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Abstract

Tools and Techniques for
Formalising Structural Proof Theory

Peter Chapman

Whilst results from Structural Proof Theory can be couched in many formalisms, it is
the sequent calculus which is the most amenable of the formalisms to metamathematical
treatment. Constructive syntactic proofs are filled with bureaucratic details; rarely are
all cases of a proof completed in the literature. Two intermediate results can be used to
drastically reduce the amount of effort needed in proofs of Cut admissibility: Weakening
and Invertibility. Indeed, whereas there are proofs of Cut admissibility which do not use
Invertibility, Weakening is almost always necessary. Use of these results simply shifts the
bureaucracy, however; Weakening and Invertibility, whilst more easy to prove, are still not
trivial. We give a framework under which sequent calculi can be codified and analysed,
which then allows us to prove various results: for a calculus to admit Weakening and for a
rule to be invertible in a calculus. For the latter, even though many calculi are investigated,
the general condition is simple and easily verified. The results have been applied to G3ip,
G3cp, G3s, G3-LC and G4ip.

Invertibility is important in another respect; that of proof-search. Should all rules in
a calculus be invertible, then terminating root-first proof search gives a decision procedure
for formulae without the need for back-tracking. To this end, we present some results
about the manipulation of rule sets. It is shown that the transformations do not affect the
expressiveness of the calculus, yet may render more rules invertible. These results can guide
the design of efficient calculi.

When using interactive proof assistants, every case of a proof, however complex, must be
addressed and proved before one can declare the result formalised. To do this in a human-
readable way adds a further layer of complexity; most proof assistants give output which is
only legible to a skilled user of that proof assistant. We give human-readable formalisations
of Cut admissibility for G3cp and G3ip, Contraction admissibility for G4ip and Craig’s
Interpolation Theorem for G3i using the Isar vernacular of Isabelle. We also formalise the
new invertibility results, in part using the package for reasoning about first-order languages,
Nominal Isabelle. Examples are given showing the effectiveness of the formalisation. The
formal proof of invertibility using the new methods is drastically shorter than the traditional,
direct method.
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Chapter 1

Introduction

1.1 Motivations

Mathematicians like proofs. More often than not, the more elegant a proof is, the more it is
celebrated [Aigner and Ziegler, 2003]. Either way, though, the details of a proof should be
available for inspection. Thus, the advent of computer checked proofs caused some unease;
gone were the elegant proofs, but so too were the details. How could such proofs now
be checked by a human? Proofs are evidence that a result is true; they give confidence.
Does a result thrown back from a checker, based on several thousand lines of unreadable
(to the casual reader) code, really give confidence? It should, yet it still leaves one feeling
unsatisfied.

The counterpart to this is that mathematicians like shortcuts. Many text books are
littered with proofs such as “Trivially”, “Obviously”, or “By inspection”. For the diligent
reader, filling in such gaps may take many hours of effort and many pages of writing. What
may be trivial to the writers of a book may not be trivial to its readers. Indeed, this
relegation of proofs to a word or two is really not much different from a computer checked
proof: one cannot readily inspect the details. Yet, one is more acceptable than the other.

There are examples, of course, where a trivial proof is not really trivial at all. It may
be similar to the proof of a similar theorem, but also subtly different, just different enough
that it requires some thought. These lacunae may be overlooked for some time. A formally
checked proof does not allow such omissions. Formalisation has found (and corrected) some
gaps, such as a missing case in the proof of axiom expansion for a proof-search oriented
formalisation of intuitionistic propositional logic, G4ip (the details are in section 4.5).

An area of mathematics where proofs are routinely omitted is structural proof theory.
Many proofs use the same methods and are lengthy. It is rare to see all cases filled in with
complete detail. It would seem, then, that structural proof theory is ripe for formalisation.
But, the proofs can be elegant and furthermore give insight into how other similar proofs may

go. So, what would be ideal would be a formally checked, but human readable, proof. Then,
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the details could be inspected, and one could have more confidence in the result. There
would be no gaps: all cases would have to be covered or the checker would not accept the
proof. It is the search for human readable machine checked proofs, specifically of theorems

from structural proof theory, which motivates this thesis.

1.2 Aims, Objectives and Contributions of the Thesis

Given the motivations the general objective of the thesis is straightforward: to provide
examples, tools and techniques with which one can formalise structural proof theory in a
human readable way. “Human readable” is a subjective phrase. A proof in a particular
proof assistant may be fully readable to an expert user of that system, legible to a user of a
similar system, and complete nonsense to the casual reader. Whilst it would not be feasible
to create fully readable proofs for everyone, we at least hope to show that humanly legible
proofs can be created.

The overriding aim is to show that formalisation is something which could, and perhaps
should, be something which is undertaken at the same time as an informal proof is being
drawn up. The closer one gets to formalised proofs looking identical to informal proofs, the
closer one gets to being able to directly write the proof formally in the first place; one would
not write an informal proof and then formalise it. A main contribution of this thesis is
providing three examples of formalised proof theory. The results formalised are non-trivial,
and furthermore the formalisations themselves are non-trivial.

Formalisation carries some burden, however. It may be quite obvious to the user that
a certain result is true, but the system of choice steadfastly refuses to accept it. A further
aim, then, is to make the formalisation process as pain-free as possible. The second main
contribution of this thesis is to provide some theoretical results, which, when formalised,
will reduce the burden on the user of the system. The results are interesting in their own
right, but carry more weight when formalised, since then they can be applied to problems

encountered elsewhere in the thesis.

1.3 Structure of the Thesis

This thesis is about formalising structural proof theory. Thus, before any detail is added
a brief introduction is given to structural proof theory (chapter 2) and to formalisation
(chapter 3). In the latter, the choice of interactive theorem prover for the thesis (Isabelle) is
justified. Others were considered, but for one reason or another they were deemed deficient
for our purposes. As development of the theorem provers is ongoing, had the project been
started now, a different theorem prover might have been chosen. This is more fully explained
in chapter 3.

We seek to combine chapter 2 and chapter 3 in chapter 4. Three non-trivial results from



CHAPTER 1. INTRODUCTION 10

structural proof theory are stated and proved in a form which, it is hoped, is readable to
someone not well versed in Isabelle. Where necessary, we intersperse formal and informal
proofs so that the similarities and differences can be appreciated. Two of the three formalised
results fall victim to the same kind of bureaucracy: invertibility. We do not have recourse,
in the formal proof, to the informal proof method “obviously.” It is this which motivates
chapters 5-7.

In chapter 5, we examine approaches to defining sequent calculi in a general fashion.
Whilst all approaches have benefits, they are ultimately found lacking for our purposes,
which motivates the definition of a new family of sequent calculi. With some tweaking of
the criteria, a large range of calculi can be analysed. In chapter 6, several results are proved
about these calculi, mainly about the invertibility of their rules. Having these informal
results is interesting in itself, however the motivation for chapter 5 and chapter 6 was to cut
the bureaucracy in formal proofs. Thus, in chapter 7, we formalise the invertibility results,
and give concrete examples of how much time and effort one saves when using them.

What was achieved, relative to the stated aims of section 1.2, is discussed in chapter
8. This chapter also contains some possible further directions in which the work could be

taken, along with a discussion of who could benefit from the material in this thesis.



Chapter 2

Structural Proof Theory

2.1 Introduction

Sequent calculi were invented by Gentzen as a tool to manipulate the formulae of a logic,
much like his earlier formulation of natural deduction [Gentzen, 1969]. Unlike natural de-
duction, however, sequent calculi are very amenable to meta-mathematical analysis: it is
easy to say when a sequent calculus derivation is, in some sense, normal or canonical. For
this, one uses the notion of a cut-free derivation. The important question for a calculus then
becomes: given a derivation involving cuts, is it possible to transform it into a derivation
without cuts? In the process of answering this question, a number of other such questions
arise about the structure of derivations. Thus, the area of Structural Proof Theory was
created, and in this chapter, and indeed in the thesis as a whole, we will glimpse some of

the power and elegance of sequent calculi.

2.2 Sequent Calculi

Definitions of what constitutes a general sequent calculus are hard to find. Given a logic, a
specific sequent calculus is easy to define'. Most, but not all, are two-sided, the two sides of
a sequent separated by some reserved symbol (throughout this thesis we will use the arrow
= to separate the left and right side, it is called the sequent arrow). Restrictions are placed
on the structures of formulae which can appear on the left and right side of the sequent
arrow: for (most) intuitionistic logics, a single formula can appear on the right-hand side,
whereas in classical logic some more exotic structure can appear on the right. In [Gentzen,
1969], sequences of formulae were used on the left of the sequent arrow (and on the right in
the calculus LK). Nowadays, it is more common to see sets or multisets of formulae as the

chosen structure. The interpretation of a sequent is that the conjunction of the formulae on

IWhether it is easy to define a sensible or appropriate sequent calculus may not be so straightforward.

11
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the left of the sequent arrow imply the disjunction of the formulae on the right of the arrow.

Some form of top-level or axiom sequents are permissible where the same (atomic) for-
mula appears on the left and right of a sequent arrow, or we have L on the left of the sequent
arrow. From these initial sequents, derivations are built using a series of syntactic rules: it
is possible to introduce connectives on the left or right of the sequent arrow. The root of any
derivation is then provable in that calculus. As an example, consider the implicational frag-
ment of intuitionistic logic with L (henceforth known as GImp), which can be formulated

by the following rules:

T.p=p A% T 1=cC bt
I'N'ADB= A F,B:>CL rA=_nB R
ILA>B=C °  T=45B*°

where P is some (meta-variable standing for a) propositional atom and I' is a (meta-variable
standing for a) multiset of formulae. The formula A D B is propagated into the premisses
of L D because this rule is not invertible: without the copied formula, an application of the
rule in proof search may not be sound. This calculus is derived from G3ip, a calculus for
propositional intuitionistic logic (see appendix A).

Variations on the rule L D create different calculi. The above rules form a context-sharing
calculus: every multiple premiss rule has the same multiset of formulae on the left of each

premiss. It is possible to create a context-splitting version of LD :

I''AoB=A T',B=C
LIV, AoB=C

LDcs

where each premiss has a (possibly) different context.

Of course, it is possible to build more exotic calculi for different purposes. Different
sequent arrows can be used to differentiate between different judgements [Dyckhoff and
Lengrand, 2006], distinguished formulae can appear as stoups above the sequent arrow [Gi-
rard, 1991], one-sided systems which dispense with the sequent arrow altogether [Schiitte,
1977] and terms can be used [Dyckhoff and Pinto, 1999]. It is this flexibility which makes a

general definition of sequent calculi difficult.

2.3 The Main Result

We have seen, briefly, what a sequent calculus looks like. But, for what are they useful?
Gentzen developed them so that he could prove the completeness of classical and intuitionis-
tic logic. There is one rule which is known as Cut, and is given in a variety of forms. Here, we

show the context-sharing, single occurrence Cut rule [Troelstra and Schwichtenberg, 2000]:
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'=sAA ATl=A
'=A Cut

If one can show that a derivation, in a calculus for classical or intuitionistic logic, with
instances of Cut can be transformed into a derivation with no instances of Cut (a cut-free
derivation) then one can deduce that the calculus, and hence the logic, is consistent. For, it

becomes impossible to give a derivation with root:

=1

or, alternatively, derive a sequent with an empty right-hand side. One can see this by
observing that none of the rules for a calculus for classical or intuitionistic logic allows an
empty right-hand side.

Cut elimination (for a calculus with the rule Cut), or showing Cut admissibility (for a
calculus without Cut) then becomes an important property for a calculus to have. Gentzen
called this the Hauptsatz [Gentzen, 1969]. We will show Cut admissibility for the implica-
tional fragment of intutionistic logic, which should highlight the main issues in larger proofs.
Before that is possible, however, we need to show three other meta-theoretical properties

hold for GImp: admissibility of Weakening, Inversion and Contraction.

Weakening allows one to add additional formulae to the context of a sequent [Troelstra
and Schwichtenberg, 2000]. Furthermore, it is possible to do this in such a way that the
height of the derivation of a sequent does not change. This result and proof, as well as the
others in this chapter, are standard (see, for example, [Troelstra and Schwichtenberg, 2000]

and [Dragalin, 1988]) and included to highlight some of the problems encountered.
The following definition from [Dyckhoff and Negri, 2000] and [Negri and von Plato, 2001],

is extensively used in later chapters, is required for the theorems which follow:

Definition 1 (Height-Preserving Admissibility) The rule R given by:

S
5 R
1s height-preserving admissible in a calculus iff for every n and every derivation of height

n of an instance of S there is a derivation of height < n of the corresponding instance of S'.

_|

There is a corresponding definition of admissibility, which drops information about

height. Height preserving admissibility therefore implies admissibility.
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Theorem 1 (Weakening) The rule:

r==C
A=C

is height-preserving admissible in GImp.

Proof. Induction on the height, n, of the derivation of the premiss. If n = 0, then the
derivation is an axiom or an instance of L 1. In either case, we can add an extra formula to
the context and the conclusion will still be an axiom or an instance of L1, and hence will
be derivable at height 0.

If n > 0, then the last rule used in the derivation of the premiss is either RD or LD.

In the former, we have C = DD F, and the derivation ends with:

I,D=FE
T=DOE

Using the induction hypothesis on the premiss of this, we obtain the following derivation:

I'DoE
RAD:Eﬁ;
A= DoE *°

If the last rule used is LD, then the derivation ends with:

I DoE=D I',E=C
I'DoE=C

Then, we use the induction hypothesis on both premisses, and then apply L O again to

complete the case and the proof. -

At some stages in a derivation, we may wish to know what the premisses were for a
given conclusion. In other words, we want to know which rules we can invert. Given a
derivable sequent which matches the conclusion of a rule, when is it safe to say it could have
been an instance of that rule which derived the sequent? This is another of the key results
for a sequent calculus. If all rules are invertible, then properties such as Cut admissibility
become much easier to show (as will be discussed in section 5.6). For GImp, the rule RD
is invertible. However, the rule L D is only partially invertible: given a sequent matching
the conclusion, we can only prove that the right premiss is derivable without an increase in
height. In what follows, we say a formula is principal for a rule if it is introduced by that
rule [Troelstra and Schwichtenberg, 2000]. Axioms are not counted as rules, thus L is not
counted as being principal in L1. A formula is principal for a derivation if it is principal

for the last rule used in that derivation:
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Theorem 2 (Invertibility) The rule:

I''A>B=C

FB=C  L2m

1s height-preserving admissible in GImp.

Proof. Induction on the height n of a derivation of the premiss. If n = 0, then the premiss
is an axiom or an instance of L. In the former case, the conclusion is likewise an axiom
since we restrict to propositional atoms for axioms, so A D B could not form part of an
axiom (see section 5.7). In the latter case, the conclusion is also an instance of L.L.

If n > 0, then the last rule used in the derivation is either an instance of R D or an

instance of LD . In the former, suppose C = DD E. Then, the derivation ends with:

I''A>DB,D=F
I'NADB= DDFE

Applying the induction hypothesis to the premiss and then applying RD yields the result.

When the last rule used is L D, there are two further subcases: one in which AD B is
principal and one in which there is some other formula D D F which is principal. In the
latter, we apply the induction hypothesis to each premiss, then apply LD, which gives the

result. In the former, the derivation ends with:

INNAoB=A I'B=C
I'NA>DB=C

so we simply take the right derivation, and we are done. -

Another structural rule which some calculi admit is Contraction: if we have two copies
of a formula in the context of a sequent, we can remove one. This rule is automatically
admissible if one uses sets for contexts, since sets have no multiplicity. The following two

theorems use a lexicographic order as the induction measure [Baader and Nipkow, 1999].

Theorem 3 (Contraction) The rule:

A A=C
rA=~cC

Contr

1s height-preserving admissible in GImp.

Proof. By induction on the complexity of the contracted formula A, with a subinduction
on the height n of the derivation of the premiss.
When A is a propositional atom, say P, then either C = P or not. In the former case,

the conclusion is likewise an axiom. In the latter case, if the derivation is by an axiom (for
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some other propositional atom) or an instance of L1, then the conclusion is likewise an
axiom or an instance of L. If the derivation is by a logical rule, then apply the induction
hypothesis in the premisses of that rule, then the rule again. For instance, say the last rule
used in the derivation is L D with principal formula D D E. Then, the following derivation

suffices:
IDo>E,P,P=D _ T,E.PP=C

T DoEP=D " T EP=C |
T DoE.P=C

If the contracted formula is L, then the conclusion is an instance of L_L.

If the contracted formula is D D E, then we perform case analysis on the last rule used
in the derivation. If it was an axiom or an instance of L1, then the conclusion is likewise an
axiom or instance of L. If the last rule used is RD or an instance of LD where DD F is
non-principal, then we apply the induction hypothesis at the lower height of the premisses,
and we are done.

This leaves the case where the last rule used is an instance of L O where D D E was

principal:

I''DobE,DODE=D T,DDE E=C
I''DOE,DODE=C

Apply the (sub)induction hypothesis to the left premiss to contract D D E. To the right
premiss apply theorem 2, contract the smaller formula E, then apply LD:

I''DOEE=C

I DS>E.D>E=D T EE=C  L2m
I.DDE=D ' ILE=C "
I''DoE=C

Thus, after several straightforward proofs, we are ready to show the main result: Cut
admissibility. The proof follows the format of that in [Troelstra and Schwichtenberg, 2000]

for intuitionistic propositional logic.

Theorem 4 (Cut admissibility) For the calculus GImp the Cut rule:

=4 ATl=C
I'=<C

ut

18 admissible.

Proof. By induction on the complexity of the cut formula A, with a subinduction on
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the lexicographic order of the heights (n,n’) of the derivations of the premisses?. There are

three cases to consider:

1. Both of the premisses used in the instance of Cut are axioms: Ax or L1, OR

2. At least one premiss is not an axiom and the cut formula A is not principal in at least

one derivation used in the instance of Cut, OR

3. The cut formula A is principal in both derivations used in the instance of Cut.

Case 1. Again, we split into cases. If the left premiss or right premiss is an instance of
L1, then the conclusion of the rule is likewise an instance of L.

If the left premiss is an axiom, then there is some propositional atom P € T'. We inspect
the right premiss: if it is an axiom for P, then the conclusion is likewise an axiom for P. If
it is an axiom for some other propositional atom @), then the conclusion is likewise an axiom

for @ (since Q €T").
Case 2. 1If A is not principal in the left derivation, then the last rule used must be LD .
Then, the left derivation ends with:

I"' DbE=D T E= A
I'DOE= A

whilst the right premiss of the instance of Cut can be rewritten to:
AT DDE=C

Invert this sequent using theorem 2, then use the induction hypothesis to cut A at a lower

height then apply LD again:

AT .DOE=C

ET'=A AT ,E=C

I".D>E =D ET = C !
I"DoE=C

LDinv

L>

Note it is possible to do this without using explicit inversion: weaken with £ and DD F in
appropriate places, cut A, then finish with two copies of D D F on the left. An application
of theorem 3 then completes the case.

If A is not principal for the right premiss, then a similar argument gives the result, and

so the proof is omitted.

Case 3. 1If the cut formula is principal for both premisses, then the derivation ends with:

2The sum of the heights of the premisses is not used, although it could be.
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LD=E . [DSE=SD DE=C
= DoE *° T,DoE = C
I'=C

Then, using the induction hypothesis based on height to cut DD E, then twice more based

on the complexity of the cut formula to cut D and F, we get the following derivation:

I'=DDOFE T,DODE=D
=D !
I'=sF

I'D=E
1

LE=C .
ih

I'=C

This completes the case, and the proof. -

The above proof should be quite convincing. Indeed, it was written as an example of a
complete proof, but careful subsequent analysis showed a case is not considered®. Consider
the following table, where the rows correspond to the last rule used in the left premiss of
the instance of C'ut and the columns correspond to the last rule used in the right premiss of
the instance of Cut. For three of the rules, the principal formula of the rule may or may not
be principal in the instance of Cut: those where the principal formula of the rule is also the
principal formula of the instance of Cut are marked “p”, otherwise they are not principal for
the instance of C'ut and are marked “np”. The column for R D is necessarily non-principal.

“w

Some combinations cannot happen; these are marked with an “-”. The possible cases are

marked with a 1,2 or 3, which corresponds to the case in the proof above which covers it:

Az,p Azmp | LLip Ll np | LDp LDOnp| RD
Az 1 1 - 1 - 2 2
Ll | 12 1,2 1,2 1,2 (7 2 2
LD 2 2 2 2 2 2 2
RD - 2 - 2 3 2 2

The case where the last rule on the left is L1 and the last rule on the right is a principal
use of L Dis not covered in the proof. It is simple to fix: L will be in I' so the conclusion is
likewise an instance of L L. However, that it is overlooked quite easily is more important.
Whilst this gap was discovered without formalisation, had the result been formalised it
would have been immediately obvious that a case was missing.

The proof of theorem 4 only had a few cases, since there was only one connective one has
to consider. The more connectives one has, the more cases where a formula is non-principal

one must consider. For example, the calculus G3ip [Troelstra and Schwichtenberg, 2000]

3The omitted case in the proof was addressed: only the proof was not shown.
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has three connectives, with 7 logical rules. This creates 62 cases where neither rule is an
axiom. It would be an extravagant use of space to give full derivation transformations for
each case. Indeed, Gentzen did not give full details for every case [Gentzen, 1969]. Normally,
one would see such proofs given as “obviously” or “similarly.” It should cause slight unease
that all cases may not be fully inspected; it only takes one case to be slightly non-standard
for a proof by such means as “obviously” or “similarly” to be rendered deficient. Moreover,
the more connectives there are, the more likely it is that there will be some oversight like

that outlined above. The pertinent questions are then:

e What short-cuts can be taken so that the result is fully proved without wading through

many bureaucratic details?

e What can be done to gain more confidence in the result?

Both questions will be addressed in this thesis. It is the latter which motivates the next

chapter.

2.3.1 Short-cuts to Cut admissibility

Various authors have shown sufficient conditions for Cut admissibility [Ciabattoni and Terui,
2006a],[Ciabattoni and Terui, 2006b], [Restall, 1999],[Curry, 1963]. The problem with them
is that they are applicable to a small collection of calculi only: the conditions one must place

upon such calculi are very restrictive. This will be addressed in more depth in chapter 5.



Chapter 3

Formalising Mathematics

3.1 Introduction

We saw in the previous chapter that many cases in Structural Proof Theory proofs are left,
in some sense, unfinished. The theoretical approach would have us search for short-cuts
which reduce the number of cases to be considered. The other route to gain more confidence
in a result is through formalisation. A machine-checked proof will not allow hand-waving or
glossing over of parts of a proof: all the details must be filled in. So long as the checker can
be verified as correct and the formalisation is faithful, one can then have full confidence in
the result.

A fully checked proof script also can be used as a pedagogical aid, either to the proof
itself, or to how other such machine-checked proofs may proceed.

In this chapter, we examine some proof assistants and investigate some formalisations of

Structural Proof Theory.

3.2 An Introduction to Epigram

EPIGRAM is a dependently-typed system [McBride and McKinna, 2004], [McBride, 2005].
An introduction to dependent types can be found in [Martin-Lof, 1984]. Types are created in
a natural deduction style: base constructors are introduced with no premisses, and inductive
cases are introduced with at least one premiss. For example, consider the type of lists (of
objects with type A) of specified length. The empty list has length zero and, given a list
of length n and an object of type A, then adding this object to the list will create a list of
type n + 1. Using the syntax of EPIGRAM, this becomes (assuming the type Nat has been
defined, as has the function +):

a:A as:listn A

data nil :list0 A ’ consaas:list (n+1) A

list n A: %

where

20
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To define a function on such a structure, one uses the key-word let followed by the type of

the function, for given arguments. For instance, we can define the append function:

o rs:listn A ys:listm A
= append zs ys: list (n+m) A

The system responds by asking for a definition. One can use recursion on one of the ar-
guments (with the keyword rec), case analysis on one of the arguments (with the keyword

case) and so on, and then fill in the blanks. In EPIGRAM the required definition is:

append zs ys < rec xs {
append xs ys < case zs {
append nil ys = ys
append (cons a as) ys = cons a (append as ys)}}

Everything on the left-hand side of the arrows is generated by the system, the user inputs
the right-hand side (including the arrows).

Using the methods of EPIGRAM, one can encode sequents and derivations as being terms
of a dependent type. For instance, to encode the height, one would index the type with a
natural number. Then, various functions could be proved about them, which are automat-
ically type-checked by the system (lines appear as green if they type check, yellow if more
information is needed, and brown if they are false). However, the interface is very buggy
[McBride, 2005] and thus is not suitable for large scale developments. Indeed, EPIGRAM
is now implemented in AGDA [Norell, 2009], [Bove et al., 2009], a much more user-friendly
environment. This development came too late for this thesis, but would be an interesting
project to emulate the work contained here in a dependently typed language.

A new version of EPIGRAM is being developed [McBride, 2008]. Some of the problems
with EPIGRAM will be cleared up, including some predefined types which one might like to

use.

3.3 An Introduction to Coq

Coq [Bertot and Castéran, 2004], [Coq Development Team, 2006] is based on the Calculus
of Constructions [Coquand and Huet, 1988] and the Calculus of Inductive Constructions
[Pfenning and Paulin-Mohring, 1989] and, like EPIGRAM, uses dependent types. However,
it has much larger libraries, a larger user-community (to solve problems) and a much nicer
interface, including its own integrated development environment, the CogIDE. Thus, it is
a much more useful tool for large scale theory development. For instance, the four colour
theorem has been formalised in CoQ, along with other important results’.

Users can define datatypes, and then prove results about them using induction and a

IDetails are available at http://ralyx.inria.fr/2004/Raweb/logical /uid40.html#uid40
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variety of tactics. In this respect, it is not dissimilar to Isabelle, although the syntax is
different. As such, a full introduction is not given here; the interested reader is directed
to the various tutorials provided on the CoQ web-page (http://coq.inria.fr/) and also to
[Adams, 1997], where the use of COQ to formalise sequent calculi was investigated in depth.
In [Herbelin and Lee, 2009], a model-based approach to Cut elimination was formalised
in CoqQ. Since COQ is constructive, one can then extract a Cut elimination algorithm for
intuitionistic sequent calculi.

One of the main deficiencies at the time of starting the project was that CoQ only had
a tactic driven approach to proof. In other words, one repeatedly manipulated the goal
statement by applying induction, case analysis, simplification etc., until all that remained
were trivial subgoals. Thus, one would end up with a proof tree in the natural deduction
style. From this, one could extract a lambda calculus proof term. For the casual reader,
both the proof term and the proof script which generated the term are not particularly
edifying. The proof script in particular gives no insight into the internal proof state at any
particular point. Thus, if one wishes to observe the methods used, the entire proof needs
to be rerun step-by-step. One of the main aims of the work presented here is to simulate
“book proofs” of results in a human-readable way. Obviously, then, this root-first approach
is unsatisfactory. Moreover, reusing of proofs, or rather, adapting proofs to prove similar,
related results, becomes a chore. Also, as often happens with software which is constantly
undergoing development, tactic-style proofs may not be instantly verified by new versions of
CoQ. Such a proof will need to be updated by hand (although they should become simpler
as the tactics become more powerful).

However, a declarative style of proof has been developed for CoQ: C-zZAR [Corbineau,
2008]. It follows in the traditions (both stylistic and the rhyming sound) of MIZAR [team,
2008] and Isar [Wenzel, 2002]. This was developed too late for this project.

The handling of variable binding and naming in CoQ was also lacking when this project
was begun. However, this has also been addressed in [Aydemir et al., 2007], which is similar
to the Nominal techniques in Isabelle and [Tasson and Urban, 2005]. Thus, there is little,
except perhaps the level of sophistication that Isar and Nominal Isabelle developments may?
have over C-zAR and the work of [Aydemir et al., 2007] respectively, to suggest that the
work of this thesis could not be formalised in CoQ rather than Isabelle. However, this was

not the case when the project was started.

3.4 An Introduction to Isabelle

Isabelle is a proof assistant with a small collection of inbuilt tactics, a small trusted kernel
and a large number of user supplied libraries. In this section, we will examine some of the

main syntax, tools and methodologies of Isabelle, including the Isar vernacular [Wenzel,

2Isar and Nominal Isabelle have been around for some time, and thus under development for longer.
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2002], [Wenzel, 2006]. Isar was created to give proofs which could be read independently
of the Isabelle system. A pure Isabelle tactic script gives no information as to the internal
proof state, and so is unreadable to a human. To discover how the proof works in detail,
one must proceed through the proof step-by-step in Isabelle, which displays the current
proof state. In Isar, we have the ability to explicitly name and display assumptions. This
facility, along with the use of English words in a proof, means it is possible to infer the proof
state at any time without running the proof through Isabelle. A more complete introduction
can be found in [Nipkow et al., 2005], which is the tutorial which comes with the Isabelle
distribution.

Isabelle allows for a lot of syntactic sugar. It also interfaces nicely with IXTEX to produce
fully checked typeset documents. All Isabelle code which appears in this thesis has been
verified, although the details are not always shown. Indeed, the KTEXproof fragments can
only be produced once the associated proof has been checked by the Isabelle system. The
approach of Isabelle is akin to functional programming. Datatypes are defined by giving a
number of constructors. For instance, consider the lists of natural numbers. This is defined

as follows, where we have added the abbreviation “#+#” for readability:

datatype natlist = NIL
| CONS nat natlist (- ## -)

The notation (—#+#—) after the declaration for CONS tells the Isabelle system that this is
the abbreviation we wish to use. In particular, the dashes tell the system where each of the
variables appear in the abbreviation. Whilst this is not so important here, since there are
only two variables, it becomes more useful for higher arity functions.

We can then define the functions reverse (not shown), append (abbreviated by “@@”,
not shown) and sum, which adds a list of natural numbers, by primitive recursion, which is

introduced by primrec:

consts sum :: natlist = nat
primrec
sum NIL = 0

sum (z ## zs) = z + (sum zs)

We can then show the simple lemma that the sum of a list, and the sum of a reversed list,
are the same. In the proof, the lemma sumappend is used: this is also shown, albeit with
a simple proof. This proof is a very short pure Isabelle proof. It first performs induction
on the list ns, then finishes all the generated subgoals by the auto method of Isabelle. For
the reverse sum proof, we use the declarative style Isar, which aims to give human-readable

proofs which are nonetheless machine checked:

lemma sumappend:
shows sum (ns QQ ms) = sum ns + sum ms

by (induct ns) auto
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lemma revsum:
shows sum ns = sum (reverse ns)
proof (induct ns)
case NIL
have sum (reverse NIL) = sum NIL by auto
then show sum NIL = sum (reverse NIL) by auto
next
case (CONS m ms)
then have IH: sum ms = sum (reverse ms) by simp
moreover
have sum (reverse (m ## ms)) = sum ((reverse ms) QQ (m ## NIL))
by auto
with sumappend|where ns=reverse ms and ms=m##NIL]
have sum (reverse (m ## ms)) = sum (reverse ms) + m by auto
ultimately
have sum (reverse m ## ms) = m + sum ms by auto
then show sum (m ## ms) = sum (reverse m ## ms) by auto

qed

The above proof demonstrates most of the keywords in an Isar proof. We use induction
on the structure of ns, which then creates two cases. The case keyword then allows us to
work on one of the two cases at a time. The word have followed by a statement creates
a new subgoal for us to prove, which we can do using the by keyword, followed by some
proof tactic which will prove that subgoal. Other important linking words are then and
with. These use the statement on the previous line, or use the statement on the previous
line along with the fact given respectively, in the proof of the new statement. Note that the
only statements which are available to use on each line are those which are explicitly stated
in that line, either by use of then and with. The keyword show lets us state and prove a
top-level goal; here they allow us to finish the subcases of the inductive proof.

Most complicated is the moreover-ultimately pair. This joins facts together across
separate blocks. So, when we type ultimately, we allow both the statement labelled IH

and the statement:
sum (reverse m##ms) = sum (reverse ms) +m

to be used in the upcoming proof step. One can use arbitrarily many moreover steps before
an ultimately step.

We also see the reusing of earlier results. The lemma sumappend has been specialised
using the where command: this instantiates the variables in the lemma.

There are various proof tactics one can use to prove subgoals. The method simp uses

the Isabelle simplifier. It tries to apply a lemma from the library as a rewrite rule, and
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returns the new proof state if the method does not prove the subgoal. The lemmas which
it tries to apply are ordered in some way, but it is possible to force the simplifier to use
specific lemmas using the keywords add, del and only. Note at most one rewrite step is
performed. The method auto tries to apply many rewrite rules: it is a form of looping simp.
In this sense, it can replace many simp steps, but it can also perform too many, leading to
unexpected results. The method blast tries to find witnesses to existential statements by
breadth-first search, and performs no simplification. The method fact allows us to state
explicitly something which is implicitly carried around as context.

A more sophisticated mechanism than primitive recursion is available in Isabelle: in-
ductive sets and predicates. It is possible to then do induction over an inductive set, or
case analysis, by showing whichever property we like holds for canonical elements of the set.
Inductive predicates check membership of an inductive set. As a basic example, consider the

even numbers. We show the definition using an inductive set, and an inductive predicate:

inductive-set even :: nat set
where
zero: 0 € even

| sucsuc: n € even = (n+2) € even

inductive evenpred :: nat = bool
where
zero: evenpred 0

| sucsuc: evenpred n = evenpred (n+2)

The sum of two even numbers is even. We show this by induction on the first element:

lemma evenadd:

assumes n € even

and m € even

shows (n + m) € even

using assms

proof (induct n)

case zero

then show 0 + m € even using (m € even) by auto
next

case (sucsuc n')

with (m € even) have n’ + m € even by simp

then have (n'+m+2) € even using even.sucsuc[where n=n’'+m] by auto
then show (n’ + 2) + m € even by simp

qed
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3.4.1 Proof Theory in Isabelle

Isabelle is distributed with a package which allows one to encode sequent calculi. However,
it does not allow one to reason about derivations, only check whether derivations are valid.
To reason about derivations more ingenuity is needed. There has been little work done on
formalisations of structural proof theory in Isabelle. A little over a decade ago, [Adams,
1997] noted that Isabelle was not sufficient for large scale meta-theory developments. We
hope to show that this is no longer true.

Various results about signed interval logics were formalised in [Rasmussen, 2002]. An
older dialogue of Isabelle was used, including ASCII syntax, and as a result the proofs are
not especially readable. In fact, the statements of the theorems are readable®, but the proof
process itself is not.

Display logic [Belnap Jr., 1982] was embedded into Isabelle in [Dawson and Goré, 2001],
and the same authors formalised a proof of Cut elimination in Isabelle in [Dawson and
Goré, 2002]. Again, it is the fact that the results are formalised, rather than the readability
of the formalisation, which is important. The work of [Dawson and Goré, 2002] also does
not use the inductive predicates, instead formalising sequents and derivations using the
primrec method. This has an unfortunate drawback: a function is needed to define when a
derivation or sequent is well-formed. Using the inductive scheme, derivations and sequents
are well-formed by definition. Indeed, it makes no sense discuss derivations which are not
well-formed; they do not exist. Even if the proofs are not the object of study, it would still
be possible to clean up [Dawson and Goré, 2002] using the Isar language, if only for the
statement of the theorems (a normal apply script could be used to actually do the work).

A similar paper is that of [Ridge, 2006] (which will be discussed in some detail in section
4.3). The result formalised is Craig’s Interpolation Theorem, which is a consequence of the
admissibility of Cut for the calculus G3c. Again, the work uses primrec to define well-
formed derivations and uses an apply script for the proof. Both decisions mean that the
proof is longer than it needs to be and also not readable by a human (consisting of around
1000 lines of “apply” tactics). Indeed, it was the effort to adapt the proof of [Ridge, 2006]
to intuitionistic first-order logic (G3i) which began the project described in this thesis.

3.5 Nominal Isabelle

One of the main benefits of using Isabelle is the package Nominal Isabelle [Tasson and Urban,
2005]. This is a formalisation of the work in [Pitts, 2003]. Naming and binding issues have
been difficult to overcome in a formal system for some years. Most approaches relied on de
Bruijn indices [Barendregt, 1981], [de Bruijn, 1972]. De Bruijn noted in [de Bruijn, 1972]
that, while de Bruijn notation is “easy to handle in metalingual discussion” amd “easy for

the computer and for the computer programmer” it is not claimed to be very good for the

3To one versed in the ASCII syntax of Isabelle.
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human reader. Since we have the nice language Isar which produces something the casual
mathematician can at least grasp, it is therefore imperative that we use a binding scheme
which is likewise easy for humans to read.

Nominal Isabelle fulfils this criterion. Variables are as one would see them in a text book,
as is binding. The Nominal method relies on swapping variables. Given a term, the set of
variables which cannot be swapped arbitrarily for a new variable is called the support of
that term. A variable is called fresh for a term if it is not in the support of that term. These
notions are (at least partially) proved by the system after a datatype is created. There are
some additional requirements placed upon the user: any primitive recursive definition on
a nominal datatype requires proof obligations about freshness and support to be fulfilled.
The freshness and support functions allow terms to be identified up to a-equivalence, which
is a crucial feature of Nominal Isabelle, although it is not exploited here. As an example,

consider the untyped lambda calculus [Barendregt, 1981]. We could define the terms by:

atom-decl var

nominal-datatype lam = Var var
| App lam lam  (infixr - 65)

| Lam <wvarslam (X [-].-)

The notation infixr - 65 tells the system that the operator - is an infix operator, which
associates to the right. To indicate an operator associates to the left, one uses infixl. The
65 is the precedence of the operator, in other words how tightly it binds. The lower the
number, the higher the precedence.

We need to declare that there are special objects, called atoms, which can be bound.
The <> notation tells the system that variables in that position will be bound, and we give
an abbreviation []. Note how similar this looks to the treatment one would see in a text-
book. The bound variable is not, strictly speaking, a variable, but rather a representative of
an equivalence class. Consider the S combinator: the only difference in its appearance from
a book would be the removal of the word Var, the removal of square brackets and (perhaps)

the use of only one A:

abbreviation
s-combinator (S)
where Sz yz = A [z].(A [y]. (A [2]. (Varz - Var z - (Var y - Var 2))))

3.5.1 Proof Theory in Nominal Isabelle

A few papers exist describing formalisations of proof theory using Nominal Isabelle. Given
that it is a relatively recent development, that there are only a small number is to be
expected.

In [Urban and Zhu, 2008] a strongly normalising cut-elimination procedure for classical

logic was formalised. The proof uses a term notation and is, the authors note, “rather
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complicated.” The authors also note, however, that it would be unfeasible to prove the result
in any other system using another approach. The benefits of formalisation are succinctly
highlighted by [Urban and Zhu, 2008]: some cases in the informal proof (found in [Urban
and Bierman, 2001] and [Urban, 2000]) were either missing or deficient. However, all such
problems could be fixed and formalised.

In [Urban et al., 2007] an important result is described: a hole in the variable convention
of Barendregt [Barendregt, 1981]. Whilst [Urban et al., 2007] does not contain the formal-
isation of this result, it was the formalisation which highlighted the gap in the first place.
The details can be found at http://isabelle.in.tum.de/nominal.

As will be discussed in chapter 4, we have given a formalisation of Craig’s Interpolation
Theorem using Nominal Isabelle [Chapman et al., 2008] (4.3).

3.6 Results Formalised in Other Systems

The system ELF (which is superseded by TWELF [Pfenning and Schuermann, 2005]) is, like
CoQ, dependently typed. In [Pfenning, 2000], Cut elimination is proved in the absence of
structural rules, for both classical and intuitionistic logic. The author notes that, in order
to be fully appreciated, the reader needs “basic knowledge of...the ELF meta-language.”
Whilst this is true of any formalisation, to a certain extent, the meta-language of ELF is not
easily readable by a human. A term structure is used for encoding derivations. However,
the main drawback of the paper is that it did not verify that the “signatures implement
meta-theoretic proofs”; in other words, whilst we have an algorithm which transforms cuts
into smaller cuts, there is no guarantee that it is indeed correct. Pfenning notes it would be
difficult to encode such a proof in a stronger framework, such as CoQ, owing to the large
number of additional lemmata one would have to prove in order to use de Bruijn indices
and the explicit representation of contexts. He concludes that an “elegant representation of
cut elimination in other systems is a non-trivial challenge which, we hope, others will take
up” [Pfenning, 2000](§7).

In a similar vein, [Schiirmann, 2000] uses the system TWELF to automate the meta-theory
of deductive systems. It introduces a meta-logic ./\/12+ in which one can easily formalise meta-
theory results using dependent types. It is implemented in TWELF; in effect, it gives TWELF

the same capabilities for formalisation as Isabelle or COQ.

3.7 Conclusions

Given the state of theorem provers at the beginning of this project it seemed reasonable to
use Isabelle for two reasons: the imperative style of Isar and the first-order package Nominal
Isabelle. Both of these allow for proofs to be written in a style which is approaching that of

a text book. Of course, there is some way to go before any mathematician can pick up an
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Isar proof and understand all that goes on, but certainly there is more transparency than
with a normal tactic script. A well-written Isar proof is surely a step forward in the effort to
dovetail formal and informal proofs. It is this problem which will occupy the next chapter,

and then the remainder of the thesis.



Chapter 4

Formalising Craig, Cut and

Contraction

4.1 Introduction

Some formalisations of sequent calculi use terms. Whilst terms may encapsulate all of the
information about a derivation, they are sometimes not as readable as one would wish.
Term formalisations are very amenable, however, to proving results about the calculus; all
the information about the derivation is at hand. It would be more satisfying to give a
formalisation of a sequent calculus which is more akin to what one would see in a text
book, such as [Troelstra and Schwichtenberg, 2000], but nevertheless is still useable for
formalising results from structural proof theory. Thus, in this chapter we give some concrete
examples of human-readable formalised calculi for which we prove non-trivial structural
proof theory results. These examples are novel: Contraction admissibility for G4ip has
never been formalised before, let alone in Isar. In the previous chapter, we saw examples of
Cut admissibility formalised in other systems, but not in Isar. A formalisation of Craig’s
Interpolations Theorem was attempted in [Ridge, 2006] and [Boulmé, 1996], but neither was
in Isar.

In section 4.2, we provide a method for specifying the formulae and rules of a calculus.
Where it is important, it is easy for derivations to carry height information. In section 4.3,
we formalise Craig’s Interpolation Theorem [Takeuti, 1975], in an expansion of the work in
[Chapman et al., 2008]. In section 4.4, we formalise Cut admissibility for G3ip, whilst in

section 4.5, we formalise Contraction admissibility for G4ip.

30
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4.2 Formalising Sequent Calculi

Sequent calculi are usually presented as rules of inference which can manipulate the formulae
of a logic. One knows, under the assumption that the premisses of a rule of inference are
roots of derivations, that the conclusion is likewise the root of a derivation. Furthermore,
nothing else is the root of a derivation.! Such a characterisation of derivations is suited to
Isabelle; roots of derivations are formed using inductive predicates.

The idea for sequent calculi is to give a syntax for sequents, and show how sequents are

inductively formed. For instance, in a logic with conjunction, the rule:

I'=A I'=B
I'=AAB

may be plausible. In the language of inductive predicates, the symbol = now carries more
power; it yields the expression is well-formed. So, if ' = A and I’ = B, we really know that
they are the roots of derivations. Thus, we know that from the pair of premisses, one can
deduce I' = A A B is the root of a derivation i.e. a sequent. In the formalisation, we use
the symbol =* to denote that a sequent is provable in this sense.

As an example, consider the rules for G3ip (see appendix A). Given a datatype for

formulae it is a simple matter to encode the rules of the calculus:

datatype form = Atom nat
| Imp form form (-D-)
| Conj form form (- Ax -)
| Disj form form (- Vx -)
| if

inductive
provable :: form multiset = form = bool (- =x -)
where
Az:  [(Atom i):# I'] = ' =x Atom i
| LBot: [ ff #TI] =T =% C
| CongR: [I' =% A; T =% Bl = T =x A Ax B
| ConjL: [ @ A @ B =% C] =T & AA«B =% C
| DisjR1: [I' =% A] = I’ = AVxB
| DisjR2: [I' =% B] = I = AVxB
| DisjL: [ @ A =% C; T & B =% C] = T & AV«B =% C
| ImpR: [T @& A =% B] = I' =x* ADB
| ImpL: [T ® ADB =+ A;T®B =% (C] =T ® ADB =x C

The syntax A : #I' means A is a member of the multiset I". The notation I' & A adds

1Some authors would have that any tree-like structure is a derivation, and further effort is required to
decide what is a valid derivation. Similarly, some make the distinction between a formula and a well-formed
formula: the former is just a string of symbols is a language, the latter obeys some particular structure.
Here, we choose instead to have validity built-in.
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the single formula A to the multiset of formulae I'. Note that these sequents carry no
information about their height or size. One cannot infer, automatically, the height or size of
the derivation. We may augment each the previous definition with a natural number, here
denoting the size of the derivation. Axioms and instances of L1 have size 0. Single premiss
rules have size one greater than the size of the premiss, whereas two premiss rules have size
one greater than the sum of the sizes of the premisses. The rules for G4ip (see appendix

A) with size are shown:

inductive

provable-dp :: form multiset = form = nat = bool (- = - | -)
where

Az: [ (Atom i):# ] =T = Atom i | 0

| LBot: [ff #T]=T= C |0

| CojR: [I' == A | n;T =B | m]=T= AAx B | ntm+1
| ConjL: [T @ A® B=C | n] =T @ AA*B = C | n+1

| DisjR1: [ = A | n] = T = AVx«B | n+1

| DisjR2: [I' = B | n] = I' = AV«B | n+1

| Disili [T® A= C |n;T®B=C|m]=T®& Av«B = C | ntm+1
| ImpR: [T@® A= B | n] =T = A>B | n+1

| ImpLO: [I' @ Atomi® B = C | n] = T @ Atom i ® (Atom i D B) = C | n+1
| ImpLC: [T ® AD(BD>C)=D | n]=T& (AN*+B) D C = D | n+1
| ImpLD: T ® ADC@®BD>C=D|n]=T® (Av«B) D C = D | nt+1
| ImpLL: [ T® A®BD>C=B|n;T®C=D]|mn=
' (ADB)DC = D | nt+m+1

The two calculi above use multisets for their contexts. It is possible to use other kinds of
structures. Lists and sets are the most obvious candidates; in section 4.3, sets of formulae

are used for contexts. No work has been done in this thesis using lists as contexts.

4.3 Formalising Craig’s Interpolation Theorem

Maehara’s proof [Takeuti, 1975] of the Craig Interpolation Theorem stands as one of the more
beautiful and intricate consequences of Cut admissibility in the sequent calculus [Troelstra
and Schwichtenberg, 2000] for first-order logic. Properly stated, it involves both the polarity
of subformulae, and the first-order language of terms which may occur in the interpolant
formula. The aim of this section is to present a formalised proof adapted for an intuitionistic
G3-like system, in which routine informal considerations of free and bound variables in the
language of first-order logic are rendered tractable by the use of Nominal Isabelle.

We build on the work of Ridge [Ridge, 2006] and Boulmé [Boulmé, 1996] and have
formalised the result in Nominal Isabelle [Tasson and Urban, 2005]. The work of [Ridge,

2006] (for classical logic, formalised in Isabelle) is incomplete; there is a condition missing
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in the statement of the theorem. This condition constrains the interpolant formula F' for a
sequent I'1, 'y = A1, Ay, where the two computed sequents are I'y = A1 F and 2@ F =
A,, as follows: the language of F', denoted L(F), should be common to the languages
L(T1,A1) and L(T'3, Ay). The definition of common language in [Ridge, 2006] accounts for
the predicate constants (with their polarities), but not the free variables. This condition is
the most difficult to formalise, but is likewise an important part of the correct statement of
the theorem; the additional complexity in enforcing the condition arises inductively when
one considers the rules for the quantifiers.

The work of Boulmé was undertaken in Coq [Coq Development Team, 2006], and used
the locally-named syntax of McKinna and Pollack [McKinna and Pollack, 1993] to attempt
to formalise Craig’s theorem. This syntax was developed to deal with variable binding
and reasoning up to a-conversion, as an alternative to de Bruijn notation. Substitution
in a reduction rule was formalised by substituting a suitably fresh parameter (i.e. one
that occured nowhere else in a particular derivation) for the bound variable, performing
whichever reduction rule was needed, and then rebinding the original name. The method
is constructive; a new fresh name need not actually be supplied, it is enough that such
a fresh name actually exists, but the syntax stipulates that an explicit new parameter be
given. Boulmé focused on a restricted language for classical first-order logic consisting of
only NAND and V (hence expressively complete). The interpolant for a particular case was
shown to be valid for that case in individual lemmata, rather than as inductive cases of one
theorem.

Here, we use instead the Nominal Isabelle system, with the intention of handling variable
binding more cleanly, and show that the proof of the theorem for first-order intuitionistic
logic can be formalised, including the tricky details that arise in the quantifier rule cases.
The choice of intuitionistic logic simplifies the analysis of sequents I' = A, as A then consists
of at most one formula. The nominal approach goes back to the work of Gabbay and Pitts
[Gabbay and Pitts, 1999].

We intersperse the formal proofs with the proofs that one would normally see in a text
book on proof theory. The informal proofs are displayed in a natural deduction style. We
use the abbreviation I'; A for I' U A where a formula is displayed, and I' @ A where single
formula A is to be added to a set I'. That we use sets rather than multisets is notable.
Firstly, the work in this section was an adaptation of the work of Ridge [Ridge, 2006] which
used sets for contexts. Secondly, it shows that the choice of multisets, whilst useful, is not

necessary: it is possible to formalise proof theory in Isabelle using sets for contexts.

4.3.1 The Development
The Formalisation

We build formulae as follows. An atomic formula is a predicate applied to a list of terms.

We formalise a logic without equality; terms are simply variables, and thus zero-arity func-
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tion symbols can be simulated by variables. The result would have been obscured beneath
a mass of technical details were we to consider a logic with equality, or terms constructed of
non-nullary function symbols. The interested reader is directed to [Troelstra and Schwicht-
enberg, 2000]. First-order formulae are built in the following way: propositional atoms are
a predicate (with no arity) applied to a list of variables. Note that, since we are using intu-
itionistic logic, all of the logical connectives must be given as primitives. The propositional
connectives are given in section 4.2. In the quantifier cases, the variable that is bound is
more accurately called a representative of an a-equivalence class, although the fact that

variables are identified up to « equivalence is never exploited here:

nominal-datatype form =
Atom pred var list
| ALL <var>form (Vx [-].-)
| EX <varsform (3x* [-].-)

We have a notational shorthand for a quantification over a list of variables. These are “Vs”
and “ds” for the universal and existential quantifiers respectively. They are defined by

primitive recursion on the list as follows:

consts

ALL-list :: var list = form = form (Vs [-].-)
primrec

Vs [Nil] A=A

Vs [z#zs].A = Vx [z].(Vs [zs].A)

consts

EX-list :: var list = form = form (3s [-].-)
primrec

3s [Nil].A = A

Js [z#xs].A = Tx [z].(3s [xs].A)

We use an aspect of the Nominal Isabelle package when we consider the individual
constants of a formula. The function freesf returns the free variables of a formula, whereas
frees returns the free variables of a set of formulae. One would ideally like to use the support
function created when one defines a nominal datatype, however this was not possible here.

The problem occurred when expanding the definition to the Vs and ds quantifiers.

nominal-primrec freesf :: form = var set
where
freesf (Atom n xs) = frees xs

| freesf (A Ax B) = (freesf A) U (freesf B)

| freesf (A Vx B) = (freesf A) U (freesf B)

| freesf (A Dx B) = (freesf A) U (freesf B)

| freesf (Vx [z].A) = (freesf A) — {z}

| freesf (3* [z].A) = (freesf A) — {z}
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| freesf (ff) = {}

lemma ALL-list-frees:
shows freesf (Vs [L].E) = freesf E — (set L)
by (induct L) (auto)

lemma FEX-list-frees:
shows freesf (3s [L]. E) = freesf E — (set L)
by (induct L) (auto)

The presence of implication as a primitive connective means that the positivity and neg-
ativity of a formula must be defined simultaneously. We use a pair of lists, the first list
containing the positive predicates, and the second containing the negative predicates, as

follows:

nominal-primrec pn :: form = (pred list x pred list)
where
pn (Atom n zs) = ([n],[)

| pn (A Ax B) = (let (pA,nA) = (pn A) in (let (pB,nB) = (pn B) in (pAQpB,nAQnB)))
| pn (A vx B) = (let (pA,nA) = (pn A) in (let (pB,nB) = (pn B) in (pAQpB,nAQnB)))
| pn (A Dx B) = (let (pA,nA) = (pn A) in (let (pB,nB) = (pn B) in (nAQpB,pAQnB)))
| pn (Vx* [z].A) =pn A
| pn (3
| pn(

We also need to define capture avoiding substitution. This is straightforward when using
Nominal Isabelle; the package allows us to say when a variable is fresh for another, denoted
xfy. For variables, this amounts to inequality: a variable is fresh for another if they are
not equal. Here, we are really talking about a-equivalence classes, rather than individual
variables. The notation [t,z]A means we substitute the term ¢ for the variable z in the
formula A, whilst the notation [¢; z]ys forms the basis of this substitution: it substitutes a

variable in a list of variables. Recall that our terms are simply variables:

nominal-primrec subst-form :: var = var = form = form where
[2,y](Atom P zs) = Atom P ([z;y]zs)

| [2:91(A Ax B) = ([2,9]4) A* ([2,9]B)

| [2:9](A V= B) = ([2,y]4) V* ([2,4] B)

| [z.9l(A D% B) = ([z,y]A) D ([2,9]B)

|

|

\

~— —

z(z,y) = [2,9](V* [2].A) = V* [z].([z,y]4)
z(z,y) = [2,9](3* [2].A) = T * [2].([z,y]4)
[Zvy]ﬁ =ff

~— —

We saw in section 4.2 how a provable sequent can be defined. Here, we use sets rather

than multisets for context and have explicit Weakening. The propositional rules are as in
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section 4.2 for G3ip, except that sets are used for contexts, which does not make a difference

to the formulation of the rules. The first-order rules are:

inductive
provable :: form set = form = bool (- =x - )
where
| AlIR: [xéfrees T; T = A] = ' == Vx [z].A
| EzR: I == [y,z]A] = T == 3« [z].A
| AUL:  [(Vx [z].A)el; {[y,2]A}UT =% C] = T =x C
| ExL:  [(3* [z].A)€T; ¢ (frees T' U freesf C); {AYUI =% C] = T ==« C
| wk: [ =%C0] = {A}Ul =x C

As with the freesf function, one would prefer to say xfI" in the rule AlIR, however because
we could not use the support function there, we cannot use the fresh function here.

Certain cases in the proof call for some derived rules. Since we have included Weakening
as a primitive rule, we have generalised Weakening as a derived rule, so that if I' =* C,
and T" is a subset of a finite set I, then IV =* C. More importantly, we have derived four
rules which perform the appropriate quantifier rule over all the variables in a given list. As
an example, here is the derived rule corresponding to RV:

r=+=C

T =*vs L.C Vs

where freesf L N frees I' = (.

4.3.2 The Proof
We have formalised? the following theorem:

Theorem 5 (Craig’s Interpolation Theorem) Suppose that T' =* C. Then, for any
splitting of the context I' = T'y Uy, there exists an E such that:

1. Ty =*FE and 'y, E =* C.

2. Any predicate that occurs positively in E occurs positively in 'y and either positively

in C or negatively in T's.

3. Any predicate that occurs negatively in E occurs negatively in T'y and either negatively

in C or positively in T's.

4. frees(E) C frees(T'1) N frees(Ta, C).

E
We use the notation I'y;T's = C to represent that F is a suitable interpolant for a splitting
I'y UT5. We have formalised this as:

2The full formalised proof is available in the Nominal Isabelle distribution, at
http://isabelle.in.tum.de/nominal/.
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theorem Craigs-Interpolation-Theorem:
assumes a: MU'y = C
shows 3E. Ty =x E A {E}Ul's =x C A T'1,I2,C F E pne

where the notation “I'y,['s,C' - E pnc” is an abbreviation for E satisfying the conditions
2-4 with respect to I'y, I's and C. Normally, we would prove the theorem by induction on
the height of the derivation of I' = (', and then by case analysis on the last rule used in
the derivation. This approach is possible in Isabelle, see [Ridge, 2006] for instance. Here we
prove the theorem by induction on the “provable sequent” definition. This means we show
the theorem is valid for the conclusion of each rule given that it is valid for the premisses.
This induction scheme is derived and proved automatically by Isabelle when we write out
inductive definitions.

Where a left rule was used to derive I'y UT's =* C, there are two subcases: either the
principal formula is in the left part of the split context, or it is in the right part. The
splitting is not assumed to be disjoint, thus the two subcases are not mutually exclusive. In
other words, it is in I'y or I';. When we refer to “the left case” and “the right case”, we

’ etc. Since

really mean that “the principal formula is in the left part of the split context...’
we have a single succedent calculus, we have no such splitting when using right rules. This
leads to a total of 22 subcases: 4 base cases, 10 cases from left rules, 5 cases from right rules,
and 3 Weakening cases.

In what follows, the names of the subsections refer to the rule(s) used in deriving the
provable sequent. The use of variable binding is only evident in the first-order cases, therefore
we give only sketches of the propositional cases, where there is no binding. They are still

fully formalised, but the output is suppressed.

Axioms and L1

In the case where the derivation of I'1,I'y =* C' is an axiom, there are two cases. The left
has C' € I'; and the right has C' € I';. In the former, we need to find a formula E such that:

I'n=*"Fand E, T, =*C

A suitable candidate is F = C, which would make both provable sequents instances of Az.

We must also check that T',TV,C + C pnc, which is trivially true. For this case we can
C
conclude I'1; Ty = C.

In the other case, we require an E so that:
I'y =* F and E. T =*C

which only hold for general T'y if we have £ = 1 D 1; in other words, T. Since | has neither

free variables nor predicate symbols, the condition I'y,I's, C'F L D 1 pnc is trivially true for
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1oL
any 'y and I's. Therefore, for this case we have I';; Ty = C.

Likewise, the provable sequents we require in the case where the rule used is L1 are
straightforward. We have two subcases, where L is either in I'y or I's. In the former, we

have that the interpolant is 1, and in the latter we have the interpolant is 1. D L:

case (LBot T’ C)
then have al: finite I'1 A finite I'2
and a2: ff € I'1Ul's by simp-all

have ff € I'1 V ff € 'y using a2 by blast
moreover
{assume ff € Ty
with af have 3E. 'y =% E A {E}Ul's =x C A T'1,I'2,C - E pnc by auto
}
moreover
{assume b2: ff € T'»
with al have I'1 =x ff Dx ff

and {ff Dx ff}Ul's =x* C

and I'1,T'2,C F (ff Dx ff) pnc

by (auto)

then have 3E. 'y = E A {E}Ul's =x C A T'1,I'2,C + E pnc by blast

}

ultimately show 3E. 'y =« E A {E}Ul's =+ C A I'1,I'2,C + E pnc by blast

R>and LD

For the right rule, however we split the antecedent the same argument applies, since there is
no distinguished formula in it. We split the premiss on the right, and suppose the interpolant
of the premiss is . We therefore have the two sequents I'y =* Fand 'y @ A® FE =* B.

Leaving the first alone, we have the simple deduction for the second:

Iy, A,E=*B
=5 —5 RD
I's,E=*ADB

which gives us the interpolant for the whole as E:

E
Fl;A,FQ — B

E
I';I'y = ADB

There are two subcases for L D . The left subcase has AD B € I'; and is the most unusual
of the propositional cases. Since the statement of the theorem says “for any splitting of the
context”, this means from our induction hypothesis we can choose whichever splitting we
want. In this case, we choose a different splitting for the premisses than for the conclusion.

Some brief experimentation reveals that we should split the first premiss as I'ys and I'; and
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the second as I'y U B and I's. In the formalisation below, we have instantiated the induction
hypotheses to reflect this. This gives us four sequents: I'y =* F; and I'; @ E; =* A and
I'N®B=*FEyand 'y ® Ey =* C.

Taking the first and fourth of these we can create the deduction:
Iy =* FEq

FQ,ElDEQ =* FEy v FQ,EQ =*C
F27E1 DEQ =*C

L>

whereas using the second and third we can create the deduction:

Fl,B =* Fy
I, Ei=*A BT, B =" By
Fl,El =* by L>
I'n="FEiDE,

RD

This is precisely the form we need, with the interpolant being F; D E5. We can therefore
conclude that the following is a valid deduction for this case, recalling that AD B € I'y:

51 Ea
FQ;F1:>A Fl,B;FQ:C
E1DEo

Fl;rg — C

We can see this formalised in the following fragment, where the language conditions are also

verified:

case (ImpL A BT C Ty Ty)
assume b1: (ADxB)el
have ihL: 3E. Ty =% EAN ({E} UT) =% A A
I'2,'1,A + E pnc by (simp)
have thR: 3E. ({B}UI'1) =% E A ({E} UT2) =% C A
({B}Ur'),I's,C + E pnc by (simp)
from ¢hL ihR obtain EI! E2
where c1: Iy =x* EI and ¢2: {E1}Ul'1 =% A
and d1: {B}UI'y =x E2 and d2: {E2}UT'; =% C
and c¢3: I'2,T'1,A F EI pnc and d3: ({B}UI'1),I'2,C - E2 pnc by auto
from dI have {B,F1}Ul'y =x E2 using provable.wk by (blast)
then have {E1}UI'y =% E2 using b1 ¢2 provable.ImpL by (auto)
then have I'1 =% E1 Dx E2 using provable.ImpR by auto
moreover
from cI d2 have {E1 Dx E2}U T'y =% E1
and {E! D* E2,E2}Ul'; =x C by (blast)+
then have {E1DxE2}UI'y =« C using provable.ImpL by (auto)
moreover
from c3 d% have I'1,I'2,C = E1 Dx E2 pnc using bl by (auto)
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ultimately have 3E. I'y =% E A {E}U's =% C A I'1,I'2,C - E pnc by blast

In the right case (AD B € I's), assuming via the induction hypothesis that the first premiss
has interpolant F; and the second premiss interpolant F,, we split both premisses on the
right, so I'1; 'y i> Aand I';T2 & B g C. We then obtain four sequents: I'y =* E; and
I'y®FE; =*Aand I'y =* Es and 'y @ B® Ey =* C. Naturally, we pair them up according

to contexts. The first and third premisses therefore give:

I'n=*E, T'i1=*E

I'n =* E1 ANEy RA
whereas the remaining two sequents give:
I's, By =*A I's, B, Ey =*C

To. By By =" A " T9.B,Ey, Ey=*C 7“L”
Iy, By, By = C =
Iy, By NEy =*C

LA

which gives us the required interpolant as E; A Fs:

E1 E2
Fl;F2:>A Fl;B,F2:>C
E1AEq

Fl;rg — C

Note that a conjunctive formula is the interpolant for rules involving implication. Thus,
this would not be a valid interpolant if we were to restrict the language to the implicational
fragment. Craig’s Interpolation theorem for the implicational fragment of intuitionistic logic
is given in [Kanazawa, 2006], but is given in semantic form, rather than proof theoretic form,

and so would not fit into the proof described here.

RA and LA

For RA, whichever way we split the antecedent the same argument applies, and likewise for
the premisses. Therefore, assuming that the interpolant for the first premiss is E; and the
interpolant for the second premiss is Es, we get four sequents: I'; =* E; and Ty ® By =* A
and 'y =* Fs and 'y & F5 =* B. Pairing them up by context, we get:

I'in=*FE T|="E
I'y =* E1 N Ey

RA

and:

FQ,El =*A PQ,EQ =*B
To,Er,Er=* A" Ty ELEa="B "
Ty By By =" AAB RA
Ty By Ay =* AAB 2
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which means that F4 A Es is the interpolant:

By By
I';l'y = A TI';;I'y, =B

E1NE

I'y; Ty 1:>2 ANB

The two subcases for LA are simple. For the left case, assume that the interpolant is F, and
split A, B likewise on the left, we get the two sequents 't PAG B =* Eand s @ E =* C.
We leave the second of these alone, and taking the first apply LA. We can then conclude
that E is the interpolant:

E
F17A,B;F2 — C

E
Fl;FQ — C

The right case is symmetrical, therefore E, the interpolant supplied by the induction hy-

pothesis, is also the interpolant for the conclusion.

RV and LV

We have two rules for RV. However, the two cases are almost identical, so we will only show
one. Whichever way we split the antecedent of the conclusion, the same reasoning applies,
and likewise for the premiss. Suppose the interpolant from the induction hypothesis is E,
and assume further that we used the rule RV;. Then we have the sequents I'y =* F and
I's @ E =* A. Using the rule RV, on the second, we obtain I'y & E =* AV B. Therefore

the interpolant in this case is F, and is given by the deduction:

E
Fl;Fg — A

E
I'y; T — AV B

We get the same result if RV was used in both situations.

Now we consider LV. In the left case assume that the interpolant for the first premiss is
Fq, and the interpolant for the second premiss is Fs. Now, split both of the premisses on
the left, to obtain the two sequents from the left premiss I'1 ® A =* F; and I's & E; =* C,
and the two sequents from the right premiss I'y ® B =* F, and I's & Fy; =* C. Again,

pairing up by contexts, we have:

Iy, Eq =*C Iy, Ey =*C
I's, B4V Ey =*C

Lv

and:
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Fl,A:>* El Fl,B =* E2 R
TLA= B VE, W T.B="EVE, LV
I'y =*FEiV E, v

This means the required interpolant is Ey V Es.
For the right case, we again split both premisses on the right, so the following deductions

suffice, assuming that F; and E5 are the interpolants:

Iy =% B T4 =% FEs

T, = B AE,
and:
FQ,A,El =*C FQ,B,EQ =*C
w w
F?aAaELE? =*C FQaBaEhEQ =*C v

Fg,El,EQ =*C I
To, By AEy = E 0

meaning that F4 A E5 is the interpolant.

RS

A first attempt at finding an interpolant for this case would use the interpolant supplied by
the induction hypothesis. Whilst it would give us the two provable sequents that we need for
the theorem, this interpolant fails the language condition for the conclusion. Suppose the
induction hypothesis gives us the two provable sequents I'y =* E and T's®E =* [y, z]A. The
induction hypothesis gives us that the free variables of F are contained in the free variables
of I'y and the free variables of I's @ [y, 2] A. Suppose that there were some free variables in
E that were in the free variables of y, but not in the free variables of I'y or A. These free
variables would no longer appear in the conclusion, and so the language condition would fail
when using E. This is the crucial difference between our definitions and formalisation and
those in [Ridge, 2006]: E would be a valid interpolant in that formalisation. We need to
remove these free variables, which we do by quantification. In this case, we use existential
quantification.

Let the set of such variables be L. Since they are finite, indeed there is at most one
such variable, we can form a list from this set, which we will also call L, in a slight abuse
of notation. Since R3 has no side conditions about the freshness of variables, we can apply

R3 for every variable in the list:

I'i=*F

T, = 3s L.E 1%
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On the second sequent, we can apply the derived rule L3s, after applying R3:

I's, E =% [y, z]A
2 *[y ] R3
Iy, E=*dzA I

I's,ds L.E =* dxA

ds

We can see this argument formalised as follows:

case (EzRT yz A)
then have al: I'Uly ==« [y,z]A
and h:3E. Ty = E A {E}Ul2 = [y,z]A A T'1,I2,[y,z]A - E pnc by simp-all
from th obtain E where b01: 'y =% E
and b2: {E}Ul'y = [y,z]A
and b3: I'1,T'2,[y,z] A + E pnc by blast
have finite ((freesf E) — ((frees I'2) U freesf (3 * [z].A))) by (simp)
then obtain L where eq: set L = (freesf E) — ((frees T'2) U (freesf (I* [z].A)))
using exists-list-for-finite-set by auto
from b1 have I'y =% 3s [L].E by (rule exists-right-intros)
moreover
from b2 have {E} U T2 =x% 3« [z].A using provable. ExR by auto
then have {3s [L].E} U I's = 3« [2].A using eq by (rule-tac exists-left-intros)

moreover

from b3 have I'1,I's,3* [z].A - 3s [L].E pnc using eq by (auto)

ultimately show 3E. Ty = E A {E} U2 =« 3x [2].A A
I'1,I'2,3% [z].A F E pnc by blast

LY

We have the same problem in this case as in the case for R3. In the left subcase, we define
L as the list of variables which appear free in y and not free in VxA and Gamma;. There
are two provable sequents supplied by the induction hypothesis, namely T'y @ [y, z]A =* E
and 'y @ F =* C, with Vx A € T';. Using the former, we first apply LV, and then, since we
know that the variables in L appear nowhere free in I'; by construction, then we can apply

one instance of RV for every variable in L:

Iy, [y, 2] A=>*E
I'i=*F
I'y =>*Vs L.E

LY
RVs

Using the other sequent, we can simply apply our derived rule LVs, thus Vs L.E is the
required interpolant.
In the right case, we define L as the list of variables not free in I's,VxA and C. The

interesting sequent is now the second obtained from the induction hypothesis, I's & [y, 2] A &



CHAPTER 4. FORMALISING CRAIG, CUT AND CONTRACTION 44

E =* C. We first apply LV, and then we know that the variables in L do not appear free

in the new sequent, therefore we can apply L3 for each of the variables in L:

Ty, [y, z]A, E =* C
F27E:>* C I
I's,3s LE=*C

ds

The proof for the left case is formalised as follows:

case (AlILx AT y C Ty T'2) assume bI: Vx [z].4 € Ty
have ih: 3 E. {[y,z]A} UT1 =% E A {E}Ul'y = C A
{[y,z]A}UI'1,I'2,C F E pnc by auto
from ih obtain F where
cl: {[y,z]A}UI'y =% E

and c2: {E}Ul'; =% C

and ¢3: {[y,z]A}UI'1,I'2,C F E pnc by auto
have finite (freesf E — frees I'1) by (simp)
then obtain L where

eq: set L = freesf E — frees I'1 using exists-list-for-finite-set by auto
then have set L N frees I't = {} by auto
from cI have I'1 =x* E using provable. AllL Vx [z].A € T'1) by auto
then have I'y =« Vs [L].E using (set L N frees I'y = {} by (rule forall-right-intros)
moreover
from c2 have {Vs [L].E} U Ty =x C by (rule forall-left-intros)
moreover
from ¢3 have I'1,I'2,C F Vs [L].E pnc using eq b1

by (auto)
ultimately have 3 E. 'y =« E A {E} UT2 =% C A T'1,['2,C + E pnc by blast

RV and L3

In the case of RV, it does not matter how we split the conclusion and premiss. Thus, we have
the provable sequents, supplied by the induction hypothesis, I'y =* E and I's & £ =* A,
and further that x ¢ frees(I';,T's, E). This means that we can simply apply RV to the second
of these two provable sequents, and then have the required sequents. Furthermore, since
we know that = ¢ frees(E), we have that the free variables of E are contained in the free
variables of I's @ Vr A.

The two cases for L3 are symmetrical to that of RY; the induction hypothesis supplies
that the quantified variable will be not be in the free variables of the interpolant, and so we
can just apply the rule L3 to the appropriate sequent, leaving the other alone.

The Weakening cases are uninteresting and so are not shown. All of the cases have now

been shown, and the proof of the theorem is complete.
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4.3.3 Mechanisation Statistics and Conclusions
The current work stands at 823 lines 2, including white space and comments. Except for
the Weakening case, all of the cases were informally sketched. Roughly a quarter of the
formal proof was shown. The number of proof steps is 779. The proof in [Ridge, 2006] for
classical logic was adapted for intuitionistic logic, and that comprised 1002 lines; moreover
the theorem in that work was not as powerful as the one in the current work, owing to the
absence of the condition on free variables. We also use the more verbose Isar language,
and not a tactic script, which necessarily adds to the length of our proof. The main insight
that made this proof much shorter was the removal of explicitly mentioning derivations, in
favour of the notion of a provable sequent. As an example, a proof of the theorem in this
section was attempted using explicit derivations, and the work was around 1200 lines. The
use of Nominal Isabelle also allowed us to reason clearly and simply about capture-avoiding
substitution.

We used Weakening (wk from the definition in section 6.8) as a primitive rule. However,
we could have removed this primitive rule and instead shown Weakening was admissible.
The purpose of this formalisation was to prove Craig’s Interpolation Theorem, not the
admissibility of structural rules for first-order logics. Thus, wk was kept as a primitive rule.

It would be a relatively straightforward to adapt this development and proof for classical
logic without equality. We would need more subcases for each rule, since a sequent calculus
for classical logic permits sets, or multisets, of formulae for succedents (see for instance
[Troelstra and Schwichtenberg, 2000]). However, we could also interdefine the connectives,
meaning one needs to consider fewer rules. It should be possible to extend the result to a
logic with equality and non-nullary function symbols, although we are unaware that such a
formalisation has been performed.

Interpolation results form an important part of computer science. They can be applied
to type-checking in C programs, as shown in [Jhala et al., 2007], and also to model checking,
as in [McMillan, 2005], amongst other things.

4.4 Formalising Cut Admissibility

4.4.1 An Induction Measure

For the proof of Craig’s Interpolation Theorem, we performed induction on the inductive
predicate provable. The inductive predicate hides information about the height of the
derivation. For (this proof of) Cut admissibility for propositional logic using multisets,
however, we need height to be explicit; the induction measure used is a lexicographic order

of the complexity or length of the cut formula followed by the height of the instance of

3available as part of the Nominal Isabelle distribution at “http://isabelle.in.tum.de/nominal/”
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Cut. We saw in section 4.2 how to encode an inductive definition of a provable sequent with
height. In [Troelstra and Schwichtenberg, 2000] the length of a formula A, denoted s(A) was
defined as:

s(L) 0

s(P) =1 for atomic P
s(0A) = s(A)+1 for unary o
s(AoB) = s(A)+s(B)+1 for binary o

We instead use a different definition for compound formulae, that of depth:

s(o[A1,...,Ay]) =maxs(4;)+1
n
This is easily formalised within Isabelle. Because G3ip only uses binary connectives this

can be done with an if-then-else clause. Note that we have made no distinction between

propositional atoms and _L:

consts length :: form = nat
primrec
length (At i) = 0
length (A D B) =
(if (length A < length B) then (length B + 1) else (length A + 1))
length (A Ax B) =
(if (length A < length B) then (length B + 1) else (length A + 1))
length (A Vx B) =
(if (length A < length B) then (length B + 1) else (length A + 1))
length (ff) = 0
The lexicographic order is a measure on a pair of natural numbers, then. Isabelle allows
one to define induction principles from scratch. All one must do to use a user-defined
measure is show that it is well-founded. That natural numbers are well-founded is part of
the Isabelle distribution, so the burden on the user is somewhat reduced. The following is

the proof of well-foundedness for a pair of natural numbers:

abbreviation
less-prod-nat (- < -) where

p <x q¢ = (p,q) : less-than <xlexx> less-than

lemma nat-prod-induct [case-names less):

fixes z y :: nat

assumes induct-step: \ zy. (\ vv. (v, v) <x (z,y) = Puv) = Puzy
shows P z y

proof —

have wf (less-than <xlexx> less-than) by blast

then show ?thesis
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proof (induct p = (z, y) arbitrary: x y)
case (less p)
show Pz y
proof (rule induct-step)
fix uv
assume (u, v) <* (z, y)
with less show P u v by simp
qed
qged
qed

Much like strong induction for the natural numbers, there is no base case. Thus, most

proofs using this induction measure will contain a sub-proof where case-analysis is performed.

4.4.2 A Proof of Cut Admissibility for G3ip

It is common for text-books, such as [Troelstra and Schwichtenberg, 2000] and [Negri and
von Plato, 2001], to prove Cut admissibility by inspecting whether or not the cut formula is
principal for the left or right premiss of the instance of Cut. To closely follow such a proof
would require us to give a full definition of what it means to be principal for a derivation.
Rather than that, we prove the result by case analysis on the last rule used in the left premiss
of the instance of Cut. As we shall see, this approach relies heavily on the invertibility of
the rules of G3ip.

Another result which we had to prove is the admissibility (depth-preserving) of Weak-
ening. An example of the inversion result, along with depth-preserving Weakening and its

natural extension, are shown without proof:

lemma inversionDisjL:
assumes ' ® AvxB = C | n
shows 3 jk. j<n ANk<n AT A= C |jAT®B=C|k

lemma dp Weak:
fixes I :: form multiset
assumes ' = C | n
shows ' A= C | n

lemma dp Weak":
assumes I' = C | n
shows ' + I''= C | n

As with the previous section, we will intersperse the sketches of the cases with formal proof
blocks.
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lemma cutAdmissibility:
fixes A :: form
and n m :: nat
assumes ' = A [ nand T ® A= C | m
shows 3 k. I'= C | k
using assms

proof (induct z = length A y = n+m+1 rule: nat-prod-induct)

The proof method is induction, introduced by the keyword induct. We use the rule nat-
product-induct, shown on the previous page. We have to instantiate the variables in that
method, which we do by the notation x = length A and y = n + m + 1. In other words we
set the lexicographic induction up using the length of the Cut formula, and then the sum of
the heights of the premisses.

There is only one case to consider. So, using the induction hypothesis, we prove the case

by a split on the last rule used for the left premiss:

case (less T y)

then have JH: A uv T A n Cm.
[(u, v) <x (z,y); T =A | ;T ® A= C | m;u=length A; v =n+ m + 1]
= dJa. ' = C | a by auto

have I' = A | n by fact

then show ?case

proof (cases)

This gives 9 separate cases. Seven of these are relatively uninteresting; we show only two as

examples. If the last rule used was RA, then the left premiss ends with:

I'=F|j; TT=F|k
I'=sFEAF|j+k+1

where n = j + k + 1. The right premiss is then I' @ EA F = C | m. Because LA for

G3ip is invertible, there exists some m’ < m such that:
INE,F=C|m

The following derivation, with two uses of the induction hypothesis, completes this case:

r-elj .
TLF=E|j T,BE,F=C|m

I'=F|k W T, F=Cld ih
S0 T=Cld ih

This is formalised as follows:

case (ConjRT' Ej F k)
with ' ® A = C | m) have ' ® EAxF = C | m by simp
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then obtain m’ where I' ® E & F = C | m' using inversionConjL by auto
from I''= FE | ) and I'=I'Y have I' ® F = E | j using dpWeak by auto
with T @ E® F=C | m)and IH

and (z= length A> and (A = EAxF)

have 3 n.I' @ F = C | n by (auto simp add:union-ac)
with @' = F | ky and @ =T and IH

and (z = length A> and (A = EAxF)
show 3 n. ' = C | n by auto

It is possible to apply the induction hypothesis twice because F' has shorter length than
E A F. Thus, it does not matter what the depth of the derivation is.

In the next highlighted case, that of LA, we use the sub-induction hypothesis. That
is, the length of the cut formula is held constant and the depth of the instance of Cut is
reduced. When the last rule used in the derivation of the left premiss was LA, there must
have been an occurrence of E A F in I". Thus, there is some I’ such that ' =TIV ® E A F.
The left premiss is then:

I'"E,F=A|j
I'EANF=A|j+1

where n = j + 1. As before, the right premiss of the instance of Cut can be rewritten as
I"® EAF & A= C | m. Using the invertibility of LA, there is an m’ < m such that:

I'E,F,A=C |m

Then, the following derivation, with one application of the induction hypothesis, suffices

to remove A:
I'E.F=A|j; T"E,FFA=C|m'

4. T,E,F=C|d !
WT,EAF=C|d

This is formalised as follows:

case (ConjLT' E F A’ j)
with T @ A= C | m) and (A = A) have '’ ® EAxF © A’ = C | m by simp
then obtain m’ where m'<mand I @ E e F ® A'= C | m’

using inversionConjL by (auto simp add:union-ac)
with '@ EQF=A"| jhaved n.I"OE®F=C|n

using [H

and (A = A’ and <z = length A) and (y = n+m+1) and (n=j+1) by auto
then have 3 n. I’ @ E A+ F = C | n using provable-dp.ConjL by auto
with (I =T' @ E Ax F) show 3 n.I' = C | n by simp

The cases for L1, RV, RVy, LV and L Dare similarly straightforward. This leaves two cases:
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where the last rule used was an axiom or an instance of RD. That the latter requires special
attention is owing to L D being only partially invertible.

For the former, there is some propositional variable (say At ¢) and I such that the left
premiss is V@At ¢« = At ¢ | 0. Using this information, the right premiss is IV At 1At ¢ =
C | m. Case analysis on this premiss is then used. If the last rule used on the right was a
logical rule (i.e. not an axiom or instance of LL) then it is easy to show that At ¢ can be

cut in the premiss(es) of such a rule. For instance, we show the case of RD:

" Ati,E=Ati|0 I/, Ati,Ati,E=F|j
I T Ati,E=F | d
. T, Ati= E-SF | d

This is formalised as follows:

case (Az i TV)
with ' & A= C | m) have ' ® At i = C | m by simp
then show 3 k. I'= C | k
proof (cases)
case (ImpRT'1 E F j)
from (A = At ) and (n=0) and "' = A | n) have I' = At i | 0 by simp
then have I' @ F = At i | 0 using dpWeak by auto
moreover from ' @ E = F | pand T @ Ati =T10D
have I' @ E ® At i = F | j by (auto simp add:union-ac)
ultimately have 3 n. I' & F = F | n using IH
and (m = j+1) and (x = length A
and (y = n+m+1) and (A = At i) by auto
then have 3 n. I' = EDF | n using provable-dp.ImpR by auto
then show 3 n. ' = C | n using (C = E D F) by simp

Note there is a slight difference between the informal and formal proofs. In the formal proof,
we use Weakening to introduce the formula F, whereas in the informal proof we give a new
axiom with E in the context. This difference is not significant.

If the last rule on the right was an axiom, then we do slightly different things depending
on whether the propositional atom on the right is the same as the one on the left. However,
both cases are fairly straightforward, and are omitted.

For the final case, where the last rule used on the left was R D, we again have to perform
case analysis on the rule used to derive the right premiss. For the right rule, we cut in the

premiss(es). As an example, consider RV;:

I'=E>F|j+1 T,ESF=G |k
4. T=G|d
W T=GVH|d

If the last rule used was a left rule (other than L D), then we use the corresponding inversion
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result on the left premiss (not shown). The case where the last rule used was L D is the only
remaining case. There are two further subcases: one where the cut formula is the principal
formula of the right premiss, and one where it is not. The latter is shown briefly, the former
in detail. For the former, the usual transformation (see proof of theorem 4 on page 16) is

used and is formalised as follows:

case (ImpLT1 G HE C'I)
have F D F = GDH V EDF#GDH by blast
moreover
{assume EDF # G D H — Details omitted
have 3 n.I' = C | n by auto
}
moreover
{assume EDF = GDH
then have F = G and F=H by auto
with " @ EDF =T1 ®& GDH) have I'' = 'l by auto
with T =T"and I'"® E = F | ) and (E=G) and (F=H)
and "= A | ») and (A = EDF)»
have 'l € G= H | jand I'l = GDH | n by auto
with T'1 ® GDH = G | kh haved n.I'1 = G | n
using /H
and (z = length A> and (A = EDF) and (EDF = GDH)
and (y = n+m+1) and (m=k+I+1) by auto
then obtain n’ where I'1 = G | n’ by blast
with T'1 ® G= H | j>haved n. 'l = H | n
using IH
and (z = length A and (A = EDF) and (EDF = GDH) by auto
then obtain m’ where I'1 = H | m' by blast
with T1 ® H= C'| bhave3d n.T1 = C'|n
using IH
and (z = length A> and (A = EDF) and (EDF = GDH) by auto
with " =T1 and (' =T and (C = C%
have 3 n. I' = C | n by auto
}
ultimately show 3 n. I' = C | n by blast
qged — This completes the proof

Using this result, it is easy to show that context-splitting Cut is admissible:

lemma contextSplitCut:
assumes ' = A | nand V@ A= C | m
shows3 a. T + 1= C | a

proof—
from assms have I' + I'' = A | n using dpWeak’ by auto

moreover
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from assms have I'' ® A + ' = C | m using dpWeak' by auto

then have ' + T ® A = C | m by (simp only:union-ac)

ultimately

show 3 a. T + I'" = C | a using cutAdmissibility by (auto simp add:union-ac)
qed

4.4.3 Mechanisation Statistics

The entire file, including all auxiliary results, is 840 lines long (contained in appendix D).
The proof of Cut admissibility is 314 lines long and consists of 570 proof steps. The proofs
of invertibility (of which there are three) are 323 lines long and contain 594 proof steps.
Although each is a very similar proof, we nevertheless have to prove them all separately.
It is undesirable that such seemingly trivial lemmata account for more effort, in terms of

writing and proof obligations, than a non-trivial result such as Cut admissibility.

4.5 Formalising Contraction Admissibility

Gdip is a calculus for intuitionistic logic with the property that root-first search terminates
without loop detection [Dyckhoff and Negri, 2000]. A more complete description of the
calculus, including a formalisation of the rules with height, is given in section 4.2 and
appendix A. In this section, we give a detailed formalisation of [Dyckhoff and Negri, 2000]
up to, and including, the proof of Contraction admissibility. As the authors of [Dyckhoff
and Negri, 2000] note, Cut admissibility for G4ip can be proved indirectly by proving the
calculus is equivalent to G3ip; we showed in section 4.4 that Cut admissibility holds for
G3ip. Thus, we do not give a direct proof of Cut admissibility for G4ip.

The induction measure used is that outlined in section 4.4.1. However, the length of a
formula is not the first entry in the pair, rather we use the weight of the formula. This is

defined as follows:

consts weight :: form = nat
primrec

weight (At i) =

weight (A D B) = 1 + weight A + weight B
weight (A Ax B) = 2 + weight A + weight B
weight (A Vx B) = 3 + weight A + weight B
weight (ff) =
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4.5.1 Auxiliary Results

The rules of G4ip are more complex than those of G3ip. They are also more numerous.
Whereas all Cut admissibility for G3ip needed was Weakening and invertibility, here we
require further results before Contraction can be shown admissible. Before these extra

results, however, we note the following invertibility lemmata which are used*:

Lemma 1 (Invertibility of G4ip [Dyckhoff and Negri, 2000]) The following rules are
height-preserving admissible in G4ip:

IMAVB=FE IMAVB=FE

il SV INo
T AS B /i T.B= B
IANB=E = ADB
T, AB=SE i T, A= B B2
IAtio>B=FE L(CAD)DB=E
T B=E  L02m T.Co(DoB) = E '~
I (CvD)DB=FE I'(CoD)DB=F

LVD inv LoD inv

T,CoB,D>B=E T,B= E

The proofs are standard inductions.

As for the non-standard lemmata, firstly we show that generalised axioms are admissible®:
INA= A

for arbitrary A. This is done by an strong induction on the weight of A:

lemma genAx:
assumes w = weight A
shows I n. T P A=A | n
using assms

proof (induct w arbitrary: A rule:nat-less-induct)

Where A is a propositional atom, 1, a conjunction or a disjunction, the result is quite simple.

Where the main connective is an implication, we perform case analysis on the antecedent:

case (Imp E F)
then show 3 n. ' ® A = A | n using (A=EDF)
proof (cases E)

4RA is invertible, but this is not required for the formal proofs which follow.
50ther authors call them expanded axioms e.g. [Ciabattoni and Terui, 2006a].
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This gives five cases:
e A=Ati DF
e A=1DF
e A=(GANH)DF
e A=(GVH)DF
e A=(GDH)DF

Only four of these cases are treated in [Dyckhoff and Negri, 2000], although the missing case
(A= LDF) is trivial. We show the most complicated case, where A = (GAH)DF":

IH

mu

IGO(HDF)=GD>(HDF)
I''GO(HDF),G=HDF
[,GoO(H-OF),G,.H=F "™
T (GAHSFGH=F 2
T (GAH)SFEGAH=F 7

T(GANH)SF= (GAH)SF 2

As noted in [Dyckhoff and Negri, 2000], the induction hypothesis applies because w(G D
(HDF)) <w((GAH)DF). This is formalised as follows:

case (Conj G H)
then have weight (GD(HDF)) < weight A using (A=FEDF) by auto
then have 3 n.I' @ GD(HDF) = GD(HDF) | n using IH by auto
then have 3 n.I' ® GD(HDF) & G = HDF | n using inversionImpR by auto
then have 3 n.I' @ GD(HDF) & G & H = F | n using inversionImpR by auto
then obtain n where a: I' ® GD(HDF) & G @ H = F | n by blast
from a have I' ® (GAxH)DF & G @ H = F | n+1 using provable.ImpLC
by (auto simp add:union-ac)
then have I' & (GA+H)DF & GAxH = F | n+2
using provable. ConjL by (auto simp add:union-ac)
then have I' @ (GA+xH)DF = (GA+xH)DF | n+2+1
using provable.ImpR by auto
then show 3 n. ' ® A = A | n using prems by auto

That there is a case not covered is surprising. However, it shows the usefulness of a for-
malisation, since it was formalisation which uncovered the missing case. Had this result not

been formalised the gap, however small, may have remained:

case ff
have '@ ff D F @ ff = F | 0 by auto
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then have I' @ ff D F = ff D F | 1 using provable.ImpR by auto
then show 3 n.I' ® A = A | n by auto

Using this lemma, it is easy to show that modus ponens is derivable:

F,ADB:ADBR _
A ASB= B '‘2m

The next auxiliary lemma required is the following:

Lemma 2 The rule:

I'=sD TI'"B=F
I''DoB=F

is admissible in G4ip.

Proof. Induction on the height n of the derivation of the left premiss. If n = 0, there are
two subcases. In the first, L € I', and so the conclusion is an instance of L. In the second
case, there is some propositional atom At i such that D = At i and At i € I". We can then
apply LOD to the second premiss.

When n > 0 there are several cases:

1. The last inference is an invertible left inference: LA, LV, LAD,LV>,L0D. Then, we
apply the appropriate inversion lemma to the right premiss, the induction hypothesis,

and then the appropriate rule.

2. The last inference is a right rule: RA, RV, R D . In each case, a combination of the
induction hypothesis on the premiss(es), Weakening and the appropriate rule from
LAD, LV D, L DD is used.

3. The last inference was an instance of L ODD. Then, I' = IV @ (F D G) D H and the
premisses are V&GO H G F = G and IV ® H = E. The following derivation suffices:

I, (FSG)>H,B=S
I'GOH,F=G I'H=FE I'HB=s "
I".GoH F,E5B—=G . H,ESB= S !
', (F>G)>H E5B= S L=o

The formalisation of this case is as follows:

case (ImpLLT'F G Hn E m)
then obtain a where I'' ® (FOG)DH ® B = S | a by blast
then have 3 m. "' ® H ® B = S | m using inversionImpLL by (auto)
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then have a: 3a.T''® H © EDB = S | a using prems(6)[where B=B] by auto
moreover — Left hand derivation

from I ® F ® GDH =G | n have"® GDH & F ® EDB= G | n
using dp Weak by (auto)

ultimately show ?case using provable.ImpLL by (auto simp add:union-ac)

The final auxiliary lemma we need is one which is somewhat counter-intuitive:
Lemma 3 (Double D> B) The rule:

I'(CoD)>DB=E
IC,D>B,DODB=F

s admissible in G4ip.

Given that we are trying to show Contraction is admissible, showing this seems unhelpful.
However, D D B is a lighter formula than (C' D D) D B, so we can use the manipulation to
create two lighter formulae. In the proof, when (C D D) D B is non-principal, the result is
straightforward. The proof is by induction on the height of the derivation of the premiss,
and the interesting case is where the last inference has (C' D D) D B principal. Then, the
premisses are ' #C @& DD B = D and I' @ B = E and the following is a valid derivation:

I''B=E
FacyDDBjD F7CaDDB,B:>Ew
FaC,DDB,DDBﬁE Lemma 2

This is formalised as follows:

lemma twoDB:
assumes I' ® (COD)DB = E | n
showsd m. ' & C ® DOB® DOB=FE | m
using assms

proof (induct T=I" ® (CDD)DB E n arbitrary: T')

case (ImpLLT FGHn EmT)
have (FOG)DH = (CDD)DB V (FOG)DH # (CD>D)DB by blast

moreover
{assume (FOG)DH = (CD>D)DB
then have egs: F=C
G=D
H=B
I'=I"" using prems by auto
from prems have ' ® H ® F & GDH = E | m using dpWeak’ by auto
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moreover
have ' @ F & GDH = G | n by fact
ultimately
have 3 n.I' & F & GDH & GDH = E | n using ImpLClassical
by (auto simp add:union-ac)
then have 3 n.I''® C ® DDB ® DDB = E | n using egs by blast
}
moreover
{assume (FDG)DH # (CD>D)D>B — Non-principal case. Proof omitted
have 3 n.I'"® C @ DODB & DD>B = E | n by blast
}
ultimately

show ?Zcase by blast

4.5.2 A Proof of Contraction Admissibility for G4ip

As is now standard, we intersperse the informal proof of the lemma with the formalised

version.

Lemma 4 The rule:

INAJA=F
I'NA=F

s admissible in G4ip.

Proof. The proof is by induction on the lexicographic order of the weight of A and the
depth of the derivation of the premiss:

lemma contract:
fixes A :: form
and n :: nat
assumes ' @ AP A= C | n
shows 3 k. T ® A= C | k
using assms
proof (induct z = weight A y = n arbitrary: I' A C n rule: nat-prod-induct)
case (less = y)
then have IH: A\ Bm C T.
[(weight B, m) <* (weight A, n); T & B® B = C | m] =
Jda. T ® B = C | a by simp

If Ais 1, then the conclusion is an axiom. If A is some propositional atom, say At i, then

we do case analysis on the last rule used:
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case (At 1)
then have I' @ At i ® At i = C | n using prems by auto
then have 3 k. ' ® Ati = C | k

proof (cases)

In the cases where the last rule used was an axiom or L1, then the conclusion is likewise an
axiom or L. If the last rule used was a logical rule, then apply the induction hypothesis

to the premiss(es) and then apply the rule. As an example, consider the case of LAD:

I At i,At i, ED(FD>G)=D
' Ati, ED(FOG)=D "
I",Ati,(EAF)DG = D

LAD

where I' = IV @ At 4. This is formalised as follows:

case (ImpLCT'EF G D s)
from T @ Ati ® Ati =T'® (EAxF)DG) obtain I'1
where eql: ' =T1 @ (EAxF)DG
and eq2: T/ =T1 @ Ati @ At
by auto
from eq2 and (I'" @ ED(FDG) = D | &
haveI'l ® Ati ® Ati ® ED(FDG) = D | s by simp
then have 3 k. T'1 @ Ati @ ED(FDG) =D | k
using (A=At 9 and (n=s+1) and IH by (auto simp add:union-ac)
then have 3 k. T'1 @ At i ® (EA+F)DG = D | k using provable.ImpLC by auto
then show 3 k. I' ® At i = C | k using (C=D) and eq! by (auto simp add:union-ac)

When A is compound, we again consider the last rule used. If A is of the form C A D,CV
D,AtiD>B,(C AD)DB or (CV D)DB and is principal in the last inference, then we use
inversion on the other occurrence of A, the induction hypothesis on the lighter formulae,
and then the rule again. As an example, consider LV. Then, A = SV T and the premisses
are T ®SVTES=Cand ' & SVT DT = C. The appropriate derivation is then:

r,svr,s==C . rLsvrT=C .
r.,s,s=c "™ "1T,1,T=C "™
r.s=c ° r.T=C "

r,svr=~<~C

Where A is non-principal, an application of the induction hypothesis in the premiss(es) will
suffice. Suppose the last inference (still for A = SV T') was LA, with principal formula
ENF:

LEFRSVL,SVT=C
[.E,F,SVT=C _°"
TEAFESVT=C N
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These two are formalised as follows:

case (Disj S T)
then have I' @ Sv«T & SvxT = C | n using prems by auto
then have 3 k. I' @ SvxT = C | k

proof (cases)

case (ConjLT' E F D s)
from T @ SV+T @ SvxT =T @ EA«F) obtain I'1

where eql: I' =T'1 & EAxF

and eq2: T/ =T1 & Sv«T ® SvxT

by auto
fromeg2 and 'O E G F =D | s

have I'f & Sv«T & Sv«xT & E & F = D | s by simp
then have 3 k. I'1 @ SvxT @ E® F =D | k

using (A=SVvxT) and (n=s+1) and IH by (auto simp add:union-ac)
then have 3 k. ' @ Sv«T & EAxF = D | k using provable. ConjL by auto
then show 3 k. I' @ Sv«xT = C | k using <C=D) and eq! by (auto)

case (DisjLT' E D s F t)
assume SVxT = EVxF
then have I' ® EV*F = I'' using (I SV+TDSV+T =T'' @ EV+F) by simp
from "' ® E = D | & and (' ® Ev«F =T
have I' & EVxF & E = D | s by simp
then have 3 k. I' & F & E = D | k using inversionDisjL
by (auto simp add:union-ac)
then have 3 k. ' ® F = D | k using (SVxT=FEVxF) and (A=SVx*T)
and IH by auto

moreover — Right hand derivation

from "' @ F = D | thand T @ EVvsF =T
have I' @ EVxF @& F = D | t by simp

then have 3 k. I' @ FF & F = D | k using inversionDisjL
by (auto simp add:union-ac)

then have 3 k. I' ® F = D | k using (SV«T=EV*F) and (A=SV*T)
and /H by auto

ultimately show 3 k. I' @ SvxT = C | k by blast

The most interesting case is when A = (VD W) DT and is principal for the last inference.
Then, we use lemma 3 in the following derivation, where ih* is three applications of the

induction hypothesis:
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LWoT,(VoW)DT, V=W I(Vow)>T, T =D
TWoOT,WoOT,WoT,V,V = W _LejnmaS r,7,T=D "™
LLWOT,V =W ! ILT=D '

LD

I(Vow)>T =D

The induction hypothesis may be used three times since every time it is an instance of

Contraction on a lighter formula. The formalisation is similar:

case (ImpLLT'EF Gs D t)
then have 3 k. I' @ SODT = C | k
proof (cases S)
case (Imp V W)
have (VOW)DT = (EDF)DG V (VODW)DT # (EDF)DG by blast
moreover
{assume (VOW)DT = (EDF)DG
then have I' ® (VOW)DT =T
using (S=VDOW)
and T &SD>T®SDOT =T & (EDF)DG) by simp
then have I' @ (VOW)DT @ V& WDT = W | s
using (VOW)DT = (EDF)D&
and I'"® E © FOG = F | s) by auto
then have I k. ' Vo Ve WoT e WoT e WOT = W | k
using twoDB by (auto simp add:union-ac)
then have 3 k. T Ve Ve WoTe WoT = W |k
using (A=SDT) and (S=V2O W)
and I/H by auto
then have 3 k. T @ Vo Ve WOT = W | k using (A=5SDT) and (S=VDOW)
and [/H by auto
then have 3 k. I' ® V@ WDOT = W | k using <(A=5SDT) and (S=VDOW>
and IH by (auto simp add:union-ac)

moreover — Right hand derivation

from C & (VoW)DT =Thand I'® G=D | »
have T®(VDOW)DT & T = D | t using (VOW)DT = (EDF)DG)
by auto
then have 3 k. I' & T & T = D | k using inversionImpLL
by (auto simp add:union-ac)
then have 3 k. I' & T = D | k using (A=SDT) and IH by auto
ultimately
have 3 k. I' @ (VDW)DT = D | k using provable.ImpLL by auto
then have 3 k. I' @ SOT = C | k using (S=VDO W) and <C=D) by simp
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}

moreover
{assume (VO W)DT # (EDF)DG — Non-principal case omitted
have 3 k. I' ® SOT = C | k by (auto)

}
ultimately show 3 k. I' @ SOT = C | k by blast

All cases have been covered, and the proof is complete. -

4.5.3 Mechanisation Statistics

The proof of Contraction admissibility is 917 lines long, consisting of 1867 proof steps (see
appendix D). The proof of Weakening admissibility is 57 lines long, consisting of 108 proof
steps. The proofs of invertibility are 953 lines long, consisting of:

e 271 proof steps for LA,

335 proof steps for LV,

274 proof steps for L0D,

271 proof steps for LAD,

271 proof steps for LV D,

271 proof steps for L DD and

145 proof steps for RD

This is a total of 1838 proof steps. Thus, the standard lemmata of invertibility and Weaken-
ing admissibility account for more lines and more proof steps than the proof of Contraction

admissibility. This was also true in section 4.4.

4.6 Conclusions

We have given three novel, non-trivial results from Structural Proof Theory. They have been
formalised in the proof assistant Isabelle using the human-readable variant Isar. Whilst
they may not be fully readable by someone unfamiliar with the syntax of Isar, the proofs
are certainly more readable than a tactic script. As such, the proofs can be made to closely
mirror the informal pen-and-paper approach. In the case of Contraction (section 4.5), the
formalisation procedure highlighted where an informal proof was (very slightly) incomplete.

The first-order binding package Nominal Isabelle was used in section 4.3. We exploited
the straightforward definition of substitution possible in Nominal, allowing us to concentrate

on the proof of Craig’s interpolation theorem rather than minor issues about substitution.
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The proofs are also relatively succinct. Obviously, they are not as short as some text-book
proofs, where many cases are treated by giving a general method and an invitation given to
the reader to verify the details. However, one can be sure that a checked proof is correct.
The onerous part of the process was the requirement to prove invertibility lemmata (in
section 4.4 and section 4.5) and Weakening. These are all standard induction proofs which
justifiably have informal proofs consisting of the line “Trivial” or “Standard induction.”
Using Isabelle, however, one has no recourse to this option. Thus, the standard lemmata
accounted for roughly half of the entire length of the file in section 4.4, and not much less
in section 4.5. They certainly had a roughly similar length (both in terms of the number of
lines and the number of proof steps required) to the main result of their respective section.

Thus, the natural question becomes: is it possible to get Isabelle to prove these results
itself? Or rather, is there some result one could find which, when formalised, changes 300
lines of (user-written) proof into 30 lines of proof? It is this question which will occupy us

in the following chapter.



Chapter 5

Classifying Sequent Calculi

5.1 Introduction

In the previous chapter, the formalised proof of Cut admissibility was quite short, whereas
the invertibility lemmata were quite long and tedious to prove. It would be helpful, therefore,
to give results which would ensure that the rules of a calculus are invertible, thus precluding
the need to prove invertibility on a case-by-case, or calculus-by-calculus, basis. In order to
do this effectively, one must reason about classes of calculi, without knowing the specifics
of their rules. So that we can do that, in this chapter we provide a framework into which
various sequent calculi fit. A few such frameworks exist in the literature. Some are more
appropriate for our purposes than others. They were developed with the principle aim of
giving sufficient or necessary conditions for a calculus so that it would admit Cut. Since
Cut admissibility is of a different nature to invertibility, we find that the approaches are
not wholly suited to the study of invertibility. Therefore, we give our own, new framework
under which, given appropriate restrictions, invertibility results are easy to prove.
Attempts to codify sequent calculi can be rather abstract. To this end, a wide variety of

examples are given to bring the framework to life.

5.1.1 Structure of the chapter

In section 5.2, we examine the canonical propositional calculi of [Avron and Lev, 2001]. This
was further extended to handle first-order logics in [Zamansky and Avron, 2006]. The simple
sequent calculi of [Ciabattoni and Terui, 2006a] are analysed in section 5.3. In section 5.4,
we look at the framework found in [Restall, 1999]. These three sections contain material
from the literature. In section 5.5, we outline our own, novel approach.

Section 5.6 gives a proof using our framework that instances of Cut which are non-
principal can be permuted into the premisses of the left-hand derivation. Finally, in section

5.7 we discuss why axioms are restricted to propositional variables. These sections contain

63
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new material.

5.1.2 Notation

Recall from chapter 4 that we use the symbol @& and + to stand for the sequent calculus

comma (for single formulae and structures of formulae respectively). So:

IT'=AA

would be displayed as '+ TV = A ¢ A.
Clearly, this abbreviation is context-sensitive. T' and I"” could be lists and the comma
operation “append,” or they could be sets and the comma operation set-theoretic union. It

will be obvious from the context what the symbols represent.

5.2 Canonical Calculi

In this section, we will look closely at the canonical calculi of [Avron and Lev, 2001]. Canon-
ical calculi are similar to what we will develop in section 5.5. We also see three methods for
manipulating a rule set, two of which will be useful for later sections.

In order to closely follow the terminology of [Avron and Lev, 2001], we will refer to a
sequent calculus as a Gentzen-type system. This concept is introduced without definition.
Formulae are given by ¢,, ..., whilst sets of formulae (', A, ...) are used as contexts. The
use of sets for contexts means that both Contraction and Fxchange are implicit. We have

the following:

Definition 2 (Standard [Avron and Lev, 2001]) A Gentzen-type system G is stan-
dard if its set of azioms includes the standard azxioms T' @ ¢ = A @ ¢ and it has all

the standard structural rules (including Cut). o

The use of standard axioms will mean that Weakening is likely admissible.! Since Ezchange
and Contraction are implicit, it is assumed in this thesis that the standard structural rules
(a concept which is never defined) consist of, but are not necessarily restricted to mingle

(min):

re=A INe=A
re=z==A

min

The use of a generalised axiom, where 1) is not restricted to atomic formulae, is harmful

to invertibility. The discussion of this will be delayed until section 5.7.

1We say “likely” since some other conditions need to be satisfied, too, for Weakening to be admissible.
This will be addressed in section 7.
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A clause is a sequent which consists of atomic formulae only. Canonical rules are designed
so that the calculus obeys the subformula property: the only formulae appearing in the
premisses of a rule are subformulae of those formulae in the conclusion of the rule. The
rules are also defined to be pure. A rule is pure if there are no side conditions limiting its

application [Avron and Lev, 2001],[Avron, 1991]. These rules are defined as follows:

Definition 3 (Canonical Rules [Avron and Lev, 2001]) A canonical rule of arity n

s an expression of the form:

I =% - I,=%,
C

where m > 0, C is either x(p1,...,pn) = 0 or 0 = x(p1,...,pn) for some connective x (of
arity n), and for all 1 < i <m, II; = X; is a clause such that I1;;¥; C {p1,...,pn}

An application of a canonical rule:

L= - I,=%,
*(pla"'apn) =

is any inference step of the form:

I = ALY -0 Ty 10, = A, 20
F,*(?/Jl,...,’ll)n):>A

where II and X} are obtained from II;, and ¥; (respectively) by substituting ; for p; (for
all1 < j<n), Ty, A; are sets of formulae, T' = J*, T;, and A = J!* | A;. An application

of a canonical rule with a conclusion of the form () = *(p1,...,py) is defined similarly.
The condition I1;,%; C {p1,...,p,} means that canonical rules have the subformula
property.

This definition permits context-splitting calculi. Such calculi are generally not invertible.
For instance, every right rule in a fully invertible calculi like G3cp become non-invertible
when altered to be context-splitting. We therefore restrict ourselves to context-sharing
calculi. In other words, calculi in which I'; =I" and A; = A for 1 < i < m.

Note that G3ip and G4ip contain some non-canonical rules. Consider the rule for L D

from G3ip, given in the format from the definition above:

p1Op2 = p1 P2 =
p1Op2 =

The left-hand premiss is not a clause; it contains the non-atomic formula p; D ps.
Consider the rules L DD and L0 D from G4ip:

P1,P20p3 = P2 P3 = Lo D1,p2 = 105
(p1Dp2) Dp3 = P1,01OD2 =
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The left-hand rule is non-canonical for the same reason as L D was non-canonical. The
right-hand rule is non-canonical because it is not pure. The side-condition for application of
the rule is that p; must be atomic. Furthermore, the conclusion of the rule does not contain

a single compound formula.

Definition 4 (Canonical Calculus [Avron and Lev, 2001]) A standard calculus is called
canonical if in addition to the standard axioms and the standard structural rules it only

has canonical logical rules. -

G3ip and G4ip are not canonical: they contain non-canonical logical rules. Thus, the range

of calculi which can be analysed using the canonical framework is already quite limited.
Avron and Lev seek to restrict some of the rule patterns which are harmful to Cut

admissibility proofs. They alter a canonical calculus by removing superfluous and redundant

rules:

Definition 5 (Superfluous and Redundant Rules [Avron and Lev, 2001]) A canon-
ical Tule is called superfluous if it is possible to obtain the empty clause from its premisses
using cuts.

A logical rule in a canonical calculus G is called redundant in G if its set of premisses

is subsumed by? the set of premisses of another rule of G which has the same conclusion. -

Example. [Avron and Lev, 2001] Consider a rule which has premisses p; & ps = 0 and
p1 = p2 and ) = p;. Then this rule is superfluous; we can derive the empty clause using
cuts:

p1=p2 p1,p2 =

= D1 p1 =
=

If a calculus contained the two rules:

= pP1 =p1 = D2
*(plap?) = *(plapZ) =

then the right-hand rule is redundant.
We will see in the next chapter that the fewer rules there are in a calculus (in general),
the more likely it is that they will be invertible. Indeed, we will examine this precisely in

section 6.5. The first half of the following lemma will be of use, then:

Lemma 5 ([Avron and Lev, 2001] ) Let G by a canonical calculus, and let G' be the
calculus that is obtained from G by deleting superfluous and redundant rules. Then G’ is
equivalent to G. Moreover, every sequent that has a Cut-free proof in G’ also has such a

proof in G.

2where “is subsumed by” is taken to be “includes”.
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Proof. We only show the first half of the statement.
Suppose G had a superfluous rule. Then, the empty sequent can be derived from it using
cuts. A single instance of Weakening can therefore show that the rule is admissible in G'.

Suppose G had the rules:

I =% - 1= Xy
j*(plv"')p’m)

1

I =% - I,-1=%.,-1 Hn:EnT
:>*(p17"'7pm)

2

ro is redundant in G. Then, G’ does not contain r5. To show equivalence of G and G’, we
show that any derivation in G can be transformed into a derivation in G’ and vice versa.
The latter is simple: any derivation in G’ is a derivation in G.

Suppose we had the following derivation in G ending in an application of rs:

D
DI = AGEy - T I = A, X0 Ty I = A, 80
F:>A,*(¢1,...7wm)

From the same premisses, we get a derivation in G’ by discarding the subderivation D. -
A clause is called a unit clause if it is of the form p; = 0 or ® = p;. The final two

concepts introduced are as follows:

Definition 6 (Separated and Full Rules [Avron and Lev, 2001]) A canonical rule is
called separated if all its premisses are unit clauses.
Suppose C' is a sequent which is of the form O = x(p1,...,pn) or x(p1,...,pn) = 0. A

separated rule:

I, =% - Hm:>2m
C

is called full if m =n and for every 1 <i <n, IL UX; = {p;}. =

Examples. The following three rules are ¢. not separated, ii. separated but not full and
143 full:

p1,D2 = | pr= p1= p2= .
propz = * propy = % p1opy =

A method is outlined which transforms any canonical calculus into an equivalent calculus
whose rules are full, not superfluous and not redundant. The method creates a rule set
which is larger than the original rule set. For example, the canonical rule RV from G3cp is

expanded to three full rules:
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:>p17p2
= p1 VP2 Rv
= p1 P2 = = Pp1 = D2 1= =Dp2
= p1Vp2 RVa = p1 VD2 RV, = p1 VD2 RV

We shall see in later sections that this will cause problems for invertibility.

5.2.1 Conclusions

The framework of canonical calculi has been extended to include first-order rules in [Zaman-
sky and Avron, 2006]. The reason for its creation was to study Cut admissibility. Some
of the methods and alterations may help prove Cut admissibility for such calculi, but they
make many rules non-invertible. Moreover, the range of calculi which can be called canonical
is somewhat small. The use of sets for contexts, structural rules, generalised axioms and

context-splitting rules will also create problems when trying to show invertibility.

5.3 Simple Calculi

In this section we look at the simple calculi of [Ciabattoni and Terui, 2006a]. They are
ultimately found to be not useful for our purposes.

In this section we follow the notation of [Ciabattoni and Terui, 2006a]. In particular,
a, 3,7, ... are propositional variables, %1, %o, ... are logical connectives (with a given arity).

I', A,II, ¥ are sequences of formulae, where a formula is defined as follows:

Definition 7 (Formulae [Ciabattoni and Terui, 2006a]) A formula A is either a propo-

sitional variable of a compound formula of the form (A, ..., An), where Ay, ..., Ap are
formulae. -
Inference rules are specified using meta-variables X,Y, ..., standing for arbitrary formulae,

and sequences ©,Z, @, U T of meta-variables. Note that these sequences can be empty. The
use of sequences means most structural rules will be have to be explicit. The use of sets
for contexts in section 5.2 meant that Contraction and Exchange were implicit; here that is
not the case. [Ciabattoni and Terui, 2006a] also restricts calculi to single-succedent calculi.
Explicit structural rules mean invertibility will be hard to show, whereas the restriction to
single-succedent calculi means the framework will not be applicable to many calculi.

The analysis (both syntactic and semantic®) is centred around simple calculi:

Definition 8 (Simple Calculi [Ciabattoni and Terui, 2006a]) A single-conclusion se-

quent calculi L is called simple whenever L consists of the identity axiom of the form X =

3Semantic methods are not the subject of study of this dissertation.
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X, together with: the (multiplicative version of the) Cut rule, structural rules {(R;)}ica, and
for each logical connective , left logical rules {(x,1);};en, and right logical rules {(*,7)x } ke,
(Ao, A1, Ao can be empty):

0=X 0,X.0. =2 Ti=¥ o Ty,
0,00, 5= ut 0, == i
Ti=9, -+ T,=Y, (x1); Ty=v, -+ YT,=V, ()

0,,%(X),0, =5 0, = «(X)

In rules R;, (x,1); and (*,7)k, m > 0 and the meta-variables in Oy, 0, (called left context
meta-variables), those in = (called right context meta-variables) and the meta-variables in
X = X1,...,Xm,m > 0 (called active meta-variables) are mutually disjoint. The active
meta-variables X1,..., X, are mutually distinct. In addition, structural rules satisfy the

following condition:

(str)  Any meta-variable in Y1,..., T, is a left context meta-variable, and

any meta-variable in Vq,...,V, is a right context meta-variable.

while logical rules satisfy:

(log0)  Any Yq,..., T, is either an active or a left context meta-variable, and
any meta-variable in Vq,..., VU, is either an active or a right context
meta-variable.

(log1)  Each meta-variable occurs at most once in Oy, ©,..

(log2)  If (IN[X] is a logical rule of L with a left context meta-variable X,
then (I)[®] also belongs to L for any sequence ® of fresh and distinct
meta-variables. Here, (I)[®] denotes the rule obtain from (I) by
replacing all the occurrences of X with ®.

(log3)  If (IN[Y] is a logical rule of £ with a right context meta-variable Y,
then (I)[®;; @, = EZ] also belongs to L for any sequent @, ®, = =
that consists of fresh and distinct meta-variables. Here,

(I)[®; @, = E] denotes a logical rule obtained from I by replacing all
sequents of the form © =Y with ®,,0,d, = =.

These conditions allow for both context-sharing and context-splitting rules. The rules
will also satisfy the subformula property, because any meta-variable in Y; and ¥; will appear
in the conclusion as either a left context meta-variable, right context meta-variable or active
meta-variable. As with section 5.2, there is no restriction on axioms to be propositional

formulae.



CHAPTER 5. CLASSIFYING SEQUENT CALCULI 70

An instance of a logical or structural rule is obtained by substituting arbitrary formulae
for meta-variables. Contezt formulae replace context meta-variables, and so on. The formula

—.

of the form *(A) as well as the formulae replacing X in identity axioms are called principal.

Examples. The calculus FLg_for intuitionistic linear logic with knotted structural rules
from [Hori et al., 1994] fits into this framework®. In particular, the initial sequent L1 is

seen as a O-premiss rule:
@l, 1, 0,==

Similarly, the rules for the logical constants 0 and 1 are given by O-premiss rules. The right

rules for fusion and conjunction are given by:

0= X; 65= X, 0=X; 0= X,
01,02 = X1 * Xy 0=X;NX,

RA

For Rx, we have Y1 = 01, YTy = 05, ¥; = X, ¥y = Xy and O; = O + O3, where + is used
to concatenate sequences. The active meta-variables are distinct. Rx satisfies (log0): no
context meta-variables pass from the right to the left of the sequent arrow, and vice versa.
The other three conditions can be verified ((log2) does not need to be satisfied for this rule).
The knotted structural rules are generalisations of Weakening and Contraction, which
take n occurrences of a meta-variable X in the premiss to k& occurrences in the conclusion:
n

—
0,X,...,X,0, =
0,X,...,X,0, =

——

k

(n~ k)

[11] [1]

In particular, normal Weakening is (0 ~ 1) and normal Contraction is (2 ~ 1). It is not
true that every instance of this knotted structural rule can be placed within the simple
framework. For all n > 0, the rule (n ~» 0) does not fit into the framework, for it will violate

(str). For example:

0,X,0,=E

0,0, =z 1~0

The meta-variable X will not be a left context meta-variable since it does not appear in the
conclusion of the rule.

Any calculus which has rules requiring multiple formulae to be principal will not fit into
this framework. Since the rule L0 D for G4ip has two principal formulae, G4ip cannot be

analysed under this framework.

4In a sense. Once FLg, has been altered to use sequences, not multisets, it fits into the simple calculus
framework.
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5.3.1 Conclusions

The simple framework is used for single-succedent calculi. It contains a lot of elements
which, if not restricted, will be harmful to the invertibility of the rules any calculus which
fits the framework. Structural rules, the use of sequences for contexts, generalised axioms
and the allowing of context-sharing logical rules will cause problems in later sections. That
being said, if these elements are removed, it could be possible to create a more amenable
framework for studying invertibility. The framework we propose in section 5.5 will share

some components with the simple framework.

5.4 Restall’s Framework

The final framework we look at is that of Restall [Restall, 1999]. It is more flexible than the
others presented. The major difference between our framework, to be developed in section
5.5, is the characterisation of rules as infinite sets of inferences.

In [Restall, 1999], Restall outlines a framework, inspired by [Belnap Jr., 1982], which
is more general than those of the previous sections. In particular, sequent calculi are not
the only objects which can be studied under the framework. However, the most obvious
application is sequent calculi. Since the study of invertibility in sequent calculi is the main
aim of this thesis, we will apply his framework to sequent calculi alone. Note that we have
also changed the notation from [Restall, 1999] to closely follow the notation used throughout
this dissertation.

The structures in a sequent X = Y are not specified. Whilst X and Y consist of formulae,
they could be lists, sets, multisets, sequences or single formulae. A formula instance is in
either antecedent or consequent position, but not both. Normally, the notions of antecedent
and “on the left of a sequent arrow”, and consequent and “on the right side of a sequent
arrow” coincide, but this need not be the case. In the case of display logic [Belnap Jr., 1982]
a formula in antecedent position can occur on the right of the sequent arrow. However, in

what follows, we treat antecedent and “on the left” as interchangeable.

Definition 9 (Inferences and Rules [Restall, 1999]) An inference is a (possibly empty)
set of sequents, called premisses, with a sequent, called the conclusion.

A rule is a set of inferences, which may be presented schematically. -

So, an axiom would be treated as a 0-premiss inference. Note that the definition allows for
infinite premiss rules. Here there is a departure from [Belnap Jr., 1982], since there only
finitely many premisses for inferences are allowed.

Restall investigates how certain parameter conditions affect sequent calculi. Parameters

are defined intuitively:

Definition 10 (Parameters, Congruences and Principal [Restall, 1999]) A param-

eter is something which is held constant from premisses to conclusion or introduced with no
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regard to their particulars.
The congruence relation on parameters is some equivalence relation on parameters in
an inference.

Nonparametric formula instances in the conclusion of an inference are principal for

that inference. o

For instance, I" and I can be congruent in the following inferences:

= AA "= A A
I'=0A,A I"=o0A4,A

Definition 11 (Parameter Conditions [Restall, 1999] )

e Shape-alikeness of parameters. Congruent parameters are occurrences of the same

structure.

e Position-alikeness of parameters. Congruent parameters are either all antecedent

or all consequent parts of their respective sequents.

e Non-proliferation of parameters. A congruence class of parameters in an infer-

ence contains at most one formula in the conclusion of that inference.

These correspond to conditions C2 — C'4 from [Belnap Jr., 1982].

Examples. Consider the following three inferences:

I'=s=AA T'=BA I'=sAA T'=BA | I'=sAA
T= A+B,A L A= A+BT w I.T=AANAxB "

In 4, all three parameter conditions are satisfied. In i7, the position-alikeness condition is
violated, for I appears in antecedent position in the premisses and consequent position in
the conclusion. In #ii, unless the structures I" and A are such that I' + I' = T" (for instance
they are sets and + is union), then this inference violates the non-proliferation of parameters
condition.

In particular, these conditions will rule out some structural inferences, but not others.
Contraction, for instance, will satisfy the parameter conditions. Rules from modal logic (see
[Troelstra and Schwichtenberg, 2000]), such as:

ar = A,0A
7,07 = 0OA, OA, A’

RO

may violate the non-proliferation of parameters condition.

As with the other frameworks, we are restricted as to the principal formula of inferences:
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Definition 12 (Single Principal Constituents [Restall, 1999]) If there is an inference
ending in a sequent C in which some formula A is principal, then A is the only principal

formula in C, unless C' is an axiom. -

This is condition C5 in [Belnap Jr., 1982]. Owing to the rule L0 D from G4ip having two
principal formulae, G4ip will not fit into Restall’s framework.

Using these conditions (and some more specific ones which are not covered here), Restall
shows that non-principal cuts can be permuted upwards in such a calculus. The details are

not important and we shall prove this result using our own framework in section 5.6.

5.4.1 Conclusions

Restall’s framework is well-developed and general. Unfortunately, the generality means
that a lot of harmful rules are allowable. Moreover, rules which (we shall see) are not
harmful to invertibility are not allowed; they fail the parameter conditions. Again, this is
understandable; the main purpose of the framework in [Restall, 1999] was to analyse calculi
to show when Cut is admissible, not when its rules are invertible. However, in [Curry, 1963]
(which inspired [Belnap Jr., 1982]), there is some study of invertibility. We will discuss this
work in the next chapter, and in particular show the results obtained are weaker versions of
our results.

None of the studied frameworks discussed are truly appropriate for our task. Therefore
we develop our own framework which takes elements from the other three, but refines them

so that we can analyse invertibility in sequent calculi.

5.5 Definitions

We are interested in the occurrences of formulae in inferences. In what follows, when we talk
of formulae, metaformulae, ..., we mean formula occurrences, metaformula occurrences, .. ..
This abbreviation is used to aid readability.

We distinguish between formulae and metaformulae. The reason for this distinction is
so that we can distinguish rules from inferences later. Let P, the set of propositional atoms,

be defined by the grammar p, q,.... Then, a formula is defined by the grammar:
A:=P| L | F(Alist)

where F' ranges over constructors. For instance, if the language included conjunction, an
example of a formula could be (pAg) A L = Conj [Conj [p, q], L]. A formula is an expression
in the object language.

Suppose that A, B, C' ... are formula variables, and P,Q, R, ... are atom variables, then

metaformulae are given by the following grammar:
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pu=A|P| L|F(¢list)

An example of a metaformula is 1 D (A D P), if implication was one of the constructors. We
instantiate metaformulae with formulae.

A, ... are metamultisets of formulae. In other words, I', A, ... range over multisets of
formulae.

The use of multisets, instead of lists or sequences, means that the results are applicable

for systems in which the structural Fzchange rule:

IB,AT = A I'= A B,A A
A, B, T" = A I'=s A A B, A’

is admissible.

In the informal analysis, we will represent a compound formula as x(A) or o;(B), where
*¢ 1S an s-ary connective, and A has length s, for example. The usual propositional formulae
can be displayed in this manner, for example A A B would be displayed as Conj, [A, B].

We distinguish between rules and instances of rules, which we call inferences. Rules are
pairs consisting of a list of sequents, called the premisses, and a single sequent called the
conclusion. Most of our lemmata are about rules, and one proves these by showing the result
for arbitrary instances of the rule. Inferences can contain no metaformulae; they have all
been instantiated with formulae. Likewise every metamultiset is instantiated; however we
do not highlight the distinction between the metamultisets and their instantiations, for the
sake of readability. We denote rules as R, S, T, ... and inferences as r, s,t.... For example,

the inference on the right is an instance of the rule on the left:

I'=A¢,9 I'= A p,q
' AoV I'=A,pVgqg

We impose conditions upon a calculus which ensure that the rules are invertible. To

define properly these conditions, we require the following definitions about formulae:

Definition 13 (Subformulae, Metasubformulae) The subformulae of a formula A

are defined by induction on the structure of A as follows:
o A is a subformula of A
o IfF[Ay,...,A,] is a subformula of A, then so are Ay, ..., A,

The metasubformulae of a metaformula ¢ are defined by induction on the structure of ¢

in the same fashion. -

Some logical rules, called context sharing rules, are such that every premiss of a rule has

the same context. Each context sharing rule can, therefore, be split into two components.
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First, there is the active part of a rule: those metaformulae, and metamultisets of formulae,
which cannot be arbitrarily instantiated in an inference, and the passive part of a rule,
which can be arbitrarily instantiated. The latter part is really the context of the rule, in

propositional calculi. We make this more precise:

Definition 14 (Active and Passive Metaformulae) A metaformula occurrence ¢ is ac-
tive for a rule R iff:

e ¢ cannot be arbitrarily instantiated in an instance of R, OR

e ¢ is a submetaformula occurrence of an active metaformula for R, occurring outside

the active metaformula.
A metaformula is passive for a rule R if it is not active for R. -

Note we are only defining the active metaformulae for a rule, not all occurrences of the
metaformula.

The active part of a rule is then obtained by deleting all passive metaformulae, and
metamultisets of passive formulae, from the rule. Similarly, the passive part of a rule is
obtained by deleting all active metaformulae from the rule. These concepts are similar to
the active and context formulae of [Ciabattoni and Terui, 2006a](section 5.3).

As an example, consider the rules L D from G3cp and L0 D from G4ip, shown with their
active parts:

'=¢,A Ty=A =>¢ Y= P o= P,¢=
ooy = A ODY = P, PO¢p=1 P, PD¢=

In the former case ¢ D1 cannot be instantiated with a conjunctive formula, for instance, and
so is active. This, in turn, means ¢ and ¢ are active. In the latter case, the same reasoning
means P D ¢ is active, therefore P and ¢ are active. In more complicated rules, the active

part of the rule is larger:

ar = ¢, CA
or, I’ = 0¢, A, A’

It is not possible to instantiate OI' with a single formula whose outermost modal operator

is ©. Therefore, the active part of this rule is:

I = ¢, CA
Or = O¢, OA

Note that structural rules have no active metaformulae according to this definition. As an

example, take the Contraction rule, where the contracted formula is ¢:

I'¢g,9=A
o= A
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¢ can be arbitrarily instantiated and so is passive by our definition.

This method of giving a rule, and then removing the active parts for analysis, is different
from that of [Avron and Lev, 2001] (section 5.2). There, the active parts were given and
context was built around them. A discussion of the differences this can create is given in
section 7.2.

We focus on a particular kind of rule, one in which certain structural rules (which, in

general, are harmful to invertibility if primitive in the calculus), are not allowed.

Definition 15 (Decomposable rule) We call a rule R decomposable iff, after deleting

all active metaformulae from R to obtain R', we have:

r=A -.. F:>AR, r=A ... F:>AR,
r=A OR I,T=AA
If every rule in a calculus R is decomposable, then we call R decomposable. -

As an example, the Contraction rule is not decomposable. For, when we remove the
active formulae (of which there are none), we do not have the passive part fitting either
of the forms above. These conditions may be verified by eye, checking the rules. We now

distinguish between two kinds of decomposable rules.

Definition 16 (Normal, Implicit-Weakening Rules) A rule R is called normal iff af-
ter deleting all active metaformulae from R to obtain R, the conclusion of R’ is the same
as each premiss of R’.

A rule R is called an implicit-weakening rule (IW rule) iff after deleting all active

metaformulae from R to obtain R’, the conclusion of R' is not equal to each premiss of R'.
_|

Rules whose passive part is like that shown on the left of definition 15 are normal, whereas
those whose passive part is like that shown on the right are IW rules.

Note that, in the decomposition of a rule, it could be that a part is a rule in its own right,
although this is not necessary. We call the rule an extension of the active part. Normal
rules will satisfy the parameter conditions from section 5.4 (definition 11, [Restall, 1999]).
IW rules may violate the non-proliferation of parameters condition.

The decomposition makes it straightforward to identify the principal metaformulae of a
decomposable rule (inference); they are any metaformulae (formulae) which appears in the
conclusion of the active part of the rule (inference).

We study two families of decomposable rules: azioms and uniprincipal rules. Axioms
have no premisses, and both the antecedent and the succedent of the conclusion must contain

some atom variable P, or the antecedent must contain L. In other words:

rP=AP rlL=A
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are axioms.

Another approach would be to not restrict axioms to atom variables. So, we could use
any ¢ in place of P in the above formulation, as seen in section 5.2, section 5.3 and section
5.4. This restricted form of axioms limits the number of calculi we can analyse. However,
we are interested in characterising invertibility for calculi. The use of unrestricted axioms
causes problems for invertibility, as will be discussed in section 5.7.

A uniprincipal rule must have a compound formula in the conclusion of its active part,
and furthermore this compound formula must be the only formula in the conclusion. This
restriction does not allow LO D from G4ip, for instance, to be a uniprincipal rule; the
conclusion of the active part was P®P D ¢ = (). Uniprincipal rules will therefore have single-
principal constituents ([Restall, 1999], section 5.4), and will fit into both the frameworks of
section 5.2 and section 5.3.

For uniprincipal rules, we can also define principal on the left and principal on the right
for a rule (inference) by noting whether the single metaformula (formula) in the conclusion
of the active part of the rule (inference) is in the antecedent or succedent, respectively.

For the remainder of this chapter and the next (except section 6.7), we restrict our
attention to uniprincipal rules. A sequent calculus is thus defined by some set of uniprincipal
rules, joined with the set of axioms. We will usually just talk about the uniprincipal rules
defining a calculus, with the understanding that the calculus contains the set of axioms.

We need the notion of derivability, and, because we are interested in height-preserving
invertibility (in the first instance), we need the notion of derivability at height n. Axioms
are derivable at height 0, and should every premiss in a rule be derivable at height at most

n, then the conclusion of the rule will be derivable at height n + 1.

Definition 17 (Invertible rule) For a calculus defined by a set of primitive rules R, we
say that a rule R € R with premisses Py, Py, ..., P, and conclusion C, is (height preserv-

ing) invertible with respect to R if, for each premiss P;, the rule:

1o
P;
is (height preserving) admissible.
If every such R € R is invertible, we say that R is invertible. o

All of the height preserving admissibility results we prove require the height preserving
admissibility of Weakening (this is more commonly known as depth-preserving Weakening).
We give a lemma in the next chapter that guarantees that Weakening is depth-preserving,

but require the following definition to do so:

Definition 18 (Context Dependent Rules [Negri, 2005],[Rasga, 2007]) A context
dependent rule is a rule which has side conditions which place restrictions upon the passive

formulae allowable for instantiations of that rule. -
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Many rules with variable binding are context dependent rules, as is the usual rule for neces-

sitation on the right in modal logic:

ar = ¢, CA
or, IV = 0¢, A, A’

where here the side condition is that all formulae in the antecedent must be boxed.

5.6 Non-Principal Cuts and Invertible Rule Sets

Invertible sets of rules have a nice property with regards to Cut admissibility. If the Cut
formula is not principal in the left premiss of an instance of Cut and all rules of a calculus are
invertible, we can permute the instance of Cut into the premisses of the left-hand derivation.

More formally:

Lemma 6 (Non-Principal Cut Permutation) Suppose R is an invertible set of decomposable

uniprincipal rules. Let:

Dl Dn
I'=A¢ o, I'= A
I'= A Cut

be a derivation in R augmented with the Cut rule, denoted Reul, If ¢ is not principal on
the right for R, then there exists, for i = 1,...,n, D!, T'; and A; constructed from D, T;
and A; respectively, such that:

D, 2 D, D,
f1:>517¢ ¢,f1:>51 fn:>£7z;¢ ¢7fn:>£n
IT1:>A_1 F_n:>A_n

r=A R

is a derivation in RCYL.

Proof. ¢ is not principal for R. Suppose R is a normal right rule (the left case is simpler)

with principal formula . Then, R is of the form:

' = A A ... T.T, = A A
"= A"y

where I, = A/ are the active parts of R.
Comparing the two (equivalent) conclusions of R yields I' =TV and A ® ¢ = A’ § 1.

From the latter, there exists A such that:
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1. A=A,
2. A=A, ¢

We can rewrite the derivations ending in R with 2:

Dl, D@
LT = A AL - TV =AA ¢ R

L= A, ¢

In other words, ¢ appears on the right in every premiss of R.

We can rewrite the right derivation in the instance of Cut with 1 to give the root as
' ®¢ = A®1. Because R is invertible, R is invertible. Thus, taking the derivation D, we
can apply the inversion of R to obtain n derivations corresponding to the n premisses of R.

Label these derivations Dj, for every i = 1,...,n. Then, the following are derivable:

D
6,0, T = A, A

For each i, we cut ¢:
D; D,

D= AALY ¢ I T = AA]
DT = A A

ut

We can then apply R:

0,0 =AA - T,T, = A A,
= A

Rewriting using A = A @ ¢ completes the proof. Thus, we have:

as required. Where R was an IW rule a similar transformation applies. Indeed, where the
Cut formula ¢ is part of the implicit weakening, the situation is much simpler. -

If the rule R from the lemma is assumed to be height preserving invertible, then the
permutation upwards of the instance of Cut means the many instances of Cut occur at a
lower height than the original Cut. Thus, when a proof of Cut admissibility uses an induction
measure based on height, we will be able to apply the induction hypothesis to remove these

instances of Cut.
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5.7 Generalised Axioms are Harmful to Invertibility

Throughout the previous sections, it was stated that allowing any formula to be part of an
axiom was a bad idea; a restriction to atom variables was applied.

Suppose the set of axioms for G3ip were allowed to contain any formula. Then:

I'NMAANB=AAB

is derivable at height 0. For the rule RA to be height preserving invertible, we require that
I'® AN B = A is derivable at height 0. However, the smallest derivation of this sequent
has height 1:

I'NA,B= A
T.ANB= A M

Another option is to assume that such generalised axioms are not derivable at height 0, but
rather that the following are admissible rules for all connectives:

A= AA
T, xs(®) = A, x5(D)

where A contains all of the proper subformulae of 3.
It is another area of study as to when such generalised axioms are admissible in a calculus.
In [Ciabattoni and Terui, 2006a], this problem is known as aziom expansion. Such a problem

does not form part of this thesis, however.

5.8 Conclusions

Three frameworks from the literature were studied and found to be inappropriate for our
needs. Thus, the relevant ideas were taken from each to create a new framework for the
analysis of sequent calculi. Harmful rules such as any context-splitting rules are outlawed.
The framework is robust enough that more than just invertibility can be investigated; a step
in a proof of Cut admissibility was also demonstrated.

A range of calculi fit into this framework, and we can easily analyse when rules in such

calculi will be invertible, as we shall see in the next chapter.



Chapter 6

Invertibility

6.1 Introduction

In the last chapter, we developed a new framework under which we could classify and study
sequent calculi. In this chapter, we will examine conditions under which various calculi can
be said to contain invertible rules. These conditions and the results based upon them, are
a major contribution of this thesis.

In section 6.2, the most basic class of multisuccedent rules are analysed. Following that,
we specialise the result to single succedent calculi (section 6.3). Rounding off the first set of
results, we look at modal logics in section 6.4.

Thereafter, three extensions are studied. In section 6.5, we examine whether some re-
sults from the previous chapter can aid invertibility. Finding that one result is particularly
unhelpful motivates a new method of manipulating the rules of a calculus, which is explained
in section 6.6. In section 6.7, the restriction to uniprincipal rules is relaxed. The invertibility
results of [Dawson, 2008] and [Curry, 1963] are proved in section 6.8, as an easy corollary
of our lemmata.

Each proof of invertibility relies on the admissibility of dp-Weakening. Thus, some

sections have explicit proofs that Weakening is height preserving admissible.

6.2 Multisuccedent Calculi

Multisuccedent calculi are the best place to start. Symmetry will mean we only have to
prove the result for right rules; that the equivalent lemma holds for left-rules is immediate.

We have the following, simple result:

Lemma 7 (dp-Weakening) Let R be a calculus defined by a set of uniprincipal rules
containing no context-dependent rules. Then, Weakening is height preserving admissible in
R. That is, the rule:

81
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I'= A
LI = AA

is height preserving admissible in R.

Proof. Suppose I' = A is an instance of the premiss. The proof is by induction on the
height, n, of the derivation of I' = A.

If n = 0, then the premiss was an axiom. So, there exists some p such that p € I' and
pe A, or L €. In the first case, p € ' + IV and p € A + A’, whilst in the second,
1L e I'+I". Since there are no context-dependent rules, we have no side conditions which
limit the number of formula occurrences in rules, thus in either case I' + IV = A + A’ will
be derivable at height 0.

If n > 0, then suppose the last inference in the derivation was r (based on some rule R):

F1:>A1 Fn:AnT
I'=A

There are two subcases: 7 is either a normal inference, or r is an IW inference.

In the former, we can apply the induction hypothesis to each premiss, to obtain:
I'I'; = A",A; fori=1,...,n

as derivable at height at most n — 1. Using these premisses, apply a new inference r’, which
is likewise based on R, but has a different passive part to r.

In the latter case, we do not need the induction hypothesis. We simply apply a new IW
inference r’ based on R which contains IV and A’, which completes the proof. =

That there are no context dependent rules is very restrictive. In particular, it rules out
lots of first-order, and modal, rules. This restriction can be relaxed in later sections. At
those times, the Weakening result will be extended.

Next, we are going to prove invertibility results for calculi fitting into our framework.
We give a set of conditions, which can be adapted for either left or right rules. After the
proof, we will give examples of rules which satisfy the conditions. The form of the lemmata
may seem odd; however, the additional multisets of formulae in the premisses come from

the active part of the rule.

Lemma 8 (Right Multisuccedent Rules) Let R be a set of decomposable rules defined

by a set of uniprincipal rules. Then, the rule:

-,

I'= %5(0),A
L,I"= A A



CHAPTER 6. INVERTIBILITY 83

is height preserving admissible in R if T/ = A’ is the active part of a premiss of every rule

with *s(¢) principal on the right.

—

Proof. Let I' = A @ *4(B) be an instantiation of the premiss. We prove the lemma by
induction on the height n of the derivation of I' = A @ #4(B). If n = 0, then there exists

—

some atom p such that p € T" and p € A & *5(B), or L € I'. We then have p € T + T and
peA+A or Lel+T", andso '+ TV = A+ A’ is an axiom.

If n > 0, then we do case analysis on the last inference, r, in the derivation of I' =

A @ x4(B). There are four subcases to consider:

1. r was an instance of a normal rule, and *s(é) is principal for r.
2. r was an instance of an IW rule, and *; (E) is principal for 7.
3. r was an instance of a normal rule, and x, (é) is not principal for r.

4. r was an instance of an IW rule, and *, (E) is not principal for r.

Case 1. r is of the form:

I,T = AA
I = A, x,(B)

We have I' + IV = A + A’ is a premiss of r. This means it is derivable at height n — 1, and
thus at a height not greater than n, as required.

Case 2. r is of the form:

Fl,l—‘l = AhA/
F17F2 = A17A27*S(§)

where I's and Ay are the implicit weakening parts of the inference. The sequent I'y + T =
A1 + A’ is a premiss of r, and thus is derivable at height n — 1. We use lemma 7 to obtain
'+ +I" = Ay + Ay + A’ as derivable at height n — 1, but this is just '+ 1" = A + A/,
and so we are done.

Case 3. There are two further cases here; one where r was an instance of a left rule, and one
where r was an instance of a right rule. We show the latter; the former is simpler. Suppose

—

r had principal formula o;(D), then r is of the form:

g F/l/ = A/ A/ll s TVT = AYA
) ) — ? n ) n r
T = Ot(D), A

—

Comparing representations of the conclusion, we have I' =T/, and A@4(B) = A” @ot(ﬁ).

From this we have a A™ such that:
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1. A=A~ @ o (D)
2. A = A~ @ »,(B)
Rewrite r with 2:

DT = A~ % (B),A” .- DI,T” = A~ +(B),A”
I = oy(D),*s(B), A~

r

—

So x5(B) is present in every premiss of r, and we can therefore apply the induction hypothesis

at the lower height of the premisses. Thus, we have:
D,TY = AY, A~ %,(B) I,T% = A, A~ x,(B)
L,TY, T = A A A -0 TT0 T = AVAY A
[T = A~ 0,(D), A’

Using the equation 1 we have the result.
Case 4. r is an instance of an IW rule, say R; suppose ot(ﬁ) was principal for r on the right

(the left case is similar). Then, r is of the form:

Fl,F/{iAl,A/{ Fl,F;::>A1,Ax
= T
F17F2 = AlaA27Ot(D)

There are two subcases; one where *s(é) is in Ay and another where it is in Ay. The proof
of the former is almost identical to that of case 3. In the latter, *S(é) was part of the
implicit weakening of r.

Thus, there is some A™ such that Ay = A~ @ *S(E), and so the conclusion of r is

rewritten as:
1,0y = Ay, A~ %4(B),0,(D)

Taking the premisses of r, apply a new inference, r’, based on R, to them; r’ is the same as
r except that the implicit weakening is I's + I on the left and A~ + A’ on the right. We

then have:
[, T, T = Ay, A, A/ 0, (D)
is derivable at height n. We also know, from comparing the two forms for r, that:
1. Ty, Iy =T
2. A1, A, 04(D) = A, x4(B)

and so, rewriting the second to include A™, we have shown:
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T = A A

is derivable at height n, which completes the case, and the proof. -
The corresponding lemma for invertibility on the left is symmetrical, and so is given

without proof:

Lemma 9 (Left Multisuccedent Rules) Let R be a set of decomposable rules defined by

a set of uniprincipal rules. Then, the rule:

—

[, xs(¢) = A
I, = AA

is height preserving admissible in R if I = A’ is the active part of a premiss of every rule

-,

with *5(¢) principal on the left.

6.2.1 Examples

Consider the rule RA from G3cp, a calculus for classical propositional logic (see appendix
A). To show it is invertible is akin to showing the height preserving admissibility of the

following two rules:

' oA, A
I'=¢,A

'=sony, A

R/\i'rw,l F:>¢ A

RNinw,r
To apply lemma 8 to the left rule, take IV = () and A’ = ¢. Then, we need to show that
() = ¢ is the active part of a premiss of every rule with ¢ A 1 principal on the right. This
is by inspection. So, the rule is strongly admissible, and by a similar argument for RA;,, r
using lemma 8 we can conclude that RA is invertible in G3cp.

Indeed, by similar arguments, all of the rules are invertible, because the following rules

are all height preserving admissible:

= ¢AD,A T'= ¢AD,A T oA = A
_— R/\infu B R/\inv T T . . A inv
T= oA L T = ¢.A ’ Tov=a X
T 6V = A T.6Ve= A = ¢V, A
_— Lvinv B e L\/inv T T - 1 A inv
T.o=A ! To=A ’ T = o0 Y
= ¢D9, A ooy = A LoDy = A
. A 3 7‘[/:)171’0 7‘[/31"”1]7‘
T oo g A i I= Ao L o= A ’

The rule for implication on the left for G3ip is not invertible (see section 6.3), however the

multisuccedent version of the calculus has the following form:
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Loy =, A Top=A
ooy = A

This is height preserving invertible; for each premiss, lemma 9 is applicable. For instance,
in the left case, I' = ¢ D) and A’ = ¢. Furthermore, any rule with ¢ D) principal on the
left must be L D ; no other rules have ¢ D1 principal on the left.

Note that we talk about invertibility of the rules for G3cp. Suppose G3cp was altered

so that RA included an implicit weakening:

I'y= A0 T'i= ALy
F17F2 :>A13A2a¢/\w

RN

Then, the lemma would still apply, but with ' =T'; + 'y and A = Ay + As:

', To = A1, A, 0 AN I',To = A, Ag, 9 A
F13F2:>A17A2,¢ ]-—‘1,]-—‘2:>A17A23’l/}

In other words, the lemmata of this section would not give the invertibility of RA’. Rather,
a weakened version of each premiss is derivable at a height not greater than the height of
the conclusion of RA.

The condition for the applicability of lemmata 8 and 9 is easily verifiable, for a finite set
of rules. In fact, for every finite set of rules, the conditions for all of our lemmata are easily

verifiable.

6.3 Single succedent calculi

The restriction to single formulae in the succedent of a sequent creates a small problem. We
cannot directly apply the results from section 6.2 by simply restricting succedents to contain
at most one formula. Recall the definition of a decomposable rule is that all premisses have
the same passive part. However, consider the rule L D from G3ip (see appendix A), here

shown with its passive part:

I'¢dyp=¢ Ip=o = I'=o0
ooy =0 I'so

This is easily rectified:

Definition 19 (Single Succedent Decomposable Rule) A single succedent rule is called

single succedent decomposable iff

1. The antecedents of the premisses of the passive part are all the same, AND
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2. Each antecedent of the premisses of the passive part is a submultiset of the antecedent

of the conclusion of the passive part, AND

8. The succedent of each premisses of the passive part is either empty or the same as the

succedent of the conclusion of the passive part.

Where confusion cannot arise, we drop “single conclusion” and just talk about decomposable

rules.

As an example, i and ii are decomposable, but i is not:

ooy =¢ Tp=0 I's¢ T'sy Io=o0 I'=y
T,650 =0 L 0,0 = oy T=oxy
=0 P rLrr=s ° I = P

The succedent of the left premiss of the passive part of ii4 (iii,) is not empty and differs from
the conclusion of the passive part, therefore does not satisfy condition 3 from the definition.
This rule does not have the subformula property, but this is unrelated to condition 3.
Normal and ITW single succedent rules are defined analogously with the multisuccedent
rules (section 5.5). We have the restriction that the succedents contain at most one metafor-

mula.

Lemma 10 (Single Succedent Weakening) Let R be a set of decomposable uniprincipal

rules (containing no context-dependent rules) restricted to single formula succedents. Then,

the rules:
=9 I'=
— W
=46 " T=4 'R
are height preserving admissible in R.
Proof. A simple induction. o

Lemma 11 (Single Succedent Right and Left Rules) Let R be a set of decomposable

uniprincipal rules restricted to single formula succedents. Then, the rules:

-, -,

=% L@ =9
T =6 ' L=y "

are height preserving admissible in R if i. IV = ¢ (#. T’ = 0) is the active part of a premiss

of every rule with x5(p) principal on the i. right (ii. left).
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Proof. Part ii is shown by a very similar proof to that of lemma 9, and is not shown.

For part 7, we must be more careful. Again, we perform induction on the height, n, of
an instance of the premiss (say I' = 4(B)). If n = 0, or n > 0 and the last inference used
was a right inference, the result is immediate.

Suppose the last inference was a left inference, based on R. Then there is some I and
o¢(D) such that:

I”Ty=D, - I'".T,= D,
I, 0y(D) = %5(B)

where each D; is either x,(B) (comes from the premiss having an active part of I'; = 0), or
some active formula. In the former case, we can apply the induction hypothesis at the lower
height. In the latter, we use depth-preserving Weakening to add I to the antecedent. In

either case, we get fori =1,...,n:

I'.1”.T; = D;

where D; was either the active formula of the premiss, or B (the instantiation of ¢). We
then apply a new inference based on R with passive part IV + T = B, which completes the
proof. 4

6.3.1 Examples

Take the standard formulation of G3ip from [Troelstra and Schwichtenberg, 2000]. Consider

the rules:

I'=o¢ I'=qy
Sove ™ Toovy BV

T, 6= L¢oY=¢ Dy=y
T= o9 T,0D¢0 =~ >

R D is invertible; we have the conditions satisfied, because ¢ D v is principal on the right

only for this rule, and IV = ¢. Thus, the rule is invertible, as expected.

By contrast, consider the rules for disjunction on the right and implication on the left.
Since neither I' = 4 nor I' = ¢ is a premiss of every rule which has ¢ V v principal on the
right, then lemma 11 says nothing about the invertibility of either disjunctive rule, although
neither is invertible. Furthermore, the left premiss of L O does not satisfy the conditions,
owing to it having a different succedent to its conclusion. The rule is partially invertible,

however, since the right premiss fulfils the conditions.
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6.4 Modal Logics

In order to examine modal calculi, we need to alter the definitions from section 5.5. In
particular, we add the notion of modal operators to the definitions of formulae, metaformulae

etc. A formula is defined by the grammar:
A=z=P| L] F(Alst)| G(A list)

where F' ranges over propositional constructors, and G ranges over modal constructors.
Metaformulae are built then constructed in an analogous way to section 5.5 (pg. 73).

The modal operators G can also act upon metamultisets and multisets. We call a multiset
of formulae modalised if it is of the form !I", where ! is some modal operator.

In addition to Axioms and uniprincipal rules, which were defined for propositional con-
nectives, we give definitions of two kinds of decomposable modal rule. Basic modal rules are
like uniprincipal rules, except that instead of a single propositional compound metaformula
in the conclusion of the active part, there is a single modal metaformula in the conclusion
of the active part.

The second kind of decomposable modal rule is a context-dependent rule (recall definition

18 on page 77):

Definition 20 (Modalised Context Rules) A rule is a modalised context rule iff the
active part of the rule contains elements of the form \I', where | is a modality and T is a

metamultiset. =

Note that the modalised metamultisets could appear in the antecedent, the succedent, or
both.
The rule LO, for a classical calculus extended with the S4-modalities [Troelstra and

Schwichtenberg, 2000] (see appendix A), is a modalised context rule:

o, ¢ = A
ar, ¢, T = OA, A’

Lo

whereas R< is not:

T'=A0¢

T= A op 1°

Modalised context rules have large active parts, and these active parts could be further
decomposed into a context, consisting of the modalised metamultisets, and what we will call

the prime part of the rule. Formally:

Definition 21 (Prime Metaformulae, Prime Part) A metaformula ¢ is prime iff it

appears in the active part of a modalised context rule.
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The prime part of a modalised context rule, is the active part of the rule where all

modalised metamultisets have been deleted. =

This definition is extended to prime formulae and instances in the obvious way.

In LO above, the prime part of the rule is:

9=
S =

As has been done in previous sections, we prove the height preserving admissibility of Weak-

ening for such sequent calculi.

Lemma 12 (Modal dp-Weakening) Let R be a calculus containing uniprincipal propo-
sitional rules, basic modal rules, and modalised context rules. If every modalised context rule
i R is an IW rule, then the rule:

'=A
I, T = AA

1s height preserving admissible in R.

Proof. Let I' = A be an instantiation of the premiss. The proof is by induction on the
height n of the derivation of I' = A, and is standard. In the case where the last inference is
a modalised context inference, we do not use the induction hypothesis, rather apply a new
inference with a suitable extension of the conclusion. o

Using the definition of principal formula from section 5.5, where every metaformula in
the active part of a conclusion is principal, we can keep the conditions for invertibility very
close to those of section 6.2. We must be careful, however; two inferences can differ in
the formulae occurring the modalised multisets. Were we to use the same conditions as in
section 6.2, we would encounter a problem; OA is principal on the left for many instances

of the rule L, given above.

Lemma 13 (Right Modal Rules) Let R be a calculus containing uniprincipal proposi-

tional rules, basic modal rules, and modalised context rules. The rule:

—

I'=1(B),A
I, = AA
1s height preserving admissible in R if:

1. TV = A’ is a premiss of the prime part of every modalised context inference in which

'(E) is principal on the right.

2. TV = A’ is the active part of a premiss of every basic modal inference in which '(é) is

principal on the right.
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3. All modalised context rules in R are IW rules.

Proof. Let I' = A@!(B) be an instance of the premiss of the above rule. We proceed by
induction on the height n of the derivation. If n = 0, or n > 0 and the last inference was
a propositional rule, then we proceed as in the proof of lemma 8 on page 82 (for, '(E) will
never be principal for such an inference). If the last inference r was an instance of a modal

rule R, there are four cases:

1. |(B) is principal for 7, and r is a basic modal inference.
2. '(E) is principal for r, and r is a modalised context inference.
3. I(B) is non-principal for 7, and r is a basic modal inference.

4. 1(B) is non-principal for 7, and r is a modalised context inference.

Case 1. The result is immediate, from condition 2.
Case 2. T = A®!(B) is the conclusion of a modalised context inference. Let oy, ..., 0,11, ...,
be modal operators, then for some I'y,..., T, A1,..., A, and I, A’ we can rewrite r as

(using condition 1):

.lrla R .nFnar/ :>!1A17 ) !mAma A’
o'y, -, .nrnvru = '(E), !1A17 ) !mAmv A"

From condition 3 and lemma 12, Weakening is height preserving admissible; weaken with
I and A” to obtain the desired result.
Case 3. There are two further subcases; one where r is an instance of a normal rule, and one
where r is an instance of an IW rule. In the former, we have, from '(E) being non-principal
for r, that '(E) appears in every premiss of the inference, as part of the context. We can
thus apply the induction hypothesis to each premiss. To this set of premisses extended with
the new context involving IV and A’, we apply the instance of R which uses that context,
and we are done. (The details are the same as in the proof of lemma 8).

In the latter case, again the details are similar to the equivalent case in the proof of 8,
and so are omitted.
Case 4. From condition 3, every modalised context rule is an IW rule, and therefore suppose

that the root of r was:
.1F17 Ty .’I’LFTL; FN = '*(5)7 !1A17 Ty 'mAmu AH

for some modal operators eq,...,e, !1,... 1, and multisets I'y,..., 'y, Aq,..., A, and
I, A”. Because !(B) is non-principal on the right, then !(B) € A”. Therefore, let A~ be

—

such that A” = A~®!(B). We use a new instance of R which has T + TV and A~ + A’ as

the context, and we are done. =
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Lemma 14 (Left Modal Rules) Let R be a calculus containing single-conclusion propo-

sitional rules, basic modal rules, and modalised context rules. The rule:

—

' =!(B), A/
LT = AA

is height preserving admissible in R if:

1. TV = A’ is a premiss of the prime part of every modalised context inference with '(é)

principal on the left.

2. T" = A’ is the active part of a premiss of every basic modal inference with '(E)

principal on the left.

3. Bvery modalised context rule in R is an IW rule.

Proof. Symmetric to the proof for right modal rules. -
It should be noted that these are not true invertibility results; we do not reconstruct
the premisses of a modal rule exactly, but we derive weakened versions of the premisses of

a modal rule (as in section 6.2.1).

6.4.1 Examples

Consider the calculus for classical propositional logic extended with S4-modalities; in other

words, G3cp together with the four rules for the S4 modalities O and < (see appendix A

for all of the rules of this calculus). The rules for & were given earlier. The rules for O are:
ar = ¢, CA o= A

D -
OT. T = Op, oA, A T.06= A P

If a derivation in this system had root I' = A @ OA, then we can use lemma 13 to derive
I' = A @ A. For, the only inferences which have OA principal on the right are instances of
RO, and:

= A
is a premiss of the prime part of every such inference.
However, the rule:
= <0A A
= AA

is not height preserving admissible in this system. We cannot apply lemma 13: () = A

will not be a premiss of the prime part of every modalised context inference which has A
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principal on the right. For instance:

Or = B, (A, A)
OF = OB, O(A, A)

has ©A principal on the right: it is in the premiss of the active part of the inference.

However, only () = B is a premiss of the prime part of the inference.

6.5 Superfluous, Redundant and Full Rules

6.5.1 Removal of Superfluous Rules

Recall from section 5.2 that a rule was superfluous if the empty sequent could be derived
from its premisses using Cut. A (canonical) calculus with superfluous rules was shown to be
equivalent to a calculus with all superfluous rules deleted. It is easy to show that the same
result holds for calculi which fit into our framework, so long as Cut is admissible. What

effect will deleting superfluous rules have on invertibility?

Lemma 15 (Removing Superfluous Rules) Let R be a set of decomposable uniprincipal
rules in which Cut is admissible. Then, there exists a set of decomposable uniprincipal rules

R’ which contains no superfluous rules such that:

1. R is equivalent to R', AND

2. If R was shown invertible in R by one of our lemmata, and R is not superfluous, then

R is invertible in R’.

Proof. The first part is a simple adaptation of the proof of Lemma 5 (p. 66).

For the second, suppose R was shown invertible in R, and further that R was not
superfluous. Take any premiss of R; it will be a premiss of every rule which shares the same
principal formula. Since we have deleted rules going from R to R’, then this premiss will
still be a premiss of every rule which shares the same principal formula. Therefore, R is
invertible in R’. -

Indeed, sometimes removing redundant rules will mean the remaining rules become in-

vertible. Consider the calculus containing the two rules:

I'=s¢,A ¢,T'=A I'=¢ A

| S E——.
L= A Ih L= A L

If these were the two rules for ! on the left, then neither would be invertible. However, if
we remove the superfluous L!y, then Ll becomes invertible: I' = A @ ¢ is now a premiss of

every rule with !¢ principal on the left.
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Thus, we have that removing superfluous rules will not harm invertibility; it can even
aid invertibility. The removal of superfluous rules may not be depth-preserving. It will be

depth-preserving if Cut is height preserving admissible.

6.5.2 Removal of Redundant Rules

A rule is redundant if it contains the premisses of another rule with the same conclusion.
The removal of redundant rules gives an equivalent calculus with a smaller set of rules (see

section 5.2). How will this affect invertibility of the rules?

Lemma 16 (Removing Redundant Rules) Let R be a set of decomposable uniprincipal
rules. Then, there exists a set of decomposable uniprincipal rules R’ which contains no

redundant rules such that:

1. R is (depth-preserving) equivalent to R', AND

2. If R was shown invertible in R by one of our lemmata, and R is not redundant, then

R is invertible in R’.

Proof. Almost identical to the previous lemma. -
Indeed, the removal of redundant rules can mean more rules become invertible. The
same example can be used as before; L!5 is redundant as well as superfluous.

Consider the example:

I'=¢,A R 'y, A R I'=¢,A T'=9y, A
T=go,A "1 T=gog,A 2 = oA

R03

None of these rules are invertible. Removing the redundant rule Ros will not make the
other two invertible. However, if we were to remove Ro; and Ros then Roz would become
invertible. Would this removal create an equivalent calculus? It would not. Consider the

following derivation in the original calculus:

p1 = D1
P1 = P1°P2

This conclusion is not derivable in the calculus with Ro; and Rog removed. The closest one

can achieve is:

P1,P2 = p1 P1,P2 = D2
P1,P2 = P1 0O P2

T03

Even appealing to Cut (assuming the system admits Cut), we would still require the sequent

p1 = p2 to be derivable.
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6.5.3 Transformation to Full Rules

Recall the example from section 5.2 when the rule for right disjunction from G3cp was

changed to full rules:

I'=s¢,A Tyo=A
I'=so¢Vvy A

'=¢,A T'=y A
'=s¢vy A

R\/l R\/Q

e=A I'=y A
I'=sovy, A

Rv3

None of these rules are invertible. Our lemmata say nothing about their invertibility. For
instance, the left premiss of RV; is not a premiss of RV3, so it will not satisfy the conditions
of Lemma 8 (p. 82). So, we have replaced one invertible rule with three non-invertible rules.

Indeed, the process of creating a set of full rules will increase the number of rules with
the same principal formula. Given our conditions, this will make the invertibility of such
rules less likely.

What would be a good procedure is the opposite; squashing rules together. This will
only be applicable if we have multisuccedent rules, and do not have context-dependent rules.

The next section expands upon this idea.

6.6 Combinable Rules

Suppose a calculus had three rules:

I'=¢,A 'y, A I'=o¢,9,A

T = ¢ot), A oy T = do, A Roy T= ¢ot), A Fog

Rogz is invertible! but it is not shown invertible by our lemmata. Suppose a derivation ended
with I' = A & A o B. It could have come from an instance of any of the three rules above.
In the former two cases, we simply weaken with the appropriate formula in the premisses
(B and A respectively), and in the latter case the result is immediate. Ro; and Roy are

neither superfluous or redundant, however it would appear they are not needed.

The following definition can be used for any type of calculus, but we specialise it to

decomposable uniprincipal calculi composed only of normal rules:

Definition 22 (Combinable rules) A pair of rules is combinable iff they have the same
conclusion AND only differ in one premiss. In other words, combinable right rules are of

the form (left rules are an obvious analogy):

LIf these are the only rules in which o is the principal connective on the right.
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F,F1:>A,A1 F,Fi=>A7Ai F,FniA,An
[ = A, x, (D)

I\Ty=AA, - DT =AA ... I.T,=AA,
L= A% (P)

A combined rule is created by replacing a pair of combinable rules with a rule which

has the same conclusion AND:

e Where the combinable rules have identical premisses, the new rule has this premiss,
AND

e Where the combinable rules have different premisses, the new rule has a premiss whose

active part is the two active parts added together.

In other words, the combined rule from the pair of combinable rules above is:

F7F1:>A,A1 F,FZ,FgﬁA,Al,A; F,FnﬁA,An
[= A, %,(9)

We can generalise the definition to allow IW rules. If at least one of the rules to be combined
is an IW rule, the combined rule is an IW rule.

Obviously, this technique is only valid where we can weaken on both sides of the sequent
arrow. Lemma 7 (p. 81), and its associated results in different chapters, provides the
sufficient conditions for a calculus to height preserving admit Weakening. The following

result is similar to those of section 5.2:

Lemma 17 (Removing Combinable Rules) Let R be a multisuccedent calculus defined
by a set of uniprincipal decomposable rules. Let R’ be a calculus based on R where all pairs
of combinable rules have been replaced a combined rule. If a sequent was derivable in R,

then it is derivable at the same height in R’.

Proof. Clearly we need only consider the cases where the final step in the derivation in R
was an instance of a rule in a combinable pair. We show the case where the rule is a right
rule, the left case is symmetric. Suppose wlog that the premiss which ensured the rule was

combinable was the first one. Then, the derivation ends with:

F,F1:>A,A1 F,FnéA,An
I = A, +(B)
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Then, all of the premisses are derivable in R. Suppose the other rule in the combinable pair
has an active part with first premiss Iy = A. Weakening is depth-preserving admissible
by lemma 7, hence we weaken the first premiss with I'y on the left and A} on the right.
Then:

Il = A,Al
F,Fl,F/1=>A7A1,A/1 F,FnéA,An
I = A, x,(B)

is a derivation in R’. o
Again, the above proof considers normal rules only. If IW rules are considered, the proof
is similar.

We then have a lemma similar to lemmata 15 (p. 93) and 16 (p. 94):

Lemma 18 (Removing Combinable rules) Let R be a multisuccedent calculus defined
by a set of decomposable uniprincipal rules, and let R’ be obtained from R by replacing all
combinable pairs with combined rules. If R € R was shown invertible by a lemma from

section 6.2, and R is not part of a combinable pair, then R in invertible in R'.

Proof. Similar to lemma 15. o
When the calculus R admits Contraction then removing combinable rules is conservative
(in other words, no further sequents become provable). It is not known whether removing

combinable rules from a calculus which does not admit Contraction is conservative.

6.6.1 Example

We have now three results which will aid in proof search. Consider the following calculus

with five rules for one ternary connective o:

F:>A,(7251 Ro F:>A,¢2
L= A o(¢1,h9,03) T = A o(¢1, ¢2, $3)

Roy

FjAvthqu FﬁA,Q&g
F = A7O(¢17¢23¢3)

Rog

F:Aa(bl Fa(ﬁl:A F:Aa(b?)L F7¢1a¢2:A
O
T, 0(¢1, b2, b3) = A ! T,0(¢1, o, d3) = A

L02

Which rules are invertible? Only Los, and not by the methods of section 6.2. The left
premiss of Rog is derivable at a height not greater than that of the conclusion Rog.

Firstly, Ro; and Ros form a combinable pair. Replace them with the combined rule Ro':

I'= A7¢17¢2
F = A7 o(¢17¢27¢3)

Ro'
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Now Rogz is redundant, so we can remove it. This leaves the rule Ro’, which is invertible by
lemma 8.
The calculus consisting of Ro’, Lo; and Los admits multi-cut, or Cut for structures. In

other words, the following rule is admissible:

'=A0 TI'e=A
'=A

Cut,,

where O is some multiset of formulae. From this, one can deduce that Cut (for single
formulae) is admissible (see, for instance, [Shoesmith and Smiley, 2008]). Then, we can
remove the superfluous rule Lo; to leave a calculus with just Ro’ and Log as the only rules.

Using lemmata 8 (p. 82) and 9 (p. 85) the calculus is invertible.

6.7 More complex propositional calculi

As noted in section 5.5, the rule L0 D from G4ip precludes that calculus from the analysis
in the previous sections. Here, we relax the condition that the active part of rules may only
have one compound formula in their conclusions. Now, however, every metaformula which
appears in the conclusion of the active part is principal for the rule. As an example, both
P and P D ¢ are principal for L0OD.

We can then reconstruct similar lemmata to those of the previous sections, however we

must be careful with respect to atoms and L. We have the following:

Lemma 19 (Multiprincipal Rules) Let R be a set of decomposable rules. Then, the

rule:
I,T = A, A
LIV = A A
is height preserving admissible if:
1. For every ¢ € T, A", we have T" = A’ is the active part of a premiss of every rule
with ¢ principal.
2. Every atom variable in T (A" ) occurs in TV (A’).
3. If LeTl”, then L €.

Proof. Let I' + I = A + A” be an instantiation of the premiss. We proceed by induction
on the height, n, of the derivation of the premiss. If n = 0, then the premiss was an axiom.
Conditions 2 and 3 guarantee the conclusion is also an axiom.

If n > 0, let r be the last inference used in the derivation. Then there are four cases:

1. 7 is an instance of a normal rule, and there is some A € I, A” which is principal for

r.
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2. r is an instance of an IW rule, and there is some A € I, A” which is principal for r.
3. r is an instance of a normal rule, and there is no A € I, A” which is principal for 7.

4. r is an instance of an IW rule, and there is no A € I, A” which is principal for r.

Case 1. T' = A’ is the active part of a premiss of r. If the active part of r had conclusion
I = A" then the result is immediate. There may be other inferences with active parts of
the form:

I = A/
1’\// F//l :> A// A/Il

In these cases, we have I C T' and A" C A. So, there exist T and A such that T =T/ +T
and A = A” + A. We can then rewrite r as:
[T = AN
f‘ F// I\/// :> A A// A///

Weakening with T and A’ gives the required result; the premisses are derivable at height
n — 1.

Case 2. This case is similar to the equivalent case in the proofs of lemmata 8 (p. 82), 9 (p.
85) and case 1.

Case 3. Since no formula from I'; A” is principal for r, all such formulae must be in the
context of r. Then, we reason in the same fashion as in the proofs of lemmata 8 and 9.
Case 4. We know no formulae from I'/, A” are principal for r. We have r will be of the

form:

Fl,Fll/:>A1,A/1/ Fl,FZ:Al,AZ
FI,FQ,F:(/ = A17A27A;/

Either T is in I'y, or I'g, or partially contained in both. We reason by cases. Either,
I @Iy, and A” @ Ay, or at least some part of I or A” is in I'y or Ay, respectively.

In the former case, the situation is similar to that in lemma 8 and lemma 9; we use a
new inference which is the same as r except that the implicit weakening part of the inference
contains I'V and A’, instead of I and A”.

In the other case, we perform two steps. Firstly, we weaken every premiss of r so that
the context of each premiss contains I and A”. This will be the same weakening for every
premiss, because every premiss contains I'; and Aq, and hence the same elements of I and
A’. Then, we apply the induction hypothesis to each of these new premisses, so that we
remove I and A” and replace them with I and A’ in the context of each premiss.

Then, we remove from I'; and Ay any formulae which occur in I and A", respectively,

and we will use this as our new implicit weakening. Applying the new inference with this
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information will yield I' + TV = A 4+ A’ as derivable at height n, and this completes the case,
and the proof. -

In particular, the results from the previous sections are now specialisations of this result.

6.7.1 Examples

When restricted to single formulae on the right in an analogous way to section 6.3, G4ip
is a calculus in which all rules have the form given above. The rule which did not allow
G4ip to be classified as a uniprincipal calculus was L0 D, shown above. Now we can see,
however, that it is indeed invertible; the atom variable P is retained in the premiss, and this
rule is the only rule where P D ¢ will be principal on the left. In what follows, the notation

{A1,..., A, is used to denote the multiset containing the formulae Ay, ..., 4,.
Consider the calculus G3-LC for Gédel-Dummett logic from [Sonobe, 1975]. Axioms

are given as normal, the only logical connective is D and the rules for it are:

oD = ¢, A T,9p=A
ooy =A

L>

r=A RS

where i = 1,...,m and:

A" =11 DU1, . him1 DWim1, i1 DVit1s -« s O D

A contains this multiset and may contain other formulae as well. When m = 2, for instance,
the rule will be:

[ o1 = Y1,02D%2 T2 = 12,01 DU
['= ¢1 D91, g2 Do, A

For a given m, this rule is an IW multiprincipal rule. In the case where A’ is empty, then
the rule is invertible. In the case where A’ is non-empty, then we can use lemma 19 to show

that each premiss, weakened on the right with A’, is derivable without an increase in height.

As a more involved example, consider the calculus with the two binary connectives o and

*, and the six rules:
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L¢,¢v=A I'=¢,9,A

T.go = A L° T = goi A 1°
Lo=v,A Ne=A I'=y A
T,ox = A F T = 60, A *
Lov=4A T=vpA
Ipoyp) = px1p, A o
Iy=9¢A

T <0 gop,a T

The following rules are height preserving admissible:

ooy = A I'=¢xy, A
Lo, v=A =y, A

Take the left-hand rule. ¢ o1 will be left principal in rules Lo and L, R,. For both of these
rules ¢ ® 1) = 0 is the active part of a premiss. If the last inference was based on L. R,
then A x B (the instantiation of ¢ x ) would be part of A, and so would disappear from
the premiss. We would thus weaken with A x B (as in the latter part of case 1 of the proof,

above).

The rule:

L= ¢xth, A
o= A

cannot be shown admissible by use of lemma 19, for ¢ = () is not the active part of a premiss

of LoR,. Neither of the multiprincipal rules are invertible.

6.8 Invertible Sets of Rules

Using the results from the previous sections, we can analyse individual rules in certain
types of calculi. The result we give in this section is specific to decomposable uniprincipal

multisuccedent calculi, but it can be extended where appropriate.

Recall we said a rule is height preserving invertible (definition 17, page 77) if every
premiss of the rule is derivable at a height not greater than the height of a derivation of
the conclusion of the rule. We check invertibility by searching among the premisses of rules
with the same principal formula. Clearly, if no two rules have the same principal formula,

then this task becomes much more straightforward. This motivates the following definition:
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Definition 23 (Unique Conclusion Property) A set of decomposable rules R has the
unique conclusion property iff for all S and T in R, if the conclusion of the active part

of S is the same as the conclusion of the active part of T, then S =T. -

In [Curry, 1963], it was proved (for multisuccedent propositional calculi) that if a set of
rules had the unique conclusion property, then every rule would be invertible. This becomes

an obvious consequence of the lemmata in section 6.2:

Lemma 20 (Multisuccedent Invertible Rule Sets) Let R be a set of decomposable uniprin-

cipal rules defining a sequent calculus. If R has the unique conclusion property and:

F1:>A1 Fn:>An
r=A

is an instance of a rule of R and T' = A is derivable with respect to R at height m, then
I'; = A; is derivable at height at most m fori=1,... n.

Proof. Let1 <i < mnandm begiven. Let R be the rule of which I'; = A, is an instantiated
premiss. R will have some principal formula, say ¢. From the unique conclusion property,
I'; = A, is a premiss of every rule with ¢ principal. Depending on whether ¢ is left or
right principal, we therefore apply one of the lemmata from section 6.2, and we have that
I'; = A, is derivable at a height not greater than m, as required. -
We can thus very quickly check whether a set of rules is invertible. For instance, G3cp
is an invertible set of rules: for each connective, there is only one left and one right rule.
The reason this result is so clean for multisuccedent uniprincipal propositional calculi is
that the condition set down in the lemmata of section 6.2 was simple. We can extend the
result to the other types of calculus considered, by changing the conditions on the rule set.
However, the restrictions on first-order and modal calculi would be so restrictive they would

be expressively weak. Thus, we only show the single succedent restrictions.

6.8.1 Single Succedent calculi

It is obvious that lemma? 20 will not be true for single succedent calculi. The implicational

fragment of intuitionistic logic provides a counter-example. The rules consist only of:

Fedyp=9¢ Y=o Io=1
oDy =0 - I'=¢D9y

RD

Clearly this calculus has the unique conclusion property, but it is not invertible. For, consider

the derivation:

P ADB=P

2If naively restricted to single succedents.
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If the left rule were invertible, then the sequent P& A D B = A would be derivable at height
0. However, it is not derivable unless A = P.
We thus need to generalise the conditions of lemma 11 (p. 87) so that it can be applied

across a rule set.

Lemma 21 (Single Succedent Invertible Rule Sets) Let R be a set of single succedent
decomposable uniprincipal rules defining a sequent calculus. If R has the unique conclusion
property and R contains no left rules which have a premiss with an active succedent, then

R is invertible.

Proof. Any rule in such a calculus will be of the necessary form for lemma 11. -
In particular, rules such as L D are not allowed to be in such a calculus. Only the
conjunctive fragment of G3ip is invertible; the disjunctive fragment does not have the
unique conclusion property.
As an example, consider the calculus with one ternary connective o, and two rules:
F'=¢1 T[,¢0= o3 Ior=0 T,¢2,03=0

P = o(¢17¢27¢3) Ro F70(¢17¢23¢3) =0 Le

This is an invertible set of rules. Using the result from section 5.6, it will be possible to
permute non-principal instances of Cut into the premisses of the left rule. Thus, we only
need to look at principal instances of Cut. In this case, Cut will be admissible, since we can

cut ¢; using the left premisses of Ro and Lo:

F:>¢1 1—‘,9251:0
I'=o

IH

6.9 Conclusions

The results of this chapter were all novel. The new framework developed in the previous
chapter was the basis for these results.

We have given, for a wide-range of calculi, sufficient conditions for the invertibility of
rules. For a finite set of rules, the conditions are easily verified. Moreover, whilst the
particulars of the conditions vary throughout the calculi, the general idea is the same for all:
a rule is invertible if its premisses occur as premisses of every rule with the same principal
formula.

The results of section 6.5 and section 6.6 are useful when designing calculi. Proof search
will succeed most effectively when there is a small set of rules; the results given within those
sections show how to prune a set of rules, whilst not losing any expressive power.

Of course, one of the stated aims of this thesis was to explore how structural proof theory
could be adequately performed in Isabelle. Should it be possible to formalise the results of

this chapter in a straightforward manner, then one would take a large step towards removing
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the inefficiency which was noted in chapter 4. It is this problem which will occupy us in the

next chapter.



Chapter 7

A Formalisation

7.1 Introduction

In this chapter, we give an overview of the results of the previous sections formalised in
Isabelle. Since the results of those sections were novel, the formalisations contained in this
chapter are likewise novel. The full proof scripts are online [Chapman, 2009]: we only show
the pertinent details here.

The framework is outlined in section 7.2, along with a discussion of why the methods
of this chapter and section 5.5 coincide. As with the previous chapter, the formalisation
is given primarily for the uniprincipal multisuccedent calculi. We will use, as our running
example throughout, the calculus G3cp. In section 7.4, we look at the formalisation of
single-succedent calculi; in section 7.5 the results for modal logic are examined. We return

to uniprincipal multisuccedent calculi in section 7.6 to look at manipulating rule sets.

7.2 Formalising the Framework

In section 5.5, we defined calculi by giving the decomposable rules and extracting active
parts. It is also possible to give the active parts themselves, and define the calculus as the
extension of those active parts. By extension, we mean adding of formulae in some fashion.
We will consider two methods of extension: normal and IW extensions. In the former, we
add the multisets I' and A to the antecedent and succedent, respectively, of every premiss
and the conclusion. In the latter, we also add the extra multisets IV and A’ to the antecedent
and the succedent of the conclusion. Will these two approaches coincide?

Suppose we had a decomposable calculus R, then let R be the active parts of the rules
of R. Similarly, if A is a set of active parts, let A* be the extension of those active parts
with either normal or IW passive parts. Showing the two approaches coincide equates to

showing the following equivalences:

105
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(R)*=R where R is a decomposable calculus

—

A=A where A is a set of active parts

When A = 7@, it does not matter which approach one uses.

Lemma 22 (Extracting then Extending Active Parts) Let R be a decomposable cal-
culus. If R =R, URw, where R, (Rrw ) contains normal (IW) rules only, then:

(R)" =R

Proof. Let R € R be given. Since R is a decomposable calculus, R will be composed
of an active and passive part (of the appropriate kind, depending on whether R € R,, or
R € Rrw). This active part will be, by definition, in R. So, the extension of this active part

will be in (R)*, thus R € (R)*. Rewinding this chain gives that, if R € (R)* then R € R. 4

Lemma 23 (Extending then Extracting Active Parts) Let A be a set of active parts.
If A=A, UArw, where A, (Arw) contains active parts which are to be extended in a
normal (IW) way, then:

—

(A7) = A

Proof. Similar to that of lemma 22 (p. 106). 4

In both proofs, that rules are separated by the type of extension they require is necessary.
For, suppose we did not have this requirement. We may extract an active part from a normal
rule, but then extend in an IW fashion. We would have thus not regained the original calculus

(unless, of course, the rule appeared in both normal and IW flavours).

7.2.1 Formulae and Sequents

A formula is either a propositional variable, the constant |, or a connective applied to a list
of formulae. We thus have a type variable indexing formulae, where the type variable will
be a set of connectives. In the usual way, we index propositional variables by use of natural
numbers. There are no arity constraints for the connectives and the lists at this stage. So,

formulae are given by the datatype:

datatype ‘a form = At nat
| Compound 'a ('a form list)
| ff
For G3cp, we define the datatype Gp, and give the following abbreviations:

datatype Gp = con | dis | imp
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types Gp-form = Gp form

abbreviation con-form (infixl Ax 80) where

p Ax ¢ = Compound con [p,q|

abbreviation dis-form (infixl V* 80) where

p Vx ¢ = Compound dis [p,q]

abbreviation imp-form (infixl D 80) where

p D q¢ = Compound imp [p,q]

Giving the concrete example imposes arity constraints: it is impossible now for a conjunction
to take a list with three formulae as its argument.

A sequent is a pair of multisets of formulae. Sequents are indexed by the connectives
used to index the formulae. Recall that to add a single formula to a multiset of formulae,
we use the symbol @, whereas to join two multisets, we use the symbol +.

In section 5.5 we introduced metaformulae as well as formulae. In Isabelle, the “’a
form” will play the role of metaformulae. There is a difference between what Isabelle calls
schematic variables and the concrete members of the datatypes. When we prove a lemma,
or write an inductive definition, it is then available to use as a simplification, or rewrite,
rule. It is stated in terms of schematic variables, which are prefixed by ?, which we can then

instantiate.

7.2.2 Rules and Rule Sets

A rule is a list of sequents (called the premisses) paired with a sequent (called the conclusion).
The two rule sets used for uniprincipal multisuccedent calculi are the axioms, and the
uniprincipal rules. Both are defined as inductive sets. There are two clauses for axioms,

corresponding to L1 and normal axioms:

inductive-set Az where
id: ([, L Ate == Ati§) € Az
| Loot: ([, L ff § =*0) € Az

The set of uniprincipal rules, on the other hand, must not have empty premisses', and must
have a single, compound formula in its conclusion. The function mset takes a sequent, and

returns the multiset obtained by adding the antecedent and the succedent together:

inductive-set upRules where

I: [ mset ¢ =] Compound R Fs § ; ps #[] ]| = (ps,c) € upRules

For G3cp, we have the following six rules (each A and B below are Isabelle schematic

11t is possible to remove this constraint to allow zero premiss rules. However, this restriction makes it
straightforward to distinguish between the set of uniprincipal rules and axioms.
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variables, which stand for metaformulae), which we then show are a subset of the set of

uniprincipal rules:

inductive-set g3cp
where

conL: ({ AS+{B§=x0, AN B §=%0)¢€ g3p
| conR: ([0 =+ AS, 0=+ BS],0 =] AAx BS)¢c g3cp
| disL: ({ A §=%x0,{ B§S=x0],{ AvVx Bf=x0)¢€ g3p
| disR: ([0 =« { AS+{BS],0=x{ AV« B§) € g3cp
| impL: ([0 =+ L A5, U B §=x0],{ AD B §=x0) € g3cp
| @mpR: ([l AS=>+{BS],0=x{ ADBS) € g3cp

lemma g3cp-upRules:
shows g3cp C upRules

proof—

{

fix ps c

assume (ps,c) € g3cp

then have (ps,c) € upRules by (induct) auto

}

thus ¢3cp C upRules by auto
qed

We have thus given the active parts of the G3cp calculus. We now need to extend these
active parts with passive parts.

Given a sequent C, we extend it with another sequent S by adding the two antecedents
and the two succedents. To extend a normal active part? (Ps,(C) with a sequent S, we
extend every P € Ps and C with S:

defs extend-def : extend forms seq =
(antec forms + antec seq) =* (succ forms + succ seq)
defs extendRule-def : extendRule forms R =
(map (extend forms) (fst R), extend forms (snd R))

Given a rule set R, the extension of R, called R*, is then defined as another inductive set:

inductive-set extRules :: 'a rule set = 'a rule set (-x)
for R :: 'a rule set

where I: r € R —> extendRule seq r € Rx
G3cp has the unique conclusion property (see definition 23). This is easily formalised:

defs uniqueConclusion-def : uniqueConclusion R =V rl1 € R.V r2 € R.
(snd r1 = snd 12) — (r1 = r2)

lemma g3cp-uc:

2In this section, we only use normal rules. In the section on modal logics, we will use IW rules.
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shows uniqueConclusion g3cp
apply (auto simp add:uniqueConclusion-def Ball-def)
apply (rule g8cp.cases) apply auto by (rotate-tac 1,rule g3cp.cases,auto)+

7.2.3 Principal Rules and Derivations

A formula A is left principal for an active part R iff the conclusion of R is of the form A = ().
The definition of right principal is then obvious. We have an inductive predicate to check
these things:
inductive rightPrincipal :: 'a rule = 'a form = bool
where
up: C = (0 =* { Compound F Fs§) —>
rightPrincipal (Ps,C) (Compound F F's)

As an example, we show that if A A B is principal for an active part in G3cp, then () = A

is a premiss of that active part:

lemma principal-means-premiss:
assumes a: rightPrincipal v (A Ax B)
and b: r € g3cp
shows (0 == { AS) € set (fstr)
proof—
from a and b obtain Ps where req: r = (Ps, ) = { AAxB )
by (cases 1) auto
with b have Ps = [0 = { A §, 0 == { B §]
apply (cases r) by (rule g3cp.cases) auto
with req show (0 =x { A §) € set (fst r) by auto
qed

A sequent is derivable at height 0 if it is the conclusion of a rule with no premisses. If a
rule has m premisses, and the maximum height of the derivation of any of the premisses is
n, then the conclusion will be derivable at height n + 1. We encode this as pairs of sequents
and natural numbers, and call such a pair a deriv. A sequent S is derivable at a height n in

a rule system R iff (S,n) belongs to the inductive set derivable R:

inductive-set derivable :: ‘a rule set = 'a deriv set
for R :: 'a rule set
where
base: [([,C) € R] = (C,0) € deriwable R
| step: [r € R; (fstr)#]];V p € set (fstr). 3 n < m. (p,n) € derivable R |
= (snd r,m + 1) € derivable R

In some instances, we do not care about the height of a derivation, rather that the root
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is derivable. For this, we have the additional definition of derivable’, which is a set of

sequents:

inductive-set derivable’ :: 'a rule set = 'a sequent set
for R :: 'a rule set
where
base: [ ([,C) € R] = C € derivable’ R
| step: [reR;(fstr)#[;V p e set (fstr). p € derivable’ R ]
= (snd r) € derivable’ R

It is desirable to switch between the two notions. Shifting from derivable at a height to deriv-
able is simple: we delete the information about height. The converse is more complicated

and involves an induction on the length of the premiss list:

lemma deriv-to-deriv:
assumes (C,n) € derivable R
shows C € derivable’ R

using assms by (induct) auto

lemma deriv-to-deriv2:
assumes C € derivable’ R
shows 3 n. (C,n) € derivable R
using assms
proof (induct)
case (base C)
then have (C,0) € derivable R by auto
then show ?case by blast
next
case (step r)
then obtain ps ¢ where r = (ps,c) and ps # [| by (cases r) auto
then have aa: V p € set ps. 3 n. (p,n) € derivable R by auto
then have 3 m. V p € set ps. 3 n<m. (p,n) € derivable R
proof (induct ps) — induction on the list
case Nil
then show %case by auto
next
case (Cons a as)
then have 3 m. V p € set as. 3 n<m. (p,n) € derivable R by auto
then obtain m where V p € set as. 3 n<m. (p,n) € derivable R by auto
moreover from v p € set (a # as). 3 n. (p,n) € deriable R) have
3 n. (a,n) € derwable R by auto
then obtain m’ where (a,m’) € derivable R by blast
ultimately have V p € set (a # as). 3 n<(mazx m m’). (p,n) € derivable R

by auto — max returns the maximum of two integers
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then show %case by blast
qed
then obtain m where V p € set ps. 3 n<m. (p,n) € derivable R by blast
with (r = (ps,c)) and (r € R) have (¢,m+1) € derivable R using (ps # [} and
derivable.step[where r=(ps,c) and R=R and m=m]| by auto
then show ?case using (r = (ps,c)) by auto

qed

7.3 Formalising the Results

We now have all of the foundations required to formalise the results of section 6.2 for an
arbitrary language. The example which runs throughout this section shows the general
results applied to the encoding of the G3cp calculus. A variety of “helper” lemmata are
used in the proofs, but are not shown here. Full details, including all the proofs and helper
lemmata, can be found at [Chapman, 2009]. The proof tactics themselves are hidden in the
following proof, except where they are interesting. Indeed, only the interesting parts of the
proof are shown at all. We formalise lemma 8 (p. 82), except that we have the restriction

that all rules are normal. The proof is interspersed with comments.

lemma rightInvertible:
fixes I' A :: 'a form multiset
assumes rules: R’ C upRules N R = Az U R’
and a: (I' =x A ® Compound F Fs,n) € derivable Rx
and b:V r’ € R. rightPrincipal r' (Compound F Fs) —
(T =% A') € set (fst r')
shows 3 m<n. (T +T' =x A + A’,m) € derivable Rx

using assms

The height of derivations is decided by the length of the longest branch. Thus, we need to
use strong induction: i.e. Vm < n. If P(m) then P(n+ 1).

proof (induct n arbitrary:I’ A rule:nat-less-induct)
case (I n I A)
then have IH:Vm<n. VI’ A. (T =% A & Compound F Fs, m) € derivable R+ —
(Vr' € R. rightPrincipal v’ (Compound F Fs) —
(T == A') € set (fstr)) —
Fm'<m. (T +T'=x A+ A’, m') € derivable Rx)
and a”: (I =* A ® Compound F Fs,n) € derivable Rx
and bV r’ € R. rightPrincipal r' (Compound F Fs) —
(T =% A') € set (fst )
by auto
show Zcase

proof (cases n) — Case analysis on n
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case (
then obtain r S where extendRule S r = ([|,I' =* A @& Compound F Fs)
and r € Az V r € R’ by auto — At height 0, the premisses are empty
moreover
{assume r € Az
then obtain i where ([|, { Ati §=>x{ At ) =rV
r=(0, 14 5=+0)
using characteriseAz[where r=r| by auto
moreover — Case split on the kind of axiom used
{assume r = ([], { Ati §=x{ At )
then have At i :# ' AN At i :# A by auto
then have At i :# ' + T'' A At i :# A + A’ by auto
then have (I' + ' =% A + A’,0) € derivable Rx using rules by auto
}
moreover
{assume r = ([[,{ff§ =x* 0)
then have ff :# ' by auto
then have ff :# I' + I'' by auto
then have (I' + ' =% A + A’,0) € derivable R using rules by auto
}
ultimately have (I + T'' =% A + A’,0) € derivable R+ by blast

}

moreover

{assume r € R’ — This leads to a contradiction

then obtain Ps C' where Ps # [| and r = (Ps,C) by auto
moreover obtain S where r = ([],S) by blast — Contradiction

ultimately have (I' + T/ = A + A’,0) € derivable R+ using rules by simp

}

ultimately show 3 m<n. (I' + I'' =x A + A’/m) € derivable Rx by blast

In the case where n = n’ + 1 for some n’, we know the premisses are empty, and every

premiss is derivable at a height at most n':

case (Suc n’)
then have (I’ =x A ® Compound F Fs,n'+1) € derivable Rx using a’ by simp
then obtain Ps where (Ps, I' =+ A @& Compound F Fs) € Rx and
Ps # || and
YV p € set Ps. 3 n<n’. (p,n) € derivable Rx by auto
then obtain r S where r € Az V r € R’
and extendRule St = (Ps, I =x A & Compound F Fs) by auto
moreover
{assume r € Az — Gives a contradiction
then have fst r = [| apply (cases r) by (rule Az.cases) auto

moreover obtain z y where r = (z,y) by (cases )
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then have z # [| using (Ps # [
and (extendRule S r = (Ps, I' =x A @& Compound F Fs)) by auto
ultimately have 3 m<n. (' + T'' =x A + A’ /m) € derivable Rx by auto
}
moreover
{assume r € R’
obtain ps ¢ where r = (ps,c) by (cases r) auto
have (rightPrincipal r (Compound F Fs)) V
=(rightPrincipal v (Compound F Fs))

by blast — The formula is principal, or not

If the formula is principal, then IV = A’ is amongst the premisses of r:

{assume rightPrincipal v (Compound F' F's)
then have (I'' =* A’) € set ps using b’ by auto
then have extend S (I'' =+ A’) € set Ps
using (extendRule S r = (Ps,I' =+ A & Compound F Fs))
by (simp)
moreover have S = (I' =% A) by (cases S) auto
ultimately have (T + T'/ =% A + A’) € set Ps by (simp add:estend-def)
then have 3 m<n’. (T + ' = A + A’,m) € derivable Rx
using v p € set Ps. 3 n<n’. (p,n) € derivable R*) by auto
then have 3 m<n. (I + T'' =x A + A’m) € derivable Rx by (auto)

}

If the formula is not principal, then it must appear in the premisses. The first two lines
give a characterisation of the extension and conclusion, respectively. Then, we apply the

induction hypothesis at the lower height of the premisses:

{assume — rightPrincipal r (Compound F Fs)
obtain ® ¥ where S = (® =x* ) by (cases S) (auto)
then obtain G H where ¢ = (G =% H) by (cases c) (auto)
then have { Compound F Fs § # H — Proof omitted
have V + H = A & Compound F Fs
using (S = (® =% ¥)) and r = (ps,c)) and (¢ = (G =* H)) by auto
moreover from (r = (ps,c)) and (¢ = (G =x* H))
have H =0 v (3 A. H = [ AS) by auto
ultimately have Compound F Fs :# ¥ — Proof omitted
then have 3 V1. ¥ = W1 & Compound F Fs by (auto)
then obtain W1 where S = (& = U1 ¢ Compound F Fs) by auto
have V p € set Ps. (Compound F Fs :# succ p) — Appears in every premiss
by (auto)
then have V p € set Ps. 3 ®' ¥/ m. m<n’A
(®'+ T/ =% U’ + A')m) € derivable Rx A
p = (®' =x ¥' @ Compound F Fs) using IH by (arith)
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To this set of new premisses, we apply a new instance of r, with a different extension:

obtain Ps’ where eq: Ps' = map (extend (® + I'' =x U1 + A’)) ps by auto
have (Ps'T + T/ = A + A') € Rx by simp

then have V p € set Ps’. 3 n<n’. (p,n) € derivable R* by auto
then have 3 m<n. (I + T/ =x A + A’,m) € derivable Rx

using (Ps'T + T/ =% A + A') € R» by (auto)

All of the cases are now complete.

ultimately show 3 m<n. (I' + T =x A + A’ m) € derivable R+ by blast
qed

As an example, we show the left premiss of RA in G3cp is derivable at a height not
greater than that of the conclusion. The two results used in the proof (principal-means-premiss

and rightInvertible) are those we have previously shown:

lemma conRInvert:

assumes (I' =x A @ (A Ax B),n) € derivable (g3cp U Azx)x

shows 3 m<n. (I' =x A ® A,m) € derivable (¢3cp U Az)x

proof—

have V r € gScp. rightPrincipal v (A Ax B) — (0 =« { A §) € set (fst r)
using principal-means-premiss by auto

with assms show ?thesis using rightInvertible by (auto)

qed

A rule is invertible iff every premiss is derivable at a height lower than that of the
conclusion. A set of rules is invertible iff every rule is invertible. These definitions are easily

formalised:

defs invertible-def : invertible r R =
vV nS.(r € RA (snd (extendRule S r),n) € derivable Rx) —
(V p € set (fst (extendRule S r)). 3 m < n. (p,m) € derivable Rx)

defs invertible-set-def : invertible-set R =V (ps,c) € R. invertible (ps,c) R

A set of multisuccedent uniprincipal rules is invertible if each rule has a different conclusion
(lemma 20 on page 102, shown below without displaying the proof). G3cp has the unique

conclusion property (as shown in section 7.2.2). Thus, G3cp is an invertible set of rules:

lemma unique-to-invertible:
assumes R’ C upRules N R = Az U R’
and uniqueConclusion R’

shows invertible-set R

lemma g3cp-invertible:
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shows invertible-set (Az U g3cp)
using g3cp-uc and g3cp-upRules

and unique-to-invertible[where R'=g3cp and R=Azx U g3cp)
by auto

7.3.1 Conclusions and Comparisons

For uniprincipal multisuccedent calculi, the theoretical results have been formalised. More-
over, the running example demonstrates that it is straightforward to implement such calculi
and reason about them: proving invertibility now requires less than 25 lines of proof in most
cases. As a direct comparison, the same invertibility results can be directly shown in the
flexible framework of this section. To prove the same result (using the same Isar vernacular)
requires over 300 lines of Isabelle code for each premiss. Thus, for two premiss rules, around

600 lines are needed (see appendix C for the full proof in the case of RA).

7.4 Single Succedent Calculi

As stated in section 6.3, we must be careful when restricting sequents to single succedents.
The same is true when we come to formalising section 6.3. If we have sequents as a pair of
multisets, where the second is restricted to having size at most 1, then how does one extend
the active part of L D from G3ip? The left premiss will be AD B = A, and the extension
will be I' = C. The extend function must discard the C.

Rather than taking this route, we instead restrict to single formulae in the succedents
of sequents. This raises its own problems, since now how does one represent the empty

succedent? We introduce a dummy formula Em, which will stand for the empty formula:

datatype ‘a form = At nat
| Compound 'a 'a form list

| ff
| Em

When we come to extend a sequent, say I' = C, with another sequent, say I = C’, we only

“overwrite” the succedent if C' is the empty formula:

defs extend-def : extend forms seq = if (succ seqg = Em)
then (antec forms + antec seq) =% (succ forms)

else (antec forms + antec seq = succ seq)

Given this, it is possible to have right Weakening (lemma 10, p. 87), where we overwrite

the empty formula if it appears as the succedent of the root of a derivation:

lemma dp WeakR:

assumes (I" =% Em,n) € derivable Rx
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and R’ C upRules
and R = Az U R’
shows (I' =% C,n) € derivable R+ — Proof omitted

Of course, if C = Em, then the above lemma is trivial. The burden is on the user not to

“use” the empty formula as a normal formula. Lemma 11 (p. 87) can then be formalised:

lemma rightInvertible:

assumes R’ C upRules N R = Az U R’

and (I =% Compound F Fs,n) € derivable Rx

and VY r’ € R. rightPrincipal v’ (Compound F Fs) — (I'' =x E) € set (fst ')
and E # Em

shows 3 m<n. (I 4T/ == E,m) € derivable Rx

lemma leftInvertible:

assumes R’ C upRules N R = Az U R’

and (I’ ® Compound F Fs =x §,n) € derivable Rx

and V r’ € R. leftPrincipal v’ (Compound F Fs) — (I'' =x Em) € set (fst r’)
shows 3 m<n. (I' +T' =% d,m) € derivable Rx*

G3ip can be expressed in this formalism:

inductive-set g3ip
where
conL: ([ AS+{BS§=xEm],{ AN« B § =% Em) € g3ip
| conR: ([0 =x A, 0 =x B], 0 == (A Ax B)) € g3ip
| disL: ([ A§ =% Em,{ B §=x% Em], { AVx BS =% Em) € ¢3ip
| disR1: ([0 == A], 0 = (A vx B)) € gSip
| disR2: ([0 =* B], 0 == (A Vx B)) € g3ip
| impL: ({ ADBS§=%xA,{ BS=xEm], | (AD B)§ =% Em) € g3ip
| (

impR: ([[ A § = B], 0 = (A D B)) € g3ip

As expected, RD can be shown invertible:

lemma impRInvert:
assumes (I' =x (A D B), n) € derivable (Az U ¢3ip)* and B # Em
shows 3 m<n. (I' @ A =x B, m) € derivable (Ax U ¢8ip)x
proof—
have V r € (Az U ¢8ip). rightPrincipal r (A O B) —
({AS =% B) € set (fst r)
proof— — Showing that A = B is a premiss of every rule with A D B principal
{fix r
assume r € (Az U g¢3ip)
moreover assume rightPrincipal v (A D B)

ultimately have r € g3ip by auto — If AD B was principal, then r ¢ Ax
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from (rightPrincipal 1 (A D B)) have snd r = () =x* (4 D B)) by auto
with (r € g3ip> and (rightPrincipal v (A D B))

have r = ([{A§ =x B], 0 =x* (ADB)) by (rule g3ip.cases) auto
then have ({A§ =x* B) € set (fst r) by auto

}

thus ?thesis by auto
qed
with assms show %thesis using rightInvertible by auto

qed

7.5 Modal Calculi

Some new techniques are needed when formalising the results of section 6.4. A set of
modal operators must index formulae (and sequents and rules), there must be a method for
modalising a multiset of formulae and we need to be able to handle IW rules.

The first of these is easy; instead of indexing formulae by a single type variable, we index
on a pair of type variables, one which contains the propositional connectives, and one which
contains the modal operators:
datatype (‘a, 'b) form = At nat

| Compound 'a ('a, 'b) form list
| Modal 'b ('a, 'b) form list
i)

Modalising multisets is relatively straightforward. We use the notation ! - I', where ! is a

modal operator and I'" is a multiset of formulae:

defs modaliseMultiset-def:
(a:: ') - (T i ("a,’d) form multiset) = {# Modal a [p]. p :# T #}

Two new rule sets are created. The first are the normal modal rules:

inductive-set modRules2 where
[ ps # [ ; mset ¢ = { Modal M Ms § ]| = (ps,c) € modRules2

The second are the modalised context rules (definition 20, p. 89). Taking a subset of the
normal modal rules, we extend using a pair of modalised multisets for context. We create a
new inductive rule set called p-e, for “prime extend”, which takes a set of modal active parts
and a pair of modal operators (say ! and e), and returns the set of active parts extended
with |- I'= e - A:

inductive-set p-e :: (‘a,’d) rule set = 'b = 'b = (‘a,’d) rule set
for R :: ('a,’b) rule set and M N :: 'b
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where
[ € R; RC modRules?2 | = extendRule (M-I' =% N-A) r € p-e RM N

To encode the condition “all modalised context rules are IW rules”, we need a method for

extending the conclusion of a rule without extending the premisses. Again, this is simple:

defs extendConc-def: extendConc S r = (fst r, extend S (snd r))

The extension of a rule set is now more complicated; the inductive definition has four clauses,

depending on the type of rule:

inductive-set ezt :: (‘a,’d) rule set = ('a,’d) rule set = 'b = 'b = (‘a,’d) rule set
for R R’ :: ('a,’d) rule set and M N :: b
where
ar: [r € R;re Az | = extendRule seqr € ext RR' M N

| up: [ r € R;r € upRules] = extendRule seqr € ext R R’ M N

| modi: [r € p-e R“" M N ; r € R] = extendConc seqr € ext R R' M N

| mod2: [ r € R ; r € modRules?2 | = extendRule seq T € ext R R' M N

Note the new rule set carries information about which set contains the modalised context

rules and which modal operators extend those prime parts.

We have two different inversion lemmata, depending on whether the rule was a modalised
context rule, or some other kind of rule. We only show the former, since the latter is much

the same as earlier proofs. The interesting cases are picked out:

lemma rightinvert:
fixes I' A :: (‘a,’d) form multiset
assumes rules: R1 C upRules AN R2 C modRules2 N R3 C modRules2 N
R = Az U R1 U (p-e R2 M1 M2) U R3 A
R'= Az URI U R2U R3
and a: (I' =% A @ Modal M Ms,n) € derivable (ext R R2 M1 M2)
and b:V r’ € R’ rightPrincipal r' (Modal M Ms) R' —
(T = A') € set (fst r')
and neq: M2 # M
shows 3 m<n. (I +T' = A + A’,m) € derivable (ext R R2 M1 M2)

This is the case where the last inference was a normal modal inference:

{assume r € modRules2
obtain ps ¢ where r = (ps,c) by (cases r) auto
with (r € modRules2) obtain T Ts where ¢ = () =x* { Modal T Ts §) V
¢ = ({ Modal T Ts§ =x ()
using modRule2Characterise[where Ps=ps and C=c] by auto
moreover
{assume ¢ = (0 =x { Modal T Ts §)
then have bb: rightPrincipal r (Modal T Ts) R’ using (r = (ps,c)» and (r € R)
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proof—
We need to know 7 € R so that we can extend the active part

from (¢ = (0 =x {Modal T Tsf)) and
(r = (ps,c)y and

(r € R) and

(r € modRules?2)
have (ps,0 =x* {Modal T Ts§) € R by auto
with rules have (ps, 0 =x {Modal T Ts§) € p-e R2 M1 M2 V

(ps, © == {Modal T Ts§) € R3 by auto

moreover
{assume (ps, 0 =x {Modal T Ts§) € R3

then have (ps, 0 =x* {Modal T Ts§) € R’ using rules by auto

}
moreover

{assume (ps,0) == {Modal T Ts§) € p-e R2 M1 M2
In this case, we show that A’ and IV must be empty. The details are generally suppressed

then obtain I'" A’ r’
where aa: (ps, ) =x {Modal T Ts§) = extendRule (M1-T'" =x M2-A') r’

A1’ € R2 by auto
then have M1-T' = () and M2-A’' = ()
by (auto simp add:modalise Multiset-def)

The other interesting case is where the last inference was a modalised context inference

{assume ba: © € p-e R2 M1 M2 A
extendConc S = (Ps, T =% A ® Modal M Ms)

with rules obtain F Fs ' A" ps r’ where
ca: v = extendRule (M1-T"" =x M2-A") r’ and

cb: ' € R2 and

ce: v’ = (ps, 0 == {Modal F Fs§) vV r' = (ps,{ Modal F Fs§ =x ()
by auto

obtain I'/ A where S = (I'l =% A1) by (cases S) auto
moreover

{assume r' = (ps, § == {Modal F Fs§)

with ba ca (S = (I'1 =% A1) have

eql: (M1-T"' + T1 =x M2-A" + A1 ® Modal F Fs)

(T =x A @& Modal M Ms)
by (auto simp add:extendRule-def extend-def extendConc-def union-ac)

then have Modal M Ms € set-of (M2-A") Vv
Modal M Ms € set-of A1 V
Modal M Ms = Modal F Fs

by auto
moreover
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{assume Modal M Ms € set-of (M2-A'") — Contradiction
then have Modal M Ms :# M2-A'' by auto
with neq
have 3 m<n. (I + T/ =x A + A’m) € derivable (ext R R2 M1 M2)
by auto
}
moreover
{assume Modal M Ms = Modal F Fs — The last inference is principal
then have r' = (ps,  =x* { Modal M Ms$)
using (' = (ps,0 =x* {Modal F Fs§)) by simp
with cb and rules have rightPrincipal r' (Modal M Ms) R’
and r’ € R’ by auto
with b have (I'" = A’) € set ps using (r' = (ps, § =x* {Modal M Ms§))
by (auto simp add:Ball-def)
ultimately have 3 m<n. (I' + T'' =x A+A’m) € derivable (ext R R2 M1 M2)
by auto
}
moreover
{assume Modal M Ms € set-of A1 — Formula is in the implicit weakening
then obtain A2 where A1 = A2 & Modal M Ms by blast
from ba and rules
have eztendConc (T'1 + T/ =x A2 + A') r € (ext R R2 M1 M2) by auto
moreover from ba and ca have fst (extendConc (T'1 + T/ =% A2 + A’) r) = Ps
by (auto simp add:extendConc-def)
ultimately have (I' + T/ =x A + A',n'+1) € derivable (ext R R2 M1 M2)
by auto
then have 3 m<n. (I + T'' =x A + A’,m) € derivable (ext R R2 M1 M2)
using (n = Suc n) by auto
}
ultimately have 3m<n. (T + T'' =x A + A’, m) € derivable (ext R R2 M1 M2)
by blast

The other case, where the last inference was a left inference, is more straightforward, and

so is omitted.

We guarantee no other rule has the same modal operator in the succedent of a modalised
context rule using the condition M # Ms. Note this lemma only allows one kind of modalised

context rule. In other words, it could not be applied to a calculus with the rules:

I T=AeA o= Al-A
[’ T = ed,e-AA I',0 T = oA 1 -A A

Ry

since, if ([) = A],0 = @A) € R, then Ry € p-e R ! o, whereas Ry € p-e R o !. Similarly, we
cannot have modalised context rules which have more than one modalised multiset in the

antecedent or succedent of the active part. For instance:
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1T, To= A)l-Ajje- Ay
[0 Ty,0-Ty = eA - Aj e Ay, A

cannot belong to any p-e set. It would be a simple matter to extend the definition of p-e
to take a set of modal operators, however this has not been done.

As an example, classical modal logic (the rules for which were given in section 6.4) can
be formalised. The (modal) rules for this calculus are then given in two sets, the latter of
which will be extended with O-T' = & - A:

inductive-set g3mod2
where

diaR: ([0 =% { AS], 0 =% { O AS) € g3mod2
| bozL: ( A§=+0],{ OAF§=x0) e g3mod2

inductive-set g3modl
where

bozR: ([0 == [AS],0 =+ { O A §) € g3mod1
| diaL: ([{AS == 0],0 & A § =% 0) € g8modl

We then show the strong admissibility of the rule:

I'=0A4A
'=AA

lemma invertBoxR:

assumes R = Az U gSup U (p-e g3modl O &) U g8mod2

and (I' =x A @ (O A),n) € deriwable (ext R g3modl O <)
shows 3 m<n. ([ = A ® A,m) € derivable (ext R g3modl O O)
proof—

from assms show %thesis

using principal and rightInvert and g3 by auto

qed

where principal is the result which fulfils the principal formula conditions given in the

inversion lemma, and g3 is a result about rule sets.

7.6 Manipulating Rule Sets

In section 6.5 we showed that the removal of superfluous and redundant rules would not

be harmful to invertibility. In section 6.6, we showed that removing combinable rules was
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likewise not harmful to invertibility. Here, we formalise the results that the removal of such
rules from a calculus £ will create a new calculus £’ which is equivalent. In other words, if
a sequent is derivable in £, then it is derivable in £’. The results formalised in this section
are for uniprincipal multisuccedent calculi.

When dealing with lists of premisses, a rule R with premisses P will be redundant given
a rule R’ with premisses P’ if there exists some p such that P = p#P’. There are other
ways in which a rule could be redundant; say if P = QQ@QP’, or if P = P'Q(Q, and so on.
The order of the premisses is not really important, since the formalisation operates on the
finite set based upon the list. The more general “append” lemma could be proved from the
lemma we give; we prove the inductive step case in the proof of such an append lemma.

This is a height preserving transformation. Some of the proof is shown:

lemma removeRedundant:

assumes r1 = (p#ps,c) A rl € upRules

and r2 = (ps,c) A 12 € upRules

and R1 C upRules N R = Az U R1

and (T,n) € derivable (R U {r1} U {r2})x*

shows 3 m<n. (T,m) € deriable (R U {r2})x

proof (induct n rule:nat-less-induct)
case (
have (T,0) € derivable (R U {r1} U {r2})x by simp
then have ([,T) € (R U {r1} U {r2})x by (cases) auto
then obtain S r where ext: extendRule S r = ([],T) and

r € (RU{r1} U {r2}) by (rule extRules.cases) auto

then have r € RV r = r1 V r = r2 using ¢ by auto

It cannot be the case that » = r; or » = ro, since those are uniprincipal rules, whereas
anything with an empty set of premisses must be an axiom. Since R contains the set of

axioms, so will R U rg:

then have r € (R U {r2}) using ¢ by auto
then have (7,0) € derivable (R U {r2})x by auto
then show 3 m<n. (T,m) € deriwable (R U {r2})* using (n=0) by auto
next
case (Suc n’)
have (T,n'+1) € derivable (R U {r1} U {r2})* by simp
then obtain Ps where e: Ps # ||
and f: (Ps,T) € (RU {r1} U {r2})x
and g:V P € set Ps. 3 m<n'. (P,m) € derivable (R U {r1} U {r2})x
by auto
have gV P € set Ps. 3 m<n'. (P,m) € derivable (R U {r2})*
from f obtain S r where ext: extendRule S r = (Ps,T)
and r € (R U {r1} U {r2}) by (rule extRules.cases) auto
then have r € (R U {r2}) V r = r1 by auto
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Either r is in the new rule set or r is the redundant rule. In the former case, there is nothing
to do:

assume r € (R U {r2})
then have (Ps,T) € (R U {r2})x by auto
with g’ have (T,n) € derivable (R U {r2})* using <n = Suc n"» by auto

In the latter case, the last inference was redundant. Therefore the premisses, which are
derivable at a lower height than the conclusion, contain the premisses of ro (these premisses

are extend S ps). This completes the proof:

assume r = 7l
with ezt have map (extend S) (p # ps) = Ps using a by (auto)
then have V P € set (map (extend S) (p#ps)).
3 m<n'. (P,m) € derivable (R U {r2})x
using g’ by simp
then have h: V P € set (map (extend S) ps).
3 m<n’. (P,m) € derivable (R U {r2})* by auto

Recall that to remove superfluous rules, we must know that Cut is admissible in the original
calculus (see lemma 15, p. 93). Again, we add the two distinguished premisses at the head of
the premiss list; general results about permutation of lists will achieve a more general result.
Even so, the following result is a special case where a single Cut can be used to give the

empty sequent. Since one uses Cut in the proof, this will in general not be height-preserving:

lemma removeSuperfluous:
assumes 11 = ((0 =x {AS) # (({AS == 0) # ps),c) A r1 € upRules
and R1 C upRules N R = Az U R1
and  (T,n) € derivable (R U {r1})*
and CA:VTAA (T =xA® A) € derivable’ Rx —
(T ® A =x A) € derivable’ Rx) —
(T =% A) € derivable’ Rx
shows T € derivable’ Rx

Combinable rules can also be removed (lemma 18, p. 97). We encapsulate the combinable
criterion by saying that if (p#P,T) and (q#P,T) are rules in a calculus, then we get an
equivalent calculus by replacing these two rules by ((extend p q)#P,T). Since the extend
function is commutative, the order of p and ¢ in the new rule is not important. This

transformation is height preserving:

lemma removeCombinable:
assumes a: 71 = (p # ps,c) A rl € upRules
and b: 2 = (q # ps,c) A r2 € upRules
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and c: 3 = (extend p q # ps, ¢) A r8 € upRules
and d: R1 C upRules N R = Az U R1

and  (T,n) € derivable (R U {r1} U {r2})=
shows (T,n) € derivable (R U {r3})=

7.7 Conclusions

The results from the preceding chapters have been formalised. Since these results were new,
the formalisation is new.

The formalisation is not exactly faithful. It was proved equivalent in the presence of
some sane criteria, namely that one can decide which rules are normal and which are IW.
For all sections except section 7.5 only normal rules were considered. The difference between
metaformulae (and other metanotions) and Isabelle schematic variables is slight. In section
7.5, a restricted language was considered: we could not give use the full generality of section
6.4.

Only a portion of the formalisation was shown; a variety of intermediate lemmata were
not made explicit. This was necessary, for the Isabelle theory files run to almost 8000
lines, but it is available in full at [Chapman, 2009]. However, these files do not have to
be replicated for each new calculus. It takes very little effort to define a new calculus.
Furthermore, proving invertibility is now a quick process; less than 25 lines of proof in
most cases. As a direct comparison, the invertibility results of section 4.4 (using the rigid®
calculus definitions) can be directly shown in the flexible framework of section 7.2. To prove
the same result (using the same Isar vernacular) requires over 600 lines of Isabelle code (see

appendix C for the full proof).

3Rigid in the sense that it cannot be reused.



Chapter 8

Conclusions

8.1 Applicability to the Field

The most obvious beneficiaries of this work are those working in an area closely related to
that of this thesis. Either the theoretical results and framework could be re-used for other
purposes, or the Isabelle files could be used for a new formalisation of some result. The best
case scenario would be for someone who wanted to formalise some proof theory, but thought
it was unfeasible, reading this thesis and using the techniques contained herein.

The formal proofs, with their detailing of all cases, also serve as a pedagogical aid for
both students of proof theory and students of formalisation. Just as writing coherent and
elegant proofs should be the aim of every mathematician, so too the goal of the formaliser
should be to write coherent and elegant formal proofs. Whether that has been achieved
here is for each reader to decide, but either way something can be gained from reading the

proofs.

8.2 Future Directions

8.2.1 More Complex Calculi

The most obvious area of future study is tweaking, or perhaps reformulating, the criteria laid
down in section 5.5 so that more exotic calculi can be analysed using the methods presented
here. A different structure, such as sets or lists, could be considered for the contexts of
rules. Only context-sharing rules are permitted at present. Some calculi, however, contain
both context-sharing and context-splitting rules, notably the linear logic of [Girard, 1987].
Investigation of the invertibility of such rules would be a worthwhile avenue down which one
could venture. The danger, of course, is that the criteria for both classifying the calculus
itself, and for providing sufficient conditions for invertibility within that calculus, become

too convoluted. One must avoid the situation where it is more straightforward to check
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invertibility directly rather than checking a series of conditions which prove invertibility
indirectly.

The first choice for extension would be first-order calculi. In order to define such calculi in
a similar fashion to section 5.5, we would require substitution to be defined for metasequents
and other meta notions. It is possible to avoid this definitional approach if we instead think
of a rule as the infinite set of its inferences. Then, substitution needs only to be defined for
the formulae and multisets. However, this would then no longer be an extension of section
5.5. Of course, one could rework those sections to follow this alternative approach. Another
problem associated with first-order calculi is with formalisation. The formulae, and hence
also the sequents and rules, in chapter 7 are indexed by type variables. Currently this is not
possible in Nominal Isabelle (see appendix B).

Some calculi, such as hGKi, the Gentzen-Kleene calculus for intuitionistic logic with
head formulae, have additional structure on the left of the sequent arrow in the form of a
stoup or head. A reserved place, which can be filled by a formula, highlights the principal
formula of a left inference. This extra structure simplifies analysis: if we come across a

derivation which ends with:
AgDA; T = B

then this can only have had L D or a right rule as the last inference used. There is the
additional structural rule called Dereliction, which moves a formula from the context to the
stoup position. To prove invertibility, one may have to use instances of Dereliction, which
will make strong invertibility unlikely.

Interestingly, the left premiss of the rule L Dis not invertible for hGKi, but for a different
reason to why it is not invertible in G3i. In G3i, the base case of the proof by induction
failed: there is no reason I'd Ag D A; = B should be derivable for general I and B. However,
with stoups the base case is treated by ex falso: if the derivation ends with 40D A1;T' = B
then it cannot also end with P;I" = P, where P is some propositional variable. The proof
now fails because of the interplay between RDand LD. When the last inference used is R D,

the derivation ends with:

AgDA;T,B=C
ApDA;T'= BDC

We can apply the induction hypothesis to the premiss, but this gives a copy of B in the

context which is unwanted and impossible to remove:

ASATB=C
—;F,B,AojAl :>A0 L

More study is needed to identify which combinations of rules, or rather which properties of

rules, will create the above situation so that it can be restricted.



CHAPTER 8. (CONCLUSIONS 127

8.2.2 Other Formalisms

The next area of interest is that of other formalisms. Sequent calculus has its roots with
Gentzen in the 1930s. Since then, many formalisms have sprung up to answer questions
which the sequent calculus was unable to answer. Such things include proof nets [Girard,
1987] and deep inference [Briinnler, 2006]. Both were developed to remove the redundancy
present in sequent calculi, however invertibility-type questions can still be asked about such

systems.

8.2.3 Related Problems

Another option one could investigate is to widen the scope from invertibility to permutability.
Permutability is a more general problem, and is concerned with when two inferences can be
switched without altering the provability of a sequent. For example, in G3cp, it is possible

to switch the order of the LA and RV inferences in the following derivations:

T A,B= A B,A I A, B= A, B,A
TANB= AB.A T.AB= AvB.A v
T.ANB= AvB,A v T.ANB= AvB.A "

In this case, we say LA permutes over RV. This relates to invertibility in the following
way: if a rule can be permuted over any other rule, then the initial rule is invertible. Thus,
invertibility is a special kind of permutability. Giving conditions for when two rules can be
permuted over one another will then provide lemma 8 as a corollary, for instance.

Permutability has been shown for specific logics, but not in a general setting. For in-
stance, [Kleene, 1952] shows which inferences in LK and LJ can be permuted, which is
extended in [Dyckhoff and Pinto, 1999] and [Shankar, 1992]. In [Troelstra and Schwichten-
berg, 2000], the one-sided Gentzen-Schiitte system GS1 is analysed for permutability.

In a similar vein to permutability, albeit one further removed from the original area of
study, one may investigate other meta-theoretical properties of sequent calculi. The prime
candidate is that of Cut admissibility, which has been studied in some detail in [Ciabattoni
and Terui, 2006a], [Curry, 1963], [Restall, 1999] etc. Indeed, looking at the conditions of
[Restall, 1999] when compared with the defnition of a decomposable uniprincipal calculus
(section 5.5) one sees all that is missing for such a calculus to admit Cut is the matching of
principal constituents. In other words, should one provide conditions for when a cut, whose
formula is principal in both premisses, can be eliminated in such a calculus (subject to use
of the induction hypothesis), then one would have proved Cut admissibility in general.

Also of interest is Contraction. This is perhaps more accessible than Cut admissibility,
given that only one rule at a time needs to be considered, rather than pairs of rules. However,
as we saw in section 4.5, based on [Dyckhoff and Negri, 2000], a lot of non-standard lemmata
are needed in some instances to prove Contraction admissibility. Contraction is also, whilst

interesting, not as important as Cut admissibility, nor indeed is it as important as proving
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an interpolation result. As noted in section 4.3, interpolation results are useful in various
branches of computer science. Given a logic, would it be possible to give conditions for when

an interpolation theorem is provable?

8.2.4 Formalisation Problems

From the theorem prover side, there is one avenue which would be very interesting to ex-
plore. The informal proofs given within this thesis often contain sequent calculus derivations,
which the formal proof has to recreate line by line in a linear fashion. Ideally one would like
to give a sequent calculus derivation in Isabelle using the same mechanism as one would in
KTEX, with some notes to tell the system which rule to apply etc. Then, instead of get-
ting formally checked proofs, one would get formally checked proofs which contain formally
checked sequent calculus derivations. This would, again, decrease the mismatch between
the formal and informal approaches. Incidentally, this was one of the original ideas for the
thesis which was never followed through; it is more a ITEX and Isabelle interface problem

than a proof theory problem.

8.3 Final Comments

As stated in section 1.2, the objective of the thesis was to show how human readable proofs,
or the least human legible proofs, of results from structural proof theory could be formalised.
The examples of chapter 4 show that, if this was not fully realised, then a large step was
taken down this path. The three formalisations given in chapter 4 were novel: they showed
Isar used for non-trivial formalisation of proof theory. The ideal would be for the Isar
language, or a similar style vernacular in a different theorem prover, to progress to the stage
where a formalised proof is indistinguishable from an informal proof.

In chapters 5-7, we gave a series of (formalised) results about invertibility which reduce
the burden on the user. Of course, one is restricted by the choices made in the formalisation:
multisets and context sharing rules are all that is available. These chapters contained new
work: the theoretical work was novel and, when formalised, created a new framework for
proof theory in Isabelle. Not all obstacles have been overcome, however some of the barriers
to entry for formalising proof theory have been removed by this work.

It is hoped that the work contained in this thesis can be used by others. The aim of
formalising as much of mathematics as possible is indeed lofty, and is more than one thesis
can ever achieve. However, the growing body of formalised proofs, of which this work forms
a small, imperfect part, can guide the way for others by showing that formalisation is not
something which should be feared; it is not something which stands in opposition to informal

mathematics, but rather can go hand in hand with it.
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Appendix A

Major Proof Systems

In this appendix, we will give a background and description of the major proof systems used

in this thesis.

A.1 G3cp

Gentzen initially created two sequent calculi: one for classical logic (LK) and one for intu-
itionistic logic (LJ or LI). The calculus G3cp is a descendent of LK: it is a calculus for
propositional classical logic, which uses multisets on both the left and right of the sequent
arrow. Although one can interdefine the connectives in classical logic, in this thesis, and
indeed in most presentations of G3cp, we take all the connectives as primitive. We also
have 1 as a distinguished propositional atom. The rules are given in context-sharing form.

The rules are as follows:

T.P= AP A7 N
F'=A¢ T'=A9 Lo, = A I

T= A0 Tong = A N

D= A, ¢, T g=A T,p= A

T=Aovy Y Tove=A LY

Lo= A9y '=A¢ Iyp=A

T = A ¢og B2 o0 = A  L°

A.2 G3ip

G3ip is a calculus for intuitionistic logic, based upon Gentzen’s original LJ. It is similar

to G3cp, but there is a restriction that the succedent must contain at most one formula.
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This means any rule with two distinguished formulae on the right for G3cp must be altered.
This is why there are two rules for disjunction on the right. In order to deal with the non-
invertibility of L D, we must copy the principal formula of a rule into the premisses for that
rule. Unfortunately, this creates the problem of looping during proof search: we can apply
this rule over and over again. In intuitionistic logic, connectives cannot be defined in terms
of the other connectives. Thus we have to give rules for all connectives, rather than doing

so for notational convenience. Again, we use multisets for contexts:

o A oy L
Srrit. pme
Moge DTt
% RV, % RV,

Ieg=6 =9
Lovey =46

A.3 Gdip

When performing proof search using G3ip one encounters a problem. Because the principal
formula of L D is copied into the left premiss, we can apply that rule over and over again.
Thus, it is possible for proof search to loop. If we wish to automate proof search, we must
then implement a loop-checker, which is inefficient. The calculus G4ip was developed to
remove the need for a loop-checker: instead of one rule for implication on the left, we analyse
the structure of the antecedent of the implication and apply different rules accordingly. The
rules for the other connectives and the rule R D are the same as those for G3ip, whereas

the four rules for implication on the left are:

L, P =0 L,aD(B2Y) =0
T,P.Poy =06 W02 T,(aAB) o0 =06
LaDy, D9 =9 Lo, 69 =0 1“,1/;:>5L
I, (aVvpB)Dy=19 Vo T, (aDp)Dv =14 —

A4 G3i

It is possible to add rules for quantifiers, so that we have a calculus for first-order intuition-

istic logic. The propositional rules are the same as those for G3ip, and we add the four
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rules:
I'= [t/x]A I, 3z.A [y/z]A =0
I'=dz.A rdz.A=9
I'= [y/z]A I'\Vz. A t/z]A=§
T= vz A TvrA=s LY

where, in the rules L3 and RY, the variable y must not appear free in the conclusion of the

rule.

A5 G3s

We can add rules for the S4 modal operators O and <& to G3cp. Again, the propositional

rules are the same as for G3cp, and the four modal rules are:

oo = ¢, CA o= A
7 ; RO — LO
00 = d¢, CA A r,d¢ = A
I'=A ar, ¢ = A
> 4,9 RO ¢ Lo

T = A, 00 I/,07, O¢ = OA, A’
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Personal Communication

Christian Urban is the creator and main developer of Nominal Isabelle. This is his response

to the question of whether type variables could be used in Nominal Isabelle:

In theory there is no problem with using type-variables in nominal datatypes,
but they make things unwieldy. Remember in Nominal everything depends
on proper definitions of permutation operations. This property is loaded onto
the type-system. That means if Isabelle looks at a type it knows immediately
whether this property holds for elements of this type.

Now type variables can stand for arbitrary types. In this context, this is not
wanted. What is wanted is a restriction that says the type variable stands only
for types which have a proper definition of permutations. This restrictions can

be achieved with annotations of the form:
"a::being-a-permutation-type

This on its own does not make things too complicated, but the problems start
when things scale. The reason is that unfortunately, definition of permutations
is not the only property that is needed. Often one needs to know that things

have finite support. This results in annotations like:
‘a::being-a-permutation-type, is-finitely-supported

From a glitch in the implementation of Isabelle, this needs to be repeated for ev-
ery atom type. So if you have two atom types, you already have four constraints.
The showstopper however is that one needs to know that every atomtype is
independent from each other. This results in another two constraints, but grows
quadratically with the number of atom types.
So in the end it is just a practical problem, and I have no real idea how I can

solve it given the current infrastructure.
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Appendix C

A Direct Comparison

C.1 Introduction

Whilst the work of the preceding chapters is interesting in its own right, it carries more
weight if we can show it reduces the burden on the user when formalising structural proof
theory. This chapter contains a direct comparison; using the robust framework from chapter

7 the invertibility of RA is proved directly.

C.2 Comparing Invertibility Proofs

In §7.3, the invertibility of the RA in G3cp was shown (with respect to the left premiss).
Recall from lemma 20 that one could invoke a different argument to show invertibility of
RA; G3cp has the unique conclusion property (definition 23)). Using this, the derivability

at a lower height of both premisses can be shown in one lemma:

lemma invertConR:
assumes (I' =% A @ (AA*B),n) € derivable (Az U g3cp)*
shows 3 m<n. (I' =% A @ A,m) € derivable (Az U g8cp)*
and 3 m<n. (I' =% A @& B,m) € derivable (Az U g3cp)*
proof—
have extendRule (I' = A) ([{#} = {#A#}{#} = {#B#}.{#} == {#AN«B#})
€ (Az U g3cp)* by auto
moreover have
estendRule (T = A) ({#} =+ (AR {#} =+ EBEHE) S+ (FAMBEY)
= (P=xA® AT =xA® B|I'=>x Ad (AA*B)) by (auto)
ultimately
have ([I'=x A @ A, I'=+x A @ B], I' =+ A & (AA«B)) € (Az U g3cp)x*
by simp
with assms show 3m<n. (T =x A & A, m) € derivable (Az U g3cp)*

139



APPENDIX C. A DIRECT COMPARISON 140

15 and 3m<n. (I =% A & B, m) € derwable (Az U g3cp)x*
16 using invertibleRule[where R'=g3cp] by (auto simp add:gScp-uc g3cp-upRules)
17 qed

Even with the additional proofs of g3cp-uc and g3cp-upRules, the total amount written is
under 30 lines.

The direct proof, by comparison, is long and bloated. Firstly, it does not seem possible
to prove both statements within one proof. In other words, one needs separate left and right
premiss proofs. Each of these consists proofs is by induction on the height of the derivation
of the conclusion:

lemma invertConR2L:

assumes (I' =x A @ (A Ax B), n) € derivable (Az U g3cp)*
shows 3 m<n. (I' =x A & A, m) € derivable (Az U g3cp)*
using assms

proof (induct n arbitrary: I' A rule: nat-less-induct)

There is a trivial base case, which has two separate subcases (the proofs are suppressed:

case (
with der have (I' =% A @& (A Ax B), 0) € derivable (Az U g3cp)* by simp
then have ([|, ' =% A @ (A Ax B)) € (Az U g3cp)* by (rule derivable.cases) auto
then obtain S r where ext: extendRule S r = ([J,I’ =x A & (A Ax B))
and r € (Az U g3cp) by (rule extRules.cases) auto
ultimately have r € Az by auto
then obtain ¢ where r = ([|, {#f#} =x* {#}) V r = (| {#At i#} == {#At i#})
apply (cases ) by (rule Ax.cases) auto
ultimately have (I' =% A ® A, 0) € derivable (Az U g3cp)* by blast
then show 3 m<n. (T =x A @& A, m) € deriwable (Az U g3cp)x*
using (n=0) by blast

next

When the height is a positive integer, A A B was either principal in the last instance, or it
was not. There are the same number of non-principal cases as rules, and this is where the
bloated nature of the proof arises:

case (Suc n’)
with der have (I' = A ® (A Ax B), n'+1) € derivable (Az U g3cp)* by simp
then obtain Ps S r where nonempty: Ps # ||
and ext: (Ps, T =x A & (A Ax B)) € (Az U g8cp)x*
and premss: ¥V p € set Ps. 3 m<n’. (p,m) € derivable (Az U g3cp)*
using characteriseLast by auto
from ezt’ obtain S r where ext: extendRule S = (Ps, I' =% A @ (A Ax B))
and r € (Az U g3cp) by (rule extRules.cases) auto
ultimately have r € g3cp by auto

moreover obtain ps ¢ where r = (ps,c) by (cases r) auto
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ultimately have (ps,c) € g3cp by simp
then have 3 m<n'+1. (T =x A ® A, m) € derivable (Az U g3cp)x*
proof (cases) — Case analysis on the last rule used
case (conR D E)
have D Ax E = AAxB V D Ax E # A A+ B by blast
moreover
{assume D Ax E = A Ax B — The one principal case
with ezt and (¢ = ({#} =x* {#DA«xE#})) and r = (ps,c)
have S = (I' =% A) by (cases S) auto
with (ps = [{#} == {#D#}, {#} = {#E#}]) and ext
and (DAxE = AA+B) and (r = (ps,c))
have Ps = [I' =x A @ A, T =x A @ B] by (auto)
with premss have 3 m<n’. (I' =x A ® A,m) € derivable (Az U g3cp)*
by (auto)
then have 3 m<n'+1. (T =x A ® A, m) € derivable (Az U g3cp)x*
by (rule-tac z=m in exl) auto
}
moreover
{assume D Ax E # A Ax B — One of many non-principal cases
}
next
case (impR D E) — Each non-principal case is around 35 lines long
next
case (disR D E)
next
case (tmpL D E)
next
case (disL D E)
next
case (conL D E)
qged
then show 3 m<n. (I' =x A & A, m) € derivable (Az U g3cp)*
using (n = Suc n’) by auto

qed

The whole proof is around 300 lines long (depending on spacing etc.). Even if both premisses
could be handled with one lemma of this length, we still have to write roughly ten times more
using the direct proof. The efficiency for such proofs is not as relevant; checking 30 lines
and checking 300 lines happens quickly. In fact, given that the earlier invertibility results
need to be loaded beforehand, the direct proof takes less time to be checked. However, it
takes much longer to write.

As is obvious, with more rules, the disparity becomes even larger between the direct and

indirect proof lengths. For every rule added, one gets an extra non-principal case in the



APPENDIX C. A DIRECT COMPARISON 142

proof. Whilst it is only a linear increase, using the indirect method there is no increase in

proof length at all.



Appendix D

Rigid Formalisations

This chapter contains two of the formalisations of chapter 4, Cut admissibility for G3ip and
Contraction admissibility for G4ip. The formalisation of of section 4.3 is included in the
Nominal Isabelle distribution. The formalisations of chapter 7 are not contained here: they

are available online [Chapman, 2009].

D.1 Cut Admissibility for G3ip

This file uses Multiset.thy, which is included in the Isabelle distribution.

datatype form = Atom nat
| Imp form form (-D- [100,100]110)
| Cong form form (- Ax - [100,100]110)
| Disj form form (- Vx - [100,100]110)
i

abbreviation
multiset-plus (infixl & 80) where
(T :: form multiset) @ (A :: form) =T + {#A#}
abbreviation
multiset-minus (infixl © 80) where
(T iz form multiset) © (A iz form) =T — {#A#}

inductive
provable-dp :: form multiset = form = nat = bool (- = - | - [60,60,60] 60)
where
Az[intro]: [(Atom i):# ] = T = Atom i | 0
| LBot[intro]: [ff #T]=T=Cl0
| CongRlintro]: [[ = A | n;I'=B | m]=T= AAx B | nt+m+1
| ConjL[intro]: [ @ A® B= C | n] =T ® AN*B = C | n+1
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| DisjR1[intro]: [I' = A | n] = T = AVxB | n+1

| DisjR2[intro]: [’ = B | n] = T = AVxB | n+1

| DisjLlintro]: [T @ A= C | n; T @B=C|m]=T@& Av«B = C | n+m+1

| ImpRintro]: [T ® A= B | n] =1 = ADB | n+1

| ImpL[intro]: [T ® ADB=A|n;IT®B =C | m]=T@&ADB = C | nt+m+1

consts length :: form = nat

primrec
length (Atom i) = 0
length (A D B) = (if (length A < length B) then (length B + 1) else (length A + 1))

(
(ADB
length (A Ax B) = (if (length A < length B) then (length B + 1) else (length A + 1))
length (A Vx B) (if (length A < length B) then (length B + 1) else (length A + 1))
length (ff) =
abbreviation
less-prod-nat (- <x - [50,50]50) where
p <x q¢ = (p,q) : less-than <xlexx> less-than

lemma nat-prod-induct [case-names less):
fixes z y :: nat
assumes induct-step: \ zy. (/\ v v. ) <* (z,y) = Puv) = Puxy
shows P z y
proof —
have wf (less-than <xlexx> less-than) by blast
then show ?%thesis
proof (induct p = (z, y) arbitrary: x y)
case (less p)
show Pz y
proof (rule induct-step)
fix uv
assume (u, v) <* (z, y)
with less show P u v by simp
qed
qged
qed

lemma midMultiset:
assumes ' @ A=1'® Band A # B
shows 3T T =T"®BAT'=T"¢ A
proof—
from assms have A :# I'’
proof—
from assms have set-of (I' @ A) = set-of (I'' ® B) by auto
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then have set-of I' U {A} = set-of T U {B} by auto

then have set-of I' U {A} C set-of T U {B} by simp

then have A € set-of I'' using assms by auto

thus A :# I'' by simp

qged
then have T’ © A @ A = T/ by (auto simp add:multiset-eq-conv-count-eq)
then have 3 T'". T/ =T" @ A apply (rule-tac z=T" © A in exl) by auto
then obtain I'" where eq1:I'' =T & A by blast
from " ® A=T'® B) eql haveI' ® A =T"® A & B by auto
then have I' = T'" & B by (auto simp add:multiset-eq-conv-count-eq)
thus ?thesis using eql by blast

qed

lemma inversionImplL:

assumes ' ® ADB= C | n

shows 3 j. j<n AT @&@B=C|j

using assms
proof (induct I=I' ® ADB C n arbitrary:T)

case (Az i I)

then have Atom i :# T by auto

then have T®B= Atom i | 0 by auto

then show ?case by blast
next

case (LBot T C)

then have ff :# I' by auto

then have I' ® B= C | 0 by auto

then show ?case by blast
next

case (ImpRT' E F k)

then have I’ @ E =1 @ ADB @ E by auto

then have 3 j. j<k AT @& B ® E = F | j using prems(3)[where '=sI'®E] by (auto simp
add:union-ac)

then obtain j where c!: j<k

and ¢c2: ' ® B® E = F | j by auto

from ¢2 have I' ® B = EDF | j+1 using provable-dp.ImpR[where '=I' @ B and A=F and
B=F] by auto

then show ?case using c! by auto
next

case (ConjRT' Ek F )

then have 3j<k. ' ® B = F | jand 35<I[.I' @ B = F | j by auto

then obtain j7 j2 where c!: j1 < k

and c2: ' & B = FE | jI
and c¢3: 52 <
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and ¢4: I' ® B = F | j2 by auto
then show ?case using provable-dp.ConjR[where I'=I'®B and n=j! and m=j2 and A=F
and B=F]
apply (rule-tac x=j1+j2+1 in exl) by auto
next
case (ConjLT' EF CnT")
then obtain I'/ where eq1: I'"=T1 @ ADB
and eq2: I'" = T'1 @ EAxF using midMultisetjwhere I'=I'" and A=EA«F and
I''=I""" and B=ADB] by auto
from eq! prems(3)where I'=T'1®E@F] have 3 j<n.T'1 ® E® F & B = C | j by (auto
simp add:union-ac)
then obtain j where e¢3: j<nand I'f ® E & F & B = C | j by blast
then have I'! ® EAxF @ B = C | j+1 using provable-dp.ConjLiwhere I'=I'1 @B and A=F
and B=F] by (auto simp add:union-ac)
then show ?case using eq2 eq3 by auto
next
case (DisjR1 T'" En F)
then have 3j<n.I" & B = E | j by auto
then obtain j where eg:j<n and I' & B = E | j by blast
then have ' ® B = EVxF | j+1 using provable-dp.DisjR1 by auto
then show ?case using eq by auto
next
case (DisjR2 T/ Fn E)
then have 3j<n.I' & B = F | j by auto
then obtain j where eq:;j<n and I' ® B = F | j by blast
then have I' © B = EVxF | j+1 using provable-dp.DisjR2 by auto
then show ?case using eq by auto
next
case (DisyLT' E Cn FmT")
then obtain I'] where eq: I'"=T1 & ADB
and eq2: ' = T'1 & EVxF using midMultiset[where I'=I"" and I''=T""" and
A=EVxF and B=ADB] by auto
from eql prems(3)[where I'=I'/@®FE] have 3 j<n. 'l @ E & B = C | j by (auto simp
add:union-ac)
moreover
from eql prems(5)[where '=I'1@®F] have 3 k<m. Tl & F @ B = C | k by (auto simp
add:union-ac)
ultimately
obtain j k£ where a: j<n A k<m
and b: 1 EFEdpB=C|j
and ¢: T'1 @ F & B = C | k by blast
from b c have I'l @ EVxF @ B = C | j+k+1 using provable-dp.DisjL{where I'=I'1 ®B and
A=F and B=F]
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by (auto simp add:union-ac)
then show ?case using a eg2 apply (rule-tac z=j+k+1 in exI) by auto
next
case (ImpLT'EFn CmT")
have E D F=AD>BV E DF # A D B by blast
moreover
{assume £ D F = A DB
then have I'' = I'"' using prems by auto
then have I''' @ B = C | m using prems by auto
then have 3 k. k<n+m+1 AT @® B = C | k apply (rule-tac z=m in ezl) by auto
}
moreover
{assume a:F D F # AD B
from prems obtain I'1 where eql: ' =T1 & ADB
and eq2: I = T'1 @ EDF using midMultisetjwhere I'=I"" and T''=I""’
and A=EDF and B=ADB]
by auto
from prems have 3 j. j<n AT" ® B = E | j by auto
then obtain j where b1: j<n
and b2: T'1® B @ EDF = E | j using eq2 by (auto simp add:union-ac)
moreover
from eq! have 3 k. k<m ANT'1 & F & B = C | k using
prems(5)[where I'=I"1 & F] by (auto simp add:union-ac)
then obtain & where cI: k<m
and c2: T'1 @ F & B = C | k by auto
ultimately
have I'l ® B @ EDF = C | j+k+1 using provable-dp.ImpL{where '=I'/®B and A=F
and B=F]
by (auto simp add:union-ac)
then have 3 k. k<n+m+1 AT" @& B = C | k using bI cl eq2 apply (rule-tac z=j+k+1
in exl)
by (auto simp add:union-ac)
}
ultimately
show ?case by blast
qed

lemma inversionConjL:
assumes [' & AN«B =C | n
shows 3 j. j<n AT ® A B=C1lj
using assms

proof (induct T=I' @ AA+B C n arbitrary: T')
case (Az i I)



APPENDIX D. RIGID FORMALISATIONS 148

then have Atom i :# I’ by auto
then have I' ® A & B = Atom i | 0 by auto
then show %case by blast
next
case (LBot T'' C)
then have ff :# [' by auto
then have ' ® A & B = C | 0 by auto
then show ?case by blast
next
case (ImpRT' E F k)
then have I’ @ E =T @ AA+B @ E by auto
then have 3 j. j<k AT @ A® B @ E = F | j using prems(3)[where '=I'©F] by (auto
stmp add:union-ac)
then obtain j where ci: j<k
and ¢2: T @ A® B® E = F | j by auto
from c2 have ' ® A @ B = EDF | j+1 using provable-dp.ImpR[where '=I" & A & B and
A=F and B=F] by auto
then show ?case using c! by auto
next
case (ConjRT' Ek F )
then have 3j<k. T @ A@ B=F |jand 3;<[. TT® A& B = F | j by auto
then obtain jI j2 where ci: jI < k
and c2: T A® B=F | jI
and c3: j2 <1
and ¢4: ' ® A@® B = F | j2 by auto
then show ?Zcase using provable-dp.ConjR[where '=I'® A® B and n=j1 and m=j2 and A=F
and B=F]
apply (rule-tac x=j1+j2+1 in exl) by auto
next
case (DisjR1 T'' En F)
then have 3j<n.I' ® A & B = E | j by auto
then obtain j where eg:j<n and T' ® A § B = FE | j by blast
then have ' ® A & B = EVxF | j+1 using provable-dp.DisjR1 by auto
then show ?case using eq by auto
next
case (DisjR2 T' Fn E)
then have 3j<n. ' A & B = F | j by auto
then obtain j where eq:;j<nand I' @ A @& B = F | j by blast
then have I' @ A ® B = EV*F | j+1 using provable-dp.DisjR2 by auto
then show ?case using eq by auto
next
case (DisjyLT' E Cn FmT")
then obtain I'/ where eql: T/ =T1 ® AA+B
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and eq2: T = T1 & EVxF using midMultiset[where I'=I"' and I''=T"" and
A=EV*F and B=AAxB] by auto
from eq! prems(8)[where '=I'1®E]| have 3 j<n.T'1 ® E® A® B = C | j by (auto simp
add:union-ac)
moreover
from eq! prems(5)[where '=T'1®F] have 3 k<m.T'1 @ F & A ® B = C | k by (auto simp
add:union-ac)
ultimately
obtain j k where a: j<n A k<m
and :TI1 @ E®A®B=C|lj
and ¢: I'1 @ F® A® B = C | k by blast
from bchavel'l ® EVxF @ A® B = C | j+k+1 using provable-dp. DisjL[where '=T"1 §A®B
and A=F and B=F]
by (auto simp add:union-ac)
then show ?case using a eg2 apply (rule-tac z=j+k+1 in exI) by auto
next
case (ImpLT'EFn CmT")
from prems obtain I'l where eql: '/ =T1 ® AN+B
and eq2: T =T1 & EDF using midMultisetjwhere '=T" and I''=I""" and
A=EDF and B=AAxB]
by auto
from prems have 3 j. j<n AT ® A ® B = E | j by auto
then obtain j where b1: j<n
and b2: T'1® A® B ®& EDF = E | j using eq2 by (auto simp add:union-ac)
moreover
from eq! have 3 k. k<m AT1 & F ® A® B = C | k using
prems(5)[where I'=T'1 @ F| by (auto simp add:union-ac)
then obtain k£ where c1: k<m
and ¢2:T1 @ F ® A® B = C | k by auto
ultimately
have 't ® A® B @ EDF = C | j+k+1 using provable-dp.ImpLwhere '=T'1 ®A®B and
A=F and B=F]
by (auto simp add:union-ac)
then have 3 k. k<n+m+1 AT ® A® B = C | k using b1 c1 eq2 apply (rule-tac v=j+k+1
in exl)
by (auto simp add:union-ac)
then show ?case by blast
next
case (ConjLT'EF CnT")
have EAxF = AANxB vV EANxF # AAxB by blast
moreover
{assume EAxF = AA*B
then have I''=I'"" A E=A A F=B using prems by auto
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then have 3 j. j<n+1 AT" ® A ® B = C | j using prems apply (rule-tac z=n in exl)
by auto
}
moreover
{assume EAxF # AA*B
then obtain '/ where eql: I''=T1 & AAxB
and eg2: I'"" = T'1 ® EAxF using midMultiset{where I'=I"" and I''=T""" and
A=EAxF and B=AAxB] prems
by auto
from prems have 3 j. j<n ATl ® A & B ® E & F = C | j using prems(3)[where
I=T1®E®F] by (auto simp add:union-ac)
then obtain j where b1: j<n
and 02: T1 ® A® B® E @ F = C | j by (auto simp add:union-ac)
from b2 have 'l @ A ® B @ EAxF = C | j+1 using provable-dp.ConjLwhere I'=I"1 & AD B
by (auto simp add:union-ac)
then have 3 j<n+1.T"”" ® A ® B = C | j using eq2 bl apply (rule-tac z=j+1 in exl) by
(auto simp add:union-ac)
}
ultimately
show ?case by blast
qed

lemma inversionDisjL:
assumes ' @ Av«B = C | n
shows 3 jk. j<n ANk<n AT®A=C|jAT®B=Clk
using assms
proof (induct T=I'®@AV*B C n arbitrary: T)
case (Az i I)
then have Atom i :# I’ by auto
then have ' § A = Atom i | 0 and T' & B = Atom i | 0 by auto
then show ?case by blast
next
case (LBot ' C)
then have ff :# I' by auto
then have ' @ A= C | 0 and ' @ B = C | 0 by auto
then show ?case by blast
next
case (ConjRT' Ek F )
then have 3 j1 j2. jI<k N 2<kANT @ A=F |jl AN ®@B=FE|j2
and 3 8 4. B<IANYU<INT @ A= F | j8 AT & B= F | j, by auto
then obtain jI j2 j3 j4 where c: j1 < k A j2<k A j3<I A j4<I
and c1: T ® A= FE | j1
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and c2: I'® B = FE | j2
and c3: " A= F | j8
and ¢4: I' & B = F | j4 by auto
from c! ¢3 have I' @ A = EAxF | j1+j3+1 using provable-dp.ConjR[where '=I'©A] by
auto
moreover
from c2 ¢/ have I' @ B = EAxF | j2+4j/+1 using provable-dp.ConjR[where I'=I'®B] by
auto
ultimately
show ?case using c¢ apply (rule-tac z=71+j3+1 in ezl, rule-tac z=j2+j4+1 in ezl) by auto
next
case (DisjR1 T'" En F)
then have 3 j k. j<n Ak<n AT® A= FE | jAT @& B= E | k by auto
then obtain j k where eq:j<n A k<nand ' ® A= E | j Al @ B= E | k by blast
then haveI' @ A = EvxF | j+1 AT @ B = EVxF | k+1 using provable-dp.DisjR1 by auto
then show %case using eq by auto
next
case (DisjR2 T'' F n E)
then have 3 jk. j<n ANk<n A\T@® A= F |jAT & B = F | k by auto
then obtain j £ where eq:;j<n ANk<nand ' A= F | jAT & B= F | k by blast
then haveI' @ A = EVxF | j+1 AT @ B = EV*F | k+1 using provable-dp.DisjR2 by auto
then show ?case using eq by auto
next
case (ImpRT' E F k)
then have '’ @ E =T @& AVxB & E by auto
then have 3 jI j2. jI<k N j2<k AT ® AGE=F | jINT®B®E=F | j2
using prems(3)[where '=I'E] by (auto simp add:union-ac)
then obtain ;1 j2 where c1: j1<k A j2<k
and c2: T &A@ E = F | j1
and ¢3: ' ® B & E = F | j2 by auto
from c¢2 have I' ® A = EDF | jl+1 using provable-dp.ImpR[where I'=I" & A and A=F
and B=F] by auto
moreover
from ¢3 have I' ® B = EDF | j2+1 using provable-dp.ImpR[where I'=I" & B and A=F
and B=F] by auto
ultimately
show ?case using c1 apply (rule-tac z=751+1 in ezl, rule-tac x=j2+1 in exl) by auto
next
case (ImpLT' EFn CmT")
from prems obtain I'1 where eql: "' =T1 ¢ AV*B
and eq2: ' =T1 & EDF using midMultiset[where '=T" and I''=I""" and
A=EDF and B=AVxB]
by auto
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from prems have 3 j k. j<n Ak<n AT" ® A= E | j AT" ® B = E | k by auto
then obtain j £ where b1: j<n A k<n
and 02: T1 @ AG@EDF=>FE |j
and b3: T'1 @ B® EDF = E | k using eq2 by (auto stimp add:union-ac)
from eq! have 3 j1 k1. jiI<m ANkI<Sm AT1 @ F e A= C |jIlANTI1 e F&B=C]|kl
using
prems(5)[where I'=I"1 @ F| by (auto simp add:union-ac)
then obtain jI kI where c1: j1<m A kI<m
and c¢2: T'1 @ F o A= C | ji
and ¢3:T'1 @ F & B = C | k1 by auto
from b2 ¢2 have 'l @ A @ EDF = C | j+jl+1 using provable-dp.ImpL{where '=T'19A
and A=F and B=F]
by (auto simp add:union-ac)
moreover
from b3 ¢8 have I'l @ B @ EDF = C | k+kl1+1 using provable-dp.ImpL[where '=I'1 ®B
and A=F and B=F]
by (auto simp add:union-ac)
ultimately
show ?case using b1 cl eq2 apply (rule-tac x=j+j1+1 in ezl ,rule-tac x=k+k1+1 in exl) by
(auto simp add:union-ac)
next
case (ConjLT'"EF CnT")
then obtain I'/ where eq1: ' =T1 & AvxB
and eq2: I'"' = T'1 @& EAxF using midMultiset[where I'=T"' and A=EA*F and
I''=T"" and B=AV*B] by auto
from eq! prems(8)where '=I'I QEDF|
have 3 jk. j<n ANk<n AT1 @ F O F P A= C|jANTI1 PEDF ®B=C]|FLkby
(auto simp add:union-ac)
then obtain j k where eq¢3: j<n A k<n
andcl: T1d EGFPA=>Clj
and ¢2: T'1 @ E® F & B = C | k by blast
from c! have 'l ® EAxF & A = C | j+1 using provable-dp.ConjL[where '=T'1®A and
A=F and B=F]
by (auto simp add:union-ac)
moreover
from c2 have 'l @ EAxF @ B = C | k+1 using provable-dp.ConjL[where I'=I"1 B and
A=F and B=F]
by (auto simp add:union-ac)
ultimately
show ?case using eq2 eq3 apply (rule-tac t=j+1 in exl, rule-tac z=k+1 in exl) by auto
next
case (DisyLT' E Cn FmT")
have EV«xF = AVvxB vV EVxF # AVxB by blast
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moreover
{assume EV*F = AVx*B
from prems have I'' = T'"" A E=A A F=B by auto
then have I’’’ ® A = C | nand ' ® B = C | m using prems by auto
then have 3 j k. j<n+m+1 A k<nd+m+1 AT"® A= C | jAT"® B = C | k apply
(rule-tac z=n in ezl ,rule-tac z=m in exl)
by auto
}
moreover
{assume EV*F # AV*B
then obtain I'/ where eqi: I'' =T'1 & AVxB
and eq2: ' =T1 @ EVxF
using midMultiset{where I'=I"" and I''=T"" and A=EV*F and B=AV*B] prems by auto
from eql prems(3)[where '=I'I@®E]| have 3 jl kI. jI<n NkI<n AT1 @ E® A= C | jl A
rre E®@ B= C | ki
by (auto simp add:union-ac)
then obtain j7 kI where a: j1<n A kI1<n
and al: T1 @ E® A= C | j1
and a2: ' & F & B = C | ki by blast
from eql prems(5)[where '='I®F] have 3 j2 k2. 2<m A k2<m AT1 ® F ® A= C | j2
ANT1I®F®B=C| k2
by (auto simp add:union-ac)
then obtain j2 k2 where b: j2<m A k2<m
and b1:T1 @ F @ A= C | j2
and b2: T'1 @ F ® B = C | k2 by blast
from al b1 have 'l ® EVxF @ A = C | jl+j2+1 using provable-dp.DisjL[where '=I"1® A
and A=F and B=F]
by (auto simp add:union-ac)
moreover
from a2 b2 have 'l ® EV«xF & B = C | k1+k2+1 using provable-dp.DisjL[where I'=I'1 ®B
and A=F and B=F]
by (auto simp add:union-ac)
ultimately
have 3 j k. j<n+m+1 A k<n+m+I1 AT" ® A= C | jAT"® B= C | k using eq2 a b
apply (rule-tac z=j1+j2+1 in exl, rule-tac z=k1+k2+1 in exl) by auto
}
ultimately
show ?case by blast
qed

lemma dp Weak:
fixes I' :: form multiset

assumes a: ' = C | n
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shows ' A= C | n
using a
proof (induct T' C n)
case (Az i )
then have finite (set-of T') Atom i :# I’ by simp-all
then show I' ® A = Atom i | 0 using provable-dp.Axz by auto
next
case (LBot T’ C)
then have finite (set-of T') ff :# T by simp-all
then show I' ® A = C | 0 using provable-dp.LBot by auto
next
case (ConjRT Cn D m)
then have I' ® A = CAxD | n+m+1 using provable-dp.ConjR[where I'=I'® A] by auto
then show ?case by blast
next
case (DisjR1 T' C'n D)
then have I' @ A = CVx*D | n+1 using provable-dp.DisjR1[where '=T'®A] by auto
then show ?case by blast
next
case (DisjR2 T D n C)
then have I' ® A = CVxD | n+1 using provable-dp.DisjR2[where '=T'®A] by auto
then show ?case by blast
next
case (ImpRT C D m)
then have I' ® C & A = D | m by auto
then show I' ® A = C D D | m+1 using provable-dp.ImpR by (auto simp add:union-ac)
next
case (ConjLT' C D E n)
then have I' ® CA+D & A = E | n+1 using provable-dp.ConjL[where '=I'®dA and A=C
and B=D] by (auto simp add:union-ac)
then show ?case by blast
next
case (DisjL T C En D m)
then have I' ® CVxD @& A = E | n+m+1 using provable-dp.DisjL[where I'=T'®A4 and A=C
and B=D] by (auto simp add:union-ac)
then show ?case by blast
next
case (ImpLT C D n Fm)
then have I'  COD @ A= C [ nT @& D @ A= F | mby simp
then show I' ® COD @ A= F | n+m+1
using provable-dp.ImpLiwhere A=C and B=D and I'=T'®A| by (auto simp add:union-ac)
qed
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lemma dp Weak":
assumes ' = C | n
shows ' +T''= C | n
using assms
proof (induct T"')
case empty
then show ?case by auto
next
case (add I'' z)
then have I' + I'' = C | n by auto
then have ' + T @ z = C | n using dpWeak[where I'=I'+T"' and A=z| by (auto simp
only:union-ac)
then show ?case by blast
qed

lemma cutAdmissibility:
fixes A :: form
and n m :: nat
assumes ' = A [ n T @ A= C|m
shows 3 k.I'= C | k
using assms
proof (induct z = length A y = n+m+1 arbitrary: ' A C n m rule: nat-prod-induct)
case (less z y)
then have IH: A uv I A n Cm.
[(u, v) < (z, y; T =A | n; TP A= C | m;u=length A;v=n+m+ 1]
= Ja. ' = C | a by auto
have I' = A | n by fact
then show ?case
proof (cases)
case (Az i I)
with T ® A= C | m) have ' ® Atom i = C | m by simp
then show 3 k. I'= C | k
proof (cases)
case (Azj I'1)
have j =i V j # i by blast
moreover
{assume j=i
then have I' = C' | 0 using (C' = Atom j) and (I = A | n) and (A = Atom
and (n=0) by auto
then have 3 n. I' = C | n by blast
}
moreover

{assume j # i
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then have Atom j :# I using (Atom j :# I'l) and (I' & Atom i = I'1) by auto
then have I' = C | 0 using (C = Atom j) by auto
then have 3 n. I' = C | n by blast
}
ultimately show 3 n. ' = C' | n by auto
next
case (LBot T'1 C’)
then have ff :# [' by auto
then have I' = C | 0 by auto
then show 3 n. I' = C | n by auto
next
case (ImpRT1 E F j)
from (A = Atom ) and (n=0)> and (I' = A | n) have I' = Atom i | 0 by simp
then have I'  F = Atom i | 0 using dp Weak by auto
moreover from I'f @ F = F | ) and " @ Atom i =T1D
have I' @ E ® Atom i = F | j by (auto simp add:union-ac)
ultimately have 3 n.I' ® E = F | n using [H[where A=Atom i and '=T'®F and
n=0 and m=j and C=F]
and (m = j+1) and (z = length A and (y = n+m+1) and (A = Atom i) by auto
then have 3 n. ' = EDF | n using provable-dp.ImpR by auto
then show 3 n. I' = C | n using (C = E D F) by simp
next
case (ImpLT1 EFjC'k)
then have I' & Atom i = E | j by simp
moreover from (A = Atom ©) and (n=0) and (I' = A | n) have I' = Atom i | 0 by
simp
ultimately have 3 n. I' = F | n using [H|[where I'=I" and A=Atom i and n=0
and C=F and m=j]
and (A = Atom v and (y = n+m+1) and (m=j+k+1)> by auto
from " ® Atom i =T'1 & EDF) obtain I'2 where
I'=T2 & EDF and
't =T2 @ Atom i using midMultiset[where A=Atom i and B=EDF] by auto
with (Atom i :# I'y and ' = ') have Atom i :# I'2 by auto
then have T'2 @ F = Atom i | 0 by auto
moreover from ' & F = C’ | k) and 'l =T2 @ Atom i) have I'2 & F & Atom
i=C' |k
by (auto simp add:union-ac)
ultimately have 3 n. T2 ® F = C' | n using IH|where '='2¢F and A=Atom i
and C=C"'and n=0 and m=k|
and (A = Atom v and (y=n+m+1> and (m=j+k+1) by auto
with @ n. ' = F | n» and " =T2 @ EDF) have 3 n. I' = C’ | n using
provable-dp.ImpL by auto
with (C = C show 3 n.T' = C | n by auto
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next
case (ConjRT'1 Ej F k)
with (A = Atom 9 and I" = A | n) and IH|[where I'=I" and A=A and n=n and
C=FE and m=j]
and (y=n+m+1> have 3 n. ' = E | n by auto
moreover from (A = Atom ) and " = A | n) and IH|[where I'=I" and A=A and
n=n and C=F and m=k]
and (y=n+m+1> and 'l = F | k) and " & Atom i = T'1) and (m=j+k+1>
have 3 n. ' = F | n by auto
ultimately show 3 n. I' = C | n using provable-dp.ConjR and (C = E AxF) by
auto
next
case (DisjR1 T'1 Ej F)
with (A = Atom 9 and I" = A | n) and IH|[where I'=I" and A=A and n=n and
C=FE and m=j]
and (y=n+m+1> have 3 n. ' = E | n by auto
then show 3 n. I' = C | n using provable-dp.DisjR1 and (C = EVxF) by auto
next
case (DisjR2 'l F k E)
with (A = Atom 9 and (I' = A | n) and IH[where I'=T" and A=A and n=n and
C=F and m=k]
and (y=n+m+1> have 3 n. ' = F | n by auto
then show 3 n. I' = C | n using provable-dp.DisjR1 and (C = EVxF) by auto
next
case (DisjLT1 E C'j Fk)
then obtain I'2 where I' =12 @ EVxF
and T'1 =T2 & Atom ¢
using midMultisetjwhere A=Atom i and B=EV«F] by auto
with (Atom i :# I'y and ' = I') have Atom i :# I'2 by auto
then have I'2 @ F = Atom i | 0 and T'2 & F = Atom i | 0 by auto
from T'1 ® E= C'| j»and 1 =72 ® Atom i have'2 & E ® Atomi = C' | j
by (auto simp add:union-ac)
with (I'2 @ E = Atom i | () and IH[where '=T2@FE and A=Atom i and n=0 and
C=C"and m=j]
and (y = n+m+1)> and (m=j+k+1) and (A = Atom »
have 3 n.I'2 ® E = C’ | n by auto
moreover from 'l & F = C' | k) and '] =T2 ¢ Atom i) have I'2 & F & Atom
i1 = C' | k by (auto simp add:union-ac)
with IT'2 @ F = Atom i | () and IH[where I'=sT'2@F and A=Atom i and n=0 and
C=C" and m=k]
and (y = n+m+1> and (m=j+k+1) and (A = Atom »
have 3 n.T'2 @ F = C' | n by auto
ultimately have 3 n. I'2 @ EV+F = C | n using provable-dp.DisjL and (C = C"
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by auto
then show 3 n. I' = C | n using " =T2 @ EVxF) by simp
next
case (ConjLT'1 E F C' )
then obtain I'2 where I' =T'2 & EAxF
and T1 =T2 @& Atom i using midMultiset[where A=Atom i and
B=FENA«F] by auto
with (Atom i :# I'y and (I’ = I') have Atom i :# I'2 by auto
then have I'2 @ F @ F = Atom i | 0 by auto
moreover from I'l @ E® F = C'| j»and 'l =T2 @ Atom i have'2 ® E @
F @ Atomi= C'|j
by (auto simp add:union-ac)
ultimately have 3 n. T2 ® E ® F = C' | n using [H[where '=T20FE®F and
A=Atom i and n=0 and C=C"' and m=j]
and (A = Atom © and (y = n+m+1)> and (m=j5+1) by auto
then have 3 n. '2 ® EAxF = C | n using provable-dp.ConjL and (C=C" by auto
then show 3 n. I' = C | n using (' = T2 & EAxF) by simp
qed
next
case (LBot I'" A')
then have I' = C' | 0 by auto
then show 3 n. ' = C | n by blast
next
case (ConjRT' Ej F k)
with " ® A = C | m) have ' ® EAxF = C | m by simp
then obtain m’ where I' ® E & F = C | m’ using inversionConjL[where n=m and
A=F and B=F] by auto
from I''= FE | j) and I'=I'Y have I' ® F = E | j using dpWeak by auto
with (" ® F & F = C | m" and IH[where I'=I" & F and A=F and n=;j and m=m’'
and C=C]
and (z= length A> and (A = EAxF)
have 3 n.I' @ F = C | n by (auto simp add:union-ac)
with @' = F | k) and "' = I') and IH[where I'=T and A=F and C=C and n=k]
and <z = length A> and (A = EAxF)
show 3 n. I' = C | n by auto
next
case (DisjR1 T' Ej F)
with "' & A = C | m) have ' ® EVxF = C | m by simp
then obtain m’ where I' ® E = C | m’ using inversionDisjL{where n=m and A=F
and B=F] by auto
with " =T and @'’ = F | j» and [H|where I'=I and A=F and n=j and m=m’ and
C=C]
and (z = length A> and (A = EVxF)
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show 3 n. ' = C | n by auto
next
case (DisjR2 I'' F k E)
with " ® A= C | m) have ' ® EVxF = C | m by simp
then obtain m’ where I' ® F = C | m’ using inversionDisjLlwhere n=m and A=F
and B=F] by auto
with (' =T') and @' = F | k» and IH[where I'=I"' and A=F and n=k and m=m’
and C=C]
and (x = length A) and (A = EVxF)
show 3 n. I' = C | n by auto
next
case (ConjL T E F A’ j)
with T @ A= C | m) and <A = A) have '’ ® EAxF @& A’ = C | m by simp
then obtain m’ where m'<mand I"® E® F & A'= C | m’
using inversionConjL[where I'=I"'®A’ and A=FE and B=F and C=C and n=m] by
(auto simp add:union-ac)
with T E@QF=A"| jyhaved n.I"OE®F=C|n
using [H[where '=T"' @& E & F and A=A’ and n=j and m=m’ and C=C]
and (A = A" and (z = length 4> and <y = n+m+1> and (n=j+1) by auto
then have 3 n. I'' ® E Ax F = C | n using provable-dp.ConjL by auto
with T =T'® E Ax Fyshow 3 n. T = C | n by simp
next
case (DisjLT' E A’ j F k)
with T @ A= C | m) have '’ ® EVxF & A’ = C | m by simp
then obtain m! m2 where mi1<m and m2<m
and 'O E® A'= C | ml
and T"® F® A'= C | m2
using inversionDisjL[where I'=I''®A’ and A=F and B=F and C=C and n=m] by
(auto simp add:union-ac)
from IO E= A"l pand T'G E @ A'= C | mD)
haved n.I'"® E = C | n
using /H|[where '=I'"'®F and A=A’ and n=j and C=C and m=m1] and (m1<m)
and (A=A" and (z =length A and (y = n+m+1) and (n=j+k+1> by auto
moreover from " ® F = A' | hand T Fd A'= C | m2
have 3 n.I"® F=C | n
using [H|[where '=I''®F and A=A’ and n=k and C=C and m=m2] and (m2<m)
and (A=A") and (x =length A) and (y = n+m+1) and (n=j+k+1) by auto
ultimately have 3 n. '’ @ EVxF = C | n using provable-dp.DisjL by auto
with (' =T/ @ EV+F) show 3 n.I' = C | n by simp
next
case (ImpLT' EFjA'k)
with ' @ A= C | m)and (A =AY have '’ ® EDF @ A’ = C | m by simp

then obtain m’ where m’'<m
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and '@ F®A'=C|m'
using inversionImpL[where I'=T'®A’ and A=F and B=F and n=m and C=C] by
(auto simp add:union-ac)
with T ®© F = A’ | kyhave 3 n.T'®OF = C | n
using IH[where '=I'"®&F and A=A’ and C=C and n=k and m=m'] and (y
=n+m+1> and (n=j+k+1)
and (r = length A) and (A = A" by auto
with '@ ED F = F | j»have3 n.I'"® EDF = C | n using provable-dp.ImpL|where
I'=T' and A=F and B=F]
by auto
with (' =T’ @® EDF) show 3 n.I' = C | n by simp
next
case (ImpR T’ E F j)
with T @ A= C | m) have '’ ® EDF = C | m by simp
then show 3 n.I'= C | n
proof (cases)
case (Az i I'1)
then have Atom i :# I'’ by auto
with (I = T') have I' = Atom i | 0 by auto
with (C = Atom 7 show 3 n. ' = C | n by auto
next
case (LBot T'1 C)
then have ff :# I' using (" = I'") by auto
then have I' = C' | 0 by auto
then show 3 n. I' = C | n by blast
next
case (ConjRT'1 G k H1)
then have I’ ® EDF = G | kand I'"® EDF = H | | by auto
from T = A | ») and (A = EDF) and (I' =I') have I'' = EDF | n by simp
with ' ® EDF = G | khhave 3 n. T/ = G | n
using [H[where I'=T"' and A=EDF and C=G and n=n and m=k]
and (m = k+I+1) and (x = length A) and (A = E D F) and (y = n+m+1)
by auto
moreover from I'' = EDF | nyand ' ® EDF = H | bhaveI n.IT''= H | n
using IH|[where I'=T"' and A=EDF and C=H and n=n and m=I]
and (m = k+Il+1) and (x = length A> and (A = F D F) and (y = n+m+1D>
by auto
ultimately have 3 n. I'' = GAxH | n by auto
with (' = I') and (C = GAxH) show 3 n. ' = C | n by auto
next
case (DisjR1 I't Gk H)
then have I'' ® EDF = G | k by auto
moreover from (I' = A | n) and <A = EDF) and ('=I') have I'' = EDF | n by
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simp
ultimately have 3 n. I'' = G | n
using [H[where I'=I'" and A=EDF and n=n and C=G and m=k] and (z =
length A)
and (A = EDF) and (y = n+m+1) and (m=k+1) by auto
with (' = T') and (C = GV+H) show 3 n. T = C | n by auto
next
case (DisjR2 T'1 Hk G)
then have I'' ® EDF = H | k by auto
moreover from " = A | n) and (A = EDF) and ('=I') have I'' = EDF | n by
simp
ultimately have 3 n. I/ = H | n
using [H[where I'=I'" and A=EDF and n=n and C=H and m=k] and (z =
length A>
and (A = EDF) and (y = n+m+1) and (m=k+1) by auto
with (' = I') and «(C = GV*H) show 3 n. I = C | n by auto
next
case (ImpRT'1 G H k)
then have I'' ® G @ EDF = H | k by (auto simp add:union-ac)
moreover from (' = A | n) and (A = EDF) and (I'=I') have I'' = EDF | n by
s1mp
then have I'' ® G = EDF | n using dpWeak by auto
ultimately have 3 n. I''® G = H | n
using IH|[where '=I"'®G and A=EDF and n=n and C=H and m=Fk| and (z
= length A)
and (A = EDF) and (y=n+m+1) and (m=k+1) by auto
with (' =T') and «(C = GDH) show 3 n.I' = C | n by auto
next
case (ConjLT'1 G H C' k)
then obtain I'2 where I'' =T'2 & GAxH
and T'71 =T2 & EDF using midMultisetjwhere I'=T"' and A=EDF and
I''=I'1 and B=GA*H|
by auto
with T1 @ G ® H= C'| bk haveT'2 ® G & H ® EDF = C’ | k by (auto simp
add:union-ac)
moreover from (' = A | n» and "' =T and (A = EDF) and "' =12 & GAxH)
have I'2 ©@ GAxH = EDF | n by auto
then obtain n’ where n'<nand I'2 ® G ® H = EDF | n’'
using inversionConjL[where I'=I'2 and A=G and B=H] by auto
ultimately have 3 n. T2 ® G & H = C' | n using (y = n+m+1) and (m=k+1)
and (z = length A) and (A = EDF)
and /H|where I'=I'20G®H and A=EDF and n=n'and m=k and C=C"] by

auto
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then have 3 n. I'2 & GAxH = C' | n using provable-dp.ConjL by auto
with "' =T2 ® GA+H) and I =T and (C= C" show 3 n. ' = C | n by auto
next
case (DisjLT1 G C'k HI)
then obtain I'2 where I'' =T'2 & GVv+H
and T'1 =T2 @& EDF using midMultiset[where I'=T"' and A=EDF] by
auto
with T1 ® G = C’'| k and <I'f ® H = C’ | ) have
2 Go® EDF = C' | kand T2 ® H & EDF = C' | | by (auto simp
add:union-ac)
from O = A | n» and (' =T'Y and <A = EDF) and <I'' =T2 & GV*H)
have I'2 & Gv«H = EDF | n by auto
then obtain ni n2 where n1<n and n2<n and
I'2® G= EDF | nl and
2@ H = ESF | n2
using inversionDisjL{where '=I'2 and A=G and B=H and n=n and C=EDF]
by auto
from T2 @ G = EDF | nlhand T2 ¢ G @ EDF = C' | b
have 3 n. 2 @ G = C' | n using (n1<n) and (m=k-+I+1)
and [H|[where '=I'26G and A=EDF and C=C'and n=n! and m=k] and <(x
= length A
and (A = EDF) and (y= n+m+1) by auto
moreover from I'2 @ H = EDF | n2)and T2 ® H ® EDF = C' | D
have 3 n.I'2 ® H = C' | n using (n2<n) and (m=k-+I+1)
and [H[where '=I'2@¢H and A=EDF and C=C"'and n=n2 and m=!] and (z
= length A)
and (A = EDF) and (y= n+m+1> by auto
ultimately have 3 n. I'2 & GV+H = C' | n by auto
with I =T2 @& GvxH) and ' =I') and (C=C" show 3 n.I' = C | n by auto
next
case (ImpLT1 G HE C'I)
have F D F = GDH V EDF#GDH by blast
moreover
{assume EDF # G D H
with @' @ EDF =T'1 & GDH) obtain I'2 where
I''=T2® GDH and
I'1 =T2 @ EDF using midMultisetjwhere ="' and A=EDF] by auto
with @' = A | n) and (A = EDF) and =" and T1 ® H= C'| D
have I'2 ® EDF ® H = C' | land T2 @ GDH = EDF | n by (auto simp
add:union-ac)
then obtain n’ where n'<n and I'2 ® H = EDF | n’
using inversionImpL[{where I'=I'2 and A=G and B=H and C=EDF and

n=n] by auto
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with T2 ® EDF @ H=C'|bhaved n.T2® H=C'|n
using [H|[where '=T'2®H and A=FDF and C=C'and n=n'and m=l]
and <z = length A) and (A = EDF) and (y = n+m+1) and (m=k+I14+1) by
(auto simp add:union-ac)
moreover from 'l & GDH = G | k) and {'1 =T2 & EDF
have I'2 ® GDH ® EDF = G | k by (auto simp add:union-ac)
with I'2 ® GDH = EDF | n) have 3 n.I'2 ® GDH = G | n
using [H[where I'=I'2 @ GDH and A=EDF and C=G and n=n and m=k]
and (x = length A) and (A = EDF) and (y = n+m+1> and (m=k+I1+1> by
auto
ultimately have 3 n. '2 & GDH = C' | n by auto
with (' =T and <I'"'=T2 & GDH) and «C=C" have 3 n. [ = C | n by auto
}
moreover
{assume EDF = GDH
then have F = G and F=H by auto
with " @ EDF =T1 & GDH) have I'' = T'1 by auto
with T =T%and ' ® E = F | j» and <E=G) and (F=H) and <I' = A | n)
and (A = EDF)
have 't & G= H | jand 'l = GDH | n by auto
with "1 ® GDH = G | ky haved n.I'1 = G | n
using [H[where I'=I'/ and A=GDH and C=G and n=n and m=k]
and (x = length A) and (A = EDF) and (FDF = GDH) and (y = n+m—+1)
and (m=k+I14+1) by auto
then obtain n’ where I'! = G | n’ by blast
with I'1 ® G= H | j)haved n. 'l = H | n
using IH|[where I'=T'! and A=G and C=H and n=n'and m=j]
and (z = length A and (A = EDF) and (EDF = GDH) by auto
then obtain m’ where I'1 = H | m' by blast
with T1 @ H= C'| bhave3 n.T1 = C'|n
using [H[where I'=I"7 and A=H and C=C’and n=m' and m=I]
and (x = length A and (A = EDF) and (EDF = GDH) by auto
with (I’ =T'1y and <I' = T') and (C = C"» have 3 n. ' = C | n by auto

}

ultimately show 3 n. I' = C | n by blast
qed
qed
qed

lemma contextSplitCut:

assumes ' = A | nand V@ A= C | m
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shows 3 a. T + 1= C | a
proof—

from assms have I' + I'' = A | n using dp Weak’ by auto

moreover

from assms have T’ ® A + T' = C | m using dp Weak'[where I'=T"'®A and T''=I] by auto

then have I + '@ A = C | m by (simp only:union-ac)

ultimately

show 3 a.T + T = C | a using cutAdmissibility[where T=L+T"] by (auto simp add:union-ac)
qed

lemma genAx:
shows 3 n. T P A=A | n
proof (induct A)
case (Atom 1)
then have I' ® Atom i = Atom i | 0 using Az by auto
then show ?case by blast
next
case ff
then have I' @ ff = ff | 0 using LBot by auto
then show ?case by blast
next
case (Conj A B)
then obtain n m where : T ® A= A | n
and = I' @ B = B | m by auto
from [ have ' ® A @ B = A | n using dp Weak[where I'=I'©A and A=DB] by auto
then have I' @ AA+B = A | n+1 by (rule ConjL)
moreover
from r have I' ® A ® B = B | m using dpWeak[where '=T'®B and A=A] by (auto simp
add:union-ac)
then have I'  AA+*B = B | m+1 by (rule ConjL)
ultimately
have I' @ AA*B = AA+B | n+1+(m+1) +1
using provable-dp.ConjR[where I'=I'®AA*B and n=n+1 and m=m+1 and A=A and
B=B] by simp
then show ?case by blast
next
case (Disj A B)
then obtain n m where . ' @ A= A | n
and . ' & B = B | m by auto
from [ have I' @ A = AV*B | n+1 by (rule DisjR1)
moreover
from r have I' @ B = AVxB | m+1 by (rule DisjR2)

ultimately
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have I' ® AV«B = AV*B | n+1+(m+1) +1 using provable-dp.DisjL[where C=AVxB and
n=n+1 and m=m+1] by simp

then show %case by blast
next

case (Imp A B)

then obtain n m where : T ® A= A | n

and m: ' & B = B | m by auto

from [ have ' ® A @ ADB = A | n using dpWeak|where '=I'$A and A=ADB] by auto

moreover

from r have I' @ B @ A = B | m using dpWeak[where '=I'¢B and A=A] by (auto simp
add:union-ac)

ultimately

have I' ® ADB ® A = B | n+m+1 using provable-dp.ImpLwhere I'=I'dA and C=B and
A=A and B=B] by (auto simp add:union-ac)

then have I’ ® ADB = ADB | n+m+2 using provable-dp.ImpR[where '=T®ADB and A=A
and B=DB] by auto

then show ?case by blast
qed

end

D.2 Contraction Admissibility for G4ip

This file uses Multiset.thy, which is included in the Isabelle distribution.

datatype form = At nat
| Imp form form (-D- [100,100]110)
| Cong form form (- Ax - [100,100]110)
| Disj form form (- Vx - [100,100]110)
|

abbreviation
multiset-plus (infixl @ 80) where
(T :: form multiset) @ (A = form) =T + {#A#}
abbreviation
multiset-minus (infixl © 80) where
(T :: form multiset) © (A iz form) =T — {#A#}

inductive

provable :: form multiset = form = nat = bool (- = - | - [60,60,60] 60)
where

Az[intro]: [(Ati):# T]=T= Ati | 0
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| LBotlintro]: [ff #TI]=T=C |0

| CongRlintro]: [ = A | n;I'=B | m]=T= AAx B | ntm+1

| ConjL[intro]: [ @ A® B= C | n] =T & AN*B = C | n+1

| DisjR1[intro]: [I' == A | n] = I' = AV*B | n+1

| DisjR2[intro]: [ = B | n] = I = AVxB | n+1

| DisjLlintro]: [T ® A= C | n;T® B=C | m] =T & Av«B = C | n+m+1
| ImpR[intro]: [T ® A= B | n] =T = ADB | n+1

| ImpLOlintro]: [ ® Ati @ B=C | n]=T® Ati @& (Ati D> B) = C | n+1

| ImpLClintro]: T ® AD(BD>C)=D |n]=T& (AA*B) D C = D | n+1

| ImpLDintro]: [ ® ADC@®BD>C=D|n]=T1T (AvxB) D C = D | n+1
| ImpLL[intro]: T @ A@ BD>DC=B|n;I'®C=D|m]=T1¢& (ADB)DC = D |
n+m-+1

consts weight :: form = nat
primrec

weight (At i) =

weight (A D B) = 1 + weight A + weight B
weight (A Nx B) = 2 + weight A + weight B
weight (A Vx B) = 3 + weight A + weight B
weight (ff) =

abbreviation
less-prod-nat (- <x - [50,50]50) where
p <x ¢ = (p,q) : less-than <xlexx> less-than

lemma nat-prod-induct [case-names less):
fixes = y :: nat
assumes induct-step: \ zy. (A v v. (u, v) <x (z,y) = Puv) = Puzy
shows P z y
proof —
have wf (less-than <xlexx> less-than) by blast
then show ?thesis
proof (induct p = (z, y) arbitrary: x y)
case (less p)
show Pz y
proof (rule induct-step)
fix uv
assume (u, v) <x* (z, y)
with less show P u v by simp
qed
qed
qed
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lemma containMultiset:
assumes A :# I’
shows 3 T'. T =T'®0A
proof—
from assms have I' © A @ A =T by (auto simp add:multiset-eq-conv-count-eq)
then show 3 IT'. T = I''®A by (rule-tac z=I'OA in ezl) (auto)
qed

lemma midMultiset:
assumes ' @ A=1'® Band A # B
shows I T". I =T"®BAT'=T"¢ A
proof—
from assms have A :# I'’
proof—
from assms have set-of (I' @ A) = set-of (I'' ® B) by auto
then have set-of T' U {A} = set-of T U {B} by auto
then have set-of T' U {A} C set-of T/ U {B} by simp
then have A € set-of '/ using assms by auto
thus A :# I'' by simp
ged
then have 3 T'. T/ =T" @ A using containMultiset[where I'=T""] by auto
then obtain I'’’ where eql:I'' = T'"' @ A by blast
from T ® A=T'@® B> eql have' A =T"® A ® B by auto
then have I' = T'" & B by (auto simp add:multiset-eq-conv-count-eq)
thus ?thesis using eql by blast
qed

lemma midMultiset2:

assumes ' © A ® A =T1'@ B and A#B

shows AT T =T"¢BAT'=T"®A4A¢ A
proof—

from assms have 3T1. T ® A=T1 @ B AT'=T1 & A using midMultisetjwhere I'=I'® A]
by auto

then obtain I'/ where eqi: I’ ® A =11 & B

and eq2: I'' =T1 @ A by blast

from eq! have 3 I'2. T =T2® BATI1 =T2 & A using (A#B) and midMultiset by auto

then obtain I'2 where eq3: I' =12 & Band eqf: '] =172 & A by blast

from eq2 and eqj have I’ =T2 & A ® A by simp

thenshow 3 T". T =T"® BAT'=T"® A& A using eq3 by (rule-tac z=T2 in exl) (auto)
qed
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lemma dp Weak:
fixes I :: form multiset
assumes a: ' = C | n
shows '@ A= C | n
using a
proof (induct I' C n)
case (Az i I)
then have At i :# ' by simp-all
then show I' ® A = At i | 0 using provable.Ax by auto
next
case (LBot T C)
then have ff :# I' by simp-all
then show I' ® A = C | 0 using provable.LBot by auto
next
case (CongR T Cn D m)
then have I' ® A = CAxD | n+m+1 using provable. ConjR[where I'=I'® A] by auto
then show ?case by blast
next
case (DisjR1 T' C'n D)
then have I' ® A = CVxD | n+1 using provable.DisjR1[where I'=I'®A] by auto
then show ?case by blast
next
case (DisjR2 T D n C)
then have I' ® A = CVxD | n+1 using provable. DisjR2[where I'=I'®A] by auto
then show ?case by blast
next
case (ImpRT C D m)
then have ' ® C & A = D | m by auto
then show I' ® A = C D D | m+1 using provable.ImpR by (auto simp add:union-ac)
next
case (ConjLT C D E n)
then have I' @ CAxD & A = E | n+1 using provable. ConjLiwhere I'=I'$A and A=C and
B=D] by (auto simp add:union-ac)
then show ?case by blast
next
case (DisjL T C En D m)
then have I' & Cv«xD & A = E | n+m+1 using provable. DisjL[where '=I'$A and A=C
and B=D] by (auto simp add:union-ac)
then show ?case by blast
next
case (ImpLO T i B Cn)
then have ' ® Ati & B ® A = C | n by simp
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then show I' ® Ati @ (Ati D B)® A= C | n+1
using provable.ImpL0[where C=C and B=B and I'=I'®A4 and i=i and n=n] by (auto
sitmp add:union-ac)
next
case (ImpLC T' C D B E n)
then have I' @ CD>(DDB) @ A = E | n by simp
then show I' @ (CAxD)DB ® A = E | n+1
using provable.ImpLC[where '=I'$A and A=C and B=D and C=B and D=F and n=n)|
by (auto simp add:union-ac)
next
case (ImpLDT C B D E n)
then have I' @ CDB © DODB @ A = E | n by simp
then show I' ® (CvxD) D B® A= E | nt+1
using provable.ImpLD[where '=T®A and A=C and B=D and C=B and D=F and n=n)]
by (auto simp add:union-ac)
next
case (ImpLLT C D Bn Em)
then have ' § C ® DODB® A= D | nand T @& B® A = E | m by auto
then show I' & (COD)DB ¢ A = E | n+m+1
using provable.ImpLL[{where '=T'®A and A=C and B=D and C=B and D=FE and n=n
and m=m] by (auto simp add:union-ac)

qed

lemma dp Weak":
assumes ' = C | n
shows ' + I'"= C | n
using assms
proof (induct T"')
case empty
then show Zcase by auto
next
case (add I’ z)
then have I’ + I'' = C | n by auto
then have I' + I'' @ z = C | n using dpWeak[where '=T'+I"" and A=z] by (auto simp
only:union-ac)
then show ?case by blast
qed

lemma inversionConjL:
assumes [' & AN*B =C | n
shows 3 j. j<n AT A B=C |y
using assms

proof (induct T=I' @ AA+B C n arbitrary: T)
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case (Az i I)
then have At i :# I' by auto
then have ' ® A & B = At i | 0 by auto
then show ?case by blast
next
case (LBot T'' C)
then have ff :# [' by auto
then have ' @ A & B = C | 0 by auto
then show ?case by blast
next
case (ImpRT' E F k)
then have I'' @ E =T @& AA+xB & E by auto
then have 3 j. j<kAT @ A® B @ E = F | j using prems(8)[where '=I'@F] by (auto
stmp add:union-ac)
then obtain j where ci: j<k
and ¢2: T @ A® B® E = F | j by auto
from ¢2 have ' ® A @ B = EDF | j+1 using provable.ImpR[where I'=I' & A & B and
A=F and B=F] by auto
then show ?case using c! by auto
next
case (ConjRT' Ek F )
then have 3j<k. T A@ B=F |jand 3;<[. TT® A& B = F | j by auto
then obtain jI j2 where c!: jI < k
and ¢2: T @ A B=FE | ji
and c3: j2 <1
and c4: ' ® A@® B = F | j2 by auto
then show ?case using provable. ConjR[where I'=sI'$A®B and n=j! and m=j2 and A=F
and B=F]
apply (rule-tac x=j1+j2+1 in exl) by auto
next
case (DisjR1 T'' En F)
then have 3j<n.I' ® A & B = E | j by auto
then obtain j where eq:j<nand ' ® A & B = F | j by blast
then have I' @ A & B = EV*F | j+1 using provable.DisjR1 by auto
then show ?case using eq by auto
next
case (DisjR2 T' Fn E)
then have 3j<n. ' ® A ® B = F | j by auto
then obtain j where eg:j<nand I' ® A & B = F | j by blast
then have I' @ A & B = EV*F | j+1 using provable.DisjR2 by auto
then show ?case using eq by auto
next
case (DisjyLT' E Cn FmT")
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then obtain I'/ where eql: I'' =T'1 @& AAxB
and eq2: T = T'1 ® EVxF using midMultiset[where I'=I"" and I''=T""" and
A=EV*F and B=AAxB] by auto
from eql prems(3)where '=I'/®FE] have 3 j<n.T'1 @ E® A ® B = C | j by (auto simp
add:union-ac)
moreover
from eq! prems(5)[where '=I'1®F] have 3 k<m.T'1 @ F & A ® B = C | k by (auto simp
add:union-ac)
ultimately
obtain j k where a: j<n A k<m
and :TI1 @ E®A®B=Clj
and c: 1 @ F ® A® B= C | k by blast
from b c haveI'l @ EVxF & A® B = C | j+k+1 using provable. DisjLjwhere I'=I'1®A®B
and A=F and B=F]
by (auto simp add:union-ac)
then show ?case using a eg2 apply (rule-tac z=j+k+1 in exI) by auto
next
case (ImpLOT' i E CnT")
from prems obtain I'1 where eql: TV @ Ati =11 @& AN+B
and eq2: T =T1 @& At i DO E using midMultiset[where I'=I"" & At i and
I''=I""" and A=At i O E and B=AAxB]
by auto
from eql’ obtain I'2 where eql: I'' = T2 & AA*B
and eq2": T'1 = T2 & At i using midMultiset(where I'=I'" and I''=I"1 and
A=At i and B=AAxB]
by auto
from eq2’ eq2' have eq2: T =T2 & Ati ® Ati D E by simp
from eq! have 3 j. j<n AT2® Ati ® F ® A® B = C | j using prems(8)[where '=I"2® At
1@ F] by (auto simp add:union-ac)
then obtain j where b1: j<n
and b2: T2 A® B@ Ati ® E = C | j by (auto simp add:union-ac)
from b2 haveT'2 ® A® B Ati ® Ati D E = C | j+1
using provable. ImpL0[where '=I'20A®B and i=i and B=F and C=C and n=j] by (auto
stmp add:union-ac)
then have ' ® A ® B = C | j+1 using eq2 by (auto simp add:union-ac)
then show ?case using b1 by (rule-tac z=j+1 in ezl) (auto)
next
case (ImpLCT'DE C GnT")
then obtain I'/ where eql: I'' =T'1 ©& AAxB
and eq2: ' =T1 @& (DA*E)DC using midMultiset[where I'=I"" and I''=I""
and A=(DA*E)DC and B=AAxB)|
by auto
from eq! have 3 j<n.I'{ & DO(EDC) ® A® B = G | j using prems(3)[where '=I'1¢&DD(EDC))
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by (auto simp only:union-ac)
then obtain j where b1: j<n
and b2:T'1 @ D O (EDC) ® A® B = G | j by blast
from b2 have 'l & (DA+E)DC & A® B = G | j+1 using provable.ImpLC[where '=I"1 ®A®B
and A=D and B=F and C=C and D=G and n=j]
by (auto simp add:union-ac)
then have I'' ® A ® B = G | j+1 using eq2 by simp
then show ?case using b1 by (rule-tac z=j+1 in ezl) (auto)
next
case (ImpLDT' D CE GnT")
then obtain I'/ where eql: I'' =T'1 & AAxB
and eq2: T =T1 @ (DV+E)DC using midMultisetjwhere '=T" and I''=I""
and A=(DV*E)DC and B=AAxB)|
by auto
from eq! have 3 j<n.T! @ DOC ® EDC ® A ® B = G | j using prems(3)[where
I'=r1®DO>CHEDC] by (auto simp add:union-ac)
then obtain j where b1: j<n
and 02: T'1 @ DOC & EDC & A® B = G | j by auto
from b2 have 'l & (DV+E)DC & A® B = G | j+1 using provable.ImpLD[where '=T'1 $A®B
and A=D and C=C and B=F and D=G and n=j]
by (auto simp add:union-ac)
then have '’ ® A & B = G | j+1 using eq2 by simp
then show ?case using b1 by (rule-tac z=j+1 in ezl) (auto)
next
case (ImpLLT' DE Cn GmT")
then obtain I'/ where eql: I'' =T'1 @& AAxB
and eg2: "' =T1 @& (DDE)DC using midMultiset{where I'=I"" and I"'=I""" and
A=(DDE)DC and B=AAxB] by auto
from eq! have 3 j<n.T'1 ® D ® EDC & A ® B = E | j using prems(8)[where '=I"1 @
D @ EDC] by (auto simp add:union-ac)
then obtain j where b1: j<n
and b2: T1 @ D@ EDC @ A@ B = E | j by blast
moreover
from eq! have 3 k<m. T'I®C ® A ® B = G | k using prems(5)[where I'=I'! @ C] by
(auto simp add:union-ac)
then obtain k¥ where c1: k<m
and c2: T16C ® A® B = G | k by blast
ultimately
have I'! @ (DDE)DC ® A ® B = G | j+k+1 using provable.ImpLL[where '=T'1®ADB
and A=D and B=F and C=C and D=G and n=j and m=k]
by (auto simp add:union-ac)
then have ' ® A ® B = G | j+k+1 using eq2 by simp
then show ?case using b1 cI by (rule-tac z=j+k+1 in exl) (auto)
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next

case (CongLT' EF Cn ")

have EAxF = AANxB vV EAxF # AAxB by blast

moreover

{assume EAxF = AAxB

then have I''=I'"" A E=A A F=B using prems by auto

then have 3 j. j<n+1 AT" ® A ® B = C | j using prems apply (rule-tac z=n in ezl)
by auto

}

moreover

{assume EAxF # ANxB

then obtain I'/ where eql: I'' =T'1 ® AAxB

and eq2: ' = T'1 ® EAxF using midMultiset[where I'=I'" and I''=T"" and
A=ENAxF and B=AAxB)] prems
by auto

from prems have 3 j. j<n ANT1 ® A® B ® E & F = C | j using prems(3)[where
=T 1®E®F] by (auto simp add:union-ac)

then obtain j where b1: j<n

and b2: T1 @ A® B® E @ F = C | j by (auto simp add:union-ac)

from b2 have I'l @ A ® B @ EAxF = C | j+1 using provable. ConjL[where I'=T"1 § A® B
by (auto simp add:union-ac)

then have 3 j<n+1.T" ® A ® B = C | j using eq2 b1 apply (rule-tac z=j+1 in exl) by
(auto simp add:union-ac)

}

ultimately

show ?case by blast
qed

lemma inversionDisjL:
assumes I' @ Av«B = C | n
shows 3 jk. j<n ANk<n AT A= C |jAT@®B=C|k
using assms
proof (induct T=I'®AV*B C n arbitrary: T)
case (Az i I')
then have At i :# ' by auto
then have ' ® A = Ati | 0 and I' @ B = At i | 0 by auto
then show ?case by blast
next
case (LBot "' C)
then have ff :# I' by auto
then have ' P A= C | 0and ' @ B = C | 0 by auto
then show ?case by blast

next
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case (CongRT' E k F 1)
then have 3 j1 j2. jI<k N 2<kAT ®A=F |jl ANl ®B=FE|j2
and 3 j3j4. <IN PU<INT @ A= F | j3 T & B = F | j4 by auto
then obtain jI j2 j3 j4 where c: j1 < k A j2<k A j3<I A j4<I
and c1: T ® A= FE | j1
and c2: ' B= F | j2
and ¢3: T @ A= F | j3
and ¢4: I' ® B = F | j4 by auto
from c! ¢3 have I' & A = EAxF | j1+j3+1 using provable. ConjR[where I'=I'®A] by auto
moreover
from c2 ¢/ have I' & B = EAxF | j2+j/+1 using provable. ConjR[where '=I'&B]| by auto
ultimately
show ?case using c¢ apply (rule-tac t=5j1+j3+1 in exl, rule-tac t=j2+j4+1 in exl) by auto
next
case (DisjR1 I'" En F)
then have 3 j k. j<n ANk<n ANT@® A= FE | jAT & B = E | k by auto
then obtain j k where eq:;j<n AN k<nand ' ® A= E | j AT @ B= E | k by blast
then have ' ® A = EVxF | j+1 AT & B = EV*F | k+1 using provable.DisjR1 by auto
then show ?case using eq by auto
next
case (DisjR2 T F n E)
then have 3 j k. j<n ANk<n AT @ A= F | jANT & B = F | k by auto
then obtain j k where eq¢:j<n A k<nand ' @ A= F | j A’ @ B = F | k by blast
then have I' @ A = EV«F | j+1 AT & B = EVxF | k+1 using provable.DisjR2 by auto
then show ?case using eq by auto
next
case (ImpRT' E F k)
then have I'' ® E =T ® AV+«B ® E by auto
then have 3 j1 j2. jI<SEN2<kEANT @ AP E=F |jiNT&B®E=F]j2
using prems(3)[where '=I'®E] by (auto simp add:union-ac)
then obtain jI j2 where cI: j1<k A j2<k
and c2: T @ AP E=F | j1
and ¢3: ' ® B ® E = F | j2 by auto
from ¢2 have I' ® A = EDF | j1+1 using provable.ImpR[where I'=I" ® A and A=F and
B=F] by auto
moreover
from ¢3 have I' @ B = EDF | j2+1 using provable.ImpR[where I'=I" & B and A=F and
B=F] by auto
ultimately
show ?case using c1 apply (rule-tac z=7j1+1 in ezl, rule-tac x=j2+1 in exl) by auto
next
case (ConjLT' EF CnT")
then obtain I'/ where eq1: T/ =T1 ® AV+B
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and eq2: I'"' = T'1 @& EAxF using midMultiset[where T'=T"' and A=EA*F and
I''=I""and B=AVxB] by auto
from eql prems(8)where I'=I'I GEBF]
have 3 jk. j<n ANk<n AT1I @ F®F P A=C|jANT1PE®F®B=C]|FLby
(auto simp add:union-ac)
then obtain j k where eq¢3: j<n A k<n
andcl: TIGEOF@® A= C|j
and ¢2: 1 ® E® F ® B= C | k by blast
from ¢! have I'l & EAxF & A = C | j+1 using provable. ConjL[where I'=I'1 ¢ A and A=F
and B=F]
by (auto simp add:union-ac)
moreover
from c2 have I'! @ EAxF @ B = C | k+1 using provable. ConjL[where '=T'1®B and A=F
and B=F]
by (auto simp add:union-ac)
ultimately
show ?case using eq2 eq3 apply (rule-tac z=j+1 in ezl, rule-tac z=k+1 in exl) by auto
next
case (ImpLOT' i E CnT")
from prems obtain 'l where eq1”: T/ @ Ati =11 ® AV+B
and eq2: T =T1 @& At i DO E using midMultiset[where I'=I"" & At i and
I''=T""" and A=At D E and B=AVx*B]
by auto
from eql’ obtain I'2 where eql: I'' =T2 & AV*B
and eq2": T'1 =T'2 @ At i using midMultisetjwhere I'=I'" and I''=I"1 and
A=At i and B=AV*DB]
by auto
from eq2’ eq2' have eq2: T =T2 ® Ati ® Ati D E by simp
from eq! have 3 jk. jSn NkSn AT2 @ Ati @ E® A= C |jANT28® Ati® FE & B =
Clk
using prems(3)[where '=I'2® At i®E] by (auto simp add:union-ac)
then obtain j £ where b1: j<n A k<n
and b2: T2 9 Ati @ E A= C |j
and 03: T2 @ Ati @ E ® B = C | k by blast
from b2 have I'2 @ Ati @ Ati D E ® A= C | j+1 using provable.ImpL0[where '=I'2® A
and i=:¢ and B=F and C=C and n=j]
by (auto simp add:union-ac)
then have I''' @ A = C | j+1 using eq2 by simp
moreover
from b3 haveI'2 @ Ati ® Ati D E & B = C | k+1 using provable.ImpL0[where I'=I'2®B
and i=7 and B=F and C=C and n=k]
by (auto simp add:union-ac)
then have I''' ® B = C | k+1 using eq2 by simp
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ultimately
show ?case using b1 by (rule-tac z=j+1 in ezl, rule-tac x=k+1 in exl) (auto)
next
case (ImpLCT'DE C GnT")
then obtain I'/ where eql: T/ =T1 ® AvV+B
and eq2: I =T'1 @& (DA*E)DC using midMultiset[where I'=I"" and I''=I""'
and A=(DAxE)DC and B=AVxB]
by auto
from eq! have 3 j k. j<n A k<n AT1 & DO(EDC)® A= G | jAT1® DDO(EDC)® B
= G | k using prems(8)[where '=sI'1®DD(EDC)]
by (auto simp only:union-ac)
then obtain j £ where b1: j<n A k<n
and b2: T'1 @ DD (EDC)® A= G |j
and 03:T'1 & D D (EDC) @ B = G | k by blast
from b2 have I'l ® (DA+*E)DC @ A = G | j+1 using provable.ImpLC[where I'=I'1 A and
A=D and B=F and C=C and D= and n=j]
by (auto simp add:union-ac)
then have ' ® A = G | j+1 using eq2 by simp
moreover
from b3 have I'! & (DA+xE)DC & B = G | k+1 using provable.ImpLC[where I'=I'1 ®B
and A=D and B=F and C=C and D=G and n=Fk]
by (auto simp add:union-ac)
then have '’ @ B = G | k+1 using eq2 by simp
ultimately
show ?case using b1 by (rule-tac z=j+1 in ezl ,rule-tac z=k+1 in exI) (auto)
next
case (ImpLDT'D CE GnT")
then obtain I'/ where eql: I/ =T1 ® AV+B
and eq2: ' =T'1 @ (DV*E)DC using midMultiset[where I'=I"" and I''=I""'
and A=(DV*E)DC and B=AVxB]
by auto
from eq! have 3 j k. j<n ANk<n AT1 ® DDC® EDC® A= G |jAT1edDDOC®EDC
@ B = G | k using prems(8)[where '=sI'1&DDCHEDC]
by (auto simp add:union-ac)
then obtain j £ where b1: j<n A k<n
and b2: T1 @ DDC® EDCH® A= G |j
and b3: I'1 @ DOC & EDC & B = G | k by blast
from b2 have I'! & (DV*E)DC @ A = G | j+1 using provable.ImpLD[where I'=I'/ $ A and
A=D and C=C and B=F and D=G and n=j]
by (auto simp add:union-ac)
then have I''' ® A = G | j+1 using eq2 by simp
moreover
from b3 have I'! @ (DVxE)DC ® B = G | k+1 using provable.ImpLD|[where I'=I'1®B
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and A=D and C=C and B=F and D=G and n=k]|
by (auto simp add:union-ac)
then have I''' @ B = G | k+1 using eq2 by simp
ultimately
show ?case using b1 by (rule-tac z=j+1 in ezl ,rule-tac x=k+1 in exl) (auto)
next
case (ImpLLT'DE Cn G mT")
then obtain I'/ where eql: ' =T1 ® AV+B
and eg2: "' =T1 & (DDE)DC using midMultisetjwhere T'=I"" and I''=I""" and
A=(DDE)DC and B=AVxB] by auto
from eq! have 3 jk. j<n ANk<n ANT1 @ DS EDCPA=FE|jANT1® D& EDC®B
= E | k using prems(8)[where I'=I'1 & D @& EDC]
by (auto simp add:union-ac)
then obtain j £ where b1: j<n A k<n
and b2: T1 @ D@ EDC G A=FE|j
and b3:T'1 @ D & EDC & B = E | k by blast
moreover
from eql have 3 j' k" j'<m Ak'<Sm AT10C ® A= G | j'AT1dC ® B = G | k' using
prems(5)[where I'=T'1 & C]
by (auto simp add:union-ac)
then obtain j' k' where c1: j'<m A k'<m
and c2: T1¢C ¢ A= G | j’
and c3: T1®C @ B = G | k' by auto
ultimately
have ' @ (DDE)DC ® A = G | j+j'+1 using provable.ImpLLwhere '='1®A and A=D
and B=F and C=C and D=G and n=j and m=j]
by (auto simp add:union-ac)
then have I''" ® A = G | j+j'+1 using eg2 by simp
moreover
from b3 c¢8 have 'l & (DDE)DC @& B = G | k+k'+1 using provable.ImpLL[where T=T'1®B
and A=D and B=F and C=C and D=G and n=k and m=Fk’]
by (auto simp add:union-ac)
then have '’ ® B = G | k+k'+1 using eg2 by simp
ultimately
show ?case using b1 c1 by (rule-tac x=j+7j'+1 in ezl rule-tac x=k+k'+1 in exl) (auto)
next
case (DisLT'E Cn FmT")
have EVxF = AvxB V EVxF # AVxB by blast
moreover
{assume EVxF = AVxB
from prems have I'' = T'"" A E=A N F=B by auto
then have I’’’ ® A = C | nand I’ ® B = C | m using prems by auto
then have 3 j k. j<n+m+1 A k<nd+m+1 AT"® A= C | jAT"® B = C | k apply
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(rule-tac z=n in ezl ,rule-tac z=m in exI)
by auto
}
moreover
{assume EV*F # AV*B
then obtain '/ where eq1: I''=T1 @ AvxB
and eq2: T =T1 @ EVxF
using midMultiset[where I'=T"' and I''=I'"" and A=EV*F and B=AVxB] prems by auto
from eql prems(3)[where '=I'I®F] have 3 j1 kl. jI<n ANkI<n AT1 @ E® A= C | jI A
't ®E® B=C |kl
by (auto simp add:union-ac)
then obtain j7 kI where a: ji1<n A kI<n
and al: T1 ® FE® A= C | jI
and a2: '] ® E @ B = C | kI by blast
from eql prems(5)where '=['I®F] have 3 j2 k2. 2<m A k2<m ANT1 & F & A= C | j2
ANT1eFe&B=C]|k2
by (auto simp add:union-ac)
then obtain j2 k2 where b: j2<m A k2<m
and b1: T1 @ F d A= C | j2
and b2: 'l & F & B = C | k2 by blast
from al b1 have I'l @ EVxF ® A = C | j1+j2+1 using provable. DisjL[where '=T'1®A
and A=F and B=F]
by (auto simp add:union-ac)
moreover
from a2 b2 have I'l & EVxF @& B = C | ki1+k2+41 using provable. DisjL[where I'=I'1 ®B
and A=F and B=F]
by (auto simp add:union-ac)
ultimately
have 3 j k. j<n+m+1 A k<n+m+1 AT" ® A= C | jAT"® B= C | kusing eqg2ab
apply (rule-tac x=j1+j2+1 in exl, rule-tac x=k1+k2+1 in exl) by auto
}
ultimately
show ?case by blast
qed

lemma inversionImpL0:
assumes ' ® Ati D B=C | n
shows 3 j<n. ' ®B=C|j
using assms

proof (induct T=I" ® At ¢« D B C n arbitrary:T")
case (Az i’ TV)
then have At i’ :# T' by auto
then have I' ® B = Ati’ | 0 by auto
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then show %case by blast
next
case (LBot T'' C)
then have ff :# [' by auto
then have I' @ B= C | 0 by auto
then show ?case by blast
next
case (ImpRT' E F k)
then have I'' @ E =T ® Ati D B & E by auto
then have 3 j. j<k AT ® B ® E = F | j using prems(3)[where '=I'®FE]| by (auto simp
add:union-ac)
then obtain j where c1: j<k
and c2: ' ® B & E = F | j by auto
from c2 have I' ® B = EDF | j+1 using provable.ImpR[where I'=I" & B and A=F and
B=F] by auto
then show ?case using cl by auto
next
case (ConjRT' Ek F 1)
then have 3j<k. ' ® B= F | jand 3j<[.T' @ B = F | j by auto
then obtain jI j2 where ci: jI < k
and ¢2: ' ® B = F | j1
and c¢3: j2 <1
and ¢4: ' ® B = F | j2 by auto
then show ?case using provable. ConjR|where '=I'éB and n=j1 and m=j2 and A=F and
B=F]
apply (rule-tac x=j1+j2+1 in exl) by auto
next
case (CongLT' EF CnT")
then obtain '/ where eqi: I'" =11 @ At iD B
and eg2: T'"' = T'1 ® EAxF using midMultiset{where T'=T"' and A=EA*F and
I''=I"""and B=Ati D B] by auto
from eql prems(3)[where I=T'I®E®F]| have 3 j<n.T'1 ® E® F & B = C | j by (auto
stmp add:union-ac)
then obtain j where eq3: j<nand I'f @ E & F & B = C | j by blast
then have I'f @ EAxF & B = C | j+1 using provable.ConjL{where I'=I'1®&B and A=F
and B=F] by (auto simp add:union-ac)
then show ?case using eq2 eq3 by auto
next
case (DisjR1 T En F)
then have 3j<n.I' & B = E | j by auto
then obtain j where eq:j<n and I' @ B = E | j by blast
then have I' @ B = EV«F | j+1 using provable. DisjR1 by auto

then show ?case using eq by auto
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next
case (DisjR2 I'' F n E)
then have 3j<n.I" @ B = F | j by auto
then obtain j where eg:j<n and I' @ B = F | j by blast
then have I' @ B = EVxF | j+1 using provable.DisjR2 by auto
then show Zcase using eq by auto
next
case (DisjyLT' E Cn FmT")
then obtain I'7 where eql: T/ =T1 @ Ati D B
and eq2: T =T1 & EV+F using midMultiset[where T'=I"" and I''=T"" and
A=EvVxF and B=At i D B] by auto
from eql prems(3)[where I'=I'/@®FE] have 3 j<n. 'l @ E & B = C | j by (auto simp
add:union-ac)
moreover
from eq! prems(5)[where I'=I'1@®F| have 3 k<m.T'1 & F & B = C | k by (auto simp
add:union-ac)
ultimately
obtain j £ where a: j<n A k<m
and b:'1 e FdB=C|j
and ¢: ['1 @ F & B = C | k by blast
from b ¢ have I'f @ EVxF @& B = C | j+k+1 using provable.DisjL[where '=T'1®B and
A=F and B=F]
by (auto simp add:union-ac)
then show ?case using a eq2 apply (rule-tac z=j+k+1 in exl) by auto
next
case (ImpLC T'EF D CnT")
then obtain I'/ where eq1: I''=T1 @ Ati D B
and eq2: "' =T1 @ (EA*F)DD using midMultisetjwhere I'=I"" and I''=I""" and
A=(EN+F)DD and B=At i D B| by auto
from eq! have 3 j<n.I'{ & E D (FDD) @& B = C | j using prems(3)[where '=sT'1GED(FDD)]
by (auto simp add:union-ac)
then obtain j where b1: j<n
and b2: T1 @ E D (FOD) ® B = C | j by blast
from b2 haveI'! @ (EAxF)DD @ B = C | j+1 using provable.ImpLC[where '=I'1 ®B and
A=F and B=F and C=D and D=C and n=j|
by (auto simp add:union-ac)
then have I'''¢B = C | j+1 using eq2 by simp
then show ?case using b1 by (rule-tac t=j+1 in ezl) (auto)
next
case (ImpLDT'EDF CnT")
then obtain '/ where eq1: I'"=T1 ® Ati D> B
and eq2: "' =T1 & (EV*F)DD using midMultisetjwhere I'=I"" and I''=I""" and
A=(EV+F)DD and B=At i D B] by auto
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from eq! have 3 j<n.T'1 ® EDD ® FOD @ B = C | j using prems(8)[where '=I'"1®EDD@®F D D]
by (auto simp add:union-ac)
then obtain j where b1: j<n
and b2: I'1 @ EDD & FOD & B = C | j by blast
from b2 have 'l & (EV+F)DD @& B = C | j+1 using provable.ImpLD[where '=I'{ ®B and
A=F and B=F and C=D and D=C and n=j]
by (auto simp add:union-ac)
then have I'''©B = C | j+1 using eq2 by simp
then show ?case using b1 by (rule-tac z=j+1 in ezl) (auto)
next
case (ImpLLT'"EFDn Cm T")
then obtain '/ where eq1: ' =11 & Ati D B
and eq2: """ =T1 @ (EDF)DD using midMultiset[where I'=I"" and I"'=T""" and
A=(EDF)DD and B=At i D B] by auto
from eq! have 3 j<n.I'I @ E® FOD ® B = F | j using prems(8)where '=I'1®E®FDD]
by (auto simp add:union-ac)
then obtain j where b1: j<n
and b2: 't @ E & FOD & B = F | j by blast
moreover
from eq! have 3 k<m.T'l & D & B = C | k using prems(5)[where '=I'1®D] by (auto
stmp add:union-ac)
then obtain k£ where c1: k<m
and c2:T'1 ® D & B= C | k by blast
ultimately
have I'l & (EDF)DD @ B = C | j+k+1 using provable.ImpLL[where I'=I'{®B and A=F
and B=F and C=D and D=C and n=j and m=k|
by (auto simp add:union-ac)
then have I''" ® B = C | j+k+1 using eq2 by simp
then show ?case using b1 c1 by (rule-tac z=j+k+1 in exl) (auto)
next
case (ImpLOT'jD CnT")
have (Ati D B = Atj D D)V (Ati D B # Atj D D) by blast
moreover
{assume At i D B = Atj D D
then have B=D by auto
from prems(3) have I'' @ At j = I'"' using prems by auto
then have '’ @ B = C | n using (B=D) by auto
then have 3 j<n+1.T" @& B = C | j by (rule-tac z=n in ezl) (auto)
}
moreover
{assume At i D B # Atj O D
then obtain I'/ where eq1”. T/ @ Atj =11 @® Ati D B
and g2 T"=T1 @ Atj D D
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using midMultiset[where T'=T" @ At j and I''=I'"" and A=At j D D and B=At i D B
prems
by auto
from eql’ obtain I'2 where eql: I''=T2 © Ati D B
and eq2’: T'1 = T2 ® At j using midMultisetjwhere I'=I'" and I''=I"'1 and
A=At j and B=At 1 D B]
by auto
from eq2’ eq2' have eq2: T =T2 ® Atj ® Atj D D by simp
from eq! have 3 k<n.T'2 @ Atj ® D & B = C | k using prems(8)[where I'=I'2® At j
@ D] by (auto simp add:union-ac)
then obtain k& where b1: k<n
and b2: T2 @ Atj @& D @ B = C | k by blast
from 02 have I'2 ® At j ® Atj D D & B = C | k+1 using provable.ImpL0[where
I'=I'2®B and i=j and B=D and C=C and n=k|
by (auto simp add:union-ac)
then have I''' @ B = C | k+1 using eq2 by simp
then have 3 j<n+1.T"®B = C | j using bl by (rule-tac z=k+1 in exl) (auto)
}
ultimately
show ?case by blast
qed

lemma inversionImpLC':
assumes I' & (SAxT) D B= C | n
shows 3 j<n.I' @ SO(TDB) = C | j
using assms
proof (induct T=I" ® (SAxT) D B C n arbitrary:T")
case (Az i’ TV)
then have At i’ :# T' by auto
then have I' & SO(TDB) = At i’ | 0 by auto
then show ?case by blast
next
case (LBot T'' C)
then have ff :# I' by auto
then have I' @ SO(TDB) = C | 0 by auto
then show ?case by blast
next
case (ImpRT' E F k)
then have I'' @ E =T @ (SA*T) D B ® E by auto
then have 3 j. j<k AT @& SO(TDB) @ E = F | j using prems(8)[where I'=I'®E] by (auto
stmp add:union-ac)
then obtain j where cI: j<k
and ¢2: T @ SO(TDB) @ E = F | j by auto
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from c2 have I' @ SO(TDB) = EDF | j+1 using provable.ImpR|where I'=I' & SO(TDB)
and A=F and B=F] by auto
then show ?case using cl! by auto
next
case (ConjRT' Ek F 1)
then have 3j<k. ' ¢ SO(TD>B) = F | j and 3j<I.T & SO(TDB) = F | j by auto
then obtain jI j2 where ci: jI < k
and ¢2: ' @ SO(TDOB) = E | j1
and c¢3: j2 <1
and ¢/: T @ SO(TD>B) = F | j2 by auto
then show ?case using provable. ConjR[where I'=I'®SD(TD>B) and n=j! and m=j2 and
A=F and B=F]
apply (rule-tac x=j1+j2+1 in exl) by auto
next
case (CongLT' EF CnT")
then obtain I'/ where eq1: T''=T1 & (SAxT)D> B
and eg2: T'"' = T'1 ® EAxF using midMultiset{where T'=T"' and A=EA*F and
I''=I""and B=(SA+T)D> B] by auto
from eql prems(8)[where I'=T'IGEGF] have 3 j<n.T'1 @ E® F & SO(TD>B) = C | j by
(auto simp add:union-ac)
then obtain j where e¢3: j<nand 'l ® E ® F ® SO(TD>B) = C | j by blast
then haveI'l @ EAxF @ SO(TDB) = C | j+1 using provable. ConjL[where I'=I"1&SD>(TDB)
and A=F and B=F] by (auto simp add:union-ac)
then show ?case using eq2 eq3 by auto
next
case (DisjR1 T En F)
then have 3j<n. I’ & SO(TDB) = E | j by auto
then obtain j where eg:;j<n and I' ® SO(TDB) = E | j by blast
then have I' @ SO(TDB) = EV«F | j+1 using provable.DisjR1 by auto
then show ?case using eq by auto
next
case (DisjR2 T F n E)
then have 3j<n. I’ @ SO(TDB) = F | j by auto
then obtain ;7 where eq:;j<n and I' ® SO(TDB) = F | j by blast
then have I' ® SO(TDB) = EV«F | j+1 using provable.DisjR2 by auto
then show ?case using eq by auto
next
case (DisjLT'E Cn FmT")
then obtain I'7 where eql: T'=T1 @ (SAxT)D B
and eq2: T = T1 & EVxF using midMultiset[where I'=I"' and I''=T"" and
A=EV*F and B=(SA+T)D B] by auto
from eq! prems(3)where I'=sT'1@FE] have 3 j<n.T'Il & E & SO(TDB) = C | j by (auto

stmp add:union-ac)
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moreover
from eql! prems(5)[where '=I'1®F] have 3 k<m.T'1 @ F & SO(TD>B) = C | k by (auto
stmp add:union-ac)
ultimately
obtain j £ where a: j<n A k<m
and b: T1 @ E @ SO(TDB) = C | j
and c: '] @ F & SO(TDB) = C | k by blast
from b chaveI'l ® EVxF © SO(TDB) = C | j+k+1 using provable. DisjLjwhere '=I'1®SD>(TDB)
and A=F and B=F]
by (auto simp add:union-ac)
then show ?case using a eg2 apply (rule-tac z=j+k+1 in exI) by auto
next
case (ImpLDT'EDF CnT")
then obtain I'/ where eql: I''=T1 & (SAxT) D B
and eq2: "' =T1 @ (EV*F)DD using midMultisetjwhere I'=I"" and I''=I""" and
A=(EV*F)DD and B=(SA*T) D B] by auto
from eq! have 3 j<n.T'! @ EDD & FDD & SO(TDB) = C | j using prems(3)[where
I=T1®ED>D®FDD] by (auto simp add:union-ac)
then obtain j where b1: j<n
and b2: T'1 @ EDD @ FOD & SO(TD>B) = C | j by blast
from b2 have I'! @ (EV+F)DD @& SD(TDB) = C | j+1 using provable.ImpLD[where
I=r1®S>(T>B) and A=F and B=F and C=D and D=C and n=j|
by (auto simp add:union-ac)
then have I'"'®SD>(TDB) = C | j+1 using eq2 by simp
then show ?case using b1 by (rule-tac t=j+1 in ezl) (auto)
next
case (ImpLLT'"EFDn Cm T')
then obtain '/ where eql: I''=T1 & (SAxT) D B
and eg2: "' =T1 & (EDF)DD using midMultiset[where '=T"' and I''=I""" and
A=(EDF)D>D and B=(SA*T) D B] by auto
from eq! have 3 j<n.T'I @ E & FOD & SDO(TDB) = F | j using prems(3)[where
I=T1®E®FD>D] by (auto simp add:union-ac)
then obtain j where b1: j<n
and b2: T'1 @ E® FDOD & SO(TDB) = F | j by blast
moreover
from eq! have 3 k<m.T'l & D & SO(TDB) = C | k using prems(5)where I'=I'1®D] by
(auto simp add:union-ac)
then obtain £ where c1: k<m
and c2:T'1 @ D @ SO(TDB) = C | k by blast
ultimately
haveI'! & (EDF)DD @& SO(TDB) = C | j+k+1 using provable.ImpLL[where I'=T"1&SD(TDB)
and A=F and B=F and C=D and D=C and n=j and m=k]

by (auto simp add:union-ac)
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then have I'"' @ SO(TDB) = C | j+k+1 using eq2 by simp
then show ?case using b1 cI by (rule-tac z=j+k+1 in exl) (auto)
next
case (ImpLOT'jD CnT")
then obtain '/ where eqi = T @& Atj =T1 & (SA+T) D B
and eq2: T =T1® Atj D D
using midMultiset[where I'="' @& At j and I''=I'"" and A=At j D> D and B=(SA*T) D B]
prems
by auto
from eq!’ obtain I'2 where eq!: I''=T2 & (SA*T)D B
and eq2': T'1 = T2 @ At j using midMultiset[where '=T"'" and I''=T"1 and
A=At j and B=(SA+T) D B]
by auto
from eq2’ eq2' have eq2: T =T2 ® Atj ® Atj D D by simp
from eq! have 3 k<n. T2 ® Atj ® D ® SO(TDB) = C | k using prems(8)[where '=I"2® At
Jj @ D] by (auto simp add:union-ac)
then obtain & where b1: k<n
and 02: T2 @ Atj & D @& SO(TDB) = C | k by blast
from b2 have I'2 @ Atj ® Atj D D @ SO(TDB) = C | k+1 using provable.ImpL(0[where
I'=r2¢S>(T>B) and i=j and B=D and C=C and n=k]
by (auto simp add:union-ac)
then have '’ @ SO(TDB) = C | k+1 using eq2 by simp
then show 3 j<n+1.T"®SD>(TD>B) = C | j using bl by (rule-tac x=k+1 in exl) (auto)
next
case (ImpLCT'EF D CnT")
have ((EA*F)DD = (SA*T)DB) V ((EA*F)DD # (SA*T)DB) by blast
moreover
{assume (EA*F)DD = (SA+*T)DB
then have E=S A F=T A D=B A I''=I'"" using prems by auto
then have ' & SO(TDB) = C | n using prems by simp
then have 3 j<n+1.T" @® SO(TDB) = C | j by (rule-tac z=n in exl) (auto)

}

moreover
{assume (EAxF)DD # (SAxT)DB
then obtain '/ where eql: I''"=T1 & (SA«T) D B
and eq2: "' =T1 @& (EAxF)DD
using midMultiset[where I'=T"" and I''=I"" and A=(EA«F)>D and B=(SA+T) D B
prems by auto
from eq! have 3 j<n.T'l @ E D (FDOD) & SO(TD>B) = C | j using prems(3)[where
I=T'1®ED(FD>D)] by (auto simp add:union-ac)
then obtain j where b1: j<n
and 02:T'1 & E D (FOD) & SO(TDB) = C | j by blast
from b2 have I'! & (EA*F)DD & SO(TDB) = C | j+1 using provable.ImpLC[where
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I'=r'i1®S>(T>B) and A=F and B=F and C=D and D=C and n=j]
by (auto simp add:union-ac)
then have T'"®SD(TDB) = C | j+1 using eq2 by simp
then have 3 j<n+1.T"' & SO(TDB) = C | j using bl by (rule-tac z=j+1 in exl) (auto)
}
ultimately
show ?case by blast

qed

lemma inversionImpLD:
assumes I' & (SvxT) D B= C | n
shows 3 j<n.I' ® SOB® TOB=C|j
using assms
proof (induct T=I" ® (Sv«T) D B C n arbitrary:T")
case (Az i’ TV)
then have At i’ :# T' by auto
then have I' ® SOB @ TOB = Ati’ | 0 by auto
then show ?case by blast
next
case (LBot T'' C)
then have ff :# [' by auto
then have I' & SOB @& TDOB = C | 0 by auto
then show ?case by blast
next
case (ImpRT' E F k)
then have I'' @ E =T @ (Sv«+T) D B ® E by auto
then have 3 j. j<k AT & SOB ® TOB @& E = F | j using prems(3)[where I'=I'®E| by
(auto simp add:union-ac)
then obtain j where cI: j<k
and ¢2: ' ® SOB & TDOB & E = F | j by auto
from c2 have ' ® SOB®(TDB) = EDF | j+1 using provable.ImpR[where I'=I" ® SOB®(TDB)
and A=F and B=F] by auto
then show ?case using c! by auto
next
case (ConjRT' Ek F )
then have 3j<k.I' ® SOB®(TDB) = E | jand 3j<I.T' & SOBH(TDB) = F | j by auto
then obtain j! j2 where ci: j1 < k
and ¢2: ' @ SOB®(TDB) = E | j1
and c3: j2 <1
and ¢/: ' ® SOB®(TDB) = F | j2 by auto
then show ?case using provable. ConjR[where I'=I'®SDOB®(TDB) and n=j1 and m=3j2 and
A=F and B=F]
apply (rule-tac x=j1+j2+1 in exl) by auto
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next
case (CongLT' EF Cn ")
then obtain I'/ where eq1: T''=T1 & (Sv«T)D> B
and eg2: T'"' = T'1 ® EAxF using midMultiset{where T'=T"' and A=EA*F and
I'=I""and B=(SvxT)D> B] by auto
from eql prems(3)[where '=T'I®FE®F] have 3 j<n.T'1 @ E® F & SOB®H(TOB) = C | j
by (auto simp add:union-ac)
then obtain ;7 where e¢3: j<nand I'1 ® E ® F & SOB®(TDB) = C | j by blast
then haveI'l @ EAxF @ SOB®(TDB) = C | j+1 using provable. ConjL[where I'=I"1®SD>B®(TDB)
and A=F and B=F] by (auto simp add:union-ac)
then show ?case using eq2 eq3 by auto
next
case (DisjR1 T'' En F)
then have 3j<n. I’ ® SOB®(TD>B) = E | j by auto
then obtain j where eq:;j<n and I' @ SOB®(TDB) = E | j by blast
then have I' ® SOB®(TDB) = EV«F | j+1 using provable.DisjR1 by auto
then show ?case using eq by auto
next
case (DisjR2 T F n E)
then have 3j<n. T ® SOB®(TD>B) = F | j by auto
then obtain ;7 where eq:;j<n and I' ® SOB®(TDB) = F | j by blast
then have I' @ SOB®(TDB) = EV+F | j+1 using provable.DisjR2 by auto
then show ?case using eq by auto
next
case (DisjyLT'E Cn FmT")
then obtain I'7 where eql: T'=T1 @ (SVvxT)D B
and eq2: T = T'1 ® EVxF using midMultiset[where I'=I"" and I''=T"" and
A=EV*F and B=(SV*T)D B] by auto
from eq! prems(3)[where I'=I'I®E]| have 3 j<n.T'I & E & SOB®(TDB) = C | j by (auto
stmp add:union-ac)
moreover
from eq! prems(5)[where '=I'I ®F] have 3 k<m.T'1 & F & SOB®(TDB) = C | k by (auto
stmp add:union-ac)
ultimately
obtain j k where a: j<n A k<m
and b: I'1 @ F @ SOB®(TDOB)= C | j
and ¢: 'l & F @ SOB®(TDB) = C | k by blast
from b ¢ have 'l & EVxF & SOB®(TDB) = C | j+k+1 using provable. DisjL[where
I'=r'1@S>B®(T>B) and A=F and B=F]
by (auto simp add:union-ac)
then show ?case using a eg2 apply (rule-tac z=j+k+1 in exI) by auto
next
case (ImpLLT'EFDn Cm T)
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then obtain I'/ where eq1: I''=T1 & (Sv«T) D B
and eg2: "' =T1 & (EDF)DD using midMultiset[where '=T"' and I''=I"" and
A=(EDF)DD and B=(SV*T) D B] by auto
from eq! have 3 j<n.T'1 & E & FOD & SDOB®(TD>B) = F | j using prems(3)[where
I=T1®E®FD>D] by (auto simp add:union-ac)
then obtain j where b1: j<n
and b2: T'1 @ E ® FDOD @& SOB®(TDB) = F | j by blast
moreover
from eq! have 3 k<m.I'l & D @ SOB®(TDB) = C | k using prems(5)[where I'=T'1® D]
by (auto simp add:union-ac)
then obtain k£ where cI: k<m
and ¢2:T'1 @ D @ SOB®(TD>B) = C | k by blast
ultimately
have I'l & (EDF)DD @ SOB&®(TDB) = C | j+k+1
using provable.ImpLL[where '=I'1®SOB®(TDB) and A=F and B=F and C=D and
D=C and n=j and m=k]
by (auto simp add:union-ac)
then have I'"' @ SOB®(TDB) = C | j+k+1 using eq2 by simp
then show ?case using b1 cl1 by (rule-tac z=j+k+1 in exl) (auto)
next
case (ImpLOT'jD CnT")
then obtain '/ where eqi =T/ ® Atj =T1 & (Sv«T) D B
and eq2: T'""=T1® Atj D D
using midMultiset[where T=T" @ At j and I''=T" and A=Atj D D and B=(SVv*T) D B
prems
by auto
from eql’ obtain I'2 where eql: I''=T2 & (Sv+T)D B
and eq2': T1 = T2 @ At j using midMultiset{where '=T"'" and I''=T"1 and
A=At j and B=(SV*T) D B]
by auto
from eq2’ eq2' have eq2: T =T2 ® Atj © Atj D D by simp
from eq! have 3 k<n. T2 @ Atj & D & SOB®(TDB) = C | k using prems(3)[where
I'=r2¢At j ® D] by (auto simp add:union-ac)
then obtain & where b1: k<n
and b2: T2 @ At j ® D @ SOB®(T>B) = C | k by blast
from b2 haveI'2 @ Atj @ Atj O D @ SOB®(TDB) = C | k+1 using provable.ImpL0[where
I=r2¢S>B®(T>B) and i=j and B=D and C=C and n=k]
by (auto simp add:union-ac)
then have I'"' @ SOB®(TD>B) = C | k+1 using eg2 by simp
then show 3 j<n+1.T"®SOB®(TDB) = C | j using bl by (rule-tac z=k+1 in ezl) (auto)
next
case (ImpLCT'EF D CnT")
then obtain '/ where eq/: T''=T1 & (Sv«T) D B
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and eq2: "' =T1 & (EAxF)DD
using midMultiset[where I'=I"' and I''=T"" and A=(EA*F)D>D and B=(SV«T) D B]
prems by auto
from eg! have 3 j<n. 'l & E D (FDD) & SOB®(TDB) = C | j using prems(3)[where
I=T1®ED(FD>D)] by (auto simp add:union-ac)
then obtain j where b1: j<n
and b2: T'1 @ E D (FDD) ® SOB®(TD>B) = C | j by blast
from b2 have 'l @ (EAxF)DD @ SOB®(TDB) = C | j+1
using provable. ImpLC[where I'=I'1®SDOB®(TD>B) and A=F and B=F and C=D and
D=C and n=j]
by (auto simp add:union-ac)
then have I'"'®SDOB®(TD>B) = C | j+1 using eq2 by simp
then show ?case using b1 by (rule-tac z=j+1 in ezl) (auto)
next
case (ImpLDT'EDF CnT")
have ((Ev+F)DD = (Sv«xT)DB) V ((EV*F)DD # (SVv+T)DB) by blast
moreover
{assume (EV*F)DD = (SvxT)DB
then have E=S A F=T A D=B A I''=I'"" using prems by auto
then have '’ ® SOB © TD>B = C | n using prems by auto
then have 3 j<n+1.T"” @ SOB ® TOB = C | j by (rule-tac x=n in ezl) (auto)
}
moreover
{assume (EV*F)DD # (SvxT)DB
then obtain I'7 where eql: ' =T1 & (SvxT) D B
and eq2: ' =T1 @ (EV+F)DD
using midMultiset[where I'=I"" and I''=T"" and A=(EVxF)D>D and B=(SV+T) D B
prems by auto
from eq! have 3 j<n.I'f @ EDD @ FDOD & SOB®(TDB) = C | j using prems(3)[where
I=T1®ED>D®FDD] by (auto simp add:union-ac)
then obtain j where 01: j<n
and bv2: T'1 @ EDD & FDOD @ SOB®(TDB) = C | j by blast
from b2 have I'! ® (EVxF)DD & SOB®(TDB) = C | j+1
using provable.ImpLD|[where I'=I'1 SDOB®(TD>B) and A=F and B=F and C=D and
D=C and n=j]
by (auto simp add:union-ac)
then have I'"'®SDOB®(TDB) = C | j+1 using eq2 by simp
then have 3 j<n+1. I'"'®SDOB®(TD>B) = C | j using bl by (rule-tac z=j+1 in exl)
(auto)
}
ultimately
show ?case by blast
qed
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lemma inversionImpLL:
assumes I' @ (SDT) DB = C|n
shows 3 j<n.I' @ B=C|j
using assms
proof (induct T=I' & (SDT) D B C n arbitrary:T")
case (Az i’ T)
then have At i’ :# T' by auto
then have I' @ B = At i’ | 0 by auto
then show ?case by blast
next
case (LBot "' C)
then have ff :# I' by auto
then have I' @ B= C | 0 by auto
then show ?case by blast
next
case (ImpRT' E F k)
then have I''® F =T & (SDT) D B & E by auto
then have 3 j. j<k AT & B ® E = F | j using prems(3)[where '=sT'®E] by (auto simp
add:union-ac)
then obtain j where c!: j<k
and ¢c2: ' ® B&® E = F | j by auto
from ¢2 have I' ® B = EDF | j+1 using provable.ImpR[where I'=I" & B and A=F and
B=F] by auto
then show ?case using c! by auto
next
case (ConjRT' E k F 1)
then have 3j<k. ' ® B=F | jand 35<I[.I' @ B = F | j by auto
then obtain jI j2 where ci: jI < k
and ¢2: ' B = FE | jI
and c¢3: 52 <
and ¢4: ' ® B = F | j2 by auto
then show ?case using provable. ConjR[where '=I'éB and n=j! and m=j2 and A=F and
B=F]
apply (rule-tac z=j1+j2+1 in ezl) by auto
next
case (ConjLT'"EF CnT")
then obtain I'7 where eq1: T''=T1 & (SDT)D> B
and eq2: I'"' = T'1 ® EAxF using midMultiset[where '=T"' and A=EA*F and
I''=I'" and B=(SDT) D B] by auto
from eq! prems(3)[where '=I'I®E®F]| have 3 j<n.I'l ® E® F & B = C | j by (auto
stmp add:union-ac)
then obtain j where eg3: j<nand I'f @ E & F & B = C | j by blast
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then have I'l @ EAxF @& B = C | j+1 using provable.ConjLlwhere I'=I'1®B and A=F
and B=F] by (auto simp add:union-ac)
then show ?case using eq2 eq3 by auto
next
case (DisjR1 T'" En F)
then have 3j<n.I' @ B = E | j by auto
then obtain j where eq:j<n and I' & B = FE | j by blast
then have ' @ B = EVxF | j+1 using provable.DisjR1 by auto
then show ?case using eq by auto
next
case (DisjR2 T' Fn E)
then have 3j<n. I' ® B = F | j by auto
then obtain j where eg:j<n and I' @ B = F | j by blast
then have I' & B = EVxF | j+1 using provable.DisjR2 by auto
then show ?case using eq by auto
next
case (DisjyLT' E Cn FmT")
then obtain '/ where eq: T''=T1 & (SDT) D B
and eq2: T'"' = T'1 ® EV*F using midMultisetjwhere T'=I"" and I''=T"" and
A=EVxF and B=(SDT) D B] by auto
from eql prems(3)[where I'=I'/@®FE] have 3 j<n. 'l @ E ® B = C | j by (auto simp
add:union-ac)
moreover
from eq! prems(5)[where I'=I'I®F] have 3 k<m.T'1 & F & B = C | k by (auto simp
add:union-ac)
ultimately
obtain j k£ where a: j<n A k<m
and b:T1 @ E®PB=C|j
and ¢: T'1 @ F & B = C | k by blast
from b ¢ have 't @ EVxF @& B = C | j+k+1 using provable.DisjL[where I'=T'1®B and
A=F and B=F]
by (auto simp add:union-ac)
then show ?case using a eq2 apply (rule-tac z=j+k+1 in exl) by auto
next
case (ImpLCT'EF D CnT")
then obtain I'/ where eq: T''=T1 & (SDT) D B
and eq2: "' =T1 @ (EA*F)DD using midMultisetjwhere I'=I"" and I''=I""" and
A=(EA*F)DD and B=(SDT) D B] by auto
from eq! have 3 j<n.I'f @ E D (FDOD) ® B = C | j using prems(3)[where '=sT'1GED(FDD)]
by (auto simp add:union-ac)
then obtain j where b1: j<n
and b2: T'1 @ E D (FDOD) @ B= C | j by blast
from b2 have 'l ® (EAxF)DD @ B = C | j+1 using provable.ImpLC|[where '=T'1®B and
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A=F and B=F and C=D and D=C and n=j|
by (auto simp add:union-ac)
then have I'''®B = C | j+1 using eq2 by simp
then show ?case using b1 by (rule-tac z=j+1 in ezl) (auto)
next
case (ImpLDT'EDF CnT")
then obtain '/ where eq: T''=T1 & (SDT) D B
and eg2: I =T1 & (EV+F)DD using midMultiset[where I'=I'" and I''=I""" and
A=(EV*F)DD and B=(SD>T) D B] by auto
from eq! have 3 j<n.T'1 & EDD & FOD & B = C | j using prems(3)[where '=I'I®EDD®FDD)]
by (auto simp add:union-ac)
then obtain j where b1: j<n
and 02: T'1 @ EDD & FOD & B = C | j by blast
from b2 have I'! ® (EV*F)DD @ B = C | j+1 using provable.ImpLD[where '=T'1®B and
A=F and B=F and C=D and D=C and n=j|
by (auto simp add:union-ac)
then have I'''®B = C | j+1 using eq2 by simp
then show ?case using b1 by (rule-tac z=j+1 in ezl) (auto)
next
case (ImpLOT'jD CnT")
then obtain I'7 where eq1: T' ® Atj =T1 & (SDT) D B
and g2 T =T1@® Atj O D
using midMultiset[where ="' & At j and I''=T"" and A=Atj D> D and B=(SDT) D B]
by auto
from eql’ obtain I'2 where eq1: ' =T2 @ (SDT)D> B
and eq2": T'1 = T2 @ At j using midMultisetjwhere I'=I"" and I''=I'1 and
A=At j and B=(SDT)D B
by auto
from eq2’ eq2' have eq2: T =T2 ® Atj © Atj D D by simp
from eq! have 3 k<n. T2 & Atj ® D ® B = C | k using prems(3)[where '=I'2®At j &
D] by (auto simp add:union-ac)
then obtain & where b1: k<n
and b2: T2 @ Atj & D & B = C | k by blast
from b2 have I'2 @ Atj & Atj D D & B = C | k+1 using provable.ImpL0O[where I'=I"2®B
and i=j and B=D and C=C and n=Fk]
by (auto simp add:union-ac)
then have I''’" ® B = C | k+1 using eq2 by simp
then show 3 j<n+1.T"®B = C | j using bl by (rule-tac z=k+1 in exl) (auto)
next
case (ImpLLT'"EFDn Cm T'")
have (EDF)DD = (SDT)DB V (EDF)DD # (SDT)DB by blast
moreover
{assume (EDF)DD = (SOT)DB
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then have E=S A F=T A D=B A I''=I""" using prems by simp
then have I''' @ B = C | m using prems by simp
then have 3 j<n+m+1.T"'®B = C | j by (rule-tac z=m in exl) (auto)
}
moreover
{assume (EDF)DD # (SDT)DB
then obtain '/ where eqi: T''=T1 & (SDT) D B
and eq2: T =T1 @ (EDF)DD
using midMultisetjwhere I'=I'" and I''=T"" and A=(EDF)>D and B=(SDT) D B]
prems by auto
from eq! have 3 j<n.T'I § E® FDOD @ B = F | j using prems(3)[where '=I'" 1 E®FD D]
by (auto simp add:union-ac)
then obtain j where b1: j<n
and b2: 1'1 @ E & FOD & B = F | j by blast
moreover
from eq! have 3 k<m.T'{ & D & B = C | k using prems(5)[where I'=I'1®D] by (auto
simp add:union-ac)
then obtain & where c1: k<m
and ¢2: T'1 & D & B = C | k by blast
ultimately
have I'! @ (EDF)DD & B = C | j+k+1 using provable.ImpLL[where I'=I'/ ®B and
A=F and B=F and C=D and D=C and n=j and m=k]
by (auto simp add:union-ac)
then have '’ @ B = C | j+k+1 using eq2 by simp
then have 3 j<n+m+1.'""® B = C | j using b! c1 by (rule-tac z=j+k-+1 in exl)
(auto)
}
ultimately
show ?case by blast
qed

lemma inversionImpR:
assumes [' = ADB | n
shows 3 j<n. ' ® A= B |j
using assms
proof (induct ' C=ADB n)
case (Az i T")
then show ?case by auto
next
case (LBot T" C)
then have ' A = B | 0 by auto
then show ?case by blast

next
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case (ConjR T En Fm)
then show ?case by auto
next
case (DisjR1 I' En F)
then show Zcase by auto
next
case (DisjR2 " F n E)
then show ?case by auto
next
case (ConjLT' E F C n)
then have 3j<n. ' ® E & F & A = B | j by auto
then obtain j where a: j<n
and : ' @ E® F & A= B | j by blast
from b have I' ® EAxF @ A = B | j+1 using provable.ConjL[where '=sT'®A and A=F and
B=F and C=B and n=j] by (auto simp add:union-ac)
then show ?case using a by (rule-tac z=j+1 in exI) (auto)
next
case (DisjLT" E C'n F m)
then have 3j<n. T ® E ® A= B | jand Ik<m. T & F & A = B | k by auto
then obtain j £ where a: j<n A k<m
and b: T®E P A=DB|]j
and c: ' & F & A = B | k by blast
from b c have I' @ EVxF @& A = B | j+k+1 using provable.DisjLjwhere '=I'©A and A=F
and B=F and C=B and n=j and m=kj|
by (auto simp add:union-ac)
then show ?case using a by (rule-tac x=j+k+1 in exl) (auto)
next
case (ImpLO T i D Cn)
then have 3 j<n.I' & Ati & D & A= B | j by auto
then obtain j where a: 7<n
and b: ' ® Ati ® D & A = B | j by blast
from b have ' ® At i ® Ati D D @& A= B | j+1 using provable.ImpL0[where '=T®A and
i=1 and B=D and C=B and n=j]
by (auto simp add:union-ac)
then show ?case using a by (rule-tac z=j+1 in exl) (auto)
next
case (ImpLC T EF D Cn)
then obtain j where a: 7<n
and b: ' ® ED(FDD) ® A= B | j by auto
from b have I' @ (EA+xF)DD & A = B | j+1 using provable.ImpLC[where I'=I'®&A and
A=F and B=F and C=D and D=B and n=j]
by (auto simp add:union-ac)

then show ?case using a by (rule-tac z=j+1 in exl) (auto)
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next
case (ImpLD T E D F C n)
then obtain j where a: 7<n
and b: ' @ EDD & FOD & A = B | j by blast
from b have I' & (EV+F)DD & A = B | j+1 using provable.ImpLD[where I'=T'®A and
A=F and B=F and C=D and D=B and n=j]
by (auto simp add:union-ac)
then show ?case using a by (rule-tac z=j+1 in exl) (auto)
next
case (ImpLLT EF D n Cm)
then obtain £ where a: k<m
and b: ' ®@ D ©@ A = B | k by auto
from prems have I' ® FE & FOD & A = F | n using dpWeak by auto
then have I' @ (EDF)DD & A = B | n+k+1 using provable.ImpLLwhere I'=I'dA and
A=F and B=F and C=D and n=n and D=B and m=k| b
by (auto simp add:union-ac)
then show ?case using a by (rule-tac z=n+k+1 in exl) (auto)
next
case (ImpRT E F n)
have EDF = ADB V EDF # ADB by blast
moreover
{assume EDF = ADB
then have I' ® A = B | n using prems by auto
then have 3 j<n+1.T & A = B | j by (rule-tac z=n in exI) (auto)
}
moreover
{assume EDF # ADB
then have 3 j<n+1.I' ® A = B | j using prems by auto
}
ultimately
show ?case by blast
qed

lemma genAz:
assumes w = weight A
showsd n. T A=A n
using assms
proof (induct w arbitrary: A rule:nat-less-induct)
case 1
then show ?case
proof (cases A)
case (At 1)
then have I' § Ati = Ati | 0 by auto
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then show 3 n. I' ® A = A | n using prems by blast
next
case ff
then have I' @ ff = ff | 0 by auto
then show 3 n. ' ® A = A | n using prems by blast
next
case (Conj E F)
then have a: weight E < weight A A\ weight F < weight A by auto
from o have 3 n. ' ® £ = E | n using prems(2,3) by auto
moreover
from a have 3 m. I’ @ F = F | m using prems(2,3) by auto
ultimately
obtain n m where 01: I' @ E = FE | n
and b2: I' & F = F | m by blast
from b1 have ' @ F & F = E | n using dpWeak by auto
moreover
from b2 have ' ® E @ F = F | m using dp Weak[where '=I'®F and A=F and C=F
and n=m] by (auto simp add:union-ac)
ultimately
have I' @ E ® F = EAxF | n+m+1 by (rule provable. ConjR)
then have I' ® EAxF = EAxF | n+m+2 using provable. ConjLlwhere C=EA*F and
A=F and B=F and n=n+m+1] by auto
then show 3 n. I' @ A = A | n using prems by (rule-tac z=n+m+2 in ezl) (auto)
next
case (Disj E F)
then have a: weight E < weight A N\ weight F < weight A by auto
from a have 3 n. I' ® E = E | n using prems(2,3) by auto
moreover
from a have 3 m. I’ @ F = F | m using prems(2,3) by auto
ultimately
obtain n m where b1: ' ® E = F | n
and b2: ' & F = F | m by blast
from b1 have I' & F = EVxF | n+1 using provable.DisjR1 by auto
moreover
from b2 have I' @ F = EVxF | m+1 using provable.DisjR2 by auto
ultimately
have I' @ EVxF = EV+F | n+1+ (m+1) +1 using provable.DisjLjwhere C=FEVx*F
and n=n+1 and m=m+1] by arith
then show 3 n.I' ® A = A | n using prems by (rule-tac z=n+1+(m+1)+1 in exl)
(auto)
next
case (Imp E F)
then show 3 n.I' & A = A | n using (A=EDF)
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proof (cases E)
case (At 1)
have weight F' < weight A using (A=EDF) by auto
then have 3 n. I’ @ F = F | n using prems(2,3) by auto
then obtain n where a: I' & F = F | n by blast
from o have I' ® At i ® F = F | n using dpWeak[where '=I'©F and A=At
i] by (auto simp add:union-ac)
then have I' @ At i @ At i O F = F | n+1 using provable.ImpL0 by auto
then have I' @ At i D F = Ati D F | n+2 using provable. ImpR[where '=I'$
At i D F] by (auto simp add:union-ac)
then show 3 n. I’ & A = A | n using prems by auto
next
case ff
have ' ® ff D F @ ff = F | 0 by auto
then have I' @ ff D F = ff D F | 1 using provable.ImpR[where I'=I" ® ff D
F] by auto
then show 3 n. I' @ A = A | n using prems by auto
next
case (Imp G H)
then have weight (GDH) < weight A using (A=EDF) by auto
then have 3 n.I' ® GDH = GDH | n using prems(2,3) by auto
then obtain n where a: I' @ GDH = GDH | n by blast
from a have I' ® GDH & HDOF = GDH | n using dpWeak by auto
then have 3 n'<n. T ® GDH ® HOF & G = H | n’ using inversionImpR[where
I'=sI" ® GDH ® HDF and A=G and B=H] by auto
then obtain n’ where I' ® GDH ® HOF @ G = H | n' by blast
moreover
have weight F' < weight A using (A=EDF) by auto
then have 3 m. I' ® F = F | m using prems(2,8) by auto
then obtain m where I' & F = F' | m by blast
then have I' @ FF & GDH = F | m using dpWeak by auto
ultimately
have I' & (GDH)DF & GDH = F | n'+m+1 using provable.ImpLL[where
I'=T®GDH and C=F and A=G and B=H and n=n’ and m=m]
by (auto simp add:union-ac)
then have I' ® (GDH)DF = (GDH)DF | n'+m+2 using provable.ImpR by
auto
then show 3 n. ' ® A = A | n using prems by auto
next
case (Conj G H)
then have weight (GD(HDF)) < weight A using (A=EDF) by auto
then have 3 n. I’ @ GD(HDF) = GD(HDF) | n using prems(2,3) by auto
then have 3 n. I' ® GD(HDF) & G = HDF | n using inversionImpR[where



APPENDIX D. RIGID FORMALISATIONS 198

I'=I'e¢GDO(HDF) and A=G and B=HDF| by auto
then have 3 n.I' @ GD(HDF) & G & H = F | n using inversionImpR[where
I'=sI' ® GD(HDF) ® G and A=H and B=F] by auto
then obtain n where a: ' ® GD(HDF) & G @ H = F | n by blast
from a have I' & (GAxH)DF & G @ H = F | n+1 using provable.ImpLC|where
I'=T ® G ® H and A=G and B=H and C=F and D=F]
by (auto simp add:union-ac)
then have I' @ (GAxH)DF @& GAxH = F | n+2
using provable. ConjL[where I'=I" & (GAxH)DF and A=G and B=H and
C=F and n=n+1] by (auto simp add:union-ac)
then have I' ® (GA+xH)DF = (GAxH)DF | n+2+1
using provable. ImpR[where I'=I" & (GAxH)DF and A=GAxH and B=F
and n=n-+2] by auto
then show 3 n. ' ® A = A | n using prems by auto
next
case (Disj G H)
then have weight (GDF) < weight A using (A=EDF) by auto
then have 3 n. ' ® GDF = GDF | n using prems(2,3) by auto
then have 3 n. I' @ GDF & HDF = GDF | n using dpWeak by blast
then have 3 n.I' ® GDF @ HDF & G = F | n using inversionImpR[where
I'=T®GDOF®HDF and A=G and B=F] by auto
then obtain n where I' @ GDF & HDOF & G = F | n by blast
moreover
have weight (HDF) < weight A using (A=EDF) and (E=GVxH) by auto
then have 3 n.I' ® HDOF = HDF | n using prems(2,3) by auto
then have 3 n. ' ® HDOF & GDF = HDF | n using dpWeak by blast
then have 3 n. ' ® GDF @ HOF @ H = F | n using inversionImpR[where
I'=T®GDOF®HDF and A=H and B=F|
by (auto simp add:union-ac)
then obtain m where I' & GDF & HDF & H = F | m by blast
ultimately
have I' ® GDF & HDF ® GVxH = F | n+m-+1 using provable. DisjL[where
I'=I'¢GODF®HDF and A=G and B=H] by auto
then have I' @ (GV+xH)DF @ GV+H = F | n+m+2 using provable.ImpLD[where
I'=I'eGv+H and A=G and B=H and C=F]
by (auto simp add:union-ac)
then have I’ ® (GV+H)DF = (GV+H)DF | n+m+2+1 using provable.ImpR[where
I=I'®(GV+H)DF and A=GV*H and B=F and n=n+m+2]
by arith
then show 3 n. ' ® A = A | n using prems by blast
qed
qed
qed
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lemma modusPonens:
shows 3 n. ' AP ADB= B |n
proof—
have I3n. I' @ ADB = ADB | n using genAz[where A=ADB]| by auto
then show 3 n. ' ® A ® ADB = B | n using inversionImpR[where I'=I'®ADB and A=A
and B=B] by (auto simp add:union-ac)
qed

lemma ImplL Classical:

fixes B :: form

assumes ' = D | nand I m. ' ® B= S| m

shows 3 n.I' ® DDB =S| n

using assms
proof (induct arbitrary:B)

case (Az i T)

then have 3 I'. I' = I'' @ At i using containMultiset by auto

then obtain I'' where eq: I' = I'' @ At i by blast

then have 3 m. I ® Ati ® B = S | m using prems by simp

then have 3 m. I’ ® Ati ® Ati D B = S | m using provable.ImpL0 by auto

then show ?case using eq by simp
next

case (LBot T' ()

then have I' § CDB = S | 0 by auto

then show ?case by blast
next

case (ConjLT E F C n)

then obtain a where I' @ E Ax FF @ B = S | a by blast

then have 3 m. ' @ E ® F @& B = S | m using inversionConjL[where I'=I'®&B and A=F
and B=F and C=S and B=B and n=a] by (auto simp add:union-ac)

then have 3 m. ' ® FE @ F ® COB = S | m using prems(4) by simp

then show ?case using provable. ConjL[where '=T®CD>B and A=F and B=F and C=0G5]
by (auto simp add:union-ac)
next

case (DisjLT E C'n F m)

then obtain a where I' ® F Vx ' ® B = S | a by blast

thenhave 3 n. ' E® B=S5|nand3d m.I'® F § B =S | m using inversionDisjL[where
I'=I'¢B and A=F and B=F and C=S and n=a]

by (auto simp add:union-ac)

then have 3 n. T®@E® COB = S | nand 3 m. T'®&F & COB = S | m using prems(4,6)
by auto

then show ?case using provable.DisjL[where '=sI'&CDB and A=F and B=F and C=S5]

by (auto simp add:union-ac)
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next

case (ImpLO0 T i E C n)

then obtain a where I' @ Ati ® At iDE & B = S | a by blast

then have 3 m. I' @ Ati ® E @& B = S | m using inversionImpL0[where I'=I'®At i®B
and i=7¢ and B=F and C=S and n=a] by (auto simp add:union-ac)

then have 3 m. ' ® At ® E & CDB = S | m using prems(4) by simp

then show ?case using provable.ImpL0O[where I'=T®CDB and i=i and B=F and C=5]
by (auto simp add:union-ac)
next

case (ImpLC T EF G Cn)

then obtain a where I' ® (EA+xF)DG & B = S | a by blast

then have 3 m. I' @ ED(FDG)® B = S | m using inversionImpLC|where '=I'©B and
S=F and T=F and B=G and C=S and n=a| by (auto simp add:union-ac)

then have 3 m. I' @ ED(FDG)® CDOB = S | m using prems(4) by simp

then show ?Zcase using provable.ImpLC|where '=I'#@#CDB and A=F and B=F and C=G
and D=S] by (auto simp add:union-ac)
next

case (ImpLD T E G F C n)

then obtain ¢ where I' ® (EV+xF)DG ® B = S | a by blast

then have 3 m. I' @ EDG & FOG & B = S | m using inversionImpLD[where '=I'®B
and S=F and T=F and B=G and C=S and n=d]

by (auto simp add:union-ac)

then have 3 m. ' @ EDG @ FOG @& CDOB = S | m using prems(4) by simp

then show ?case using provable.ImpLD[where '=I'¢CDB and A=F and C=G and B=F
and D=S] by (auto simp add:union-ac)
next

case (ConjR T En F m)

then have 3 m. I' @ FOB = S | m by auto

then have 3 m. ' ® ED(FDB) = S | m using prems(4)where B=FDB] by auto

then show ?case using provable.ImpLC by auto
next

case (DisjR1 T" En F)

then have Ja. I' ® EDB = S | a by auto

then have 3a. ' ® EDB @ FDOB = S | a using dpWeak[where '=I'@EDB and A=FDB]
by auto

then show ?case using provable.ImpLD[where A=F and C=B and B=F] by auto
next

case (DisjR2 T Fn E)

then have Ja. ' ® FOB = S | a by auto

then have 3a. ' ® EDB ® FDOB = S | a using dpWeak|where I'=sI'@F DB and A=EDB]|
by (auto simp add:union-ac)

then show ?case using provable.ImpLD[where A=F and C=B and B=F| by auto

next
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case (ImpRT E F n)

then have I' @ E ® FOB = F | n using dp Weak[where '=T'®F and A=FDB] by auto

then show ?case using prems(5) provable.ImpLL by auto
next

case (ImpLLT F G Hn E m)

then obtain ¢ where I' ® (FOG)DH @& B = S | a by blast

then have 3 m. ' @ H & B = S | m using z'nversion[mpLL[where I'=sI'&B and S=F and
T=G and B=H and C=S and n=a| by (auto simp add:union-ac)

then have a: 3a. ' @ H @ EDB = S | a using prems(6) by auto

moreover

from prems(3) have I' @ GDH @ F & EDB = G | n using dpWeak|where I'=T" & GDH
® F and A=EDB] by (auto simp add:union-ac)

ultimately

show ?case using provable.ImpLL[where '=T'®@EDB and A=F and B=G and C=H and
n=n and D=S] by (auto simp add:union-ac)

qed

lemma twoDB:
assumes I' @ (CDD)DB = E | n
showsd m.I'® C® DODB® DODB=FE | m
using assms
proof (induct '=I' @ (CDD)DB E n arbitrary: T')
case (Az i ")
then have 3 I'/. ' = T'1 @ At ¢ using containMultiset by auto
then obtain '/ where eq: I' = T'1 & At i by blast
then have I'l @ Ati @& C & DDB & DDB = Ati | 0 by auto
then show ?case using eq by auto
next
case (LBot ' E)
then have 3 I'/. I' = T'1 @ ff using containMultiset by auto
then obtain '/ where eq: I' =T'1 & ff by blast
then have I'l @ ff ® C @ DDB & DDB = E | 0 by auto
then show ?case using eq by auto
next
case (ConjRT G n Hm)
then have I3n. '  C ® DODB @& DOB = G | nand dm.I' & C & DODB & DOB = H |
m by auto
then obtain n m where I' @ C ® DODB® DOB= G | nand " ® C ® DDB @ DDOB =
H | m by blast
then have ' ® C & DODB & DDOB = GAxH | n+m+1 using provable. ConjR by auto
then show ?case by blast
next
case (DisjR1 I' G n H)
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then obtain n where I' ® C & DDB & DDOB = G | n by auto

then have ' @ C ® DODB & DDOB = GVxH | n+1 using provable.DisjR1 by auto

then show ?case by blast
next

case (DisjR2 I' Hn G)

then obtain n where I' & C & DODB & DDOB = H | n by auto

then have ' @ C & DDB & DDB = GV*H | n+1 using provable.DisjR2 by auto

then show ?case by blast
next

case (ConjLT G HEnTV)

then have 3 T'1.T =T1 & (CD>D)D>B A T'=I'1®GA«H using midMultiset[where A=GAxH
and B=(CD>D)DB] by auto

then obtain I'7 where eq/: I' =T1 & (CDD)DB

and eq2: I''=T1 @& GAxH by auto

from eq! have 3 n.I'1 ® G ® H ® C ® DOB ® DDOB = E | n using prems(3)[where
I'=I'f & G @ H]| by (auto simp add:union-ac)

then have 3 n. 't & GAxH & C & DDOB ® DDOB = FE | n using provable. ConjL[where
I'=rie®CeDO>B®DDOB and A=G and B=H] by (auto simp add:union-ac)

then show ?case using eq2 by blast
next

case (DisjLT G En Hm T)

then have 3T1.T =T1 & (CDD)DB A I''=I'1 ®GVxH using midMultiset[where A=GVx+H
and B=(CD>D)DB] by auto

then obtain I'7 where eq: T' =T1 & (CDD)DB

and eq2: I''=T1 @& GV*H by auto

from eqg! haved n.I'1 & G & C @ DDB & DDOB = E | n using prems(3)[where I'=I"'1 & G]
by (auto simp add:union-ac)

moreover

from eqg! have3 m.T'1 @ H® C & DDOB @& DDOB = E | m using prems(5)where '=I'/ ®H|
by (auto simp add:union-ac)

ultimately

obtain n m where I't & G ® C & DODB ® DODB = F | nand 't ® H® C & DOB &
DDB = FE | m by auto

then have I'1 @ GvxH & C @ DDOB & DDB = E | nt+m+1 using provable. DisjL[where
I'=ri®CeDO>B®DDOB and A=G and B=H|

by (auto simp add:union-ac)

then show ?case using eg2 by (rule-tac z=n+m+1 in exl) (auto simp add:union-ac)
next

case (ImpRT G Hn T’

then have ' & G =T'® G @ (CDD)DB by (auto simp add:union-ac)

then obtain n where '’ ® G & C @ DDB & DDB = H | n using prems(3)[where '=I"'®G]
by auto

then have''® C ® DDB ® DDB = GDH | n+1 using provable.ImpR[where '=T"'®C®DD>B®DDOB
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and A=G and B=H]| by (auto simp add:union-ac)
then show Zcase by blast
next
case (ImpLOT i G En T
then obtain I'/ where eql: I' @ At i =11 & (CDD)DB
and eg2: T'=T1 @ (Ati D G)
using midMultisetjwhere I'=I" @ At i and A=At D G and B=(CD>D)DB] by auto
from eq! obtain I'2 where eq3: ' =T'2 @ (CDD)DB
and eqj: 't =T2 & At
using midMultiset[where A=At i and B=(CDD)DB] by auto
from eq/ eq2 have eg5: T =T2 @ Ati ® (Ati D G) by simp
from eg3 have 3 n. T2 ® Ati ® G @& C & DDB @& DDOB = E | n using prems(3)[where
I'=I'2®At i®G] by (auto simp add:union-ac)
then have 3 n. I'2 & At i ® At i D G & C & DODB & DDOB = E | n using prov-
able. ImpLO[where I'=I'26C&DDOB®DDOB and B=(]|
by (auto simp add:union-ac)
then show ?case using eq5 by blast
next
case (ImpLCT F GHEnT
then obtain I' where eq/: I' =T1 & (CDD)DB
and eq2: I'=T1 & (FAxG)DH
using midMultiset{where I'=T" and I''=I'" and A=(FA*G)DH and B=(C>D)D>B] by auto
from eq! have 3a.'1 & FO(GDH) ® C & DOB & DDB = FE | a using prems(3)[where
I=T'1®F>(GDH)] by (auto simp add:union-ac)
then have 3a.T'1 & (FAxG)DH @& C @ DDB @ DDOB = F | a using provable. ImpLC[where
I'=r'ieC & DOB @ DDOB and A=F and B=G and C=H]
by (auto simp add:union-ac)
then show ?case using eq2 by blast
next
case (ImpLDT F GHEnT’)
then obtain I'/ where eq/: I' =T1 & (CDD)DB
and eq2: T''=T1 & (FVxH)DG
using midMultiset{where I'=T" and I''=I"" and A=(FV*H)D>G and B=(CD>D)DB] by auto
from eq! have Ja.1'1 & FOG ® HOG® C & DODBH DOB = F | a
using prems(3)[where '=I'I®FD>G & HDG] by (auto simp add:union-ac)
then have 3a.T'1 & (FV+H)DG & C @ DODB@® DDB = FE | a
using provable.ImpLD[where I'=I'1&C ¢ DDB @ DDB and A=F and B=H and C=(]
by (auto simp add:union-ac)
then show ?case using eq2 by blast
next
case (ImpLLT F G Hn EmT)
have (FOG)DH = (CD>D)DB V (FOG)DH # (CD>D)DB by blast

moreover
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{assume (FDG)DH = (CDD)DB
then have eqs: F=C G=D H=B I'=I"' using prems by auto
from prems have I’ ® H & F & GDH = E | m using dpWeak' by auto
moreover
have ' & F & GDH = G | n by fact
ultimately
have 3 n.I' @ F & GDH & GDH = E | n using ImpLClassicallwhere '=T®F®GDH
and D=G and B=H and S=F and n=n]
by (auto simp add:union-ac)
then have 3 n. I'"® C ® DDB ® DD>B = E | n using eqs by blast
}
moreover
{assume (FOG)DH # (CDD)DB
then obtain I'/ where eq1: I' =T1 & (CDD)DB
and eg2: I''=T1 @ (FOG)DH using (' ® (FOG)DH =T'® (C>D)>B)
midMultiset(where A=(FD>G)DH and B=(CD>D)DB]
by auto
from eq! have 3a.T'1 @ F @ GDH & C & DDB & DDOB = (G | a using prems(3)[where
I'=Tr1 ® F®&GDH] by (auto simp add:union-ac)
moreover
from eq! have 3a. 'l & H ® C ® DODB ® DDOB = E | a using prems(5)[where
I=T'1¢H] by (auto simp add:union-ac)
ultimately
have 3 n.T'1 @ (FOG)DH & C @ DDB & DDB = E | n using provable.ImpLL[where
I'=r1oCeD>B®DDB and A=F and B=G and C=H and D=E]
by (auto simp add:union-ac)
then have 3 n. I ® C ® DDB ® DD>B = E | n using eq2 by blast
}
ultimately
show ?case by blast
qed

lemma contract:
fixes A :: form
and n :: nat
assumes @ AP A= C | n
shows 3 k. TT® A= C | k
using assms
proof (induct = weight A y = n arbitrary: I' A C n rule: nat-prod-induct)
case (less z y)
then have IH: \ B m C T.[(weight B, m) <* (weight A, n); T & B® B = C | m] = 3Ja.
I'e B= C | aby simp
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from prems show ?Zcase
proof (cases A)
case ff
then have I' ® A = C | 0 by auto
then show 3 k. I' @ A = C | k by blast
next
case (At i)
then have I' @ At i & At i = C | n using prems by auto
then have 3 k. I' ® Ati = C | k
proof (cases)
case (Azj T'')
then have i=j V i#j by blast
moreover
{assume i=j
then have I' @ Ati = Ati | 0 by auto
then have 3 k. I' @ At 1 = C | k using (C = At j) and =35 by blast
}
moreover
{assume i#j
then have At j :# I using T @ Ati ® Ati =T" and (At j :# ') by auto
then have I' @ At i = Atj | 0 by auto
then have 3 k. I' ® At i = C | k using (C = At j) by blast
}
ultimately
show 3 k. I' ® At i = C | k by blast
next
case (LBot T)
then have ff :# I' by auto
then show 3 k. T' @ At i = C | k by (rule-tac z=0 in ezl) (auto)
next
case (ConjRT' E s F t)
then have ' ® At i ® Ati = E | s by simp
then have 3 k. I' @ Ati = FE | k
using (A = At ) and (n=s+t+1»
and [H[where B=At i and C=FE and m=s] by auto
moreover
have I' © Ati ® Ati = F | t using prems by simp
then have 3 k. I' @ Ati = F | k
using (A = At ) and (n=s+t+1»
and [H[where B=At i and C=F and m=t] by auto
ultimately
have 3 k. I' ® At i = EAxF | k using provable. ConjR by auto
then show 3 k. T' @ Ati = C | k using (C= EAxF) by simp
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next
case (DisjR1 T E s F)
then have I' ® Ati ® Ati = E | s by simp
then have 3 k. I' ® Ati = F | k
using (A = At ©» and (n = s+ 1)
and [/H[where B=At i and C=F and m=s] by auto
then have 3 k. ' @ At 1 = EV«*F | k using provable.DisjR1 by auto
then show 3 k. I' @ Ati = C | k using (C=EVxF) by simp
next
case (DisjR2 T'' F s E)
then have I' @ At 1 @ Ati = F | s by simp
then have 3 k. I' @ Ati = F | k
using (A = At ) and (n = s+ 1)
and /H[where B=At i and C=F and m=s| by auto
then have 3 k. I' @ At 1 = EVxF | k using provable.DisjR2 by auto
then show 3 k. I' @ Ati = C | k using (C=EVxF) by simp
next
case (ImpRT'E F s)
then have I' @ At1 @ Ati1 ® E = F | s by (auto simp add:union-ac)
then have 3 k. T @ Ati1 d E = F | k
using (A=At © and (n=s+1)
and /H[where B=At i and C=F and m=s and I'=I'©F]
by (auto simp add:union-ac)
then show 3 k. I' ® Ati = C | k using (C=FEDF) and provable.ImpR by auto
next
case (ConjLT' E F D s)
from (' @ Ati @ Ati =1'@ EA+F) obtain I'] where eql: I’ =T'1 @& EAxF
and eq2: T/ =T1 @ Ati ® At
using midMultiset2[where A=At i and B=EA«F] by auto
from eg2 and I'" @ E P F = D | s havel'l1 D Ati DAti G EQF =D | s
by simp
then have 3 k. T'1 @ At it ® ED F =D | k
using (A=At ©) and (n=s+1) and [H[where '=sT'I®E®F and B=At i] by
(auto simp add:union-ac)
then have 3 k. ' @& At i & EAxF = D | k using provable. ConjL by auto
then show 3 k. I’ @ At i = C | k using (C=D) and eql by (auto simp
add:union-ac)
next
case (DisjLT' E D s F t)
from (' @ Ati @ Ati =1'@ EV+F) obtain I'] where eql: ' =T'1 @& EV*F
and eq2: T/ =T1 @ Ati @ At
using midMultiset2[where A=At i and B=EV«F] by auto
from eq2 and "' @ E = D | ) have'1 ® Ati ® Ati ® E = D | s by simp
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then have 3 k. T1 @ Ati @ E=D | k
using (A=At ©) and (n=s+t+1>
and /H[where I'=T'1®F and m=s and B=At i] by (auto simp add:union-ac)
moreover
from eq2 and " @ F = D | ty have 'l ® Ati ® Ati ® F = D | t by simp
then have 3 k. T'1 @ At i1 ® F = D | k
using (A=At 9 and (n=s+t+1)
and [H[where '=I'1®F and m=t and B=At i] by (auto simp add:union-ac)
ultimately
have 3 k. T'1 & At i ® EVxF = D | k using provable. DisjL[where I'=T"1 ® At 1]
by auto
then show 3 k. I' @ At i = C | k using (C=D) and eq! by (auto simp
add:union-ac)
next
case (ImpLCT'EF G D s)
from ("' ® Ati @ At i =T' @ (EA*F)DG) obtain I'/ where
eql: T =T1 & (EN«F)DG
and eq2: T/ =T1 @ Ati @ At
using midMultiset2[where A=At i and B=(EA*F)DG] by auto
from eg2 and T’ ® ED(FDG) = D | s have 'l @ Ati @ Ati ® ED(FDG) =
D | s by simp
then have 3 k. I'] @ Ati @ ED(FDG) =D | k
using (A=At ©) and (n=s+1>
and [H[where '=I'1ED(FDG) and B=At i and m=s] by (auto simp
add:union-ac)
then have 3 k. '] @ Ati ® (EA+xF)DG = D | k using provable.ImpLC|where
I=r'1®At i] by auto
then show 3 k. I' @ At i = C | k using (C=D) and eq! by (auto simp
add:union-ac)
next
case (ImpLDT' E G F D s)
from (U @ Ati ® Ati =T'@® (EVxF)DG) obtain I'! where
eql: T =T1 @& (EV«+F)DG
and eq2: T/ =T1 @ Ati @ At
using midMultiset2[where A=At i and B=(EV*F)DG] by auto
from eg2 and ' ® EDG ® FOG = D | sy have 'l @& Ati @ Ati ® EDG @
FO>G = D | s by simp
then have 3 k. 'l @ At1 ® EDG @ FOG =D | k
using (A=At ©) and (n=s+1>
and [H|[where '=I'I®EDG®F DG and B=At i and m=s| by (auto simp
add:union-ac)
then have 3 k. T'1 @ At i ® (EVxF)DG = D | k using provable.ImpLD[where
I'=r'1®At i] by auto
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then show 3 k. I' @ At i = C | k using (C=D) and eq! by (auto simp
add:union-ac)
next
case (ImpLLT'EF Gs D t)
from (" ® Ati ® At i =T' @ (EDF)DG) obtain ' where
eql: T =T1 @& (EDF)DG
and eq2: T/ =T1 @ Ati @ At
using midMultiset2[where A=At i and B=(EDF)DG] by auto
from eq2 and I'" ® E ® FOG = F | s> havel'l § Ati ® Ati & E © FOG =
F | s by simp
then have 3 k. I'1 @ At i @ E ® FOG=F | k
using (A=At ©) and (n=s+t+1>
and [H[where '=T'1®E®FDOG and B=At i and m=s| by (auto simp
add:union-ac)
moreover
from eq2 and ("' ® G = D | t) have'1 ® Ati ® Ati & G = D | t by simp
then have 3 k. T'1 @ Ati & G=D | k
using (A=At 9 and (n=s+t+1)
and /H[where I'=I'1®G and B=At i and m=t] by (auto simp add:union-ac)
ultimately
have 3 k. T'1 @ Ati ® (EDF)DG = D | k using provable.ImpLL[{where I'=I'® At
i] by auto
then show 3 k. ' @ At i = C | k using (C=D) and eql by (auto simp
add:union-ac)
next
case (ImpLO T’ j E D s)
have i=j V i#j by blast
moreover
{assume i=j
then have I' ® Ati @ Ati =T'® Ati D E @ At i using prems by (auto simp
add:union-ac)
then have I' ® Ati =T'® Ati D E by simp
then obtain '/ where eq1: ' =11 & Ati D E
and eq2: T/ =T1 @ At
using midMultiset[where A=At i and B=At i O E] by auto
from eq2 and "' ® Atj @ E = D | s and (i=j)
have 'l @ Ati ® Ati ® E = D | s by simp
then have 3 k. T'1 @ Ati®@ E=D | k
using (A = At » and (n=s+1)
and [H[where B=At i and I'=T'1®E] by (auto simp add:union-ac)
then have 3 k. T'1 & At i1 @ At i+ D E = D | k using provable.ImpL0 by auto
then have 3 k. I' @ Ati = C | k using eq! and (C=D) by (simp add:union-ac)

}
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moreover
{assume i#j
from T @ Ati ® Ati=T'@® Atj & Atj D E) obtain I'2 where
eql: T =T2¢ Atj D FE
and eq2: T/ @ Atj =T2 @ Ati @ At
using midMultiset2[where A=At i and B=At jDOF] by auto
from eg2 and (i#j) obtain I'! where eq3: T/ =T1 @ Ati & At
and eq/: '2 =T1 @ At j
using midMultiset2[where A=At i and B=At j and I'=I'2 and I''=T""] by
auto
from eq4 and eql have eq: ' =T1 & Atj & Atj DO E by auto
from eq8 and (" @ Atj ® E =D | &
have I'! @ Ati ® Ati® Atj & E = D | s by simp
then have 3 k. '] @ Ati @ Atj ® E=D | k
using (A=At ) and (n=s+1>
and /H[where I'=sT'1®At j & E and B=At i and C=D] by (auto simp
add:union-ac)
then have 3 k. T'1 @ Ati @ Atj @ Atj D E=D | k
using provable. ImpL0[where I'=['1® At i and i=j] by (auto simp add:union-ac)
then have 3 k. I' ® At i = C | k using eq and (C=D) by (auto simp
add:union-ac)
}
ultimately
show 3 k. I' @ At i = C | k by blast
qed
then show 3 k. I' @ A = C | k using (A = At ©) by simp
next
case (Conj S T)
then have I' @ SAxT @ SA*xT = C | n using prems by auto
then have 3 k. I' @ SAxT = C | k
proof (cases)
case (Az i I')
then have At i :# T by auto
then have I' & SAxT = At i | 0 by auto
then show 3 k. I' & SA*T = C | k using (C=At i) by blast
next
case (LBot "' D)
then have ff :# I' by auto
then have I' ® SA*xT = D | 0 by auto
then show 3 k. I' @ SA*xT = C | k using (C=D) by auto
next
case (DisjR1 T E s F)
then have I' @ SA+*T & SAxT = E | s by simp
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then have 3 k. I' @ SA«T = E | k
using (A = SA+*T) and (n = s+1)
and IH[where B=SA«T and C=F and m=s] by auto
then have 3 k. I' @ SA+xT = EVxF | k using provable.DisjR1 by auto
then show 3 k. I' & SA*xT = C | k using (C=EVx*F) by simp
next
case (DisjR2 T’ F s E)
then have I' @ SA*T & SA*T = F | s by simp
then have 3 k. I' @ SA«T = F | k
using (4 = SAxT) and (n = s+1) and [H[where B=SAxT and C=F and
m=s] by auto
then have 3 k. I' @ SA+*T = EV*F | k using provable.DisjR2 by auto
then show 3 k. I' ® SA*T = C | k using <C=EVx*F) by simp
next
case (ImpRT' E F s)
then have I' @ SA*xT @ SA*T @& E = F | s by (auto simp add:union-ac)
then have 3 k. I' @ SAxT @ FE = F | k
using (A=SAxT) and (n=s+1)
and IH[where B=SA*T and C=F and m=s and I'=I'®E] by (auto simp
add:union-ac)
then show 3 k. I' & SA+«T = C | k using (C=EDF) and provable.ImpR by auto
next
case (ConjRT' E s F t)
then have I' @ SA+*T & SAxT = E | s by simp
then have 3 k. I' @ SA«T = E | k
using (A = SA*T) and (n=s+t¢+1) and IH[where B=SA*T and C=FE and
m=s] by auto
moreover
have I' ® SA*T & SA*T = F | t using prems by simp
then have 3 k. I' & SAxT = F | k
using (A = SAxT) and (n=s+t+1) and [H[where B=SA*T and C=F and
m=t] by auto
ultimately
have 3 k. ' & SAxT = EAxF | k using provable. ConjR by auto
then show 3 k. I' @ SA*T = C | k using (C= EAxF) by simp
next
case (DisjLT' E D s F t)
from T & SAxT & SA+T =T @ EV+F) obtain I'1 where
eql: T'=T1 & EVxF
and eq2: T/ =T1 & SA+*T & SA*T
using midMultiset2[where A=SA+T and B=EVx*F| by auto
from eq2 and (I'"' ® E = D | ) haveI'1 & SA+T © SA*T ® E = D | s by simp
then have 3 k. T'1 @ SAxT @ E= D | k
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using (A=SAxT) and (n=s+t+1)
and [H[where I'=T'/@FE and m=s and B=SA«T| by (auto simp add:union-ac)
moreover
from eq2 and (I'’' ® F = D | t» have 'l & SA*T & SA*T & F = D | t by simp
then have 3 k. T'1 @ SAxT & F = D | k
using (A=SAxT) and (n=s+t+1>
and [H[where '=T'1@F and m=t and B=SAxT| by (auto simp add:union-ac)

ultimately

have 3 k. I'1 & SA*T @ EVxF = D | k using provable. DisjL[where I'=I'1 ®SAx T
by auto

then show 3 k. T' & SA*T = C | k using (C=D) and eql by (auto simp
add:union-ac)
next
case (ImpLCT'EF G D s)
from (U & SA+T & SA+T =T' & (EA*F)DG) obtain I'! where
eql: T =T1 & (EN+F)DG
and eq2: T''=T1 & SA«T @& SA*T
using midMultiset2[where A=SA+T and B=(EA*F)DG] by auto
from eg2 and ('’ ® ED(FDG) = D | 9
have 't ® SA*T & SAxT ® ED(FDG) = D | s by simp
then have 3 k. T'1 @ SA+T ® ED(FDG)= D | k
using (A=SAxT) and (n=s+1)
and [H[where '=TI'I®ED(FD>G) and B=SA*T and m=s] by (auto simp
add:union-ac)
then have 3 k. T'1 @ SA+*T @ (EA+*F)DG = D | k
using provable.ImpLC[where I'=I'1®SA*T| by auto

then show 3 k. I' @ SA*T = C | k using <C=D) and eq! by (auto simp add:union-ac)
next

case (ImpLDT'E G F D s)
from © & SA*T & SA*T =T' @ (EVxF)DG) obtain I'/ where
eql: T =T1 @& (EVxF)DG
and eq2: T/ =T1 @ SA*T @ SAxT
using midMultiset2[where A=SA+T and B=(EV*F)DG] by auto
from eq2 and I’ @ EDG ® FOG = D | s
have I'f @ SA*T & SA«xT & EDG & FOG = D | s by simp
then have 3 k. I'1 ® SA«T ® EDG ® FOG =D | k
using (A=SAxT) and (n=s+1)
and [H[where '=I'I®EDG®FDOG and B=SA*T and m=s| by (auto simp
add:union-ac)
then have 3 k. T'1 & SA*T @ (EV+F)DG = D | k
using provable.ImpLD[where I'=T'1®SA«T| by auto

then show 3 k. I' @ SA*T = C | k using <C=D) and eq! by (auto simp add:union-ac)
next
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case (ImpLLT'EF Gs Dt)
from " @& SA*T & SA*xT =T' @ (EDF)DG) obtain I'1 where
eql: T =T1 & (EDF)DG
and eq2: T/ =T1 @& SA*T @& SA+T
using midMultiset2[where A=SA+T and B=(EDF)DG] by auto
from eg2 and I'" @ F & FOG = F | s
have 'l & SA*T & SAxT & E & FOG = F | s by simp
then have 3 k. I'1 & SA*xT & F ® FOG = F | k
using (A=SAxT) and (n=s+t+1)
and [H[where '=sTI'I®E®FDOG and B=SA+T and m=s| by (auto simp
add:union-ac)
moreover
from eg2 and "' & G = D | t) have 't ® SA«T ® SA+T ® G = D | t by simp
then have 3 k. '] & SA*xT & G = D | k
using (A=SA«T) and (n=s+t+1)
and /H[where I'=T'1®G and B=SA*T and m=t| by (auto simp add:union-ac)
ultimately
have 3 k. I'1 & SA+T @& (EDF)DG = D | k
using provable.ImpLL[where I'=T'®SAxT] by auto
then show 3 k. T' @ SA+xT = C | k using (C=D) and eql by (auto simp add:union-ac)
next
case (ImpLOT'j E D s)
from (' @SAxT ® SA*T =T' @ Atj @ Atj DO E) obtain I'2 where
eq: T =T2¢ Atj DO F
and eq2: I ® Atj =12 @ SA*T @ SA+T
using midMultiset2[where A=SAxT and B=At jDE] by auto
from eq2 obtain I'7 where eq3: I''=T1 @& SAxT @& SA*T
and eq/: 2 =T1 @ Atj
using midMultiset2[where A=SAxT and B=At j and I'=I'2 and I''=I"'] by auto
from eqj and eql have eq: ' =T1 ® Atj & Atj DO E by auto
from eq3 and (I ® At @ E = D | s
have I'! @ SA*T & SAxT ® Atj & E = D | s by simp
then have 3 k. T'1 & SA«T ® Atj @ E = D | k
using (A=SAxT) and (n=s+1»
and /H[where I'=sI'I®Atj & E and B=SA*T and C=D] by (auto simp add:union-ac)
then have 3 k. '] @& SA«xT @ Atj ® Atj D FE =D | k
using provable.ImpLO[where '=I'1®SAxT and i=j]| by (auto simp add:union-ac)
then show 3 k. I’ @ SA+*T = C | k using eq and (C=D) by (auto simp add:union-ac)
next
case (ConjLT' E F D s)
have SA*T = EAxF V SAxT # EAxF by blast
moreover
{assume SA*T = EAxF
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then have I' @ EAxF =T using T @ S A+ T & S A+ T =T'® E Ax F) by simp
then have I' ® EAxF @ E DO F = D | susing T'"® E® F = D | s by simp
thenhave 3 k., T E@ FOE® F =D |k
using inversionConjLiwhere '=T®FE®F and A=F and B=F]
by (auto simp add:union-ac)
then have 3 k. T ® E ® F & F = D | k using (SA*T = EA+F) and (A=SAxT)
and /H[where B=F and '=sI'®¢F®F and C=D] by (auto simp add:union-ac)
then have 3 k. T ® F & F = D | k using (SA*xT = EAxF) and (A=SA+T)
and /H[where B=F and I'='@F and C=D] by auto
then have 3 k. I' @ SA+*T = C | k using (SAxT = EAxF)
and (C=D) and provable. ConjL by auto
}
moreover
{assume SAxT # EAxF
from (' @ SA*T @ SA+T = T'' ® EAxF) obtain '] where eql: I' =T'1 & EAxF
and eq2: T/ =T1 @& SA+*T @& SA*T
using midMultiset2[where A=SA+T and B=EA*F] and (SA*xT # EAxF) by
auto
fromeg2 and '@ E @ F =D | sshavel'1 @ SA+*T & SA\+*T S E S F =D |
s by simp
then have 3 k. I'1 & SA«T ® E® F =D | k
using (A=SAxT) and (n=s+1)
and [H[where '=T'I1®EDF and B=SA*T] by (auto simp add:union-ac)
then have 3 k. ' & SAxT & EAxF = D | k using provable. ConjL by auto
then have 3 k. T' ® SA*T = C | k using (C=D) and eq! by (auto simp add:union-ac)
}
ultimately
show 3 k. T' @ SA«T = C | k by blast
qed
then show 3 k. T' @ A = C | k using (A = SA*T) by simp
next
case (Disj S T)
then have I' @ Sv«xT & Sv«T = C | n using prems by auto
then have 3 k. I' ® Sv«T = C | k
proof (cases)
case (Az 1 IV)
then have At i :# I by auto
then have I' & Sv«T = At i | 0 by auto
then show 3 k. I' @ Sv«xT = C | k using (C=At i) by blast
next
case (LBot "' D)
then have ff :# I' by auto
then have I' @ Sv«T = D | 0 by auto
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then show 3 k. T' @ Sv«T = C | k using (C=D) by auto
next
case (DisjR1 T E s F)
then have I' & Sv«T & SvxT = E | s by simp
then have 3 k. I' @ Sv«T = F | k
using (A = SvxT) and (n = s+1)
and [H[where B=SVxT and C=FE and m=s] by auto
then have 3 k. ' ® SvxT = EVxF | k using provable.DisjR1 by auto
then show 3 k. I' @ Sv«T = C | k using (C=EVxF) by simp
next
case (DisjR2 ' F s E)
then have I' & Sv«T & SvxT = F | s by simp
then have 3 k. I' ® Sv«T = F | k
using (A = SvxT) and (n = s+1)
and [H[where B=SV«T and C=F and m=s] by auto
then have 3 k. ' ® Sv«xT = EVxF | k using provable.DisjR2 by auto
then show 3 k. I' @ Sv+xT = C | k using (C=EV*F) by simp
next
case (ImpRT' E F s)
then have ' @ SV«T @ Sv«xT & E = F | s by (auto simp add:union-ac)
then have 3 k. I' ® Sv«T ® E = F | k
using (A=SV*T) and (n=s+1)
and /H[where B=SVxT and C=F and m=s and I'=I'®E]| by (auto simp
add:union-ac)
then show 3 k. I' @ Sv«xT = C | k using (C=EDF) and provable.ImpR by auto
next
case (ConjR T E s F t)
then have I' @ SvxT @ SvxT = E | s by simp
then have 3 k. ' ® Sv«T = FE | k
using (A = SvxT) and (n=s+t+1»
and IH[where B=SV«T and C=F and m=s] by auto
moreover
have I' @ Sv«T & SvxT = F | t using prems by simp
then have 3 k. I' ® Sv«T = F | k
using (A = SvxT) and (n=s+t+1)
and [H[where B=SV«T and C=F and m=t] by auto
ultimately
have 3 k. I' @& Sv«xT = EAxF | k using provable. ConjR by auto
then show 3 k. I" d Sv«T = C | k using (C= EAxF) by simp
next
case (ConjLT' E F D s)
from T @ SV+T @ SV+T =T @ EA+F) obtain I'1 where
eql: ' =T1 & ENxF
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and eq2: T/ =T1 & Sv+«T & SvxT
using midMultiset2[where A=SV*T and B=FEAxF] by auto
from eqg2 and " ® E® F = D | s
have I'l & Sv«T & Sv«T @ E & F = D | s by simp
then have 3 k. '] @ SvxT @ E@ F = D | k
using (A=SVxT) and (n=s+1)
and [H[where '=sT'1®E®QF and B=SV*T] by (auto simp add:union-ac)
then have 3 k. T'1 & Sv«xT ® EAxF = D | k using provable. ConjL by auto
then show 3 k. I' @ SV«+T = C | k using (C=D) and eq! by (auto simp add:union-ac)
next
case (ImpLCT'EF G D s)
from T @ SvxT @ SvxT =T' @ (EA*F)DG) obtain I'! where
eql: T =T1 @ (EA*F)DG
and eq2: I''=T1 @ Sv«T & SvxT
using midMultiset2[where A=SV+T and B=(EA*F)DG| by auto
from eq2 and I’ & ED(FDG) = D |  have 'l & Sv«T @& Sv«xT & ED(FDG) =
D | s by simp
then have 3 k. T'1 @ Sv«T & ED(FDG) = D | k
using (A=SV*T) and (n=s+1) and [H|[where '=T'I®FED(FDG) and B=SVxT
and m=s] by (auto simp add:union-ac)
then have 3 k. I'l & SVvxT @ (EAxF)DG = D | k using provable.ImpLC[where
I'=r1eSvxT] by auto
then show 3 k. I' @ SVvxT = C | k using (C=D) and eq! by (auto simp add:union-ac)
next
case (ImpLDT' E G F D s)
from T @ SvxT @ SvxT =T' @ (EV+F)DG) obtain I'! where
eql: T =T1 & (EV+F)DG
and eq2: I''=T1 @ Sv«T @ SvxT
using midMultiset2[where A=SV+T and B=(EV*F)DG| by auto
from eq2 and (I'" @ EDG & FOG = D | s
have I'l & Sv«T & Sv«T & EDG & FOG = D | s by simp
then have 3 k. I'1 & SvxT & EDG & FOG =D | k
using (A=SVxT) and (n=s+1)
and IH[where '=I'1®@FEDGOFDOG and B=SV+T and m=s] by (auto simp
add:union-ac)
then have 3 k. I'1 @ Sv«T @ (EV*F)DG = D | k using provable.ImpLD[where
r=r1®SvxT] by auto
then show 3 k. I' @ SV«T = C | k using (C=D) and eq! by (auto simp add:union-ac)
next
case (ImpLLT'EF Gs Dt)
from @ @ SvxT ® SvxT =T’ ® (EDF)DG) obtain I'! where
eql: T =T1 & (EDF)DG
and eq2: T/ =T1 & Sv+xT ® SvxT
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using midMultiset2[where A=SV+T and B=(EDF)DG] by auto
from eg2 and ' ® E @ FOG = F | &
have I'1 @ Sv«T & SvxT & E @ FOG = F | s by simp
then have 3 k. I'1 & SvxT @ F @ FOG=F | k
using (A=SVxT) and (n=s+t+1)
and [H[where '='I1®E®F DG and B=SV*T and m=s] by (auto simp add:union-ac)
moreover
from eq2 and '’ & G = D | © have 'l & SvxT ® SvxT @& G = D | t by simp
then have 3 k. I'1 & Sv«T & G =D | k
using (A=SVx*T) and (n=s+t+1)
and [H[where '=T'1¢G and B=SV*T and m=t| by (auto simp add:union-ac)
ultimately
have 3 k. T'1 @ Sv«T & (EDF)DG = D | k using provable.ImpLL[where '=I'®SV*T|
by auto
then show 3 k. I' @ SV«T = C | k using (C=D) and eq! by (auto simp add:union-ac)
next
case (ImpLOT'jE D s)
from T ®SV+T @ SVxT =T'@® Atj @ Atj D E) obtain I'2 where
eql: T =T2@® Atj DO F
and eq2: T/ @ Atj =T2 & SV+T ®© SV+T
using midMultiset2[where A=SV+T and B=At jDE] by auto
from eg2 obtain I'7 where eq3: T'' =T1 @ SV«T @& SV*T
and eq/: I'2 =T1 & Atj
using midMultiset2[where A=SV*T and B=At j and I'=T'2 and I''=T""] by auto
from eqj and eq! have eq: ' =T1 & Atj & Atj DO F by auto
from eq8 and ("' ® Atj ® E =D | s
have I'l @ SvxT ® Sv«T & Atj ® E = D | s by simp
then have 3 k. I'1 & Sv«T @ Atj @ E= D | k
using (A=SVxT) and (n=s+1)
and IH |[where '=T'1@Atj & E and B=SV+T and C=D] by (auto simp add:union-ac)
then have 3 k. I'1 & Sv«T @ Atj @ Atj D E =D | k
using provable.ImpL0[where I'=T'1®SV+T and i=j] by (auto simp add:union-ac)
then show 3 k. I’ @ SV«T = C | k using eq and (C=D) by (auto simp add:union-ac)
next
case (DisjLT' E D s F t)
have SvxT = EVxF VvV SVxT # EVxF by blast
moreover
{assume SV*T = EV«F
then have I' @ EVxF = I'’ using (I' @SV+xT®SV+T = T'' & EVxF) by simp
from "' ® E = D | & and (' @ EV«F =T
haveI' @ EVxF & E = D | s by simp
then have 3 k. I' ® E ® E = D | k using inversionDisjL{lwhere '=I'®@F and A=F
and B=F]
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by (auto simp add:union-ac)
then have 3 k. I' @ E = D | k using (SVxT=EVxF) and (A=SV*T)
and /H by auto
moreover
from ' ® F = D | t» and (I @ EV«F =T
have I' @ EvxF & F = D | t by simp
then have 3 k. I' & F & F = D | k using mversz’onDist[where I'=I'®F and A=F
and B=F]
by (auto simp add:union-ac)
then have 3 k. I' @ F = D | k using (SVxT=EVxF) and (A=SV*xT)
and IH by auto
ultimately
have 3 k. I' & SvxT = C | k using (SVxT=FEVxF) and (C=D) and provable.DisjL
by auto
}
moreover
{assume SV« T#EV*F
from U @ SV«xT © SVv+T = TI'' @ EVx+F) obtain I'1 where
eql: ' =T1 & EVxF
and eq2: T/ =T1 @ Sv«T @ SvxT
using midMultiset2[where A=SV+T and B=EV*F] and (SVxT#EV*F) by auto
from eq2 and I'' ® E = D | ) have 'l ® SvxT & SvxT & E = D | s by simp
then have 3 k. T'1 @ SvxT ® E= D | k
using (A=SVxT) and (n=s+t+1)
and [H[where '=T'1®F and m=s and B=SVxT| by (auto simp add:union-ac)
moreover
from eq2 and <I'" @ F = D | t) have I'1 & SV+«T & SV«T & F = D | t by simp
then have 3 k. I'1 & Sv«xT & F = D | k
using (A=SV*T) and (n=s+t+1)
and /H[where I'=T'1®F and m=t and B=SV«*T] by (auto simp add:union-ac)
ultimately
have 3 k. T'1 & SvxT & EV+F = D | k using provable. DisjL[where I'=T"1®SVx*T]

by auto
then have 3 k. I' ® SVxT = C | k using (C=D) and eq! by (auto simp add:union-ac)
}
ultimately
show 3 k. T' @ Sv«T = C | k by blast
qed
then show 3 k. I' @ A = C | k using (A = SvxT) by simp

next
case (Imp S T)
then have I' @ SOT & SOT = C | n using prems by auto
then have 3 k. I' & SODT = C | k
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proof (cases)
case (Az i T)
then have At i :# I’ by auto
then have I' @ SOT = At i | 0 by auto
then show 3 k. T' @ SOT = C | k using (C=At i) by blast
next
case (LBot I'' D)
then have ff :# ' by auto
then have I' & SOT = D | 0 by auto
then show 3 k. I' & SOT = C | k using (C=D) by auto
next
case (DisjRI T E s F)
then have I' ® SOT @& SOT = E | s by simp
then have 3 k. ' ® SOT = F | k
using (A = SOT) and (n = s+1»
and [H[where B=SDT and C=FE and m=s| by auto
then have 3 k. ' & SDOT = EV*F | k using provable.DisjR1 by auto
then show 3 k. I' & SOT = C | k using (C=EV*F) by simp
next
case (DisjR2 I’ F s E)
then have I' @ SOT & SOT = F | s by simp
then have 3 k. ' ® SOT = F | k
using (A = SOT) and (n = s+1»
and /H[where B=SDT and C=F and m=s| by auto
then have 3 k. I' & SOT = EVxF | k using provable.DisjR2 by auto
then show 3 k. I' @ SOT = C | k using (C=EV*F) by simp
next
case (ImpRT'E F s)
then have I' ® SOT @ SOT @ E = F | s by (auto simp add:union-ac)
then have 3 k. I' ¢ SODT @ E=F | k
using (A=SDT) and (n=s+1)
and [H[where B=SDT and C=F and m=s and I'=I'®E| by (auto simp add:union-ac)

then show 3 k. I' ® SOT = C | k using (C=EDF) and provable.ImpR by auto
next
case (ConjRT' E s F t)
then have I' © SOT @& SOT = E | s by simp
then have 3 k. I' ® SOT = F | k
using (A = SOT) and (n=s+t+1)
and /H[where B=SDT and C=FE and m=s] by auto
moreover
have I' @ SOT & SOT = F | t using prems by simp
then have 3 k. ' ¢ SODT = F | k
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using (A = SOT) and (n=s+t+1)

and [H[where B=SDT and C=F and m=t] by auto
ultimately
have 3 k. I' @ SDT = EA*F | k using provable. ConjR by auto
then show 3 k. I' & SOT = C | k using (C= EAxF) by simp

next

case (ConjLT' E F D s)
from T @ SOT & SOT =T’ @ EA+F) obtain ' where

eql: ' =11 & ENxF

and eq2: I''=T1 ® SOT ® SOT

using midMultiset2[where A=SDT and B=EAxF] by auto
from eg2 and " @ E® F = D | s

haveI'f & SOT & SODT @ E® F = D | s by simp
thenhave 3 k. T'1 @ SODT®E® F=D | k

using (A=SDT» and (n=s+1)

and /H[where '=sT'1®E@F and B=SDT]| by (auto simp add:union-ac)
then have 3 k. 'l @& SDOT & EAxF = D | k using provable.ConjL by auto
then show 3 k. I' @ SOT = C | k using (C=D) and eq! by (auto simp add:union-ac)

next

case (DisjLT' E D s F t)
from T @ SOT & SOT =T’ @ EV+F) obtain ' where

eql: ' =11 & EVxF

and eq2: I''=T1 @ SOT ® SOT

using midMultiset2[where A=SDT and B=FEVxF] by auto
from eq2 and ' ® E = D | s

have I'f @& SOT & SOT @ E = D | s by simp
then have 3 k. T'1 @ SODT® E =D | k

using (A=SDT) and (n=s+t+1)

and [/H[where I'=sT'/®F and m=s and B=SDT]

by (auto simp add:union-ac)
moreover
from eg2 and '@ F = D | t

have 'l @ SOT & SOT @ F = D | t by simp
then have 3 k. T'1 & SODT ® F =D | k

using (A=5DT) and (n=s+t+1)

and [H[where '=T'/®F and m=t and B=SDT]

by (auto simp add:union-ac)
ultimately
have 3 k. T'1 ® SOT @ EV«F = D | k using provable.DisjL[where I'=I"1®SDT| by

auto

then show 3 k. I' @ SOT = C | k using (C=D) and eql

by (auto simp add:union-ac)

next
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case (ImpLOT' i E D s)
then have 3 k. I' ® SOT = C | k
proof (cases S)
case (At j)
have Atj D T =Ati D EV Atj DO T # At i D FE by blast
moreover
{assume At j O T = Ati D E
then have ' @ Ati D FE =T'® At
using (I' @ SOT @ SOT =T' @ At i @ At iDE) and (S=At j) by auto
then obtain I'/ where eq1: ' =11 ® At
and eq2: ' =T1 @ Ati D E
using midMultiset[where A=At ¢ O F and B=At i] by auto
from eq2 and (I ® Ati @ E = D | &
have 't @ Ati D E® Ati ® E = D | s by simp
thenhave 3 k. T1 @ E® Ati ® E=D | k
using inversionImpL0[where I'=T'1 $At i®F and B=F and C=D]
by (auto simp add:union-ac)
then have 3 k. I'1 @ E @ At i = D | k using (A=5SDT
and (S=Atj) and (Atj O T = Ati D E)
and [H[where B=F and I'=T'1®At i] by (auto simp add:union-ac)
then have 3 k. T'1 @ At1 ® Ati D E =D | k
using provable.ImpL0[where '=I'1 and B=F and C=D]
by (auto simp add:union-ac)
then have 3 k. ' @& SDT = C | k using eql and (Atj D T = Ati D E)
and (S=At j) and <C=D) by auto
}
moreover
{assume Atj D T # Ati D E
then have SOT # At i D FE using (S=At j) by simp
from (U @SOT @ SOT =T'® Ati & Ati D E) obtain I'2
where eq1: T'=T2 & Ati D E
and eq2: T/ ® Ati =T2® SOT & SOT
using midMultiset2[where A=SDT and B=At iDE)|
and «(SDT # At i D E) by auto
from eq2 obtain I'7 where eq3: I''=T1 & SOT & SOT
and eq/: I'2 =T1 @ At i
using midMultiset2[where A=SDT and B=At i and I'=I'2 and I''=I''] by auto
from eqj and eq! have eq: I' =T1 & Ati & Ati DO F by auto
from eq8 and I ® Ati @ E = D | &
haveI'1 & SOT & SOT @ Ati @ E = D | s by simp
then have 3 k. I'1 @ SODT @ Ati @ E=D | k
using (A=S5DT) and (n=s+1)
and [H[where I'=sT'1®At i & FE and B=SDT and C=D]
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by (auto simp add:union-ac)
then have 3 k. I'1 @ SODT @ Ati @ Ati D E=D | k
using provable.ImpL0[where '=I'1®SDT and i=i]
by (auto simp add:union-ac)
then have 3 k. I' ® SOT = C | k using eq and (C=D) by (auto simp add:union-ac)
}
ultimately
show 3 k. T & SOT = C | k by blast
next
case (Disj V W)
then have SOT # Ati D E by simp
from T &SDOT & SOT =T'@® Ati ® Ati D E) obtain I'2
where eql: ' =12 ¢ Ati D FE
and eq2: T/ @ Ati =T2 @ SOT & SOT
using midMultiset2[where A=SDOT and B=At iDFE] and
(SOT # At i DO E) by auto
from eq2 obtain I'1 where eq3: "' =11 & SOT & SOT
and eq/: T2 =T1 & At
using midMultiset2[where A=5DT and B=At i and I'=I'2 and I''=I"] by auto
from eq4 and eql have eq: ' =T1 & At i @& At 1 DO F by auto
from eq3 and I'" ® Ati § E = D | s
have I'f @ SOT & SOT & Ati ® E = D | s by simp
then have 3 k. T'1 ® SODT ® Ati ® E= D | k
using (A=5DT)» and (n=s+1)
and [H|[where '=T'1®At i & F and B=SDT and C=D]
by (auto simp add:union-ac)
then have 3 k. I'1 @ SODT @ Ati @ Ati D E=D | k
using provable.ImpL0[where I'=I'1®SDT and i=i]
by (auto simp add:union-ac)
then show 3 k. I' @ SOT = C | k using eq and (C=D) by (auto simp add:union-ac)
next
case (Conj V W)
then have SOT # At i D E by simp
from U ®SOT @ SOT =T"@ Ati ® Ati D B
obtain I'2 where eq1: ' =12 @ Ati D FE
and eq2: ' ® Ati =12 @ SOT ® SOT
using midMultiset2[where A=SDT and B=At iDFE] and
(SDOT # Ati D E) by auto
from eq2 obtain '] where eq3: T/ =T1 @ SOT & SOT
and eq/: T2 =T1 @ At
using midMultiset2[where A=SDT and B=At i and I'=I'2 and I"'=I"'] by auto
from eq4 and eql have eq: ' =T'1 & At i & At i O FE by auto
from eg3 and "' ® Ati § E = D | s
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haveI'1 & SOT & SOT @ Ati @ E = D | s by simp
then have 3 k. I'1 @ SODT @ Ati @ E= D | k
using (A=SDT» and (n=s+1)
and [H[where I'=sT'1¢At i & E and B=SDT and C=D]
by (auto simp add:union-ac)
then have 3 k. T'1 & SODT ® Ati ® Ati D E =D | k
using provable.ImpLO[where I'=TI'1®SD>T and i=i|
by (auto simp add:union-ac)
then show 3 k. I’ ® SOT = C | k using eq and (C=D) by (auto simp add:union-ac)
next
case (Imp V W)
then have SOT # Ati D E by simp
from @ ®SOT @ SOT =T1"@ Ati @ Ati D E»
obtain I'2 where eq1: ' =T2 & Ati D F
and eq2: T/ ® Ati =T2 @ SOT & SOT
using midMultiset2[where A=SDT and B=At¢ iDFE] and
(SDOT # At i D E) by auto
from eq2 obtain I'1 where ¢q3: "' =11 & SOT ® SOT
and eq/: T2 =T1 & At
using midMultiset2[where A=5DT and B=At i and I'=I'2 and I''=I"/]
by auto
from eq4 and eql have eq: I' =T'1 & At i & At i O F by auto
from eg8 and "' ® Ati ® E = D | &
haveI'1 & SOT & SOT @ Ati @ E = D | s by simp
then have 3 k. '] ® SOT © Ati ® E =D | k
using (A=5DT)» and (n=s+1)
and [H[where I'=sT'1®At i & E and B=SDT and C=D)]
by (auto simp add:union-ac)
then have 3 k. I'1 @ SODT @ Ati @ Ati D E=D | k
using provable.ImpL0[where '=I'1®SDT and i=1]
by (auto simp add:union-ac)
then show 3 k. I' & SOT = C | k using eq and (C=D)
by (auto simp add:union-ac)
next
case ff
then have SOT # At i O E by simp
from T &SOT & SOT =T"® Ati® Ati D B
obtain I'2 where eq1: I' =172 & Ati D F
and eq2: IV ® Ati =172 ® SOT @© SOT
using midMultiset2[where A=SDT and B=At iDE] and
(SOT # At i D E) by auto
from eg2 obtain I'1 where e¢3: "' =11 & SOT & SOT
and eq/: T2 =T1 & At



APPENDIX D. RIGID FORMALISATIONS 223

using midMultiset2[where A=SDT and B=At i and I'=I'2 and I''=I""]
by auto
from eq4 and eql have eq: ' =T'1 & Ati & At i O E by auto
from eg3 and I'" © Ati @ E = D | s
haveI'1 & SOT & SOT @ Ati & E = D | s by simp
then have 3 k. T'1 & SODT ® Ati ® E= D | k
using (A=5DT) and (n=s+1)
and [H[where '=sT'1®At i @ E and B=SDT and C=D]
by (auto simp add:union-ac)
then have 3 k. '] & SODT @ Ati ® Ati D E =D | k
using provable. ImpLO[where '=TI'1®SD>T and i=i|
by (auto simp add:union-ac)
then show 3 k. I' @ SOT = C | k using eq and (C=D)
by (auto simp add:union-ac)
qed
then show 3 k. T' @ SOT = C | k by simp
next
case (ImpLCT'EF G D s)
then have 3 k. I' ® SOT = C | k
proof (cases S)
case (Imp V W)
then have SOT # (EAxF) D G by simp
from " ®SOT @ SOT =T’ ® (EAxF) D () obtain I'1
where eq1: T'=T1 & (EA*xF)DG
and eg2: T'=T1 ¢ SOT ® SOT
using midMultiset2[where A=SDT and B=(EA*F)D(G] and
(SOT # (EAxF)DG) by auto
from eq2 and ("' @ ED(FDG) = D | &
haveI'f ® SOT @ SOT ® ED(FDG) = D | s by simp
then have 3 k. I'1 @ SOT & ED(FOG) =D | k
using (A=SDT) and (n=s+1)
and /H[where '=I'I@FED(FDG) and B=5SDT and C=D)]
by (auto simp add:union-ac)
then have 3 k. T'1 & SOT @ (EA*F)DG = D | k
using provable.ImpLC[where '=I'1®SD>T and A=F and B=F and C=G]
by (auto simp add:union-ac)
then show 3 k. I' @ SOT = C | k using eq! and (C=D»
by (auto simp add:union-ac)
next
case (Disj V W)
then have SOT # (EA*F) D G by simp
from (© ®SDOT & SOT =T' @ (EA*F) D G obtain I'1
where eql: T' =T1 & (EA*F)DG
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and eq2: I''=T1 & SOT & SOT
using midMultiset2[where A=SDT and B=(EA*F)D(G] and
(SDT # (EAxF)DG) by auto
from eq2 and ('’ @ ED(FDG) = D | &
have 't ® SOT ® SOT ® ED(FDG) = D | s by simp
then have 3 k. T'1 & SOT @ ED(FOG)= D | k
using (A=SDT» and (n=s+1)
and [/H[where I'=s'1®ED(FDOG) and B=5SDT and C=D)]
by (auto simp add:union-ac)
then have 3 k. I'1 @ SOT & (EA*F)DG = D | k
using provable.ImpLC[where '=I'1®SD>T and A=F and B=F and C=G]
by (auto simp add:union-ac)
then show 3 k. I' ® SOT = C | k using eq! and (C=D»
by (auto simp add:union-ac)
next
case ff
then have SOT # (EA*F) D G by simp
from (©" ®SDOT & SOT =T'&® (EA*F) D G obtain I'1
where eql: T' =T1 & (EA*F)DG
and eq2: ' =T1 @ SOT & SOT
using midMultiset2[where A=SDT and B=(EA*F)D(G] and
(SOT # (EAxF)DG) by auto
from eg2 and T'' @ ED(FDG) = D | &
have 'l & SOT & SOT @ ED(FDG) = D | s by simp
then have 3 k. 'l @ SOT @ ED(FDOG) =D | k
using (A=SDT» and (n=s+1)
and /H[where '=sT'1®@ED(FDG) and B=SDT and C=D)]
by (auto simp add:union-ac)
then have 3 k. I'1 @ SOT & (EA+F)DG = D | k
using provable.ImpLC[where '=T'1®SDT and A=F and B=F and C=(]
by (auto simp add:union-ac)
then show 3 k. I' & SOT = C | k using eq! and (C=D)
by (auto simp add:union-ac)
next
case (At 1)
then have SOT # (EAxF) D G by simp
from I @SOT @& SOT =T'® (EA*F) D () obtain I'!
where eql: ' =T1 @ (EAxF)DG
and eg2: T'=T1 ¢ SOT ® SOT
using midMultiset2[where A=SDT and B=(EA*F)D(G] and
(SDT # (EAxF)DG) by auto
from eq2 and ('’ @ ED(FDG) = D | &
haveI'1t & SOT @ SOT ® ED(FDG) = D | s by simp
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then have 3 k. 'l @ SOT @ ED(FDG) =D | k
using (A=SDT» and (n=s+1)
and /H[where '=sT1®ED(FDG) and B=SDT and C=D]
by (auto simp add:union-ac)
then have 3 k. T'1 @ SOT & (EA+F)DG = D | k
using provable.ImpLC[where I'=T'1®SD>T and A=F and B=F and C=(]
by (auto simp add:union-ac)
then show 3 k. I' @ SOT = C | k using eq! and (C=D»
by (auto simp add:union-ac)
next
case (Conj V W)
have (VA«*W)DT = (EAxF)DG V (VAsW)DT # (EA*F)DG by blast
moreover
{assume (VA«W)DT = (EA+F)DG
then have I' @ (VA*xW)DT =T
using T®SOTHSDOT = IVB(EA+F)DG)
and (S=VAxW) by simp
then have I' @ (VA«W)DT & VO(WDT)= D | s
using (VA«*W)DT = (EAxF)DG)
and "' ® ED(FDG) = D | s by auto
then have 3 k. ' ® VO(WDT) ® VO(WDT)=D | k
using inversionImpLC[where I'=I' @ VO(WDT) and S=V and T=W and B=T
and C=D]
by (auto simp add:union-ac)
then have 3 k. T' @ VO(WDT) = D | k using (S=VA«xW) and (A=SDT
and /H[where B=VDO(WDT) and I'=I"] by auto
then have 3 k. I' @ SOT = C | k using (C=D) and (S=VAxW)
and provable.ImpLC by auto
}
moreover
{assume (VA«W)DT # (EA+F)DG
then have SOT # (EAxF)DG using (S=VAxW) by simp
from T ®SOT & SOT =T' @ (EAxF) D () obtain I'1
where eql: T' =T1 @ (EA*xF)DG
and eq2: I'"=T1 ® SOT & SOT
using midMultiset2[where A=SDT and B=(EA*F)DG| and
(SDT # (EA+xF)DG) by auto
from eg2 and (I'"' @ ED(FDG) = D | &
have 'l ® SOT @ SOT @ ED(FDG) = D | s by simp
then have 3 k. I'1 @ SOT @ ED(FDOG) =D | k
using (A=SDT» and (n=s+1)
and [H[where '=sT'1®ED(FDG) and B=SDT and C=D]

by (auto simp add:union-ac)
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then have 3 k. 'l & SOT & (EA+F)DG = D | k
using provable.ImpLC[where '=I'1®SDT and A=F and B=F and C=(]
by (auto simp add:union-ac)
then have 3 k. I' @ SOT = C | k using eq! and (C=D)
by (auto simp add:union-ac)
}
ultimately
show 3 k. T' ® SOT = C | k by blast
qged
then show 3 k. I' @ SOT = C | k by simp
next
case (ImpLDT' E G F D s)
then have 3 k. ' ® SOT = C | k
proof (cases S)
case (Imp V W)
then have SOT # (EV*F) D G by simp
from (U ®SDOT @ SOT =T'a (EVvxF) D G obtain I'1
where eq1: I' =T'1 & (EV*F)DG
and eq2: T'=T1 @ SOT & SOT
using midMultiset2[where A=SDT and B=(EV*F)DG] and
(SDOT # (EV+F)DG) by auto
from eq2 and I’ @ EDG @ FOG = D | s
have 'l & SOT & SOT & EDG @ FOG = D | s by simp
then have 3 k. I'1 @ SOT @ EDG @& FOG =D | k
using (A=SDT» and (n=s+1)
and [H[where I'=sT'I®EDG® FOG and B=SDT and C=D)]
by (auto simp add:union-ac)
then have 3 k. I'1 & SOT & (EV+F)DG = D | k
using provable.ImpLD[where '=I'1®SDT and A=F and B=F and C=(]
by (auto simp add:union-ac)
then show 3 k. I' & SOT = C | k using eq! and (C=D)
by (auto simp add:union-ac)
next
case (Conj V W)
then have SOT # (EVxF) D G by simp
from T §SOT @ SOT =T'® (EVxF) D () obtain I'1
where eq1: I' =T1 @ (EVxF)DG
and e2: T'=T1 @ SOT ¢ SOT
using midMultiset2[where A=SDT and B=(EV*F)DG] and
(SOT # (EVxF)DG) by auto
from eq2 and \I'" ® EDG ® FOG =D | s
have I'f & SOT & SOT & EDG & FOG = D | s by simp
then have 3 k. T'1 & SOT & EDG  FOG =D | k
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using (A=SDT» and (n=s+1)
and [H[where I'=sT1®¢EDG® FOG and B=SDT and C=D)]
by (auto simp add:union-ac)
then have 3 k. I'1 & SOT & (EV+F)DG = D | k
using provable.ImpLD[where '=I'/®SDT and A=F and B=F and C=G]
by (auto simp add:union-ac)
then show 3 k. I' & SOT = C | k using eq! and (C=D)
by (auto simp add:union-ac)
next
case (At 1)
then have SOT # (EVxF) D G by simp
from (" ®SOT @ SOT =T'a® (EvxF) D G obtain I'!
where eql: I' =T1 @ (EVxF)DG
and eq2: T''=T1 @ SOT & SOT
using midMultiset2[where A=SDT and B=(EV*F)DG] and
(SOT # (EVxF)DG) by auto
from eq2 and <I'' ® EDG & FOG = D | s
have I'l & SOT & SOT & EDG & FOG = D | s by simp
then have 3 k. I'1 & SODT ® EDG @ FOG =D | k
using (A=SDT) and (n=s+1)
and [H[where '=sT'1®EDG® FOG and B=SDT and C=D]
by (auto simp add:union-ac)
then have 3 k. I'1 & SOT & (EVxF)DG = D | k
using provable.ImpLD[where '=I'1®SDT and A=F and B=F and C=G]
by (auto simp add:union-ac)
then show 3 k. I' @ SOT = C | k using eq! and (C=D»
by (auto simp add:union-ac)
next
case ff
then have SOT # (EV*F) D G by simp
from (" ®SDOT & SOT =T'& (EVvxF) O G obtain I'1
where eq1: ' =T1 @ (EVxF)DG
and eq2: T'=T1 @ SOT ® SOT
using midMultiset2[where A=SDT and B=(EV*F)DG] and
(SDT # (EVxF)DG) by auto
from eq2 and I’ @ EDG @ FOG = D | s
have I'! © SOT & SOT & EDG @ FOG = D | s by simp
then have 3 k. 'l & SOT & EDG & FOG =D | k
using (A=SDT» and (n=s+1)
and [H[where I'=sT1®@EDG® FOG and B=SDT and C=D)]
by (auto simp add:union-ac)
then have 3 k. I'1 & SOT & (EV+F)DG = D | k
using provable.ImpLD[where '=I'1®SDT and A=F and B=F and C=(]
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by (auto simp add:union-ac)
then show 3 k. I' @ SOT = C | k using eq! and (C=D»
by (auto simp add:union-ac)
next
case (Disj V W)
have (VV+W)DT = (EVxF)DG V (VV«W)DT # (EVxF)DG by blast
moreover
{assume (VV«W)DT = (EVxF)DG
then have I' & (VVv«W)DT =T"
using (S=VV«W) and THSDOTHSDOT = T'® (EV+F)DG) by simp
then haveI' @ (VVv«W)DT @ VOT @ WOT = D | s
using I'" ®EDGOFDOG = D | 9 and (VV«W)DT = (EV+F)D G
by auto
then have 3 k. ' ® VDT @& VOT @ WOT @ WDT = D | k
using inversionImpLD[where I=I'@ VO T®WDOT and S=V and T=W and B=T
and C=D]
by (auto simp add:union-ac)
then have 3 k. ' ® VDT & WDT & WDT = D | k
using (A=SDT) and (S=VVvxW)
and [H[where B=VD2T and I'=TeWOT®W DT and C=D]
by (auto simp add:union-ac)
then have 3 k. I' & VOT & WDOT = D | k using (A=5SDT) and (S=VVvxW)
and [H[where B=WDT and I'=sI'¢ VDT and C=D] by auto
then have 3 k. I' @ SOT = C | k using (C=D) and
(S=VVvxW) and provable.ImpLD by auto
}
moreover
{assume (VV«W)DT # (EV*+F)DG
then have SOT # (EV*F)DG using (S=VV«W) by simp
from (U @SDOT @ SOT =T'& (Ev«xF) D G obtain I'1
where eql: ' =T1 @ (EVxF)DG
and eq2: T'=T1 & SOT & SOT
using midMultiset2[where A=SDT and B=(EV*F)DG] and
(SOT # (EV+F)DG) by auto
from eq2 and I’ @ EDG @ FOG = D | s
have 'l ® SOT & SOT & EDG & FOG = D | s by simp
then have 3 k. '] & SOT & EDG & FOG =D | k
using (A=SDT) and (n=s+1)
and [H[where I=T'I®EDG® FOG and B=SDT and C=D)]
by (auto simp add:union-ac)
then have 3 k. I'1 & SOT & (EV+F)DG = D | k
using provable.ImpLD[where '=I'1®SDT and A=F and B=F and C=(]

by (auto simp add:union-ac)
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then have 3 k. I' @ SOT = C | k using eq! and (C=D)

by (auto simp add:union-ac)

}
ultimately
show 3 k. I' @ SOT = C | k by blast
qed
then show 3 k. I' & SOT = C | k by simp
next

case (ImpLLT' EF G s Dt)
then have 3 k. I' ® SOT = C | k
proof (cases S)
case (At 1)
then have SOT # (EDF)DG by simp
from ("' ®SDOT & SOT =T'® (EDF)DG) obtain I'!
where eq1: T' =T1 & (EDF)DG
and eq2: I''=T1 & SOT & SOT
using midMultiset2[where A=SDT and B=(EDF)D(G] and
(SDT # (EDF)DG) by auto
from eg2 and I'" @ FE ¢ FOG = F | &
have 'l & SOT & SOT @ E ® FOG = F | s by simp
then have 3 k. I'1 @ SODT ® E® FOG = F | k
using (A=5DT) and (n=s+t+1>
and [H[where '=T'1®E® FOG and B=SDT and C=F and m=s]
by (auto simp add:union-ac)
moreover
from eq2 and ("' ® G = D | b
have I'f & SOT & SOT & G = D | t by simp
then have 3 k. T'1 @ SODT & G=D | k
using (A=SDT) and (n=s+t+1»
and /H[where I'=T'1®G and B=SDT and C=D and m=t]
by (auto simp add:union-ac)
ultimately
have 3 k. T'1 & SOT & (EDF)DG =D | k
using provable.ImpLLwhere I'=I'1®SDT and A=F and B=F and C=(]
by (auto simp add:union-ac)
then show 3 k. I' ® SOT = C | k using eq! and (C=D)
by (auto simp add:union-ac)
next
case (Conj V W)
then have SOT # (EDF)DG by simp
from ("' ®SO>T & SOT =T'® (EDF)DG) obtain I'!
where eql: ' =T1 @ (EDF)DG
and eq2: I''=T1 & SOT & SOT
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using midMultiset2[where A=SDT and B=(EDF)DG] and
(SDT # (EDF)DG) by auto
from eq2 and " ® E ® FOG = F | s
have I'l @ SOT & SODT @ E & FOG = F | s by simp
then have 3 k. '] & SODT @ E ® FOG = F | k
using (A=SDT» and (n=s+t+1>
and /H[where '=sT1®E® FOG and B=SDOT and C=F and m=s]
by (auto simp add:union-ac)
moreover
from eq2 and "' ® G = D | »
have 'l @& SOT & SOT & G = D | t by simp
then have 3 k. '] & SOT & G =D | k
using (A=SDT) and (n=s+t+1)
and [H[where I'=sT'/@G and B=SDOT and C=D and m=t]
by (auto simp add:union-ac)
ultimately
have 3 k. T1 & SOT & (ESF)>G = D | k
using provable.ImpLLwhere '=I'I1®SDT and A=F and B=F and C=G]
by (auto simp add:union-ac)
then show 3 k. I' & SOT = C | k using eq! and (C=D)
by (auto simp add:union-ac)
next
case (Disj V W)
then have SOT # (EDF)DG by simp
from ("' ®SOT @ SOT =T'® (EDF)DG) obtain I'1
where eq1: I' =T1 @ (EDF)DG
and eq2: T''=T1 & SOT & SOT
using midMultiset2[where A=SDOT and B=(EDF)DG] and
(SDT # (EDF)DG) by auto
from eq2 and " @ E ® FOG = F | s
have I'l @ SOT & SODT @ E & FOG = F | s by simp
then have 3 k. I'1 @ SODT ® E® FOG=F | k
using (A=SDT» and (n=s+t+1>
and [H[where I'=I'I®FE® FOG and B=SDT and C=F and m=s]
by (auto simp add:union-ac)
moreover
from eq2 and " & G = D |
have I'f & SOT & SOT & G = D | t by simp
then have 3 k. I'1 & SODT @ G=D | k
using (A=SDT) and (n=s+t+1)
and [H[where I'=sT'/®G and B=SDOT and C=D and m=t]
by (auto simp add:union-ac)

ultimately
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have 3 k. T'1 & SOT @& (ESF)>G = D | k
using provable.ImpLL{where '=I'1®SDT and A=F and B=F and C=(]|
by (auto simp add:union-ac)
then show 3 k. I' & SOT = C | k using eq! and (C=D)
by (auto simp add:union-ac)
next
case ff
then have SOT # (EDF)DG by simp
from @ &SDT & SOT =T ® (EDF)DG) obtain I'!
where eq1: T'=T1 & (EDF)DG
and eq2: I''=T1 & SOT & SOT
using midMultiset2[where A=SDT and B=(EDF)DG] and
(SOT # (EDF)DG) by auto
from eq2 and " ® E ® FOG = F | s
have I'f & SOT & SODT @ E & FOG = F | s by simp
then have 3 k. I'1 @ SODT @ E® FOG=F | k
using (A=SDT) and (n=s+t+1)
and [H[where I'=sT'1®E® FOG and B=SDOT and C=F and m=s]
by (auto simp add:union-ac)
moreover
from eg2 and " ® G = D |
have I'1 @& SOT & SOT & G = D | t by simp
then have 3 k. I'1 & SOT & G =D | k
using (A=SDT) and (n=s+t+1)
and /H[where '=T'1®G and B=SDT and C=D and m=t]
by (auto simp add:union-ac)
ultimately
have 3 k. T'1 & SOT @& (ESF)>G = D | k
using provable.ImpLL[{where '=I'1®SDT and A=F and B=F and C=(]|
by (auto simp add:union-ac)
then show 3 k. I' & SOT = C | k using eq! and (C=D)
by (auto simp add:union-ac)
next
case (Imp V W)
have (VOW)DT = (EDF)DG V (VODW)DT # (EDF)DG by blast
moreover
{assume (VO W)DT = (EDF)DG
then have ' @ (VOW)DT =T’ using (S=VDOW)
and T @SOT®SOT =T @ (EDF)DG) by simp
then have ' @ (VOW)DT & V& WDT = W | s
using (VOW)DT = (EDF)DG)
and " ® E ® FOG = F | s by auto
then have 3 k. T e Ve Ve WoT & WoT & WoT = W | k
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using twoDB|where I'=sI'¢ V@ WDOT and C=V and D=W and B=T and E=W
and n=s|
by (auto simp add:union-ac)
thenhave 3 k. T Vo Ve WOT & WOT = W | k
using (A=SDT) and (S=VDO W)
and [H[where B=WDOT and I'=sI'¢ V & V & WDT and C=W]
by auto
thenhave 3 k. T Ve Ve WODT =W |k
using (A=SDT) and (S=VDOW)
and [H[where B=WD>T and I'=I'¢ V ¢ V and C=W] by auto
then have 3 k. T @ Ve WOT = W | k
using (A=SDT) and (S=V2O W)
and [H[where B=V and I'=I'® WDOT and C=W]
by (auto simp add:union-ac)
moreover
from C @ (VoOW)DT =T"and T'® G=D | O
have I'¢(VOW)DT & T =D | t
using (VOW)DT = (EDF)DG
by auto
thenhave 3 k. T ® T ® T =D | k
using inversionImpLLwhere I'=I'©&T and S=V and T=W and B=T and C=D]
by (auto simp add:union-ac)
then have 3 k. I' & T = D | k using (A=SDT) and IH by auto
ultimately
have 3 k. I' ® (VOW)DT = D | k
using provable.ImpLL by auto
then have 3 k. ' ® SOT = C | k
using (S=VDO W) and «C=D) by simp
}
moreover
{assume (VO W)DT # (EDF)DG
then have SOT # (EDF)DG using (S=VDOW) by simp
from T ®SOT @ SOT =T’ ® (EDF)DG) obtain I'!
where eq1: I' =11 & (EDF)DG
and eq2: I''=T1 @ SOT ® SDOT
using midMultiset2[where A=SDT and B=(EDF)DG] and
(SDT # (EDF)DG) by auto
from eq2 and " @ E ® FOG = F | &
have I'f & SOT & SOT @ E & FOG = F | s by simp
then have 3 k. T'1 @ SODT @ E® FOG=F | k
using (A=SDT) and (n=s+t+1»
and /H[where I'=sT'1®E® FOG and B=SDOT and C=F and m=s]

by (auto simp add:union-ac)
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moreover
from eq2 and " & G = D | b
have I'f & SOT & SOT & G = D | t by simp
then have 3 k. I'1 @ SODT & G=D | k
using (A=SDT) and (n=s+t+1>
and /H[where I'=sT' /@G and B=SDT and C=D and m=t]
by (auto simp add:union-ac)
ultimately
have 3 k. T'1 @ SOT @ (EDF)DG =D | k
using provable.ImpLLwhere '=I'1®SDT and A=F and B=F and C=_]
by (auto simp add:union-ac)
then have 3 k. I' ® SOT = C | k
using eq! and (C=D) by (auto simp add:union-ac)
}
ultimately show 3 k. ' @ SOT = C | k by blast
qed
then show 3 k. I' & SOT = C | k by simp
qged
then show 3 k. T'® A = C | k using (A=SDT) by simp
qed
qed

lemma G3ilmplication:

assumes '  ADB= A | nand " ® B=F | m

shows 3 k. I' ® ADB=FE | k
proof—

from I" @ B= E | m) have I' @ ADB @& B = E | m using dpWeak|where '=T'®B and
A=ADB] by (auto simp add:union-ac)

then have 3 k. I' ® ADB ® ADB = F | k using (I' ® ADB = A | n) and ImpLClassi-
cal[where '=I'$ADB and D=A and B=B and S=F]

by (auto simp add:union-ac)

then show 3 k. I' @ ADB = FE | k using contract by auto

qed

end
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