic injections of saline vehicle or three 

doses of cis-Flupenthixol, a nonspecific dopamine antagonist. Relative to 

vehicle, increasing doses of cis-Flupenthixol administration monotonically 

increased the survival time of a poke toward the maximum 2 sec on any given 

trial. This indicates that dopamine receptor blockade may lead to a reduction in 

the discounting of future rewards. Additionally, we reported a dose-dependent 

decline in the average number of errors made on forced-choice trials, 

suggesting dopamine antagonism also increased behavioural inhibition. In 

contrast, rats became more likely to choose the contingency associated with 

higher reward accrual rates and higher probability of losing as doses of cis-

Flupenthixol increased, which implies increasing tolerance to probability of loss. 

We also found that systemic dopamine blockade disrupted baseline lose-

stay/win-shift behaviour. Interestingly, rats with a greater number of putative 

dopamine neurons in the substantia nigra pars compacta (SNc) were more 

likely to ‘stay’ after a loss – and this effect was abolished by dopamine 

antagonism. These findings implicate nigrostriatal dopamine transmission as 

playing a role in the modulation of loss-related behaviour in rats. This may 

provide critical insight into the processes underlying diseases involving 

degeneration of the midbrain dopamine system such as Parkinson’s disease. 
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Introduction 

In Chapter 2, we demonstrated that rats’ behaviour is sensitive to losses in a 

gambling task. We next sought to identify whether win- and loss-related 

behaviour were modulated by similar neural mechanisms. The nigrostriatal 

dopamine system plays a key role in motor control and reward-based learning, 

and has been implicated in the signalling of prediction errors (Romo & Schultz, 

1990; Schultz et al., 1997), the attribution of incentive salience to predictors of 

reward (Wilson et al., 2006; Zhang, Berridge, Tindell, Smith, & Aldridge, 2009) 

and the formation of habits (Graybiel, 2008; Haber, 2003; Wise, 2009). This 

work has its foundations in the classical intracranial self-stimulation studies, 

which demonstrated that animals would learn to press a lever in order to 

receive a pulse of stimulation to the dopaminergic midbrain (Olds & Milner, 

1954). More recent work has been able to utilize optogenetics techniques to 

break down the midbrain areas responsible for different aspects of learning and 

performance of instrumental actions. For example, work by Rossi and 

colleagues (2013) demonstrated that selective optogenetic activation of the 

mouse substantia nigra pars compacta (SNc) is sufficient to facilitate the 

acquisition of a new instrumental action. Others have found that optogenetic 

stimulation of SNc neurons elicits a positive affective state encouraging 

approach behaviour, while optogenetic inhibition of the area provokes 

avoidance (Ilango et al., 2014). Furthermore, dopamine-dependent plasticity 

from such learning can create long-term changes in nigrostriatal pathways 

(Wickens, Reynolds, & Hyland, 2003). Thus, the nigrostriatal dopamine system 

became a primary focus in the investigation of loss-related behaviour in the rat 

gambling task introduced in the previous chapter.  
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We hypothesized that the involvement of the dopamine system in risky 

decisions would be apparent through changes in poke duration and 

contingency choice after pharmacological blockade of dopamine. Specifically, 

we predicted that dopamine antagonism would increase poke durations by 

mitigating reward discounting (St Onge & Floresco, 2009) and reduce choice of 

the high contingency by attenuating rats’ propensity to take risks (St. Onge, 

Chiu, & Floresco, 2010). Finally, we hypothesized that dopamine antagonism 

would significantly disrupt strategic control of stay-shift behaviour after a loss. 

Methods 

The Methods used here are detailed extensively elsewhere (see Chapter 2, 

‘Methods’).  

Pharmacological Manipulation 

A cohort of 16 rats were trained on the risky decision-making task and 

submitted to the pharmacological challenge once baseline behaviour was 

considered to be stable. Intraperitoneal injections of the nonspecific dopamine 

antagonist cis-Flupenthixol (Sigma-Aldrich Co., U.K) or vehicle (saline) were 

administered 20 minutes prior to behavioural testing. 3 doses and vehicle 

(saline) were counterbalanced according to a modified Latin square design, 

with a minimum of 7 days between doses to minimize carry-over effects. cis-

Flupenthixol dissolved in 0.9% w/v saline was injected intraperitoneally at a 

volume of 1.0ml/kg (molecular salt weight) at doses of 0.125, 0.25, and 0.5 

mg/ml. The saline vehicle used as control was delivered at 1.0 ml/kg. 
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Histology 

Following the pharmacological testing, rats were euthanized via overdose with 

0.08 ml pentobarbital (Univet Ltd., Oxford, U.K.) and then perfused 

intracardially with 0.1% phosphate buffered saline followed with a 4% 

paraformaldehyde in 0.1M phosphate buffer fixative. Using a freezing 

microtome, the fixed brains were then cut into 50 µm sections and stored in 

0.1M phosphate buffer. One out of every four sections were subsequently 

stained for tyrosine hydroxylase and examined under a conventional light 

microscope. Sections were mapped onto standardized brain areas following 

Paxinos and Watson (1997) as depicted in Figure 18, and the number of 

tyrosine hydroxylase stained cell bodies were counted in the ventral tegmental 

area and substantia nigra pars compacta at 3 levels: -5.3mm, -5.8mm, and -

6.3mm posterior to bregma. 

Rat atlas cytoarchitechtonic guide to SNc and VTA 

 

Figure 18: adapted from Paxinos and Watson (1997). Three sections (-5.30mm, -5.80mm, and -6.3mm 
behind bregma) of the rats’ midbrains were stained for tyrosine hydroxylase (TH). TH-positive cell bodies 
were then counted under a conventional light microscope in the substantia nigra pars compacta (red) and 
the ventral tegmental area (green). 

Bregma'(6.30mm'

Bregma'(5.80mm'

Bregma'(5.30mm'Interaural'3.70mm'
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 Count-recount correlations demonstrated highly reliable neuron counts 

(Pearson’s r = .953, p < .001). A random sample of 10 sections (5 from animals 

presented in this chapter and 5 from animals presented in Chapter 4) was 

selected for blind recount using a random-number generator. The inter-rater 

reliability between the original counts and the counts conducted by a second 

blind counter was also high (Pearson’s r = .987, p < .001). 

Data Analysis 

Session reconstruction with time-stamped data was performed using a self-

written program in AWK programming language. Subsequent data analysis was 

carried out using Microsoft® Excel for Mac 2011 as well as R version 3.2.2 and 

SPSS® version 21 for Mac. Behavioural effects of Flupenthixol were analysed 

using repeated measures ANOVA’s with contingency (three levels: high, 

medium, low) and dose (4 levels: vehicle, low, medium, high) as within-subject 

variables. In order to avoid potential ceiling-effects using proportion data, 

arcsine transformations were used on all variables expressed as a percentage 

(Zeeb et al., 2009). Missing data were replaced with series means. 

Greenhouse-Geisser adjusted degrees of freedom and Sidak-corrected p-

values were applied where appropriate. All means are reported with standard 

errors and any significant main effects are reported with associated planned 

contrasts. 

Given that average poke durations could be biased by truncated loss trials, 

descriptive statistics and ANOVA’s including average poke duration are 

calculated based on successful trials only. All analyses measuring responses to 

a previous win or loss are defined as those trials immediately preceded by a 
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win or loss, omitting the first trial of a session. Due to insufficient trial 

completion rates, the high dose was omitted from regression analyses and 

Pearson’s correlations performed in the association of neuron counts with stay-

shift behaviour. 

We also conducted survival analyses of poke duration and contingency choice 

by fitting a Cox proportional hazard model to the data. This analysis is carried 

out on a trial-by-trial basis, rather than averaging across subjects and sessions. 

The Cox proportional hazard model is a semi-parametric model that makes no 

assumption about the shape of the baseline curve (e.g. linear), and takes the 

following form: 

ℎ 𝑡, 𝑥 𝑡 = ℎ! 𝑡 exp 𝛽!𝑥! +⋯+ 𝛽!𝑥!  

where the hazard rate of x occurring, h(t,x(t)), on trial t is conditional on p 

predictors. The β coefficients are estimated from the data. While the model’s 

primary assumption is that the hazard associated with any given covariate is 

proportional across time, it can be extended to incorporate time-varying 

covariates and stratified to accommodate within-subject designs. By stratifying 

across subjects, the models fit here include individual baseline hazards for 

each animal, which accounts for the variance in survival rates contributed by 

individual subjects.  
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Results 

Effects of Flupenthixol on behaviour 

We began by analysing any potential effects of Flupenthixol that may have 

emerged at the aggregate group level, followed by a more in depth trial-by-trial 

analysis of specific patterns of interest. We break down our primary analyses 

according to the two ways in which risky decisions are effected in the task: 1) 

length of a given poke and 2) choice among contingencies of risk/reward-

accrual.  

Based on session averages alone, we could not conclude that there was any 

significant change in the overall proportion of contingency chosen (Figure 19a) 

at any dose (Dose*Contingency: F(6,90)=0.73, p=NS). Rats chose the high 

contingency option on 71.3% (±4.0%) of trials, while choice of the medium 

contingency (21.4 ± 3.1%,) and low contingency (7.3 ± 1.8%) remained low.  

Flupenthixol increased animals’ choice accuracy (Figure 19c) on forced-choice 

trials (Dose: F(3,45) = 7.82, p < .001, 𝜂!! = .34). Post-hoc testing revealed that the 

medium (p < .05) and high (p < .01) doses significantly and linearly (p < .01) 

reduced error rates compared to vehicle. Although the error rates in the low-

risk/low-reward contingency fell considerably, Flupenthixol did not abolish the 

main effect of contingency at any dose (Contingency: F(2,30) = 44.73, p < .001, 

𝜂!! = .75) and the interaction did not reach significance (Dose*Contingency: 

F(6,90) = 2.64, p = .68).  
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FIGURE 19: (A) Preference for the high-risk/high-reward contingency was not affected at any dose of 
dopamine antagonist Flupenthixol. (B) In the low-risk/low-reward contingency, rats poked on average 25% 
longer at the highest dose compared to the lowest dose (C) The number of errors made on forced-choice 
trials in the low-risk/low reward contingency decreased linearly with dose. (D) There was no significant 
change in movement time to reward across all doses. Error Bars are 95% CI’s. *p<.05, **p<.01, ***p<.001. 

Movement times were generally unaffected by dopamine antagonism, with 

animals moving more slowly in the low-risk/low-reward contingency (Figure 

19d) at each dose (Contingency: F(2,30) = 46.27, p < .001, 𝜂!! = .76). 

Flupenthixol did not significantly affect rats’ movement time to reward (F(3,45) = 

0.22, p = NS) or lick rate (F(3,45) = 0.51, p = NS) during reward consumption.  
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Effects of DA antagonism on poke duration 

We observed a main effect of both dose (F(3,45) = 5.14, p < .01, 𝜂!! = .26) and 

contingency (F(2,30) = 5.18, p < .05, 𝜂!! = .26) on poke duration (Figure 19b). 

Sidak-corrected pairwise comparisons revealed significant differences between 

the vehicle and high dose (p<.05) and between the high-risk/high-reward and 

low-risk/low-reward contingencies only (p < .01). The effect of Flupenthixol 

administration was most prominent in the low-risk/low-reward contingency, 

where animals poked on average 25% longer at the highest dose compared to 

the lowest dose. However, this interaction did not reach significance 

(Dose*Contingency: F(6,90) = 2.47, p = .065).  

In order to further our examination of the effect of Flupenthixol on poke 

duration, we conducted a trial-by-trial analysis by fitting a Cox proportional 

hazard model to rats’ poke durations at each dose. The model was stratified 

over subjects. The dose, contingency of the nosepoke hole,  and the outcome 

of the previous trial (win/loss) were added as time-varying covariates to the 

model to adjust for non-proportional hazards. Table 5 of Appendix 2 provides 

particulars of model coefficients.  
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Survival function for poke duration (sec) by dose 

 
Figure 20: The ‘survival time’ of a poke decreased as a function of poke duration, and this effect was 
significantly attenuated by cis-Flupenthixol (main effect, p<.001). Compared to vehicle, the low (p<.001), 
medium (p<.01) and the high dose (p<.001) significantly increased the likelihood of continuing any given 
poke. CI’s not shown; see Table 5 of Appendix 2. 

The survival curves depicted in Figure 20 reflect a dose-dependant increase in 

poke durations compared to the saline vehicle, (main effect, p < .001). 

Dopamine antagonism significantly increased overall poke survival times by up 

to 27% at the highest dose (p < .001). Consistent with baseline, there was also 

a main effect of Contingency (p < .001), whereby rats poked longer in the low 

contingency (p = .001) and shorter in the high contingency (p < .001) in 

contrast to the medium contingency. Interestingly, previous outcome did not 

emerge as a significant factor in the model (p = .11).  

Effects of DA antagonism on choice 

We next fit separate Cox proportional hazard models to assess the likelihood 

that a rat would choose either the low or high contingency on free-choice trials. 

The model was stratified over subjects and previous trial outcome (win/loss) 
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was added as time-varying covariate to the model. Dose was also added as a 

covariate. The reader is referred to Table 6 and 7 of Appendix 2 for details of 

the model coefficients. The curves depicted Figure 21a and b represent the 

‘survival’ time in trials until a rat chooses a given contingency. Steeper curves 

indicate that a rat was more likely to choose the contingency on an earlier trial 

than flatter curves.  

A Low Contingency 

 
 
B High Contingency 

 
 
These analyses indicate that, despite choosing the low contingency relatively 

infrequently on free-choice trials, there were significant dose-dependent 

decreases in choice of the low contingency (Figure 21a), main effect p < .05. In 

Figure 21: (A) Low Contingency. The 
survival function, which indicates the 
likelihood that a rat has not chosen the low 
contingency by a given number of free-choice 
trials, decreases as the sequence of free-
choice trials increases. The limited range of 
the y-axis indicates that there is generally a 
low probability that a rat chooses the low 
contingency option on any free-choice trial. At 
vehicle, there is an 85% probability that rats 
will choose the low contingency by the 17th 
free-choice trial. Compared to vehicle, the 
likelihood of choosing the low contingency on 
a free-choice trial is reduced in a dose-
dependent manner when DA agonist 
Flupenthixol is administered systemically.  

(B) High Contingency. Note the axes 
differences from Figure 21a, which reflect 
rats’ propensity to choose the high 
contingency over the low contingency on free 
choice trials. Here, the survival curve 
represents the likelihood that a rat did not 
choose the high contingency by the given 
free-choice trial. At all doses, rats do not last 
more than 6 free-choice trials without 
selecting the high contingency. The model 
indicates that 60% of rats chose the high 
contingency on the first free-choice trial in the 
saline condition and that this increases to 
70% at the high dose (p<.05). However, the 
overall effect of dose in the model fell at 95% 
significance (p=.05). CI’s not shown; see 
Tables 6-7 in Appendix 2. 
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the saline control condition, there was an 87% likelihood that rats would 

complete over 15 trials before selecting the low option on a free-choice trial. 

This probability increased to 93% at the high dose of Flupenthixol. In contrast, 

rats tended to choose the high contingency more at the highest dose (Figure 

21b). Given that the high option was chosen within two free-choice trials about 

90% of the time, modelling of any increases in high contingency choice was 

naturally rather limited. Despite this, we did find that the highest dose was a 

significant factor in the choice model (p < .05), although the overall effect of 

dose was only at significance (p = .05) so this effect should be interpreted with 

caution.  

As demonstrated at baseline, choice of a given contingency may have also 

been influenced by a rats’ strategy to stay or switch based on the previous 

outcome or contingency. In order to ascertain whether strategy was affected by 

dose, we conducted a survival analysis of rats’ decision to stay/shift by fitting a 

Cox proportional hazards model with Dose, Previous Outcome, Previous 

Contingency, Current Contingency, and Contingency*PreviousOutcome as 

covariates (see Table 8 of Appendix 2). Previous Outcome and Contingency 

were entered into the model as time-varying covariates and the model was 

stratified by Subject.  

Figure 22 illustrates the mediating effect of DA blockade on rats’ propensity to 

return to the same contingency as the previous trial (main effect of Dose: p < 

.01).  Compared to baseline, each the low (p < .01), medium (p < .001) and 

high (p < .05) doses significantly increased contingency choices associated 
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with a shift from the previous trial. This is consistent with the DA system being 

involved in the modulation of stay-shift strategy. 

 
Survival function for shift strategy by dose 

 
Figure 22: Survival function for shift strategy by dose. Flupenthixol administration significantly 
increased shift behaviour (thereby decreasing stay behaviour) overall compared to saline vehicle, main 
effect: p<.01. Each the low (p<.01), medium (p<.001) and high (p<.05) doses decreased the likelihood that 
a rat would return to the same contingency as the previous trial. 

In order to further this investigation of the DA system’s role in stay-shift 

strategies, we used histological preparations of TH-stained brain tissue to 

correlate putative dopamine cell counts from rats’ midbrains with behaviour in 

the task. We found considerable variation between animals in the absolute 

number of TH-positive neurons from 3 representative sections of tissue (see 

Figure 23 for a photographic depiction) taken from the substantia nigra (SNc) of 

rats (N = 16 rats; min = 894; max = 1086; M = 984.93; SD = 66.26) and from 

the ventral tegmental area, or VTA (N = 16 rats; min = 757; max = 1242; M = 
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1010.16; SD = 137.26). SNc and VTA neuron counts were not correlated 

(Pearson’s r = .35, p = .19).  

 
A      B 

  
Figure 23: A) TH-positive dopamine cells of the rat SNc at ×4 magnification and (B) ×10 magnification. 

Given that the nigrostriatal pathway is implicated in reward-related motor 

learning (for review, see Wickens et al., 2003), we hypothesized that variability 

in SNc neuron counts may also be reflected in variability in stay-shift behaviour. 

To establish the contribution of midbrain neuron counts to loss-stay behaviour, 

we carried out individual regression analyses for the proportion of loss-stay 

trials at each dose and baseline. Given that midbrain dopamine neurons have 

been shown to affect feeding behaviour (Hommel et al., 2006), we included rat 

weight as a predictor variable. We used the stepwise method to enter average 

weight, VTA, and SNc neuron counts as independent predictors of loss-stay 

trials in a linear regression. Details of model coefficients of each analysis can 

be found in Table 9-10 in Appendix 2. Unfortunately, the number of trials 

completed at the high dose was not sufficient to support a reliable comparison 

here, and future studies should take this reduction in trial completion at high 

doses of Flupenthixol into consideration.  
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Loss-stay strategy in rats with more SNc neurons is mitigated by DA 
antagonism 

 
Figure 24:  Loss-stay strategy in rats with more TH+ SNc neurons mitigated by DA antagonism. We 
found that rats with greater numbers TH-positive neurons in the SNc demonstrated a greater propensity to 
stay after a loss at baseline (R2=.71) and at vehicle (R2=.25), but that this effect was mitigated by 
administration of DA antagonist cis-Flupenthixol at both the low (R2=.00) and medium doses (R2=.09). 
Rats did not complete enough trials at the high dose to establish loss-stay proportions. Dotted lines 
represent chance at 33%. Error lines represent 95% CI’s. ***p<.001, *p<.05.     

As can be observed in Figure 24, rats with a greater number of SNc neurons 

were also more likely to stay after a loss. Furthermore, we found that this 

correlation was abolished by DA antagonism at the low and medium doses, but 

not by saline. At baseline, only the SNc count (β = .84, 95CI[.53,1.15], p < .001) 

was entered as a significant predictor in the model (R2
adj = .69), while VTA 

count and weight were not. Similarly, at the saline vehicle, only SNc count (β = 

.50, 95CI[.01,1.00], p < .05) was entered as a significant predictor into the 

model (R2
adj = .20). At both the low and medium doses, no predictors were 

significantly entered into the model. Together, the results shown in Figure 22 

Baseline	
  R2	
  =	
  .71***	
  
Vehicle	
  R2	
  =	
  .25*	
  
Low	
  R2	
  =	
  .00	
  
Medium	
  R2	
  =	
  .09	
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and Figure 24 provide evidence that loss-stay behaviour in our task is 

modulated by the dopamine system.  
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Discussion 

In Chapter 2, we described the development of a rat gambling task and 

demonstrated that rats were not only sensitive to manipulations of reward 

volume and probability, but also that losses significantly affected subsequent 

behaviour in the task. Interestingly, we also found that rats develop a lose-

stay/win-shift strategy that leads to greater efficiency in earning reward in the 

task. Here, we present research that established the effect of systemic 

dopamine antagonism on behaviour. We observed dose-dependent increases 

in poke durations and choice of the high contingency as well as decreases in 

‘stay’ behaviour. These results not only suggest an important role for dopamine 

in guiding risky decisions in the task – but also implicate the substantia nigra 

directly based on correlations between behaviour and absolute cell counts. To 

the authors’ knowledge, such a correlation between normal (i.e. healthy, non-

lesioned) DA neuron counts and individual variability in behaviour has never 

been demonstrated. If such a relationship between neuron counts and 

behaviour were to stand up to further testing in the future, the implications for 

neuroscience are potentially quite wide – although we focus here on its 

prospective application to neuropsychological testing for early detection in 

Parkinson’s Disease (PD).  

Stay-shift pattern of behaviour 

In the previous chapter we note rats’ tendency toward lose-stay/win-shift 

behaviour. Although the task was not specifically designed to reinforce such 

behaviour, we found rats were more likely to return to a contingency after a loss 

compared to a gain. Lesion studies in rats have demonstrated that the 
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acquisition of stimulus-response associations such as win-stay or win-shift 

strategies is critically dependent upon the nigrostriatal pathway (Da Cunha et 

al., 2003; McDonald & White, 1993), which is characterized by afferent 

dopamine projections to the dorsal striatum from the substantia nigra (Haber, 

2003). It is hypothesized that reward-based motor learning is driven by 

dopamine-dependent plasticity at the synapse and at the whole cell (for an 

excellent review, see Wickens et al., 2003). Therefore, we next counted TH-

positive neurons in the SNc (Figure 23) and turned our investigation to the role 

of the midbrain dopamine system. 

Dopamine Antagonism 

Systemic injections of DA antagonist cis-Flupenthixol dose-dependently 

increased poke duration in the task. Since movement time to reward was 

unaffected by Flupenthixol administration, it is unlikely that increased poked 

durations reflect motor impairment. Given the probabilistic nature of accruing 

reward during a poke, potential future rewards are likely subject to probabilistic 

discounting during the decision process. Thus, this result would be consistent 

with previous work by St Onge and Floresco (2009), who found that 

amphetamine-induced probabilistic discounting was blocked by systemic 

dopamine D1 and D2 receptor antagonists (St Onge & Floresco, 2009). 

Therefore, these results support previous work demonstrating that Flupenthixol 

reduced rats’ subjective overweighting of reward probabilities when evaluating 

gambles. 

Our analyses suggest that systemic dopamine blockade decreased choice of 

the low contingency and increased choice of the high contingency at the 
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highest dose. This result is surprising given that a number of genetic, 

psychopharmacological, and imaging studies have implicated enhanced 

dopamine availability with risky decision-making (Kuhnen & Chiao, 2009; 

Mitchell et al., 2014; St Onge & Floresco, 2009). These findings also contrast 

with those of St Onge, Chiu, and Floresco (2010), who found that Flupenthixol 

decreased choice of the high-risk contingency on a risk discounting task in rats.  

However, this discrepancy may be attributable to differences in task designs. 

The previous study manipulated probability of the large/risky reward over four 

blocks of trials, whereas the task presented here maintained the same 

probabilities of reward throughout training and the task. Updating of reward 

probabilities and magnitude was necessary only while sustaining a nosepoke in 

the current task. It is possible that Flupenthixol may have impeded learning or 

updating of subjective reward probabilities (e.g. by blunting reward or risk 

prediction errors) over successive blocks of trials in the previous study. Thus, it 

is possible that choice of the high contingency in our task was maintained 

despite dopamine blockade solely due to preserved encoding of the larger 

magnitude of the reward (i.e. rats’ choices were insensitive to risk). While rats’ 

choices were highly sensitive to independent manipulations of risk (while 

reward magnitudes were constant) in the discrimination task (see Chapter 2), it 

remains possible that the discrepancy in reward accrual rate between the high 

and low contingencies was simply too large to motivate choice of the low 

contingency. This could reflect potential confounds arising from discounting of 

future rewards, or the tendency of individuals to preferentially weight rewards 

occurring sooner or with more certainty over those occurring later or with less 

certainty. This is a particularly relevant issue given that the dopamine system 
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has been heavily implicated in reward discounting, and that dysregulation of 

dopamine function often lead to exacerbated or abnormal discounting of 

rewards (Besson et al., 2010; Cardinal, Robbins, & Everitt, 2000; Dalley et al., 

2007; Wade, de Wit, & Richards, 2000). Future studies could either 

disassociate risk- and reward-accrual rates or decrease the difference in rate of 

reward contingencies to further this line of enquiry. 

Increasing doses of Flupenthixol reduced the average number of poke errors in 

a linear fashion. Interestingly, nosepokes appear to have become more 

deliberate at higher doses in the low contingency (Figure 19c). These results 

are consistent with previous work demonstrating that enhanced dopaminergic 

transmission potentiates premature responding while dopamine blockade 

reduces premature responding in the 5CSRTT (Passetti, Levita, & Robbins, 

2003; van Gaalen, Brueggeman, Bronius, Schoffelmeer, & Vanderschuren, 

2006). Choice errors in the current task may represent a form of frustrative 

behaviour in the face of a less-preferred option. Given that dopamine 

hyperactivity has been linked to aggression in both humans and animals 

(Brizer, 1988; Miczek, DeBold, & van Erp, 1994; for review, see Seo, Patrick, & 

Kennealy, 2008), the effect of Flupenthixol may be to diminish the negative 

emotion associated with an undesirable forced-choice trial. 

We discovered a significant relationship between rats with more TH-positive 

neurons in the substantia nigra pars compacta (SNc) and a greater propensity 

for the win-shift/loss-stay strategy (Figure 24). This is bolstered by the finding 

that stay-shift strategies are significantly disrupted at all doses of Flupenthixol 

administration (Figure 22). While there is a well-established precedent for 
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linking the activity of SNc neurons to instrumental behaviour (for review, see 

Wickens et al., 2003), there is less evidence to suggest that absolute numbers 

of dopamine neurons can affect activity levels at the local or systems level.  

A starting place may be the growing literature supporting a causal relationship 

between cognitive impairments and dopamine cell loss in Parkinson’s disease 

(PD) patients. Impairments in cognitive function, such as deficits in spatial 

planning and attentional set shifting, as well as the prevalence of depression 

and anxiety are present in both the early and late stages of PD, and often 

predate diagnosis (Dubois & Pillon, 1996; Lees & Smith, 1983; Lewis, Dove, 

Robbins, Barker, & Owen, 2003).  Indeed, given the subtle nature of the 

cognitive deficits in the early stages, non-motor symptoms are commonly 

unreported or overlooked by clinicians (Chaudhuri et al., 2010; Shulman, 

Taback, Rabinstein, & Weiner, 2002). In spite of this, research suggests that 

non-motor deficits typically precede the motor symptoms of PD by over a 

decade (Chaudhuri, Healy, & Schapira, 2006; Chaudhuri & Naidu, 2008). This 

is important to note because motor deficits in PD do not typically present until a 

substantial proportion (~70%) of dopamine neurons in the SNc have been lost 

(Truong, Allbutt, Kassiou, & Henderson, 2006; Zigmond, Berger, Grace, & 

Stricker, 1989). Surviving neurons exhibit a number of compensatory changes, 

such as: increasing dopamine release per terminal, decreasing dopamine 

reuptake, hemispheric inter-dependence, and increasing the proportion of 

active dopaminergic neurons (Blesa et al., 2011; Zigmond et al., 1989). Most 

researchers therefore expect that such compensatory mechanisms should 

preclude any observable differences in behaviour arising from natural variations 

in the absolute number of neurons in the substantia nigra (as demonstrated in 
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our findings). Given that we not only observe a moderate-to-strong correlation 

between neuron count and behaviour, but that this effect is also attenuated by 

systemic dopamine blockade, we believe these findings warrant further 

research. Replication of the study or direct manipulation of dopamine neurons 

in the SNc would be necessary to further substantiate such a claim. 

In conclusion, we have found intriguing evidence to support a novel relationship 

between the number of neurons in a healthy system and behaviour. Given that 

clinical presentation typically occurs at very late stages of PD, identifying 

cognitive domains that are susceptible to impairment at lower rates of 

dopamine cell loss in the SNc presents an exciting area for future research. 

Establishing a link between the number of SNc neurons and a capacity for 

dopamine-dependent plasticity could potentially lead to new methods of 

neuropsychological testing for earlier detection of PD.  
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Chapter 4  

 

Disassociating effects of dopamine neurons, 
probability and reward in a rat gambling task 
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Abstract 

 
In this chapter, we extend the novel gambling task developed in Chapter 2 and 

seek to replicate the association between loss-stay behaviour and neurons in 

the substantia nigra pars compacta from Chapter 3. We successfully 

dissociated the effects of high probability of losing vs. high reward accrual rates 

on poke duration and choice. High reward accrual rates exhibited greater 

influence over choice while high probability of loss exhibited a greater effect on 

poke duration. However, we were unsuccessful in attempts to elicit longer poke 

durations by offsetting any potential hyperbolic discounting. Modifications to the 

task design changed the way rats responded after a loss. While rats did not 

exhibit a general tendency toward loss-stay behaviour as in Chapter 2, 

individual variability in loss-stay behaviour was still positively correlated with 

neuron counts in the substantia nigra. This suggests that risky or compulsive 

behaviour may be under the control of the number of neurons in the substantia 

nigra.   
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Introduction 

In this chapter, we further develop the rat gambling task introduced in Chapter 

2 – addressing a number of the limitations associated with the previous version 

of the task. Furthermore, we attempt to replicate any findings associated with 

the correlation between loss-stay behaviour and the number of neurons in the 

Substantia Nigra pars compacta (SNc) presented in Chapter 3. In terms of task 

design, we focused on addressing three key limitations identified in the 

discussion of the previous task:  

1) The probability of losing and volume of reward both increased monotonically 

over the duration of a nosepoke, thus the distinct effects of either on behaviour 

were confounded. 

2) A loss was not explicitly signalled in the original version of the task, which 

meant wins were more salient than losses. Furthermore, rats may have 

considered loss trials simply as a variable ratio schedule.   

3) The volume of reward accrued in the low contingency was likely too low to 

make up for any effects of temporal discounting of delayed reward. Discounting 

of delayed rewards may have rendered longer poke durations in the low 

contingency less desirable than intended.  

To implement these changes, we began by expanding the number of available 

nosepoke holes from 3 to 5. The five contingencies varied either by rate of 

reward accrual or by probability of losing the accrued reward. Therefore, the 

five contingencies were:  

1. Low reward: low-reward/medium-probability 

2. High reward: high-reward/medium-probability 

3. Medium-Medium: medium-reward/medium-probability 

4. Low probability: low-probability/medium-reward 

5. High probability: high-probability/medium-reward 
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These separations allowed us to distinguish more clearly between the effects of 

reward and probability on choice and poke behaviour.  

In the previous version of the task, losses were not signalled to the rats. Not 

only did this disproportionately increase the salience of wins to losses, it was 

also possible that the unanticipated development of loss-stay behaviour was a 

misperception of losing in the task. For example, rats may have perceived the 

high contingency as a variable ratio reinforcement schedule (Ferster & Skinner, 

1957) requiring a varying number of responses to earn reward. To preclude this 

potential and to increase the salience of losses (our target outcome), we added 

a second auditory cue to the task. If the rat won, a win tone sounded and the 

reward magazine was illuminated as in the previous version of the task. In the 

event of a loss, the reward magazine was not illuminated and a second tone, 

distinct from the win tone, was paired with reward omission.  

Finally, we found that rats rarely poked for to the max 2 sec in the low 

contingency, despite the fact that there was a 90% chance of success even at 

the full 2 seconds (compared to 50% in the medium and only 10% in the high 

contingency). This may have been due to temporal discounting of reward, 

whereby delayed rewards are discounted more heavily the further away they 

are in the future (Ainslie, 1975). The hyperbolic reduction of perceived reward 

can be captured by a factor of: 

1
1+ 𝑘𝑡 
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where t is the duration of the delay until a reward is received and k is a 

constant discount rate per unit of time. Therefore to counteract any potential 

effect of reward discounting in the current version of the task, we included an 

extra reward ‘buffer’ at each successive 100msec tick.  

Methods 

Animals 

Subjects were 16 male outbred Lister Hooded rats (Harlan U.K.) that were 

housed in groups of three (2 additional cage mates were not included in 

testing) in a climate-controlled colony room on a reverse 12-hour light: 12-hour 

dark cycle (6PM lights off). After three weeks of habituation to experimenter 

handling, rats were placed on restricted water access for the duration of 

behavioural training and testing with ad libitum food access in the home cage. 

Rats were tested 5 days a week. Water access was restricted to 1 hour on 

weekdays following testing but was available ad libitum on weekends from 

Friday at 4PM until Sunday afternoon (typically between 2-4PM). Rats’ weights 

were monitored so that no animal dropped below 85% of its maximum body 

weight and showed growth throughout the experiment. All procedures 

conformed to the United Kingdom Animals (Scientific Procedures) Act (1986) 

under Project License 60/4040 and was approved by the Animal Welfare Ethics 

Committee of the University of St Andrews. 

Apparatus 

The reader is referred to the ‘Methods’ section of Chapter 2 for a detailed 

description of the apparatus employed here. 



 117 

Training 

After two weeks in which rats were habituated to human handling, the animals 

were placed on water restriction and submitted to 30 min training sessions in 

the testing chambers with no fixed trial limit. First, thirsty rats were trained over 

2 days to associate a tone-light cue with delivery of 0.15 ml sweet liquid reward 

(sodium saccharin 0.3% w/v). Rats were subsequently trained over 23 sessions 

to sustain gradually longer nosepokes in any nosepoke hole of the five-hole 

array for up to 2 sec in order to receive the tone/light cue followed by the 

reward. Finally, rats were trained to sustain nosepokes for 2 sec in only lit 

nosepoke holes of the five-hole array. During these sessions rats were trained 

to poke in lit holes only, where pokes in unlit holes resulted in a 2 sec ‘timeout.’ 

Testing proceeded once all rats were above 90% accuracy in nosepoking (36 

sessions). 

Task Outline 

As discussed above, the task is modified from the original presented in Chapter 

2. A brief description of the task is provided here. The reader is referred to 

Chapter 2 for a full description of the task and discussion of the associated 

behaviour.  

A task schematic is depicted in Figure 25. Lit LEDs indicated the available 

hole(s) of a 5-hole array in which a rat could poke on any given trial, and the 

locations of the holes associated with each contingency were counterbalanced 

across testing chambers. All LED’s in nosepoke holes were extinguished after 

the rat began poking into one of the lit nosepoke holes. If the animal either 

withdrew its snout from the nosepoke hole before a loss, or it successfully 
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reached the full 2 sec limit without losing, a tone-light cue emanating from the 

reward magazine would indicate the availability of reward for collection. If the 

rat lost the bet, a separate tone indicated the loss outcome and reward 

omission. Movement time (MT) to reward was measured from the onset of the 

conditioned stimuli to licking onset at the reward spigot. The amount of reward 

earned was a function of nosepoke length (refer to plot at top right of Figure 25) 

and varied by contingency. A 15 sec timer was activated from the onset of a 

nosepoke response, and a trial ended either when the timer elapsed or with the 

end of reward delivery, in which case a new trial began immediately. The 

animals were free to complete as many trials as possible over the course of the 

30-minute session.  

The major modifications to the previous task are illustrated in Figure 25. Here, 

one can see that the number of available nosepoke holes has been extended 

from three to five. The contingences associated with each hole vary from low to 

high either in probability of losing (depicted as ‘risk’ in Figure 25) or in the rate 

of reward accrual (depicted as ‘reward’ in Figure 25) with the ‘medium-medium’ 

contingency representing a medium rate of both. Furthermore, two distinct 

tones were incorporated as stimuli in the task. Tone 1 indicated to rats that a 

nosepoke had resulted in a loss and no reward would be available. Tone 2 

(paired with a light at the reward spigot) indicated to rats that a nosepoke had 

resulted in a win and that liquid reward was available for consumption at the 

reward spigot. 
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A 

Task Schematic

 
B  Expected value of future reward as a function of poke duration 

  
Figure 25: (A) Task Schematic. Note the major revisions from the previous version of the task (Chapter 
2). On the top left of the figure, five nosepoke holes are available during the contingency selection stage 
instead of three. The probability of losing (denoted simply as ‘risk’) increased either at a low or high rate 
(with medium rate of reward accrual) in the ‘Low Risk’ and ‘High Risk’ contingencies, respectively. 
Alternatively, the rate of reward volume accrual (denoted simply as ‘reward’) increased at either a low or a 
high rate (with a medium rate of probability of losing) in the ‘Low Reward’ and ‘High Reward’ 
contingencies, respectively. Reward accrual and probability of losing both increased at medium rates in 
the ‘Medium-Medium’ (MM) contingency. To convey these changing rates of reward volume and 
probability more clearly, the box on the top right depicts the trade-off between the decreasing probability of 
winning (inverse of the probability of losing) vs. an increasing volume of reward. One should also note the 
two distinct tones (marked ‘1’ and ‘2’) that indicated either a win or a loss to the animal. (B) Expected 
Reward. The expected value of future reward as a function of poke duration is depicted for each of the five 
nosepoke contingencies. Apart from the High Risk contingency, the maximum expected reward can be 
achieved by maintaining a nosepoke for the maximum 2 seconds.  
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Behavioural measurements 

Baseline data were from the last seven days of stable performance. Given that 

rats were not limited in the number of trials that they were able to complete in a 

session, we calculated percent choice (rather than absolute number of choices) 

using the number of trials chosen in a given contingency over the 7-day period, 

divided by the total number of free-choice trials over that period. The 

percentage of stay/shift trials was calculated as the total number of decisions to 

stay/switch after a previous trial across the 7 days, divided by the total number 

of free-choice trials across the 7 days. The following variables were also 

measured and analysed separately across conditions: error rate per forced-

choice trial, time spent (sec) in incorrect nosepoke holes, lick rate (Hz), 

movement time to reward (sec). 

Histology 

Following testing, a subset of 9 rats (7 rats were chosen at random for a 

separate procedure not detailed here) were euthanized via overdose with 0.08 

ml pentobarbital (Univet Ltd., Oxford, U.K.) and then perfused intracardially with 

0.1% phosphate buffered saline followed with a 4% paraformaldehyde in 0.1M 

phosphate buffer fixative. Brains were postfixed in the cold (at a refrigerator 

temperature of ~ 1.6°C) for 24 hours in 20% sucrose solution and then washed 

for 30 minutes with buffer. Using a freezing microtome, 50 µm serial sections 

were taken through the midbrain and stored in 0.1M phosphate buffer. One out 

of every four sections were subsequently stained with antibody to tyrosine 

hydroxylase (TH) using avidin-biotin complex (ABC) immunohistochemical 

methods (S. M. Hsu & Raine, 1981) and 3’3-diaminobenzidine (DAB) for 

visualization of the antigen. Sections were mounted and examined under a 
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conventional light microscope at ×20 objective. Sections were mapped onto 

standardized brain areas following Paxinos and Watson (1997) as depicted in 

Figure 26, and the number of tyrosine hydroxylase stained cell bodies were 

counted in the substantia nigra pars compacta (SNc) at 3 sections: -5.3mm, -

5.8mm, and -6.3mm behind bregma. 

Rat atlas guide of SNc  

 

Figure 26: adapted from Paxinos and Watson (1997). Three sections (−5.30mm, −5.80mm, and 
−6.3mm behind bregma) of the rats’ midbrains were stained for tyrosine hydroxylase (TH). TH-
positive cell bodies were then counted under a conventional light microscope in the substantia 
nigra pars compacta (red) at ×20 magnification. 

 AH counted the number of midbrain dopamine neurons.  AH’s count-recount 

correlations demonstrated highly reliable neuron counts (Pearson’s r = .953, p 

< .001). A random sample of 10 sections (5 from animals presented in this 

chapter and 5 from animals presented in Chapter 3) was selected for blind 

recount using a random-number generator for inter-rater reliability. The inter-

rater reliability between the original (AH) counts and the counts conducted by a 

second blind counter (EMB) was also high (Pearson’s r = .987, p < .001). 

Bregma'(6.30mm'

Bregma'(5.80mm'

Bregma'(5.30mm'Interaural'3.70mm'
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Data analysis 

Session reconstruction with time-stamped data was performed using a program 

in the AWK programming language. Subsequent data analysis was carried out 

using Microsoft® Excel for Mac 2011 as well as R version 3.2.2 and SPSS® 

version 21 for Mac. Task behaviour was analysed using the average 

percentage each contingency was chosen (on free-choice trials) across rats 

and days during the last five testing sessions. Repeated-measures ANOVAs 

were performed with contingency (5 levels: high probability, low probability, 

medium probability/medium reward, high reward, and low reward) as the within-

subject variable. Greenhouse-Geisser adjusted degrees of freedom and Sidak-

corrected p-values were applied where appropriate. All means are reported 

with standard errors and any significant main effects are reported with 

associated planned contrasts. In order to avoid potential ceiling-effects 

associated with the use of proportion data, arcsine transformations were used 

on all variables expressed as a percentage (Zeeb et al., 2009). All analyses 

measuring responses to a previous win or loss are defined as those trials 

immediately preceded by a win or loss, omitting the first trial of a session. 

Poke durations longer than the maximum allowed 2 seconds were truncated to 

2 seconds for analysis. Furthermore, given that the average poke durations 

could be biased by truncated loss trials, descriptive statistics and ANOVA’s 

including average poke duration are calculated based on successful trials only.  

We also conducted survival analyses of poke duration and contingency choice 

by fitting a Cox proportional hazard model to the data. This analysis is carried 

out on a trial-by-trial basis, rather than averaging across subjects and sessions. 
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The Cox proportional hazard model is a semi-parametric model that makes no 

assumption about the shape of the baseline curve (e.g. linear), and takes the 

following form: 

ℎ 𝑡, 𝑥 𝑡 = ℎ! 𝑡 exp 𝛽!𝑥! +⋯+ 𝛽!𝑥!  

where the hazard rate of x occurring, h(t,x(t)), on trial t is conditional on p 

predictors. The β coefficients are estimated from the data. While the model’s 

primary assumption is that the hazard associated with any given covariate is 

proportional across time, it can be extended to incorporate time-varying 

covariates and stratified to accommodate within-subject designs. By stratifying 

across subjects, the models fit here include individual baseline hazards for 

each animal, which accounts for the variance in survival rates contributed by 

individual subjects. 

Results 

Contingency 

We began by determining how successful rats were at earning reward in each 

contingency. We used the reward won and the reward lost on each trial to 

calculate the average net reward for each subject in each of the 5 

contingencies. The results are plotted in Figure 27. A repeated-measures 

ANOVA of net reward with Contingency (5 levels: high probability, low 

probability, high reward, low reward, and medium-medium) as a within-subjects 

factor confirmed that there was a main effect of contingency on net reward 

earned per trial (F(4,60) = 31.64, 𝜂!! = .68, p < .001). This suggests that our 

manipulations were successful. 
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Net reward earned per trial by contingency 

 
Figure 27: Net reward per contingency. On average, the net reward earned per trial was 
highest in the contingencies associated with a high rate of reward accrual and a low probability 
of losing. In contrast, rats netted the least reward in the low reward and high probability 
contingencies. Net reward earned in the medium-medium contingency fell in between these, 
which simple planned contrasts revealed was significantly different than all other contingencies 
(low reward: p<.001, low probability: p<.01, high reward: p=.001, high probability: p<.001). This 
suggests that our manipulations were successful. Error bars represent 95% CI’s. 

We next investigated whether the 5 contingencies of reward volume and 

probability had any effect on the various behavioural measures in the task. To 

establish the effect of contingency on hole choice during free choice trials, we 

conducted a repeated measures ANOVA for the percentage of trials each 

contingency was chosen on free choice trials, with Contingency (5 levels: high 

probability, low probability, high reward, low reward, and medium-medium) as a 

within-subjects factor. As depicted in Figure 28a, we found a significant main 

effect of contingency on rats’ choice of nosepoke holes on free-choice trials 

(F(4,60) = 14.50, 𝜂!! = .49, Greenhouse-Geisser corrected p < .001). Although 

there appeared to be a linearly decreasing trend as the probability of losing 

increased, planned contrasts revealed that contingency choice did not 

significantly change from the low probability to the high probability contingency 

° 
� 
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(p = .54). There was a trend in the opposite direction as the reward accrual 

rates increased, with significant contrasts between choice of the low and high 

reward contingencies (p = .001) and medium-medium and high reward 

contingencies (p = .001). Overall, rats chose the high reward contingency the 

most (M = 42.9%, SEM = 4.4%), while they chose the high probability of losing 

contingency the least (M = 10.0%, SEM = 1.7%). One-sample t-tests revealed 

that only choice of the low probability contingency failed to differ significantly 

from chance (t(15) = 0.07, p = NS).  

A      B 

  
C      D 

   
Figure 28: (A) Choices appear to have been more affected by reward-type manipulations than 
probability-type manipulations. Despite earning the same net reward as the contingency 
associated with a low probability of losing, rats choose the high reward contingency 22.6% 
(SEM = 8.1%) more often on free-choice trials. The low reward, high probability, and medium-
medium contingencies were all significantly below chance (20% represented by the black 

° 
� 
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dotted line). (B) Poke durations appear to have been more affected by manipulations of 
probability than reward-type manipulations. On average, rats poked the longest in the low 
probability contingency (M=0.67sec, SEM=0.07sec) and the shortest in the high probability 
contingency (M=0.41sec, SEM=0.03sec). (C) There was a significant main effect of 
contingency on error rates (p<.01), which appear to be the inverse of net reward (see Figure 
27). (D) There is a marginal trend toward faster lick rates in the high probability contingency 
and slower lick rates high reward contingency (Main effect: p=.05). Error bars represent 95% 
CI’s. 

Figure 28b illustrates the effect of contingency on the average time that rats 

were willing to sustain a nosepoke. We performed a repeated-measures 

ANOVA on average poke duration with Contingency (5 levels: high probability, 

low probability, high reward, low reward, and medium-medium) as a within-

subjects factor. The results indicate that there was a strong main effect of 

contingency on the duration a rat was willing to sustain a nosepoke (F(4,60) = 

12.85, 𝜂!! = .46, Greenhouse-Geisser corrected p < .001). In contrast to the 

medium-medium contingency, rats poked significantly shorter in the high 

probability of loss contingency (MDifference = 0.23 sec, SEM = 0.04 sec, p < .001) 

but not significantly longer or shorter in the low probability of loss contingency  

(MDifference = 0.02 sec, SEM = 0.04 sec, p = NS). Although rats did tend to 

exhibit quicker nosepokes in the low reward contingency (M = 0.55 sec, SEM = 

0.06 sec) compared to the high reward contingency (M = 0.61 sec, SEM = 0.05 

sec), the manipulations of reward accrual rate did not significantly affect poke 

durations. 

In the previous version of the task, we demonstrated that rats made more 

errors on forced-choice trials involving less preferred contingencies. To 

investigate this pattern, we performed a repeated-measures ANOVA on the 

average number of errors per trial with Contingency (5 levels: high probability, 

low probability, high reward, low reward, and medium-medium) as a within-
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subjects factor. As depicted in Figure 28c, we again found that error rates were 

significantly affected by contingency (F(4,60) = 4.39, 𝜂!! = .23, p < .01). On 

average, rats made the greatest amount of errors per trial in the low reward 

contingency (M = 1.31 errors/trial, SEM = 0.15 errors/trial) and the fewest 

number of errors per trial in the high reward contingency (M = 1.04 errors/trial, 

SEM = 0.13 errors/trial).  

Based on the results from the previous iteration of the task, we also expected 

to find a significant effect of contingency on movement time to reward (MT). We 

performed a repeated-measures ANOVA on the average MT (sec) with 

Contingency (5 levels: high probability, low probability, high reward, low reward, 

and medium-medium) as a within-subjects factor. While rats did move 

somewhat more quickly to collect reward in the high reward contingency (M = 

1.60 sec, SEM = 0.08 sec) compared to the slowest MT in the low probability 

contingency (M = 1.74 sec, SEM = 0.13 sec), we did not find a significant main 

effect of contingency on MT (F(4,60) = 1.04, p = .39).  

Similarly, we performed a repeated-measures ANOVA on the average lick rate 

(Hz) with Contingency (5 levels: high probability, low probability, high reward, 

low reward, and medium-medium) as a within-subjects factor. We had 

previously found a weak effect of contingency on lick rate, and this was again 

the case (F(4,60) = 3.31, 𝜂!! = .18, Greenhouse-Geisser adjusted p = .05), 

although it should be noted that this effect just reached our criterion for 

statistical significance. As can be seen in Figure 28d, planned contrasts 

revealed significantly faster lick rates when the probability of loss was the 
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highest (M = 7.78 Hz, SEM = 0.09 Hz, p < .05). Lick rates were slowest in the 

high reward contingency (M = .67 Hz, SEM = 0.09 Hz, p = .057).  

In order to gain a more detailed understanding of the effects of contingency on 

behaviour, we next evaluated poke duration on a trial-by-trial basis. To achieve 

this, we conducted a survival analysis by fitting a Cox proportional hazard 

model to the data. This analysis has the potential for greater power given that 

that: 1) it can account for censored poke durations (i.e. premature unpokes due 

to losses) and, 2) it is computed on a trial-by-trial basis. Previous Outcome (2 

levels: win and loss) and Contingency (5 levels: high probability, low probability, 

high reward, low reward, and medium-medium) were added as time-varying 

covariates and the model was stratified over subjects.  

A      B 

 
Figure 29: (A) The ‘survival’ time of a nosepoke varies significantly as a function of 
contingency (p<.001). Poke durations are the shortest when the probability of losing is the 
highest (p<.001) and longest when the probability of losing is the lowest (p<.001). Variations in 
rate of reward accrual had less of an apparent effect on poke duration, with the low reward 
contingency eliciting the shortest pokes (p<.05) while the high reward contingency did not 
significantly differ from the medium-medium contingency (p=.524). (B) Previous outcome was a 
significant factor in the model, but this effect was reversed and smaller in comparison to the 
previous task. Here, rats poked longer after a loss compared to a gain (p<.001). CI’s not 
depicted, for details the reader is referred to Appendix 3, Table 11. 
 
The model survival curves for each contingency are illustrated in Figure 29a. 

Contingency was found to be a highly significant factor in the model (p < .001). 
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The high probability contingency (p < .001) and the low probability contingency 

(p < .001) represented the shortest and the longest poke durations, 

respectively. In contrast to the medium-medium contingency, poke durations in 

the low reward contingency (p < .05) were shorter while those in the high 

reward contingency did not significantly differ (p = .524). Previous outcome was 

also entered as a significant factor in the model (p < .001), as depicted in 

Figure 29b. Interestingly, rats generally poked longer after a loss in the current 

version of the task, which contrasted with the previous 3-hole version (see 

Figure 17b). A table detailing further particulars of the model coefficients can be 

found in Table 11 of Appendix 3. 

Stay-Shift Strategy 

Given the surprising lose-stay/win-shift strategy in the previous version of the 

task, we were interested in determining whether this pattern was again present 

in rats’ behaviour in the current task. We began our analysis by conducting a 

paired-samples t-test on the proportion of trials a rat chose to stay after a win 

vs. a loss. This analysis revealed that rats were more likely to stay after a win 

rather than after a loss, t(15) = 2.21, p < .05). See Figure 30 for a graph 

depicting this win-stay/lose-shift behaviour.  
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A      B 

 
 
Figure 30: (A) Unlike in the previous version of the task, we found that rats developed a win-stay/lose-shift 
strategy in the current task. After a win, rats stayed on about 5% more trials than after a loss (p<.05). Note 
that the percentage of stay trials was significantly below chance on trials with both a previous win and a 
previous loss. (B) There was a main effect of contingency (p=.001), whereby rats returned to the high 
reward contingency significantly more often than any other contingency on free-choice trials. 

We also wanted to establish whether rats were more likely to stay/shift after 

trials with some contingencies compared to others. We therefore conducted a 

repeated-measures ANOVA on the average percentage of stay trials per 

session with Contingency (5 levels: high probability, low probability, high 

reward, low reward, and medium-medium) as a within-subjects factor. As 

illustrated in Figure 30b, rats were significantly more likely to return to the high 

reward contingency (M = 38.7%, SEM = 5.5%) than the other contingencies, 

where averages all fell below 20% chance, main effect: F(4,60) = 8.49, 𝜂!! = .36, 

Greenhouse-Geisser adjusted p = .001. The contingency associated with a 

high probability of loss also had the lowest stay percentages, with rats choosing 

to return to it on only 11.6% (SEM = 2.3%) of free-choice trials.  

Neuron counts and behaviour  

In Chapter 3, we provided evidence of a significant relationship between loss-

stay behaviour and rats with more putative dopamine neurons in the substantia 

nigra pars compacta (SNc). Here, we sought to determine whether a similar 

° 
� 
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association was present in the current cohort of rats performing the new 

variation of the task. The number and variation of TH-positive neurons in the 

SNc (Figure 31) was first ascertained (N = 9 rats; min = 820; max = 1045; M = 

936.94; SD = 61.37). These values were similar to counts from the previous 

study, and an independent t-test revealed that the differences between groups 

were not significant, t(23) = 1.78, Cohen’s d = 0.74, p = .09. 

A      B 

   

Figure 31: (A) TH-positive dopamine cells of the rat SNc at ×4 magnification and (B) ×10 magnification. 

We implemented this analysis by regressing the percentage of lose-stay trials 

on neuron counts in the SNc. Given implications of midbrain dopamine neurons 

in feeding behaviour (Hommel et al., 2006), rat weight was also included as a 

predictor variable. We used the stepwise method to enter average weight and 

SNc neuron counts as independent predictors of lose-stay trials in a linear 

regression. The results of a linear regression (refer to Figure 32 and to Table 

12 in Appendix 3 for full details of the model coefficients) suggest a strong 

relationship between neuron count and behaviour (β = .83, 95CI[.33,1.33], p < 

.01, R2
adj = .64). Rat weight was not entered as a significant predictor into the 

model nor did it raise any potential issues with collinearity (βin = .004, p =.99, 
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VIF = 1.28). These findings are in line with the positive relationship between 

greater numbers of SNc neurons and a greater propensity to shift after a loss 

identified in Chapter 3.  

Loss-stay strategy increases in rats with more SNc neurons 

  
Figure 32: The figure above depicts the relationship between counts of TH-positive neurons in the SNc 
and the proportion of trials on which a rat (N=9) chose to ‘stay,’ or return to the same contingency, after a 
loss. We similarly observed a positive relationship in Chapter 3 with a separate group of rats on the 
previous version of the task. The dotted line represents chance at 20%. Error lines represent 95% CI’s. 

 

  

R2	
  Linear	
  =	
  .69	
  



 133 

Discussion 

 
This research was intended to extend and replicate previous work (presented in 

Chapters 2 and 3), which focused on the development of a novel rat gambling 

task. Here, we implemented three major changes to the task design: 1) 

Disassociated contingencies of varying probability and reward, 2) cued losses, 

and 3) ‘extra’ reward to offset hyperbolic discounting and incentivize longer 

poke durations.  

By varying the rate of magnitude and probability accrual separately between 

nosepoke holes, we were able to determine that rats’ choices (Figure 28a) 

reflect the expected reward rates in each hole (Figure 27). This finding was 

again in line with the matching law (Chung & Herrnstein, 1967), whereby an 

individual’s choices among alternatives reflect the relative rate of reward (rather 

than net reward) of those alternatives. Given two contingencies of differing 

expected reward (refer to Figure 25b) but comparable net reward (high reward 

vs. low probability of loss, Figure 27) rats demonstrably preferred the high 

reward contingency to the low probability contingency (and all other 

contingencies).  

Rats’ average nosepoke durations varied between 400 and 700 msec. This 

suggests that our previous assertion – namely that delayed rewards are 

discounted – remains true despite the additional reward ‘buffer.’ It stands to 

reason in the first instance that our assumption about the function of the 

discount factor was incorrect. For example, rats may discount reward 

exponentially as opposed to hyperbolically, which would render later rewards 
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once more less desirable. Although such a result would stand in opposition to a 

number of studies documenting hyperbolic discount rates in animals and 

humans (e.g. Mazur & Biondi, 2009; Rajala et al., 2015; Rodriguez & Logue, 

1988; Sopher & Sheth, 2006), future studies should test this assumption 

explicitly.  On the other hand, this may be a factor arising from the timed task 

design. In other words, with an unlimited number of trials to complete the task, 

rats may have developed the strategy of completing many short nosepokes 

rather than a few longer nosepokes. While we did restrict the minimum trial 

duration to 7 seconds, either integrating pseudorandom inter-trial intervals or 

limiting the number of trials per task to a set amount could potentially resolve 

this in future versions of the task. 

On average, poke durations did not increase greatly from the previous version 

of the task as intended. However, we were able to determine that high 

probability of losing was the most effective manipulation at eliciting different 

nosepoke durations (Figure 28b and Figure 29a). Survival analysis revealed 

that the low probability contingency did result in significantly longer poke 

durations than the medium-medium contingency – but this effect was not 

sufficiently strong enough to come through in the summary analysis of average 

behaviour. In contrast, the manipulations of reward accrual had little apparent 

effect on nosepoke behaviour. This suggests that rats do not have some 

predetermined threshold of either reward expectancy or effort expenditure. If, 

for example, a rat wished to achieve an arbitrary amount across all 

contingencies, it would stop poking sooner in the high reward contingency than 

in the low reward contingency. We observed the opposite effect (Figure 29a) – 
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nosepokes were the shorter in the low reward contingency than either high 

reward or medium-medium contingencies.  

This offers much room for speculation. It is possible, for example, that the small 

reward was (still) not worth the cognitive effort of sustaining a nosepoke nor the 

time lost from starting a new trial in a new hole. Alternatively, it may be that 

losing a large reward elicits more negative affect than losing a medium-sized 

reward – thus conditioning rats to reduce poke durations in the high reward 

contingency. Future iterations of the task could take advantage of individual 

differences in tolerance of increasing probabilities / rates of reward accrual to 

maximize desired behaviour by establishing subject-specific contingencies 

before training.  

We also integrated a second auditory cue for losses that was distinct from the 

win tone into the task. This was intended to increase salience of a loss, which 

was the target outcome of the task design and study. This was also 

implemented in order to minimize the potential that rats developed lose-stay 

behaviour because they incorrectly associated the high probability of loss 

contingency with a variable ratio schedule of reinforcement. Encouragingly, we 

found that rats performing in the current version of the task did not employ a 

lose-stay/win-shift strategy as in Chapters 2 and 3. Instead, rats were 

significantly more likely to stay after a win (Figure 30a). It is possible that the 

inclusion of an auditory loss cue effectively changed behaviour. However, this 

change may also be attributable to the fact that rats stayed on nearly 40% of 

trials in the high reward contingency (Figure 30b), which was well above 20% 

chance. Unfortunately, the large number of contingencies prevented us from 
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employing a Cox proportional hazard model to differentiate between any 

potential effects of a PreviousOutcome*PreviousContingency interaction, as 

was done in Chapter 2. We can, however, definitively state that rats returned to 

the contingency associated with a high probability of loss the least often of all 

five contingencies and that this was significantly less than chance. Thus, while 

it is unclear whether the switch from loss-stay to win-stay behaviour was 

motivated by addition of a loss tone or the change in contingencies (or both), it 

is unlikely that rats associate the high probability contingency with a variable 

reinforcement schedule. 

Given that we did not observe a pattern of loss-stay behaviour in this version of 

the task, it is perhaps rather surprising that we once more identified a 

significant positive relationship between rats with more TH-positive SNc 

neurons and a greater propensity to stay after a loss (Figure 32). This finding 

was intriguing in that it rules out the possibility that the correlation was only 

present in animals that have performed a task in which lose-stay is the 

preferred response. Furthermore, the current cohort of rats was drug-naïve – 

which indicates that the relationship was not the spurious by-product of altered 

neural tissue potentially arising from cis-Flupenthixol administration. We also 

did not observe any significant differences in neuron counts (Figure 31) 

between cohorts, although the mean count in the current cohort (M = 936.94 

cells) was somewhat lower than the previous cohort (M = 984.93 cells).  

Previous work by Baker, Joh, and Reis (1980) used a strain of inbred mice with 

20% greater midbrain DA neuron counts to establish that variation in midbrain 

TH activity is wholly accounted for by the number of neurons containing the 
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enzyme. The authors (Reis, Baker, Fink, & Joh, 1979) also performed a series 

of experiments and were also able to draw the conclusion that variability in both 

drug reactivity and behaviour was reducible to differences in neuron counts in 

the mouse nigrostriatal, mesolimbic, and mesocortical systems. Indeed, inbred 

mice with more midbrain dopamine neurons not only exhibited more 

exploratory behaviour and spontaneous motor activity, but their behaviour was 

also more sensitive to d-amphetamine administration. As a caveat, however, 

Sved, Baker, and Reis (1984) later found that DA neuron counts could not be 

used to predict overall neurotransmitter levels.  

The results of our study bear striking resemblance to the work done in an 

inbred strain of mice as detailed above (Baker et al., 1980; Reis et al., 1979; 

Reis, Fink, & Baker, 1982; Sved et al., 1984). The current study is comparable 

despite no known strain differences (rats from both studies were outbred by the 

same breeder), with the minimum count (820 cells) equal to ~22% of the 

maximum count (1045). This would suggest that either rats have greater 

natural variations in midbrain DA numbers than the mice did, that this genetic 

variant is also present in the subjects used here, or that some other potential 

factor affecting neuron counts exists. 

If variations in neuron count reflected faster instrumental learning in general, a 

plausible hypothesis would have been to predict a correlation between neuron 

counts and win-stay behaviour in the current task. In contrast, we found that 

neuron counts once again predicted loss-stay behaviour (Figure 32). This 

suggests that any putative dopaminergic control exerted on behaviour is related 

to either losses or a lack of spatial exploration. Given that Baker et al. (1980) 



 138 

observed more spontaneous exploratory behaviour in mice with more midbrain 

numbers, it is more likely that this association is linked to losses. Repeating a 

loss can be seen as a risky, compulsive behaviour that putatively arises from 

the failure of a reward prediction error. If loss-related learning fell within the 

purview of SNc dopamine neuron populations, this could largely explain 

increased risk taking in, for example: susceptibility to addiction (Dalley et al., 

2007), variation in life financial outcomes (Brian Knutson, Samanez-Larkin, & 

Kuhnen, 2011), Parkinson’s Disease (Jee-Young et al., 2010), and those with 

genetic variations in the dopamine receptor D4 gene (Kuhnen & Chiao, 2009). 

Alternatively, loss-stay behaviour may be interpreted as compulsivity, which 

also has a substantial body of research linking it to the DA system (Eagle et al., 

2011; Evans, Lawrence, Potts, Appel, & Lees, 2005; Evans et al., 2006; 

McKeon et al., 2007; Voon et al., 2010). 

With the present chapter, we endeavoured to further advance the development 

of a novel rat gambling task. By replicating the correlation between loss-stay 

behaviour and neuron counts, but not an overall pattern of lose-stay behaviour 

in the task, our understanding of task behaviour and the neurobiological 

mechanisms governing that behaviour has also been critically expanded. This 

study provides evidence for a relationship between DA neuron counts and loss-

stay behaviour that both complements and extends beyond the work by Reis 

and colleagues (1979). These results seem to indicate that the self-regulating 

nature of the dopamine system still leaves enough variability to allow for 

quantifiable individual differences in behaviour.  Future work should focus on 

determining whether SNc neuron counts can also distinguish between 

individual differences in compulsivity and risk-taking. A number of viable 
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methods could further elucidate this potential relationship in future studies, 

including: psychopharmacology, targeted lesions, reversible inactivation, and 

optogenetics.  
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Chapter 5  

 

Rats exhibit anchoring, loss aversion and the 
disposition effect in an experimental stock market task 
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Abstract 

Empirical research suggests that there are a number of behavioural biases that 

characterize systematic deviations from optimal trading behaviour in the stock 

market. Biases such as ‘anchoring’, ‘loss aversion’, and the ‘disposition effect’ 

all describe suboptimal behavioural patterns exhibited by human investors. 

Explanations for these biases, such as the ‘realization utility’ hypothesis of the 

disposition effect, are supported by theories of model-free reinforcement 

learning and dopaminergic reward prediction errors. This opens up the potential 

for exploring the aforementioned biases using more primitive models of 

behaviour. However, to date no research has explicitly tested whether or not 

anchoring, loss-aversion, or the disposition effect could be observed in rat 

behaviour. To this end, we have developed a stock market task in rats that 

simulates key aspects of investor decision-making. Using the notion of 

reference dependence from Prospect Theory, we first trained thirsty rats 

(N=24) to develop a reference point set at 0.15 ml of sweet liquid reward. 

Thereafter, cohorts of four rats drove a virtual stock market by nosepoking first 

to select an asset, followed by a second nosepoke to subsequently buy, sell, or 

hold the selected asset. If a rat chose the buy or sell option, the reward earned 

on that trial was equal to the reference point plus (minus) the liquid equivalent 

of the gain (loss) incurred by the trade. Choice of the hold option always 

resulted in a gain, albeit much smaller in volume relative to a potential gain 

from either the buy or sell options. Analysis of rats’ choices relative to changes 

in price of the selected stock revealed that rats learn either to buy, hold or sell 

optimally (but not all three). Our results indicate that rats move much more 

slowly to collect reward after a loss than after a gain. Furthermore, rats choose 

the riskier buy and sell options more often than the safer hold option on trials 

immediately preceded by a loss. These findings suggest that rats’ behaviour 

reflects both reference-dependence and loss aversion. Our results also indicate 

that rats – like humans – demonstrate a significant disposition toward selling at 

a gain relative to selling at a loss (i.e. the disposition effect). Together, these 

results suggest that behavioural biases such as anchoring, loss aversion, and 

the disposition effect can be elicited in a simulated rat stock market task.   
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Introduction 

One of the most robust empirical findings in behavioural finance is the tendency 

of investors to hold on to losing stocks too long and to sell winning stocks too 

quickly. Shefrin and Statman (1985) characterize this bias as the ‘disposition 

effect.’ Evidence for the disposition effect, along with a number of other 

behavioural biases, represents a mounting challenge to normative economic 

theories predicated on ‘rational,’ utility-maximizing Bayesian updaters. 

Irrespective of the prescriptions for portfolio management laid out by leading 

standards such as the Capital Asset Pricing Model (Markowitz, 1959; Sharpe, 

1964), individual investors dependably exhibit a reluctance to realize their 

losses. While such systematic deviations from rationality appear to be 

ubiquitous across cultures (Grinblatt & Keloharju, 2001), professional money 

managers (Shapira & Venezia, 2001), and even primate species (M. K. Chen et 

al., 2006; Lakshminaryanan et al., 2008), the origins of such behaviour remain 

unclear.  

Although a number of potential theories have been posited to account for the 

disposition effect (e.g. Hirshleifer, 2001; Kaustia, 2010; Weber & Camerer, 

1998), the ‘realization utility’ hypothesis is unique in its ability to explain a 

number of behavioural biases (Barberis & Xiong, 2012; Shefrin & Statman, 

1985) while also garnering support from neurobiological and psychological 

research (Barber & Odean, 2011; Frydman et al., 2014; Frydman & Rangel, 

2014). The hypothesis posits that in addition to the utility derived from 

consumption, an investor receives a ‘burst’ of realization utility at the moment of 

sale that is proportional to the amount gained or lost in the trade. Frydman et 
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al. (2014) have recently used human fMRI BOLD activity to provide particularly 

compelling neural evidence for this hypothesis. The observed ‘bursts’ of utility 

closely align with learning signals described by reinforcement learning models 

(Erev & Roth, 1998; Sutton & Barto, 1998) in their potential to increase the 

likelihood of (not) repeating an (un)successful action in the future. Indeed, 

Charness and Levin (2005) demonstrate that utility maximization via Bayesian 

updating often fails when Bayes’ rule clashes with reinforcement. The authors 

find that participants violated Bayes’ updating rule on nearly 50% of trials where 

Bayesian updating and reinforcement were in conflict, yet hardly ever when the 

two rules were aligned. Thus, naïve reinforcement learning may lie at the heart 

of investor bias in situations where the immediate disutility of realizing a loss 

conflicts with an individual’s ability to update priors to achieve the optimal 

outcome. This assertion has gained traction in a growing number of studies 

(Choi, Laibson, Madrian, & Metrick, 2009; Fuster, Laibson, & Mendel, 2010; 

Kaustia & Knüpfer, 2008) and highlights a role for more primitive models of 

investor behaviour.   

Given the evidence implicating the potential contribution of reinforcement 

learning rules to investor bias, it may be possible to test such assertions using 

animal models. On the face it may seem a rather unusual notion to simulate 

financial decision-making behaviour in animals, but such models constitute an 

important basis for research in reinforcement learning (Lee & Dorris, 2014; 

Tolman, 1932). Indeed, animal models represent a critical means of 

interrogating the more primitive subcortical reward circuitry of neural systems 

without confounding ‘human’ factors, such as preconceived notions of how a 

stock market works or individual differences in numeracy and education.  
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This assertion is exemplified by previous research investigating economic 

decision-making in capuchin monkeys (M. K. Chen et al., 2006), pigeons 

(Kagel et al., 1975), and rodents (Kagel & Battalio, 1980), which has 

established that the foundations of rational economic choice extend further into 

humanity’s evolutionary past than one might expect. A group of researchers 

(Kagel & Battalio, 1980; Kagel, Battalio, & Green, 1995; Kagel et al., 1975) 

have demonstrated in numerous studies that when rats are given the 

opportunity to work (e.g. press a bar) to earn food and water in their home 

cage, they adjust their consumption patterns in a way that is consistent with 

rational economic pricing models. For example, when the ‘price’ of an item of 

food is increased from one bar press to three bar presses, rats naturally adjust 

their consumption patterns to reflect the new higher prices, revealing expected 

elasticities in demand. van Wingerden, Marx, and Kalenscher (2015) have 

recently extended this work, altering the experimental design of the previous 

authors to reflect an open economy (i.e. consumption was outside the home 

cage and not essential for homeostasis). By changing animals’ budgets (i.e. the 

number of trials in a session), the authors demonstrate that corresponding 

changes in consumption patterns imply that the subjective value attributed to a 

particular good is relative not only to price and preference, but also to the total 

budget. Together, these studies overcome the limitations of human 

experimental research and offer a valid model of behaviour that allows 

researchers to probe the neural representation of valuation in changing 

economic conditions.  

To a similar end, we have developed a stock market task for rats that simulates 

key aspects of investor decision-making. To facilitate such behaviour, we utilize 
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the notion of reference-dependence from Kahneman and Tversky’s (1979) 

Prospect Theory. In Prospect Theory, the subjective value of a prospect can be 

plotted on axes with an origin at some reference point (often the status quo), 

rather than at the objective value of zero. This implies that, given a gamble 

where most other players received an outcome of $100 and you receive an 

outcome of $5, a positive outcome can be viewed as a loss when it falls short 

of the reference point. We incorporate this concept in the rat stock market task 

by first establishing a reference point of reward, and subsequently by signalling 

losses and gains with respect to that reference point. Given that this is 

fundamental to the task design, our first hypothesis is therefore that rats are 

capable of reference-dependent behaviour. This directly challenges assertions 

that rodents do not possess the cognitive sophistication required for an 

organism to exhibit reference point effects (M. K. Chen et al., 2006).   

Based on the research outlined above, we further hypothesize that rats will 

display rational trading behaviour with regard to changes in prices. This would 

manifest as subjects buying stocks that are undervalued (i.e. at low prices) and 

selling stocks that are overvalued. Alternatively, we expect to see ‘irrational’ 

behaviour with respect to losses (e.g. loss aversion) and to the realization of 

negative returns (e.g. the disposition effect).  

Methods 

Animals 

Subjects were 24 male Lister Hooded rats, 8 of which were bred in house and 

16 of which were outbred (Harlan U.K.), with initial weights between 125g and 

250g. Animals were housed in groups of two or three on a 12-hour light: 12-
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hour dark cycle (6PM lights off). All testing was carried out in the light part of 

the cycle. Rats were habituated to human handling for two weeks and then 

placed on restricted water access. Rats received water ad libitum from Friday 

afternoon to Sunday afternoon and for one hour each weekday after testing. 

Rats weights were monitored daily before testing so that no animal was allowed 

to drop below 85% of its free-drinking body weight. All procedures were carried 

out under Project License number 60/4040, conformed to the United Kingdom 

Animals (Scientific Procedures) Act (1986), and were approved by the Animal 

Ethics Committee at the University of St Andrews. 

Apparatus 

The apparatus used here are detailed extensively elsewhere (see Chapter 2, 

‘Methods’).  

Behavioural testing was interfaced by the MED-PC™ data experimental control 

system (Med Associates Inc., St Albans, VT) with an HP® computer running 

Windows7™ at a temporal resolution of 2 msec. Summary measures were also 

available in an online display on the computer screen along side real-time video 

feeds.  Behavioural events were also time-stamped and recorded for offline 

data analysis and session reconstruction using a self-written program in AWK 

(Thompson Toolkit, Thompson Automation) programming language. 

Subsequent data analysis was carried out using Microsoft® Excel for Mac 2011 

as well as SPSS® version 21 for Mac and R version 3.2.2 for Mac. 

Training 

Thirsty rats completed three stages of 30 min training sessions in the testing 

chambers. In the first stage of training, rats were trained to pair a tone-light cue 
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with the availability of sweet liquid reward at the reward spigot. Thereafter, rats 

were trained to nosepoke in a lit nosepoke hole of the five-hole array in order to 

receive the cued reward. Finally, the animals were trained to complete a 

sequence of two nosepokes in the lit holes in order to receive the cued reward. 

Response accuracy was measured as the number of nosepokes into incorrect 

(unlit) holes versus the number of nosepokes into correct (lit) holes. In total, 18 

training sessions were required for rats to reach >90% nosepoke accuracy. 

Testing 

Task Outline 

In our task, four freely moving adult rats drive a virtual stock market by 

nosepoking in holes to select and subsequently buy, sell, or hold assets. At the 

beginning and end of a testing session, each cohort of four rats was carried 

together in one transport cage between the colony room and the testing room. 

Rats were then placed in one of four separate standard operant boxes 

(described above) and the outer sound-attenuating chamber doors were closed 

to indicate to the rat that the session had begun. On each trial, a rat was 

required to make two distinct nosepokes into a lit nosepoke hole within the 5-

hole array. Free-choice (three stock choices), paired-choice (two stock 

choices), and forced-choice (one stock choice) trials were randomly interleaved 

throughout the session. Each rat completed two blocks of trials: 1) a reference-

point establishment block lasting 15 trials and 2) a trading block with a 45-

minute duration from block onset.  
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Block 1 

At the start of a free-choice trial, the recessed nosepoke-hole LED lights of the 

three middle holes were illuminated to indicate that all three stocks were 

available for selection. The rat then made a ‘stock selection’ by poking its nose 

into one of the lit holes. The lights were then immediately extinguished for 2 

seconds. After this pause, the lights on both the left and right of the chosen 

hole, as well as the chosen hole itself, were re-illuminated. Rats then made an 

‘option selection’ by completing a second nosepoke into one of the three lit 

holes. Counter-balanced across subjects, rats poked into the left lit hole to 

select a ‘buy’ option and into the right lit hole to select a ‘sell’ option. The centre 

lit hole was always a ‘hold’ option. After an option was selected a reward tone 

and light indicated the availability of reward at the reward spigot. In order to 

establish a reference point, all trials in block 1 resulted in 0.15 ml of reward. 

Block 1 consisted of 15 trials, and all rats were required to complete all 15 trials 

before the cohort could progress to block 2. 

Block 2 

The trial structure of block 2 was similar to block 1, with the exception that rats 

received information about the market volume of each stock and could earn 

more or less reward than the 0.15 ml reference point depending on their stock 

and option selections. At the onset of a new trial, available stocks were 

indicated via blinking LED lights recessed in the nosepoke holes. The blink rate 

was proportional to the number of shares currently being held in that stock 

across all four rats (i.e. market volume). Rats were then able to select a stock 

by poking in one of the blinking holes. Once a ‘stock selection’ nosepoke was 
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made, the hole-lights were immediately extinguished and a 2-second pause 

ensued. After 2 seconds, the selected hole and the two adjacent holes (to the 

left and right) were once more illuminated, but no longer blinking. Rats 

nosepoked a second time into one of the illuminated holes to indicate either a 

buy, hold, or sell option. One of two tones immediately indicated whether this 

choice resulted in a gain or loss, and rats were free to lick at the reward spigot 

for reward. Movement time (MT) was measured from the onset of the tone to 

the onset of licking at the reward spigot. The volume of reward a rat received 

on a given trial was proportional to the amount gained or lost, added to the 

reference point.  

A    Block 1 

 

B    Block 2
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Figure 33: Task Schematic: 

(A) In Block 1, a (free-choice) trial began 
with three centre nosepoke holes indicating 
the availability of stocks 1, 2, and 3. The rat 
then nosepoked in a lit hole to select a 
stock (here, stock 1), and the lights were 
immediately extinguished. After 2 sec, the 
selected hole and the adjacent holes on 
either side were illuminated, indicating that 
the rat could select an option to buy (B), 
hold (H), or sell (S). Once the rat poked to 
select an option, a tone immediately 
indicated that reward was available at the 
reward spigot. In block 1, rats always 
received 0.15 ml of reward in order to 
establish a reference point (RP).  

(B) In Block 2, hole lights blinked to indicate 
the market volume of a stock, whereby 
stocks with more total shares had faster 
blinking rates. As before, the rat nosepoked 
first to select a stock (1, 2, or 3) and again 
to subsequently select an option (buy, hold, 
or sell). After the second nosepoke, a gain 
or a loss tone immediately indicated the 
trial outcome. Movement time (MT) was 
measured from tone onset to lick onset at 
the reward spigot. The volume of reward 
delivered was greater than the RP for gains 
and less than the RP for losses. 
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Pricing 

When encountering a stock for the first time in a session, prices were arbitrarily 

set at 80, 140, and 200 for stock 1, 2 and 3, respectively. All rats were initially 

endowed with 100 shares of each stock. Prices in all boxes would update 

dynamically from that initial price point as rats bought or sold shares of a stock. 

A stock’s price depended on its total number of shares across all four rats 

(market volume), with greater market volumes leading to higher prices and 

lower market volumes resulting in lower prices. The price of a share at any 

given moment was equal to: 

Share Price = (Initial Price × Total # of Market Shares)/400 

The blink rate was a 50/50 on/off cycle (i.e. the time between each flash was 

equal to the flash length). The on/off time period is the reciprocal of blink rate 

(Hz): 

On/Off Period = [2/(Total # of Market Shares/100)] × 60 seconds 

Selling 

Take, for example, the investor that buys a stock at $100 and subsequently 

sells it at $110 for a $10 profit. Likewise, rats could choose the ‘sell’ option, 

which decremented the number of shares held by that rat by 10. In the task, if 

the price of a stock had increased from the last time that a rat selected that 

stock (or from the arbitrarily set price on an initial encounter), then the rat 

gained reward on that trial. The volume of reward received was calculated as 

the reference point (0.15 ml) plus the liquid equivalent of the profit. On the other 

hand, if the stock had decreased in price since it was last selected, the rat lost 

reward on that trial. The volume of reward received was calculated as the 
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reference point (0.15 ml) minus the liquid equivalent of the loss. In the event 

that a rat lost 0.15 ml of reward or more, it received nothing upon licking at the 

reward spigot. Rats were not allowed to ‘short-sell,’ i.e. in the event that a rat 

no longer held any shares of a selected stock, the ‘sell’ option was not 

illuminated and only the ‘buy’ or ‘hold’ option could be chosen. 

 A            Sell Option     C                 Buy Option 

      

B      D      

      

Figure 34: Trading  (A) The rat chooses the sell option and the price of a stock on the current trial (Pn) has 
increased since the previous trial (Pn-1), resulting in a gain. The rat receives the reference point (RP) plus 
the liquid equivalent of the profit gained from the sale. (B) The rat chooses the sell option but the price has 
decreased since the previous trial, resulting in a loss. The rat receives the RP minus the liquid equivalent 
of the loss incurred from the sale. (C) The rat chooses the buy option but the price has gone up since the 
previous encounter with that stock, which represents a loss. The rat receives the RP minus the price 
differential between the two time points. (D) The rat chooses the buy option and the price has gone down 
since it was previously encountered, which represents a gain. The rat receives the RP plus the price 
differential between the two time points. 

Buying 

Take, for example, the investor that has a chance to buy a stock at $100 but 

waits until the next day, only to find that it had gone up in price to $110. Or 

perhaps that the stock price had gone down to $90 and the waiting had paid 

off. Likewise, rats could choose the ‘buy’ option, which incremented the number 

of shares held by that rat by 10. In the current task, if the price of a stock had 
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increased in price since the last encounter (or from the arbitrarily set price on 

an initial encounter) with that stock, then the rat lost reward on that trial. 

However, if the price of a stock had decreased since the previous selection, 

then the rat gained reward on that trial. Similar to the selling option, the amount 

that the rat received was equal to the reference point plus or minus the liquid 

equivalent of the gain or loss, respectively.  

Holding 

Rats also have the option of ‘holding’ on any given trial, which results in a 

‘dividend’ payment and no change in the number of shares being held in the 

selected stock. The dividend amount was based on the individual subject’s 

current share holdings of that stock, and had a 2/3 probability of being low (e.g. 

2% of holdings) and a 1/3 probability of being high (e.g. 6% of holdings). The 

dividend gains were the ‘safe’ option, but on average resulted in a smaller 

reward than could have been earned with either the buy or sell options. In the 

event that a rat no longer held any shares of a stock, the hold option delivered 

only the reference point 0.15 ml of reward. 

Data Analysis 

We compare individual choices and behaviour recorded over seven testing 

sessions. Since Block 1 was intended to set a reference point only, all analyses 

are performed on trials from Block 2 unless otherwise specified. We use 

repeated-measure ANOVAs in order to evaluate basic behaviour in the task, as 

well as the effects of our reference-point manipulation and any potential effects 

of loss aversion. In order facilitate comparison of rat behaviour with human 

behaviour, we also adapt the methodology used in the behavioural finance 



 153 

literature (Barber & Odean, 2011; Odean, 1998) to evaluate any potential for 

the disposition effect. 

Summary Measures 

For summary measures, data were averaged per subject across the last seven 

testing sessions. Behavioural measures were: percentage choice of each 

stock, percentage choice of each option, movement time to collect reward 

(MT), choice errors (pokes in unlit holes), lick rate (Hz), inter-poke interval (IPI), 

and post-pump licking (PPL). PPL can be thought of as rats ‘savouring’ reward, 

and has been identified as a putative measure of ‘liking’ vs. ‘wanting.’ PPL is 

defined as the amount of time spent licking at the reward spigot after 

mechanical cessation of reward delivery. Greenhouse-Geisser corrections to p-

values have been applied where appropriate, although uncorrected p-values 

are reported for ease of comprehension. Trial durations > 40 seconds were 

omitted from analysis. 

Proportion of Realized Gains & Losses 

Adapted from Odean (1998), we calculated the proportion of gains realized 

(PGR) and the proportion of losses realized (PLR) in order to establish whether 

rats exhibited the disposition effect (PGR > PLR) in our stock market task. 

Unlike the previous author, we perform these calculations on a subject-wise 

level. Odean (1998) computed PGR and PLR as: 

𝑃𝐺𝑅 =
#  𝑜𝑓  𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑  𝑔𝑎𝑖𝑛𝑠

#  𝑜𝑓  𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑  𝑔𝑎𝑖𝑛𝑠 + #  𝑜𝑓  𝑝𝑎𝑝𝑒𝑟  𝑔𝑎𝑖𝑛𝑠 
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𝑃𝐿𝑅 =   
#  𝑜𝑓  𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑  𝑙𝑜𝑠𝑠𝑒𝑠

#  𝑜𝑓  𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑  𝑙𝑜𝑠𝑠𝑒𝑠 + #  𝑜𝑓  𝑝𝑎𝑝𝑒𝑟  𝑙𝑜𝑠𝑠𝑒𝑠 

Above, the denominator represents the number of opportunities to realize a 

gain (loss). In the rat task, this is slightly less straightforward. Given the forced-

choice and paired-choice trials within a session, rats did not have the 

opportunity to realize a gain (or loss) on every stock on every trial. Therefore, 

the PGR (PLR) denominator was calculated on a stock-by-stock basis as any 

trial on which the rat had the opportunity to select and sell a stock that had 

gone up (down) in price since the previous purchase.  

Cox Proportional-Hazard Modelling 

The cox proportional-hazard model is a semi-parametric analysis that makes 

no assumption about the shape (e.g. linear) of the baseline hazard rate. This 

model has been employed in a number of behavioural finance studies (Barber 

& Odean, 2011; Feng & Seasholes, 2005; Shumway & Wu, 2005; Strahilevitz, 

Odean, & Barber, 2011) to characterize the likelihood of selling a stock in a 

time-series conditional on some factor (e.g. return magnitude and valence). 

The estimated model takes the following form: 

ℎ 𝑡, 𝑥 𝑡 = ℎ! 𝑡 exp  (𝛽!𝑥! +⋯+ 𝛽!𝑥!) 

where the hazard rate, h(t,x(t)), on trial t is conditional on p predictors. The β 

coefficients are estimated from the data. The main assumption of the model is 

that the hazards are proportionally dispersed at all time-points, but this model 

can be extended to include time-varying covariates (e.g. blink-rate). This model 

can also be stratified to incorporate repeated-measures designs, which has 
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been done here. From this model, one can predict the hazard ratio of a subject 

choosing to sell a given stock at time t for each covariate k as: 

exp 𝛽! =   
ℎ! 𝑡 exp  (𝛽!𝑥! +⋯+   𝛽! 𝑥! + 1 +⋯+   𝛽!𝑥!)

ℎ! 𝑡 exp  (𝛽!𝑥! +⋯+ 𝛽!𝑥! +⋯+ 𝛽!𝑥!)
 

Here, the hazard ratio, exp(βk), is the ratio of two stocks with the same k 

covariates and where the numerator stock has an xk that is one unit greater 

than the denominator (Barber & Odean, 2011). To maximize the potential of the 

model, a continuous variable (such as return on sale) can be transformed into 

dummy variables that represent 4% wide bins, taking on the value of 1 on trials 

that fall into that range and 0 otherwise. This allows the model to isolate the 

marginal hazard contributed by each bin when all other bins are zero. The 

reader is referred to Cox and Oakes (1984) for further details on the Cox 

Proportional Hazard analysis. For any sale trial x, return on sale was calculated 

as: 

𝑅𝑒𝑡𝑢𝑟𝑛(𝑥) =   
𝑃𝑟𝑖𝑐𝑒!"#$ − 𝑃𝑟𝑖𝑐𝑒!"#$!!"#

𝑃𝑟𝑖𝑐𝑒!"#$!!"#
 

where the difference in current sale price and previous purchase price was 

averaged relative to the previous purchase price. Trials were included in the 

analysis only if the selected stock had been purchased at least once previously. 

The model was stratified over subject, stock, and session to account for the 

effects of the repeated-measures design. Blink rate, counterfactual reward, and 

return on sale were included as time-varying factors. 
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Results 

Descriptive Statistics 

Cumulatively, rats (N=24) completed 19,323 trials over the course of 7 testing 

sessions. On average, rats completed 115.02 (SD = 27.96) trials and earned 

18.78 ml (SD = 4.75 ml) of reward per session. The mean trial duration was 

19.62 (SD = 1.91) seconds. This equated to an average rate of reward of 3.36 

(SD = 0.39) µl per trial second over the 45-minute duration of Block 2. During 

trading (i.e. when a buy or sell option was selected), rats received a profit on 

nearly 2/3rd of trials (63.53%) and a loss on 36.47% of trials. Although rats 

profited on a greater proportion of trials, rats lost an average of 0.052 (SD = 

0.005) ml per trial while profiting only 0.026 (SD = 0.006) ml of reward on 

average (MDifference = 0.027 ml, SEM = 0.001 ml). The results of a paired-sample 

t-test indicated that rats lost significantly more reward than they gained on 

average, t(23) = 21.04, p < .001. Rats that lost more reward on average did not 

also gain more reward on average, Pearson’s r = .37, p = .08.  
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Example price fluctuations of three stocks in a rat stock market 

     
Figure 35 depicts share price fluctuations during a single testing session from one cohort of four rats. Each 
coloured line represents the evolution of price (in arbitrary units) of the three stocks over the course of the 
45-minute session. From the graph, it is apparent that stock prices move both up and down over time. 
Since price is a function of market volume, the steep decreasing price of the blue line represents 
continuous sales of shares in that stock (i.e. lower market volume) up until about minute 24. After that 
point, sales of the blue stock level out and rats begin buying shares of it again, causing share price to 
begin a slow recovery. 

Rats nosepoked in error an average of 1.88 (SD = 0.29) times per trial, with the 

error occurring either during stock/option selection or during the 2 second 

pause between stock and option selection. To ensure that these errors did not 

reflect a lack of understanding about the task demands (i.e. poking twice in a lit 

nosepoke hole, but not in an unlit nosepoke hole) that was subject to learning 

over further training sessions, a repeated-measures ANOVA was performed on 

error rate with Session (7 levels) as the within-subject variable. A significant 

effect would potentially suggest that rats were learning over the course of the 

sessions. However, the results indicate that there were no significant 

differences in error rates across the seven testing sessions (F(6,138) = 1.45, p = 

.20), which implies that these errors resulted from any number of 
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affective/cognitive factors (e.g. frustrative non-reward, impulsivity, exploration, 

habit, etc.) rather than a misunderstanding of the task.  

At the beginning of any given testing session, each of the three centre 

nosepoke holes was randomly assigned stock 1, 2 or 3. This remained 

constant throughout the session. It is therefore possible that over many 

sessions, rats could develop a preference for a stock based on its original 

starting price. However, we did not find any indication that rats developed 

preferences for a particular stock across testing sessions. On free-choice trials, 

the average proportion of trials that subjects chose Stock 1, 2, and 3 were 

distributed tightly around chance at .33, .35, and .32, respectively. There was 

no significant effect of Stock on choice (F(2,46) = 0.51, p = NS).  

Manipulation check: Trading payoffs are greater than dividend 

payoffs 

When a rat chose to hold a selected stock instead of a trade option, it received 

a dividend payout. Dividends were calculated as a percentage of the rats’ 

current holdings of the selected stock. Theoretically, the percentage paid was 

sufficiently small that the expected value of a hold option was on average 

distinctly lower than that of either a buy or a sell option. As a manipulation 

check to ensure that this played out in reality, we analysed the average reward 

earned per trial second under each option using a repeated-measures ANOVA 

with Option (3 levels: Buy, Hold and Sell) as the within-subject variable.  
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Rats earn more reward when trading as compared to holding 

 

Figure 36: On average, rats earned almost twice as much reward per trial second when selecting a trade 
option (buy or sell) as compared to a hold option. 

As theorized, we found that the proportion of trials on which each option was 

selected had a highly significant effect on rate of reward, F(2,46) = 48.30, ηp
2 = 

.68, p < .001. Either trading option was nearly 50% more profitable than the 

hold option (p < .001 for both contrasts), with the hold option averaging 1.73 

µl/trial sec and the buy and sell options averaging 2.69 µl/trial sec and 2.84 

µl/trial sec, respectively. Neither buying nor selling more resulted in significantly 

greater payoff rates than the other (MDifference = 0.14 µl/trial sec, p = .33). Using 

the variability of outcome volume as a measure of an option’s risk, we found 

that the sell option was the most risky (σ2 = .0028) although not significantly 

more so than the buy option (σ2 = .0026, p=NS). As intended, the hold option 

was a much safer option (σ2 = .0006), leading to the average reward more than 

four times more reliably than either of the trade options. 

The transaction cost of trading within the task  

Within the operant boxes, the spatial location of the buy and sell options on 

either side of the hold option may have added a temporal disadvantage to 
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trading. Although such a disadvantage could potentially increase the face 

validity of the task when translating to human behaviour (e.g. due to transaction 

costs), we endeavoured to identify and quantify such a cost, should it exist. 

Since the hold option involved poking for a second time in the same nosepoke 

hole, the inter-poke interval (IPI) was shorter on hold trials (M = 2.42 sec, SEM 

= 0.05 sec) compared to buy (M = 2.76 sec, SEM = 0.06 sec) and sell (M = 

2.66 sec, SEM = 0.07 sec) trials. A repeated measures ANOVA with Option as 

a within-subjects factor revealed that there was a significant main effect of 

Option on IPI, F(2,46) = 7.81, ηp
2 = .25, Greenhouse-Geisser adjusted p < .01. 

Planned contrasts determined that this effect was primarily due to the 

significant differences between hold trials and each buy (p < .001) and sell (p < 

.01) trials. We found no significant difference between buy and sell IPI’s. Thus, 

while the added cost of trading compared to holding may be small (MDifference = 

285.5 msec), it is nonetheless significant.  

Given that the 2 sec pause also allows ample time to move between spatial 

locations, it may also be possible that this difference represents deliberation 

time. Although the task design does not allow us to conclude with certainty one 

way or the other, evidence of this lies in the discrepancy between IPI after a 

gain (M = 2.49 sec, SEM = 0.08) vs. after a loss (M = 2.79, SEM = 0.11). A 2-

way repeated-measures ANOVA of IPI with Previous Outcome and Current 

Option indicated that both Previous Outcome (F(1,23) = 4.54, ηp
2 = .17, p < .05) 

and Current Option (F(2,46) = 6.06, ηp
2 = .21, Greenhouse-Geisser adjusted p = 

.01) had significant main effects on IPI. The interaction term was not significant 

(F(2,46) = 1.50, p = .23). Therefore, rats take longer to deliberate between 
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options on trials preceded by a loss, and this effect is independent of option 

choice.  

Rats exhibit reference-dependent behaviour 

Within the task, a rat could incur losses and gains based on its stock and option 

selection. After the rat had made its selections, the profit (loss) was translated 

into a liquid equivalent and added to (subtracted from) a 0.15 ml reference 

point. To determine whether or not rats’ behaviour demonstrated reference-

dependence, we evaluated the movement time (MT) to collect reward after the 

tone onset. Given that even loss trials resulted in reward, there should be no 

observable difference in MT after a loss tone vs. gain tone if rats did not form a 

reference point at 0.15 ml. The exception to this would be trials where a rat 

incurred a very large loss (greater than the liquid equivalent of 0.15 ml), 

resulting in a payoff of zero reward. However, such trials represent on average 

only 0.7% of all trials encountered by the animals and are therefore unlikely to 

strongly bias such behaviour.  

We performed a repeated-measures ANOVA on rats’ mean MT with Current 

Outcome (3 levels: loss, gain and dividend) as a within-subjects factor. The 

results indicate that the outcome signalled by the gain/loss tone has a large 

significant effect on movement time to reward (F(2,46) = 43.88, ηp
2 = .66, 

Greenhouse-Geisser corrected p < .001). Rats were 1.73 sec (SEM = 0.25 sec) 

faster to collect a dividend reward compared to a trading loss reward (p < .001), 

and 1.51 sec (SEM = 0.22 sec) faster to collect a trading gain reward compared 

to a trading loss reward (p < .001). There was no significant difference between 

MT after a trading gain and a dividend gain (p = .13).  
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Rats are faster to collect a gain reward than a loss reward 

A            B 

     

Figure 37: (A) Upon hearing a gain tone (as the outcome of either a trading profit or a dividend payout), 
rats moved ~2 sec faster from the tone onset to collect reward from the spigot on the opposing wall. This is 
contrasted with rats’ average movement time to reward after a loss tone. (B) The trend is alternatively 
displayed in 0.025 ml reward bins, with grey circles indicating movement time to collect reward after a gain 
and white circles indicating movement time after a loss. ***p<.001, NS = Not Significant. 

In support of these analyses, we also found other behavioural measures 

suggestive of reference-dependency. For instance, we observed that rats spent 

on average 250 msec longer licking at the reward spigot (PPL) on a gain trial 

compared to a loss trial (t(23) = 4.68, p < .001), suggesting that rats ‘savoured’ 

the gain rewards more (Wilson et al., 2006). Animals also increased the 

number of erroneous pokes into unlit holes on trials with a loss outcome (M = 

2.60 pokes/trial, SEM = 0.14) with respect to a gain (M = 2.06 pokes/trial, SEM 

= 0.13), which was supported by a paired-sample t-test t(23) = 5.63, p < .001. 

This suggests that the erroneous pokes observed in our task are in part an 

affective response to losses (e.g. frustrative nonreward). Together, these 

results provide strong evidence that the reference-point manipulation was 

successful. 
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Rats are more risk-seeking after a loss than after a gain (loss-

aversion) 

We next analysed rats’ choices on a trial-by-trial basis to determine whether or 

not individual animals’ behaviour was significantly affected by a previous loss 

compared to a previous gain. Under Prospect Theory (Kahneman & Tversky, 

1979), loss aversion manifests in repeated gambles as an individual’s 

increased propensity to take risks following a loss. Thus, we analysed whether 

there were any differences in choices of the risky trade options vs. the safe 

hold option on trials with a previous loss vs. previous gain. We performed a 2-

way repeated-measures ANOVA on the mean proportion of trials that each 

option was chosen. Within-subject variables were the Current Option (3 levels: 

Buy, Hold and Sell) and Previous Outcome (2 levels: Gain and Loss). The 

analysis indicates that rats chose the hold option on a greater proportion of 

trials overall (Effect of Current Option: F(2,46) = 37.81, ηp
2 = .62, p < .001), but 

that this effect was attenuated by a previous loss trial compared with a previous 

gain trial (Interaction Effect of CurrentOption*PreviousOutcome: F(2,46) = 10.63, 

ηp
2 = .32, p < .001). We subsequently performed paired-sample t-tests to 

assess individual contrasts. On trials with a previous loss, rats reduced their 

choice of the safer hold option by nearly 10% compared to trials with a previous 

gain (Loss: 43.1% vs. Gain: 51.7%, t(23) = 3.99, p = .001). Instead, rats were 

increasingly likely to choose the riskier buy (Loss: 29.6% vs. Gain: 24.6%, t(23) 

= 2.64, p < .05) or sell options (Loss: 27.4% vs. Gain: 23.6%, t(23) = 2.38, p < 

.05).  
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 A  

 

B 

 

We were therefore able to use the difference between the proportions of trials 

on which the hold option was chosen after a gain vs. after a loss as a proxy 

measure of loss aversion. This measure also correlated with a general bias 

against selection of the buy and sell options (Pearson’s r = -.54, p < .01). We 

found that this individual measure of loss aversion was also negatively 

Figure 38: (A) On trials immediately 
preceded by a gain, rats select the 
‘safe’ hold option on 51% of trials. The 
remaining proportions of choices were 
distributed evenly between the buy 
(25%) and sell (24%) trading options. 
When the current trial was preceded by 
a loss, rats chose the hold option nearly 
10% less overall. Instead, rats 
increased selection of the two trade 
options. Since the trade options are 
associated with more variability in 
reward volume, this redistribution of 
choices represents a general shift 
toward more risk-seeking behaviour. 
Post-hoc paired-sample t-tests 
revealed significant differences 
between previous gains and loss at 
each the buy (t(23)=2.64, p<.05), hold 
(t(23)=3.99, p=.001) and sell 
(t(23)=2.38, p<.05) options. *p<.05, 
***p<.001 

(B) As an individual measure of loss 
aversion, we calculated the difference 
in proportion of choices between gains 
and losses in the hold option shown in 
Figure 5a above. Loss aversion was 
negatively correlated with average rate 
of reward earned per unit of time 
across sessions (Pearson’s r = -.54, 
p<.01). In a linear regression analysis, 
individual loss aversion significantly 
accounted for nearly 30% of average 
reward (µl) earned per trial second.  

* 
* 

*** 

Loss-averse behaviour in rats 
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correlated with the average rate of reward that a given rat earned per session 

(Pearson’s r = -.54, p < .01). A simple linear regression analysis revealed that 

loss aversion was a significant predictor of lower volumes of reward per trial 

second, R2
adj = .26, β = -.54, and where the equation was significant: F(1,22) = 

8.95, p < .01. This indicates that loss aversion was disadvantageous in the 

task. 

Rats perform suboptimally when trading 

In the task, rats were given information about the market volume of a stock (i.e. 

the cumulative number of shares being held by all four rats) via the relative 

frequency of blinking LED lights. Lights blinked faster as rats bought more 

shares of a stock, and slower as rats sold shares of a stock. It was therefore 

necessary to investigate whether rats were capable of using memory of blink 

rates from previous trials to guide behaviour on a current trial (i.e. contrasting 

the previous blink rate with the current blink rate). Within the task, an optimal 

strategy would be to sell when a stock price has gone up since the previous 

trial, to buy when the stock has gone down since the previous trial, and to hold 

when the stock has made no change in price. Note that due to the interleaved 

forced-choice trials, rats did not always see the price of a given stock on every 

trial. Thus, Price Change was calculated as the difference between the price of 

the selected stock on the current trial and the price of the selected stock on last 

trial that it had been selected, and not necessarily the trial directly preceding it.  

We carried out a 2-way repeated-measures ANOVA with direction of Price 

Change (3 levels: No Change, Up, Down) and average proportion of trials on 

which an Option (3 levels: Buy, Hold, Sell) was chosen as within-subject 
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factors. The average count of each the buy, hold and sell options per rat were 

included as covariates to control for potential effects of individual rates of 

trading vs. holding.  

As previously discussed (see Figure 38a), rats chose the hold option on 

average on about half of all trials. This serves as an immediate indicator that 

rats are neither performing optimally nor randomly (33%) in the task. The 

results of this analysis indicated that the strong preference for the hold option 

did not significantly change between conditions, although it was slightly higher 

in the no change condition (M = 54.78%, SE = 0.76%) than conditions where 

the price increased (M = 51.68%, SE = 0.73%) or decreased (M = 50.73%, SE 

= 0.96%). Overall, there was no significant interaction between Price Change 

and the Option Choice (F(4,80) = 0.58, p = .68).  

We also classified option selection decisions based on whether the decision 

was optimal or suboptimal given the change of price from the previous trial 

(illustrated in the right panel of Figure 39b). A repeated measures ANOVA was 

carried out on the proportion of optimal decisions resulting from choice of each 

the buy, hold and sell options, with Option (3 levels: Buy, Hold, Sell) as a 

within-subject factor. Post-hoc one-sample t-tests were carried out to establish 

significance of sample means from chance (33%). Although we did observe an 

increase in the proportion of optimal hold decisions (M = 36.95%, SE = 1.22%) 

compared to buy and sell decisions, the main effect fell short of significance 

(Option: F(2,46) = 2.95, p = .06). On average, rats’ optimal decisions to buy (M = 

31.85%, SEM = 1.47%) and to sell (M = 32.30%, SEM = 1.48%) did not differ 

from chance (33%). However, the increased selection of the hold option on 
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trials with no change led to optimal responding that significantly exceeded 

chance (M 37.00%, SEM = 1.23%, t(23) = 2.95, p < .01), although this should 

be interpreted with caution given the lack of significance in the ANOVA results. 

Overall, these group-level analyses suggest that rats did not learn to perform 

optimally according to the task contingencies.   

A    B 

          

Figure 39: Optimal performance in the task would reflect three strategies: 1) to hold on trials where there 
has been no price change, 2) to choose the buy option when price had gone down, and 3) the sell option 
when price had gone up. (A) At the group level, there were no significant differences in the mean 
proportion of choices of each the buy/hold/sell options relative to the selected stock’s price change from 
the previous trial. Overall, rats chose the hold option on 52.4% of trials. (B) At the group level (right panel, 
N=24 rats), rats performed around chance when choosing the buy and sell options, with a modest increase 
in optimal hold responding that exceeded chance (t(23)=2.95, p<.01). Cluster analysis (left panel) 
classified three subsets of rats based on optimal responding in either the sell (Cluster 1, N=12), hold 
(Cluster 2, N=7) or buy (Cluster 3, N=5) option. Thus, it appears that different individuals learned one of 
the three optimal strategies, often at the expense of another. Dotted lines at 33% represent chance. Error 
bars represent 95% CI’s. 

We then investigated whether there were any subsets of rats that had learned a 

partial strategy. Given that there were three optimal learning rules (buy when 

down, sell when up, and hold when there is no change), it stood to reason that 

individuals learned one or even two of the strategies without learning all three. 

We performed a hierarchical cluster analysis with the squared Euclidean 

distance of the average linkage (between groups) method on the percentage of 

optimal responses when selecting each the buy, hold, and sell options.  
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We identified three clusters (see left hand panel of Figure 39b) based on these 

three indices. Rats in cluster 1 (N=12) exhibited increased optimal selling 

behaviour, but also suboptimal sell behaviour and chance hold performance. 

Rats in cluster 2 (N=7) learned to hold optimally, but sell behaviour suffered 

and choice of the buy option did not differ from random behaviour. Cluster 3 

(N=5) exhibited high optimal performance when choosing the buy option, while 

optimal choice of the sell and hold options was at chance. We performed a 

mixed 2-way ANOVA with Option Choice (3 levels: Buy, Hold, Sell) as a within-

subjects factor and Cluster as a between-subjects factor. A significant 

interaction between Option Choice and Cluster (F(2,42) = 25.92, ηp
2 = .71, p < 

.001) confirmed that the cluster analysis was able to account for over 70% of 

the variance in optimal responding between options. Furthermore, planned 

contrasts revealed a strong interaction between optimal responding in the buy 

and sell options within each cluster (F(2,42) = 48.99, ηp
2 = .82, p < .001), which 

suggests that rats learned either to buy or sell at the expense of the other. 

Together, these analyses suggest that rats were capable of both perceiving 

and learning from changes in blink rate, but that individual rats learned only one 

of three optimal strategies. Rats had particular difficulties learning both the 

optimal buy and sell strategies together, which makes sense given that the 

optimal buy and sell strategies require the same operational response, but the 

opposite instrumental response, to the other.  

We next sought to investigate the possibility that optimal responding could be 

driven by responses to market information from the current trial alone. In other 

words, we sought to clarify whether rats’ decisions to buy/hold/sell were based 

on the change in volume between trials or rather on the current volume alone. 
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We began by investigating whether rats chose stocks with greater market 

volumes on average, which could reflect a potential confound in stimulus 

saliency and stock selection (i.e. faster blink rates lead to a greater proportion 

of choices). We established the mean difference in chosen vs. unchosen stock 

volumes by subtracting the average unchosen stock volumes from the average 

chosen stock volume on a subject-wise basis. On average, the chosen option 

had a total volume that was 3.00 stocks (SEM = 4.11 stocks) greater than the 

average of the two unchosen options. A one-sample t-test revealed that this 

was not significantly different from zero, t(23) = 0.73, p = .47. Thus, we could 

conclude that rats’ initial stock choice was not a function of its current volume. 

We then carried out a Univariate ANOVA with mean difference in chosen and 

unchosen stock volumes as the dependent variable and cluster as a between 

subjects variable. The results indicated that there was no significant effect of 

cluster on the mean difference of chosen vs. unchosen stocks (F(2,21) = 0.50, p 

= .95). This suggests that there was no significant effect of stimulus saliency 

(i.e. blink rate)/market information (i.e. market volume) on the initial poke (i.e. 

stock choice) in isolation. 

In order to investigate whether rats’ reacted to changes in market information in 

their combined first and second pokes (i.e. the choice to buy, hold, or sell the 

selected stock), we began by performing a mixed ANOVA on the market 

volume of the selected stocks at each Chosen Option (within-subjects, 3 levels: 

buy, hold, sell) with Cluster as a between-subjects factor. The results indicate 

that there was a main effect of option (F(2,42) = 3.32, ηp
2 = .14, p < .05), and 

planned contrasts revealed that this effect was primarily driven by significant 

differences in chosen volume between the buy and sell options (F(2,21) = 7.17, 
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ηp
2 = .26, p < .05). We found that the average market volume of a selected 

stock was significantly lower when a rat chose to sell compared to when it 

chose to buy (MDifference = 8.71 shares, SE = 3.25 shares), and that this did not 

significantly differ between clusters (Option*Cluster: F(4,42) = .85, p = .50). If 

optimal responding was the product of decisions on a single trial, we would 

expect rats to chose the sell option more often at higher market volumes and 

the buy option more often and lower market volumes. Given that we observe 

the opposite effect here, we can conclude that optimal responding in the task 

was not the result of rats learning a general rule to buy at low blink rates and to 

sell at high blink rates.  

Given that we utilized blinking lights to convey market information, it is not 

possible to decouple changes in information content from changes in 

information saliency in the current task. Acknowledging this point, we modelled 

the likelihood that a rat would buy or sell based on the market volume and 

information saliency (i.e. Blinking Hz) on any given trial. We employed the Cox 

Proportional Hazard model to identify the hazard ratio of buying or selling 

(separately) at varying blink rates. Here, we create dummy variables for each 

stock on every free-choice trial according to its current blink rate.  The dummy 

variables span from <0.75 to ≥4.00 Hz in 0.25 Hz bins. A bin with a hazard ratio 

of 1 corresponds to a null effect on the trading choice. Hazard ratios above 1 

indicate that the likelihood of buying/selling is higher in that blink rate range, 

while hazard ratios below 1 denote a reduced likelihood of trading in that range 

of blink rates. Stratifying over subjects, we also included either buy count (for 

the model) or sell count (for the sell model) as a time-varying covariate in the 

model. 
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Figure 40: (A) The blink rate of any given stock significantly increased the hazard of purchase at rates 
below 1.5 Hz. Increased purchase rates at slower blink Hz translates to rats buying stocks with lower 
market volumes and lower prices more frequently. When blink rates exceed 3.25 Hz, subjects were 
significantly less likely to select the buy option. See Table 14 in Appendix 4 for further particulars 
regarding model coefficients and p-values. (B) The hazard of selling a stock was significantly increased at 
average blink rates between 1.75 Hz and 2.75 Hz and at high blink rates above 3.25 Hz. There was no 
significant effect of market information/salience on selection of the sale option at blink rates below 1.75 
Hz. See Table 15 in Appendix 4 for further details regarding model coefficients and p-values.  
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In Figures 39a-b, it is apparent that market information/saliency has less of an 

effect on trading at average values, but has a high impact on rats’ choices at 

the extremes (either blinking very fast or very slow). Rats are more likely to 

purchase a stock at very low market volume (slow blink rates) and less likely to 

buy a stock that has much greater market volume (fast blink rates). This is 

equivalent to buying an undervalued stock and not buying an overvalued stock. 

The opposite is true for sales, whereby rats are significantly more likely to sell a 

stock when it has either an average market value between 1.75 – 2.75 Hz, or a 

particularly large market value above 3.25 Hz. From these analyses, we 

conclude that rats’ trading behaviour is sensitive to large changes in market 

information, and that this behaviour conforms to both explanations of rational 

trading (e.g. buying stocks that are undervalued) and stimulus saliency. 

However, we cannot conclude that rats respond optimally within the blink rates 

centred around the mean. Given these results and those of our previous 

ANOVA of average chosen market volume, it is likely that rats did not 

dissociate between small differences in blink rate, but did dissociate between 

particularly large differences in blink rate. 

Rats exhibit the disposition effect 

In actual stock markets, empirical research suggests that humans behave 

suboptimally in sell decisions depending on whether the potential return is 

positive or negative (i.e. the disposition effect). In the simulated rat stock 

market presented here, the return on an ‘investment’ can be determined by 

evaluating price changes over the series of trials between a choice of the buy 

option and a subsequent sell option. Over the 7 testing sessions, returns from 

selling a stock ranged from -57.1% to 26.5% (SD = 8.5%), with an average 
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return of 0.3%. Here, we have a first indication that rats may exhibit something 

akin to the disposition effect based on the negative bias in the range of 

experienced outcomes. If rats held losses for too long – or rather, persistently 

avoided the sell option over successive trials – this would increase the potential 

for more negative returns once a loss was finally realized. Alternatively, if rats 

were selling gains too quickly, they would not get the chance to experience an 

equivalent level of positive returns. To further this line of inquiry, we follow the 

methodology of behavioural finance studies based on human subjects (e.g. 

Barber & Odean, 2011; Frydman et al., 2014; Odean, 1998).  

We begin by determining PGR and PLR for each rat across each stock and 

session (see Methods). We found that rats had an average PGR of .12 (SEM = 

.02) and an average PLR of .09 (SEM = .01). We then calculated the average 

difference between PGR and PLR per subject. There was no significant 

correlation (Figure 41a) between PGR and PLR, (Pearson’s r = .33, p = .12). 

The results of a paired-sample t-test reveal that individual rats realize gains 

significantly more often than they realize losses, t(23) = 2.22, p < .05.  

As often observed in human studies, we found that individual subjects exhibited 

a range of disposition effect strengths. Effect sizes ranged from -.09 to .23 (M = 

.04, SEM  = .02), with higher positive values indicating stronger tendencies to 

hold losses too long and sell gains too quickly. This effect (Figure 41b) was not 

significantly correlated with greater average volumes of reward per trial second 

(Pearson’s r = .10, p = .65). There were also no correlations between 

disposition effect strength and subjects’ average proportion of sales per 
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session (Pearson’s r = .13, p = .53) or overall proportion of trades (vs. holds) 

per session (Pearson’s r = .30, p = .15).  

A      B

   

Figure 41: (A) The proportion of gains realized (PGR) and the proportion of losses realized (PLR) were not 
significantly correlated within individual subjects (Pearson’s r = .33, p = .12). (B) The disposition effect, 
calculated as the difference between PGR and PLR, was not significantly correlated with increased or 
decreased rates of reward (µl/trial sec), Pearson’s r = .10, p = .65.  

Our analysis of the disposition effect proceeded by fitting a Cox Proportional 

Hazards model (see Methods). Here, we create dummy variables for each 

stock on every trial according to its current return (in the case of a realized 

sale) or its current potential for return (in the case of an unrealized sale).  The 

dummy variables span from <-22% to ≥18% return in bins spanning 4% each. 

A bin with a hazard ratio of 1 corresponds to a null effect on the trading choice. 

Hazard ratios lying significantly above 1 indicate that the likelihood of 

buying/selling is higher in that range of returns, while hazard ratios below 1 

denote a reduced likelihood of trading in that range of returns. Stratifying over 

subject, stock, and session, we also included the subjects’ sales count and 

counterfactual reward as time-varying covariates in the model. Counterfactual 

rewards represent the volume of reward a rat could have earned had it chosen 
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a different option. Interestingly, the addition of counterfactual reward 

significantly increased the model’s R2 from .57 to .65 (χ2(1) = 635.23, p < .001). 

This suggests that rats’ choices were influenced by the potential reward 

outcome of non-selected actions.  

 

Figure 42: The hazard ratio that a rat selects the sale option on any given trial as a function of return. The 
hazard rate for each return bin is calculated relative to zero return. Peaking around 14% returns, rats are 
up to 500% more likely to sell a stock when returns are positive. The opposite is true in the case of 
negative returns, whereby subjects demonstrate an increasing disposition against realizing losses as 
returns become more negative. To facilitate comparison, the inset at the top-left depicts typical human 
behaviour (e.g. Barber & Odean, 2011). See table 13 in Appendix 4 for further particulars regarding model 
coefficients and p-values. 

 
Figure 42 illustrates the ‘hazard’ of an animal selling a stock on a given trial 

based on the potential returns. Similar to human behaviour, rats are more likely 

to sell a stock at a gain than at a loss. An interesting deviation from human 

behaviour however, is the observation that rats are far less willing to sell at a 

loss. While this rather robust effect may represent a learned avoidance of 

immediate losses in the task, it is also probable that rats lack the information 
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and overview to ascertain that selecting the sale option at a loss will reduce the 

potential for larger future losses. 

In order to determine whether loss aversion might be driving the disposition 

effect, we analysed the partial correlations between individual measures of loss 

aversion and the disposition effect while controlling for trading frequency. We 

found no significant correlation (Pearson’s r =.15, p = .51).  This suggests that 

loss aversion does not lead to the disposition effect in our task. We speculate 

as to the potential cause of disposition effect-related behaviour further in the 

discussion. 

Finally, we investigated whether the three different optimal strategies learned 

by each subset of rats also represented valid clusters with regard to the 

strength of their individual behavioural biases (i.e. the disposition effect, loss 

aversion, and anchoring). We conducted separate Univariate ANOVA’s with 

individual measures of each of the three behavioural biases as dependent 

variables and Cluster membership as a between-subjects variable. To attain a 

single individual measure of the anchoring effect, we computed the difference 

between average latency to collect reward after a trading loss vs. gain (MTLoss – 

MTGain) per rat. The results of our analyses are illustrated in Figures 43a-c.  
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Figure 43: The composition of individual measures of three behavioural biases was examined across 
clusters, where: Cluster 1 (N=12) responded optimally when selling, Cluster 2 (N=7) responded optimally 
while holding and Cluster 3 (N=5) responded optimally while buying. (A) There was a significant main 
effect of cluster membership on individual disposition effect measures, F(2,21)=17.13, ηp

2=.62, p<.001. Rats 
that sold optimally (Cluster 1) exhibited a significantly greater disposition effect than those that learned to 
hold (p<.001) or sell (p<.01) optimally. There was no significant difference in the disposition effect between 
rats in Clusters 2 and 3 (p=NS). (B) There was no significant main effect of cluster membership on 
individual loss aversion (F(2,23)=1.69, p=NS) or (C) on anchoring (F(2,21)=1.91, p=NS), but these effects may 
have been obscured by the relatively low number of animals in Cluster 3 (N=5). Error bars represent 95% 
CI’s. 

We found that individual measures of the disposition effect varied significantly 

between clusters, F(2,21)=17.13, ηp
2=.62, p<.001, (Figure 43a). Interestingly, 

planned contrasts revealed that rats with the highest proportion of optimal 

responding during selling also demonstrated the highest strengths of the 

disposition effect (M = 0.33, SE = 0.05) compared to clusters 2 (p < .001) and 3 

(p < .01). Therefore, we cannot argue that rats exhibit the disposition effect due 

to a lack of understanding about how to sell optimally in the task. In fact, those 

rats that learned to hold optimally (Cluster 2) and buy optimally (Cluster 3) 

exhibited negative disposition effects on average (M = -0.08, SE = .06 and M = 

-0.06, SE = .08, respectively). This indicates that rats in clusters 2 and 3 

realized losses slightly more quickly than gains on average, although not 

significantly so.  

Loss aversion was expressed most strongly in rats from Cluster 2 (M = 0.15, 

SE = .04). Rats in clusters 1 and 3 exhibited relatively lower levels of loss 
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aversion (Cluster 1: M = .06, SE = .03; Cluster 2: M = .07, SE = .05). While this 

trend was interesting, the results of the Univariate ANOVA indicated that 

individual measures of loss aversion did not significantly vary between clusters, 

F(2,23)=1.69, p = .21. Similarly, we found that the anchoring effect was strongest 

in Cluster 2 (M = 1.98, SEM = 0.39) compared to clusters 1 and 2 (M =1.53, 

SEM = 0.30; M = 0.80, SEM = 0.46, respectively). However, these differences 

were not significant, (F(2,21)=1.91, p=NS). It should be noted that the relatively 

small number of rats that learned to choose the buy option optimally (Cluster 3, 

N = 5) might have obscured potential significant effects. 
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Discussion 

In this paper we develop a reinforcement-learning task that creates a simulated 

stock market between cohorts of four rats ‘trading’ in networked operant boxes. 

Our results suggest that rodents successfully establish a reference point in 

Block 1, which has never before been demonstrated in rats. In Block 2, we 

found that certain subsets of rats learned an optimal buy, hold, or sell strategy 

(but not all three together). Our analyses indicate that rats exhibited two further 

suboptimal patterns of behaviour that are well-established in humans (and to 

some extent in non-human primates as well, see Santos and Platt (2014) for a 

review), but have never before been explicitly demonstrated in rodents: 1)  

loss-aversion, and 2) the disposition effect. Thus, rats not only demonstrated 

reference-dependency (otherwise known as anchoring) to experimenter-

determined expectations in the current task, but the animals also became more 

risk seeking on trials immediately preceded by a loss, as predicted by loss 

aversion in Prospect Theory (Kahneman & Tversky, 1979). Furthermore, we 

also found that rats had a tendency to hold on to their losses for too long while 

selling their winners too soon – behaviour that is hallmark of the disposition 

effect in humans. This effect was primarily exhibited by rats that had learned 

the optimal sell strategy, which suggests that it was unlikely the result of 

random selling behaviour in the task, but rather a natural consequence of 

selling behaviour that was focused on short-term profits rather than long-term 

returns. Together, these results suggest that behavioural biases such as 

anchoring, loss aversion and the disposition effect are more deeply rooted in 

humanity’s evolutionary past than previously considered.   
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Reference Dependence (Anchoring) 

At the start of every testing session, rats completed a block of 15 trials that 

always resulted in a set volume of 0.15 ml sweet liquid reward. Block 1 was 

intended to establish a reference point for the subsequent trading block. To 

facilitate this, rewards less than 0.15 ml were paired with a loss tone, while 

rewards at or above 0.15 ml were paired with a gain tone during Block 2. 

Although the average loss trial still resulted in an average of 0.10 ml reward, 

rats took about 2 sec longer (~10% of the average trial time) to collect reward 

after hearing a loss tone as opposed to a gain tone. Before even experiencing 

the amount of reward, rats’ lugubrious approach after hearing the loss tone 

implies that the stimulus reshaped expectations about the desirability of the 

reward. Thus, rats’ behaviour is consistent with the idea that the loss tone 

conceptually reframed the 0.10 ml reward as a 0.05 ml loss. 

Aside from moving more slowly to collect reward, rats react to trading losses in 

other quantifiable ways as well. This is evinced by the observation that rats 

significantly increase the number of erroneous pokes into unlit holes on losing 

trials. Such responses may represent a frustrative reaction to the aversive 

stimulus (Amsel, 1958; Rescorla, 1992), despite the fact that animals are still 

receiving positive reward on (nearly all) loss trials. While it may be argued that 

animals find the tone itself aversive, this would not explain why rats move more 

slowly to collect reward. Furthermore, rats spend less time licking at the reward 

spigot (PPL) after a loss reward delivery compared to a gain reward delivery. 

PPL is thought to reflect the notion of ‘savouring’ in rats (Wilson et al., 2006), 

which would imply that rats savour losses less so than they do gains. All of 

these measures suggest that rats not only have the cognitive capacity to exhibit 
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reference-dependent behaviour, but that reference-dependent behaviour has 

been selected for throughout mammalian evolution.  

Loss Aversion 

In repeated gambles, loss aversion biases an individual toward risk-seeking 

behaviour on events preceded by a loss. After establishing that the hold option 

was associated with a lower variance in rate of reward (i.e. less risky) 

compared to either of the trade options, we conducted a trial-by-trial analysis to 

determine whether rats increased risk-seeking behaviour subsequent to a loss 

trial. On trials immediately preceded by a loss trial, we found that rats 

significantly decreased the average proportion of hold trials, choosing instead 

one of the riskier trade options (i.e. buy or sell). This serves as direct evidence 

that rats exhibit loss aversion.  

Furthermore, individual measures of loss aversion were negatively correlated 

with the average rate of reward that a rat earned per session and accounted for 

over 25% of the variability in observed reward rates. While we found no 

significant group-level preferences between the three stocks as differentiated 

by their starting prices, future studies could also manipulate the inherent 

riskiness of each stock in order to determine whether loss aversion can also be 

observed in stock selection choices. 

Disposition Effect 

In this study, we employed analyses from the existing behavioural finance 

literature (Barber & Odean, 2011; Frydman et al., 2014; Kaustia, 2010; Odean, 

1998) in order to: 1) determine whether rats exhibited the disposition effect, and 
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2) to increase the potential for translational links in behaviour between rats and 

humans. By calculating the difference between the proportion of gains realized 

(PGR) and the proportion of losses realized (PLR), we found that rats exhibited 

a significant disposition toward realizing gains more often than realizing losses. 

In line with Kaustia (2010) and Barberis and Xiong (2009), who argue that loss 

aversion does not account for the disposition effect, we find no correlation 

between loss aversion and the disposition effect. Intriguingly, we found that rats 

that demonstrated the highest proportion of optimal sell behaviour (Figure 30b) 

also exhibited the disposition effect most strongly (Figure 43a). This suggests 

that the disposition effect arises from a focus on short-term profits rather than 

long-term returns. These results are in line with the realization utility hypothesis 

(Barberis & Xiong, 2012; Frydman et al., 2014), whereby an individual is 

postulated to receive an instantaneous neural reinforcement (dis)utility signal at 

the moment of the sale, which biases behaviour towards a suboptimal short-

term focus on gains/losses.  

By fitting an extended Cox Proportional Hazard Model to the data, we 

demonstrate that the ‘hazard’ of selling is increased over positive returns and 

decreased over negative returns. Intriguingly, we find that counterfactual 

reward is a significant predictor in the model. This suggests that rats are 

considering the potential value of all available options when making a trading 

decision. This result has also been identified in a simulated stock market task 

using human participants (Lohrenz, McCabe, Camerer, & Montague, 2007). 

Using fMRI, the authors found that the difference between experienced 

outcome and the counterfactual reward – or fictive error – was associated with 

BOLD activity in the ventral caudate nucleus. Furthermore, dysfunctional 
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processing of counterfactual rewards has been implicated in disorders such as 

addiction and depression (Chiu, Lohrenz, & Montague, 2008; Platt & Hayden, 

2011). Thus, this area represents a potentially exciting target for future work. 

In general, the hazard model for sales as a function of returns bears a striking 

resemblance to the human data (Barber & Odean, 2011). It diverges in that rats 

are notably unwilling to sell at negative returns. It is possible that this reflects a 

species-level difference in the general willingness or ability to incur a smaller 

immediate loss in order to avoid a larger future loss. However, it may also be 

the case that the rats in our task simply did not have enough 

information/experience to come to such a conclusion.  

We strictly limited the availability of information in the task to the current market 

volume of each stock and the outcome of a trade/hold option. This was done in 

the first instance in order to establish the contribution of reinforcement learning 

to the most basic elements of financial decision-making behaviour. In theory, 

restricting the kinds of available information to profit/loss and market volume  

afforded rats the ability to develop a personal memory-based trading history 

and to respond to other rats’ responses (albeit without explicit knowledge of 

doing so). On the other hand, such a restrictive model did not allow rats to 

directly associate changing blink rates with other rats’ actions or to ascertain an 

overview of current portfolio holdings. Although such capacities represent 

interesting additions to the task design and clearly constitute intriguing 

directions for future work, it is nonetheless striking that such behavioural biases 

can arise in a context where the potential for both theory of mind and portfolio 

optimization has been precluded. This suggests that behavioural biases such 
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as the disposition effect do not arise from mechanisms supporting higher levels 

of cognition, such as those implicated in the primate prefrontal cortex. In 

support of this notion, studies by Grinblatt, Keloharju, and Linnainmaa (2012) 

and G. Chen et al. (2007) demonstrate that the disposition effect is diminished 

in individuals with higher IQs and with greater trading experience, respectively. 

Information salience & content 

In the task, rats could glean information about market volume and respective 

changes in market volume from the blink rate of each stock’s associated 

nosepoke hole. While the proportion of choices of the buy/hold/sell options did 

not approximate random choice (i.e. 33% distribution between the three 

choices), they also did not reflect optimal performance. Therefore it remains 

unclear precisely what kind of strategy the rats were employing in the task. 

Aside from trials with very fast blink rates and very slow blink rates, our results 

suggest that rats did not use changes in blink rate to perform optimally in the 

task. This may have occurred due to limitations in working memory and/or to an 

inability to dissociate between small changes in blink rate. This would therefore 

be a particularly relevant area for improvement in future task designs. Given 

that the visual acuity of the rat is quite poor, future studies might employ a 

different stimulus to convey market information, such as a tone with varying 

pitch. Strain on working memory may be ameliorated by changing the 

contingencies so that an optimal response is relative to a stock’s historical 

average rather than the previous encounter with a given stock. Furthermore, it 

may be beneficial to carry out a related study in humans. Human participants 

may be able to more easily communicate any potential strategies that they may 
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have employed to maximize reward in the task, and this could in turn shed light 

on rats’ behaviour.  

Another important caveat to consider in the current task design is the 

correlation between information content and information salience. While we 

failed to demonstrate that trading behaviour was significantly influenced by 

blink rate on average, we did find some indication that rats’ choices were 

affected by market information when blink rates were either very fast or very 

slow. Both salience-based and content-based accounts present plausible 

explanations of the observed behaviour. Namely, it is equally reasonable to 

believe that rats are responding to the information contained within the blink 

rate (e.g. low price = better value) as it is to believe that they are responding to 

the saliency of the information (e.g. faster blink rate = more attention). 

However, while the notion that highly salient stimuli attract more responses 

cannot be disentangled from high market volumes eliciting higher sell rates, the 

salience hypothesis cannot explain the observation that purchase rates 

increase at low blink rates. A rational investor will buy stocks that she deems to 

be undervalued, while selling stocks that she believes to be overvalued. 

Translated to the task, consider the example where only a small number of 

shares are currently being invested in Stock 1 between all four rats. In this 

situation, the market volume will be low, which represents an opportunity to 

purchase the stock at a bargain. Thus, rats using information content will have 

an increased propensity to select the buy option when blink rates are low and 

the sell option when blink rates are high, as was observed (see Figures 39a-b). 

While this does not exclude potential saliency effects at high blink rates, the 

information content explanation fits more closely with the data overall. Future 
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studies could control for such effects by inverting the blink rates (e.g. convey 

higher market volumes with slower blink rates). 

The incorporation of two tones to indicate a loss or gain outcome before reward 

collection likely plays an important role not only in the presence of loss aversion 

as previously discussed, but also in eliciting the disposition effect. Frydman and 

Rangel (2014) demonstrate that making an investment’s original purchase price 

less salient can attenuate the strength of the disposition effect. Therefore, 

drawing attention to the amount to be gained or lost in a potential transaction 

enhances the disposition effect. In a similar vein, our task ensures that 

information regarding a gain or loss is made explicitly salient via auditory 

stimuli, albeit after choice. One might therefore predict that by either omitting 

the tones or by making them less salient, one might also reduce the disposition 

effect in rats.  

Future directions 

We believe this task represents an exciting opportunity for future 

neuroeconomic research to explore the neural correlates of financial decision-

making and its associated behavioural biases. For example, this task could be 

employed to further investigate the ‘realization utility’ hypothesis (Barber & 

Odean, 2011; Barberis & Xiong, 2012; Frydman et al., 2014). It would be 

possible to temporally separate the option selection nosepoke and the sound of 

the outcome tone in order to determine whether the ‘realization utility’ came 

from the action itself or from the signal of the gain/loss on a single neuron level. 

Furthermore, future studies could explore a number of manipulations of the 

task contingencies, such as higher transaction cost on trades (e.g. longer 
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required nosepokes), discrepancies between risk/reward between stocks, 

asymmetrical initial endowments or information (insiders), and visible 

competitors.  

While future prospects are many, it is also important to bear in mind that there 

are a number of limitations associated with the current task. For example, we 

do not require that rats liquidate at the end of a session, so there is little 

consequence to continuously buying stocks, or never selling bad stocks. Rats 

are also paid a ‘dividend’ each time they select the hold option, which is not 

consistent with real life. It may be possible to employ a delayed reinforcement 

schedule on hold options, although this would almost certainly lead to much 

higher proportions of trading relative to holding. Another critical obstacle that 

we faced was the fact that rats did not learn the full optimal strategy with regard 

to price changes from the previous trial (i.e. buy when price had gone down, 

sell when price had gone up, and hold when there was no change). Instead, we 

found that rats learned one strategy well, at the expense of one or both of the 

other strategies. This was especially problematic between the optimal buy and 

sell options, where rats that learned to respond to changes in one direction 

(e.g. nosepoke to the left sell option when price increased) did not learn the 

reverse instrumental response (e.g. nosepoke to the right buy option when 

price decreased). This may be a critical cognitive limitation, or it may be a 

matter that could be resolved through more targeted training paradigms. Future 

studies might ensure that rats are trained to respond optimally to each option 

(buy, hold and sell) independently before testing commences.  
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As previously discussed, another limitation to the study is that market volume, 

information salience, and stock price are all correlated under the current task 

design. Thus, disentangling the distinct effects of each proves challenging. 

However, one could either invert blink rates or change the stimulus that signals 

information in the task to ameliorate this confound. Finally, despite the fact that 

rats are transported together in one transporter cage from the colony room to 

the testing room, it is very improbable that they have any understanding of 

social competition within the task. Even communication through high-frequency 

vocalizations is unlikely to lead a rat to associate the presence of another rat 

with changing blink rates. A future study in which rats perform the task in high 

visibility chambers may resolve this issue.  

To conclude, the research presented here represents an initial effort toward 

modelling investor behaviour in rodents. Thus, this task forms a platform from 

which neuroscientists, psychologists, and financial economists alike may probe 

the neural underpinnings of financial decision-making. Future iterations of the 

task can be easily adjusted to address divergent research questions (e.g. 

asymmetry in initial resource endowment or insider information) as well as 

current shortcomings (e.g. optimal response training and correlation between 

information content and salience). However, the simple notion that the 

behavioural biases observed here instantiate from reinforcement learning 

provides key insight into the mechanisms that may be governing investor 

biases in the brain. Areas commonly implicated in reinforcement learning, such 

as the dopaminergic midbrain, represent an obvious target for primary 

investigations in the future. 
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Chapter 6  

 

General Discussion 
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Summary  

The psychology and neuroscience of economics, and specifically the notion of 

financial loss, represented a central theme of this thesis. I argued that animals, 

like humans, perceive, encode, and react to a loss of resources in a 

categorically different way than to a gain of the same magnitude. Specifically, 

this work extends ideas first proposed by Kahneman and Tversky (1979) from 

humans to rats. We began in Chapter 1 with a detailed introduction into 

normative models of economic valuation in order to demonstrate that 

prescriptions of ‘rational’ decision-making take objective valence as a 

presupposition. Put simply, economic models struggle to accommodate the 

subjective nature of losses and gains. At its very core, the definition of optimal, 

or ‘rational,’ behaviour is necessarily dependent on the basic notions of what 

constitutes a loss and what constitutes a gain. Given that an individual’s 

observable behaviour is often an unreliable proxy for internal preferences, and 

that we know relatively little about the neural underpinnings of resource loss, 

we posited that a better understanding of how neural mechanisms instantiate 

behaviour may lead to more reliable models of economic decision making. 

Furthermore, we argue that rats represent a viable animal model of risky 

decision-making for neuroeconomic research. 

The original research presented in Chapters 2 – 5 represents my endeavours 

to address this knowledge gap. By employing insight from psychology and 

economics, I developed models of rat behaviour that can be used to study the 

neural substrates of loss valuation in risky decision-making. I presented two 

behavioural paradigms (Chapters 2 and 5), while demonstrating novel loss-
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related correlations between the midbrain dopamine system and loss behaviour 

in Chapters 3 and 4. The results presented in Chapter 5 demonstrate that rats 

are capable of producing behavioural patterns, such as loss aversion and the 

disposition effect, that economists studying human behaviour would recognize. 

While addressing this critical gap in the existing literature, this work has also 

highlighted a number of areas for future research. 

Operationalizing Resource Loss 

Resource loss is inherently difficult to operationalize in animal decision-making 

tasks, which represents a critical obstacle in translating loss-related research 

outcomes between species. The use of rats to study decision-making allows 

one to avoid many of the potential confounds arising during the study of human 

participants, such as numeracy or a pre-existing notion of how a stock market 

works. However, in rat tasks it is not possible to create a token economy, nor is 

retracting a previously consumed reward an effective means of simulating loss. 

To overcome this problem, previous rat models of risky decision-making have 

often incorporated either punishment (e.g. footshock) or opportunity costs (e.g. 

time-out). Unfortunately, it is difficult to ascertain whether these substitutes are 

subserved by the same neural mechanisms as those resulting from human 

representations of loss.  For example, consider the purchasing strategy of ‘in-

app purchases’ increasingly employed by game developers, where gamers 

have to choose between a time-out from game progression (i.e. opportunity 

cost) or a small monetary cost (i.e. resource loss). The strategy is extremely 

successful, because gamers are often willing to pay the small sum to forgo the 

time-out and resume game play immediately. This serves as anecdotal 
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evidence that different types of costs are not necessarily equivalently 

perceived. To address this, we developed two novel rat decision-making tasks, 

each operationalizing ‘loss’ in ways that we believe constitute closer 

representations of resource loss.  

The gambling task (Chapters 2 – 4) was designed with the specific intention of 

eliciting a mental representation of potential losses. Thus, a loss in that task is 

represented by the loss of a resource that could have been consumed had the 

rat chosen differently just a moment earlier.  In the stock market task (Chapter 

5), rats were primed to perceive rewards that were smaller than a reference 

point as losses and those that were larger than the reference point as gains. 

Losses in this task were based on the prediction that rats, like humans, behave 

in a qualitatively different way when expectations are violated compared to 

when they are exceeded. On the single-neuron level, the gambling task 

provides a means for researchers to identify cells that putatively encode losses. 

On the behavioural level, the stock market task opens up the possibility of 

characterizing the transformation from loss-related learning to behavioural bias. 

Together, these two approaches to modelling resource loss in rats offer 

researchers the opportunity to tease apart the effects of loss on both brain and 

behaviour. Each adds a unique thread to the repertoire of the rapidly expanding 

neuroeconomics literature. 

Loss-dependent behaviour 

Humans exhibit a number of suboptimal behaviours in the wake of a loss. In an 

attempt to break even, gamblers often ‘chase’ their losses. Similarly, investors 

tend to hold on to losing stocks too long in the hope that the declining share 
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price might make a recovery. Both of these behaviours rely on the notion that 

some reference point has been set, and that this reference point is commonly 

not at absolute zero. For example, a professional trader trying to meet a 10% 

return target might perceive a 5% return as a loss, despite the fact that it is still 

a positive return. Thus, it is imperative that any study of the neural mechanisms 

subserving losses vs. gains takes reference-dependence into account.  

Given a single ‘one-off’ decision (see Figure 42a), Prospect Theory (Kahneman 

& Tversky, 1979) predicts that an individual will be risk-seeking over losses and 

risk-averse over gains. In other words, the loss-averse individual is willing to 

accept more risk in order to avoid a loss than to win the same amount, because 

she is more sensitive to decreases in wealth than to increases in wealth. 

Extended to a series of investment decisions, the effects of loss aversion 

depend on prior experiences of losses and gains. In general, Prospect Theory 

predicts that an individual will take more risk after a loss and less risk after a 

gain. It is thought that this occurs because the individual will either be in the 

convex (risk-seeking) domain after a loss, or in the concave (risk-averse) 

domain after a gain. This is exemplified by a study in which Coval and 

Moskowitz (2000) observed the trading activity of professional futures traders 

and found that individuals with daily losses at the middle of the day took more 

risks in the second half of the day. In contrast, individuals trading at a gain at 

midday took significantly less risks during the afternoon.  
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A: Single Gamble B: Curve Shift after Loss/Gain 

              

C: Reference Point Shift after Loss D: Reference Point Shift after 

Gain 

      

Figure 44: (A) given a single 50-50 gamble between losing $10 or gaining $10, an individual’s 
choice typically reflects the ‘S’ shaped value curve illustrated here. The steep, convex red curve 
in the loss domain demonstrates that a loss of $10 would bring about twice as much disutility as 
positive utility (flatter green line) from a $10 gain would. (B) Given a series of gambles, 
empirical data suggests that a previous loss causes an upward shift red tail and an associated 
reduction in the discrepancy between loss disutility vs. gain utility. Conversely, a previous win 
leads to a downward shift in the green tail and a relative increase in the discrepancy between 
gain utility and loss disutility. Theoretically, these curve shifts (i.e. changes in risk attitude) 
result from a (C) downward shift in reference point after a previous loss, and (D) an upward 
shift in the reference point after a previous gain.  

Given the example above, imagine the scenario in which an individual is trading 

at a loss at midday. As the outcome of each trade becomes integrated into the 

trader’s payoff expectation, the reference point is updated to a lower position. 
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The seeming shift in the value curve (Figure 42b) that reflects more risk-

seeking preferences after a loss is likely the result of a downward reference 

point shift along the ‘s-curve’ (Figure 42c). The opposite upward reference point 

shift (Figure 42d) would also correspond with the apparent downward shift of 

the green curve in Figure 42b after a previous gain.  

The explanation for this behaviour during a series of decisions highlights a key 

area for input from psychology and neuroscience. Critically, the reference point 

shifts in Figures 42c-d can be seen as the result of reinforcement learning as a 

decision maker uses previous outcomes to update predictions about future 

rewards. Thus, it is likely that one’s willingness to accept uncertainty (i.e. risk 

attitude) and one’s perception of valence (i.e. what constitutes a loss vs. what 

constitutes a gain) are both at least partially modulated by reward prediction 

errors generated in the midbrain dopamine system (Schultz et al., 1997). 

Despite the general evolutionary preservation of the midbrain dopamine system 

between rats and humans, it was unclear up until this point whether rats were 

capable of exhibiting reference-dependent behaviour. While we observed some 

indication that this might be the case in the gambling task, we were able to 

explicitly support this argument with the results of the stock market task in 

Chapter 5. By setting all reward volumes with respect to an arbitrary amount 

(i.e. 0.15 ml) and delivering only that amount on the initial 15 trials of every 

session, we were able to observe reference-dependent changes in movement 

time to collect reward for relative gains and losses. Furthermore, rats’ 

increased risk-seeking behaviour after receiving a volume of reward that was 

less than the reference point was indicative of loss aversion. These results 
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indicate that future studies can use this paradigm to explicitly test how 

reference points are represented and updated in the rat brain. 

In conclusion, the novel tasks developed here allowed us to conclude that rats 

often exhibit behavioural biases in a way that is remarkably similar to humans 

when faced with a loss compared to a gain. This suggests that the neural 

mechanisms governing such behaviour are evolutionarily conserved, which 

corroborates previous animal and human research implicating the midbrain 

dopamine system. Given the substantial evidence suggesting that reward 

expectations are encoded via phasic midbrain dopamine signals, one might 

speculate that this activity also acts as a switch or gating mechanism for the 

separable systems purported to be involved in valuation. For example, when 

expectations are not met, suppression of tonic dopamine levels via negative 

reward prediction errors may prime the system to selectively attend to the 

mechanisms subserving losses while inhibiting those associated with gains. 

Results compatible with precisely such a mechanism were highlighted in the 

histological characterization of brain and behaviour in our rat gambling task 

(Chapters 3 and 4).  

Brain and behaviour 

The notion that there are separable systems in the nervous system associated 

with losses and gains also introduces the potential for asymmetrical learning 

about losses and gains. The decision to stay or switch hole contingencies after 

a loss compared to a gain emerged as a significant factor in Chapter 2. Instead 

of adopting a win-stay/lose-shift strategy, rats tended to stay more after a loss 

than after a gain. Adding to a growing body of evidence suggesting that the 
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midbrain dopamine system is involved in the modulation of instrumental 

behaviour (for review, see Wickens et al., 2003), we also found evidence that 

this behaviour was under dopaminergic control. For example, the 

administration of dopamine antagonist cis-Flupenthixol dose-dependently 

decreased the likelihood that a rat would return to the same contingency as the 

immediately preceding trial. When this behaviour was analysed with respect to 

previous wins and losses, we found that rats with more putative dopamine 

neurons in the substantia nigra pars compacta (SNc) were also more likely to 

stay after a loss, which was replicated in a separate version of the task. 

Intriguingly, dopamine receptor blockade with cis-Flupenthixol mitigated this 

effect. These results suggest that in the rat, decision-making after a loss is 

critically modulated by dopamine neurons in the SNc.  

These results complement work done in Parkinson’s disease patients, who 

show improved learning from negative outcomes when off medication 

compared to controls (Frank, Seeberger, & O'Reilly, 2004). Conversely, 

patients show greater sensitivity to positive outcomes than negative outcomes 

when on medication. Cohen and Frank (2009) developed a neurocomputational 

model in support of these findings (see Figure 43), wherein efferent projections 

from the SNc play a central role.  
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Dopamine Subreceptor-Mediated Direct and Indirect Pathways  

 

Figure 45 reproduced* from (Clark & Dagher, 2014) and based on computational theory by 
(Cohen & Frank, 2009): Output from the substantia nigra pars compacta (SNc) influences 
choice via two distinct pathways (direct and indirect). Postsynaptic neurons of the direct 
pathway primarily express dopamine D1 receptors at the striatum, which then projects a ‘Go’ 
response through the internal global pallidus (GPi) and substantia nigra pars reticulate (SNr), 
and on to the thalamus and cortex. In the indirect pathway, the dopamine D2 receptors facilitate 
a ‘No Go’ response by disinhibiting the GPi (i.e. suppressing action selection) via the external 
global pallidus (GPe). Excitatory projections are illustrated in green and inhibitory projections 
are shown in red. *Reproduced under the open-access terms of the Creative Commons 
Attribution License (CC BY). 

Dopamine D1 and D2 receptors have different affinities for dopamine, and 

indeed often have opposing functions in the brain (Beaulieu & Gainetdinov, 

2011). D1 receptors have a low affinity for dopamine, making them sensitive 

only to larger phasic changes, whereas high-affinity D2 receptors are 

responsive to lower tonic changes in dopamine concentrations. The Cohen and 

Frank (2009) model asserts that information about the utility of a gain is relayed 

via phasic dopamine activity and nigrostriatal D1 receptor signalling in the direct 

‘Go’ pathway, which elicits an approach response. Conversely, information 

about the disutility of a loss is conveyed via the indirect ‘No Go’ pathway, 
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whereby changes in tonic dopamine levels prompt D2-expressing striatal 

neurons to disinhibit the ‘Go’ response from the inner globus pallidus/substantia 

nigra pars reticulata.  Pharmacological manipulations of these receptors in 

humans support the model’s predictions in reinforcement learning (Frank & 

O'Reilly, 2006; Pizzagalli et al., 2007).  

Our findings are compatible with this model. Similar to Parkinson’s disease 

patients off of medication, rats with fewer SNc neurons were less likely to 

repeat a choice after a loss and therefore demonstrated greater 

responsiveness to negative outcomes. By contrast, rats with more SNc neurons 

were more likely to repeat a choice after a loss, indicating that they were 

relatively less sensitive to negative outcomes. After administering dopamine 

antagonist cis-Flupenthixol, the association between DA neuron number and 

repeating a choice after a loss was abolished. The primary mechanism of 

action is hypothesized to reflect suppression of the indirect ‘No Go’ pathway by 

cis-Flupenthixol, which has been shown to preferentially interact with D2 

receptors (Hess, Norman, & Creese, 1988). Some parallel D1 receptor 

blockade of phasic responses in the direct ‘Go’ pathway may have also 

counteracted any straightforward effect reversals. Relative differences in 

receptor densities could have subsequently led to an elimination of the loss-

stay bias by asymmetrically interrupting these two pathways. Furthermore, due 

to fast-acting autoreceptor feedback loops, dopamine antagonists effectively 

increase dopamine cell firing due to increased dopamine availability at 

autoreceptors after target receptor blockade (Bunney, Walters, Roth, & 

Aghajanian, 1973). This would further amplify the asymmetrical disruption to 
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the ‘No Go’ signalling pathway that putatively conveys information about 

negative outcomes.  

A number of cellular mechanisms are purported to compensate for system-level 

differences in neural cell counts, especially in the midbrain dopamine system 

(Blesa et al., 2011; Zigmond et al., 1989). It is believed that compensatory 

mechanisms, such as autoreceptor and dendritic spine densities, adaptively 

constrain dopamine levels and effectively preclude any meaningful effects of 

individual differences in healthy neuron counts on behaviour. Evidence to the 

contrary (i.e. in support of the notion that the number of neurons in a substrate 

can indeed lead to behavioural biases in healthy individuals) can be found in 

both animal and human literatures. For example, a number of studies 

investigating a genetic strain of mice with naturally increased midbrain 

dopamine cell numbers have also reliably linked variability in dopamine cell 

counts with variations in exploratory behaviour and drug reactivity (Baker et al., 

1980; Reis et al., 1979; Reis et al., 1982; Sved et al., 1984). Furthermore, 

studies in humans have indicated that patients suffering from 

neurodegenerative diseases of the dopamine system (e.g. Parkinson’s disease 

and Huntington’s disease) demonstrate cognitive deficits very early on in 

disease progression (Chaudhuri et al., 2006; Chaudhuri & Naidu, 2008; 

Chaudhuri et al., 2010), which denotes a putative link between neuron count 

and behaviour. These findings raise the general question of how much control 

a single neuron can have over activity at the local and systems level in any 

species.10 In conclusion, future research is warranted to establish whether such 

                                                
10 While beyond the scope of this discussion, the reader is referred to recent work 
by Pitkow, Liu, Angelaki, DeAngelis, and Pouget (2015) for a computational 
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a relationship between neural cell counts and behaviour extends to healthy 

human populations.  

Conclusions 

In this thesis, the research presented from the development of two 

experimental rat decision-making tasks brings together theoretical accounts of 

loss-related behaviour from economics, psychology and neuroscience. The 

experimental results are compatible with the notion that separable neural 

substrates and receptor pathways in the brain parallel the asymmetrical 

sensitivity that both rats and humans exhibit towards losses and gains. 

Individual differences in neuron densities in key substrates such as the SNc 

may underlie differences in reinforcement learning, which may in turn reflect 

reference point updating, macro-level biases and attitudes towards risk. In 

conclusion, rat models of risky decision-making, which are currently 

underutilized in neuroeconomic research, offer a critical link between the 

microscopic and macroscopic levels of behavioural analysis.   

  

                                                                                                                                         
theory accounting for correlations between choice behaviour and single sensory 
neurons. 
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Appendices 
Appendix 1 

 
Table 3: Cox Proportional Hazard model coefficients for nosepoke duration  
 

 B SE Sig. Exp(B) 
95.0% CI for Exp(B) 
Lower Upper 

Log(t)PrevOutcome .059 .020 .003 1.060 1.020 1.103 
Log(t)Contingency -.024 .009 .008 .977 .960 .994 
PrevOutcome .080 .030 .008 1.083 1.021 1.149 
ContingencyMainEffect   .000    
ContingencyLow -.039 .015 .008 .962 .935 .990 
ContingencyHigh .075 .017 .000 1.078 1.042 1.115 
Contingency* 
PrevOutcomeMainEffect 

  .136    

ContingencyLow* 
PrevOutcome .063 .032 .047 1.065 1.001 1.133 

ContingencyHigh* 
PrevOutcome -.038 .032 .230 .962 .904 1.025 

 
 
Table 4: Cox Proportional Hazard model coefficients for stay behaviour on free-
choice trials  
 

 B SE Sig. Exp(B) 
95.0% CI for Exp(B) 
Lower Upper 

Log(t)PrevOutcome -.122 .135 .367 .885 .680 1.153 
Log(t)Contingency .078 .059 .184 1.082 .964 1.214 
PrevOutcome .138 .098 .160 1.148 .947 1.393 
ContingencyMainEffect   .000    
ContingencyLow -.657 .120 .000 .518 .409 .656 
ContingencyHigh .433 .075 .000 1.542 1.331 1.786 
Contingency* 
PrevOutcomeMainEffect 

  .014    

ContingencyLow* 
PrevOutcome .284 .170 .095 1.328 .952 1.853 

ContingencyHigh* 
PrevOutcome -.285 .101 .005 .752 .617 .916 
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Appendix 2 

 
Table 5: Cox proportional hazard model coefficients for poke duration (sec) at 
each dose of cis-Flupenthixol  
 

 B SE Sig. Exp(B) 
95.0% CI for Exp(B) 
Lower Upper 

Log(t)PrevOutcome .013 .062 .838 1.013 .898 1.143 
Log(t)Contingency -.031 .031 .319 .970 .912 1.030 
Log(t)Dose .020 .024 .398 1.021 .974 1.070 
DoseMainEffect   .000    
DoseLow -.188 .050 .000 .829 .751 .914 
DoseMedium -.203 .066 .002 .816 .718 .928 
DoseHigh -.309 .078 .000 .734 .631 .855 
PrevOutcomeLossContrast -.104 .065 .109 .901 .794 1.024 
ContingencyMainEffect   .004    
ContingencyLL .153 .049 .002 1.166 1.059 1.284 
ContingencyHH .046 .034 .183 1.047 .979 1.119 
 
 
Table 6: Cox proportional hazard model coefficients for choice of the Low 
contingency at each dose 
 

 B SE Sig. Exp(B) 
95.0% CI for Exp(B) 
Lower Upper 

Log(t)PrevError .464 .389 .233 1.591 .742 3.410 
DoseMainEffect   .044    
DoseLow .423 .233 .069 1.526 .967 2.409 
DoseMedium -.080 .271 .769 .923 .543 1.571 
DoseHigh -.830 .376 .027 .436 .209 .912 
PrevOutcome   .553    
 
Table 7: Cox proportional hazard model coefficients for choice of the High 
contingency at each dose 
 

 B SE Sig. Exp(B) 
95.0% CI for Exp(B) 
Lower Upper 

Log(t)PrevError -.163 .259 .530 .850 .512 1.411 
DoseMainEffect   .053    
DoseLow -.113 .064 .076 .893 .788 1.012 
DoseMedium -.103 .073 .157 .902 .781 1.041 
DoseHigh .174 .077 .025 1.190 1.023 1.385 
PrevOutcome   .844    
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Table 8: Cox Proportional Hazard model coefficients for shifting contingency 
choice from previous trial 
 

 B SE Sig. Exp(B) 
95.0% CI for Exp(B) 
Lower Upper 

Log(t)PrevError .098 .143 .491 1.103 .834 1.460 
Log(t)Contingency .091 .059 .126 1.095 .975 1.230 
Log(t)Dose -.072 .051 .160 .931 .842 1.029 
Log(t)PrevContingency -.072 .048 .131 .931 .848 1.022 
DoseMainEffect   .002    
DoseLow -.220 .084 .009 .803 .681 .946 
DoseMedium .332 .095 .001 1.393 1.156 1.679 
DoseHigh .396 .174 .023 1.486 1.056 2.092 
PrevOutcome .019 .320 .953 1.019 .545 1.907 
Contingency   .000    
ContingencyLL .917 .197 .000 2.502 1.700 3.682 
ContingencyHH -1.176 .193 .000 .309 .211 .451 
PrevContingency   .000    
PrevContingencyLL .380 .066 .000 1.463 1.286 1.664 
PrevContingencyHH -.472 .172 .006 .624 .446 .873 
PrevOutcome* Contingency   .002    
PrevOutcome* 
ContingencyLL -.626 .239 .009 .535 .335 .854 

PrevOutcome* 
ContingencyHH .601 .170 .000 1.823 1.308 2.542 

 
 
Table 9: Linear regression coefficients for baseline loss-stay behaviour as a 
dependent variable 

Model 
  

t Sig. 
95% CI for B 

B SE Beta Lower  Upper  
1 (Constant) 8.42E-17 .140  .000 1.000 -.301 .301 

SNc Count .841 .145 .841 5.804 .000 .530 1.151 
 
* Average weight was excluded from the model via stepwise entry method (βin 
= -.03, t = -0.20, p = .85, VIF = 1.03). 
** VTA count was excluded from the model via stepwise entry method (βin = 
.04, t = 1.20, p = .25, VIF = 1.14). 
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Table 10: Linear regression coefficients for saline vehicle loss-stay behaviour as a 
dependent variable 

Model 
  

t Sig. 
95% CI for B 

B SE Beta Lower  Upper  
1 (Constant) -4.6E-17 .223  .000 1.000 -.479 .479 

SNc Count .504 .231 .504 2.186 .046 .010 .999 
 

* Average weight was excluded from the model via stepwise entry method (βin = 
.14, t = 0.60, p = .56, VIF = 1.03). 

** VTA count was excluded from the model via stepwise entry method (βin = -.11, t 
= -0.42, p = .68, VIF = 1.14). 
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Appendix 3 

 
Table 11: Coefficients of Cox hazard model for poke duration 
 

 B SE Sig. Exp(B) 
95% CI for Exp(B) 
Lower Upper 

Log(t)PrevOutcome -.038 .008 .000 .963 .949 .978 
Log(t)Contingency -.029 .033 .387 .972 .910 1.037 
PrevOutcome -.160 .040 .000 .852 .788 .921 
ContingencyMainEffect   .000    
ContingencyHighProb .668 .032 .000 1.950 1.834 2.075 
ContingencyLowProb -.156 .033 .000 .856 .803 .912 
ContingencyHighRew .022 .034 .524 1.022 .956 1.093 
ContingencyLowRew .087 .040 .028 1.091 1.009 1.179 

 
 
Table 12: Linear regression coefficients with Lose-shift as a dependent variable 
 

Model 
  

t Sig. 
95% CI for B 

B Std. Error Beta Lower  Upper  
1 (Constant) 2.1E-16 .20  .00 1.00 -.47 .47 

SNc Neuron Ct .828 .212 .828 3.914 .006 .33 1.33 
* Average weight was excluded from the model via stepwise entry method (βin 
= .004, t = 0.02, p = .99, VIF = 1.28). 
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Appendix 4 

 
Table 13: Coefficients of a Cox Proportional Hazard Model of sales as a 
function of return 
 
 COEF. SE LOWER CI UPPER CI SIG. 

< -22% -1.16 0.48 -9.01 -2.01 * 
-22% − -18% 1.65 1.01 -3.59 -1.82  

-18% − -14% 2.13 0.88 -2.94 -1.52 * 

-14% − -10% 3.16 0.90 -1.65 -0.73 *** 

-10% − -6% 3.31 0.90 -1.48 -0.61 *** 

-6%− -2% 3.94 0.90 -0.77 -0.06 *** 

-2%− 2% 4.35 0.89 -0.31 0.31 *** 

2%− 6% 5.22 0.90 0.61 1.14 *** 

6%− 10% 5.69 0.91 1.09 1.59 *** 

10%− 14% 5.80 0.95 1.20 1.70 *** 

14%− 18% 6.09 1.02 1.50 1.98 *** 

≥18% 5.32 1.22 0.70 1.22 *** 

SALES COUNT -0.15 0.01 0.01 -30.04 *** 

COUNTERFACTUAL 
REWARD 

-6.19 1.23 0.27 -22.86 *** 

LIKELIHOOD RATIO TEST(14) = 3352, P <.001  
*P<.05, **P<.01,  ***P<.001 
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Table 14: Coefficients of a Cox Proportional Hazard Model of purchases as a 
function of blink rate 
 

 COEF. SE LOWER CI UPPER CI SIG. 

< 0.75 HZ -0.77 0.46 -1.88 0.35 *** 

0.75 HZ − 1.0 HZ -0.01 0.99 -0.49 0.49 * 

1.0 HZ − 1.25 HZ -0.01 0.99 -0.40 0.38 ** 

1.25 HZ − 1.5 HZ -0.06 0.94 -0.34 0.22  

1.5 HZ − 1.75 HZ 0.10 1.11 -0.13 0.34  

1.75 HZ − 2.0 HZ 0.19 1.20 0.05 0.33  

2.0 HZ − 2.25 HZ 0.17 1.18 0.01 0.32  

2.25 HZ − 2.5 HZ 0.25 1.28 0.06 0.43  

2.5 HZ − 2.75 HZ 0.27 1.31 0.02 0.52  

2.75 HZ − 3.0 HZ 0.22 1.25 -0.12 0.56  

3.0 HZ − 3.25 HZ 0.42 1.52 -0.14 0.98 * 

3.25 HZ − 3.5 HZ 0.67 1.96 0.15 1.20 *** 

≥ 3.5 HZ 1.26 3.54 0.45 2.08 ** 

BUYS COUNT 0.04 1.04 0.04 0.05 *** 

LOGS1BLINKHZ 0.03 1.03 0.01 0.07 * 

LOGS2BLINKHZ -0.02 0.98 -0.05 0.01  

LOGS3BLINKHZ 0.04 1.04 0.01 0.07 * 

LIKELIHOOD RATIO TEST(17) = 490.8, P <.001 

*p<.05, **p<.01,  ***p<.001 
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Table 15: Coefficients of a Cox Proportional Hazard Model of sales as a 
function of blink rate 
 

 COEF. SE LOWER CI UPPER CI SIG. 

< 0.75 HZ -0.77 0.46 -1.88 0.35  

0.75 HZ − 1.0 HZ -0.01 0.99 -0.49 0.49  

1.0 HZ − 1.25 HZ -0.01 0.99 -0.40 0.38  

1.25 HZ − 1.5 HZ -0.06 0.94 -0.34 0.22  

1.5 HZ − 1.75 HZ 0.10 1.11 -0.13 0.34  

1.75 HZ − 2.0 HZ 0.19 1.20 0.05 0.33 ** 

2.0 HZ − 2.25 HZ 0.17 1.18 0.01 0.32 * 

2.25 HZ − 2.5 HZ 0.25 1.28 0.06 0.43 * 

2.5 HZ − 2.75 HZ 0.27 1.31 0.02 0.52 * 

2.75 HZ − 3.0 HZ 0.22 1.25 -0.12 0.56  

3.0 HZ − 3.25 HZ 0.42 1.52 -0.14 0.98  

3.25 HZ − 3.5 HZ 0.67 1.96 0.15 1.20 * 

≥ 3.5 HZ 1.26 3.54 0.45 2.08 ** 

SALES COUNT 0.04 1.04 0.04 0.05 *** 

LOGS1BLINKHZ 0.06 1.07 0.03 0.10 ** 

LOGS2BLINKHZ 0.02 1.02 -0.01 0.06  

LOGS3BLINKHZ -0.02 0.98 -0.05 0.01  

LIKELIHOOD RATIO TEST(16) = 489.9, P <.001 

*p<.05, **p<.01,  ***p<.001 
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