
NEW APPROACHES FOR C-F BOND FORMATION IN ORGANIC
CHEMISTRY

Guillaume Launay

A Thesis Submitted for the Degree of PhD
at the

University of St. Andrews

2010

Full metadata for this item is available in the St Andrews
Digital Research Repository

at:
https://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/922

This item is protected by original copyright

http://www.st-andrews.ac.uk/
http://hdl.handle.net/10023/922


New Approaches

for C-F Bond Formation

in Organic Chemistry

A thesis presented for the degree of Doctor of Philosophy to
the School of Chemistry, University of St. Andrews

2009

Guillaume Launay





Declarations

I, Guillaume Launay, hereby certify that this thesis, which is approximately 38900 words in

length, has been written by me, that it is the record of work carried out by me and that it has

not been submitted in any previous application for a higher degree.

I was admitted as a research student in February 2005 and as a candidate for the degree of

Doctor in Philosophy in December 2005 the higher study for which this is a record was

carried out in the University of St Andrews between 2005 and 2009.

Date ………………… Signature of candidate ……………………………..

I hereby certify that the candidate has fulfilled the conditions of the Resolution and

Regulations appropriate for the degree of Doctor in Philosophy in the University of St

Andrews and that the candidate is qualified to submit this thesis in application for that degree.

Date ……….. signature of supervisor …..………



In submitting this thesis to the University of St Andrews we understand that we are giving

permission for it to be made available for use in accordance with the regulations of the University

Library for the time being in force, subject to any copyright vested in the work not being affected

thereby. We also understand that the title and the abstract will be published, and that a copy of the

work may be made and supplied to any bona fide library or research worker, that my thesis will be

electronically accessible for personal or research use unless exempt by award of an embargo as

requested below, and that the library has the right to migrate my thesis into new electronic forms as

required to ensure continued access to the thesis. We have obtained any third-party copyright

permissions that may be required in order to allow such access and migration, or have requested the

appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the electronic

publication of this thesis: access to Printed copy and electronic publication of thesis through the

University of St Andrews.

Date ………….… signature of candidate …………………………

Date ……….…… signature of supervisor…………………………



Acknowledgments

I am grateful to my supervisor Professor David O’Hagan for welcoming me and

giving me the opportunity to carry out a PhD in his group, for his advice, time and support. I

am grateful to University of St Andrews and EASTCHEM for studentship.

I also would like to thank Dr Nicholas Westwood for letting me carry out the

microwave experiments in his laboratory and Alan Jones for his precious time.

I wish to thank the technical and support staff of the department for the good working

conditions. I would especially like to express my gratitude to Melanja Smith and Dr Tomáš

Lébl for their warm welcome and patience every time I needed advices in NMR, to Caroline

Horsburgh for her competence in mass spectroscopy analysis and to Professor Alexandra M.

Z. Slawin for her precious expertise in crystal structure determination.

I would like to thank all the members of the DOH group, past and present, especially

to Matthieu Coliboeuf, David Buissonneaud, Vincent Brunet, Thomas Moraux, Nelly Bonnet

for their dynamism, Drs Luke Hunter and Daniel Farran for their advice, and everybody who

contributed to make my time in St Andrews as enjoyable as possible.

Now I would like to express my warmest thanks to my parents, Christine and Daniel

Launay, for their support and encouragement. I also express my deepest gratitude to Kate and

George Ashton for their help during the writing period.

Last but not least, I am extremely thankful to Caroline Ashton for her understanding and

unfailing love.



Abbreviations

DBH: 1,3-dibromo-5,5-dimethylhydantoin

DEAD: diethyl azodicarboxylate

DIBAL-H: diisobutylaluminium hydride

DMF: dimethylformamide

HRMS: high resolution mass spectrometry

LDA: lithium diisopropylamide

LRMS: low resolution mass spectrometry

MTBE: methyl-tert-butyl ether

NBS: N-bromosuccinimide

NFSI: N-fluorobenzenesulfonimide

NIS: N-iodosuccinimide

PMA: phosphomolybdic acid

RedAl: sodium bis(2-methoxyethoxy)aluminium hydride

r.t.: room temperature

Selectfluor: N-Chloromethyl-N′-fluorotriethylenediammonium bis(tetrafluoroborate) 

TBAF: tetrabutylammonium fluoride

Tf: trifluoromethanesulfonyl

TFA: trifluoroacetic acid

THF: tetrahydrofuran

TMSCl: trimethylsilyl chloride

TMSOTf: trimethylsilyl trifluoromethanesulfonate

Ts: p-toluenesulfonyl



TsCl: p-toluenesulfonyl chloride



Abstract

The importance of fluorinated organic molecules has grown over the last 50 years,

particularly in the pharmaceutical and agrochemical industries. Therefore the development of

new methods for fluorination is a very attractive research area.

In Chapter 1, the properties and impact of the fluorine atom on organic molecules are

overviewed. Existing electrophilic and nucleophilic fluorination methods are reviewed, and

new developments in asymmetric fluorination are discussed.

The emergence of the Prins fluorination reaction as a side product in BF3.OEt2

catalysed processes has been investigated as a synthesis method in Chapter 2. Indeed, it is

possible to form 4-fluorotetrahydropyrans with some diastereoselectivity from an allylic

alcohol and an aldehyde with a stoichiometric amount of BF3.OEt2. During this study,

formation of 4-fluoropiperidines from N-tosyl-4-butenylamine was achieved. Optimisation of

reaction conditions was investigated such as the solvent, the reaction temperature and the

influence of substituents on the alcohol and the aldehyde reagents. A ring-opening reaction of

4-fluoro-2-phenyltetrahydropyran was successfully performed. Both oxa-Prins and aza-Prins

fluorination reactions were investigated under microwave conditions, allowing reduced

reaction times, a process that had a minimum impact on the diastereoselectivity.

Attempt to form -hydroxy--vinylfluorides by the reduction-fluorination of

propargylic alcohols with aluminium hydride, or by Horner-Emmons reaction with diethyl

(fluoromethyl)phosphonate are reported in Chapter 3. Unfortunately these approaches were

unsuccessful in the preparation of -hydroxy--vinylfluorides. Attempts to fluorinate

epoxides by -lithiation and then treatment with electrophilic fluorination reagents gave

encouraging results, but the products could not be purified and characterised due to an

apparent instability.
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Chapter 1: Fluorine in organic chemistry 

 

 

1 Properties of fluorine 

 

1.1 Introduction 

 

Throughout time, humans have tried to improve their knowledge to increase their 

well-being, making their way from the Stone Age to modern times. The way has been marked 

by numerous major discoveries from the domestication of fire in the early stage of the human 

story, to the elucidation of DNA in 1953, via the steam engine and electricity in the 1800’s. 

The sciences have experienced huge development during the last 300 years, with an incredible 

acceleration within the last century. One factor in this knowledge expansion is the desire to 

discover or to improve what has already been invented, to achieve the best result possible for 

improvements in daily life, with progress such as electronics and the miniaturisation of 

equipment, or the discovery and development of new drugs to treat all kinds of illnesses. 

 

But to reach these objectives, it has been essential to test and explore the fundamental 

properties of matter and to create new material. Or, in the fields of biology and medicine, to 

understand enzymes and proteins and then the processes and pathways involved in cells and, 

on a larger scale, in whole organisms. 

 



 2 

In order to do so, the element fluorine has been prominent. Since the discovery and 

isolation of elemental fluorine by Henri Moissan in 1886, fluorine has interested the scientific 

community because of the very particular properties of the fluorine atom (small size, strong 

electronegativity, low polarisability). The presence of one (or more) fluorine atom(s) in an 

organic compound confers properties and reactivity, which are significantly different from 

those of the non-fluorinated counterpart, without significant modification of sterics, because 

the length of the CF bond is almost the same as the length as the CH bond (1.39 and 1.09 Å 

respectively). The study of fluorinated organic materials currently constitutes a field of 

research which continues to grow as revealed by a straightforward request on Scifinder using 

the word ‘fluorine’ (Graphic 1-1). 
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Graphic 1-1: The evolution of publications involving ‘fluorine’ as revealed in a Scifinder 

search (June 2009). 



 3 

 

This development can be explained by the unique properties of the fluorine atom and 

its resulting applications and potential. Today, molecules containing at least one fluorine atom 

are widespread. They are used in various fields but particularly in agrochemicals, electronics, 

and medicine, or in the process to separate 235U from 238U for nuclear power stations. One 

example of a fluorinated compound that is used in everyday life is the polymer Teflon© which 

is the coating used in non-stick pans. However, the field that has seen the most important 

expansion of fluorinated compounds is medicinal chemistry. Before 1957 (the synthesis of 5-

fluorouracil1 1, an anti-tumour drug), there were no drugs containing a fluorine that had been 

developed, but since the synthesis of 5-fluorouracil, the situation changed dramatically (Table 

1-1)2 and now over 150 fluorinated drugs have been released on the market; now representing 

~20 % of all pharmaceuticals, with even higher proportions for agrochemicals.3 Nowadays 

pharmaceutical research involving fluorinated molecules is conducted on a routine basis4 and 

some fluorinated drugs are among the best sellers, such as the anti-depressant fluoxetine 

(Prozac) 2, the anti-cholesterol atorvastatin (Lipitor) 3 or the anti-bacterial ciprofloxacin 

(Ciprobay) 4 (Figure 1-1). According to the World Drug Index (WDI), there are 128 

fluorinated compounds with US trade names. Of the 31 new chemical entities approved in 

2002, nine compounds contained a fluorine atom (NCBI).5  
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Figure 1-1: Examples of drugs containing a fluorine atom. 

 

 

Table 1-1: Drugs emerging successfully from clinical trials which contain a fluorine atom, 

between the years 1957-2006.2 

 



 5 

1.2 Electronic effect of fluorine 

 

Fluoride is abundant (0.065%) in the earth’s crust and it is the most abundant of all the 

halogens. However, as an element, fluorine is extremely reactive and difficult to prepare. It 

was first isolated in 1886 by the French chemist Henry Moissan. This was such a significant 

event that he was awarded the Nobel Prize in 1906 for its successful isolation. Pure elemental 

fluorine is a highly reactive diatomic gas under standard conditions. The element contains the 

most electronegative atom at 4.0 on the Pauling scale, implying a low polarisability and a high 

ionisation potential. For comparison, carbon is 2.5 and hydrogen is 2.1 on the Pauling scale. 

The origin of the high electronegativity of fluorine is due to the positive charge of the nucleus 

(+9) which strongly attracts the electrons of the outer 2p shell.  

The C-F bond is the strongest single bond in organic chemistry (Table 1-2).4, 6 This 

can be explained by the high electronegativity of the fluorine atom which strongly attracts the 

covalent electron density, rendering the C-F bond highly polarised, with the electron density 

displaced towards the fluorine. Thus, the high strength of the bond can be understood to be 

due to an electrostatic attraction between Cδ+ and Fδ- rather than a normal covalent bond with 

electron sharing.  

 
Bond Dissociation energy (kcal.mol-1) 

C-F 105.4 

C-H 98.8 

C-O 84.0 

C-C 83.1 

C-Cl 78.5 

C-N 69.7 

 
Table 1-2: Dissociation energy of various C-X bonds.6 
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1.3 Steric influence of fluorine 

 

The fluorine atom is small with a Van der Waals radius of 1.47 Å.7 Its size lies 

between hydrogen and oxygen with atomic radii of 1.20 and 1.52 Å respectively (Table 1-3). 

Although fluorine is closer to oxygen in term of size, it has been found to be a good 

substituent to replace hydrogen on organic molecules. 

 

Atom Van der Waals radii (Å) 

H 1.20 

F 1.47 

O 1.52 

N 1.55 

Cl 1.75 

 

Table 1-3: Van der Waals radii of various atoms.7 

 

Indeed, the substitution of fluorine for hydrogen is the most conservative on steric 

hindrance,8 and does not significantly change the geometry of the molecule. Analysis by 

scanning tunnelling microscopy (STM) of monofluorinated stearic acids deposited onto 

graphite reveals an increase of only 1% in the area demanded of an individual molecule in the 

two dimensional packing arrangement.8 In solid state X-ray structures, hydrogen and fluorine 

are often interchangeable.9 It has also been established that enzymes will generally bind the 

fluorinated analogue of a natural compound. Thus, despite the difference in size, fluorine is a 

good hydrogen mimic and has been widely used in this regard in medicinal chemistry.4, 10, 11 

However, there is some evidence that replacing a hydrogen atom with fluorine can induce a 
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change in the geometry of the molecule. For example, Seebach12 has shown that the -fluoro 

substituent of a hAla(-F) residue in a β-heptapeptide was oriented antiperiplanar to the 

C=O, with the consequence of significantly modifying the geometry of the peptide relative to 

the non fluorinated analogue. Instead of adopting a helical structure like the natural peptide, 

the overall structure possesses two quasi helical termini, with a central turn in the middle.12 

This is an electronic, rather than steric effect where the C-F bond orientates anti to the C=O of 

the amide, and results in the new geometry.  

There are many more examples where replacement of C-F for C-H allows 

modification of the electronic environment of a biological molecule without introducing a 

significant steric perturbation. For example the pKa’s of adjacent functional groups can be 

influenced by fluorine (Tables 1-4 and 1-5).  

 

Compound CH3CH2NH2 CH2FCH2NH2 CHF2CH2NH2 CF3CH2NH2 

pKa 10.58 9.19 7.45 5.40 

 

Table 1-4: pKa of ethylamines at 25 °C in water.13  

 

Compound CH3COOH CH2FCOOH CHF2COOH CF3COOH 

pKa 4.76 2.60 1.40 0.51 

 

Table 1-5: pKa of acetic acids at 30 °C in water.14  

 

Replacement of oxygen by fluorine is a more neutral change, as the electronegativity 

is similar (oxygen possesses the second highest electronegativity behind fluorine with a value 
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of 3.44 on the Pauling Scale). The Van der Waals radii of F and O are very close (1.52 Å for 

oxygen atom, 1.47 Å for fluorine) and their bond lengths are comparable (Table 1-6).  

 

 

 

Bond Bond length (Å) 

C-H 1.09 

C-F 1.39 

C-O (OH) 1.43 

C-Cl 1.77 

 

Table 1-6: length of various C-X bonds. 

 

However, this substitution is not perfect as the change of a C-OH to a C-F bond is 

accompanied by loss of the acidic hydrogen and this clearly affects the hydrogen bond donor 

capacity. This property has been helpful in understanding the role of C-OH in biological 

systems; to determine whether the polar nature of the C-OH bond or hydrogen bonding is 

dominant in specific biological systems. One example is collagen: collagen is a protein 

showing a tight triple helical conformation, which is very stable. The sequence of the 

polypeptide chain is a repeat of the following sequence: X-Y-Gly. Gly represent glycine, X is 

often a proline (Pro) and Y 4-(R)-hydroxyproline (Hyp) residues. Investigations have been 

made by Holmgren et al.15 and Jenkins et al.,16 comparing the thermal stability between 

(ProProGly)10 and (ProHypGly)10. The collagen formed from (ProHypGly)10 exhibited an 

enhanced thermal stability compare to (ProProGly)10, due to the presence of the hydroxyl 

groups of the Hyp residues. In order to distinguish whether the helical stability was due to 
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hydrogen bonding or alternatively due to the polar nature of the hydroxyl groups, 

(ProFlpGly)10 peptides were synthesised where Flp is (4R)-fluoroproline residue. It emerged 

that (ProFlpGly)10 was the most stable of the three triple helical peptides tested. As the 

fluorine is a poor hydrogen bond donor, the thermal stability enhancement of the collagen 

triple helical structure in (ProHypGly)10 is more likely to be due to the polar nature of the C-

OH bond of hydroxyproline residues rather than hydrogen bonding. It was subsequently 

concluded that the polar nature of the C-F bond influenced the 5-membered ring 

conformation, and the cis/trans proline/amide rotation, and that this lead to the enhanced 

stability, not intermolecular hydrogen bonding. 

Replacement of a C=O group with a C-F or CF2 is not ideal and involves a significant 

change in the geometry at carbon (from sp2 to sp3) and generally involves an unsatisfactory 

change in molecular shape.  

The substitution of a hydrogen atom for a fluorine atom in the -position of a 

phosphonate has been explored as a phosphate mimic. Phosphonates are susceptible to 

hydrolysis by phosphatase enzymes in biological environment. In order to synthesise 

phosphatase resistant mimics, replacing the bridging oxygen by a carbon appeared to be a 

solution. However such modification considerably alters the pKa. Indeed, the pKa of second 

deprotonation of -dihyrogenophosphonate is higher compare to a phosphate (pKa of 6.5), 

while the -monofluorophosphonate is isoacidic, and the difluorophosphonate is more acidic. 

But this higher acidity is generally accepted to be not too prejudicial as it is assumed that the 

phosphate group will be completely ionised during the protein binding. However the presence 

of fluorines on the phosphonate has consequences on the geometry of the molecule. In the 

case of a monofluorinated phosphonate, the angle widens from 112.1° to 113.3°. However, 

when difluorinated, the angle increases even more to 116.5° and gets closer to the angle of a 

phosphate (118°). Thus, with the closer geometry to the phosphate group, and with the pKa 
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closer to the natural phosphonate, the -difluorophosphonate possesses good arguments to 

be a good phosphonate mimic. On the other hand, the change of an oxygen to a CF2 will have 

an increased steric impact, the fluorine atoms occupying the space where the lone pairs of the 

oxygen would be in the case of phosphate. 

 

R P O-

O

O-

R P O-

O

O-
R P O-

O

O-

F F F

R
O

P O-

O

O-

 

Angle C-X-P 118.7 112.1° 113.3° 116.5° 

pKa of second deprotonation 6.4 7.5-8 6.5 5.5-6 

 

Table 1-7: Geometry of phosphonate analogues.17 

 

The CF3 group is not a good CH3 mimic. Indeed, CF3 is far bigger than CH3 and the 

experimental evidence indicates that it is actually closer to an isopropyl, and sometimes acts 

more like a tert-butyl in terms of steric impact (Table 1-8).18-21  

 

H H
OHR

 CF3

R

 

Energy barriers of the single bond rotation Energy barriers of the single bond rotation 

R= iPr 14.0 kcal/mol R= iPr 109.8 kcal/mol 

R=CF3 14.5 kcal/mol R=CF3 109.2 kcal/mol 

 

Table 1-8: Rotation energy barriers.22 
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1.4 C-F Bond energy 

 

One of the interesting aspects of incorporating an atom of fluorine into a biologically 

active molecule is the strength of the C-F bond. As indicated previously the C-F bond is the 

strongest single bond in organic chemistry, often making fluorinated compounds resistant to 

metabolic degradation. 

 

 

1.5 Hydrogen bonding to fluorine 

 

One important feature of molecules in biological systems is the presence of hydrogen 

bonds. A hydrogen bond is defined as a contact between a partially positively charged 

hydrogen and an electron rich atom, with a distance smaller than the sum of the Van der 

Waals radii. Therefore in the case of fluorine, this C-F····H-X distance should be shorter than 

2.35 Å, where X is an electronegative atom such as O or N. The high electronegativity of 

fluorine as well as the fact that the C-F bond is highly polarised, with the presence of three 

lone pairs, suggests that C-F should be a good hydrogen bond acceptor. However, studies 

evaluating structures deposited in the Cambridge Structural Database show that true H····F 

contacts are rare.23 Moreover, fluoro-organic compounds form only weak hydrogen bonds. 

Calculations give 2.0 - 3.2 kcal. mol-1 for a C(sp3)-F····H-O, compared to 5.0 – 10.0 kcal. mol-

1 for a C-O····H-O contact - less than half the strength of a typical hydrogen bond.23-25 

According to Dunitz, “organic fluorine hardly ever accepts hydrogen bonds, that is, it does so 

only in the absence of a better acceptor”26. This reluctance to enter into hydrogen bonding can 

be explained by the high electronegativity of the fluorine atom and the strong electrostatic 

character of the C-F bond which compresses the lone pairs around the fluorine atom, reducing 
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dramatically the capacity of organic fluorine to act as a hydrogen bonding acceptor. However, 

even if interactions are weaker than C=O····H-X (X= N or O), they do play a role in crystal 

packing.27  

Several studies of crystal structures of small molecules from the Cambridge Structural 

Database (CSD) and protein-ligand complexes from the Protein Data Base (PDB), have 

shown evidence of dipole-dipole interactions between C-F (aliphatic and aromatic) and 

polarised functional groups such as carbonyl, carbonyl derivatives, nitriles and even the nitro 

group.28-30 Analysis of the orientation of C-F bonds in fluorinated molecules established that 

these interactions possess a structural similarity with nucleophile attack to a carbonyl group 

described by Bürgi and Dunitz. The Bürgi-Dunitz angle characterises the angle of attack of a 

nucleophile to a carbonyl group along its π-plane below the Van der Waals contact distance 

(Figure 1-2).31-33 But in contrast with the attack of a nucleophile, which involves partial 

transfer of electron density from the nucleophile to the carbonyl, associated with a change of 

hybridation of the carbonyl, the C-F···C=O interactions observed in the crystallographic data 

bases are more a multipolar interaction without noticeable changes in the structure of the 

carbonyl.29 

 

O
NH

R

R'

F

R

N

F

R

R

 

 

Figure 1-2: dipole-dipole interaction between a fluorine atom and C+ from carbonyls or 

cyanides. 
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 Recognising that these weak interactions occur can now be used to improve and refine 

protein-ligand binding interactions for optimal orientation of a molecule onto a biding site.  

 

1.6 Fluorine and lipophilicity 

 

Lipophilicity is an important property, particularly in a medicinal chemistry. To cross 

lipid membranes, a drug needs to be sufficiently lipophilic. In order to obtain good binding 

affinity to a molecular target, lipophilic interactions are important. However, a drug must not 

be too lipophilic as this would reduce its water solubility and its bioavailability. Selective 

fluorination emerges as a good method in which to tune the lipophilicity of a molecule, as the 

introduction of one or more fluorine atoms can increase the lipophilicity in an incremental 

manner. However, it can be difficult to predict precisely what the effect of the introduction of 

a fluorine atom will be, but some general rules have been established. In the case of aromatic 

molecules, the presence of a fluorine atom will usually increase the lipophilicity.34 On the 

other hand, with aliphatic molecules, the situation is a bit more complicated and it is 

important to go back to the definition of lipophilicity, which is the logarithmic coefficient of a 

compound’s distribution between octanol and water at a given pH. Usually when the 

lipophilicity increases, the hydrophobicity increases, and vice versa. However, with the 

introduction of fluorine, lipophilicity can decrease but the hydrophobicity can increase at the 

same time. As the solubility of the fluorinated molecule decreases more in water than in 

octanol, there is an apparent overall lipophilicity increase, however, this just reflects the lack 

of affinity for both solvents. When molecules become highly fluorinated, or even 

perfluorinated, they are no longer lipophiles or hydrophiles, but they now form a third layer 

on their own, known as the ‘fluorous’ phase. 
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2 Fluorine in organic chemistry 

 

2.1 The chemical properties of fluorine 

 

The fluorine atom is a strong electron withdrawing group by the inductive effect, due 

to its high electronegativity. However, similar to N and O, its lone pairs can donate electrons 

by the mesomeric effect to stabilise adjacent carbocations counterbalancing the inductive 

effect. Thus fluorine will stabilise an adjacent carbocation, or on an aromatic ring it will 

induce ortho/para substitution in electrophilic aromatic substitution reactions. On the other 

hand, β-carbocations are destabilised by the negative fluorine inductive effect (Figure 1-3).  

 

C+ F C F+ C C F

F
E+

F+

E
H

F
E

H

+

F

E+

F+

H E

F

H E

+

+

 

 

Figure 1-3: Fluorine stabilises carbocations and destabilises β carbocations. 

 

β-Carbanions are generally stabilised by the inductive effect and also by negative 

hyperconjugation (displacement of electron density from a  orbital to a *), while a 

carbanion positioned - to a fluorine atom is generally destabilised due to a repulsive n-π 

interaction (Figure 1-4). 
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Figure 1-4: Fluorine effects on α and β carbanions. 

 

 

2.2 Electrophilic fluorination reactions 

 

There are two main approaches to introducing a fluorine atom directly into a molecule 

to generate a C-F bond. One is by nucleophilic fluorination, involving a negatively charged 

fluoride ion. This method will be discussed in Section 2.3. The second is by electrophilic 

fluorination, which utilises an “F+” reagent. The reagent is attacked by an electron rich centre. 

However, “F+” cannot exist on its own and it is more correct to talk about reagents that are 

able to transfer “F+” to an electron rich site.  

 Elemental fluorine is essentially an electrophilic fluorinating reagent. However, there 

are challenges associated with elemental fluorine, particularly due to its high reactivity and 

lack of selectivity, as well as its high toxicity. One example is the fluorination of 1,1-

diphenylethene 5 which gives a mixture of mono- and poly- fluorinated products 6, 7 and 8 

(Scheme 1-1).35  

 

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

CHF2
F F

FF + +
F2

-78 °C
CCl3F

14% 78% 8%
5 6 7 8

 

Scheme 1-1: Fluorination of 1,1-diphenylethylene with F2. 
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 However, under controlled conditions, synthesis using diluted F2 in an inert gas such 

as nitrogen or argon has proven to be very successful.36 An early example of such a success is 

the synthesis of 5-fluorouracil 1 and its related analogues (Scheme 1-2).37, 38 The synthesis of 

5-fluorouracil in this way is one of the few syntheses using elemental fluorine, which is still 

carried out in industry, 39 other than in uranium enrichment. 

 

 

Scheme 1-2: Synthesis of 5-fluorouracil using F2 by Cech.37 

 

Due to a general reticence to using F2, a large range of electrophilic fluorination 

reagents have been developed. In order to create such reagents, several strategies have 

emerged. One good candidate involves the use of RO-F type compounds, organofluoroxy 

reagents. An early example was the fluoroxytrifluoromethane, which has been extensively 

developed and used successfully for the fluorination of pharmaceutical products.40, 41 Another 

example of a popular organofluoroxy reagent is acetyl hypofluorite. In 1981 this reagent was 

shown to fluorinate aromatic rings.42 Acetyl hypofluorite43 has been intensively studied in this 

regard,42, 44 as well as for addition to double bonds,45, 46 fluorination of lithium enolates47 and 

synthesis of α-fluorocarboxylic acid derivatives from the corresponding carboxylic acids 

(Scheme 1-3).48  

 

 

Scheme 1-3: Fluorination of methyl phenylacetate 10 with acetyl hypofluorite.48 
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Other XO-F electrophilic fluorinating agents have been developed such as perchloryl 

fluoride FClO3, xenon difluoride, XeF2 or caesium fluoroxysulfate, CsSO4F. But many have 

shown a strong oxidising property or selectivity issues which compromises their utility.36, 38 

  

Major progress in the field of electrophilic fluorinating reagents came with the 

development of the N-F reagents. The main advantage of this class of reagents comes from 

the lower electronegativity of the nitrogen compared to oxygen, and the corresponding higher 

strength of the N-F bond compared to the O-F bond. This decreases the electrophilicity of the 

N-F reagents, giving them improved stability and thus making them easier to handle. We can 

distinguish three types of N-F electrophilic fluorinating agents: the N-fluoropyrimidium 

triflates and derivatives, the sulfonyl derivatives RSO2N(F)R’ and Selectfluor® and its 

derivatives. 

 The N-fluoropyrimidium triflates and derivatives, mostly developed by Umemoto,49-51 

have been used to fluorinate aromatic rings, carbanions, enol ethers and their derivatives. The 

choice of the counter ion is important and needs to be non-nucleophilic for their stability. 

Several counter ions have been explored (X-= TfO-, BF4
-, ClO4

- and SbF6
-) but it was found 

that triflate has the highest reactivity.49 The choice of ring substituents is also important as the 

fluorinating power increases with the decrease of the electron density of the N+-F bond, 

giving access to a wide range of reactivity and selectivity.49-51 A good example of the 

application of N-fluoropyrimidinium triflate is the preparation of the fluorinated Corey 

lactone 14 using 2,6-dimethoxymethyl-N-fluoropyrimidium triflate 15 (Scheme 1-4).50 

Umemoto reported only one stereoisomer, but unfortunately he was unable to determine the 

absolute configuration at the stereogenic centre carrying the fluorine atom. 
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Scheme 1-4: Preparation of a fluorinated Corey lactone.50 

 

 Since its preparation and study 15 years ago by Banks and co-workers52, 53, Selectfluor 

16 has become a fantastic tool in the area of electrophilic fluorination (Figure 1-5). Selectfluor 

is air stable and easy to manipulate. Its reactivity can be tuned by modifying the substituent on 

the second nitrogen. In order to increase its reactivity, a stronger electron-withdrawing group 

is required and the reagents can be classified from the less reactive to strongly reactive: CH3, 

C2H5, C8H7 < CH2Cl < CF3CH2.53 They have found a wide range of applications, including 

fluorination of aryl groups, nucleosides,54-56 steroids57 and other building blocks and organic 

substrates.39  

 

 

 

Figure 1-5: Selectfluor and related derivatives. 

 

 In 1984, a study on N-alkyl-N-fluorosulfonamides by Barnette et al58 demonstrated an 

interesting reactivity in the presence of a base with a broad variety of compounds including 
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ketones, acids, malonates, organomagnesiums, and arenes, with fluorine transfer occurring in 

moderate to good yields. Unlike the pyridinium triflates and Selectflluor, the N-

fluorosulfonimides are neutral and are also easy to handle (Figure 1-6). Taken together these 

properties have made this reagent and its derivatives very popular. 
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Figure 1-6: Examples of N-fluorosulfonimides, electrophilic fluorinating reagents.59-61 

 

With electrophilic fluorination reagents now widely available, the way to prepare α-

fluorinated carbonyls from enolates emerged, and with it came the challenge of asymmetric 

fluorination. A wide range of asymmetric fluorinating reagents have been created. Differing et 

al. described the first enantioselective fluorination reaction in 1988,62 followed by Davis63, 64 

and Takeuchi65, 66 using chiral N-fluorosultams (Figure 1-7) to undergo fluorination reactions 

on enolates with up to 88% ee (Scheme 1-5).  
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Figure 1-7: Selection of chiral N-fluorosultams developed by Differing (20),62 

Davies (21)63, 64 or Takeuchi (22 and 23).65, 66 

 

 

Scheme 1-5: Enantioselective fluorination using chiral N-fluorosultam 22.66 

 

 Takeuchi et al66 rationalised the reaction using the transition state hypothesis shown in 

Figure 1-8 to explain the (S) selectivity in the case of the fluorination of 24a. The hypothesis 

is based on a X-ray crystallographic structure of (R)-CMIT-F 22.67 According to the X-ray 

structure, the nitrogen is highly pyramidalised and the fluorine is anti periplanar to the 

cyclohexyl group. The five membered ring is in an envelope conformation, resulting in a N-F 

bond which is almost perpendicular to the plane formed by the atoms S-Caromatic-Caromatic-C. 

The experimental evidence also suggests the importance of the coordination of the lithium 

enolate, as the addition of HMPA results in a drop in the enantioselectivity from 74% to 14% 

ee. 
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Figure 1-8: Transition-state model for the fluorination of the lithium enolate of 24 with (R)-

22.66 

 

One limitation of these reagents is that none are commercially available and also the 

reactions require a stoichiometric quantity of the fluorination reagent. Furthermore, their 

preparation often requires several steps including fluorination with elemental fluorine or the 

explosive perchloryl fluoride. 

  

Other approaches to achieving asymmetric electrophilic fluorination have been 

explored. Following the work of Banks et al68 where they quantitatively and rapidly 

transferred the fluorine atom from Selectfluor to quinuclidine 26 giving N-fluoro quinuclidine 

27, Shibata et al69-71 and Cahard et al72, 73 and later Gouverneur et al74 have used Selectfluor 

and cinchona alkaloids to successfully perform stereoselective fluorination reactions (Scheme 

1-6).  
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Scheme 1-6: Fluorine exchange between Selectfluor and alkaloids. 

 

This method consists of exchanging fluorine from N-fluoroammonium salts such as 

Selectfluor to cinchona alkaloids, generating an asymmetric fluorinating reagent.70, 73, 75 In 

contrast to the N-fluorosultams, the preparation of these fluorinating agents involves 

commercial starting materials and does not require F2. This methodology has afforded the 

preparation of selectively fluorinated compounds from cyclic silyl enol ethers, β-ketoesters, 

oxindoles, β-cyanoesters and allyl silanes with good yields and moderate to good 

enantioselectivities (up to 91%, 80%, 84%, 87% and 96% ee respectively). Shibata et al.71 

have described the first asymmetric synthesis of MaxiPost 30, a drug currently in phase III 

clinical trials to treat acute ischemic stroke. The preparation used hydroquinine 

anthraquinone-1,4-diyl diether or (DHQ)2AQN 28 as the cinchona derivative (Scheme 1-7). 
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Scheme 1-7: Enantioselective synthesis of Maxipost.71 

 

Attempts at using a catalytic amount of alkaloid failed due to the faster reaction of 

Selectfluor with carbanions compared to the rate of transfer of fluorine to the alkaloid. This 

approach is impressive but requires a screening of different cinchona alkaloids for each 

reaction as the choice of the alkaloid is important for the optimisation of the rate of transfer 

and thus the enantioselectivity for each substrate. 

 

Several studies have shown that the presence of a Lewis acid during the fluorination of 

1,3-dicarbonyls with N-F reagents will facilitate enolisation.76 The first catalytic 

enantioselective electrophilic fluorination of a β-ketoester was reported by Togni and 

Hintermann in 2000 when they screened a series of transition metal complexes as Lewis acid 

candidates.77 The best results were obtained using a titanium TADDOL complex with 

Selectfluor, giving high yields and high ee’s ranging from 62 to 91% ee on branched β-

ketoesters (Scheme 1-8). 
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Scheme 1-8: Catalytic enantioselective electrophile fluorination by Togni and Hintermann.77 

 

Togni and Hintermann78 also demonstrated that the presence of a bulky group on the 

catalytic species increases the enantiomeric excess, allowing an improvement from 28% to 

62% and from 55% to 91% by going from catalyst 35a to 35b. The choice of the ester is 

important, and again, the larger the alcohol used to prepare the ester, the better the resultant 

enantiomeric excess. A mechanism has been proposed and validated by theoretical studies. 

The metal complex coordinates the bidentate β-ketoester which leads to a fast enolisation with 

elimination of chloride. Then the naphthyl group blocks the Re face of the enolate, directing 

attack to the Si face and giving the S enantiomer as observed (Scheme 1-9). 
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Scheme 1-9: Rationale mechanism of enantiomeric fluorination catalysed by Ti(taddol).78 

 

This approach is limited to branched β-ketoesters, since the Ti catalyst can induce 

racemisation and difluorination by enolisation of the tertiary fluorinated α-carbon. Other 

studies have explored metal catalysed enantiomeric electrophilic fluorination using Pd,79, 80 

Zn,81, 82 Ni and Cu81 chiral complexes and applied this methodology not only to β-ketoesters, 

but also to β-ketophosphonates83-85 and cyanoacetates.86 Metal-mediated fluorinations emerge 

as a powerful tool to generate C-F bonds in high ee. Although a wide range of compounds can 

be fluorinated, the method is more often limited to substrates with two binding points, and the 

product must not be easily enolisable. In order to overcome these limitations, other 

approaches to enantioselective electrophilic fluorination have also been investigated. 

 

Asymmetric organocatalytic methods have been applied to fluorination. Prolines are 

known to catalyse enantioselective intramolecular aldol condensations87 and a wide range can 

be prepared to modulate their reactivity. In 2005, three research groups simultaneously and 

independently, reported on the direct -fluorination of aldehydes using various cyclic 

secondary amines as catalysts with electrophilic fluorination reagents on hindered or 
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functionalised aldehydes. Collectively this method achieves excellent enantioselectivities and 

yields.88-90 The biggest challenge was to find a catalyst that enabled enantiocontrolled C-F 

bond formation and at the same time suppressed product racemisation or difluorination. 

Jørgensen89 and Barbas90 described the fluorination of aldehydes using proline derivatives. 

Barbas et al.90 demonstrated that NFSI gives the highest ee with excellent conversion using L-

proline 36 (25% ee). They also screened several proline derivatives and imidazolidinones with 

various resulting chiral induction. Jørgensen demonstrated that pyrrolidine 37 (Figure 1-9) is 

an excellent catalyst as a chiral promoter, providing the alcohols after reduction of the 

aldehydes, with excellent ee’s in a range from 91 to 97% and in very good yields.90  

 

 

 

Figure 1-7: Example of proline-based catalysts.89, 90 

 

Jørgensen has suggested that the E-configured enamine is formed with iso-

valeraldehyde where the bulky substituents of the pyrrolidine block the Re face. The 

consequence of this shielding is that the approach of the fluorinating agent will be from the Si 

face, providing excellent enantioselectivity (Figure 1-10).89 
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Figure 1-10: Jørgensen’s rationale for Re face attack.89 

 

 Jørgensen also proposed an explanation for the configurational stability towards 

racemisation using pyrrolidine 37 as a catalyst (Scheme 1-10). The aryl substituent of the 

pyrrolidine points towards the enamine, forming preferentially the (S, S) imminium 

intermediate. The remaining hydrogen atom of intermediate (S, S)-39 is then protected by the 

bulky aryl substituent, preventing deprotonation by nucleophilic attack of water, and thus 

preventing the formation of the fluorinated enamine. On the other hand, the hydrogen atom of 

the disfavoured (R, S)-39 imminium intermediate is situated on the Si-face and can be easily 

attacked to give to the fluorinated enamine 40, which then leads to racemisation or 

difluorination resulting in (S)-38 or 41 as the products. 
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Scheme 1-10: Rationale for the configurational stability during the fluorination of aldehydes 

using the catalyst 37.89 

 

 MacMillan et al.88 and Barbas et al.90 reported the use of commercially available 

imidazolidinones (S)-43 and (R)-43 respectively, to catalyse the fluorination of aldehydes by 

NFSI (Scheme 1-11). The aldehydes were rapidly converted to the corresponding -

fluoroalcohols by reduction. 
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Scheme 1-11: -Fluorination of aldehydes catalysed by the imidazolidinone 43. 

 

Both imidazolidinones show better enantiomeric excesses than the proline derivative 

catalysts with good yields (54 to 96%) and high enantioselectivities (91 to 99% ee). This 

method could be applied using a wide range of solvents, including acetone, as long as there is 

10% of isopropanol as a co-solvent. Similar to pyrrolidine 37, the imidazolidinone 43 

tolerates bulky substituents at the -position of the aldehyde, and with a wide range of 

functional groups such as esters, amines, carbamates, double bonds and aromatic rings. The 

reaction conditions also tolerate highly enolisable products such as 2-

fluorophenylacetaldehyde and generate products with very high enantioselectivity (99% ee). 

The mechanistic details are not elucidated, but MacMillan hypothesised that the NFSI could 

“presumably participate in the requisite closed transition state via sulfone-proton bonding and 

concomitant fluorine/enamine activation”.88 This approach not only tolerates a wide range of 

-substituted groups, including very bulky groups, but also requires commercially available, 

easy to use reagents and does not require specialist equipment. 
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2.3 Nucleophilic fluorination 

 

The other general strategy used to fluorinate substrates involves nucleophilic 

fluorination, using fluoride ion itself or reagents able to realise fluoride ion release. 

A large variety of fluoride salts are commercially available, such as KF, but the 

properties of fluoride make it hard to use as it is strongly solvated in protic solvents and, by 

consequence, a poor nucleophile. Also it forms a tight ion pair in most aprotic solvents, so the 

ion pairing must be overcome to increase its nucleophilic properties. The availability of 

fluoride ion can be increased in aprotic solvents by using a bulky cation, which delocalises the 

positive charge and then reduces ion pairing. One good example of such a reagent is the 

popular tetrabutylammonium fluoride (TBAF). 

 

 Another approach consists of the use of hydrogen fluoride (HF). Hydrogen fluoride is 

a low boiling (19.5 °C) liquid and it is highly corrosive, requiring specialist handling. In order 

to make it easier to manipulate it can be use in association with amines, such as triethylamine 

Et3N.3HF or pyridine (Olah’s reagent; Pyridine.9HF).91 But such reagents generally require 

an activated substrate as the amines reduce the nucleophilicity of the fluoride ion. Olah’s 

reagent has been successfully employed in a wide variety of reactions including the 

fluorination of  the anomeric position in carbohydrates (Scheme 1-12).92 

 

 

Scheme 1-12: Preparation of 1-fluoro-2,3,4,6-tetra-O-benzyl-1-deoxy--D-glucose using 

Pyr:HF (Olah’s reagent).92 



 31 

These reagents have been successfully applied to mediate epoxide ring opening, such 

as allylic epoxides 47 and 49 leading to the corresponding fluorinated analogue of shikimic 

acid 48 and to fluorhydrins 50, generally in good yields (Scheme 1-13).93, 94 In this case, the 

epoxide ring strain provides the activation required for the reaction to proceed.  
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Scheme 1-13: Epoxide ring opening using HF derivatives.93, 94 

 

Another fluorinating method for organosulfur compounds using these reagents 

consists of an oxidative desulfurisation-fluorination reaction, leading to polyfluorination in 

most cases. To activate the organosulfur substrate towards nucleophilic attack, the sulfur is 

oxidized by a positive halogen from NBS, NIS or DBH. Then the activated intermediate is 

attacked by fluoride ion, usually from HF/pyridine, or tetrabutylammonium dihydrogen 

trifluoride TBAH2F3 (Scheme 1-14).  

 

 

Scheme 1-14: Proposed mechanism for desulfurisation-fluorination. 
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The oxidative desulfurisation-fluorination has been used for the preparation of 

molecules of biological interest such as γ,γ-difluoroglutamic acid 53 from the dithioketal 51 

(Scheme 1-15).95  

 

 

Scheme 1-15: Synthesis of -difluoroglutamic acid using oxidative desulfurisation-

fluorination method.95 

 

The preparation of the difluoromethylenedioxy moiety 55 from the thionecarbonate 

54, through oxidative desulfurisation-fluorination is a useful method for the preparation of 

molecules such as fludioxonil 56 or the herbicide 57 (Scheme 1-16).96 

 

 

Scheme 1-16: Preparation of difluoromethylenedioxy compounds by oxidative 

desulfurisation-fluorination.96 
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This method can be applied to the preparation of a wide range of compounds, like 

difluorinated alkyl chains from a dithioketals, or trifluoromethyl amines, trifluoromethyl 

ethers, trifluoromethyl aryls and trifluoromethyl alkyl from dithioesters. 

 

 In 1975, Middleton et al.97 reported the preparation of diethylaminosulfur trifluoride 

(DAST), a powerful fluorinating reagent which could replace hydroxyl groups and carbonyl 

oxygens by fluorine, to generate mono and gem-difluorinated products respectively. Lal et 

al.98, 99 reported in 1999, the preparation and use of bis(2-methoxyethyl)aminosulfur 

trifluoride, known as DeoxofluorTM, an evolution of DAST with better thermal stability 

(DAST is well known to undergo explosive degradation when used above 90 °C). 

 The mechanism for replacement of a hydroxyl group by a fluorine atom with DAST or 

Deoxofluor occurs in two steps. First, nucleophilic attack of the hydroxyl occurs to the 

sulphur and displaces a fluoride ion, forming a good leaving group and leading to the 

formation of HF in-situ. The released fluoride then attacks the carbon to form a C-F bond 

(Scheme 1-17).  

 

 

Scheme 1-17: Mechanism of the dehydroxy-fluorination by DAST or its derivatives. 

 

Fluoride attack is generally by a SN2 process, allowing the creation of the C-F bond 

with stereocontrol (Scheme 1-18). A good example is the preparation of the all-syn four 

vicinal fluorine motif 59 from trifluoroalcohol 58, and where the last fluorine atom is inserted 

with an inversion of configuration.100 
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Scheme 1-18: Example of stereocontrol of dehydroxy-fluorination with Deoxofluor.100 

 

 The dialkylaminosulfur trifluorides can be used on a wide range of compounds such as 

alcohols to give the monofluorinated products, on ketones leading to gem-difluoro products, 

or on carboxylic acids as a method for the preparation of trifluoromethyl groups.97, 99  

 

 Several other reagents have been developed as alternatives to dialkylaminosulfur 

trifluorides to perform dehydroxy-fluorination following a similar reaction mechanism. 

Among these products we can find the perfluoro-1-butanesulfonyl chloride 60 (PBSF),101 the 

commercially available tetrafluoroethyldimethylamine 61 (TFEDMA)102 and Ishikawa 

fluorinating agent 62,103 or the FluoleadTM 63, a novel fluorinating reagent introduced in 2009 

also by Ishikawa (Figure 1-11).104, 105 

 

 

 

Figure 1-11: Alternatives to dialkylaminosulfur trifluorides. 

 

 The commercially available bromine trifluoride BrF3 is an interesting fluorinating 

agent. It requires a heteroatom like N or S at the  position to the fluorinating site, but it 
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allows the preparation of -difluoro ethers from thioesters, sulfonyl fluorides from sulfonyl 

chlorides, difluoroalkyls from ketones and -difluoroesters from -thioketal esters.106 The 

mechanism is based on soft acid-soft base interactions between the bromine atom and the 

sulphur or nitrogen atom, positioning BrF3 for an easy delivery of fluoride to the electrophilic 

carbon in the  position to the heteroatom (Scheme 1-19). In most cases the fluoride will 

substitute the sulphur or nitrogen atom to form a C-F bond. 

 

 

Scheme 1-19: Mechanism of fluorination by BrF3. 

 

 One limitation of this reagent is its lack of reactivity towards ethers, as the oxygen 

plays the role of a hard base, and most of the time it leads to the slow deterioration of 

reagents. 

 

 Nucleophilic fluorinations with super acid (SbF5/HF) have been intensively studied to 

perform mono- or di- fluorination in the -position or -position of amines or sulfonamides. A 

super acid is, by the definition of Gillespie, ‘any medium which is more acidic than 100% 

sulphuric acid.’ In the case of SbF5/HF (1/1), the reagent has been determined to be 1016 times 

more acidic than sulphuric acid. This super acid is characterised as a highly acidic, but weakly 

nucleophilic solvent.107 Mono hydro-fluorination has been achieved from allylic amines or 

sulfonamides with moderate to excellent yields,108 and difluorination has been performed with 

the corresponding alkyne in yields from 18 to 87%,109 or from allylic amines in the presence 

of NBS to give the corresponding products in moderate yields.110 Recently, Thibaudeau et 

al.111 reported the preparation of 3- and 4- fluoropiperidines from N,N-diallylic amines and 
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amides with yields from 21 to 85%. N-Methylated amines as the protecting group provide the 

best results.  

Two good examples of application of super acid HF-SbF5 involve the preparation of 

difluoro cinchona alkaloid derivative 65 from the corresponding alkyne 64 with a yield of 

74%, allowing the preparation of a new range of cinchona alkaloid derivatives (Scheme 1-

20).112 Another example is the preparation of vinflunine 67 from 66, an anti-tumour agent 

currently in phase III clinical trials for treatment of bladder and lung cancers.113, 114 This 

reaction start first with isomerisation to lead to the exo-double bond. 
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Scheme 1-20: Example of difluorination using HF-SbF5. 

 

 Unlike electrophilic fluorination, there are very few examples of enantioselective 

nucleophilic fluorination. In 1989, Sampson et al. prepared a homochiral aminosulfur 

trifluoride 68 derived from (S)-proline.115 But the first results were not encouraging, as a 
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kinetic resolution using this reagent with ethyl 2-(trimethylsiloxy)propanoate 69 led to the 

(S)-fluorinated ester 71 with 16% ee and the alcohol derivative 70 with a 50% ee (Scheme 1-

21).115  

 

 

Scheme 1-21: Fluorination with homochiral aminosulfur trifluoride derived from (S)-proline. 

 

 The best results for an enantioselective nucleophilic fluorination have been reported by 

Haufe et al. in 2000 and 2001 on asymmetric ring opening of meso and racemic epoxides.116, 

117 Initial attempts using 5-10 mol% of europium complexes or zinc tartrate on meso epoxides 

gave the corresponding fluorohydrins in poor and good yields respectively, but with poor 

enantioselectivities (4-10% ee). However, when the reaction was carried out with cyclohexene 

oxide 73 and Jacobsen’s (salen)-chromium chloride 72 in the presence of a variety of fluoride 

sources, 43 to 72% ee in favour of the (R,R)-(-)-2-fluorocyclohexanol 74 was achieved. The 

best result was obtained with a stoechiometric amount of Jacobsen’s catalyst 72 and silver 

fluoride as a fluoride source (Scheme 1-22). Catalyst loadings were high and when the 

catalyst was reduced to 50 mol%, the ee, went from 72 to 66%.  
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Scheme 1-22: Enantioselective epoxide ring opening on meso cyclohexene oxide 73. 

Racemic epoxides, such as styrene oxide 75 and phenyl glycidyl ether 78, under 

similar conditions gave the fluorhydrins 76 and 79 respectively and in 74 and 65% ee. In the 

case of the fluorhydrin 79, the absolute configuration was not assigned. Along with these 

products, the chlorhydrins 77 and 80 were also obtained as side products (Scheme 1-23). 
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Scheme 1-23: Asymmetric epoxide opening using KHF2.  

 

According to the enantio- and diastereo- control of the epoxide ring-opening reactions 

developed by Haufe and co-worker, these reactions are more likely to occur through a SN2 

process. Indeed, no rearrangement product or diastereoisomers were detected by 19F NMR of 

the reaction mixture, suggesting a SN2 type reaction. 
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3 Conclusion 

 

 We have seen in this chapter the importance of the properties of the fluorine atom and 

its role in the development of biologically active molecules in medicinal chemistry. Fluorine 

can increase the in vivo half life of a molecule, or can be used to increase the lipophilicity, 

without dramatically altering the shape of a molecule. Different methods have been reviewed 

on how to generate the C-F bond in organic chemistry followed by an overview of the current 

status of enantioselective fluorination. There are a variety of methods for creating a C-F bond 

enantioselectively using electrophilic fluorinating agents, however there are few involving 

enantioselective nucleophilic fluorination.  

Chapter 2 of this thesis is dedicated to the study of nucleophilic fluorination via the 

Prins reaction to form 4-fluorotetrahydropyrans and 4-fluoropiperidines. 
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Chapter 2: Prins cyclisation with fluorination 

 

 

1 Introduction 

 

1.1 The Prins cyclisation 
 

 The Prins reaction is a reaction involving the condensation of an olefin with an 

aldehyde. The first report on the condensation of olefins with aldehydes was carried out by 

Kriewitz in 1899.1, 2 He reported the formation of unsaturated alcohols when -pinene or 

pentadiene was heated in a seal tube with paraformaldehyde. However it wasn’t until 1919 

that the first comprehensive study was carried out by H. J. Prins.3, 4 Using water or glacial 

acetic acid as a solvent, he performed reactions with styrene, -pinene and camphene with 

formaldehyde. With water as a solvent, 1,3-butanediols or unsaturated alcohols were obtained. 

However, with glacial acetic acid, esters from acetic acid were usually obtained (Scheme 2-1). 

Since the first condensations of olefins with aldehydes, this type of reaction has commonly 

been called the Prins reaction. 

 

 

Scheme 2-1: Example of condensation of an olefin with an aldehyde carried out by H. J. Prins 

in 1919.3 

 



 48 

 The Prins cyclisation reaction is a reaction leading to tetrahydropyrans from a 

homoallylic alcohol and an aldehyde, in the presence of a Lewis acid and a nucleophile. 

Common nucleophiles used for this reaction are bromide,5-8 chloride,5, 6, 8-11 iodide,5 acetate7, 

11-15 and tosylate11 (Scheme 2-2). 

 

 

Scheme 2-2: General case for the Prins cyclisation reaction. 

 

 The first report on the identification of pyrans during a Prins reaction was by Ballard 

et al.16, 17 while they were investigating the dehydration of 2-methyl-2,4-pentanediol. The 

dehydration led to a complex mixture including 4-methylpent-4-en-2-ol, acetaldehyde and a 

dihydropyran (Scheme 2-3). 

 

 

Scheme 2-3: First report of formation of pyran by a Prins cyclisation reaction. 

 

 The tetrahydropyran motif is common in natural products, inciting the development of 

methodology to form tetrahydropyran rings efficiently from complex, advanced synthons. 

Loh et al.18 used the Prins reaction as key step in the formal synthesis of the natural product 

(+)-SCH 351448 84, a novel activator of the low density lipoprotein receptor promoter. The 

-unsaturated aldehyde 81 and the homoallylic alcohol 82 were substrates for the Prins 

cyclisation to access intermediate 4-chlorotetrahydropyran 83 (Scheme 2-4). After 
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optimisation using different Lewis acids, the tetrahydropyran 83 was prepared using In(OTf)3 

in the presence of TMSCl in a 42% yield.  
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Scheme 2-4: Application of the Prins cyclisation to the synthesis of (+)-SCH 351448 84.18 

 

 Another example involved the synthesis of (-)-clavosolide D 91, a natural product 

extracted from Myastra clavosa, a marine sponge found in the Philippines (Scheme 2-5).19 

This unsymmetrical molecule possesses two tetrahydropyrans, one is trisubstituted (87) while 

the other is tetrasubstituted (90). Both have been prepared using Prins methodology, using the 

enol ethers 86 and 89 prepared in-situ from alcohols 85 and 88 respectively. The 

tetrahydropyrans 87 and 90 were obtained after hydrolysis of the resultant trifluoroacetate 

esters. Tetrahydropyran 87 was obtained as a single stereoisomer in 65% yield over the two 

steps, while tetrahydropyran 90 was obtained as a 4/1 mixture in favour of the all-equatorial 

-product. 
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Scheme 2-5: Prins methodology for the total synthesis of (-)-clavosolide 91.19 

 

 The mechanism of the Prins cyclisation has been investigated by several research 

groups,11, 14 and the consensus is as follows: first the alcohol attacks an activated aldehyde to 

form a hemiketal intermediate such as 92 (Scheme 2-6). This intermediate then undergoes 

dehydration after activation to generate oxonium intermediate 93. From there, the reaction can 

follow one of two routes. The first is the cyclisation of the oxonium intermediate to form 

cyclic carbocation 94, which is then attacked by a nucleophile to give the expected 4-

subtituted tetrahydropyran. Alternatively a [3,3] sigmatropic rearrangement of 93 can occur 

leading to the oxonium isomer 95.13 This isomer can either cyclise to 94 or it can revert to an 

alcohol and an aldehyde, and undergo another Prins reaction to produce trisubstituted 

tetrahydropyran 96 as a side product. 
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Scheme 2-6: Mechanistic hypothesis relating to the Prins reaction. 

 

 According to theory calculations reported by Alder et al., carbocation 94 prefers a 

chair-like conformation.20 The R substituent is most likely to hold an equatorial orientation, 

and then the nucleophile can attack from either the top or bottom of the plane of the molecule. 

This leads to two separate diastereoisomers, termed the syn and anti products.  
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Figure 2-1: Origin of diastereoisomer selectivity in the Prins reaction. 

 

 

1.2 The Prins cyclisation reaction in fluorine chemistry 
 

Several publications have reported the formation of 4-fluorotetrahydropyrans as 

unexpected by-products of Prins cyclisations, when BF3.OEt2 was used as a Lewis acid, and 
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especially when the nucleophile is acetic acid (Scheme 2-7). This was first observed by 

Rychnovsky et al.12 in 1996, and then by several other research groups.7, 8, 11, 14, 21, 22 The 

fluorine atom became incorporated due to fluoride ion quenching the intermediate 

carbocation, depending on the ratio of BF3.OEt2/nucleophile or the presence of reagents such 

as TMSOAc to trap free fluoride ion. 

 

 

Scheme 2-7: Prins reaction leading to the 4-fluorotetrahydropyran 98 by Jaber et al.7 

 

 This represents a novel approach to C-F bond formation in organic chemistry. A focus 

of this research programme aimed to explore the Prins fluorination reaction and to try to 

define the limits of the methodology, as a contribution to organo-fluorine synthesis. 

 

 

2 Oxa-Prins reaction 

 

2.1 Solvent study 
 

An investigation of the literature reveals very few examples of the Prins fluorination 

reaction, and in those cases they were unwanted by-products. Therefore the first step of our 

study aimed to identify the optimal solvent in which to carry out the reaction. The 

publications to date have described the Prins fluorination cyclisation with dichloromethane as 

the solvent, although it was not clear if this solvent was in any way optimal. 
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The reaction chosen for this study involved but-3-en-1-ol 99 (1 mmol) as the alcohol 

in a reaction with 4-nitrobenzaldehyde 100 (1 mmol) using BF3.OEt2 (1 mmol) in 10 mL of 

solvant. With this choice of reactants, only two major products are formed, the (±)-syn and the 

(±)-anti fluorotetrahydropyrans 101 and 102 respectively (Scheme 2-8). 

 

OH

O

+
O

F

NO2
NO2

O

F

NO2

BF3.OEt2

5h, r.t.
+

(±)-101a (±)-102a99 100a

syn anti

 

Scheme 2-8: Prins fluorination of 99 and 100a using BF3.OEt2 (1 eq). 

 

Solvents were selected over a wide range of polarity. With hexane and toluene as the 

solvent, complete conversion (100%) was observed (by 1H NMR) after 5h, while the 

conversion was 67% with dichloromethane as the solvent (Table 2-1). The reaction in 

dichloromethane gave a 2/1 diastereoisomer ratio in favour of the syn product. It is 

noteworthy that in the case of dichloromethane, increasing the reaction time beyond 5h did 

not improve the conversion. 

When the solvent showed some Lewis base properties such as N,N-

dimethylformamide (DMF), diethyl ether or tetrahydrofuran (THF), no reaction occurred. 

This could be due to the co-ordinating effect of the solvent out-competing the coordination of 

the reagents and reducing the activating effect of the reactivity of BF3.OEt2. 
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Solvent Conversion (5h, r.t.) Diastereoisomeric ratio 101a/102a 

Dichloromethane 67% 2/1 

Hexane 100% 1/1 

Toluene 100% 1.5/1 

Diethyl ether No reaction / 

THF No reaction / 

DMF No reaction / 

 

Table 2-1: The effect of solvent on the Prins fluorination reaction between alcohol 99 and 

aldehyde 100a in the presence of BF3.OEt2 (1eq) at r.t.. Conversions were determined by 1H 

NMR and diastereoselectivity was determined by 19F NMR. 

 

 For subsequent studies on diastereoselectivity of the Prins fluorination reaction, 

dichloromethane was used as the solvent of choice, as this solvent gave the highest 

diastereoselectivity even though less polar solvents gave higher conversions under the 

conditions studied. 

 

 

2.2 Influence of the aldehyde 
 

It was of interest to determine whether the nature of the aldehyde has an effect on the 

reaction. This investigation was carried out with the but-3-en-1-ol 99 and BF3.OEt2 in 

dichloromethane at room temperature (Scheme 2-9). 

 In order to carry out this study, two groups of structurally different aldehydes were 

considered, benzaldehydes and aliphatic aldehydes. 
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OH
O

R
+

BF3. Et2O

CH2Cl2, r. t.
5h O R

F

O R

F

+

99 100 (±)-101 (±)-102

R:
a= 4-NO2C6H4
b= 2-FC6H4
c= 3-FC6H4
d= 4-FC6H4
e= 2-BrC6H4
f= 3-BrC6H4
g= 4-BrC6H4
h= 2-OMeC6H4
i= 4-OMeC6H4  

Scheme 2-9: Prins reaction with but-3-en-1-ol 99 and various aldehydes in the presence of 

BF3.OEt2 (1 eq). 

 

In the first instance, a range of benzaldehydes (Table 2-2) were explored. For those 

with an electron withdrawing group on the phenyl ring (entry a-g), the conversions are 

between 65 and 73% and the diastereoselectivity is between 5.4/1 and 1.9/1. In both series of 

fluoro- and bromo- benzaldehydes, a significantly lower diastereoselectivity resulted when the 

substituents were at the meta- position compared to the ortho- and para- positions.  

In the case of electron donating groups (entries h-j), the conversions drop dramatically, 

and these reactions were inefficient, or in some cases no reaction occurred at all. This was 

particularly the case with the ortho-methoxybenzaldehyde substrates (entries i and j). These 

observations could perhaps be explained by chelation of the BF3 group to a highly enolised 

aldehyde rendering the aldehyde, with the ortho-methoxy group, unreactive (Figure 2-2). In 

the case of pyridine-4-carboxaldehyde and indole-3-carboxaldehyde (entries k and l), again no 

reactions were observed. 
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Entry Aldehyde conversion d.r (101/102) 

a 4-nitrobenzaldehyde 67% 1.9/1 

b 2-fluorobenzaldehyde 66% 4.5/1 

c 3-fluorobenzaldehyde 66% 3.4/1 

d 4-fluorobenzaldehyde 66% 4.5/1 

e 2-bromobenzaldehyde 65% 5.4/1 

f 3- bromobenzaldehyde 73% 3.8/1 

g 4- bromobenzaldehyde 90% 4.8/1 

h 2-methoxybenzaldehyde < 5% 1.3/1 

i 4- methoxybenzaldehyde 20% 2.4/1 

j 2,3,6-trimethoxybenzaldehyde No reaction - 

k pyridine-4-carboxaldehyde No reaction - 

l Indole-3-carboxaldehyde No reaction - 

Conversions determined by 1H NMR, d.r. determined by 19F NMR 

Table 2-2: Prins reaction of homoallylic alcohol 99 with aromatic aldehydes 100a-j and 

BF3.OEt2 (1eq) in CH2Cl2 at room temperature (5h) to give fluoropyrans 101a-j and 102a-j. 

 

 

 

Figure 2-2: Possible chelation of BF3.OEt2 to 2-methoxybenzaldehyde 100h, 2,4,6-

trimethoxybenzaldehyde 100j and indole-3-carboxaldehyde 100l. 
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In the case of the non-aromatic aldehydes (Table 2-3), saturated aldehyde (entry m), 

gave good conversion under Prins fluorination conditions and pyran products were obtained 

with diastereoselectivities of 2/1. In the case of -unsaturated aldehydes (entries n, o, q), the 

conversions dropped considerably again consistent with the ready enolisation of such 

aldehydes with BF3.OEt2. In the case of dimethyl-1,3-dioxolane-4-carboxaldehyde (entry p), 

the poor conversion might be due to degradation of the aldehyde or strong coordination with 

BF3.OEt2. 

 

Entry Aldehyde Conversion d.r (5/6) 

m Hexanal 76% 2/1 

n 

-methylcinnamaldehyde 

 

<5% 1/1 

o 

perilla aldehyde 

 

<5% - 

p 

dimethyl-1,3-dioxolane-4-carboxaldehyde 

O
O

O

 

<5% - 

q 

Myrtenal 

 

<5% 1/1/1/1 

Conversion determined by 1H NMR, d.r. determined by 19F NMR. 

Table 2-3: Prins fluorination conversions and diastereoselectivities with but- 3-en-1-ol 99 and 

aldehydes 100m-q with BF3.OEt2 (1eq) leading to fluoropyrans 101m-r and 102m-r at r.t.. 
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 It is clearly demonstrated that benzaldehydes substituted with electron withdrawing 

groups undergo efficient reactions to generate the corresponding 4-fluoropyrans, whereas 

methoxy- substituted benzaldehydes are poor substrates. Also -unsaturated aldehydes and 

enolisable aldehydes are poor substrates for the Prins fluorination reaction. 

 

 

2.3 Influence of the temperature on the Prins fluorination 
 

It appeared appropriate to determine the impact of temperature on the Prins 

fluorination reaction, and in particular to explore the effect of temperature on the 

diastereoselectivity. Three aldehydes were selected for reaction at different temperatures in 

reactions with but-3-en-1-ol 99 and BF3.OEt2 (1 eq) (Table 2-4). When the temperature was 

lowered to -20 °C the diastereoselectivity increased significantly from 2/1 to 10/1 and with 

good yields. However, temperatures below -20 °C did not improve the diastereoselectivity, 

and only increased the reaction time (entry a’). Lowering the temperature to -20 °C is clearly 

an attractive modification to the reaction conditions in order to improve dramatically the 

diastereoselectivity. 
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OH
O

R
+

BF3. Et2O (1eq)

DCM, 5h
O R

F

O R

F

+

99 100 (±)-101 (±)-102  

Entry Aldehyde Temperature Time d.r (101/102) Yield (101) 

a’ 4-nitrobenzaldehyde -20 °C 5h 10/1 61% 

a” 4-nitrobenzaldehyde -60 °C 7h 10/1 62% 

r’ benzaldehyde -20 °C 5h 10/1 59% 

m’ hexanal -20 °C 5h 10/1 66% 

 

Table 2-4: Prins fluorination reaction of homoallylic alcohol 99 with aromatic aldehydes 

100a, 100m and 100r at -20 °C. 

 

 The major diastereoisomer formed in the reaction between the but-3-en-1-ol 99 and 

aldehydes 100a, 100m and 100r is the syn isomer 101 in all cases. This configuration was 

confirmed by X-ray crystal structure analysis of the major 4-nitrobenzaldehyde adduct, 101a 

(Figure 2-3). 

O

NO2

F

101a  

 

 

Figure 2-3: X-ray structure of the syn stereoisomer 101a. 
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2.4 Influence of the alcohol on the Prins fluorination reaction 
 

2.4.1 Influence of substituents on the double bond. 
 

The study then investigated the importance of the structural features of the alcohol on 

the reaction. Prins fluorination reactions were carried out with hex-3-en-1-ol 103 and 105. It 

is interesting to note that when E and Z hex-3-en-1-ols 103 and 105 are used as substrates, 

then only the two diastereoisomers (±)-104 and (±)-106 were observed, each time with very 

good diastereoselectivities and in good yields (Scheme 2-10).  

 

OH

NO2

O

O

F

NO2

+

BF3.OEt2
DCM, 3h, -20 °C

dr : 11/1
53%

OH

NO2

O

O

F

NO2

+

BF3.OEt2
DCM, 3h, -20 °C

dr : 11/1
54%

103

105

104

106  

Scheme 2-10: Prins cyclisations reaction using (E)- and (Z)- hex-3-en-1-ols 103 and 105 with 

4-nitrobenzaldehyde at -20 °C. 

 

This can be explained by assuming that the Prins reaction proceeds through a 

mechanism involving a [3,3]-sigmatropic-like rearrangement from intermediate 93 to generate 

the cyclic carbocation 94, driven by the electronegativity of the oxonium cation. This type of 

rearrangement involves a chair-like intermediate (Figure 2-4). When the double bond is 

substituted, only one chair-like intermediate can be obtained, depending of the configuration 
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of the double bond, leading to carbocation 108 from intermediate 107 and carbocation 110 

from intermediate 109. 

 

O+R OR

+
107

O+

R2

R

R2 R2

O+R OR

+
109

O+

R

R2
R2

R2

108

110

O+R OR

+
93 94

O+

R

 

 

Figure 2-4: Chair-like intermediates in the Prins reaction. 

 

 To achieve the stereoselectivty shown during the reactions, the oxonium intermediates 

must be in E configuration to obtain the carbocations 108 and 110 from alcohols 103 and 105 

respectively. Indeed, the Z-oxonium intermediate from alcohol 103 would have lead to 

carbocation 110 and alcohol 105 would have lead to carbocation 108 instead (Figure 2-5). 
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Figure 2-5: The oxonium intermediate adopt a E configuration in order to obtain 

tetrahydropyrans 104 and 106 from alcohol 103 and 105 respectively. 
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 The Prins fluorination reaction was explored with alcohol 111, possessing a methyl 

group on the double bond in the -position. Unfortunately at -20 °C and after 16h, no product 

could be detected. The absence of any reaction under these conditions could be explained by 

the difficulty in generating the oxonium intermediate 112, to achieve a chair-like 

conformation due to 1,3 diaxial repulsion between the methyl and the axial hydrogens 

(Scheme 2-11). 

 

 

Scheme 2-11: Unsuccessful Prins fluorination cyclisation with alcohol 111. 

 

2.4.2 Influence of substituents at the - and - positions of the alcohol 
 

 The cyclic alcohol 113 was explored for generating bicyclic products such as 114 

(Scheme 2-12).  

 

OH
O

F

R

BF3. OEt2, RCHO

DCM, -20 °C
5h

H

H
H

H

113 114  

Scheme 2-12: Prins fluorination reaction of alcohol 113 to give bicyclic products 114. 
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Alcohol 113 was prepared by reaction of vinyl magnesium bromide on cyclohexene 

oxide 115 in the presence of Cu(I)Br/dimethyl sulfide as previously described.23 This was an 

efficient reaction which proceeded with a yield of 71% and gave only the trans product 

(Scheme 2-13).  

 

O
MgBr

CuBr, Me2S
Et2O

OH

71%115 113  

Scheme 2-13: Synthesis of vinyl alcohol 111.23 

 

The reactions were conducted at -20 °C, and the syn products 114a and 114b were 

obtained from benzaldehyde 101s and 4-nitrobenzaldehyde 101a respectively with a good 

diastereoselectivity of 10/1 and in good yields (Table 2-5). 

 

OH
O

F

R

H

H
H

H

113 114

BF3.OEt2, RCHO

CH2Cl2, -20 °C
5h

 

Entry Aldehyde d.r  Yield (Syn product 114) 

a benzaldehyde 10/1 59% 

b 4-nitrobenzaldehyde 10/1 57% 

 

Table 2-5: Prins fluorination reaction with alcohol 113 at -20 °C. 

 

 In this case, a chair-like intermediate derived from 116 is most probably favoured 

because of the rigidity of the cyclohexyl ring. Indeed, only one chair conformer is reasonable, 
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where both the hydroxyl and allyl substituents lie in an equatorial position off the cyclohexyl 

ring (Figure 2-6). 

 

 

Figure 2-6: Chair-like intermediate derived from 115. 

 

After isolation an X-ray derived structure of the bicyclic product 114b was solved 

after recrystallisation. The resultant structure confirmed that the major stereoisomer is the syn 

product (Figure 2-7). 

 

O

F

NO2

114b  

Figure 2-7: Crystal structure of the syn-bicyclic tetrahydropyran 114b. 

 

The influence of the substituent at the -position of the alcohol was investigated using 

pent-4-en-2-ol 118 and 1-phenylbut-3-en-1-ol 119 in reactions with 4-nitrobenzaldehyde 

(Table 2-6). In both cases, the reactions displayed a lack of diastereoselectivity. Indeed, up to 

six different fluorinated compounds were formed during the reaction. The situation did not 

improve even when the reaction temperature was lowered as far as -80 °C. Individual 

components of the mixture could not easily be separated by chromatography. 
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Alcohol Temperature t Conversion Ratio of diastereoisomers formed 

(determined by 19F NMR) 

1-Me 118 -20 °C 5h 75% 5.0/2.0/1.7/1.3/1.0 

1-Me 118 -60 °C 8h 70% 15.7/6.0/1.3/1.0/2.7 

1-Me 118 -80 °C 8h 45% 8.2/3.2/1.2/1.0/2.2 

1-Ph 119 -20 °C 5h 78% 17.2/7.4/4.2/3.6/2.3/1.0 

1-Ph 119 -60 °C 8h 60% 14.5/9.7/5.5/2.0/21.5/1.0 

1-Ph 119 -80 °C 8h 60% 8.8/2.1/1.5/1.9/11.3/1.0 

 

Table 2-6: Prins fluorination reactions between alcohols 118 and 119 and 4-

nitrobenzaldehyde with BF3.OEt2 (1eq) generated many stereoisomers. 

 

Most Prins publications report clean reactions with one major product when using -

substituted alcohols,7, 10, 12, 15 however similar results were reported by Willis et al..13, 14 They 

reacted alcohol 119 with propanal, in the presence of acetic acid, BF3.OEt2 and TMSOAc 

(Scheme 2-14). When the alcohol is substituted at the -position by a phenyl ring, the 

expected tetrahydropyran 122 and 2,6-diethyl tetrahydropyran 123 are obtained as well as 

benzaldehyde, in 54%, 24% and 23% yields respectively. The presence of a methoxy group 

on the aromatic ring at the -position on the alcohol 124, influenced greatly the ratio between 

the different pyrans 123, 125 and 126, favouring the tetrahydropyran 123. Tetrahydropyran 

123 is most probably obtained after a [3,3] sigmatropic rearrangement followed by hydrolysis 

of the oxonium intermediate, as described in Scheme 2-6.  
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In the case of the Prins reaction with pent-4-en-2-ol 118, Willis et al. obtained three 

compounds.13, 14 The major tetrahydropyran 127 arose directly without a [3,3]-sigmatropic 

rearrangement of the oxonium intermediate. The two minor tetrahydropyrans 128 and 129 are 

the products of the reaction coming from either propanal and pent-4-en-2-ol 118 or ethanal 

and hex-5-en-3-ol, followed by hydrolysis of the oxonium intermediate. Both of these minor 

tetrahydropyrans are most probably formed as result of a [3,3]-sigmatropic rearrangement. 

 

 

Scheme 2-14: Prins reactions between -substituted alcohols and propanal.13, 14 

 

According to those results, it is reasonable to propose that in our case the products 

obtained are tetrahydropyrans 120 and 121 coming from direct cyclisation of the oxonium 

intermediate. It follows that the minor products are formed from aldehydes 131 or 100r and 

alcohol 130  formed in situ after [3,3] sigmatropic rearrangement of the oxonium intermediate 

135. This would therefore generate tetrahydropyrans 132 and 134, or 133 and 134 (Scheme 2-

15). Individual components of the mixture could not easily be separated by chromatography. 
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Scheme 2-15: Proposed fluorinated product profile from the Prins fluorination reaction of 

alcohols 120 and 121. 

 

 Dobbs et al.6 described a Prins cyclisation involving 2-fluorobut-3-en-1-ol 137 in the 

presence of InCl3 with various aldehydes. This generated 4-chloro-5-fluoropyrans in high 

diastereoisomeric selectivity (Scheme 2-16) where chloride ion is the nucleophile. It is 

noteworthy that the resultant pyrans always have the fluorine in an axial position. 

 

 

Scheme 2-16: Prins reaction involving the 2-fluorobut-3-en-1-ol 137.6 

 

It was therefore interesting to explore the Prins fluorination reaction with alcohol 137, 

to try to obtain 4,5-difluoropyrans. However at the outset we were aware that the presence of 

a fluorine atom in the -position of the intermediate carbocation could have a strong 

destabilising effect on the outcome of the reaction.  
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The alcohol 137 was prepared by treatment of butadiene monoxide 138 with 3HF.Et3N 

(60 °C, 8h, 47%) (Scheme 2-17).24 

 

 

Scheme 2-17: Preparation of the fluorohydrin 13.24 

 

 The Prins fluorination reaction of fluoro alcohol 137 was explored with 4-

nitrobenzaldehyde 100a and hexanal 100m at r.t. and with 1 equivalent of BF3.OEt2. After 

20h, only starting materials were recovered without any evidence for the difluorinated product 

(Scheme 2-18). 

 

 

Scheme 2-18: Failed preparation of 4,5-difluoropyrans 138. 

 

 

2.4.3 Prins fluorination with a homo propargylic alcohol 
 

The ability of homopropargylic alcohol 139 to react in a modified Prins fluorination 

reaction was explored. Martín et al.25 reported a Prins cyclisation reaction involving 

homopropargylic alcohol 139 to generate 5,6-dihydro-2H-pyrans, using FeX3 as a Lewis acid 

(X=Cl, Br). They found evidence of a halogen exchange reaction between this Lewis acid and 

the solvent. Indeed, when the halogens of the solvent do not match those of the Lewis acid, 
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the chloro- or bromo-products 140 and 141 are obtained in a ratio 1/1. When the halogens of 

the solvent and the Lewis acid match, then only one halogenated product was obtained 

(Scheme 2-19). Martín proposed two possibilities to explain these results. First, there is a 

possible halogen exchange between FeX3 and the solvent. The other possibility is the reaction 

of the intermediate carbocation and the solvent. 

 

 

Scheme 2-19: Prins cyclisation reaction of a homopropargylic alcohol.25 

 

 Martín et al. also performed the reaction using InX3, but the reaction time had to be 

increased from a few minutes to 24 h, and with lower yields, between 73 and 80%.25 Another 

study demonstrated the Prins cyclisation reaction with homopropargylic alcohol 139 to give 

chloro products using SnCl4, but again, the yields were moderate.26 

 

 In our study, homopropargylic alcohol 139 and 4-nitrobenzaldehyde 100a were 

selected as a standard set of reagents (Table 2-7). The first attempts to carry out the Prins 

fluorination reaction were carried out with BF3.OEt2 in dichloromethane at -20 °C and then at 

room temperature, but none of these conditions lead to the anticipated fluorinated product 142 

derived from homopropargylic alcohol 139. Only starting materials or degradation products 

were recovered (Table 2-7, entry a and b). The use of iron trifluoride (FeF3) in several 
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solvents such as CH2Cl2, toluene or CH3CN did not result in the formation of product 142 and 

only starting materials or degradation products were again observed (entry c-e). 

 

 

Entry Lewis acid Solvent Temperature Results 

a BF3.OEt2 CH2Cl2 -20 °C No reaction 

b BF3.OEt2 CH2Cl2 r.t. Degradation 

c FeF3 CH2Cl2 r.t. No reaction 

d FeF3 Toluene r.t. No reaction 

e FeF3 CH3CN r.t. No reaction 

 

Table 2-7: Conditions used in Prins fluorination reactions with homoallylic alcohol 139. 

 

 

2.2.4 Prins fluorination with pent-4-en-1-ol 152 to form oxepanes. 
 

 Several publications have reported the formation of seven-membered rings via Prins 

cyclisation reactions using AlX3 (X= Br or Cl),27 EtAlCl228 or SnCl428, 29 as Lewis acids 

(Scheme 2-20). 
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Scheme 2-20: Formation of oxepanes via Prins cyclisation reactions.27-29 

 

It was therefore interesting to investigate the behaviour of BF3.OEt2 towards the 

formation of larger rings, and more precisely if it would allow the formation of oxepanes 153 

from pent-4-en-1-ol 152. Unfortunately, despite considerable efforts (increasing the amount 

of BF3.OEt2 up to 3eq), the reaction between pent-4-en-1-ol 152 with 4-nitrobenzaldehyde 

100a or hexanal 100m and BF3.OEt2 led only to the recovery of starting material (Scheme 2-

21).  

 

 

Scheme 2-21: Failed formation of oxepane 153 from pent-4-en-1-ol 152. 
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2.5 Hydrogenation of Prins fluorination products 
 

The products of the Prins fluorination reaction with aromatic aldehydes are -

arylpyrans. Such compounds should be amenable to hydrogenolysis to generate a saturated 

acyclic alcohol with fluorine at the - position. This appeared an attractive reaction, and 

would provide a novel method for the synthesis of -fluoroalcohols.  

Baker et al.30 reported a study on the hydrogenolysis of benzyl ethers with hydrogen. 

In that study, he described the hydrogenolysis of 2-phenyltetrahydropyran using Pd/C in 

acetic acid with a catalytic amount of perchloric acid, leading to the acyclic alcohol in 73% 

(Scheme 2-22). 

 

 

Scheme 2-22: Hydrogenation of 2-phenyltetrahydrofuran by Baker.30 

 

Accordingly an attempt was made to open the tetrahydropyran 101r by hydrogenolysis 

following Baker’s method (Scheme 2-23).30 This proved successful and led to the 

corresponding opened chain ester 154 in good yield (70%). This is an attractive result as more 

complex pyrans could lead to functionalised chains and be used to prepare a diversity of 

fluorinated alcohols. 

 

O

F

AcO

F
H2, Pd/C

AcOH, HClO4 aq
16h

87%101r 154  

Scheme 2-23: Opening of the tetrahydropyran 101s’ by hydrogenation. 
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2.6 Prins fluorination reaction under microwave conditions 
 

In order to improve the Prins fluorination method the reaction was now explored under 

microwaves conditions. No such approach has yet been reported. The reaction was carried out 

with but-3-en-1-ol 99 and a variety of aldehydes in the presence of BF3.OEt2 (Table 2-8). 

Dichloromethane was used as a solvent and irradiation was carried out for 10 min at 100W. 

It is accepted that microwaves accelerate reactions not only because of a thermal 

effect, but also because of a superheating effect. Indeed, the comparison between a 

microwave enhanced reaction and a reaction heated ‘classically’ shows a difference of 

reaction rate.31 This is due to a very fast heating, and the temperatures reached are very high. 

The heat transfer is also far more efficient. 

The reaction is very efficient, with conversions generally higher than those under the 

more classical conditions (Table 2-8, entry 2-4, 6). However, the diastereoselectivity 

decreased compared to the previous reactions in every case, and interestingly with an 

inversion of diastereoselectivity in the case of the products from 4-methoxybenzaldehyde 

(entry 6). 
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OH
O

R
+

BF3. Et2O

CH2Cl2, 
MW 100 W, 10 min O R

F

O R

F

+

99 100 101 102  
Entry Aldehyde 100 d.r 

(101/102) 

Conversion with 

microwave 

d.r. (101/102) 

at r.t. 

Conversion 

at r.t. 

1 4-Nitrobenzaldehyde 1.5/1 53% 1.9/1 67% 

2 Hexanal 1.8/1 91% 2/1 76% 

3 2-Bromobenzaldehyde 3/1 92% 5.4/1 65% 

4 3-Bromobenzaldehyde 1.8/1 93% 3.8/1 73% 

5 4-Bromobenzaldehyde 2.3/1 83% 4.8/1 90% 

6 4-methoxybenzaldehyde 1/1.2 41% 2.4/1 20% 

7 Benzaldehyde 3.4/1 66% / / 

 

Table 2-8: Prins fluorination reactions with homoallylic alcohol 99 under microwave 

conditions (100W, 10 min.). 

 

 In this section, a study of the different parameters of the fluoro-Prins reaction was 

reported. It revealed that the temperature has a great influence on the diastereoselectivity. 

When the temperature is dropped from r.t. to -20 °C, the diastereoselectivity increases from 

2/1 to 10/1. It was shown too that the aliphatic aldehydes are good substrates for the reaction, 

while only benzaldehydes with electron withdrawing groups give good yields. The 

substituents on the alcohol are very important as they can induce a very good stereoselectivity 

(substituted double bond, presence of a cyclohexyl group) or could give several products (-

substituted alcohol) as well as no reaction (fluoro alcohol, pent-4-en-1-ol). The reaction under 

microwaves reduces the reaction time without having a strong impact on the 

diastereoselectivities. Then the hydrogenation of 2-phenyl-4-fluorotetrahydrofuran was 

successful, increasing the interest of the Prins fluorination reaction. 
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3 Aza-Prins fluorination reactions 

 

3.1 Introduction 
 

 The aza-Prins cyclisation, defined as a Prins reaction were the alcohol is replaced by 

an amine has been relatively widely explored. The first examples of aza-Prins reactions were 

carried out by Weinreb in 1988 and involved the reaction shown in Scheme 2-24, leading to 

the homoallylic amines 156 and 157 after formation of the iminium intermediate.32 

 

 

Scheme 2-24: Weinreb’s example of aza-Prins reaction leading to cyclic homoallylic 

amine.32 

 

 This methodology has been employed by Lee et al.33 to synthesise (+)-cortistatin A 

161, an anti-angiogenic steroidal alkaloid which was isolated from the marine sponge 

Corticium simplex.34 This is an elaborate example on a complex molecular framework. 

Firstly, the iminium 160 is formed and then an aza-Prins cyclisation occurs, triggered by the 

attack of the hydroxyl formed by decomposition of the MEM group. The hydroxyl forms an 

epoxide, leading to the formation of two of the rings of product 159 (Scheme 2-25). 
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Scheme 2-25: Synthesis of (+)-cortistatin A through an aza-Prins reaction as reported by Lee 

et al.33 

 

More recently, the aza- Prins cyclisation reaction has gained increased interest from 

the scientific community and several publications have reported the formation of piperidines 

from homoallylic amines and aldehydes in the presence of Lewis acids (Scheme 2-26). A 

wide range of Lewis or other acids35-37 were used, such as FeX3 (X=Br or Cl),38, 39 PMA,40 

GaI3/I2,41 InCl3,42 I2
43 or Et4NF/5HF44 leading to the incorporation of various nucleophiles 

such as halogens Cl-, Br-, I- and very recently F- or HO-. 

 

 

Scheme 2-26: An example of the aza-Prins cyclisation reaction leading to N-containing 

heterocycles.43 
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 The syntheses of (±)-epibatidine 169, the powerful analgesic isolated from the skin of 

the frog Epipedobates tricolour, and (±)-epiboxidine 170, a synthetic derivative, have been 

reported by Armstrong et al.45 using an aza-Prins-pinacol rearrangement approach (Scheme 2-

27). The aza-Prins cyclisation of 165 lead to the bicyclic intermediate 168, which 

immediately undergoes a pinacol rearrangement to give the 7-azabicyclo[2.2.1]heptane 166. 

This emerged as a common precursor to (±)-epibatidine 169 and (±)-epiboxidine 170. 
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Scheme 2-27: Synthesis of (±)-epibatidine 169 and (±)-epiboxidine 170 through aza-Prins-

pinacol rearrangements.45 

 

 Prior to this project there was only one example of the synthesis of 4-fluoropiperidines 

via an aza-Prins cyclisation. This was described by Golubev et al., and is not 

straightforward.46 It involved the conversion of 4-hydroxypiperidines to 4-fluoropiperidines. 

The method is not efficient, as the direct fluorination of 173 with DAST led to a loss of 

diastereoselectivity, due to a Grob-type fragmentation (Scheme 2-28).  
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Scheme 2-28: Gobulev et al.’s preparation of 4-fluoropiperidines via the aza-Prins reaction.46 

 

The replacement of the N-1,1-phenylethyl protecting group by that with stronger 

electron withdrawing properties managed to reduce the loss of diastereoselectivity during the 

fluorination step, to form fluoropiperidine 181 in a 60% yield (Scheme 2-29). Unfortunately, 

the paper did not report which protecting group was used to successfully carry out the 

fluorination. To obtain the other diastereoisomer 183, a Mitsunobu reaction was realised on 

the 4-hydroxypiperidine 180 to give alcohol 182 after hydrolysis of the ester, and then this 

was transformed to 4-fluoropiperidine 183 by DAST and again in a 60% yield. 
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Scheme 2-29: Preparation of 4-fluoropiperidines by a final deoxyfluorination reaction. 

 

 It was only in 2008, towards the end of this project, that the preparation of 4-

fluoropiperidines directly via aza-Prins fluorination reaction was reported by Kishi et al.47 

The reaction was performed unusually in ionic liquid media, using Et4NF/5HF as the acid to 

catalyse the reaction. The presence of the electron withdrawing tosyl group on the amine 

appears to be crucial to avoid protonation of the free amine which would block the reaction. 

The reaction is substrate sensitive. Aromatic aldehydes are less good substrates by 

comparison to aliphatic aldehydes (Scheme 2-30). Indeed, in the case of aliphatic aldehydes, 

the reaction time took 1-2 h. The reaction is quantitative and shows moderate to good 

diastereoselectivity (7.3/1 to 11.5/1), while aromatic aldehydes required extended reaction 

times and led to a mixture of diastereoisomers with a ratio of 4.5/1 to 4.9/1. In general the 

yields were much poorer (17-18%) with aromatic aldehydes. 
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Scheme 2-30: First example of aza-Prins fluorination reaction reported in 2008.47 

 

The lack of reactivity of aromatic aldehydes could be explained by conjugation of the 

aromatic ring to the protonated form of the aldehyde leading to substantial enol character 

under these acidic conditions. This would stabilise the aldehyde toward nucleophilic attack 

compare to the aliphatic aldehydes (Figure 2-8). 

 

 

 

Figure 2-8: Enolisation of the aromatic aldehydes may reduce their activity relative to 

aliphatic aldehydes. 

 

 The exploration of the fluoro- aza-Prins cyclisation reaction using BF3.OEt2 had been 

ongoing in St Andrews prior to Kishi’s report. 
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3.2 Protecting groups 
 

 Our first investigations of the aza-Prins fluorination involved investigating the 

protecting group on the amine. Most examples of aza-Prins cyclisation reaction reported so 

far use either the N-benzyl or N-tosyl group on the amine, thus amines 189 and 191 were 

explored in fluorination reactions. 

 N-Benzylbut-3-enyl-1-amine 189 was prepared according the procedure of McCann47 

by reaction of 1-bromobut-3-ene 187 with benzylamine 188 in the presence of a catalytic 

amount of sodium iodide. The reaction was efficient and the product amine 189 could be 

recovered in 87% yield (Scheme 2-31).48  

 

 

Scheme 2-31: Preparation of N-benzylbut-3-enyl-1-amine 189.48 

 

 The N-tosylbut-3-enyl-1-amide 191 was also prepared in a relatively straight forward 

manner in a reaction of 1-bromo-but-3-ene 187 with N-tosylamine 190 (Scheme 2-32).49 The 

reaction was catalysed by potassium carbonate and the N-tosyl amine product was furnished 

in a moderate yield (41%). 

 

 

Scheme 2-32: Preparation of N-tosylbut-3-enyl-1-amine 191.49 

 

 The protected homoallylic amines 189 and 191 were then explored in reactions with 4-

nitrobezaldehyde 100a and BF3.OEt2 in dichloromethane at room temperature (Scheme 2-34). 
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Dichloromethane was selected as solvent as it gave the best results in the oxa study, and was 

reported on almost all the publications on aza-Prins cyclisation reaction. After 48 hour 

reactions the desired fluorinated diastereoisomers 192 and 193 were generated from 191 in a 

ratio of 1/1 and with a conversion of 70% (Table 2-9). However, no conversion was observed 

in the case of the benzyl-protected amine 189 after 24 hours. In view of this, the rest of this 

study was carried out using the N-tosylbut-3-enyl-1-amine 191 as the protected -olefinic 

amine. In this case, the conversion and diastereoselectivity are comparable to the oxa-Prins 

fluorination reactions: e.g. 67% conversion and 1.9/1 diastereoisomeric ratio in the case of 4-

nitrobenzaldehyde 100a. 

 

NHR

O

+
BF3. OEt2

CH2Cl2, r.t. N
R

F

NO2
NO2

N
R

F

NO2

+

100a 192 193  

Amine Time Conversion Diastereoselectivity 

 48h 70% 1/1 

 24h / / 

 

Table 2-9: Reaction between the protected amines 189 or 191 and 4-nitrobenzaldehyde in the 

presence of BF3.OEt2 (1eq) at r.t. 

 

 

3.3 Temperature study 
 

It was demonstrated in section 2.3 that temperature had a significant influence on the 

diastereoselectivity of the oxa-Prins fluorination reaction. In order to established the influence 

of the temperature on the corresponding aza-Prins reactions, two aldehydes, hexanal and 4-
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nitrobenzaldehyde, were explored with N-tosylbut-3-enyl-1-amine 191 and BF3.Oet2 (1 eq) in 

dichloromethane (Table 2-10). The temperature had no obvious effect on the 

diastereoisomeric ratio. When the temperature was lowered to -20 °C, the diastereoselectivity 

remained the same at 1/1 in the aza- series. Not unexpectedly the reaction time increased 

considerably from 48 hours to 72 hours to obtain the same level of conversion. This lack of 

improvement in the aza-Prins diastereoselectivity contrasts significantly with the oxa-Prins 

fluorination reactions. 

 

NHTs
O

R
+

BF3. OEt2

CH2Cl2
N
Ts

F

R N
Ts

F

R

+

191
R= 4-NO2C6H4 193192
R= C5H11 194 195

syn anti

 

Entry Aldehyde T Time d.r (syn/anti) Yield 

a 4-Nitrobenzaldehyde r. t. 48h 1/1 65% 

b 4-Nitrobenzaldehyde -20 °C 72h 1/1 71% 

c Hexanal r. t. 48h 2/1 75% 

d Hexanal -20 °C 72h 2.1/1 74% 

The diastereoselectivity was determined by isolation of the products. 

Table 2-10: Diastereoselectivity ratios of the Aza prins reactions between N-tosylbut-3-enyl-

1-amine 191 and an aldehyde with BF3.OEt2 in CH2Cl2 at ambient temperature and at -20 °C. 

 

 

3.4 Influence of the aldehyde 
 

The influence of the aldehyde was investigated for the aza-Prins fluorination reaction 

(Table 2-11). In the case of benzaldehydes, when the aromatic ring is substituted by an 

electron withdrawing group, the conversions are very good (entry a-f). However the 
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diastereoisomeric ratios remain lower than those found for the oxa- Prins reactions. However, 

when the aromatic aldehyde carries an electron donating methoxy group, the conversions drop 

to ~23% (entry g). For aliphatic aldehydes, the conversions are very high, but again, the 

diastereoselectivity remains poor (entry h-j). Similar to the oxa- Prins fluorinations, there was 

no reaction when an -unsaturated aldehyde was used as a substrate (entry k). Overall, the 

purifications are difficult, and in some case, the diastereoisomers could not be separated. 

 

NHTs
O

R
+

BF3.OEt2

CH2Cl2
N
Ts

F

R N
Ts

F

R

+

191

197196

syn anti

 
Entry Aldehyde d.r (196/197) Yield 

a 4-Nitrobenzaldehyde 1/1 61% 

b 4-Bromobenzaldehyde 1/1 68% 

c 3-Bromobenzaldehyde 2/1 59% 

d 2-Bromobenzaldehyde 1/1.6 49% 

e 4-Fluorobenzaldehyde 1.8/1 68% 

f 3-Fluorobenzaldehyde 2/1 66% 

g 4-Methoxybenzaldehyde 2.5/1 23% 

h Hexanal 2/1 73% 

i Acetaldehyde 1/1 73% 

j Isobutylaldehyde 2/1 82% 

k -Methylcinnamaldehyde 

 

/ No reaction 

Diastereomeric ratio determined after isolation of each product or by 19F NMR of the mixture 

Table 2-11: Aza prins reaction between amine 191 and various aldehydes in the presence of 

BF3.OEt2 (1 eq) at r.t. 
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A suitable crystal of piperidine 197b was obtained for X-ray structure analysis and the 

resultant structure shows that the product has the C-F bond and the aromatic ring anti to each 

other (Figure 2-9). In this case the tosyl group is almost perpendicular to the plane of the 

piperidine. This could be due to a better aryl stacking in the crystal packing.  

 

 

 

 
Figure 2-9: Crystal structure of piperidine 197b. 

 
 

3.5 Influence of the amine 
 

In order to study the influence of the structure of the homoallylic amine on the aza-

Prins fluorination reaction, the formation of the bicyclic piperidines was explored using cyclic 

tosylamide 198 (Scheme 2-33). 

 

NHTs N
Ts

F

R

BF3. OEt2, RCHO

CH2Cl2, r.t., 24h

H

H H

H

198

N
Ts

F

R
H

H

+

 

Scheme 2-33: Exploration of the aza-Prins fluorination reaction with the N-(2-

vinylcyclohexyl)tosylamide 198. 
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N-(2-Vinylcyclohexyl)tosylamide 198 was prepared in two steps. The first step 

required the synthesis of the aziridine 200 from cyclohexene 199. This reaction was achieved 

with chloramine T in presence of potassium carbonate and silica in water, following the 

protocol of Minikata (Scheme 2-34).50 The reaction proved straightforward and aziridine 200 

was obtained in 68% yield. 

 

 

Scheme 2-34: Preparation of the aziridine 200 from cyclohexene.50 

 

The next step involved aziridine ring-opening to generate the desired N-(2-

vinylcyclohexyl)tosylamide 198. When vinylmagnesium bromide was used with CuBr/Me2S 

or CuBr in diethylether, only degradation products were observed (Scheme 2-35). However, 

the use of CuI instead of CuBr/Me2S, under otherwise identical conditions, resulted in the 

successful opening of the aziridine ring in 43%. 

 

NTs
MgBr

CuBr
Et2O

200

NHTs

43%
198

MgBr

MgBr

CuBr.Me2S
Et2O

CuI
Et2O  

Scheme 2-35: Aziridine opening, leading to the N-(2-vinylcyclohexyl)tosylamide 198. 
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With N-(2-vinylcyclohexyl)tosylamide 198 in hand, aza-Prins fluorinations were 

explored with 4-nitrobenzaldehyde and BF3.OEt2 at r.t. The chair-like transition state 203a 

can only reasonably lead to carbocation 204 because of the restrictions imposed by the 

cyclohexyl ring. Therefore, only product 199 and its diastereoisomer 200 should be obtained. 

After 48 hours, a mixture of the anticipated diastereoisomers 199 and 200 was generated in a 

moderate 51% conversion (Scheme 2-36). However, it proved impossible to separate the 

diastereoisomers by standard chromatographic methods. 

 

NHTs N
Ts

F

R

BF3. OEt2, RCHO

CH2Cl2, r.t., 24h

H

H H

H

198 199

N N
Ts

203 204

N
Ts

F

R
H

H

N+ R
Ts

+

+
R

200

+

R= 4-NO2C6H4

Ts

Diastereoisomeric ratio: 2.3/1
Conversion: 51%

203a  

Scheme 2-36: Preparation of bicyclic aza-Prins fluorination products (199 and 200) using N-

tosylamide 198. 

 

Other modifications of the reaction were explored. In particular, the influence of an 

ethyl substituent at the terminus of the double bond was investigated. Both geometric (Z) and 

(E) isomers 205 and 206 were explored. Thus the N-(hex-3-enyl)-1-tosylamides 205 and 206 

were prepared from the corresponding precursor alcohols 103 and 105 (Figure 2-10). 
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Figure 2-10: The tosylamides 205 and 206 with E and Z double bond were prepared from the 

corresponding alcohols 103 and 105. 

 

Two routes were investigated to these tosylamides. The first involved the formation of 

the tosylamides in one step through a Mitsunobu reaction. The Mitsunobu reaction was first 

reported by Oyo Mitsunobu in 1967.51 In this publication, Mitsunobu described the 

conversion of an alcohol to an ester, using the corresponding acid and diethyl 

azodicarboxylate (DEAD) and triphenylphosphine (Scheme 2-37). 

 

 

 

Scheme 2-37: Example of an early Mitsunobu esterification from 1967.51 

 

The hydroxyl group can be substituted under Mitsunobu conditions into other 

functional groups such as esters,51-53 sulphonamides52, 54-56 or imides.52 During the reaction, 

the alcohol is activated through a phosphonium salt while the nucleophile is activated by 

deprotonation, leading to a SN2 reaction (Figure 2-11). 
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Figure 2-11: Mechanism for the Mitsunobu reaction using DEAD and triphenylphosphine. 

 

Several publications have reported the formation of sulfonamides from 2-

nitrobenzenesulphonamide using the Mitsunobu reaction but none describe the use of 

tosylamide as a substrate. In this study Mitsunobu conditions were explored to transform a 

primary alcohol to a tosylamide in one step, by activation with triphenylphosphine and diethyl 

azodicarboxylate (DEAD), and then using tosylamide as the nucleophile. However, despite 

considerable effort, the reactions failed and the tosylamides were not obtained (Scheme 2-38). 

 

 

Scheme 2-38: Failed preparation of the tosylamides 205 and 206 under Mitsunobu conditions. 

 

A second pathway explored the preparation of tosylamides 205 and 206 by a two step 

process. First it was envisaged that alcohols 103 and 105 could be converted to their 
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corresponding bromides 207 and 208, and then the bromides could be converted to the desired 

tosylamides 205 and 206 after nucleophilic displacement (Figure 2-12). 

 

 

 

Figure 2-12: Alternative strategy for the preparation of tosylamides 205 and 206 by a two 

step route from alcohol 103 and 104. 

 

The mechanism of the bromination reaction is summarised in Scheme 2-39.57, 58 

 

Ph3P Br

Br

Br

Br+ Ph3P+ Br
R OH

Br

Br

Br- CHBr3Ph3P+ Br R O-

Ph3P+ O Br-R Br OPPh3

+

+ R

209 210 211 212 213

214215 216  

Scheme 2-39: Mechanism of the bromination reaction from an alcohol with CBr4 and PPh3. 

 

(E)- And (Z)-1-bromohex-3-enes 207 and 208 were readily prepared from (E)- and 

(Z)-hex-3-en-1-ols 103 and 105 using carbon tetrabromide and triphenylphosphine in 68 and 

71% yields respectively (Scheme 2-40).59 
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Scheme 2-40: Conversion of (E)- and (Z)-hex-3-en-1-ols 103 and 105 to (E)- and (Z)-1-

bromohex-3-enes 207 and 208. 

 

(E)- And (Z)-1-bromohex-3-enes 207 and 208 were then converted to the 

corresponding (E)- and (Z)-N-(hex-3-enyl)-1-tosylamides 205 and 206 in 39% and 42% yields 

respectively using tosylamides and K2CO3 (Scheme 2-41). 

 

 

Scheme 2-41: Synthesis of to the (Z)- and (E)-N-(hex-3-enyl)-1-tosylamide 206 and 205. 

 

With these two tosylamides in hand, aza-Prins fluorinations were explored. The 

reactions were carried out with 4-nitrobenzaldehyde 100a and BF3.OEt2 (1 eq). In both cases, 

a complex mixture of fluorinated products was generated, as determined by 19F-NMR 

(Scheme 2-42). Individual components of the mixture could not easily be separated by 

chromatography. 
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Scheme 2-42: Aza-Prins fluorination reactions between (E) and (Z) hex-3-enyl-1-tosylamides 

205 and 206 and 4-nitrobenzaldehyde with BF3.OEt2. 

 

Clearly two of the fluorinated products are likely to be the expected aza-Prins adducts 

209 and 210 with the fluorine atom either in an axial or an equatorial position. The other 

products may result from [3,3] sigmatropic rearrangements of putative intermediate 211 

during the reaction. This would lead to tetrasubstituted piperidines 213 and 214 by reaction of 

intermediate 212 with 4-nitrobenzaldehyde (Scheme 2-43). However this hypothesis remains 

speculative. 
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Scheme 2-43: Rationale for the formation of several fluorinated products during the aza-Prins 

reaction of tosylamide 205 and 4-nitrobenzaldehyde. 
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 Moreover, very recently Dobbs et al60 reported the formation of pyrrolidines as well as 

the piperidines via aza-Prins reaction between the amines 205 and 206 and several aldehydes 

when he used InCl3 (Scheme 2-44). 
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N
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N
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R
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216 217
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Scheme 2-44: Formation of pyrrolidines and piperidine by aza-Prins reaction.60 

 

Similarly the formation of several fluorinated products can be rationalised in the 

reaction of 4-nitrobenzaldehyde and tosylamides 206. A complex mixture arose most likely 

due to the formation of the two expected aza-Prins products as well as the formation of other 

products via [3,3] sigmatropic rearrangements and pyrrolidines (Scheme 2-45). 
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Scheme 2-45: Possible product profile formed during the aza-Prins fluorination reaction 

between tosylamide 205 and 4-nitrobenzaldehyde. 
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3.6 Aza-Prins reaction under microwave conditions 
 

In overview the aza-Prins fluorination reaction has allowed the formation of 4-

fluoropiperidines by reaction of a tosylamide with an aldehyde in the presence of BF3.OEt2. 

However, the reaction times are long (~ 48 h). The use of microwave conditions to carry out 

these reactions appears attractive, particularly to shorten the long reaction times. 

The use of microwaves to carry out an aza-Prins cyclisations reaction has never been 

reported in the literature. Therefore, the experiments were carried out using the same 

conditions as the oxa-Prins fluorination. It emerged that the reaction needs 30 min. to convert 

the tosylamide 191 to 4-fluoropiperidines 196 and 197. Under the microwave conditions the 

reaction is much more efficient, showing similar conversions to the more classical oxa-Prins 

reactions (Table 2-12). Overall, the diastereoselectivity decreased a little under the microwave 

conditions (entry c, d and f), it but showed a noticeable improvement in the cases which used 

4-bromobenzaldehyde (entry b). 
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CH2Cl2
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100W, 30min

N
Ts

F

R N
Ts

F

R

+

191 196 197
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Entry Aldehyde d.r 196/197 Yield d.r. at r.t Yield at r.t. 

a 4-Nitrobenzaldehyde 1.3/1 57% 1/1 61% 

b 4-Bromobenzaldehyde 1.9/1 67% 1/1 68%  

c 4-Fluorobenzaldehyde 1.5/1 63% 1.8/1 68% 

d Isobutyraldehyde 1.9/1 83% 2/1 82% 

e Acetaldehyde 1.2/1 77% 1/1 73% 

f Hexanal 1.9/1 79% 2/1 73% 

Diastereoisomeric ratio determined by isolation of the products or by 19 NMR of the mixture 

Table 2-12: Aza-Prins reaction carried out under microwave (100 W) with BF3.OEt2 (1 eq) 

during 30 minutes. 

 

With the reaction time reduced from 48 h to 30 min, the microwave conditions appear 

to be an attractive alternative, especially as the diastereoselectivity remains approximatively 

the same. 
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4 Conclusion 

 

Selective methods for fluorination are finding increasing utility in pharmaceutical, 

agrochemicals and fine chemicals research. The BF3.OEt2-mediated Prins cyclisation reaction 

offers another methodology by which to create 4-fluoropiperidines and 4-

fluorotetrahydropyrans. This research has demonstrated the importance of temperature on the 

diastereoselectivity of the oxa-Prins reaction. It has also shown that the choice of aldehyde is 

important, as electron rich benzaldehydes were poor substrates as were -unsaturated 

aldehydes. However, the presence of electron withdrawing groups on aromatic aldehydes 

increased the efficiency of the reaction. The presence of substituents on the alcohol also 

emerged as an important parameter. A substituent at the - position to the OH- group lead to 

only two diastereoisomers, while a substituent - to the aldehyde gave up to six different 

fluorinated products. Also a -methyl group blocked the reaction. New Prins fluorination 

reactions were explored under microwave conditions, reducing the reaction time to 10 min 

with an improved conversion. However this was accompanied by a reduction in 

diastereoselectivity.  

The aza-Prins fluorination reaction is a newly developed methodology with very few 

examples in the literature. This reaction required much longer reaction times compared with 

the oxa-Prins fluorination. Only the tosylamine 191 was a suitable substrate, which is a clear 

limitation. It was less sensitive to temperature, and did not show any diastereoselectivity 

improvement on cooling. The specificity of the aldehyde is similar to the oxa-Prins reaction. 

Electron rich benzaldehydes and -unsaturated aldehydes were poor substrates whereas 4-

nitrobenzaldehyde was a good substrate. Finally it was shown that the aza-Prins fluorination 

could be significantly accelerated under microwave conditions, reducing the reaction time 
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from 48 hours to 30 minutes without impacting to much the conversion or the 

diastereoselectivity.  
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Chapter 3: -Fluoro-alkene synthesis 

 

 

1 Synthetic approach to -hydroxy--vinylfluoride 

 

1.1 The hydroxy--vinylfluoride moiety 

 

Despite the growing interest in fluorine in organic chemistry, few investigations have 

been carried out on the synthesis of -fluoroallylic alcohols 219. This moiety is interesting as 

a potential building block for the preparation of a wide range of fluorinated products. Indeed, 

several transformations such as hydroborations, Sharpless dihydroxylations and Sharpless 

epoxidations, with the potential to undergo subsequent epoxide-ring opening reactions 

(Scheme 3-1), could clearly deliver a variety of novel products. 

 

 

Scheme 3-1: The potential of -fluoroallylic alcohols 219. 
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–Fluoroallylic alcohols have been synthesised by F. Tellier and R. Sauvêtre1, 2 

(Scheme 3-2). The condensation of an aldehyde or a ketone with lithium 1,1-difluoroethene 

gave intermediate 220, which by the action of methyllithium and lithium aluminium hydride 

led to the -hydroxy--vinylfluorides 221-224 in good yields (80-90%),1 and good 

stereoselectivities (ratio E/Z 95/5 in all the examples). 

 

1) CF2=CHLi

2) H3O+

1) MeLi

2) LiAlH4

Ratio E/Z   95:5

80-90%

O
R1

R2

OH

F F

R1

R2

OH

F

R1

R2

220

R1

n-hex
thienyl

cyclohexyl

R2

H
H
H

Cyclohexyl

221
222
223

224

 

Scheme 3-2: First synthesis of -hydroxy--vinylfluoride, by Sauvêtre et al.1 

 

However, the difluoroallylic alcohol intermediates 220 are very unstable.2-5 Moreover, 

the necessary 1,1-difluoroethene used to prepare 1,1-difluoroethene lithium is very 

flammable. With these considerations, it appeared attractive to find an alternative route to this 

rare class of compounds. 

 

 

1.2 Preparation of a fluorinated olefin from propargylic alcohol 

 

The first approach that was considered involved the reduction of propargylic alcohols 

with in situ electrophilic fluorination. Propargylic alcohols are common intermediates in 
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synthesis and are relatively easy to prepare. Several methods have been reported for their 

synthesis. The most common involves deprotonation of an alkyne with a base such as BuLi6-9 

or a Grignard10, 11 reagent, followed by nucleophilic attack of the resultant alkynyl anion to a 

ketone or aldehyde (Scheme 3-3). There are also examples of coupling reactions using 

organoaluminium12 or organozinc13-15 intermediates. 

 

HR1
1) BuLi

2)
O

R2 R3

OH

R1

R3

R2

HR1
1) RMgBr

2)
O

R2 R3

OH
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R3

R2

HR1

ZnBr2 20%, Et3N
TMSOTf
Et2O

O

R2 R3
OTMS

R1

R3
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DIBAL-H or Me3Al
1) Et3N 0,05%

2) R1 H
R1 Al

X

X

O

R2 R3
OTMS

R1

R3

R2

 

Scheme 3-3: Examples for the preparation of propargylic alcohols. 

 

Moreover, an early study by Djerassi et al.16 showed that treatment of propargylic 

alcohol with lithium aluminium hydride in THF gives exclusively a cis reduction leading to 

E-allylic alcohols 228. Djerassi explained this result with a mechanism involving 

complexation of the aluminium with the propargylate oxygen to generate intermediate 225 

(Scheme 3-4). Then intramolecular hydride transfer occurs, followed by the formation of the 

pentacyclic aluminium intermediate 227. Hydrolysis releases the (E)-allylic alcohol 228. 
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O
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Scheme 3-4: Mechanistic rationale of the reduction of propargylic alcohol by LiAlH4.16 

 

Numerous publications report the reduction of propargylic alcohols to allylic alcohols 

using aluminium hydrides such as diisobutylaluminium hydride (DIBAL-H),17 sodium bis(2-

methoxyethoxy)aluminum hydride (Red-Al®)18-21 or LiAlH4.22-25 Moreover, O’Hagan et al.26 

described the stereospecific reduction of propargylic alcohol 229 to generate [3-2H]-allylic 

alcohol 230 using LiAlH4 and by adding D2O at the end of the reaction. Esterification of the 

allylic alcohol lead to the Z-[3-2H]-prop-2-en-1-yl benzoate 231 (Scheme 3-5).26 This inserted 

a deuterium atom at the -position, in 40% yield over the two steps. It is noteworthy that only 

the Z product was obtained. 

 

OH
1) LiAlH4, THF, r.t., 3 h

2) D2O
D OH

PhCOCl, 30% NaOH

CH2Cl2, Et3BnN+Cl-
1 h, r.t.

D O

40% over two steps

229 230
231

Ph

O

 

Scheme 3-5: Preparation of Z-[3-2H]-allylic ester 227 using LiAlH4.26 

 

Modification of this reaction appeared attractive to explore a possible preparation of 

-vinylfluoride compounds directly, by reduction of the triple bond followed by in situ 

treatment of the pentacyclic aluminium intermediate 228 with an electrophilic fluorination 

reagent to trap the anion. The strategy is illustrated in Scheme 3-6. 
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Scheme 3-6: Synthetic pathway to -fluorinated allylic alcohols. 

 

For this study, propargylic alcohols 233, 234 and 235 were selected (Figure 3-1). 

Alcohol 233 possesses a terminal alkyne while alcohol 234 has a pendant hexyl chain. 

Propargylic alcohol 235 is a primary alcohol. These propargylic alcohols were selected to 

explore the effect of substituents on a potential reduction-fluorination sequence. 

 

OH OH

C6H13

233 234

OH

C6H13

235  

 

Figure 3-1: Selected propargylic alcohols 233, 234 and 235. 

 

Propargylic alcohol 233 is a commercially available compound. On the other hand, 

234 and 235 had to be prepared. These substrates were obtained by reaction of benzaldehyde 

100s or formaldehyde 236 and 1-octyne 237 in the presence of n-butyllithium. The reactions 

were relatively straightforward giving yields of 73% and 68% respectively (Scheme 3-7). 
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Scheme 3-7: Preparation of propargylic alcohols 234 and 235. 

 

Before the fluorination reaction was attempted, it was important to explore optimal 

propargylic alcohol reducing conditions for this reaction using aluminium hydride DIBAL-H, 

Red-Al and LiAlH4 reagents (Scheme 3-8).  

 

R1

OH

R2

233: R1= C6H5  R2=H
234: R1= C6H5  R2=C6H13
235: R1= H        R2=C6H13

AlHX, THF
R1

OH

R2

AlHX= DIBAL-H, Red-Al®, LiAlH4

AlH Al-
O

O

O

O

H

H
Na+

Red-Al®DIBAL-H

238: R1= C6H5  R2=H
239: R1= C6H5  R2=C6H13
240: R1= H        R2=C6H13

 

Scheme 3-8: Reduction of propargylic alcohols to allylic alcohols using aluminium hydride 

reagents. 

 

The first reductive reagent explored was diisobutylaluminium hydride (DIBAL-H, in 

solution in THF). With only one hydride, it was anticipated that it may display better control 

on the reaction. However DIBAL-H gave no reaction, even under reflux in THF (Table 3-1) 

and only starting material was recovered at the end of the reaction. 
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As an alternative strategy, sodium bis(2-methoxyethoxy)aluminium hydride (Red-Al) 

was explored. Red-Al can reduce propargylic diols18at room temperature in THF to give the 

(E) allylic diol. Unfortunately, again no reaction occurred at room temperature. However, 

when the reaction was carried out in THF at reflux, alcohol 235 did give the expected E 

allylic alcohol 240, and in 77% yield, without a trace of the Z isomer detected by 1H NMR. In 

the case of the alcohols 233 and 234, only degradation was observed. 

Lithium aluminium hydride emerged as the best reagent for this study, as it was able 

to reduce all three propargylic alcohols 233, 234 and 235 in a stereospecific manner to give 

specifically the (E)-allylic alcohols 238, 239, 240 in 89%, 91% and 87% yields respectively. 
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R1

OH

R2

233: R1= C6H5  R2=H
234: R1= C6H5  R2=C6H13
235: R1= H        R2=C6H13

AlHX, THF
R1

OH

R2

238: R1= C6H5  R2=H
239: R1= C6H5  R2=C6H13
240: R1= H        R2=C6H13  

Starting material AlHx Temperature Time Isolated product 

233 DIBAL-H -78 °C to r.t. 3h Starting material. 

233 DIBAL-H Reflux 3h Starting material 

234 DIBAL-H -78°C to r.t. 3h Starting material 

234 DIBAL-H Reflux 3h Starting material 

235 DIBAL-H Reflux 3h Starting material 

233 Red-Al Reflux 3h Degradation 

234 Red-Al r.t. 3h Starting material 

234 Red-Al Reflux 3h Degradation 

235 Red-Al Reflux 3h 240, 77%, E/Z: 100/0 

233 LiAlH4 r.t. 3h 238, 89%,  

234 LiAlH4 r.t. 3h 239, 91%, E/Z 100/0 

235 LiAlH4 r.t. 3h 240, 87%, E/Z 100/0 

 

Table 3-1: Reductions of propargylic alcohols 233, 234 and 235 to allylic alcohols. 

 

In order to explore a coupled fluorination reaction of the intermediate organometallic 

species, SelectfluorTM 16 and N-fluorobenzenesulfonimide 19 (NFSI) were chosen as 

potential electrophilic fluorinating reagents (Scheme 3-9).27 After reaction of the propargylic 

alcohols with LiAlH4 for 3h, the reaction was cooled to -78°C and then SelectfluorTM was 

introduced. Unfortunately, no fluorinated alcohols 241, 242 or 243 were obtained. Crude 

reaction products were scanned by 19F NMR where very low concentrations of organofluorine 
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compounds could be detected. There was no improvement even after two days at r.t.. These 

poor results may be due to the poor solubility of SelectfluorTM in THF or the lack of reactivity 

of the organometallic complex. Following similar protocols, SelectfluorTM was replaced by 

NFSI 19,27-29 but the reactions were again unsuccessful. The results were no better when the 

reactions were heated under reflux or with the addition of triethylamine as a base (Table 3-2). 

 

1) LiAlH4, 0 °C, 3 h

2) "F+", -78 °C to r.t., overnight

S
O

O N
S

O

O

F2 BF4
-

16

SelectfluorTM 19

NFSi

N+
N+

Cl

F

R1

R2

233: R1= C6H5  R2=H
234: R1= C6H5  R2=C6H13
235: R1= H        R2=C6H13

R1

OH

R2

241: R1= C6H5  R2=H
242: R1= C6H5  R2=C6H13
243: R1= H        R2=C6H13

OH
F

 

Alcohol “F+” donor reagent Temperature Results 

233 SelectfluorTM r.t. No fluorinated product 

234 SelectfluorTM r.t. No fluorinated product 

235 SelectfluorTM r.t. No fluorinated product 

233 NFSI r.t. No fluorinated product 

234 NFSI r.t. No fluorinated product 

233 NFSI Reflux Degradation 

233 NFSI, Et3N -78 °C to reflux Degradation 

 

Table 3-2: Exploration of the reductive-fluorination reactions of alcohols 233, 234 and 235 

using LiAlH4. 
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Due to the lack of success of these reduction-fluorination reactions, LiAlH4 was 

replaced by Red-Al. Indeed, RedAl was able to reduce propargylic alcohol 235 to the 

corresponding allylic alcohol 240 and this combination emerged as a candidate for the 

reductive fluorination reaction. However, when the reaction was performed with alcohol 235, 

no organic-fluorine product was observed by 19F NMR. Only the allylic alcohol 240 and non 

fluorinated degradation products were identified (Scheme 3-9). 

 

 

Scheme 3-9: Exploring the hydroalumination-fluorination reaction using Red-Al with  

alcohol 235. 

 

Due to the lack of success, a test reaction using iodine instead of an electrophilic 

fluorinating reagent was carried out. The test reduction was explored using Red-Al and 

alcohol 235, and by quenching the reaction with iodine (I2) at -78 °C. This gave the expected 

-iodo allylic alcohol 244 in 84% yield after 1h (Scheme 3-10). This was an efficient reaction 

with iodine, but was completely unsuccessful with the electrophilic fluorinating reagents 

Selectfluor and NFSI. 

 

OH
1) Red-Al, reflux, 3h

2) I2, -78 °C, 1h

IOH

235 244
84%

 

Scheme 3-10: Reductive iodination of propargylic alcohol 235. 

 

Clearly Selectfluor and NFSI are not reactive enough even though they are considered 

to be among the most useful electrophilic fluorination reagents. Another approach using a 
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DIBAL-H/CH3Li couple as the reducing agent was investigated. Indeed, several publications 

report the reduction of terminal or disubstituted alkynes by DIBAL-H and CH3Li followed by 

attack of an electrophile (Scheme 3-11).30-32  

 

OH

1) DIBAL-H
2) CH3Li

3)
O

HH

73%

OH

1) DIBAL-H
2) CH3Li

3) CO2

78% O  

Scheme 3-11: Example of hydroalumination followed by attack of an electrophile, 

Zweifel et al.30  

 

A terminal or a symmetrically disubstituted alkyne is treated with a solution of 

DIBAL-H, and then with methyllithium. The resultant product is an equilibrium between the 

ionic organoaluminium 246 and the alkene-lithium form 247. This alkene-lithium then reacts 

with an electrophile, such as an aldehyde or carbon dioxide to lead to the elaborated alkene 

(Scheme 3-11). Generally addition to the triple bond gives exclusively the cis isomer. 

 

Al(C4H9)2

R2

Al(C4H9)2

R2

-

Li+

E

R2

CH3Li

1) E+

2) H30
+

Li

R2
Al(C4H9)2CH3+

R2R1 DIBAlH-H
H

R1

R1

H H

R1

H

R1

E+= CO2, aldehyde

R1= alkyl
R2= R1, H

68-78%

Trans product
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Scheme 3-11: Reduction of alkyne to alkene with DIBAL-H/CH3Li.30 
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It appeared attractive to explore this method in an attempt to prepare the -hydroxy--

vinylfluorides by treatment of the organolithium intermediate with an electrophilic 

fluorinating reagent (Scheme 3-12). 

 

R2

1) DIBAl-H
2) CH3Li

3) F+

HO

R1

OH

R1

R2 F

219  

Scheme 3-12: Exploration of the reduction-fluorination reaction of propargylic alcohols using 

DIBAL-H/CH3Li. 

 

To investigate this reaction, propargylic alcohol 235 was selected as a model substrate, 

as it demonstrated good reactivity toward the reduction step (Scheme 3-13). However, 

reduction followed by hydrolysis of the organoaluminium intermediate did not give the 

expected allylic alcohol 240 but only starting material and degradation products.  

 

 

Scheme 3-13: Attempt preparation of allylic alcohol 243 by reduction of propargylic alcohol 

235 by DIBAL-H/CH3Li. 

 

Corey et al.33 reported the synthesis of trans,trans-farnesol 251, with a selective 

reductive iodination of propargylic alcohol to -iodo allylic alcohol 250 as the key step. To 

achieve this reduction, Corey carried out a hydroalumination reaction using a LiAlH4/MeONa 

couple, followed by treatment with I2 to generate alcohol 250 in 75% (Scheme 3-14). 
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Scheme 3-14: Preparation of -iodo allylic alcohol 250 by Corey et al. using a 

LiAlH4/MeONa couple.33  

 

Following Corey’s method, the iodo alcohol 244 was prepared from propargylic 

alcohol 235 (Table 3-3). The key publication did not give details of the reaction, just the ratio 

of the reagents (LiAlH4/MeONa 1/2) so this had to be optimised. After an investigation of a 

number of conditions, it appears that the optimum conditions required 1.5 eq of LiAlH4 and   

3 eq of MeONa.  

 

 

Alcohol LiAlH4 (mol eq) MeONa (mol eq) Yields 

235 0.75 1.5 53% 

235 1 2 65% 

235 1.5 3 73% 

235 2 4 71% 

 

Table 3-3: Optimisation of the hydroalumination-iodination of alcohol 235. 
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The next stage was now to carry out the hydroalumination-fluorination of alcohol 235 

using the conditions previously established. Unfortunately, when I2 was replaced by NFSI or 

Selectfluor, fluorinated products were not observed by 19F NMR of the product mixture. The 

reduced alcohol 240 was an obvious product in all of these trial reactions (Table 3-4). 

 

 

Alcohol “F+” donor Temperature Time Results 

235 Selectfluor -78 °C to r.t. 12h Alcohol 240 

235 NFSI -78 °C to r.t. 12h Alcohol 240 

235 Selectfluor Reflux 6h Alcohol 240 

235 NFSI Reflux 6h Alcohol 240 

 

Table 3-4: Attempted preparation of -fluoro allylic alcohol by hydroalumination-

fluorination. 

 

Clearly this reaction does not work when moving from iodine to fluorine. We then 

decided to consider a new strategy for the synthesise of -fluoro allylic alcohols. This 

involved a Wittig-Horner approach. 
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1.3 Preparation of a fluorinated double bond via a Wittig-type reaction 

 

The Wittig reaction is a well known and useful tool in organic synthesis. It involves 

the creation of olefins by reaction of a phosphonium ylide with an aldehyde or a ketone. 

Wittig et al. reported in 1954 the reaction between the phosphonium ylide 252 and 

benzophenone 253 leading to the olefin 255 and triphenylphosphine oxide 254 (Scheme 3-

15).34  

 

 

Scheme 3-15: First report of olefin formation between a phosphorus ylide and diphenylketone 

253 by Wittig.34 

 

The mechanism of the Wittig reaction has been intensively investigated but is still not 

fully elucidated.35-37 The first step involves the formation of four membered ring 

oxaphosphetane intermediates 259 and 260 (Scheme 3-16). It is the formation of this 

intermediate which is not completely clear. The mechanism goes first by the formation of 

betaines 257 and 258 by attack of the carbanion to the carbonyl, and then the betaines form 

the oxaphosphetanes 259 and 260 respectively. Both steps are reversible. The formation of the 

betaines and its place in the mechanism are not yet fully established even if there is some 

evidence for their existence. Oxaphosphetanes have been observed by 31P MNR, suggesting a 

reversible [2+2] cycloaddition between the ylide and the carbonyl.36, 38, 39 The 

oxaphosphetanes 259 and 260 decompose irreversibly to give olefins 261 and 262 

respectively, as well as triarylphosphine oxide. The driving force for the reaction is the 

formation of the stable phosphine oxide. The geometry of the product olefin depends on the 

ylide 256. If the ylide is not stabilised by the substituent R1, the equilibrium is displaced in 
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favour of the cis-oxaphosphetane, leading to the (Z)-olefin 261. However, if the phosphonium 

ylide is stabilised, the less reactive trans-oxaphosphetane 260 will be favoured, generating the 

(E)-olefin. 
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256 100
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260 261 262259
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Scheme 3-16: Mechanism of the Wittig reaction.35, 36 

 

Different factors also favour the formation of one olefin over the other, such as the 

substituents on the phosphine40 or the presence of lithium salts.36-38 

 

In 1958, Horner et al.41 reported a modified Wittig reaction using alkylated phosphine 

oxides instead of a triarylphosphonium ylide. In that publication, Horner described the 

formation of olefin 266 using methyl diphenylphosphine oxide 263 and benzophenone 264 in 

70% yield (Scheme 3-17).41 Three years later, Wadsworth and Emmons reported the reaction 

between phosphonate carbanions and ketones to form olefins as shown in Scheme 3-17.42 
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Scheme 3-17: Examples of modified Wittig reactions by Horner41 and Emmons.42 
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This group of modified Wittig reactions are named Wittig-Horner or Horner-Emmons 

reactions. The change from a trialkylphosphine to a dialkylphosphine oxide or a phosphonate 

brings several advantages. The first advantage is the increased nucleophilicity of the 

phosphonate carbanion compared to the phosphonium ylide, due to a weaker stabilisation of 

the negative charge by the valence shell of the phosphorous atom in the case of the 

phosphonate. Thus, a wider range of aldehydes and ketones react with phosphonate 

carbanions, and often under milder reaction conditions, generating the corresponding 

olefins.42 For example, phosphonium ylide 271 reacts with benzaldehyde under reflux in THF 

to obtain olefin 272, while phosphonate 273 reacts smoothly with benzaldehyde at room 

temperature (Scheme 3-18).42, 43  
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Scheme 3-18: Difference in reactivity between phosphonium ylide 271 and phosphonate 

carbanion 273.42, 43 

 

Moreover, alkylation on the -carbon is possible due to the increased reactivity of the 

phosphonate carbanion, whereas it is very difficult to mediate such an alkylation with 

phosphonium ylides.42, 44  

Also phosphonates can be easily prepared by different methods. The most common 

involves trialkyl phosphite and an alkyl halide, in an Arbuzov reaction. One example is the 

preparation of (S)-(+)-diethyl 2-benzyloxybutylphosphonate 274 from (S)-(+)-1-
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bromomethyl-propyl benzyl ether 273 and triethyl phosphite (Scheme 3-19).45 The reaction is 

initiated by nucleophilic attack of the phosphorus to the alkyl bromide 273. This is followed 

by dealkylation of the triethoxyphosphonium salt by attack of the bromide ion to the ethyl 

group, leading to phosphonate 274 in 95% yield. To avoid competition between the starting 

alkyl bromide and the ethyl bromide by-product, the ethyl bromide is removed as it is formed, 

as its boiling point is 37-40 °C at atmospheric pressure. 

 

Br

OBn
P(OEt)3
175 °C, 5h

P

OBn

OEt

OEt
O

95%
273 274

P
EtO OEt

OEt

P+

OBn OEt

OEt

O

Br-

-EtBr

 

Scheme 3-19: Preparation of a phosphonate by the Arbuzov reaction.45 

 

Phosphonates are also water-soluble and can easily be removed at the end of the 

reaction. 

The mechanism of the Wittig-Horner or Horner-Emmons reaction, using 

diarylphosphine oxide or phosphonate, is similar to the Wittig reaction. After deprotonation of 

the -carbon, anion 275 attacks the carbonyl to generate oxanions 276 and 277. Subsequent 

decomposition via the four membered intermediates 278 and 279 leads to olefins 280 and 281 

respectively (Scheme 3-20). 
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Scheme 3-20: Mechanism of Horner-Emmons reaction. 

 

The reversibility of the formation of the aldolates is well established. However, in the 

case of the phosphonate, few reports of direct observation of the reaction intermediates have 

been published.46 On the other hand, in the case of phosphine oxides, numerous examples of 

the isolation of the intermediate -hydroxyphosphine oxides can be found.47 Moreover, an X-

ray structure determination of the erythro-2-diphenylphosphinoyl-1-phenylpropan-1-ol isomer 

has been reported.48  

The reaction favours the formation of the trans olefin. Indeed, due to steric effects in 

the eclipsed conformation, the formation rate of erythro betaine 277 is lower than the threo 

betaine 276 (Scheme 3-21).49 In a similar manner, decomposition of threo betaine 276 to a 

trans olefin is faster than the decomposition of the erythro betaine 277 to a cis olefin. 
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Scheme 3-21: Steric effects are the origin of the stereoselectivity of the Horner-Emmons 

reaction.49 

 

Several publications have reported Wittig-Horner reactions with 

fluoromethylphosphonates 284 and 285 or fluoromethyl phosphine oxides 282 and 287 

leading to fluorinated double bonds (Scheme 3-22).50-53 In the case of (diisopropyl) 

fluoromethylphosphonate 284, the reaction was heated in order to obtain the fluoro-olefins 

283.51 And in the case of phosphine oxide 282 the yields and the stereoselectivity was poor to 

moderate.50 The reaction of diethyl (α-fluoro-β-methyl acetate)methylphosphonate 285 with 

an aldehyde leads principally to the E-product 286, whereas with diphenyl (α-fluoro-β-methyl 

acetate)phosphine oxide 287 this selectivity decreases.50, 52  

 



 122 

P

O
Ph
Ph

1) LDA, THF, -70 °C
2) R1R2CO, -70 °C, 15 min
3) tBuOK, 0 °C, overnight

P

O
iPrO
iPrO

1) LDA, THF, -78 °C
2) RCHO
3) 50 °C

R

H

H

F

R1

R2

H

F
282

284

283

283

18-61% yield

P

O

COOCH3

F

EtO
EtO

P

O

COOCH3

F

Ph
Ph

1) n-BuLi, THF, -78 °C or 0 °C

2) R1R2CO, 4 h

1) n-BuLi, THF, -78 °C or 0 °C

2) RCHO, 4 h

F

R2

R1

FR

H

285

287

286
55-90% yield
E/Z 70/30 to 98/2

60-90% yield
E/Z 60/40 to 82/18

286

COOCH3

COOCH3

F

F

No yield reported

ref. 51

ref. 54

ref. 53

ref.53

 

Scheme 3-22: Examples of fluorinated olefin synthesis using Wittig-Horner reactions. 

 

Moreover, Obayashi et al.54 reported the formation of gem-difluoro-olefins using 

diethyl difluoromethylphosphonate 288 and an aldehyde or a ketone. The reactions were 

efficient and proceeded in good yields. It is noteworthy that the reaction does not give the 

expected olefin when R1 is a nitrobenzyl or a 4-pyridinyl group, but the corresponding 

phosphate in low yields. 

 

P H

O
EtO

EtO
F F

1) LDA, -78 °C
2) R1R2CO
3) 50 °C F2C

R1

R2

54-71%288 289

P H

O
EtO

EtO
F F

1) LDA, -78 °C
2) RCHO
3) 50 °C

288 290
R= 4-NO2-C6H4  14%
R= 4-pyridyl        10%

P
O

O
EtO

EtO CF2H

R H

 

Scheme 3-23: Preparation of gem-difluoro-olefins by Obayashi.54 
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Thus, dialkyl fluoromethylphosphonate appeared to be a good candidate to investigate 

the preparation of -hydroxy--vinylfluorides. 

 

1.3.1Preparation of the fluoromethylphosphonate  

 

Several approaches were taken to address the preparation of the 

fluoromethylphosphonate. The first involved deprotonation of dimethyl methylphosphonate 

291 with n-butyllithium followed by treatment with SelectfluorTM (Scheme 3-24).55-57 

Unfortunately, this was unsuccessful with only the recovery of starting material and 

degradation products. 

 

MeO
P

O
MeO

CH3 MeO
P

O
MeO F

1) n-BuLi, THF, -78 °C, 15 min
2) Selectfluor, THF, -78 °C to r.t., 12h

291 292  

Scheme 3-24: Attempt to prepare dimethyl fluoromethylphosphonate 292 by reaction with 

BuLi and Selectfluor. 

 

A second approach explored the preparation of diethyl fluoromethylphosphonate 294 

from diethyl iodomethylphosphonate 293 by reaction with tetrabutylammonium fluoride 

(TBAF) (Scheme 3-25). Unfortunately, once again this was unsuccessful with only starting 

material and degradation products recovered. 
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O
EtO

EtO
P

O
EtO F
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CH3CN, reflux, overnightI

293 294  

Scheme 3-25: Attempt to prepare (diethyl) fluoromethylphosphonate 294 by reaction of 

TBAF on (diethyl) iodomethylphosphonate 293 
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Due to the lack of success with a one step preparation, a two step strategy was 

explored. Several publications have reported the preparation of α-fluorophosphonates from 

hydroxymethylphosphonates.50, 58 These papers describe activation of 

hydroxymethylphosphonate by tosylation50, 59 or triflation56, 60 followed by fluoride ion 

displacement (Scheme 3-26). 

 

P OH
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EtO
P OR

O
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EtO
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O
EtO
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F-XR

295 294  

Scheme 3-26: General strategy of the two-steps preparation of fluoromethylphosphonate 294. 

 

First the hydroxyl function of diethyl hydroxymethylphosphonate 295 was activated 

by tosylation using para-toluenesulfonyl chloride. This gave the tosylated intermediate 296 in 

69% yield (Scheme 3-27).50, 59 Unfortunately subsequent fluorination with TBAF was 

unsuccessful under classical conditions. 
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Scheme 3-27: Two step attempt to prepare the fluoromethylphosphonate 294. 

 

However, activation of the hydroxyl group as a triflate led to intermediate 297 and 

then treatment of this triflate with TBAF did result in the fluoromethylphosphonate 294 in 

57% over the two steps.58, 60 
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Scheme 3-27: Preparation of the fluoromethylphosphonate 294 from 

hydroxymethylphosphonate 295 in two steps. 

 

1.3.2 The Horner-Emmons reaction 

 

With phosphonate 294 in hand, the next step was to explore the Horner-Emmons 

reaction. The ideal substrate for the preparation of -hydroxy--vinylfluoride would be a 

protected α-hydroxyaldehyde 298 which would lead to -hydroxy--vinylfluoride, after 

deprotection of the allylic alcohol (Scheme 3-28). 
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EtO
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Base
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OPG

R R
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298 294 219  

Scheme 3-28: Strategy to prepare -hydroxy--vinylfluoride via a Horner-Emmons reaction. 

 

For this study, (R)-(+)-2,2-dimethyl-1,3-dioxolane-4-carboxaldehyde 100p, was 

selected as it is a commercially available material and offers an interesting building block for 

subsequent elaboration (Scheme 3-29). 
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Scheme 3-29: Proposed route to 4-((E)-2-fluorovinyl)-2,2-dimethyl-1,3-dioxolane 299. 
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However, the reaction between the phosphonate 294 and aldehyde 100p in the 

presence of LDA did not lead to the -hydroxy--vinylfluoride 299 as expected, but gave (E)-

diethyl-1-fluoro-2-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)vinylphosphonate 300 in 39% yield 

(Scheme 3-30). Interestingly, this gave only the E-isomer of the product with no trace of the 

Z-isomer, as determined by 31P and 19F NMR. 
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Scheme 3-30: Unexpected formation of fluorovinylphosphonate 300. 

 

The reaction clearly starts like a Horner-Emmons reaction, but after attack of the anion 

to the carbonyl group, the alkoxide 301 generated attacks the acidic proton alpha to the 

fluorine, giving 302. This is followed by elimination of the alcohol, leading to the 

fluorovinylphosphonate 300 (Scheme 3-31). 
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Scheme 3-31: Rationale for the formation of fluorovinylphosphonate 300. 
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The stereoselectivity of the double bond can be explained by steric effects. The 

hydroxyl group needs to be perpendicular to the plane of the developing double bond, 

resulting in two different configurations of intermediate 302 (Scheme 3-32). Intermediate 

302a possesses a bulky phosphonate group and the R group has the cis configuration, 

inducing a strong steric influence. On the other hand intermediate 302b has its two groups 

anti to each other reducing the steric effect. Intermediate 302b should be favoured over 302a, 

and lead to generate E fluorovinylphosphonate 300. 
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Scheme 3-32: Rationale of the stereoselectivity of the reaction leading to (E)-

fluorovinylphosphonate 300. 

 

In order to probe if this result was specific to aldehyde 100p, two other aldehydes 

were investigated under the reaction conditions. These were benzaldehyde 100r and hexanal 

100m (Scheme 3-33). In both cases only the -fluorovinylphosphonates 303 and 304 were 
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obtained with an E/Z ratio of 10/1 (determined by 19F NMR) and in 32% and 29% yields 

respectively. There were no traces of fluoro-olefins in either case as judged by 19F-NMR. 

Thus, under these conditions, diethyl fluoromethylphosphonate condensation with aldehydes, 

either aromatic or aliphatic, leads to the -fluorovinylphosphonates, without the generation of 

the anticipated fluoro-olefins. 
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Scheme 3-33: Fluorovinylphosphonate synthesis with benzaldehyde 100r and hexanal 100m. 

 

Due to the lack of success in generating fluoro-olefins no further investigations were 

pursued via Horner-Emmons reaction using a fluoromethylphosphonate. Instead another 

strategy was studied, towards a different target. 

 

 

2 Exploration of fluoroepoxides 

 

Due to the difficulty in preparing -hydroxy--vinylfluorides, the target of this aspect 

of the research was changed and the preparation of -fluoroepoxides was now investigated. 

Fluoroepoxides are less versatile building blocks than fluoroolefins, but these molecules are 

good substrates to investigate ring opening reactions (Scheme3-34). In order to test the 

epoxide-ring opening reaction, a pathway leading directly to fluoroepoxide 305 was 

investigated. 
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Scheme 3-34: Fluoroepoxides as building blocks. 

 

The strategy chosen to prepare the fluoroepoxides was based on a method developed 

by Hodgson et al.61 After deprotonation of the epoxide with a chiral base, the resultant anion 

was trapped with either Bu3SnCl, an aldehyde or TMSCl leading to the substituted epoxides 

309, 310 or 311 respectively.61 Moreover, if the epoxide is chiral, only one enantiomer is 

obtained (Scheme 3-35). 
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Scheme 3-35: Preparation of substituted epoxides by Hodgson et al.61 
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It was anticipated that by using an electrophilic fluorinating reagent to trap the anion 

at the end of the reaction, then this may offer a method to -fluoroepoxides (Scheme 3-36). 
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F
1) s-BuLi-(-)-spartein complex
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312 305  

Scheme 3-36: Putative route to fluoroepoxides 310. 

 

In order to establish the feasibility of the fluorination reaction, a model study was 

carried out with 1-decaepoxide 313 to examine fluorination at the terminal position of the 

epoxide. 

Accordingly, epoxide 313 was treated with 1.2 eq. of the s-BuLi-(-)sparteine complex 

and NFSI (Table 3-5). After 10 min, the presence of a new signal in 19F NMR spectrum of the 

reaction mixture was detected (Figure 3-2). Increasing the reaction time to 15 min improved 

the intensity of the signal. However all attempts to purify/characterise this new product failed. 

The fluorinated compound appeared to be too unstable. It is reasonable that compound 314 

formed, and noteworthy that with 2.3 equivalents of the s-BuLi-sparteine complex and NFSI 

as the electrophilic fluorination reagent, a new difluorinated product was detected by 19F 

NMR. Unfortunately, in this case too, the new product could not be purified or characterised 

due to its instability.  
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s-BuLi-sparteine (eq) Temperature Time Results (19F NMR) 

1.2 -90 °C, quench at -50 °C 10 min Fluorinated compound 

1.2 -90 °C, quench at -50 °C 15 min Fluorinated compound 

2.3 -90 °C, quench at 0 °C 30 min Difluorinated product 

 

Table 3-5: Attempted fluoroepoxide 314 formation. 

 

 

 

Figure 3-2: New signal in the 19F NMR spectrum of the reaction mixture. This is possibly 

fluoroepoxide 314. 
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Figure 3-3: 19F-NMR spectrum of the reaction mixture when using 2.3 eq of base. The 

presence of an AB pattern is apparent when 2.3 eq of s-BuLi/(-)-sparteine was used, 

suggesting the formation of difluoroepoxide 315. 

 

Indeed, Hodgson et al.61 reported the synthesis of the disilylated product 316 using  

3.3 eq. of the s-BuLi-(-)-sparteine complex (Scheme 3-37). 
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Scheme 3-37: Example of preparation of disilylated epoxide from1-dodecaepoxide. 

 

Due to these unsuccessful preliminary results, this project was abandoned. The 

products could not be isolated and characterised and this was clearly limiting. 
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Subsequent to this study, León et al. have published a new method for the preparation 

of -halo allylic alcohols from protected 2-deoxy-hex-1-enitols, in three steps and with high 

yields (Scheme 3-40).62 The first step involved the formation of fluorohydrin 322 by reaction 

of Selectfluor on an enol ether. Then an alkoxy radical fragmentation (ARF) was performed to 

produce the gem-fluoro-iodo alcohol 323.63-65 Finally a chromium chloride promoted 

elimination was undertaken to give -hydroxy--vinylfluoride 324 in very good yields but 

poor stereoselectivities.62 
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Scheme 3-40: Recent preparation of -hydroxy--vinylfluorides reported by León et al.62-65 

 

 

3 Conclusion 

 

-Hydroxy--vinylfluorides are an interesting class of building blocks which have the 

potential to generate a wide range of different fluorinated molecules. However, at the outset, 

only one synthesis of -hydroxy--vinylfluoride had been reported. 
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The first method explored in this study was the reductive-fluorination of propargylic 

alcohols using aluminium hydrides. However, although the reduction step was successful, the 

electrophilic fluorination failed and did not lead to the desired -hydroxy--vinylfluorides. 

The addition of methyllithium or sodium methoxide did not promote the fluorination step. 

These outcomes may be due to the lack of reactivity of the electrophilic fluorination reagents 

towards the organoaluminium intermediate. Another route to -hydroxy--vinylfluoride was 

then explored. 

 

The second strategy involved a Horner-Emmons reaction between a 

fluoromethylphosphonate and an -hydroxyaldehyde. However, the outcome of the reaction 

unexpectedly gave fluorovinylphosphonates, with good stereoselectivity, rather than the 

desired -hydroxy--vinylfluoride.  

 

Finally, the preparation of terminal fluoroepoxides was investigated, using s-BuLi/(-)-

sparteine couple to deprotonate the epoxide and then trap the resulting anion with an 

electrophilic fluorinating reagent. Initial results were encouraging, however, product stability 

proved a problem and prevented the isolation and characterisation of the intermediate 

organofluorine products.  
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Chapter 4: Experimental 
 

 

General information:  

 

All reagents of synthetic grade were used as supplied. If further purification or drying 

was required, the procedures used are detailed in Armarego and Perrin, “Purification of 

laboratory chemicals” 4th Ed.1  

Room temperature (r.t.) refers to 20-25 oC. Air and moisture sensitive reactions were 

carried out under an inert atmosphere using oven-dried glassware (>140 oC). Reaction 

progress was monitored by thin layer chromatography (TLC) performed using Merck, 

Kieselgel 60 plates. Compounds were detected by either UV or by the use of an appropriate 

staining agent.  

Column chromatography was performed using Merck Kieselgel 60 silica gel (230 - 

400 mesh). MgSO4 was used as a drying agent. 

Nuclear magnetic resonance (NMR) spectra were measured using a Bruker Avance 

300 operating at 300 MHz for 1H, 75 MHz for 13C, 282 MHz for 19F, and 121 MHz for 31P or 

a Bruker Avance II 400 operating at 400 MHz for 1H, 100 MHz for 13C, 376 MHz for 19F. All 

chemical shifts (δ) are reported in parts per million (ppm) and are quoted relative to the 

residual proton peak of CDCl3 or D2O. Coupling constants (J) are given in Hertz (Hz). 

Spectral coupling patterns are designated as follows; d: doublet; t: triplet; q: quartet; m: 

multiplet and br: broad signal. 
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GC-MS analyses were obtained using an Agilent 5890 gas chromatograph equipped 

with an Agilent 5973N mass-selective detector. High-resolution mass spectrometry was 

performed on a Waters LCT or GCT time-of-flight mass spectrometer. 

Melting points were measured using a GallenKamp Griffin MPA350.BM2.5 melting 

point apparatus and are uncorrected. 

X-ray crystallographic data (Appendices) were measured on a Rigaku MM007 

generator with Saturn detector with confocal optics Mo-K radiation (λ = 0.7107) using a 

0.3° width steps accumulating area detector frames spanning a hemisphere of reciprocal 

space; the reflections were corrected for Lorentz and polarisation effect. Absorption effects 

were corrected on the basis of multiple equivalent reflections. The structure was solved by 

direct methods and refined by full matrix least squares on F2 using the program SHELXTL. 

All hydrogen atoms were included in calculated positions using a riding model. All non-

hydrogen atoms were refined as anisotropic. 

All infra red (IR) spectra were recorded in the range 4000-440 cm-1 on a Nicolet 

Avatar 360 FT-IR. 
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General method for the Oxa-Prins reaction 

 

Boron trifluoride diethyl etherate (0.5 mmol, 1.0 eq) was added to a solution of the aldehyde 

(0.5 mmol, 1 eq) in dichloromethane (5 mL). After 5 min, the alcohol (0.5 mmol, 1 eq) was 

added, and the mixture was stirred for 5 h. Water and dichloromethane were then added and 

the layers were separated. The aqueous layer was extracted into dichloromethane, and then the 

organic layers were dried, filtered and concentrated. The residue was then purified over silica. 

 

 

General method for the Aza-Prins reaction 

 

Boron trifluoride diethyl etherate (0.5 mmol, 1.0 eq) was added to a solution of the aldehyde 

(0.5 mmol, 1 eq) in dichloromethane (5 mL). After 5 min, the N-(tosyl)-1-aminobut-3-ene 

(0.5 mmol, 1 eq) was added, and the mixture was stirred 36 h. Water and dichloromethane 

were then added and the layers were separated. The aqueous layer was extracted into 

dichloromethane, and then the organic layers were dried, filtered and concentrated. The 

residue was then purified over silica. 
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General method for the Oxa-Prins reaction under microwave conditions 

 

Boron trifluoride diethyl etherate (0.5 mmol, 1.0 eq) was added to a solution of the aldehyde 

(0.5 mmol, 1 eq) in dichloromethane (5 mL). After 5 min, the alcohol (0.5 mmol, 1 eq) was 

added, and the mixture irradiated during 10 min with microwaves (100 W). Water and 

dichloromethane were then added and the layers were separated. The aqueous layer was 

extracted into dichloromethane, and then the organic layers were dried, filtered and 

concentrated. The residue was then purified over silica. 

 

 

General method for the Aza-Prins reaction under microwave conditions  

 

Boron trifluoride diethyl etherate (0.5 mmol, 1.0 eq) was added to a solution of the aldehyde 

(0.5 mmol, 1 eq) in dichloromethane (5 mL). After 5 min, the N-(tosyl)-1-aminobut-3-ene 

(0.5 mmol, 1 eq) was added, and the mixture irradiatede during 30 min by microwaves (100 

W). Water and dichloromethane were then added and the layers were separated. The aqueous 

layer was extracted into dichloromethane, and then the organic layers were dried, filtered and 

concentrated. The residue was then purified over silica. 
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(±)-4-Fluoro-2-(4-nitrophenyl)tetrahydropyrans 101a and 102a.2 

 

Products (±)-101a and (±)-102a were prepared according to the general procedure outlined 

for the Oxa-Prins reaction from 4-nitrobenzaldehyde 100a (76 mg, 0.5 mmol), but-3-en-1-ol 

99 (45 µL, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in dichloromethane (5 mL). 

 

O

F

NO2
(±)-101a

2
345

6

 

 

Product (±)-101a was isolated after purification over silica gel (hexane/diethyl ether, 8/2; Rf= 

0.34) as a white solid (general procedure: 47 mg, 41 %, procedure with microwaves: 33 mg, 

29 %, general procedure at -20 °C: 70mg, 61 %). 

NMR: δH (300 MHz, CDCl3): 8.21 (2H, d, J= 8.60 Hz, Ar), 7.52 (2H, d, J= 8.60 Hz, Ar), 4.84 

(1H, dtt, J= 49.0 Hz, 10.9 Hz, 4.9 Hz, H4), 4.43 (1H, dt, J= 11.5 Hz, 1.8 Hz, H2), 4.25 (1H, 

dtd, J= 11.9 Hz, 5.7 Hz, 1.8 Hz, H6), 3.58 (1H, tt, J= 12.3 Hz, 1.8 Hz, H6), 2.39 (1H, dtt, J= 

12.3 Hz, 4.9 Hz, 2.1 Hz, H3), 2.20-2.09 (1H, m, H5), 1.86 (1H, tddd, J= 12.3 Hz, 11.1 Hz, 9.9 

Hz, 5.3 Hz, H5) and 1.67 (1H, dtd, J= 12.3 Hz, 11.5 Hz, 9.5 Hz, H3); δC (75 MHz, CDCl3): 

148.6 (Cq, Ar), 147.4 (Cq, Ar), 126.4 (CH, Ar), 123.6 (CH, Ar), 88.7 (CH, d, J= 177.7 Hz, 

C4), 76.4 (CH, d, J= 11.5 Hz, C2), 65.3 (CH2, d, J= 11.6 Hz, C6), 40.4 (CH2, d, J= 17.7 Hz, 

C3) and 32.6 (CH2, d, J= 17.7 Hz, C5); δF (282 MHz, CDCl3): -170.7 (dm, J= 49.0 Hz); 

HRMS m/z: [MH]+: 226.0879, calculated 226.0878; Mp: 80-82 °C; IR: max (neat)/cm-1: 2976, 

2942, 2853, 1521, 1348, 1320, 1181, 1133, 1078 and 849. 

Data in agreement with literature. 
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O

F

NO2

(±)-102a

2
345

6

 

 

Product (±)-102a was isolated after purification over silica gel (hexane/diethyl ether, 8/2, Rf= 

0.22) as a white solid (general procedure: 23 mg, 20 %, procedure with microwaves: 20 mg, 

18 %). 

NMR: δH (300 MHz, CDCl3): 8.21 (2H, d, J= 8.88 Hz, Ar), 7.53 (2H, d, J= 8.88 Hz, Ar), 5.11 

(1H, dtt, J= 47.7 Hz, 2.9 Hz, 2.6 Hz, H4), 4.87 (1H, dd, J= 11.8 Hz, 2.2 Hz, H2), 4.10-3.97 

(2H, m, 2xH6), 2.21 (1H, dddt, J= 14.4 Hz, 10.7 Hz, 3.3 Hz, 2.2 Hz, H3), 2.06-1.87 (2H, m, 

2xH5) and 1.74 (1H, dddd, J= 43.0Hz, 14.1Hz, 5.9Hz, 2.2Hz, H3); δC (75 MHz, CDCl3): 

149.6 (Cq, Ar), 147.3 (Cq, Ar), 126.3 (CH, Ar), 123.6 (CH, Ar), 86.3 (CH, d, J= 169.6 Hz, 

C4), 73.1 (CH, C2), 63.0 (CH2, d, J= 11.6 Hz, C6), 38.7 (CH2, d, J= 20.3 Hz, C3) and 30.4 

(CH2, d, J= 21.1 Hz, C5); δF (282 MHz, CDCl3): -186 (dm, J= 47.7 Hz); HRMS m/z: [MH]+: 

226.0874, calculated 226.0879; Mp : 100-102 °C; IR: max (neat)/cm-1: 3080, 2974, 2852, 

1514, 1345, 1207, 1150, 1069, 872 and 857. 

Data in agreement with literature. 
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(±)-2-(2-Fluorophenyl)-4-fluorotetrahydropyrans 101b and 102b. 

 

Products (±)-101b and (±)-102b were prepared according to the general procedure outlined 

for the Oxa-Prins reaction from 2-fluorobenzaldehyde 100b (53 µL, 0.5 mmol), but-3-en-1-ol 

99 (45 µL, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in dichloromethane (5 mL). 

 

O

F

F

(±)-101b

2
345

6

 

 

Product (±)-101b was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.36) as a colorless oil (50 mg, 50 %). 

NMR: δH (300 MHz, CDCl3): 7.50 (1H, td, J= 7.5 Hz, 5.6 Hz, Ar), 7.32-7.23 (1H, m, Ar), 

7.17 (1H, td, J= 7.5 Hz, 1.2 Hz, Ar), 7.03 (1H, ddd, J= 10.6 Hz, 8.2 Hz, 1.2 Hz, Ar), 4.84 

(1H, dtt, J= 49.2 Hz, 11.0 Hz, 5.0 Hz, H4), 4.66 (1H, dt, J= 11.4 Hz, 1.7 Hz, H2), 4.23 (1H, 

dtd, J= 12.0 Hz, 5.7 Hz, 1.7 Hz, H6), 3.60 (1H, tt, J= 12.3 Hz, 1.9 Hz, H6), 2.38 (1H, dtt, J= 

12.3 Hz, 5.0 Hz, 1.8 Hz, H3), 2.20-2.09 (1H, m, H5), 1.87 (1H, tddd, J= 12.5 Hz, 11.0 Hz, 

10.1 Hz, 5.2 Hz, H5) and 1.72 (1H, dtd, J= 12.1 Hz, 11.0 Hz, 9.5 Hz, H3); δC (75 MHz, 

CDCl3): 159.2 (Cq, d, J = 246.0 Hz, CAr-F), 129.1 (CH, d, J= 8.0 Hz, Ar), 128.4 (Cq, Ar), 

127.1 (CH, d, J= 4.2 Hz, Ar), 124.4 (CH, d, J= 3.5 Hz, Ar), 115.2 (CH, d, J= 21.7 Hz, Ar), 

89.0 (CH, d, J= 176.9 Hz, C4), 71.4 (CH, dd, J= 12.6 Hz, 3.6 Hz, C2), 65.5 (CH2, d, J= 11.7 

Hz, C6), 39.5 (CH2, d, J= 18.1 Hz, C3) and 32.9 (CH2, d, J= 18.1 Hz, C5); δF (282 MHz, 

CDCl3): -120.3 to -120.4 (m) and -170.5 (dm, J= 49.2 Hz); HRMS m/z: [MH, -HF]+ : 

179.0871, calculated 179.0872; IR: max (neat)/cm-1: 2961, 2932 and 2855, 1589, 1494, 1455, 

1230, 1183, 1159, 1084, 1044 and 982. 
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O

F

F

(±)-102b

2
345

6

 

 

Product (±)-102b was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.28) as a colorless oil (10 mg, 10 %). 

NMR: δH (300 MHz, CDCl3): 7.48 (1H, td, J= 7.5 Hz, 1.9 Hz, Ar), 7.30-7.21 (1H, m, Ar), 

7.15 (1H, td, J= 7.5 Hz, 1.4 Hz, Ar), 7.03 (1H, ddd, J= 10.5 Hz, 8.1 Hz, 1.4 Hz, Ar), 5.09 

(1H, dquint, J= 48.1 Hz, 2.9 Hz, H4), 5.08 (1H, dd, J= 11.7 Hz, 2.0 Hz, H2), 4.07-4.00 (2H, m, 

2xH6), 2.28-2.16 (1H, m, H3) and 2.07-1.69 (3H, m, 2xH5, H3); δC (75 MHz, CDCl3): 159.2 

(Cq, d, J = 246.0 Hz, CAr-F), 129.2 (CH, d, J= 8.1 Hz, Ar), 126.9 (CH, d, J= 4.0 Hz, Ar), 

126.4 (Cq, Ar), 124.4 (CH, d, J= 3.5 Hz, Ar), 115.3 (CH, d, J= 21.3 Hz, Ar), 86.8 (CH, d, J= 

169.1 Hz, C4), 68.9 (CH, C2), 63.3 (CH2, C6), 37.7 (CH2, d, J= 22.3 Hz, C3) and 30.3 (CH2, d, 

J= 22.4 Hz, C5); δF (282 MHz, CDCl3): 119.5 to -119.6 (m) and -186.4 to -187.0 (m); HRMS 

m/z: [MH, -HF]+: 179.0874, calculated 179.0872; IR: max (neat)/cm-1: 3017, 2918, 2852, 

1589, 1491, 1460, 1270, 1183, 1135, 1089 and 962. 
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(±)-2-(3-Fluorophenyl)-4-fluorotetrahydropyrans 101c and 102c. 

 

Products (±)-101c and (±)-102c were prepared according to the general procedure outlined for 

the Oxa-Prins reaction from 3-fluorobenzaldehyde 100c (55 µL, 0.5 mmol), but-3-en-1-ol 99 

(45 µL, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in dichloromethane (5 mL). 

 

O

F

F

(±)-101c

2
345

6

 

 

Product (±)-101c was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.32) as a colorless oil (55 mg, 55 %). 

NMR: δH (300 MHz, CDCl3): 7.31-7.19 (1H, m, Ar), 7.09-7.00 (2H, m, Ar), 6.93 (1H, tdd, J= 

8.4 Hz, 2.6 Hz, 1.1 Hz, Ar), 4.76 (1H, dtt, J= 49.1 Hz, 11.0 Hz, 5.0 Hz, H4), 4.27 (1H, dt, J= 

11.5 Hz, 1.8 Hz, H2), 4.16 (1H, dtd, J= 12.0 Hz, 5.7 Hz, 1.8 Hz, H6), 3.50 (1H, tt, J= 12.3 Hz, 

1.8 Hz, H6), 2.29 (1H, dtt, J= 12.3 Hz, 4.9 Hz, 2.1 Hz, H3), 2.13-2.01 (1H, m, H5), 1.79 (1H, 

tddd, J= 12.5 Hz, 11.0 Hz, 9.9 Hz, 5.0 Hz, H5) and 1.65 (1H, dtd, J= 12.2 Hz, 11.3 Hz, 9.6 

Hz, H3); δC (75 MHz, CDCl3): 162.8 (Cq, d, J = 247.0 Hz, CAr-F), 143.9 (Cq, dd, J= 8.6 Hz, 

1.2 Hz, Ar), 129.9 (CH, d, J= 8.2 Hz, Ar), 121.3 (CH, d, J= 2.8 Hz, Ar), 114.6 (CH, d, J= 

21.9 Hz, Ar), 112.8 (CH, d, J= 21.9 Hz, Ar), 89.2 (CH, d, J= 176.2 Hz, C4), 77.0 (CH, d, J= 

12.7 Hz, C2), 65.4 (CH2, d, J= 11.5 Hz, C6), 40.5 (CH2, d, J= 17.3 Hz, C3) and 32.9 (CH2, d, 

J= 17.3 Hz, C5); δF (282 MHz, CDCl3): -113.3 to -113.4 (m) and -170.5 (dm, J= 49.1 Hz); 

HRMS m/z: [MH, -HF]+: 179.0870, calculated 179.0872; IR: max (neat)/cm-1: 3017, 2919, 

2854, 1590, 1491, 1448, 1272, 1186, 1138, 1073 and 962. 
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O

F

F

(±)-102c

2
345

6

 

 

Product (±)-102c was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.24) as a colorless oil (7 mg, 7 %). 

NMR: δH (300 MHz, CDCl3): 7.35-7.28 (1H, m, Ar), 7.16-7.07 (2H, m, Ar), 7.0-6.93 (1H, m, 

Ar), 5.10 (1H, dquint, J= 47.8 Hz, 2.8 Hz, H4), 4.76 (1H, dd, J= 12.2 Hz, 2.5 Hz, H2), 4.05-

3.99 (2H, m, 2xH6), 2.23-2.13 (1H, m, H3), 2.06-1.88 (2H, m, 2xH5) and 1.79 (1H, dddd, J= 

43.5 Hz, 14.5 Hz, 11.5 Hz, 2.1 Hz, H3); δC (75 MHz, CDCl3): 162.9 (Cq, J= 249.3 Hz, CAr-

F), 147.1 (Cq, Ar), 129.9 (CH, d, J= 9.7 Hz, Ar), 121.2 (CH, d, J= 2.8 Hz, Ar), 114.4 (CH, d, 

J= 22.5 Hz, Ar), 112.7 (CH, d, J= 22.5 Hz, Ar), 86.7 (CH, d, J= 169.1 Hz, C4), 73.4 (CH, C2), 

63.1 (CH2, C6), 38.6 (CH2, d, J= 21.9 Hz, C3) and 30.5 (CH2, d, J= 21.9 Hz, C5) ; δF (282 

MHz, CDCl3): -113.4 to -113.5 (m) and -186.1 to -186.5 (m) ; HRMS m/z: [MH, -HF]+: 

179.0882, calculated 179.0872; IR: max (neat)/cm-1: 3075, 2962, 2856, 1592, 1488, 1447, 

1257, 1174, 1139, 1082 and 984. 
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(±)-2-(4-Fluorophenyl)-4-fluorotetrahydropyrans 101d and 102d. 

 

Products (±)-101d and (±)-102d were prepared according to the general procedure outlined 

for the Oxa-Prins reaction from 4-fluorobenzaldehyde 100d (53 µL, 0.5 mmol), but-3-en-1-ol 

99 (45 µL, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in dichloromethane (5 mL). 

 

O

F

F
(±)-101d

2
345

6

 

 

Product (±)-101d was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.32) as a colorless oil (49 mg, 49 %). 

NMR: δH (400 MHz, CDCl3): 7.33 (2H, dd, J= 8.7 Hz, 5.6 Hz, Ar), 7.05 (2H, t, J= 8.7 Hz, 

Ar), 4.82 (1H, dtt, J= 49.1 Hz, 11.0 Hz, 5.9 Hz, H4), 4.31 (1H, dt, J= 11.6 Hz, 1.8 Hz, H2), 

4.21 (1H, dtd, J= 11.9 Hz, 5.7 Hz, 1.7 Hz, H6), 3.57 (1H, tt, J= 12.3 Hz, 1.8 Hz, H6), 2.32 

(1H, dtt, J= 12.3 Hz, 4.8 Hz, 2.1 Hz, H3), 2.17-2.09 (1H, m, H5), 1.85 (1H, tddd, J= 12.5 Hz, 

11.0 Hz, 9.9 Hz, 5.1 Hz, H5) and 1.74 (1H, dtd, J= 12.2 Hz, 11.3 Hz, 9.6 Hz, H3); δC (75 

MHz, CDCl3): 162.3 (CH, d, J= 249.0 Hz, Ar), 137.9 (Cq, Ar), 127.6 (CH, d, J= 8.5 Hz, Ar), 

115.3 (CH, d, J= 21.2 Hz, Ar), 89.2 (CH, d, J= 177.2 Hz, C4), 77.2 (CH, d, J= 11.3 Hz, C2), 

65.4 (CH2, d, J= 11.8 Hz, C6), 40.5 (CH2, d, J= 17.6 Hz, C3) and 32.9 (CH2, d, J= 17.7 Hz, 

C5); δF (376 MHz, CDCl3): -115.0 to -115.1 (m) and -170.4 (dm, J= 49.1 Hz); HRMS m/z: 

[MH, -HF]+: 179.0870, calculated 179.0872; IR: max (neat)/cm-1: 2972, 2929, 1498, 1447, 

1290, 1186, 1137, 1080 and 834. 
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O

F

F

(±)-102d

2
345

6

 

 

Product (±)-102d was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.21) as a colorless oil (10 mg, 10 %). 

NMR: δH (400 MHz, CDCl3): 7.33 (2H, dd, J= 8.8 Hz, 5.7 Hz, Ar), 7.04 (2H, t, J= 8.8 Hz, 

Ar), 5.10 (1H, dquint, J= 48.0 Hz, 2.6 Hz, H4), 4.74 (1H, dd, J= 12.0 Hz, 2.3 Hz, H2), 4.04-

3.98 (2H, m, 2xH6), 2.20-2.10 (1H, m, H3), 2.06-1.8 (2H, m, 2xH5) and 1.81 (1H, dddd, J= 

43.7 Hz, 14.4 Hz, 11.8 Hz, 2.2 Hz, H3); δC (75 MHz, CDCl3): 162.1 (Cq, d, J= 245.0 Hz), 

137.9 (Cq, Ar), 127.4 (CH, d, J= 8.1 Hz, Ar), 115.2 (CH, d, J= 20.5 Hz, Ar), 86.7 (CH, d, J= 

168.1 Hz, C4), 73.4 (CH, C2), 63.1 (CH2, C6), 38.6 (CH2, d, J= 20.7 Hz, C3) and 30.5 (CH2, d, 

J= 20.5 Hz, CH5); δF (376 MHz, CDCl3): -115.4 to -115.5 (m) and -186.1 to -186.5 (m); 

HRMS m/z: [MH, -HF]+: 179.0874, calculated 179.0872; IR: max (neat)/cm-1: 2977, 2926, 

1447, 1276, 1181, 1123, 1086 and 977. 
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(±)-2-(2-Bromophenyl)-4-fluorotetrahydropyrans 101e and 102e. 

 

Products (±)-101e and (±)-102e were prepared according to the general procedure outlined for 

the Oxa-Prins reaction from 2-bromobenzaldehyde 100e (58 µL, 0.5 mmol), but-3-en-1-ol 99 

(45 µL, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in dichloromethane (5 mL). 
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Product (±)-101e was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.35) as a colorless oil (general procedre: 68 mg, 52 %, procedure with microwaves: 87 mg, 

67 %). 

NMR: δH (300 MHz, CDCl3): 7.59-7.50 (2H, m, Ar), 7.40-7.32 (1H, td, J= 7.5 Hz, 1.1 Hz, 

Ar), 7.20-7.12 (1H, td, J= 7.8 Hz, 1.7 Hz, Ar), 4.83 (1H, dtt, J= 49.0 Hz, 10.1 Hz, 5.0 Hz, H4), 

4.65 (1H, dt, J= 11.3 Hz, 1.9 Hz, H2), 4.23 (1H, dtd, J= 11.7 Hz, 5.7 Hz, 1.6 Hz, H6), 3.61 

(1H, tt, J= 12.3 Hz, 1.8 Hz, H6), 2.52 (1H, dtt, J= 12.3 Hz, 4.8 Hz, 2.1 Hz, H3), 2.20-2.09 (1H, 

m, H5), 1.87 (1H, tddd, J= 12.5 Hz, 10.8 Hz, 10.0 Hz, 5.1 Hz, H5) and 1.54 (1H, dtd, J= 12.3 

Hz, 11.3 Hz, 9.3 Hz, H3); δC (75 MHz, CDCl3): 140.5 (Cq, Ar), 132.5 (CH, Ar), 129.0 (CH, 

Ar), 127.8 (CH, Ar), 127.4 (CH, Ar), 121.3 (Cq, Ar), 88.9 (CH, d, J= 177.2 Hz, C4), 76.7 

(CH, d, J= 12.2 Hz, C2), 65.4 (CH2, d, J= 11.9 Hz, C6), 39.2 (CH2, d, J= 17.4 Hz, C3) and 32.9 

(CH2, d, J= 17.7 Hz, C5); δF (376 MHz, CDCl3): -170.3 (dm, J= 49.0 Hz); HRMS m/z: [MH, -

HF]+: 239.0072; 241.0061, calculated 239.0072, 241.0051; IR: max (neat)/cm-1: 3067, 2962, 

2854, 1568, 1473, 1440, 1371, 1249, 1158, 1082, 1082, 982, 754 and 679. 
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Product (±)-102e was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.22) as a colorless oil (general procedure: 10 mg, 8 %, general with microwaves: 26 mg, 20 

%). 

NMR: δH (300 MHz, CDCl3): 7.57-7.50 (2H, m, Ar), 7.38-7.30 (1H, m, Ar), 7.17-7.10 (1H, 

m, Ar), 5.10 (1H, dd, J= 11.6 Hz, 2.1 Hz, H2), 5.09 (1H, dquint, J= 47.8 Hz, 2.8 Hz, H4), 

4.08-4.03 (2H, m, 2xH6), 2.45-2.33 (1H, m, H3), 2.12-1.81 (2H, m, 2xH5) and 1.60 (1H, dddd, 

J= 43.8 Hz, 14.4 Hz, 11.55 Hz, 2.1 Hz, H3); δC (75 MHz, CDCl3): 141.5 (Cq, Ar), 132.6 (CH, 

Ar), 128.8 (CH, Ar), 127.7 (CH, Ar), 127.2 (CH, Ar), 121.5 (Cq, Ar), 86.5 (CH, d, J= 168.9 

Hz, C4), 73.3 (CH, C2), 63.2 (CH2, C6), 37.2 (CH2, d, J= 20.6 Hz, C3) and 30.6 (CH2, d, J= 

19.9 Hz, C5); δF (376 MHz, CDCl3): -186.8 to -187.4 (m); HRMS m/z: [MH, -HF]+: 239.0076; 

241.0051, calculated 239.0072, 241.0051; IR: max (neat)/cm-1: 3064, 2953, 2864, 1567, 1470, 

1428, 1369, 1254, 1147, 1072, 1021, 982, 751 and 705. 
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(±)-2-(3-Bromophenyl)-4-fluorotetrahydropyrans 101f and 102f. 

 

Products (±)-101f and (±)-102f were prepared according to the general procedure outlined for 

the Oxa-Prins reaction from 3-bromobenzaldehyde 100f (58 µL, 0.5 mmol), but-3-en-1-ol 99 

(45 µL, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in dichloromethane (5 mL). 
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Product (±)-101f was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.35) as a colorless oil (general procedure: 71 mg, 55 %, procedure with microwaves: 72 mg, 

55 %). 

NMR: δH (300 MHz, CDCl3): 7.56-7.53 (1H, m, Ar), 7.44 (1H, dt, J= 7.3 Hz, 1.9 Hz), 7.30-

7.20 (2H, m, Ar), 4.82 (1H, dtt, J= 48.9 Hz, 11.0 Hz, 5.0 Hz, H4), 4.30 (1H, dt, J= 11.7 Hz, 

2.0 Hz, H2), 4.22 (1H, dtd, J= 12.2 Hz, 5.6 Hz, 1.8 Hz, H6), 3.56 (1H, tt, J= 12.2 Hz, 1.8 Hz, 

H6), 2.34 (1H, dtt, J= 12.3 Hz, 5.0 Hz, 2.0 Hz, H3), 2.19-2.08 (1H, m, H5), 1.86 (1H, tddd, J= 

12.3Hz, 11.0 Hz, 9.8 Hz, 5.0 Hz, H5) and 1.71 (1H, dtd, J= 11.9 Hz, 11.5 Hz, 9.6 Hz, H3); δC 

(75 MHz, CDCl3): 143.5 (Cq, Ar), 130.8 (CH, Ar), 130.0 (CH, Ar), 128.9 (CH, Ar), 124.3 

(CH, Ar), 122.5 (Cq, Ar), 89.0 (CH, d, J= 177.0 Hz, C4), 76.9 (CH, d, J= 12.4 Hz, C2), 65.4 

(CH2, d, J= 12.4 Hz, C6), 40.5 (CH2, d, J= 17.8 Hz, C3) and 32.8 (CH2, d, J= 17.8 Hz, CH5); 

δF (282 MHz, CDCl3): -170.5 (dm, J= 48.9 Hz); HRMS m/z: [MH, -HF]+: 239.0102; 

241.0059, calculated 239.0072, 241.0051; IR: max (neat)/cm-1: 3066, 2960, 2853, 1568, 1474, 

1428, 1369, 1249, 1158, 1082, 1041, 783, 695 and 681. 
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Product (±)-102f was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.26) as a colorless oil (general procedure: 15 mg, 11 %, procedure with microwaves: 34 mg, 

26 %). 

NMR: δH (300 MHz, CDCl3): 7.56-7.51 (1H, m, Ar), 7.41 (1H, dt, J= 7.4 Hz, 1.8 Hz, Ar), 

7.29-7.18 (2H, m, Ar), 5.09 (1H, dquint, J= 47.9 Hz, 2.8Hz, H4), 4.73 (1H, dd, J= 11.7 Hz, 

2.2 Hz, H2), 4.05-3.97 (2H, m, 2xH6), 2.24-2.10 (1H, m, H3), 2.09-1.82 (2H, m, 2xH5) and 

1.78 (1H, dddd, J= 43.4 Hz, 14.5 Hz, 11.7 Hz, 2.1 Hz H3); δC (75 MHz, CDCl3): 144.5 (Cq, 

Ar), 130.6 (CH, Ar), 130.0 (CH, Ar), 128.9 (CH, Ar), 124.3 (CH, Ar), 122.6 (Cq, Ar), 86.6 

(CH, d, J= 169.0 Hz, C4), 73.3 (CH, C2), 63.0 (CH2, C6), 38.6 (CH2, d, J= 21.1 Hz, C3) and 

30.5 (CH2, d, J= 20.0 Hz, C5); δF (282 MHz, CDCl3): -186.0 to -186.7 (m); HRMS m/z:   

[MH, -HF]+: 239.0076; 241.0051, calculated 239.0072, 241.0051; IR: max (neat)/cm-1: 3065, 

2954, 2865, 1568, 1475, 1428, 1361, 1255, 1115, 1072, 1043, 867, 780 and 689. 
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(±)-2-(4-Bromophenyl)-4-fluorotetrahydropyrans 101g and 102g. 

 

Products (±)-101g and (±)-102g were prepared according to the general procedure outlined 

for the Oxa-Prins reaction from 4-bromobenzaldehyde 100g (92 mg, 0.5 mmol), but-3-en-1-ol 

99 (45 µL, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in dichloromethane (5 mL). 
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Product (±)-101g was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.35) as a white solid (general procedure: 92 mg, 71 %, procedure with microwaves: 71 mg, 

55 %). 

NMR: δH (300 MHz, CDCl3): 7.49 (2H, d, J= 8.33 Hz, Ar), 7.23 (2H, d, J= 8.33 Hz, Ar), 4.81 

(1H, dtt, J= 48.9 Hz, 11.0 Hz, 5.1 Hz, H4), 4.29 (1H, dt, J= 11.6 Hz, 1.9 Hz, H2), 4.21 (1H, 

dtd, J= 12.0 Hz, 5.8 Hz, 1.8 Hz, H6), 3.56 (1H, tt, J= 12.3 Hz, 1.9 Hz, H6), 2.32 (1H, dtt, J= 

12.3 Hz, 4.8 Hz, 2.1 Hz, H3), 2.18-2.08 (1H, m, H5), 1.85 (1H, tddd, J= 12.5 Hz, 11.0 Hz, 9.9 

Hz, 5.1 Hz, H5) and 1.79-1.62 (1H, m, H3); δC (75 MHz, CDCl3): 140.3 (Cq, Ar), 131.5 (Cq, 

Ar), 127.5 (CH, Ar), 121.6 (CH, Ar), 89.1 (CH, d, J= 177.6 Hz, C4), 77.0 (CH, d, J= 11.5 Hz, 

C2), 65.4 (CH2, d, J= 12.0 Hz, C6), 40.4 (CH2, d, J= 17.0 Hz, C3) and 32.8 (CH2, d, J= 18.3 

Hz, C5); δF (282 MHz, CDCl3): -169.9 (dm, J= 48.9 Hz); HRMS m/z: [MH, -HF]+: 239.0072, 

241.0057, calculated 239.0072, 241.0051; Mp: 36-38 °C; IR: max (neat)/cm-1: 3082, 2959, 

2856, 1588, 1489, 1453, 1362, 1247, 1158, 1089, 978, 822 and 589. 
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Product (±)-102g was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.26) as a colorless oil (general procedure: 18 mg, 14 %, procedure with microwaves: 26 mg, 

20 %). 

NMR: δH (300 MHz, CDCl3): 7.48 (2H, d, J= 8.44 Hz, Ar), 7.23 (2H, d, J= 8.44 Hz, Ar), 5.08 

(1H, dquint, J= 48.1 Hz, 2.8 Hz, H4), 4.72 (1H, dd, J= 11.8 Hz, 2.3 Hz, H2), 4.04-3.98 (2H, m, 

2xH6), 2.15 (1H, dddt, J= 14.6 Hz, 11.1 Hz, 3.3 Hz, 2.2 Hz,m H3) and 2.06-1.63 (3H, m, 

2xH5, H3); δC (75 MHz, CDCl3): 145.9 (Cq, Ar), 136.0 (Cq, Ar),131.5 (CH, Ar), 127.4 (CH, 

Ar), 86.5 (CH, d, J= 169.1 Hz, C4), 73.4 (CH, C2), 63.0 (CH2, C6), 38.7 (CH2, d, J= 20.8 Hz, 

C3) and 30.5 (CH2, d, J= 21.5 Hz, C5); δF (282 MHz, CDCl3): -185.8 to -186.6 (m); HRMS 

m/z: [MH, -HF]+: 239.0077; 241.0052, calculated 239.0072, 241.0051; Mp: 39-41 °C; IR: 

max (neat)/cm-1: 3079, 2918, 2850, 1580, 1475, 1360, 1255, 1202, 1146, 1069, 1007 and 814. 
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(±)-4-Fluoro-2-(4-methoxyphenyl)tetrahydropyrans 101h and 102h. 

 

Products (±)-101h and (±)-102h were prepared according to the general procedure outlined 

for the Oxa-Prins reaction from 4-methoxybenzaldehyde 100h (60 µL, 0.5 mmol), but-3-en-1-

ol 99 (45 µL, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in dichloromethane (5 mL). 

The product was isolated as a white solid as a mixture of diastereoisomers after purification 

over silica gel (hexane/diethyl ether, 8/2 Rf= 0.27) (general procedure: 17 mg, 16 %, mixture 

ratio syn/anti 2.5/1, procedure with microwaves: 39 mg, 37 %, mixture ratio syn/anti 1/1.9. 

The ratio has been determined by 1H NMR). 
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Product (±)-101h, identified from mixture of diastereoisomers: 

NMR: δH (300 MHz, CDCl3): 7.33-7.25 (2H, m, Ar), 6.93-6.85 (2H, m, Ar), 4.81 (1H, dtt, J= 

49.2 Hz, 11.0 Hz, 5.0 Hz, H4), 4.28 (1H, dt, J= 11.5 Hz, 2.0 Hz, H2), 4.20 (1H, dtd, J= 12.0 

Hz, 5.4 Hz, 1.7 Hz, H6), 3.81 (3H, s, OCH3), 3.57 (1H, tt, J= 12.2 Hz, 2.0 Hz, H6), 2.31 (1H, 

dtt, J= 12.4 Hz, 5.0 Hz, 2.1 Hz, H3), 2.21-2.07 (1H, m, H5) and 2.07-1.71 (2H, m, H5, H3); δC 

(75 MHz, CDCl3): 158.0 (Cq, Ar), 134.3 (Cq, Ar), 127.2 (CH, Ar), 113.8 (CH, Ar), 89.4 (CH, 

d, J= 176.6 Hz, C4), 77.6 (CH, C2), 65.4 (CH2, d, J= 12.4 Hz, C6), 55.2 (CH3, OCH3), 40.3 

(CH2, d, J= 17.1 Hz, C3) and 32.9 (CH2, d, J= 16.2 Hz, C5); δF (282 MHz, CDCl3): -170.1 

(dm, J= 49.2 Hz); HRMS m/z: [MH]+: 211.1133, calculated 211.1134; IR of the mixture: max 

(neat)/cm-1: 3079, 2932, 2858, 1518, 1450, 1347, 1295, 1169, 1081, 951, 854 and 586. 
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Product (±)-102h, identified from mixture of diastereoisomers: 

NMR: δH (300 MHz, CDCl3): 7.33-7.25 (2H, m, Ar), 6.93-6.85 (2H, m, Ar), 5.92 (1H, dquint, 

J= 48.0 Hz, 2.8 Hz, H4), 4.71 (1H, dd, J= 11.6 Hz, 2.2 Hz, H2), 4.04-3.97 (2H, m, 2xH6), 3.81 

(3H, s, OCH3), 2.21-2.07 (1H, m, H3) and 2.07-1.71 (3H, m, 2xH2, H3); δC (75 MHz, CDCl3): 

159.0 (Cq, Ar), 134.3 (Cq, Ar), 127.1 (CH, Ar), 113.8 (CH, Ar), 86.9 (CH, d, J= 168.6 Hz, 

C4), 73.7 (CH, C2), 63.1 (CH2, C6), 55.2 (CH3, OCH3), 38.4 (CH2, d, J= 20.7 Hz, CH3) and 

30.6 (CH2, d, J= 20.7 Hz, C5); δF (282 MHz, CDCl3): -185.8 to -186.4 (m); HRMS m/z: 

[MH]+: 211.1133, calculated 211.1134; IR of the mixture: max (neat)/cm-1: 3079, 2932, 2858, 

1518, 1450, 1347, 1295, 1169, 1081, 951, 854 and 586. 
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(±)-4-Fluoro-2-pentyltetrahydropyrans 101m and 102m. 

 

Products (±)-101m and (±)-102m were prepared according to the general procedure outlined 

for the Oxa-Prins reaction from hexanal 100m (61 µL, 0.5 mmol), but-3-en-1-ol 99 (45 µL, 

0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in dichloromethane (5 mL). 
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Product (±)-101m was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.37) as a pale yellow oil (general procedure: 42 mg, 48 %, procedure with microwave: 51 

mg, 58 %, general procedure at -20 °C: 57 mg, 66 %). 

NMR: δH (400 MHz, CDCl3): 4.63 (1H, dtt, J= 49.2 Hz, 11.0 Hz, 5.1 Hz, H4), 4.02 (1H, dtd, 

J= 11.7 Hz, 5.7 Hz, 1.8 Hz, H6), 3.35 (1H, tt, J= 12.3 Hz, 1.6 Hz, H6), 3.23 (1H, dddt, J= 11.3 

Hz, 7.1 Hz, 4.7 Hz, 1.8 Hz, H2), 2.07 (1H, dtt, J= 12.1 Hz, 5.1 Hz, 1.8 Hz, H3), 2.03-1.96 (1H, 

m, H5), 1.76-1.62 (1H, tddd, J= 12.3 Hz, 11.0 Hz, 9.9 Hz, 5.1 Hz, H5), 1.61-1.20 (9H, m, H3, 

4xCH2 pentyl) and 0.88 (3H, t, J= 6.7 Hz, CH3 pentyl); δC (100 MHz, CDCl3): 89.3 (CH, d, 

J= 176.2 Hz, C4), 75.7 (CH, d, J= 10.9 Hz, C2), 64.9 (CH2, d, J= 11.4 Hz, C6), 38.7 (CH2, d, 

J= 17.1 Hz, C3), 36.0 (CH2, CH2 pentyl), 33.1 (CH2, d, J= 17.4 Hz, C5), 31.7 (CH2, CH2 

pentyl), 25.1 (CH2, CH2 pentyl), 22.5 (CH2, CH2 pentyl) and 14 (CH3, CH3 pentyl); δF (282 

MHz, CDCl3): -169.8 (dm, J= 49.2 Hz); HRMS m/z: [MH, -HF]+: 155.1435, calculated 

155.1436; IR: max (neat)/cm-1: 2955, 2931, 2858, 1456, 1367, 1163, 1085 and 1005. 
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Product (±)-102m was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 

0.29) as a colorless oil (general procedure: 20 mg, 23 %, procedure with microwaves: 26 mg, 

30 %). 

NMR: δH (400 MHz, CDCl3): 4.99 (1H, dquint, J= 48.1 Hz, 2.7 Hz, H4), 3.88-3.76 (2H, m, 

2xH6), 3.65 (1H, dddd, J= 11.6 Hz, 7.0 Hz, 4.4 Hz, 2.1 Hz, H2), 1.90-1.70 (2H, m, H3, H5), 

1.59-1.21 (10H, m, H5, H3, 4xCH2 pentyl) and 0.89 (3H, t, J = 7.13 Hz, CH3 pentyl); δC (100 

MHz, CDCl3): 86.9 (CH, d, J= 169.3 Hz, C4), 71.9 (CH, C2), 62.5 (CH2, C6), 36.8 (CH2, d, J= 

19.6 Hz, C3), 36.1 (CH2, CH2 pentyl), 31.8 (CH2, CH2 pentyl), 31.0 (CH2, d, J= 19.6 Hz, C5), 

25.0 (CH2, CH2 pentyl), 22.6 (CH2, CH2 pentyl) and 14.1 (CH3, CH3 pentyl); δF (282 MHz, 

CDCl3): -185.2 to -185.8 (m); HRMS m/z: [MH, -HF]+: 155.1435, calculated 155.1436; IR: 

max (neat)/cm-1: 2934, 2927, 2858, 1462, 1365, 1200, 1146, 1073 and 1005. 
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(±)-4-Fluoro-2-phenyltetrahydropyrans 101r and 102r.2 

 

Products (±)-101r and (±)-102r were prepared according to the general procedure outlined for 

the Oxa-Prins reaction from freshly distilated benzaldehyde 100r (50 µL, 0.5 mmol), but-3-

en-1-ol 99 (45 µL, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in dichloromethane (5 

mL). 
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Product (±)-101r was isolated after purification over silica gel as a single diastereoisomer 

(hexane/diethyl ether, 8/2 Rf= 0.22) as a colorless oil (general procedure: 19 mg, 21 %, 

procedure with microwaves: 8 mg, 9 %, general procedure  at -20 °C: 54 mg, 59 %). 

NMR: δH (400 MHz, CDCl3): 7.30-7.16 (5H, m, Ar), 4.74 (1H, dtt, J= 49.1 Hz, 10.9 Hz, 5.0 

Hz, H4), 4.23 (1H, dt, J= 11.6 Hz, 1.8 Hz, H2), 4.13 (1H, dtd, J= 11.9 Hz, 5.7 Hz, 1.8 Hz, H6), 

3.48 (1H, tt, J= 12.2 Hz, 1.8 Hz, H6), 2.26 (1H, dtt, J= 12.3 Hz, 4.9 Hz, 2.1 Hz, H3), 2.04 (1H, 

dddt, J= 12.3 Hz, 6.9 Hz, 4.3 Hz, 2.0 Hz, H5) and 1.86-1.60 (2H, m, H3, H5); δC (100 MHz, 

CDCl3): 141.2 (Cq, Ar), 128.4 (CH, Ar), 127.8 (CH, Ar), 125.8 (CH, Ar), 89.3 (CH, d, J= 

176.9 Hz, C4), 77.8 (CH, d, J= 11.3 Hz, C2), 65.4 (CH2, d, J= 11.9 Hz, C6), 40.5 (CH2, d, J= 

17.0 Hz, C5) and 32.9 (CH2, d, J= 17.6 Hz, C3); δF (282 MHz, CDCl3): -170.2 (dm, J= 49.1 

Hz); HRMS m/z: [MNa]+: 203.0843, calculated 203.0848; IR: max (neat)/cm-1: 3064, 3032, 

2960, 2853, 1494, 1453, 1374, 1249, 1158, 1081, 980, 757 and 699. 

Data in agreement with literature. 
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Product (±)-102r was isolated as a mixture of diastereoisomer with 101r after purification 

over silica gel (hexane/diethyl ether, 8/2 Rf= 0.20) as a colorless oil (general procedure: 32 

mg, 35 %, mixture ratio syn/anti 2.4/1, procedure with microwaves: 47 mg, 52 %, mixture 

ratio syn/anti 2.7/1). 

From mixture of diastereoisomers : 

NMR: δH (400 MHz, CDCl3): 7.29-7.17 (5H, m, Ar), 5.01 (1H, dquint, J= 48.1 Hz, 3.2 Hz, 

H4), 4.67 (1H, dd, J= 11.9 Hz, 2.6 Hz, H2), 3.95-3.91 (2H, m, 2xH6), 2.14-2.00 (1H, m, H3) 

and 1.98-1.62 (3H, m, 2xH5, H3); δC (75 MHz, CDCl3): 142.2 (Cq, Ar), 128.5 (CH, Ar), 127.6 

(CH, Ar), 125.8 (CH, Ar), 86.9 (CH, d, J= 168.7 Hz, C4), 74.1 (CH, C2), 63.1 (CH2, C6), 38.6 

(CH2, d, J= 21.0 Hz, C3) and 30.6 (CH2, d, J= 22.4 Hz, C5); δF (282 MHz, CDCl3): -185.9 to -

186.4 (m); HRMS m/z: [MNa]+: 203.0846, calculated 203.0848; IR of the mixture of 

diastereoisomers: max (neat)/cm-1: 3064, 3032, 2960, 2853, 1494, 1453, 1374, 1249, 1158, 

1081, 980, 757 and 699. 

Data in agreement with literature. 

 



 163 

(±)-3-Ethyl-4-fluoro-2-(4’-nitrophenyl)tetrahydropyran 104. 

 

O

F

NO2

(±)-104

2
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6
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Tetrahydropyran (±)-104 was prepared according to the general procedure outlined for the 

Oxa-Prins reaction from 4-nitrobenzaldehyde 100a (151 mg, 1 mmol), (E)-hex-3-en-1-ol 103 

(118 µL, 1 mmol) and boron trifluoride (127 µL, 1 mmol) in dichloromethane (10 mL) to give 

the title compound after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 0.31) as a 

white solid (67 mg, 53 %). 

NMR: δH (300 MHz, CDCl3): 8.22 (2H, d, J= 9.0 Hz, Ar), 7.53 (2H, d, J= 9.0 Hz, Ar), 4.64 

(1H, dtd, J= 49.2 Hz, 10.6 Hz, 4.9 Hz, H4), 4.19-4.08 (2H, m , H2, OH6), 3.57 (1H, tdd, J= 

12.5 Hz, 2.1 Hz, 1.5 Hz, H6), 2.19 (1H, dddd, J= 12.2 Hz, 6.8 Hz, 4.9 Hz, 2.0 Hz, H5), 2.02 

(1H, m, H5), 1.79 (1H, qt, J= 9.7 Hz, 4.9 Hz, H3), 1.46-1.31 (1H, m, H7), 1.28-1.17 (1H, m, 

H7) and 0.74 (3H, td, J= 7.6 Hz, 0.9 Hz, 3xH8); δC (75 MHz, CDCl3): 147.7 (Cq, Ar), 146.9 

(Cq, Ar), 128.3 (CH, Ar), 123.6 (CH, Ar), 91.8 (CH, d, J= 178.8 Hz, C4), 81.5 (CH, d, J= 9.9 

Hz, C2), 65.4 (CH2, d, J= 12.9 Hz, C6), 49.0 (CH, d, J= 17.4 Hz, C3), 32.9 (CH2, d, J= 18.5 

Hz, C5) and 20.0 (CH2, C7), 10.5 (CH3, C8); δF (282 MHz, CDCl3): -176.6 (dm, J= 49.2 Hz); 

HRMS m/z: [MNa]+: 276.1015, calculated 276.1012; Mp: 81-83 °C; IR: max (neat)/cm-1: 

3110, 3080, 2966, 2858, 1605, 1522, 1347, 1198, 1155, 1088, 1025, 852 and 814. 
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(±)-3-Ethyl-4-fluoro-2-(4’-nitrophenyl)tetrahydropyran 106. 

 

O

F
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2

3
7

8
45

6

 

 

Tetrahydropyran (±)-106 was prepared according to the general procedure outlined for the 

Oxa-Prins reaction from 4-nitrobenzaldehyde 100a (151 mg, 1 mmol), (Z)-hex-3-en-1-ol 105 

(118 µL, 1 mmol) and boron trifluoride (127 µL, 1 mmol) in dichloromethane (10 mL) to give 

the title compound after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 0.23), as a 

white solid (68 mg, 54 %). 

NMR: δH (300 MHz, CDCl3): 8.21 (2H, d, J= 8.9 Hz, Ar), 7.50 (2H, d, J= 8.9 Hz, Ar), 4.96 

(1H, ddt, J= 48.6 Hz, 11.6 Hz, 5.1 Hz, H4), 4.51 (1H, t, J= 2.3 Hz, H2), 4.21 (1H, dtd, J= 11.6 

Hz, 6.1 Hz, 1.5 Hz, H6), 3.56 (1H, dddd, J= 12.3 Hz, 12.0 Hz, 2.9 Hz, 1.5 Hz, H6), 2.23 (1H, 

m, H3), 2.02 (1H, dddd, J= 24.5 Hz, 12.6 Hz, 8.2 Hz, 5.5 Hz, H5), 1.95-1.85 (1H, m, H5), 1.50 

(1H, dqd, J= 14.6 Hz, 7.6 Hz, 4.9 Hz, H7), 1.21 (1H, dqd, J= 14.6 Hz, 7.6 Hz, 5.8 Hz, H7) and 

0.47 (3H, dt, J= 7.6 Hz, 0.8 Hz, 3xH8); δC (75 MHz, CDCl3): 147.9 (Cq, Ar), 146.0 (Cq, Ar), 

126.3 (CH, Ar), 123.4 (CH, Ar), 92.4 (CH, d, J= 183.0 Hz, C4), 79.0 (CH, d, J= 9.4 Hz, C2), 

65.2 (CH2, d, J= 11.9 Hz, C6), 47.0 (CH, d, J= 16.2 Hz, C3), 27.2 (CH2, d, J= 18.7 Hz, C5), 

14.7 (CH2, d, J= 1.7 Hz, C7) and 14.4 (CH3, d, J= 1.8 Hz, C8); δF (282 MHz, CDCl3): -177.2 

(dm, J= 48.6 Hz); HRMS m/z: [MNa]+: 276.1019, calculated 276.1012; Mp: 81-83 °C; IR: 

max (neat)/cm-1: 3112, 3080, 2966, 2876, 1601, 1519, 1346, 1171, 1104, 1072, 1026 and 856. 
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(±)-trans-2-Vinylcyclohexanol 113.3 

 

To a solution of cyclohexene oxide 115 (500 µL, 5 mmol) in diethyl ether (2 mL) at -20 °C 

was added CuBr.Me2S (102 mg, 0.5 mmol) and vinylmagnesium bromide (6 mL, 6 mmol). 

After 10h, the the mixture was hydrolysed with a solution of saturated ammonium chloride 

and the layers were separated. The aqueous layer was extracted into diethyl ether then the 

organic layers were dried, concentrated and purified over silica gel. Alcohol (±)-113 was 

obtained as a colorless oil (447 mg, 71%). 

 

OH
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1

2
3

4

5
6

7
8

 

 

NMR: δH (400 MHz, CDCl3): 5.68 (1H, ddd, J= 17.2 Hz, 10.2 Hz, 8.7 Hz, H7), 5.16 (1H, ddd, 

J= 17.2 Hz, 1.9 Hz, 0.7 Hz, H8), 5.12 (1H, dd, J= 10.2 Hz, 1.9 Hz, H8), 3.24 (1H, td, J= 10.0 

Hz, 4.4 Hz, H1), 2.06-1.98 (1H, m, H6), 1.96-1.84 (1H, m, H2), 1.79-1.70 (2H, m, H5 or H4, 

H3), 1.69-1.64 (1H, m, H5 or H4) and 1.31-1.15 (4H, H3, H5, H4, H6); δC (75 MHz, CDCl3): 

140.8 (CH, C7), 116.7 (CH2, C8), 72.7 (CH, C1), 51.2 (CH, C2), 33.8 (CH2, C6), 31.1 (CH2, 

C3), 25.1 (CH2, C5 or C4) and 24.7 (CH2, C5 or C4); LRMS m/z: [MNa]+: 149.1, calculated 

149.1; IR: max (neat)/cm-1: 3384, 2918, 2851, 1697, 1446, 1303, 1200 and 1057. 

Data in agreement with literature. 
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(±)-4-Fluoro-2-phenyloctahydrochromene 114a. 

 

Product (±)-114a was prepared according to the general procedure outlined for the Oxa-Prins 

reaction from benzaldehyde 100r (102 µL, 1.0 mmol), 2-vinyl-cyclohexanol 113 (126 mg, 1.0 

mmol) and boron trifluoride (126 µL, 0.1 mmol) in dichloromethane (10 mL). The product 

was isolated after purification over silica gel (hexane/diethyl ether, 8/2 Rf= 0.27) as a pale 

yellow oil (69 mg, 59 %). 
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NMR: δH (400 MHz, CDCl3): 7.39-7.33 (4H, m, Ar), 7.31-7.27 (1H, m, Ar), 4.46 (1H, dtd, J= 

49.9 Hz, 10.4 Hz, 5.0 Hz, H4), 4.44 (1H, dt, J= 11.82 Hz, 2.0 Hz, H2), 3.16 (1H, tdd, J= 10.4 

Hz, 4.2 Hz, 1.5 Hz, H6), 2.35 (1H, dtd, J= 12.4 Hz, 4.7 Hz, 2.0 Hz, H3), 2.21 (1H, ddt, J= 13.3 

Hz, 5.6 Hz, 3.0 Hz, H7), 2.05 (1H, m, H10), 1.91-1.81 (2H, m, H3 and H8), 1.80-1.72 (H, m, 

H8), 1.60-1.42 (2H, m, H10, H5), 1.40-1.24 (2H, m, 2xH9) and 1.10-1.00 (1H, m, H7); δC (75 

MHz, CDCl3): 136.3 (Cq, Ar), 128.5 (CH, Ar), 127.7 (CH, Ar), 126.0 (CH, Ar), 93.6 (CH, d, 

J= 177.7 Hz, C4), 78.7 (CH, d, J= 8.8 Hz, C6), 77.1 (CH, d, J= 12.5 Hz, C2), 47.9 (CH, d, J= 

16.9 Hz, C5), 40.4 (CH2, d, J= 17.4 Hz, C3), 32.0 (CH2, C10), 26.9 (CH2, C7), 24.9 (CH2, C8 or 

C9) and 24.7 (CH2, C8 or C9); δF (282 MHz, CDCl3): -179.9 (dm, J= 49.9 Hz); HRMS m/z: 

[MNa]+: 257.1318, calculated 257.1319; IR: max (neat)/cm-1: 3027, 2920, 2851, 1449, 1372, 

1278, 1183, 1123, 1072, 1034, 997, 756 and 698. 
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(±)-4-Fluoro-2-(4-nitrophenyl)octahydrochromene 114b. 

 

Product (±)-114b was prepared according to the general procedure outlined for the Oxa-Prins 

reaction from 4-nitrobenzaldehyde 100a (121 mg, 0.87 mmol), 2-vinyl-cyclohexanol 113 (110 

mg, 0.87 mmol) and boron trifluoride (110 µL, 0.87 mmol) in dichloromethane (10 mL) to 

give the title compound. The product was isolated after purification over silica gel 

(hexane/diethyl ether, 8/2 Rf= 0.20) as a white solid (80 mg, 57 %). 
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NMR: δH (300 MHz, CDCl3): 8.21 (2H, d, J= 8.9 Hz, Ar), 7.54 (2H, d, J= 8.9 Hz, Ar), 4.55 

(1H, m, H2), 4.47 (1H, dtd, J= 49.6 Hz, 10.4 Hz, 4.9 Hz, H4), 3.18 (1H, tdd, J= 10.3 Hz, 4.1 

Hz, 1.4 Hz, H6), 2.38 (1H, dtd, J= 12.3 Hz, 4.5 Hz, 2.3 Hz, H3), 2.21 (1H, ddt, J= 13.2 Hz, 5.3 

Hz, 3.0 Hz, H7), 2.10-2.00 (1H, m, H10), 1.91-1.81 (1H, m, H9 or H8), 1.81-1.68 (2H, m, H3, 

H9 or H8), 1.60-1.39 (2H, m, H5, H10), 1.39-1.18 (2H, m, H9, H8) and 1.13-0.96 (1H, m, H7); 

δC (75 MHz, CDCl3): 148.7 (Cq, Ar), 147.3 (Cq, Ar), 126.5 (CH, Ar), 123.6 (CH, Ar), 92.8 

(CH, d, J= 178.8 Hz, C4), 78.7 (CH, d, J= 9.3 Hz, C6), 75.7 (CH, d, J= 12.0 Hz, C2), 47.7 

(CH, d, J= 17.4 Hz, C5), 40.4 (CH2, d, J= 18.5 Hz, C3), 31.9 (CH2, C7), 26.7 (CH2, C10), 24.8 

(CH2, C8 or C9) and 24.5 (CH2, C8 or C9); δF (282 MHz, CDCl3): -181.7 (dm, J= 49.6 Hz); 

HRMS m/z: [MNa]+: 302.1170, calculated 302.1168; Mp: 77-79 °C; IR: max (neat)/cm-1: 

3080, 2932, 2858, 1604, 1519, 1348, 1169, 1081, 1049 and 854. 
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(±)-3-Fluoro-5-phenylpentan-1-yl acetate 154. 

 

Pd on charcoal (4 mg) was added to a solution of 4-fluoro-2-phenyltetrahydropyran 101r (47 

mg, 0.26 mmol) in acetic acid (4 mL) and perchloric acid (40 µL, 60% in water), and then the 

mixture was placed under a balloon of hydrogen and stirred for 16 h. Then the mixture was 

filtered through celite and the product was extracted into ethyl acetate. The organic layer was 

dried, filtered and concentrated and the title compound was obtained after purification over 

silica (hexane/diethyl ether 7/3 Rf= 0.25) as a colorless oil (41 mg, 70%). 

 

OAc

F

154  

 

NMR: δH (400 MHz, CDCl3): 7.37-7.28 (2H, m, Ar), 7.26-7.17 (3H, m, Ar), 4.63 (1H, dtt, J= 

49.5 Hz, 8.6 Hz, 3.6 Hz, CHF), 4.30-4.13 (2H, m, CH2CH2O), 2.84 (1H, ddd, J= 13.8 Hz, 9.9 

Hz, 5.5 Hz, ArCHHCH2), 2.72 (1H, ddd, J= 13.8 Hz, 9.4 Hz, 7.1 Hz, ArCHHCH2), 2.12-1.75 

(4H, m, ArCH2CH2, OCH2CH2) and 1.97 (3H, s, C=OCH3); δC (100 MHz, CDCl3): 171.0 

(Cq, C=OCH3), 141.2 (Cq, Ar), 128.5 (CH, Ar), 128.4 (CH, Ar), 126.0 (CH, Ar), 90.2 (CH, d, 

J= 168.6 Hz, CHF), 60.6 (CH, d, J= 4.7 Hz, CH2CH2OH), 36.9 (CH2, d, J= 21.0 Hz, 

HOCH2CH2), 34.2 (CH2, d, J= 21.0 Hz, ArCH2CH2), 31.2 (CH2, d, J= 4.7 Hz, ArCH2CH2) 

and 20.9 (CH3, C=OCH3); δF (282 MHz, CDCl3): -185.1 to -185.7 (m); HRMS m/z: [MNa]+: 

247.1109, calculated 247.1110; IR: max (neat)/cm-1: 3027, 2932, 1739, 1385, 1365, 1248, 

1046, 746 and 700. 
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N-Benzyl-4-butenylamine 189.4 

 

Benzylamine 188 (1.92 mL, 17.6 mmol) was added to a solution of 1-bromobut-3-ene 187 

(360 µL, 3.55 mmol) and sodium iodide (27 mg, 0.18 mmol) in ethanol (10 mL). After 4h at 

75 °C, the mixture was concentrated under vacuum, and then water and diethyl ether were 

added. The layers were separated and the aqueous layer was extracted into diethyl ether. The 

organic extract was dried, filtered and concentrated. The title compound was obtained after 

purification over silica (hexane/diethyl ether 6/4 Rf= 0.30) as a pale yellow oil (497 mg, 

87%). 

 

N
H

189  

 

NMR: δH (300 MHz, CDCl3): 7.32-7.16 (5H, m, Ar), 5.75 (1H, ddt, J= 17.1 Hz, 10.2 Hz, 6.8 

Hz, CH2=CH), 5.05 (1H, ddd, J= 17.1 Hz, 3.5 Hz, 1.5 Hz, CHH=CH), 5.00 (1H, dddd, J= 

10.2 Hz, 2.1 Hz, 1.3 Hz, 1.1 Hz, CHH=CH), 3.70 (2H, s, NCH2Ph), 2.66 (2H, t, J= 6.8 Hz, 

CH2CH2NH) and 2.24 (2H, qt, J= 6.8 Hz, 1.3 Hz, CHCH2CH2NH); δC (100 MHz, CDCl3): 

143.1 (Cq, Ar), 136.5 (CH, CH2=CH), 128.5 (CH, Ar), 127.1 (CH, Ar), 126.6 (CH, Ar), 116.2 

(CH2, CH2=CH), 53.2 (CH2, NCH2Ph), 48.1 (CH2, CH2CH2N), 34.2 (CH2, CH2=CHCH2) and 

21.5 (CH3, ArCH3); LRMS m/z: [MH]+: 161, calculated 161; IR: max (neat)/cm-1: 3308, 2922, 

2852, 1666, 1604, 1452, 1208, 1152, 1075, 737 and 698. 

Data in agreement with literature. 
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N-Tosyl-4-butenylamine 191.5 

 

1-Bromobut-3-ene 187 (1.01 ml, 10 mmol) was added to a solution of tosylamine 190 (1.71g, 

10 mmol), and potassium carbonate (1.65 g, 12 mmol) in acetone (100 mL). After 4h at 

reflux, the mixture was concentrated under vacuum, and then was water and diethyl ether 

were added. Then the layers were separated and the aqueous layer was extracted into diethyl 

ether. The organic layers were dried, filtered and concentrated. The title compound was 

obtained after purification over silica (hexane/diethyl ether 6/4 Rf= 0.24) as a pale yellow oil 

(922 mg, 41%). 

 

N
H

Ts

191  

 

NMR: δH (300 MHz, CDCl3): 7.78 (2H, d, J= 8.1 Hz, Ar), 7.29 (2H, J= 8.1 Hz, Ar), 5.62 (1H, 

ddt, J= 16.9 Hz, 10.3 Hz, 6.8 Hz, CH2=CH), 5.08-4.97 (2H, m, CH2=CH), 4.76 (1H, t broad, 

J= 5.8 Hz, NH), 3.00 (2H, td, J= 6.8 Hz, 5.8 Hz, CH2CH2NH), 2.42 (3H, m, ArCH3) and 2.19 

(2H, qt, J= 6.8 Hz, 1.4 Hz, CHCH2CH2NH); δC (100 MHz, CDCl3): 143.2 (Cq, Ar), 138.1 

(Cq, Ar), 130.0 (CH, Ar), 127.1 (CH, Ar), 136.2 (CH, CH2=CH), 116.4 (CH2, CH2=CH), 48.1 

(CH2, CH2NHTs), 34.3 (CH2, CH2=CHCH2) and 21.5 (CH3, ArCH3); LRMS m/z: [MH]+: 

225.1, calculated 225.1; IR: max (neat)/cm-1: 3283, 3075, 2974, 2924, 2868, 1641, 1597, 

1493, 1323, 1158, 1090, 1085, 990, 920 and 813. 

Data in agreement with literature. 
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(±)-4-Fluoro-2-(4-nitrophenyl)-N-(tosyl)piperidines 192 and 193.2 

 

Piperidines 192 and 193 were prepared according to the general procedure outlined for the 

Aza-Prins reaction from 4-nitrobenzaldehyde 100a (76 mg, 0.5 mmol), N-tosyl-4-

butenylamine 191 (112mg, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in 

dichloromethane (5 mL). 
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Product (±)-192 was isolated after purification over silica gel (hexane/diethyl ether, 7/3 Rf= 

0.33) as a colorless oil (general procedure: 59 mg, 31 %, procedure with microwaves: 62 mg, 

33 %). 

NMR: δH (400 MHz, CDCl3): 8.21 (2H, d, J= 8.8 Hz, Ar), 7.76 (2H, d, J= 8.3, Ar), 7.55 (2H, 

d, J= 8.8 Hz, Ar), 7.36 (2H, d, J= 8.3 Hz, Ar), 5.42 (1H, s broad, H2), 4.54 (1H, dtt, J= 48.3 

Hz, 10.4 Hz, 4.5 Hz, H4), 4.03-3.94 (1H, m, H6), 3.10-2.99 (1H, m, H6), 2.68-2.58 (1H, m, 

H3), 2.47 (3H, s, ArCH3), 1.98-1.86 (1H, m, H5), 1.79 (1H, dddd, J= 13.8 Hz, 10.8 Hz, 8.6 

Hz, 5.7 Hz, H3) and 1.49 (1H, ttd, J= 12.5 Hz, 10.2 Hz, 4.8 Hz, H5); δC (100 MHz, CDCl3): 

147.3 (Cq, Ar), 145.8 (Cq, Ar), 144.1 (Cq, Ar), 137.2 (Cq, Ar), 130.1 (CH, Ar), 127.6 (CH, 

Ar), 127.0 (CH, Ar), 124.0 (CH, Ar), 86.0 (CH, d, J= 174.5 Hz, C4), 55.4 (CH, d, J= 12.5 Hz, 

C2), 40.2 (CH2, d, J= 11.7 Hz, C6), 34.0 (CH2, d, J= 20.3 Hz, C3), 30.8 (CH2, d, J= 19.5 Hz, 

C5) and 21.6 (CH3, ArCH3); δF (376 MHz, CDCl3): -176.2 (dm, J= 48.3 Hz); HRMS m/z: 

[MNa]+: 401.0947, calculated 401.0947; Mp: 127-129 °C; IR: max (neat)/cm-1: 3043, 2941, 

2873, 1598, 1519, 1493, 1346, 1159, 1094, 1015 and 856. 



 172 

Data in agreement with literature. 
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Product (±)-193 was isolated after purification over silica gel (hexane/diethyl ether, 7/3 Rf= 

0.22) as a colorless oil (general procedure: 56 mg, 30 %, procedure with microwaves: 46 mg, 

24 %). 

NMR: δH (300 MHz, CDCl3): 8.15 (2H, d, J= 9.1 Hz, Ar), 7.75 (2H, d, J= 8.40 Hz, Ar), 7.50 

(2H, d, J= 9.1 Hz, Ar), 7.32 (2H, d, J= 8.40 Hz, Ar), 5.35 (1H, d broad, J= 6.6 Hz, H2), 4.90 

(1H, dtt, J= 47.3 Hz, 3.8 Hz, 2.2 Hz, H4), 3.85 (1H, dd, J= 14.6 Hz, 4.6 Hz, H6), 3.35 (1H, 

ddd, J= 14.6 Hz, 12.9 Hz, 3.1 Hz, H6), 2.75-2.66 (1H, m H3), 2.45 (3H, s, ArCH3), 2.01 (1H, 

dddd, J= 43.8 Hz, 15.4 Hz, 6.9 Hz, 2.4 Hz, H3) and 1.82-1.60 (2H, m, 2xH5); δC (100 MHz, 

CDCl3): 147.3 (Cq, Ar), 146.8 (Cq, Ar), 143.9 (Cq, Ar), 137.6 (Cq, Ar), 130.0 (CH, Ar), 

127.4 (CH, Ar), 126.9 (CH, Ar), 123.5 (CH, Ar), 85.9 (CH, d, J= 172.6 Hz, C4), 52.9 (CH, s, 

C2), 36.6 (CH2, s, C6), 32.1 (CH2, d, J= 19.7 Hz, C3), 28.8 (CH2, d, J= 21.2 Hz, C5) and 21.6 

(CH3, ArCH3); δF (376 MHz, CDCl3): -182.2 to -182.8 (m); HRMS m/z: [MNa]+: 401.0956, 

calculated 401.0947; Mp: 148-150 °C; IR: max (neat)/cm-1: 3081, 2940, 2851, 1598, 1519, 

1494, 1345, 1158, 1091 and 888. 

Data in agreement with literature. 
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(±)-4-Fluoro-2-pentyl-N-(tosyl)piperidines 194 and 195. 

 

Piperidines (±)-194 and (±)-195 were prepared according to the general procedure outlined 

under Aza-Prins reaction from hexanal 100m (61 µL, 0.5 mmol), N-tosyl-4-butenylamine 191 

(112mg, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in dichloromethane (5 mL) to 

give the title compounds. The products were isolated as a mixture of diastereoisomer after 

purification over silica gel (hexane/diethyl ether, 7/3 Rf= 0.26) as colorless oils (general 

procedure: 119 mg, 73 %, mixture ratio syn/anti 2/1, procedure with microwaves: 129 mg, 79 

%, mixture ratio syn/anti 1.9/1). 
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Analysis as a mixture of diastereoisomers (±)-194 and (±)-195: 

NMR: δH (300 MHz, CDCl3): 7.77-7.68 (2H, m, Ar), 7.33-7.25 (2H, m, Ar), 4.72 (1H, dtt, J= 

48.7 Hz, 11.3 Hz, 4.9 Hz, H4), 4.24-4.12 (1H, m, H2), 4.05-3.88 (1H, m, H6), 3.03 (1H, dddd, 

J= 14.9 Hz, 13.1 Hz, 2.4 Hz, 1.2 Hz, H6), 2.42 (3H, s, ArCH3), 2.02-1.83 (2H, m, H3, H5), 

173-1.12 (10H, m, H5, H3, 4xCH2 pentyl) and 0.87 (3H, t, J= 6.7 Hz, CH3 pentyl); δC (75 

MHz, CDCl3): 143.7 (Cq, Ar), 138.2 (Cq, Ar), 129.8 (CH, Ar), 126.9 (CH, Ar), 87.0 (CH, d, 

J= 173.0 Hz, C4), 53.6 (CH, d, J= 13.0 Hz, OC2), 38.7 (CH2, d, J= 12.3 Hz, C6), 34.2 (CH2, d, 

J= 18.2 Hz, C3), 32.2 (CH2, pentyl), 31.4 (CH2, pentyl), 31.2 (CH2, d, J= 21.7 Hz, C5), 26.0 

(CH2, pentyl), 22.4 (CH2, pentyl), 21.5 (CH3, ArCH3) and 13.9 (CH3, pentyl); δF (282 MHz, 

CDCl3): -176.0 (dm, J= 48.7 Hz); HRMS m/z: [MNa]+: 350.1559, calculated 350.1566; IR 
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from the mixture of diastereoisomers: max (neat)/cm-1: 2952, 2918, 2851, 1457, 1331, 1300, 

1200, 1144 and 811. 
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Analysis as a mixture of diastereoisomers (±)-194 and (±)-195: 

NMR: δH (300 MHz, CDCl3): 7.77-7.68 (2H, m, Ar), 7.33-7.25 (2H, m, Ar), 4.83 (1H, dtt, J= 

47.5 Hz, 3.0 Hz, 2.9 Hz, H4), 4.05-3.88 (1H, m, H2), 3.72 (1H, dd, J= 14.3 Hz, 4.9 Hz, H6), 

3.31 (1H, ddd, J= 14.3 Hz, 13.3 Hz, 2.8 Hz, H6), 2.41 (3H, s, ArCH3), 2.02-1.83 (1H, m, H3), 

1.83-1.73 (1H, m, H5), 1.73-1.12 (10H, m, H5, H3, 4xCH2 pentyl) and 0.85 (3H, t, J= 6.6 Hz, 

CH3 pentyl); δC (75 MHz, CDCl3): 143.0 (Cq, Ar), 138.5 (Cq, Ar), 129.6 (CH, Ar), 126.9 

(CH, Ar), 87.0 (CH, d, J= 170.0 Hz, C4), 51.4 (CH, C2), 35.0 (CH2, C6), 32.2 (CH2, pentyl), 

31.9 (CH2, d, J= 19.2 Hz, C3), 31.1 (CH2, pentyl), 29.2 (CH2, d, J= 21.4 Hz, C5), 26.4 (CH2, 

pentyl), 22.4 (CH2, pentyl), 21.4 (CH3, ArCH3) and 13.9 (CH3, pentyl); δF (282 MHz, CDCl3): 

-179.9 to -180.7 (m); HRMS m/z: [MNa]+: 350.1559, calculated 350.1566; IR as a mixture of 

diastereoisomers: max (neat)/cm-1: 2952, 2918, 2851, 1457, 1331, 1300, 1200, 1144 and 811. 
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(±)-2-(4-Bromophenyl)-4-fluoro-N-(tosyl)piperidines 196b and 197b. 

 

Piperidines (±)-196b and (±)-197b were prepared according to the general procedure outlined 

for the Aza-Prins reaction from 4-bromobenzaldehyde 100d (92 mg, 0.5 mmol), N-tosyl-4-

butenylamine 191 (112mg, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in 

dichloromethane (5 mL). 

 

N

F

Ts
Br

(±)-196b

2
345

6

 

 

Product (±)-196b was isolated after purification over silica gel (hexane/diethyl ether, 7/3 Rf= 

0.35) as a white solid (general procedure: 72 mg, 35 %, procedure with microwave: 90 mg, 44 

%). 

NMR: δH (400 MHz, CDCl3): 7.76 (2H, d, J= 8.1 Hz, Ar), 7.47 (2H, d, J= 8.4 Hz, Ar), 7.34 

(2H, d, J= 8.4 Hz, Ar), 7.23 (2H, d, J= 8.1 Hz, Ar), 5.35 (1H, s broad, H2), 4.57 (1H, dtt, J= 

48.5 Hz, 10.8 Hz, 4.5 Hz, H4), 4.02-3.92 (1H, m, H6), 3.06-2.97 (1H, m, H6), 2.64-2.55 (1H, 

m H3), 2.46 (3H, s, ArCH3), 1.92-1.83 (1H, m, H5), 1.76-1.65 (1H, m, H3) and 1.44 (1H, ttd, 

J= 12.6 Hz, 10.3 Hz, 4.8 Hz, H5); δC (100 MHz, CDCl3): 143.8 (Cq, Ar), 137.6 (Cq, Ar), 

136.9 (Cq, Ar), 131.9 (CH, Ar), 130.0 (CH, Ar), 128.3 (CH, Ar), 126.9 (CH, Ar), 121.5 (Cq, 

Ar), 86.4 (CH, d, J= 174.6 Hz, C4), 55.2 (CH, d, J= 12.4 Hz, C2), 39.9 (CH2, d, J= 12.4 Hz, 

C6), 33.5 (CH2, d, J= 20.2 Hz, C3), 30.9 (CH2, d, J= 18.9 Hz, C5) and 21.6 (CH3, ArCH3); δF 

(376 MHz, CDCl3): -175.8 (dm, J= 47.6 Hz); HRMS m/z: [MNa]+: 434.0199, 436.0182, 

calculated 434.0202, 436.0181; Mp: 131-133 °C; IR: max (neat)/cm-1: 3058, 2935, 2862, 

1594, 1485, 1342, 1155, 1093, 1009, 816 and 668. 
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N

F

Ts
Br

(±)-197b

2
345

6

 

 

Product (±)-197b was isolated after purification over silica gel (hexane/diethyl ether, 7/3 Rf= 

0. 22) as a white solid (general procedure: 68 mg, 33 %, procedure with microwaves: 47 mg, 

23 %). 

NMR: δH (300 MHz, CDCl3): 7.76 (2H, d, J= 8.2 Hz, Ar), 7.48 (2H, d, J= 8.4 Hz, Ar), 7.34 

(2H, d, J= 8.2 Hz, Ar), 7.23 (2H, d, J= 8.4 Hz, Ar), 5.19 (1H, d broad, J= 6.4 Hz, H2), 4.87 

(1H, dtt, J= 47.6 Hz, 3.2 Hz, 3.0 Hz, H4), 3.84-3.72 (1H, m, H6), 3.36 (1H, ddd, J= 14.5 Hz, 

12.5 Hz, 3.4 Hz, H6), 2.67-2.53 (1H, m H3), 2.44 (3H, s, ArCH3), 2.03 (1H, dddd, J= 43.0 Hz, 

15.2 Hz, 6.7 Hz, 2.6 Hz, H3), 1.82-1.71 (1H, m, H5) and 1.70-1.53 (1H, m, H5); δC (75 MHz, 

CDCl3): 143.5 (Cq, Ar), 138.5 (Cq, Ar), 137.8 (Cq, Ar), 131.3 (CH, Ar), 129.8 (CH, Ar), 

128.4 (CH, Ar), 126.9 (CH, Ar), 120.9 (Cq, Ar), 86.0 (CH, d, J= 171.9 Hz, C4), 52.9 (CH, s, 

C2), 36.6 (CH2, d, J= 1.5 Hz, C6), 31.9 (CH2, d, J= 19.0 Hz, C3), 29.1 (CH2, d, J= 21.0 Hz, C5) 

and 21.5 (CH3, ArCH3); δF (282 MHz, CDCl3): -181.2 to -181.7 (m); HRMS m/z: [MH, -

HF]+: 392.0311, 394.0311, calculated 392.0320, 394.0299; Mp: 121-123 °C; IR: max 

(neat)/cm-1: 3058, 2952, 2873, 1594, 1488, 1339, 1158, 1094, 1009, 814 and 671. 
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(±)-2-(3-Bromophenyl)-4-fluoro-N-(tosyl)piperidines 196c and 197c. 

 

Piperidines (±)-196c and (±)-197c were prepared according to the general procedure outlined 

for the Aza-Prins reaction from 3-bromobenzaldehyde 100f (58 µL, 0.5 mmol), N-tosyl-4-

butenylamine 191 (112mg, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in 

dichloromethane (5 mL). 

 

N

F

Ts

Br

(±)-196c

2
345

6

 

 

Product (±)-196c was isolated after purification over silica gel (hexane/diethyl ether, 7/3 Rf= 

0.29) as a white solid (82 mg, 40 %). 

NMR: δH (300 MHz, CDCl3): 7.75 (2H, d, J= 8.7 Hz, Ar), 7.40-7.28 (4H, m, Ar), 7.26-7.18 

(2H, m, Ar), 5.38 (1H, s broad, H2), 4.58 (1H, dtt, J= 48.5 Hz, 10.8 Hz, 4.4 Hz, H4), 4.06-3.94 

(1H, m, H6), 3.10-2.97 (1H, m H6), 2.65-2.52 (1H, m H3), 2.46 (3H, s, ArCH3), 1.95-1.82 (1H, 

m, H5), 1.73 (1H, dddd, J= 13.4 Hz, 11.1 Hz, 8.7 Hz, 5.6 Hz, H3) and 1.44 (1H, ttd, J= 12.5 

Hz, 10.3 Hz, 4.8 Hz, H5); δC (75 MHz, CDCl3): 143.8 (Cq, Ar), 140.3 (Cq, Ar), 137.6 (Cq, 

Ar), 130.6 (CH, Ar), 130.4 (CH, Ar), 130.0 (CH, Ar), 129.5 (CH, Ar), 126.9 (CH, Ar), 125.2 

(CH, Ar), 123.1 (Cq, Ar), 86.3 (CH, d, J= 174.4 Hz, C4), 55.1 (CH, d, J= 12.3 Hz, C2), 40.0 

(CH2, d, J= 12.2 Hz, C6), 33.6 (CH2, d, J= 19.6 Hz, C3), 31.0 (CH2, d, J= 19.3 Hz, C5) and 

21.6 (CH3, ArCH3); δF (282 MHz, CDCl3): -175.8 (dm, J= 48.5 Hz); HRMS m/z: [MNa]+: 

434.0189, 436.0184, calculated 434.0202, 436.0181; Mp: 93-95 °C; IR: max (neat)/cm-1: 

3058, 3036, 2918, 2868, 1594, 1566, 1476, 1339, 1155, 1093, 1018, 811, 741 and 660. 
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N

F
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(±)-197c

2
345

6

 

 

Product 197c was isolated after purification over silica gel (hexane/diethyl ether, 7/3 Rf= 

0.19) as a white solid (40 mg, 19 %). 

NMR: δH (400 MHz, CDCl3): 7.70 (2H, d, J= 8.3 Hz, Ar), 7.35-7.29 (3H, m, Ar), 7.29-7.24 

(2H, m, Ar), 7.18-7.13 (1H, m, Ar), 5.22 (1H, d broad, J= 6.4 Hz, H2), 4.88 (1H, dtt, J= 47.5 

Hz, 3.5 Hz, 2.8 Hz, H4), 3.85-3.76 (1H, m, H6), 3.38 (1H, ddd, J= 14.4 Hz, 12.6 Hz, 3.2 Hz, 

H6), 2.64-2.54 (1H, m H3), 2.44 (3H, s, ArCH3), 1.98 (1H, dddd, J= 43.1 Hz, 15.1 Hz, 6.8 Hz, 

2.6 Hz, H3), 1.86-1.76 (1H, m, H5) and 1.75-1.61 (1H, m, H5); δC (100 MHz, CDCl3): 143.7 

(Cq, Ar), 142.0 (Cq, Ar), 137.8 (Cq, Ar), 130.0 (CH, Ar), 129.9 (CH, Ar), 129.8 (CH, Ar), 

129.7 (CH, Ar), 126.9 (CH, Ar), 125.3(CH, Ar), 122.5 (Cq, Ar), 86.0 (CH, d, J= 172.2 Hz, 

C4), 52.9 (CH, s, C2), 36.8 (CH2, s, C6), 32.3 (CH2, d, J= 19.3 Hz, C3), 29.2 (CH2, d, J= 21.2 

Hz, C5) and 21.6 (CH3, ArCH3); δF (376 MHz, CDCl3): -181.4 to -181.9 (m); HRMS m/z: 

[MNa]+: 434.0201, 436.0183, calculated 434.0202, 436.0181; Mp: 105-107 °C; IR: max 

(neat)/cm-1: 3057, 2974, 2865, 1594, 1563, 1474, 1325, 1281, 1130, 1068, 886, 746, 710 and 

648. 
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(±)-2-(2-Bromophenyl)-4-fluoro-N-(tosyl)piperidines 196d and 197d. 

 

Piperidines (±)-196d and (±)-197d were prepared according to the general procedure outlined 

for the Aza-Prins reaction from 2-bromobenzaldehyde 100e (58 µL, 0.5 mmol), N-tosyl-4-

butenylamine 191 (112mg, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in 

dichloromethane (5 mL). 

 

N

F

Ts

Br

(±)-196d

2
345

6

 

 

Product (±)-196d was isolated after purification over silica gel (hexane/diethyl ether, 7/3 Rf= 

0.27) as a colorless oil (51 mg, 25 %). 

NMR: δH (300 MHz, CDCl3): 7.66 (2H, d, J= 8.3 Hz, Ar), 7.44 (1H, dd, J= 8.0 Hz, 1.5 Hz, 

Ar), 7.36 (1H, dd, J= 8.0 Hz, 2.0 Hz, Ar), 7.21-7.16 (3H, m, Ar), 7.07-7.01 (1H, m, Ar), 5.14 

(1H, t, J= 6.0 Hz, H2), 4.78 (1H, dtt, J= 48.5 Hz, 6.2 Hz, 3.8 Hz, H4), 3.97-3.87 (1H, m, H6), 

3.71 (1H, dt, J= 13.9 Hz, 5.1 Hz, H6), 2.41-2.29 (1H, m, H3), 2.40 (3H, s, ArCH3), 2.18-2.05 

(1H, m, H3) and 2.01-1.82 (2H, 2xH5); δC (100 MHz, CDCl3): 143.2 (Cq, Ar), 140.3 (Cq, Ar), 

136.4 (Cq, Ar), 133.1 (CH, Ar), 129.5 (CH, Ar), 129.4 (CH, Ar), 127.3 (CH, Ar), 127.3 (CH, 

Ar), 127.2 (CH, Ar), 122.0 (Cq, Ar), 86.6 (CH, d, J= 173.8 Hz, C4), 54.8 (CH, d, J= 6.3 Hz, 

C2), 40.4 (CH2, d, J= 6.3 Hz, C6), 35.2 (CH2, d, J= 20.2 Hz, C3), 30.0 (CH2, d, J= 20.8 Hz, C5) 

and 21.4 (CH3, ArCH3); δF (282 MHz, CDCl3): -179.3 to -179.7 (m); HRMS m/z:           

[MNa, -HF]+: 414.0145, 416.0103, calculated 414.0139, 416.0119; IR: max (neat)/cm-1: 3058, 

3025, 2918, 2840, 1594, 1563, 1460, 1328, 1158, 1090, 1020, 811, 749, 704 and 648. 
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N

F
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Br

(±)-197d

2
345

6

 

 

Product (±)-197d was isolated after purification over silica gel (hexane/diethyl ether, 7/3 Rf= 

0.18) as a colorless oil (49 mg, 24 %). 

NMR: δH (400 MHz, CDCl3): 7.50 (2H, d, J= 8.3 Hz, Ar), 7.42 (1H, dd, J= 8.0 Hz, 1.2 Hz, 

Ar), 7.37 (1H, dd, J= 7.8 Hz, 1.6 Hz, Ar), 7.24-7.16 (3H, m, Ar), 7.07 (1H, td, J= 7.6 Hz, 1.6 

Hz, Ar), 5.21 (1H, dd, J= 7.7 Hz, 5.1 Hz, H2), 4.81 (1H, dtt, J= 48.5 Hz, 6.4 Hz, 3.7 Hz, H4), 

3.81-3.70 (2H, m, 2xH6), 2.44-2.29 (1H, m H3), 2.40 (3H, s, ArCH3), 2.19-1.99 (2H, m, H3, 

H5) and 1.92-1.77 (1H, m, H5); δC (100 MHz, CDCl3): 143.2 (Cq, Ar), 139.4 (Cq, Ar), 135.9 

(Cq, Ar), 133.1 (CH, Ar), 129.3 (CH, Ar), 128.8 (CH, Ar), 128.8 (CH, Ar), 127.3 (CH, Ar), 

127.2 (CH, Ar), 122.9 (Cq, Ar), 86.3 (CH, d, J= 172.4 Hz, C4), 55.8 (CH, d, J= 6.7 Hz, C2), 

42.5 (CH2, d, J= 6.3 Hz, C6), 35.8 (CH2, d, J= 20.7 Hz, C3), 30.6 (CH2, d, J= 20.7 Hz, C5) and 

21.5 (CH3, ArCH3); δF (376 MHz, CDCl3): -180.9 to -181.4 (m) ; HRMS m/z: [MNa]+: 

434.0195, 436.0186, calculated 434.0202, 436.0181; IR: max (neat)/cm-1: 3022, 2985, 2845, 

1558, 1281, 1180, 1124, 1057, 892, 760 and 671. 
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(±)-2-(4-Fluorophenyl)-4-fluoro-N-(tosyl)piperidines 196e and 197e. 

 

Piperidines 196e and 197e were prepared according to the general procedure outlined for the 

Aza-Prins reaction from 4-fluorobenzaldehyde 100d (53 µL, 0.5 mmol), N-tosyl-4-

butenylamine 191 (112mg, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in 

dichloromethane (5 mL). 

 

N

F

Ts
F

(±)-196e

2
345

6

 

 

Product (±)-196e was isolated after purification over silica gel (hexane/diethyl ether, 7/3 Rf= 

0.21) as a white solid (general procedure: 78 mg, 44 %, procedure with microwaves: 66 mg, 

38%). 

NMR: δH (400 MHz, CDCl3): 7.76 (2H, d, J= 8.3 Hz, Ar), 7.37-7.30 (4H, m, Ar), 7.07-7.01 

(2H, m, Ar), 5.38 (1H, s broad, H2), 4.60 (1H, dtt, J= 48.5 Hz, 10.9 Hz, 4.5 Hz, H4), 4.03-3.93 

(1H, m, H6), 3.03 (1H, dddd, J= 14.7 Hz, 12.7 Hz, 2.6 Hz, 1.3 Hz, H6), 2.66-2.56 (1H, m H3), 

2.46 (3H, s, ArCH3), 1.92-1.83 (1H, m, H5), 1.70 (1H, dddd, J= 13.4 Hz, 11.0 Hz, 8.7 Hz, 5.5 

Hz, H3) and 1.44 (1H, ttd, J= 12.6 Hz, 10.3 Hz, 4.8 Hz, H5); δC (100 MHz, CDCl3): 162.0 

(Cq, d, J= 249.8 Hz, Ar), 143.7 (Cq, Ar), 137.8 (Cq, Ar), 134.5 (Cq, Ar), 130.0 (CH, Ar), 

128.3 (CH, d, J= 8.0 Hz, Ar), 126.9 (CH, Ar), 115.7 (CH, d, J= 21.2 Hz, Ar), 86.5 (CH, d, J= 

173.1 Hz, C4), 55.1 (CH, d, J= 13.1 Hz, C2), 39.9 (CH2, d, J= 13.5 Hz, C6), 33.6 (CH2, d, J= 

19.6 Hz, C3), 31.0 (CH2, d, J= 19.6 Hz, C5) and 21.6 (CH3, ArCH3); δF (376 MHz, CDCl3):     

-115.6 to -115.7 (m) and -175.8 (dm, J= 48.5 Hz); HRMS m/z: [MNa]+: 374.1001, calculated 
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374.1002; Mp: 111-113 °C; IR: max (neat)/cm-1: 3043, 2941, 2873, 1597, 1507, 1339, 1151, 

1093 and 838. 

 

 

N
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(±)-197e
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6

 

 

The product (±)-197e was isolated after purification over silica gel (hexane/diethyl ether, 7/3 

Rf= 0.12) as a colorless oil (general procedure: 42 mg, 24 %, procedure with microwave: 44 

mg, 25%). 

NMR: δH (400 MHz, CDCl3): 7.71 (2H, d, J= 8.4 Hz, Ar), 7.35-7.25 (4H, m, Ar), 7.02-6.91 

(2H, t, J= 8.4 Hz, Ar), 5.22 (1H, d broad, J= 6.3 Hz, H2), 4.87 (1H, dtt, J= 47.6 Hz, 3.4 Hz, 

3.0 Hz, H4), 3.83-3.72 (1H, m, H6), 3.37 (1H, ddd, J= 14.4 Hz, 12.6 Hz, 3.0 Hz, H6), 2.66-

2.55 (1H, m H3), 2.44 (3H, s, ArCH3), 1.96 (1H, dddd, J= 43.2 Hz, 15.3 Hz, 6.8 Hz, 2.7 Hz, 

H3), 1.81-1.70 (1H, m, H5) and 1.70-1.55 (1H, m, H5); δC (100 MHz, CDCl3): 161.7 (Cq, d, 

J= 245.6 Hz), 143.4 (Cq, Ar), 137.9 (Cq, Ar), 135.1 (Cq, d, J= 2.9 Hz, Ar), 129.8 (CH, Ar), 

128.3 (CH, dd, J= 8.0 Hz, 2.5 Hz, Ar), 126.9 (CH, Ar), 115.0 (CH, d, J= 21.3 Hz, Ar), 86.1 

(CH, d, J= 172.4 Hz, C4), 52.9 (CH, s, C2), 36.6 (CH2, C6), 32.0 (CH2, d, J= 19.3 Hz, C3), 

29.1 (CH2, d, J= 21.1 Hz, C5) and 21.5 (CH3, ArCH3); δF (376 MHz, CDCl3): -116.7 to 116.8 

(m) and -180.8 to -181.3 (m); HRMS m/z: [MNa]+: 374.1001, calculated 374.1002; Mp: 127-

129 °C; IR: max (neat)/cm-1: 3043, 2920, 2873, 1597, 1508,1328, 1152, 1071, 1032 and 882. 
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(±)-2-(3-Fluorophenyl)-4-fluoro-N-(tosyl)piperidines 196f and 197f. 

 

Piperidines (±)-196f and (±)-197f were prepared according to the general procedure outlined 

for ther Aza-Prins reaction from 3-fluorobenzaldehyde 100c (55 µL, 0.5 mmol), N-tosyl-4-

butenylamine 191 (112mg, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in 

dichloromethane (5 mL). 

 

N

F

Ts

F

(±)-196f

2
345

6

 

 

Product (±)-196f was isolated after purification over silica gel (hexane/diethyl ether, 7/3 Rf= 

0.22) as a white solid (78 mg, 44 %). 

NMR: δH (300 MHz, CDCl3): 7.77 (2H, d, J= 8.3 Hz, Ar), 7.35 (2H, J= 8.3 Hz, Ar), 7.30-7.22 

(1H, m, Ar), 7.18-7.11 (1H, m, Ar), 7.09-7.01 (1H, m, Ar), 7.01-6.92 (1H, m, Ar), 5.41 (1H, s 

broad, H2), 4.57 (1H, dtt, J= 48.5 Hz, 10.9 Hz, 4.5 Hz, H4), 4.07-3.94 (1H, m, H6), 3.03 (1H, 

dddd, J= 14.9 Hz, 12.8 Hz, 2.9 Hz, 1.2 Hz, H6), 2.67-2.55 (1H, m, H3), 2.46 (3H, s, ArCH3), 

1.94-1.82 (1H, m, H5), 1.72 (1H, dddd, J= 13.4 Hz, 11.2 Hz, 8.6 Hz, 5.7 Hz, H3) and 1.45 

(1H, ttd, J= 12.7 Hz, 10.3 Hz, 4.9 Hz, H5); δC (75 MHz, CDCl3): 163.2 (Cq, d, J= 247.7 Hz, 

CHF), 143.7 (Cq, Ar), 140.7 (Cq, d, J= 7.7 Hz, Ar), 137.6 (Cq, Ar), 130.4 (CH, d, J= 8.7 Hz, 

Ar), 130.0 (CH, Ar), 129.5 (CH, d, J= 8.7 Hz, Ar), 126.9 (CH, Ar), 114.4 (CH, t, J= 21.3 Hz, 

Ar), 113.6 (CH, d, J= 22.7 Hz, Ar), 86.4 (CH, d, J= 174.9 Hz, C4), 55.2 (CH, d, J= 12.5 Hz, 

C2), 40.0 (CH2, d, J= 11.7 Hz, C6), 33.6 (CH2, d, J= 20.5 Hz, C3), 30.9 (CH2, d, J= 19.0 Hz, 

C5) and 21.5 (CH3, ArCH3); δF (376 MHz, CDCl3): -112.0 to -112.1 (m) and -175.2 (dm, J= 
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48.5 Hz); HRMS m/z: [MNa]+: 374.1002, calculated 374.1002; Mp: 101-103 °C; IR: max 

(neat)/cm-1: 3065, 2944, 2877, 1614, 1590, 1488, 1341, 1160, 1096, 1019, 889, 736 and 674. 

 

 

N

F

Ts

F

(±)-197f

2
345

6

 

 

Product (±)-197f was isolated after purification over silica gel (hexane/diethyl ether, 7/3 Rf= 

0.14) as a white solid (39 mg, 22 %). 

NMR: δH (300 MHz, CDCl3): 7.73 (2H, d, J= 8.3 Hz, Ar), 7.30 (2H, d, J= 8.3 Hz, Ar), 7.24 

(1H, dd, J= 8.0 Hz, 6.0 Hz, Ar), 7.14-7.08 (1H, m, Ar), 7.04-6.96 (1H, m, Ar), 6.95-6.85 (1H, 

m, Ar), 5.26 (1H, d broad, J= 6.6 Hz, H2), 4.88 (1H, dtt, J= 47.3 Hz, 3.2 Hz, 2.8 Hz, C4), 

3.86-3.75 (1H, m, H6), 3.38 (1H, ddd, J= 14.4 Hz, 12.6 Hz, 3.3 Hz, H6), 2.68-2.55 (1H, m, 

H3), 2.44 (3H, s, ArCH3), 1.98 (1H, dddd, J= 43.6 Hz, 15.2 Hz, 6.9 Hz, 2.6 Hz, H3), 1.82-1.72 

(1H, m, H5) and 1.71-1.53 (1H, m, H5); δC (75 MHz, CDCl3): 162.8 (Cq, d, J= 246.2 Hz, 

CHF), 143.5 (Cq, Ar), 142.3 (Cq, d, J= 6.7 Hz, Ar), 137.8 (Cq, Ar), 129.8 (CH, Ar), 129.6 

(CH, d, J= 8.3 Hz, Ar), 126.9 (CH, Ar), 122.1 (CH, t, J= 2.3 Hz, Ar), 113.7 (CH, d, J= 21.0 

Hz, Ar), 113.6 (CH, dd, J= 2.9 Hz, 2.4 Hz, Ar), 85.9 (CH, d, J= 172.2 Hz, C4), 52.8 (CH, d, 

J= 6.7 Hz, C2), 36.6 (CH2, C6), 32.0 (CH2, d, J= 20.4 Hz, C3), 29.0 (CH2, d, J= 21.0 Hz, C5) 

and 21.5 (CH3, ArCH3); δF (376 MHz, CDCl3): -113.4 to 113.5 (m) and -186.0 to -186.5 (m) ; 

HRMS m/z: [MNa]+: 374.1013, calculated 374.1002; Mp: 111-113 °C; IR: max (neat)/cm-1: 

2974, 2913, 2845, 1611, 1588, 1348, 1269, 1186, 1127, 1068, 903, 732 and 654. 
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(±)-4-Fluoro-2-(4-methoxyphenyl)-N-(tosyl)piperidines 196g and 197g. 

 

Piperidines (±)-196g and (±)-197g were prepared according to the general procedure outlined 

for the Aza-Prins reaction from 4-methoxybenzaldehyde 100i (60 µL, 0.5 mmol), N-tosyl-4-

butenylamine 191 (112mg, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in 

dichloromethane (5 mL). 

 

N

F

Ts
OMe

(±)-196g

2
345

6

 

 

Product (±)-196g was isolated after purification over silica gel (hexane/diethyl ether, 7/3 Rf= 

0.19) as a pale yellow visquous oil (26 mg, 14 %). 

NMR: δH (400 MHz, CDCl3): 7.77 (2H, d, J= 8.3 Hz, Ar), 7.33 (2H, d, J= 8.3 Hz, Ar), 7.28 

(2H, d, J= 8.3 Hz, Ar), 6.87 (2H, d, J= 8.3 Hz, Ar), 5.38 (1H, s broad, H2), 4.64 (1H, dtt, J= 

48.7 Hz, 10.9 Hz, 4.4 Hz, H4), 4.02-3.91 (1H, m, H6), 3.81 (3H, s, OCH3), 3.02 (1H, dddd, J= 

14.9 Hz, 12.7 Hz, 2.6 Hz, 1.0 Hz, H6), 2.67-2.58 (1H, m H3), 2.46 (3H, s, ArCH3), 1.91-1.81 

(1H, m, H5), 1.68 (1H, dddd, J= 13.2 Hz, 11.2 Hz, 9.0 Hz, 5.7 Hz, H3) and 1.43 (1H, ttd, J= 

12.5 Hz, 10.5 Hz, 4.9 Hz, H5); δC (100 MHz, CDCl3): 158.8 (Cq, Ar), 143.5 (Cq, Ar), 138.0 

(Cq, Ar), 129.9 (CH, Ar), 129.5 (Cq, Ar), 127.7 (CH, Ar), 126.9 (CH, Ar), 114.2 (CH, Ar), 

86.8 (CH, d, J= 176.8 Hz, C4), 55.3 (CH3, OCH3), 55.1 (CH, d, J= 12.9 Hz, C2), 39.8 (CH2, d, 

J= 12.5 Hz, C6), 33.5 (CH2, d, J= 19.6 Hz, C3), 31.1 (CH2, d, J= 18.3 Hz, C5) and 21.5 (CH3, 

ArCH3); δF (376 MHz, CDCl3): -175.6 (dm, J= 48.7 Hz); HRMS m/z: [MNa]+: 386.1201, 

calculated 386.1202; IR of the mixture of diastereoisomers: max (neat)/cm-1: 2974, 2918, 

2845, 1510, 1348, 1303, 1180, 1144, 1012, and 881. 
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N

F

Ts
OMe

(±)-197g

2
345

6

 

 

Product (±)-197g was isolated as a mixture of diastereoisomers (syn/anti, 1/2.2) after 

purification over silica gel (hexane/diethyl ether, 7/3) as a pale yellow visquous oil (13 mg, 7 

%). 

NMR: δH (400 MHz, CDCl3): 7.74-7.67 (2H, m, Ar), 7.30-7.21 (4H, m, Ar), 6.84-6.77 (2H, 

m, Ar), 5.19 (1H, d broad, J= 6.2 Hz, H2), 4.87 (1H, dtt, J= 47.8 Hz, 3.6 Hz, 2.7 Hz, H4), 3.79 

(3H, s, OCH3), 3.77-3.70 (1H, m, H6), 3.40 (1H, ddd, J= 14.5 Hz, 12.2 Hz, 3.4 Hz, H6), 2.66-

2.55 (1H, m H3), 2.43 (3H, s, ArCH3), 1.97 (1H, dddd, J= 42.6 Hz, 15.2 Hz, 6.8 Hz, 2.8 Hz, 

H3), 1.82-1.74 (1H, m, H5) and 1.70-1.64 (1H, m, H5); δC (100 MHz, CDCl3): 148.6 (Cq, Ar), 

143.3 (Cq, Ar), 138.0 (Cq, Ar), 131.3 (Cq, Ar), 129.7 (CH, Ar), 127.9 (CH, Ar), 127.0 (CH, 

Ar), 113.5 (CH, Ar), 86.3 (CH, d, J= 173.7 Hz, C4), 55.2 (CH3, OCH3), 53.2 (CH, C2), 36.7 

(CH2, C6), 32.1 (CH2, d, J= 19.9 Hz, C3), 29.1 (CH2, d, J= 19.6 Hz, C5) and 21.5 (CH3, 

ArCH3); δF (376 MHz, CDCl3): -180.1 to -180.6 (m); HRMS m/z: [MNa]+: 386.1208, 

calculated 386.1202; IR of the mixture of diastereoisomers: max (neat)/cm-1: 2952, 2918, 

2845, 1608, 1591, 1337, 1303, 1146, 1090 and 833. 
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(±)-4-Fluoro-2-methyl-N-(tosyl)piperidines 196i and 197i. 

 

Piperidines (±)-196i and (±)-197i were prepared according to the general procedure outlined 

under Aza-Prins reaction from acetaldehyde 100r (28 µL, 0.5 mmol), N-tosyl-4-butenylamine 

191 (112mg, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in dichloromethane (5 mL) 

to give the title compounds (general procedure: 99 mg, 73 %, mixture ratio syn/anti 1.2/1, 

procedure with microwaves: 104 mg, 77 %, mixture ratio syn/anti 1.2/1). 

 

N

F

Ts

(±)-196i

2
345

6 7

 

 

Analysis from a mixture of diastereoisomers (±)-196i and (±)-197i: 

NMR: δH (300 MHz, CDCl3): 7.75-7.66 (2H, m, Ar), 7.34-7.24 (2H, m, Ar), 4.77 (1H, dtt, J= 

48.5 Hz, 10.9 Hz, 4.7 Hz, C4), 4.42-4.29 (1H, m, H2), 3.94-3.79 (1H, m, H6), 3.10 (1H, dddd, 

J= 13.9 Hz, 12.7 Hz, 2.7 Hz, 1.2 Hz, H6), 2.42 (3H, s, ArCH3), 2.08-1.96 (1H, m H5), 1.95-

1.45 (3H, m, H5, 2xH3) and 1.12, (3H, d, J= 7.1 Hz, 3xH7); δC (75 MHz, CDCl3): 143.3 (Cq, 

Ar), 137.6 (Cq, Ar), 129.7 (CH, Ar), 126.8 (CH, Ar), 86.7 (CH, d, J= 173.0 Hz, C4), 49.0 

(CH, d, J= 12.8 Hz, C2), 38.6 (CH2, d, J= 12.5 Hz, C6), 36.7 (CH2, d, J= 18.6 Hz, C3), 31.7 

(CH2, d, J= 19.1 Hz, C5), 21.4 (CH3, ArCH3) and 17.0 (CH3, C7); δF (282 MHz, CDCl3):         

-178.3 (dm, J= 48.5 Hz); HRMS m/z: [MNa]+: 294.0942, calculated 294.0940; IR from the 

mixture of diastereoisomers: max (neat)/cm-1: 3058, 3030, 2941, 2873, 1594, 1348, 1331, 

1160, 1001 and 813. 
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N

F

Ts

(±)-197i

2
345

6 7

 

 

Analysis from a mixture of diastereoisomers (±)-196i and (±)-197i: 

NMR: δH (300 MHz, CDCl3): 7.75-7.66 (2H, m, Ar), 7.34-7.24 (2H, m, Ar), 4.88 (1H, dtt, J= 

47.3 Hz, 3.1 Hz, 2.9 Hz, H4), 4.29-4.16 (1H, m, H2), 3.70 (1H, dd broad, J= 13.7 Hz; 5.3 Hz, 

H6), 3.31 (1H, td, J= 13.1 Hz, 2.7 Hz, H6), 2.41 (3H, s, ArCH3), 1.95-1.45 (4H, m, 2xH3, 

2xH5) and 1.17 (3H, dd, J= 7.2 Hz, 1.8 Hz, 3xH7); δC (75 MHz, CDCl3): 143.1 (Cq, Ar), 

138.0 (Cq, Ar), 129.6 (CH, Ar), 126.8 (CH, Ar), 86.8 (CH, d, J= 170.3 Hz, C4), 46.9 (CH, 

C2), 34.7 (CH2, C6), 34.6 (CH2, d, J= 18.9 Hz, C3), 29.8 (CH2, d, J= 21.4 Hz, C5), 21.4 (CH3, 

ArCH3) and 17.9 (CH3 C7); δF (282 MHz, CDCl3): -179.8 to -180.4 (m); HRMS m/z: [MNa]+: 

294.0942, calculated 294.0940; IR from a mixture of diastereoisomers: max (neat)/cm-1: 3058, 

3030, 2941, 2873, 1594, 1348, 1331, 1160, 1001 and 813. 
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(±)-4-Fluoro-2-isobutyl-N-(tosyl)-piperidines 196j and 197j. 

 

Piperidines (±)-196j and (±)-197j were prepared according to the general procedure outlined 

for the Aza-Prins reaction from isobutyraldehyde 100s (45 µL, 0.5 mmol), N-tosyl-4-

butenylamine 191 (112mg, 0.5 mmol) and boron trifluoride (65 µL, 0.5 mmol) in 

dichloromethane (5 mL). The product was isolated as a mixture of diastereoisomers after 

purification over silica gel (hexane/diethyl ether, 7/3 Rf= 0.19) as a pale yellow oil (general 

procedure: 111 mg, 82 %, mixture ratio syn/anti 1/1, procedure with microwaves: 112 mg, 83 

%, mixture ratio syn/anti 1.2/1). 

 

N

F

Ts

(±)-196j

2
345

6

 

 

Analysis from a mixture of diastereoisomers (±)-196j and (±)-197j: 

NMR: δH (300 MHz, CDCl3): 7.74 (2H, d, J= 8.3 Hz, Ar), 7.31 (2H, J= 8.3 Hz, Ar), 4.67 (1H, 

dtt, J= 48.8 Hz, 11.3 Hz, 4.6 Hz, H4), 4.04-3.92 (1H, m, H6), 3.80-3.71(1H, m, H2), 2.99 (1H, 

dddd, J= 15.3 Hz, 13.6 Hz, 2.7 Hz, 1.3 Hz, H6), 2.44 (3H, s, ArCH3), 2.21-2.10 (1H, m H3), 

1.93-1.75 (2H, m, H3, CH(CH3)2), 1.37-1.22 (2H, m, H5, H3), 0.95 (3H, d, J= 6.8 Hz, CHCH3) 

and 0.81 (3H, d, J= 6.77 Hz, CHCH3); δC (75 MHz, CDCl3): 143.3 (Cq, Ar), 138.4 (Cq, Ar), 

129.8 (CH, Ar), 126.9 (CH, Ar), 86.9 (CH, d, J= 172.2 Hz, C4), 60.1 (CH, d, J= 12.3 Hz, C2), 

39.1 (CH2, d, J= 12.5 Hz, C6), 31.6 (CH2, d, J= 17.7 Hz, C3), 30.8 (CH2, d, J= 19.2 Hz, C5), 

27.7 (CH, CH(CH3)2), 21.5 (CH3, CHCH3), 20.2 (CH3, CHCH3) and 19.9 (CH3, ArCH3); δF 

(282 MHz, CDCl3): -174.6 (dm, J= 48.8 Hz); HRMS m/z: [MNa]+: 322.1256, calculated 
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322.1253; IR from the mixture of diastereoisomers: max (neat)/cm-1: 2969, 2918, 2868, 1454, 

1337, 1303, 1208, 1149, 1090 and 818. 

 

 

N

F

Ts

(±)-197j

2
345

6

 

 

Analysis from a mixture of diastereoisomers (±)-196j and (±)-197j: 

NMR: δH (300 MHz, CDCl3): 7.77-7.70 (2H, m, Ar), 7.35-7.28 (2H, m, Ar), 4.79 (1H, dtt, J= 

48.3 Hz, 2.9 Hz, 2.6 Hz, H4), 3.80-3.67 (1H, H6), 3.54 (1H, dd, J= 10.9 Hz, 6.2 Hz, H2), 3.29 

(1H, ddd, J= 15.0 Hz, 13.4 Hz, 3.0 Hz, H6), 2.41 (3H, s, ArCH3), 2.29-2.08 (2H, m, H3, 

CH(CH3)2), 1.74-1.34 (3H, m, 2xH5, H3), 0.94 (3H, d, J= 6.5 Hz, CHCH3) and 0.85 (3H, d, J= 

6.6 Hz, CHCH3); δC (75 MHz, CDCl3): 143.0 (Cq, Ar), 138.6 (Cq, Ar), 129.6 (CH, Ar), 126.9 

(CH, Ar), 87.2 (CH, d, J= 170.0 Hz, C4), 57.9 (CH, C2), 35.5 (CH2, C6), 29.1 (CH2, d, J= 19.8 

Hz, C3), 28.9 (CH, CH(CH3)2), 28.7 (CH2, d, J= 20.7 Hz, C5), 21.5 (CH3, ArCH3), 20.7 (CH3 

CHCH3) and 20.1 (CH3 CHCH3); δF (282 MHz, CDCl3): -181.8 (qt, J= 48.3 Hz, 11.8 Hz); 

HRMS m/z: [MNa]+: 322.1256, calculated 322.1253; IR: max (neat)/cm-1: 2969, 2918, 2868, 

1454, 1337, 1303, 1208, 1149, 1090 and 818. 
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N-(p-Tolylsulfonyl)-7-azabicyclo[4.1.0] heptane 200.6 

 

Silica (1.5 g) and chloramine T (2.73 g, 12 mmol) were added to a solution of cyclohexene 

198 (304 µL, 3 mmol), I2 (77 mg, 0.3 mmol) and potassium carbonate (829 mg, 6 mmol) in 

water (4.5 mL). After 3h at r.t., diethyl ether (10 mL) was added and the mixture was filtered. 

The layers were separated and the aqueous layer was extracted into diethyl ether. The organic 

layers were dried, filtered and concentrated. The title compound was obtained after 

purification over silica (hexane/diethyl ether, 6/4 Rf= 0.29) as a white solid (512 mg, 68%). 

 

NTs

200  

 

NMR: δH (400 MHz, CDCl3): 7.73 (2H, J= 8.4 Hz, Ar), 7.24 (2H, J= 8.4 Hz, Ar), 2.95-2.88 

(2H, m, CH2CHN), 2.38 (3H, s, ArCH3), 1.78-1.68 (4H, m, 2xCH2CH2CH) and 1.42-1.09 

(4H, m, 2xCH2CH2CH); δC (75 MHz, CDCl3): 143.8 (Cq, Ar), 135.5 (Cq, Ar), 129.3 (CH,, 

Ar), 127.3 (CH, Ar), 39.5 (CH, CH2CHN), 22.5 (CH2, CH2CH2CH), 21.3 (CH3, ArCH3) and 

19.1 (CH2, CH2CH2CH); HRMS m/z: [MNa]+: 274.0878, calculated 274.0878; Mp: 55-56 °C 

(54-56 °C)5; IR: max (neat)/cm-1: 2935, 2857, 1594, 1437, 1317, 1155, 1090 and 844. 

Data in agreement with literature. 
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trans-N-Tosyl-2-vinylcyclohexanamine 198. 

 

CuI (52 mg, 0.3 mmol) and vinylmagnesium bromide (1.66 mL, 4.1 mmol) were added to a 

solution of aziridine 200 (345 mg, 1.4 mmol) in diethyl ether (3 mL) at -20 °C. After 10h, the 

the mixture was hydrolysed with a solution of sat. ammonium chloride and the layers were 

separated. The aqueous layer was extracted into diethyl ether then the organic layers were 

dried, concentrated and purified over silica gel. The title compound 198 was obtained after 

purification over silica (hexane/diethyl ether 6/4 Rf= 0.16) as a colorless oil (165 mg, 43%). 

 

NHTs

198

1

2
3

4

5

6

7
8

 

 

NMR: δH (400 MHz, CDCl3): 7.72 (2H, d, J= 8.73 Hz, Ar), 7.29 (2H, J= 8.73 Hz, Ar), 5.20 

(1H, ddd, J= 17.11 Hz, 9.9 Hz, 8.8 Hz, H7), 5.00 (1H, ddd, J= 17.1 Hz, 2.0 Hz, 0.5 Hz, H8), 

4.93 (1H, dd, J= 10.0 Hz, 2.0 Hz, H8), 4.37 (1H, d, J= 4.9 Hz, NH),2.75 (1H, ddd, J= 15.4 Hz, 

9.9 Hz, 4.9 Hz, H1), 2.44 (3H, s, ArCH3), 2.16-2.07 (1H, m, H6), 1.81 (1H, tdd, J= 9.9 Hz, 9.4 

Hz, 3.8 Hz, H2), 1.74-1.60 (3H, m, H5, H4, H3) and 1.25-1.29 (4H, H6, H5, H4, H3); δC (100 

MHz, CDCl3): 143.2 (Cq, Ar), 140.3 (CH, C7), 137..8 (Cq, Ar), 129.4 (CH, Ar), 127.2 (CH, 

Ar), 116.7 (CH2, C8), 56.4 (CH, C1), 48.6 (CH, C2), 33.8 (CH2, C6), 32.2, 24.8 and 24.8 (CH2, 

C3, C4, C5); HRMS m/z: [MNa]+: 302.1192, calculated 302.1191; IR: max (neat)/cm-1: 3282, 

2924, 2851, 1639, 1595, 1446, 1325, 1155, 1093 and 813. 
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(E)-1-Bromo-3-hexene 207.7 

 

Carbon tetrabromide (2.07 g, 6.2 mmol) was slowly added to a solution of alcohol 103 (585 

µL, 5 mmol) and triphenylphosphine (1.99 g, 7.5 mmol) in CH2Cl2 (10 mL) at 0°C. After 1h 

at r.t., the resultant bromo-3-hexene 207 was directly distilled from the reaction (578 mg, 

71%). 

 

Br

207  

 

NMR: δH (400 MHz, CDCl3): 5.53 (1H, dtt, J= 10.8 Hz, 7.3 Hz, 1.4 Hz, EtCH=CH), 5.33 

(1H, dtt, J= 10.8 Hz, 7.2 Hz, 1.5 Hz, EtCH=CH), 3.35 (2H, t, J= 7.1 Hz, CH2CH2Br), 2.61 

(2H, qt, J= 7.2 Hz, 1.5 Hz, CH2CH2Br), 2.07 (2H, quint d, J= 7.3 Hz, 1.4 Hz, CH3CH2CH) 

and 0.99 (3H, t, J= 7.5 Hz, CH3CH2CH); δC (75 MHz, CDCl3): 134.6 (CH, EtCH=CH), 125.3 

(CH, EtCH=CH), 32.5 (CH2, CH2Br), 30.5 (CH2, CH2CH2Br), 20.7 (CH2, CH3CH2) and 14.1 

(CH3, CH3CH2); LRMS m/z: [M]+: 162.1, 164.1, calculated 162.0, 164.0; IR: max (neat)/cm-1: 

3280, 2962, 2930, 2872, 1598, 1424, 1323, 1209, 1153, 1092, 967 and 813. 

Data in agreement with literature. 
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(Z)-1-Bromo-3-hexene 208.7 

 

Carbon tetrabromide (2.07 g, 6.2 mmol) was slowly added to a solution of alcohol 105 (585 

µL, 5 mmol) and triphenylphosphine (1.99 g, 7.5 mmol) in CH2Cl2 (10 mL) at 0°C. After 1h 

at r.t., the resultant bromo-3-hexene 208 was distilled directly from the reaction (553 mg, 

68%). 

 

Br

208  

 

NMR: δH (400 MHz, CDCl3): 5.60-5.46 (1H, m, EtCH=CH), 5.39-5.26 (1H, m, EtCH=CH), 

3.36 (2H, td, J= 7.1 Hz, 1.5 Hz, CH2CH2Br), 2.61 (2H, q, J= 7.1 Hz, CH2CH2Br), 2.06 (2H, 

quint, J= 7.5 Hz, CH3CH2CH) and 0.98 (3H, t, J= 7.5 Hz, CH3CH2CH); δC (75 MHz, CDCl3): 

134.7 (CH, EtCH=CH), 125.2 (CH, EtCH=CH), 32.6 (CH2, CH2Br), 30.7 (CH2, CH2CH2Br), 

20.7 (CH2, CH3CH2) and 14.1 (CH3, CH3CH2) ; LRMS m/z: [M]+: 162.1, 164.1, calculated 

162.0, 164.0; IR: max (neat)/cm-1: 3012, 2963, 2932, 2873, 1652, 1457, 1208, 1150, 721 and 

655. 

Data in agreement with literature. 
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(E)-N-(tosyl)hex-3-en-1-amine 205. 

 

(E)-1-Bromo-hex-3-ene 207 (325 mg, 2 mmol) was added to a solution of tosylamine 190 

(684 mg, 2 mmol), and potassium carbonate (0.66 g, 4.8 mmol) in acetone (40 mL). After 4h 

at reflux, the mixture was concentrated under vacuum, and water and diethyl ether were 

added. Then the layers were separated and the aqueous layer was extracted into diethyl ether. 

The organic layers were dried, filtered and concentrated. The title compound was obtained 

after purification over silica (hexane/diethyl ether, 6/4 Rf= 0.28) as a pale yellow oil (212 mg, 

42%). 

 

NHTs

205  

 

NMR: δH (400 MHz, CDCl3): 7.75 (2H, d, J= 8.3 Hz, Ar), 7.30 (2H, d, J= 8.3 Hz, Ar), 5.45 

(1H, dtt, J= 15.3 Hz, 6.3 Hz, 1.3 Hz, EtCH=CH), 5.17 (1H, dtt, J= 15.3 Hz, 6.9 Hz, 1.5 Hz, 

EtCH=CH), 4.77 (1H, t broad, J= 5.95 Hz, NH), 2.95 (2H, dd, J= 6.7 Hz, 6.3 Hz, CH2CH2N), 

2.42 (3H, s, ArCH3), 2.15-2.08 (2H, m, CH2CH2N), 1.99-1.90 (2H, m, CH3CH2CH) and 0.92 

(3H, t, J= 7.5 Hz, CH3CH2CH); δC (75 MHz, CDCl3): 143.4 (Cq, Ar), 137.0 (Cq, Ar), 136.1 

(CH, EtCH=CH), 129.7 (CH, Ar), 127.1 (CH, Ar), 124.2 (CH, EtCH=CH), 42.5 (CH2, 

CH2N), 32.4 (CH2, CH2CH2N), 25.2 (CH2, CH3CH2), 21.5 (CH3, ArCH3) and 13.6 (CH3, 

CH3CH2); HRMS m/z: [MNa]+: 276.1038, calculated 276.1034; IR: max (neat)/cm-1: 3020, 

2962, 2930, 1455, 1208, 1151, 966 and 638. 
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(Z)-N-(tosyl)hex-3-en-1-amine 206. 

 

(Z)-1-Bromo-hex-3-ene 208 (325 mg, 2 mmol) was added to a solution of tosylamine 190 

(684 mg, 2 mmol), and potassium carbonate (0.66 g, 4.8 mmol) in acetone (40 mL). After 4h 

at reflux, the mixture was concentrated under vacuum, and water and diethyl ether were 

added. The layers were separated and the aqueous layer was extracted into diethyl ether. The 

organic layers were dried, filtered and concentrated. The title compound was obtained after 

purification over silica (hexane/diethyl ether, 6/4 Rf= 0.27) as a pale yellow oil (197 mg, 

39%). 

 

NHTs

206  

 

NMR: δH (400 MHz, CDCl3): 7.75 (2H, d, J= 8.3 Hz, Ar), 7.30 (2H, d, J= 8.3 Hz, Ar), 5.53-

5.41 (1H, m, EtCH=CH), 5.14 (1H, dtt, J= 10.8 Hz, 7.4 Hz, 1.4 Hz, EtCH=CH), 4.68 (1H, s 

broad, NH), 3.00-2.91 (2H, m, CH2CH2N), 2.42 (3H, s, ArCH3), 2.24-2.15 (2H, m, 

CH2CH2N), 2.01-1.91 (2H, m, CH3CH2CH), 0.93, 0.92 and 0.91 (3H, t, J= 7.6 Hz, 

CH3CH2CH); δC (75 MHz, CDCl3): 143.3 (Cq, Ar), 136.9 (Cq, Ar), 135.4 (CH, EtCH=CH), 

129.6 (CH, Ar), 127.1 (CH, Ar), 123.9 (CH, EtCH=CH), 42.8 (CH2, CH2N), 27.3 (CH2, 

CH2CH2N), 21.5 (CH3, ArCH3), 20.6 (CH2, CH3CH2) and 14.1 (CH3, CH3CH2); HRMS m/z: 

[MNa]+: 276.1033, calculated 276.1034; IR: max (neat)/cm-1: 3277, 2963, 2929, 2868, 1597, 

1490, 1323, 1158, 1093 and 813. 
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Phenyl-2-nonyn-1-ol 234.8 

 

n-BuLi (2 mL, 5 mmol) was added to a solution of 1-octyne 237 (500 mg, 4.5 mmol) in THF 

(100 ml) at 0 oC and then benzaldehyde 100s was added. After 90 min, a mixture of water and 

diethyl ether was slowly added at 0 oC, and then the layers were separated. The aqueous layer 

was extracted into diethyl ether, and then the organic layer was washed with brine, dried, 

filtered and concentrated. Purification over silica (cyclohexane/diethyl ether, 9/1 to 8/2 Rf= 

0.30) gave 234 (718 mg, 73%) as a pale yellow oil.  

 

OH

234  

 

NMR: δH (300 MHz, CDCl3): 7.44-7.13 (5H, m, H Ar), 5.31 (1H, s, CHOH), 2.15 (2H, td, J= 

7.0 Hz, 2.0 Hz, C≡CCH2), 1.48-1.13 (8H, m, CH3(CH2)4) and 0.80 (3H, t, J= 6.4 Hz, 

CH3CH2); δC (75 MHz, CDCl3): 141.2 (Cq, Ar), 128.5 (CH, Ar), 128.1 (CH, Ar), 126.6 (CH, 

Ar), 87.7 (Cq, C≡C), 79.8 (Cq, C≡C), 64.8 (CH, C≡CCHOH), 31.3 (CH2, C≡CCH2), 28.5, 

28.5, 22.5, 18.8 (CH2, CH3(CH2)4) and 14.0 (CH3); HRMS m/z: [MNa]+: 239.1410, calculated 

239.1412; IR: max (neat)/cm-1: 3357, 3063, 3031, 2931 and 2227. 

Data in agreement with literature. 
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Non-2-yn-1-ol 235.9  

 

n-BuLi (2 mL, 5 mmol) was added to a solution of 1-octyne 237 (500 mg, 4.5 mmol) in THF 

(100 ml) at 0 oC then para-formaldehyde (150 mg, 5 mmol) was added. After 90 min, a 

mixture of water and diethyl ether was slowly added at 0 oC. The layers were separated and 

the aqueous layer was extracted into diethyl ether. The organic layers were then washed with 

brine, dried, filtered and concentrated. Purification over silica (cyclohexane/ diethyl ether, 9/1 

to 8/2 Rf= 0.24) gave 235 (431 mg, 68%) as a pale yellow oil.  

 

HO

235  

 

NMR: δH (300 MHz, CDCl3): 4.23 (2H, t, J= 2.1, CH2OH), 2.19 (2H, tt, J= 7.0 Hz, 2.1 Hz, 

C≡CCH2), 2.10 (s broad, OH), 1.54-1.21 (8H, m, CH3(CH2)4) and 0.87 (3H, t, J= 6.7 Hz, 

CH3CH2); δC (75 MHz, CDCl3): 87.5 (Cq, C≡C), 80.0 (Cq, C≡C), 64.8 (CH2, C≡CCH2OH), 

31.3 (CH2, C≡CCH2), 28.6, 28.5, 22.4, 18.7 (CH2, CH3(CH2)4) and 14.0 (CH3); HRMS m/z: 

[MNa]+: 141.1278, calculated 141.1279; IR: max (neat)/cm-1: 3338, 2952, 2924, 2857, 2285, 

2224, 1457, 1429, 1135 and 1009. 

Data in agreement with literature. 
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1-Phenylprop-2-ene-1-ol 238.10 

 

LiAlH4 (42 mg, 1.1 mmol) was added to a solution of 1-phenylprop-2-yn-1-ol 233 (150 mg, 

1.1 mmol) in THF (4 ml) at room temperature. After 3 h, a mixture of water and diethyl ether 

was slowly added at 0 oC. After 30min the layers were separated, and the aqueous layer was 

extracted with diethyl ether. The organic layers were washed with brine, dried, filtered and 

concentrated. Purification over silica (cyclohexane/ diethyl ether 8/2 Rf= 0.20) gave 238 (136 

mg, 89.3%).  

 

OH

238  

 

NMR: δH (300 MHz, CDCl3): 7.58-7.26 (5H, m, Ar), 6.06 (1H, m, CH=CH2), 5.36 (1H, dt, J= 

17.3 Hz, 1.3 Hz, CHOH), 5.21 (2H, m, CH=CH2) and 2.1 (1H, s broad, OH); 13C, δC (75 

MHz, CDCl3): 142.5 (Cq, Ar), 140.1 (CH, CH=CH2), 128.5 (CH, Ar), 127.7 (CH), 126.3 

(CH), 115.1 (CH2, CH=CH2) and 75.3 (CH, CHOH); LRMS m/z: [M]+: 134.07, calculated 

134.07. 

Data in agreement with literature. 
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Phenylnon-2-ene-1-ol 239.11  

 

LiAlH4 (17 mg, 0.5 mmol) was added to a solution of 1-phenylnon-2-yn-1-ol 234 (100 mg, 

0.5 mmol) in THF (3 ml) at room temperature. After 3 h, a mixture of water and diethyl ether 

was slowly added at 0 oC. After 30 min the layers was separated. The aqueous layer was 

extracted into diethyl ether, and then the organic layers were washed with brine, dried, filtered 

and concentrated. Purification over silica (cyclohexane/diethyl ether 8/2 Rf= 0.24) gave 26 

(92 mg, 91%). 

 

OH

239  

 

NMR: δH (300 MHz, CDCl3): 7.50-7.15 (5H, m, Ar.), 5.73-5.53 (2H, m, CH=CH), 5.08 (1H, 

d, J= 6.5 Hz, CHOH), 1.97 (2H, dt, J= 7.2 Hz, 6.6 Hz, CH=CHCH2), 1.89 (1H, s broad, OH), 

1.42-1.18 (8H, m, CH3(CH2)4) and 0.80 (3H, t, J= 6.9 Hz, CH3CH2); δC (75 MHz, CDCl3): 

143.3 (Cq), 132.9 (CH, CH=CHCHOH), 132.1 (CH, CH=CHCHOH), 128.4 (CH, Ar), 127.4 

(CH, Ar), 126.1 (CH, Ar), 75.2 (CH,CHOH), 32.2 (CH2, CH2CH=CH), 31.6, 29.0, 28.8, 22.6 

(CH2, CH3(CH2)4) and 14.1 (CH3, CH3(CH2)4); LRMS m/z: [M]+: 218.2, calculated 218.2; IR: 

max (neat)/cm-1: 3355, 3025, 2952, 2918, 2851, 1664, 1600, 1490, 1451, 1004, 965, 746 and 

696. 
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Non-2-en-1-ol 240.12 

 

LiAlH4 (24 mg, 0.7 mmol) was added to a solution of non-2-yn-1-ol 235 (100 mg, 0.7 mmol) 

in THF (3 ml) at room temperature. After 3 h, a mixture of water and diethyl ether was slowly 

added at 0 oC. After a further 30 min the layers was separated, and the aqueous layer was 

extracted into diethyl ether. The organic layers were washed with brine, dried, filtered and 

concentrated. Purification over silica (cyclohexane/diethyl ether 8/2 Rf= 0.22) gave alcohol 

240 (88 mg, 87%). 

 

OH

240  

 

NMR: δH (300 MHz, CDCl3): 5.73-5.54 (2H, m, CH=CH), 4.06 (2H, d, J= 5.1 Hz, CH2OH), 

1.96 (2H, dt, J= 7.2 Hz, 6.6 Hz, CH=CHCH2), 1.86 (1H, s broad, OH), 1.36-1.14 (8H, m, 

CH3(CH2)4) and 0.87 (3H, t, J= 7.0 Hz, CH3CH2); δC (75 MHz, CDCl3): 133.3 (CH, 

CH=CHCH2OH), 128.8 (CH, CH=CHCH2OH), 63.6 (CH,CH2OH), 32.2 (CH2, CH2CH=CH), 

31.7, 29.1, 28.8, 22.5 (CH2, CH3(CH2)4) and 14.0 (CH3, CH3(CH2)4); LRMS m/z: [MH]+: 

143.2, calculated 143.1; IR: max (neat)/cm-1: 3456, 2924, 2857, 1723, 1653, 1462, 1264, 1166 

and 973. 
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(Z)-3-Iodonon-2-en-1-ol 244. 

 

LiAlH4 (42 mg, 1.1 mmol) was added to a solution of alcohol 235 (100 mg, 0.7 mmol) and 

sodium methoxide (122 mg, 2.1 mmol) in THF (3 mL). After 3h at reflux, the reaction was 

cooled to -78 °C and I2 (721 mg, 2.8 mmol) was added. The reaction was then allowed to 

warm up to r.t. over 12h. Water and diethyl ether were added and the layers were separated. 

The organic layer was washed with aq. Na2SO3 and the aqueous layer was extracted into 

diethyl ether. Then the organic layers were dried, fliltrated and concentrated. Purification over 

silica (hexane/diethyl ether 8/2 Rf= 0.21) gave 244 as an oil (137 mg, 73%). 

 

OH

I

244  

 

NMR: δH (300 MHz, CDCl3): 5.80 (1H, tt, J= 5.8 Hz, 1.2 Hz, CH=CI), 4.17 (2H, d, J= 5.8 

Hz, CH2OH), 2.52-2.43 (2H, m, CH=CICH2), 2.37 (1H, s broad, OH), 158-1.19 (8H, m, 

CH3(CH2)4) and 0.87 (3H, t, J= 6.8 Hz, CH3CH2); δC (75 MHz, CDCl3): 133.3 (CH, 

CI=CHCH2OH), 110.6 (Cq, CI=CHCH2OH), 67.2 (CH,CH2OH), 45.1 (CH2, CH2CI=CH), 

31.5, 29.1, 27.8, 22.5 (CH2, CH3(CH2)4) and 14.0 (CH3, CH3(CH2)4); HRMS m/z: [MH]+: 

269.0400, calculated 269.0402; IR: max (neat)/cm-1: 3266, 2918, 2851, 1639, 1454, 1423, 

1200, 1146, 1001 and 500. 
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Diethyl toluenesulfonylmethylphosphonate 296.13 

 

Triethylamine (430 L, 3.1 mmol) was added dropwise to stirred solution of diethyl 

(hydroxymethyl)phosphonate 294 (440 L, 3.0 mmol) in diethyl ether (3.6 ml). The mixture 

was then cooled to -10 oC, and a solution of tosyl chloride (594 mg, 3.1 mmol) in diethyl ether 

(3.6 ml) was added dropwise. After being stirred at 0 oC for 3 h, the mixture was allowed to 

warm to room temperature and was then stirred for another 3h. Diethyl ether was then added 

and the solid was filtered off. The solvent was removed under reduced pressure and the 

product was purified over silica (dichloromethane, 100%) to give 295 (636 mg, 69%) as a 

colorless oil.  

 

P

O
EtO
EtO

O S

O

O

296  

 

NMR: δH (300 MHz, CDCl3): 7.71 (2H, d, J= 8.2 Hz, Ar), 7.30 (2H, d, J= 8.0 Hz, Ar), 4.11 

(2H, d, J= 9.9 Hz, PCH2OTs), 4.06 (4H, m, CH3CH2OP), 2.37 (3H, s, ArCH3) and 1.23 (6H, 

td, J= 7.1 Hz, 0.4 Hz, (CH3CH2O)2P); δC (75 MHz, CDCl3): 145.6 (Cq, Ar), 131.7 (Cq, Ar), 

130.4 (CH, Ar); 128.5 (CH, Ar), 63.1 (CH3, d, J= 6.3 Hz, (CH3CH2O)2), 61.7 (CH2, d, J= 

169.0 Hz, PCH2OTs), 22.0 (CH3, ArCH3) and 16.0 (CH3, d, J= 5.7 Hz, (CH3CH2O)2); δP (121 

MHz, CDCl3): 16.4 (s); HRMS m/z: [MNa]+: 345.0534, calculated 345.0538; IR: max 

(neat)/cm-1: 2980, 2924, 1597, 1493, 1365, 1258, 1188, 1096, 1018 and 816. 

Data in agreement with literature. 
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Diethyl trifluoromethanesulfonylmethylphosphonate 297.14 

 

Trifluoromethanesulfonyl chloride (360 mg, 2.1 mmol) was added to a suspension of sodium 

hydride 95% (58 mg, 2.3 mmol) in diethyl ether at -25oC (3 ml). This was followed 

immediately by the rapid dropwise addition of a solution of diethyl 

(hydroxymethyl)phosphonate 294 (300 mg, 1.8 mmol) in diethyl ether, maintaining an 

internal reaction temperature between -20 oC and -15 oC. After the resulting reaction mixture 

was stirred for 1 h at -20 oC, the mixture was rapidly filtered trough celite, diluted with 

dichloromethane and thoroughly washed with saturated aqueous sodium hydrogen carbonate. 

The solution was then was dried and concentrated to give 296. This compound was not 

purified any further and was used directly for the fluorination step. 

 

O

P
EtO

EtO
O S

O

O

CF3

297  

 

NMR: δH (300 MHz, CDCl3): 4.60 (2H, d, J= 8.8 Hz, PCH2OTf), 4.21 (4H, dq, J= 8.4 Hz, 

7.1 Hz, CH3CH2OP) and 1.38 (6H, dt, J= 7.1Hz, 0.3Hz, CH3CH2OP); δC (75 MHz, CDCl3): 

117,0 (Cq, d, J= 318 Hz, CF3), 66.3 (CH2, d, J= 168.9 Hz, PCH2OTf), 63.8 (CH2, dd, J= 36.2 

Hz, 6.3 Hz, (CH3CH2O)2) and 16.3 (CH3, d, J= 5.8 Hz, (CH3CH2O)2); δP (121 MHz, CDCl3): 

13.4 (s); δF (282 MHz, CDCl3): -74.4 (d, J= 1.8Hz, CF3); HRMS m/z: [MNa]+
: 322.9937, 

calculated 322.9942; IR: max (neat)/cm-1: 1372, 1099, 1213, 1026 and 813. 

Data in agreement with literature. 
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Diethyl fluoromethylphosphonate 294.15 

 

A solution of TBAF (2 ml, 2 mmol) was added dropwise to a solution of the triflate 296 (500 

mg, 1.6 mmol) in THF (3 ml) at 0 oC. The solution was stirred at 0 oC for 90 min. Solvents 

were then removed and dichloromethane was added. The organic layer was washed with 

water, dried and concentrated. Purification over silica (hexane/ethyl acetate 1/1) gave 293 

(152 mg, 57% over two steps) as a pale yellow oil. 

 

P

O
EtO
EtO

F

294  

 

NMR: δH (300 MHz, CDCl3): 4.76 (2H, dd, J= 46.8 Hz, 4.7 Hz, PCH2F), 4.22 (4H, dq, J= 8.0 

Hz, 7.1 Hz, CH3CH2O) and 1.37 (6H, t, J= 7.1Hz, CH3CH2O); δC (75 MHz, CDCl3): 76.6 

(CH2, dd, J= 170.1 Hz, 180.0 Hz, PCH2F), 63.0 (CH2, d, J= 6.5 Hz, (CH3CH2O)2) and 16.4 

(CH3, d, J= 5.5 Hz, (CH3CH2O)2); δP (121 MHz, CDCl3): 17.5 (d, J= 63.3Hz); δF (282 MHz, 

CDCl3): -250.1 (td, J= 46.9Hz, 63.3Hz); LRMS m/z: [MH]+: 171,0 calculated 171.0; IR: max 

(neat)/cm-1: 1256, 1029, 1394, 1371 and 1336. 

Data in agreement with literature. 
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(E)-Diethyl 1-fluoro-2-((S)-2,2-dimethyl-1,3-dioxolan-4-yl) vinylphosphonate 300.16 

 

LDA (280 µL, 0.6 mmol) was added to a solution of diethyl fluoromethylphosphonate 293 

(100 mg, 0.59 mmol) in THF (6 ml) at -78 °C. After 15 min, a solution of (R)-(+)-2,2-

dimethyl-1,3-dioxolane-4-carboxaldehyde 100p (71 mg, 0.55 mmol) in THF (4 ml) was 

added at -78 °C, and the reaction was allowed to warm up to rt over 10h. A mixture of water 

and diethyl ether (1/1, 10 mL) was slowly added and the layers were separated. The aqueous 

layer was extracted into diethyl ether, and the organic layers were thus washed with brine, 

dried, filtered and concentrated. Purification over silica (cyclohexane/diethyl ether 1/1 Rf= 

0.24) gave 299 (61 mg, 40%) as colourless oil.  

 

F

P
EtO

EtO

O O

O

300  

 

NMR: δH (300 MHz, CDCl3): 6.00 (1H, td, J= 39.0 Hz, 7.8 Hz, C=CH), 5.01 (1H, m, 

C=CHCH), 4.15 (5H, m, (CH3CH2O)2, C=CCHCHCHHO), 3.66 (1H, dd, J= 8.3 Hz, 7.0 Hz, 

C=CCHCHCHHO), 1.40 (6H, s, (CH3)2C) and 1.34 (6H, t, J= 7.1 Hz, CH3CH2O); δC (75 

MHz, CDCl3): 153.9 (Cq, dd, J= 281 Hz, 233 Hz, CFP), 123.9 (CH, dd, J= 27.3 Hz, 2.8 Hz, 

C=CH), 109.9 (Cq, C(CH3)2), 69.0 (CH, dd, J= 12.3 Hz, 7.0 Hz, C=CCH), 68.8 (CH2, 

C=CHCHCH2O), 63.4 (CH2, d, J= 5.9 Hz, (CH3CH2O)2), 26.5 (CH3, C(CH3)2), 25.7 (CH3, 

C(CH3)2) and 16.2 (CH3, d, J= 6.4 Hz, (CH3CH2O)2); δP (121 MHz, CDCl3): 4.76 (dqd, J= 

98.7Hz, 7.9 Hz, 1.3 Hz); δF (282 MHz, CDCl3): -250.1 (dd, J= 39.0 Hz, 98.8 Hz); HRMS m/z: 

[MNa]+: 305.0931, calculated 305.0930; IR: max (neat)/cm-1: 2957, 2924, 2845, 1725, 1454, 

1376, 1258, 1155, 1096, 1023 and 800. 

Data in agreement with literature.
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(E)-Diethyl 1-fluoro-2-phenylvinylphosphonate 303.17 

 

LDA (1.3 mL, 2.6 mmol) was added to a solution of diethyl fluoromethylphosphonate 293 

(457 mg, 2.7 mmol) in THF (45 ml) at -78 °C. After 15 min, benzaldehyde 100r (250µL, 2.5 

mmol) was added at -78 °C. The reaction was allowed to warm up to r.t .overnight. Then a 

mixture of water and diethyl ether (1/1, 10 mL) was slowly added and the layers were 

separated and the aqueous layer was extracted into diethyl ether. The organic layers were 

washed with brine, dried, filtered and concentrated. Purification over silica 

(cyclohexane/diethyl ether 1/1 Rf= 0.30) gave 302 (212 mg, 32%) as colourless oil.  

 

F Ph

P
EtO

EtO

O

303  

 

NMR: δH (300 MHz, CDCl3): 7.66-7.56 (2H, m, Ar), 7.46-7.31 (3H, m, Ar), 6.74 (1H, dd, J= 

42.3 Hz, 8.6 Hz, C=CHPh), 4.21 (4H, m, CH3CH2O) and 1.39 (6H, t, J= 7.1 Hz, CH3CH2O); 

δC (75 MHz, CDCl3): 150.0 (Cq, dd, J= 285 Hz, 236 Hz, C=CFP), 131.1 (Cq, dd, J= 14.3 Hz, 

1.2 Hz, Ar), 129.9 (CH, d, J= 7.7 Hz, Ar), 129.4 (CH, d, J= 2.2 Hz, Ar), 128.6 (CH, Ar), 

123.2 (CH, d, J= 30.0 Hz, C=CH), 63.1 (CH2, d, J= 5.3 Hz, (CH3CH2O)2) and 16.2 (CH3, d, 

J= 5.5 Hz, (CH3CH2O)2); δP (121 MHz, CDCl3): 7.0 (d sextuplet, J= 97.8 Hz, 8.2 Hz); δF 

(282 MHz, CDCl3): -127.2 (dd, J= 97.8 Hz, 42.3 Hz); HRMS m/z: [MNa]+: 281.0714, 

calculated 281.0719; IR: max (neat)/cm-1: 2913, 2845, 1711, 1462, 1373, 1205, 1146, 1040, 

718 and 696. 

Data in agreement with literature. 
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(E)-Diethyl 1-fluorohept-1-enylvinylphosphonate 304.12 

 

LDA (140 µl, 0.280 mmol) was added to a solution of diethyl fluoromethylphosphonate 293 

(50 mg, 0.29 mmol) in THF (5 ml) at -78 °C. After 15 min, hexanal 100m (30 µl, 0.27 mmol) 

was added at -78 °C, and the reaction was then allowed to warm up to r.t. overnight. A 

mixture of water and diethyl ether was slowly added and the layers were separated. The 

aqueous layer was then extracted into diethyl ether and the organic layers were washed with 

brine, then was dried, filtered and concentrated. Purification over silica ( cyclohexane/diethyl 

ether 1/1 Rf= 0.29) gave 303 (21 mg, 29%) as colourless oil. 

 

F C5H11

P
EtO

EtO

O

304  

 

NMR: δH (300 MHz, CDCl3): 5.96 (1H, qd, J= 7.7 Hz, 39.8 Hz, FPC=CH), 4.15 (4H, m, 

(CH3CH2O)2P), 2.24 (2H, qd, J= 7.4 Hz, 2.2 Hz, C=CHCH2), 1.4-1.25 (6H, m, CH3(CH2)3), 

1.36 (6H, td, J= 7.1 Hz, 0.6 Hz, (CH3CH2O)2P) and 0.88 (3H, m, CH3CH2); δC (75 MHz, 

CDCl3): 152.1 (Cq, dd, J= 283 Hz, 234 Hz, C=CFP), 126.83 (CH, dd, J= 5.8 Hz, 28.1 Hz, 

C=CH), 62.9 (CH2, d, J= 5.3 Hz, (CH3CH2O)2P), 29.7 (CH2, CH3(CH2)3), 27.9 (CH2, 

CH3(CH2)4), 24.0 (dd, J= 10.2 Hz, 4.7 Hz, C=CHCH2), 22.3 (CH2, CH3(CH2)3), 16.2 (CH3, d, 

J= 6.0 Hz, (CH3CH2O)2P) and 13.9 (CH3, CH3CH2); δP (121 MHz, CDCl3): 6.76 (dqd, J= 

103.2 Hz, 7.8 Hz, 1.4 Hz), δF (282 MHz, CDCl3): -132.4 (dd, J= 102.7 Hz, 39.8 Hz); HRMS 

m/z: [MNa]+: 275.1182, calculated 275.1188; IR: max (neat)/cm-1: 2963, 2935, 2873, 1474, 

1381, 1264, 1222, 1146 and 1029.  
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Appendix 

 

 

X-ray structure of 4-fluoro-2-(4-nitrophenyl)pyran 101a 

 

O

NO2

F

101a  

 

  Table 1.  Crystal data and structure refinement for gldh2. 

Identification code  gldh2 

Empirical formula  C11 H12 F N O3 

Formula weight  225.22 

Temperature  93(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 7.201(6) Å = 90°. 

 b = 19.914(9) Å = 92.10(2)°. 

 c = 21.937(9) Å  = 90°. 

Volume 3144(3) Å3 

Z 12 

Density (calculated) 1.428 Mg/m3 

Absorption coefficient 0.116 mm-1 

F(000) 1416 

Crystal size 0.2000 x 0.2000 x 0.0100 mm3 

Theta range for data collection 2.05 to 25.35°. 

Index ranges -8<=h<=8, -19<=k<=23, -26<=l<=26 

Reflections collected 14508 

Independent reflections 5019 [R(int) = 0.0980] 

Completeness to theta = 25.00° 87.9 %  

Absorption correction Multiscan 
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Max. and min. transmission 1.0000 and 0.9045 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5019 / 0 / 434 

Goodness-of-fit on F2 1.457 

Final R indices [I>2sigma(I)] R1 = 0.1692, wR2 = 0.4283 

R indices (all data) R1 = 0.2239, wR2 = 0.4656 

Largest diff. peak and hole 0.795 and -0.513 e.Å-3 
 
 
 Table 2.   Bond lengths [Å] and angles [°] for  gldh2. 

_____________________________________________________  

O(1)-C(2)  1.427(11) 

O(1)-C(6)  1.459(10) 

C(2)-C(7)  1.540(11) 

C(2)-C(3)  1.567(13) 

C(3)-C(4)  1.524(11) 

C(4)-F(4)  1.408(10) 

C(4)-C(5)  1.520(13) 

C(5)-C(6)  1.534(12) 

C(7)-C(8)  1.382(12) 

C(7)-C(12)  1.401(11) 

C(8)-C(9)  1.379(13) 

C(9)-C(10)  1.392(11) 

C(10)-C(11)  1.337(13) 

C(10)-N(10)  1.459(11) 

N(10)-O(10)  1.246(11) 

N(10)-O(11)  1.261(10) 

C(11)-C(12)  1.414(13) 

O(21)-C(22)  1.426(11) 

O(21)-C(26)  1.434(10) 

C(22)-C(27)  1.502(11) 

C(22)-C(23)  1.571(12) 

C(23)-C(24)  1.511(12) 

C(24)-F(24)  1.434(9) 

C(24)-C(25)  1.498(12) 

C(25)-C(26)  1.550(12) 

C(27)-C(28)  1.379(12) 

C(27)-C(32)  1.423(11) 
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C(28)-C(29)  1.382(12) 

C(29)-C(30)  1.423(11) 

C(30)-C(31)  1.378(13) 

C(30)-N(30)  1.469(10) 

N(30)-O(30)  1.226(10) 

N(30)-O(31)  1.239(9) 

C(31)-C(32)  1.407(12) 

O(41)-C(42)  1.409(11) 

O(41)-C(46)  1.455(9) 

C(42)-C(47)  1.514(10) 

C(42)-C(43)  1.547(12) 

C(43)-C(44)  1.526(10) 

C(44)-F(44)  1.452(10) 

C(44)-C(45)  1.487(13) 

C(45)-C(46)  1.556(12) 

C(47)-C(48)  1.397(13) 

C(47)-C(52)  1.418(11) 

C(48)-C(49)  1.386(12) 

C(49)-C(50)  1.426(12) 

C(50)-C(51)  1.412(13) 

C(50)-N(50)  1.459(10) 

N(50)-O(50)  1.213(10) 

N(50)-O(51)  1.254(9) 

C(51)-C(52)  1.363(11) 

 

C(2)-O(1)-C(6) 108.7(6) 

O(1)-C(2)-C(7) 110.6(7) 

O(1)-C(2)-C(3) 109.2(7) 

C(7)-C(2)-C(3) 107.5(7) 

C(4)-C(3)-C(2) 108.5(7) 

F(4)-C(4)-C(5) 108.6(7) 

F(4)-C(4)-C(3) 109.4(7) 

C(5)-C(4)-C(3) 110.7(7) 

C(4)-C(5)-C(6) 108.9(8) 

O(1)-C(6)-C(5) 110.8(7) 

C(8)-C(7)-C(12) 120.0(8) 

C(8)-C(7)-C(2) 118.3(7) 

C(12)-C(7)-C(2) 121.5(8) 
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C(9)-C(8)-C(7) 121.6(7) 

C(8)-C(9)-C(10) 117.6(9) 

C(11)-C(10)-C(9) 122.1(8) 

C(11)-C(10)-N(10) 121.0(7) 

C(9)-C(10)-N(10) 116.9(8) 

O(10)-N(10)-O(11) 120.4(7) 

O(10)-N(10)-C(10) 121.8(7) 

O(11)-N(10)-C(10) 117.8(8) 

C(10)-C(11)-C(12) 121.1(8) 

C(7)-C(12)-C(11) 117.4(9) 

C(22)-O(21)-C(26) 110.5(6) 

O(21)-C(22)-C(27) 111.4(7) 

O(21)-C(22)-C(23) 108.1(7) 

C(27)-C(22)-C(23) 110.9(7) 

C(24)-C(23)-C(22) 109.3(7) 

F(24)-C(24)-C(25) 109.5(7) 

F(24)-C(24)-C(23) 108.2(7) 

C(25)-C(24)-C(23) 110.2(7) 

C(24)-C(25)-C(26) 108.2(7) 

O(21)-C(26)-C(25) 110.5(7) 

C(28)-C(27)-C(32) 119.3(7) 

C(28)-C(27)-C(22) 119.0(7) 

C(32)-C(27)-C(22) 121.7(8) 

C(29)-C(28)-C(27) 124.0(7) 

C(28)-C(29)-C(30) 116.3(8) 

C(31)-C(30)-C(29) 121.3(7) 

C(31)-C(30)-N(30) 120.4(7) 

C(29)-C(30)-N(30) 118.3(8) 

O(30)-N(30)-O(31) 125.0(7) 

O(30)-N(30)-C(30) 119.1(7) 

O(31)-N(30)-C(30) 115.9(8) 

C(30)-C(31)-C(32) 121.4(8) 

C(31)-C(32)-C(27) 117.7(9) 

C(42)-O(41)-C(46) 110.8(6) 

O(41)-C(42)-C(47) 110.5(7) 

O(41)-C(42)-C(43) 111.8(7) 

C(47)-C(42)-C(43) 109.7(7) 

C(44)-C(43)-C(42) 106.7(7) 
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F(44)-C(44)-C(45) 107.6(7) 

F(44)-C(44)-C(43) 106.8(6) 

C(45)-C(44)-C(43) 111.7(7) 

C(44)-C(45)-C(46) 109.7(7) 

O(41)-C(46)-C(45) 110.0(7) 

C(48)-C(47)-C(52) 118.5(7) 

C(48)-C(47)-C(42) 118.7(7) 

C(52)-C(47)-C(42) 122.8(9) 

C(49)-C(48)-C(47) 122.5(8) 

C(48)-C(49)-C(50) 116.9(9) 

C(51)-C(50)-C(49) 121.8(7) 

C(51)-C(50)-N(50) 120.7(7) 

C(49)-C(50)-N(50) 117.3(9) 

O(50)-N(50)-O(51) 122.4(7) 

O(50)-N(50)-C(50) 120.4(7) 

O(51)-N(50)-C(50) 117.1(8) 

C(52)-C(51)-C(50) 118.7(8) 

C(51)-C(52)-C(47) 121.5(9) 

_____________________________________________________________  
 

Table 3.  Torsion angles [°] for gldh2. 

________________________________________________________________  

C(6)-O(1)-C(2)-C(7) 176.4(7) 

C(6)-O(1)-C(2)-C(3) -65.5(8) 

O(1)-C(2)-C(3)-C(4) 60.6(9) 

C(7)-C(2)-C(3)-C(4) -179.4(7) 

C(2)-C(3)-C(4)-F(4) -174.2(7) 

C(2)-C(3)-C(4)-C(5) -54.5(10) 

F(4)-C(4)-C(5)-C(6) 173.9(6) 

C(3)-C(4)-C(5)-C(6) 53.7(10) 

C(2)-O(1)-C(6)-C(5) 65.4(9) 

C(4)-C(5)-C(6)-O(1) -58.5(9) 

O(1)-C(2)-C(7)-C(8) -159.7(8) 

C(3)-C(2)-C(7)-C(8) 81.1(10) 

O(1)-C(2)-C(7)-C(12) 14.6(12) 

C(3)-C(2)-C(7)-C(12) -104.6(9) 

C(12)-C(7)-C(8)-C(9) 5.2(13) 

C(2)-C(7)-C(8)-C(9) 179.7(8) 
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C(7)-C(8)-C(9)-C(10) -4.7(13) 

C(8)-C(9)-C(10)-C(11) 3.1(13) 

C(8)-C(9)-C(10)-N(10) -178.1(8) 

C(11)-C(10)-N(10)-O(10) -179.8(8) 

C(9)-C(10)-N(10)-O(10) 1.4(12) 

C(11)-C(10)-N(10)-O(11) 2.9(12) 

C(9)-C(10)-N(10)-O(11) -175.9(7) 

C(9)-C(10)-C(11)-C(12) -2.0(14) 

N(10)-C(10)-C(11)-C(12) 179.3(8) 

C(8)-C(7)-C(12)-C(11) -3.8(13) 

C(2)-C(7)-C(12)-C(11) -178.1(8) 

C(10)-C(11)-C(12)-C(7) 2.3(14) 

C(26)-O(21)-C(22)-C(27) 174.3(7) 

C(26)-O(21)-C(22)-C(23) -63.6(8) 

O(21)-C(22)-C(23)-C(24) 59.4(8) 

C(27)-C(22)-C(23)-C(24) -178.2(7) 

C(22)-C(23)-C(24)-F(24) -176.3(6) 

C(22)-C(23)-C(24)-C(25) -56.7(9) 

F(24)-C(24)-C(25)-C(26) 174.6(6) 

C(23)-C(24)-C(25)-C(26) 55.7(9) 

C(22)-O(21)-C(26)-C(25) 64.8(9) 

C(24)-C(25)-C(26)-O(21) -59.2(9) 

O(21)-C(22)-C(27)-C(28) -165.8(8) 

C(23)-C(22)-C(27)-C(28) 73.7(10) 

O(21)-C(22)-C(27)-C(32) 14.2(11) 

C(23)-C(22)-C(27)-C(32) -106.2(9) 

C(32)-C(27)-C(28)-C(29) 1.7(14) 

C(22)-C(27)-C(28)-C(29) -178.2(9) 

C(27)-C(28)-C(29)-C(30) -2.0(14) 

C(28)-C(29)-C(30)-C(31) 1.4(13) 

C(28)-C(29)-C(30)-N(30) 179.9(8) 

C(31)-C(30)-N(30)-O(30) 176.8(8) 

C(29)-C(30)-N(30)-O(30) -1.6(12) 

C(31)-C(30)-N(30)-O(31) -3.3(12) 

C(29)-C(30)-N(30)-O(31) 178.3(7) 

C(29)-C(30)-C(31)-C(32) -0.7(14) 

N(30)-C(30)-C(31)-C(32) -179.1(8) 

C(30)-C(31)-C(32)-C(27) 0.4(13) 
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C(28)-C(27)-C(32)-C(31) -0.9(12) 

C(22)-C(27)-C(32)-C(31) 179.1(8) 

C(46)-O(41)-C(42)-C(47) 173.8(6) 

C(46)-O(41)-C(42)-C(43) -63.7(8) 

O(41)-C(42)-C(43)-C(44) 59.6(9) 

C(47)-C(42)-C(43)-C(44) -177.4(8) 

C(42)-C(43)-C(44)-F(44) -173.1(7) 

C(42)-C(43)-C(44)-C(45) -55.7(10) 

F(44)-C(44)-C(45)-C(46) 172.2(6) 

C(43)-C(44)-C(45)-C(46) 55.3(9) 

C(42)-O(41)-C(46)-C(45) 60.3(9) 

C(44)-C(45)-C(46)-O(41) -55.8(9) 

O(41)-C(42)-C(47)-C(48) -164.4(7) 

C(43)-C(42)-C(47)-C(48) 71.9(10) 

O(41)-C(42)-C(47)-C(52) 16.5(11) 

C(43)-C(42)-C(47)-C(52) -107.2(9) 

C(52)-C(47)-C(48)-C(49) 0.6(12) 

C(42)-C(47)-C(48)-C(49) -178.5(8) 

C(47)-C(48)-C(49)-C(50) -2.0(12) 

C(48)-C(49)-C(50)-C(51) 3.5(12) 

C(48)-C(49)-C(50)-N(50) 178.1(7) 

C(51)-C(50)-N(50)-O(50) 174.9(8) 

C(49)-C(50)-N(50)-O(50) 0.2(12) 

C(51)-C(50)-N(50)-O(51) -8.8(12) 

C(49)-C(50)-N(50)-O(51) 176.6(7) 

C(49)-C(50)-C(51)-C(52) -3.5(13) 

N(50)-C(50)-C(51)-C(52) -177.9(7) 

C(50)-C(51)-C(52)-C(47) 1.9(12) 

C(48)-C(47)-C(52)-C(51) -0.5(12) 

C(42)-C(47)-C(52)-C(51) 178.6(8) 

________________________________________________________________  
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X-ray structure of 4-Fluoro-2-(4-nitrophenyl)octahydrochromene 114b. 

 

 

 

 

  Table 1.  Crystal data and structure refinement for gldh3. 

Identification code  gldh3 

Empirical formula  C15 H18 F N O3 

Formula weight  279.30 

Temperature  173(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 18.055(3) Å = 90°. 

 b = 8.2006(15) Å = 90.674(7)°. 

 c = 18.324(3) Å  = 90°. 

Volume 2712.9(8) Å3 

Z 8 

Density (calculated) 1.368 Mg/m3 

Absorption coefficient 0.868 mm-1 

F(000) 1184 

Crystal size 0.200 x 0.030 x 0.010 mm3 

Theta range for data collection 3.42 to 67.50°. 

Index ranges -21<=h<=21, -9<=k<=9, -21<=l<=21 

Reflections collected 28815 

Independent reflections 4478 [R(int) = 0.2520] 

Completeness to theta = 67.00° 91.9 %  

Absorption correction Multiscan 

Max. and min. transmission 1.0000 and 0.9537 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4478 / 0 / 362 

Goodness-of-fit on F2 1.200 
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Final R indices [I>2sigma(I)] R1 = 0.2156, wR2 = 0.4531 

R indices (all data) R1 = 0.2593, wR2 = 0.4767 

Largest diff. peak and hole 0.487 and -0.446 e.Å-3 
 

 

  Table 2.   Bond lengths [Å] and angles [°] for  gldh3. 

_____________________________________________________  

O(1)-C(2)  1.419(12) 

O(1)-C(6)  1.453(13) 

C(2)-C(3)  1.534(16) 

C(2)-C(7)  1.555(15) 

C(3)-C(4)  1.513(15) 

C(4)-F(4)  1.409(13) 

C(4)-C(5)  1.507(15) 

C(5)-C(13)  1.500(16) 

C(5)-C(6)  1.517(16) 

C(6)-C(16)  1.522(15) 

C(7)-C(12)  1.360(15) 

C(7)-C(8)  1.408(16) 

C(8)-C(9)  1.348(16) 

C(9)-C(10)  1.364(16) 

C(10)-C(11)  1.409(17) 

C(10)-N(10)  1.472(14) 

N(10)-O(11)  1.187(13) 

N(10)-O(10)  1.220(14) 

C(11)-C(12)  1.370(16) 

C(13)-C(14)  1.531(16) 

C(14)-C(15)  1.533(18) 

C(15)-C(16)  1.510(18) 

O(21)-C(22)  1.431(13) 

O(21)-C(26)  1.464(13) 

C(22)-C(27)  1.446(18) 

C(22)-C(23)  1.566(18) 

C(23)-C(24)  1.506(16) 

C(24)-F(24)  1.409(13) 

C(24)-C(25)  1.499(16) 

C(25)-C(26)  1.495(16) 

C(25)-C(33)  1.529(15) 
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C(26)-C(36)  1.528(16) 

C(27)-C(28)  1.403(17) 

C(27)-C(32)  1.411(17) 

C(28)-C(29)  1.375(17) 

C(29)-C(30)  1.392(18) 

C(30)-C(31)  1.404(18) 

C(30)-N(30)  1.444(16) 

N(30)-O(30)  1.218(14) 

N(30)-O(31)  1.220(14) 

C(31)-C(32)  1.363(16) 

C(33)-C(34)  1.516(17) 

C(34)-C(35)  1.519(17) 

C(35)-C(36)  1.559(17) 

 

C(2)-O(1)-C(6) 110.2(8) 

O(1)-C(2)-C(3) 110.1(10) 

O(1)-C(2)-C(7) 105.6(9) 

C(3)-C(2)-C(7) 111.2(9) 

C(4)-C(3)-C(2) 107.6(9) 

F(4)-C(4)-C(5) 107.6(9) 

F(4)-C(4)-C(3) 107.8(8) 

C(5)-C(4)-C(3) 110.3(9) 

C(13)-C(5)-C(4) 114.5(10) 

C(13)-C(5)-C(6) 108.9(10) 

C(4)-C(5)-C(6) 107.4(10) 

O(1)-C(6)-C(5) 111.6(9) 

O(1)-C(6)-C(16) 106.0(9) 

C(5)-C(6)-C(16) 111.4(9) 

C(12)-C(7)-C(8) 117.5(11) 

C(12)-C(7)-C(2) 122.0(10) 

C(8)-C(7)-C(2) 120.4(10) 

C(9)-C(8)-C(7) 121.5(12) 

C(8)-C(9)-C(10) 118.9(11) 

C(9)-C(10)-C(11) 122.5(10) 

C(9)-C(10)-N(10) 120.2(10) 

C(11)-C(10)-N(10) 117.3(11) 

O(11)-N(10)-O(10) 121.1(11) 

O(11)-N(10)-C(10) 120.7(10) 
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O(10)-N(10)-C(10) 118.2(11) 

C(12)-C(11)-C(10) 115.9(12) 

C(7)-C(12)-C(11) 123.6(11) 

C(5)-C(13)-C(14) 110.9(10) 

C(13)-C(14)-C(15) 109.4(9) 

C(16)-C(15)-C(14) 112.5(10) 

C(15)-C(16)-C(6) 111.6(10) 

C(22)-O(21)-C(26) 113.5(9) 

O(21)-C(22)-C(27) 109.5(10) 

O(21)-C(22)-C(23) 109.2(10) 

C(27)-C(22)-C(23) 112.0(10) 

C(24)-C(23)-C(22) 109.8(10) 

F(24)-C(24)-C(25) 111.3(10) 

F(24)-C(24)-C(23) 109.1(10) 

C(25)-C(24)-C(23) 113.1(10) 

C(26)-C(25)-C(24) 109.5(10) 

C(26)-C(25)-C(33) 110.2(10) 

C(24)-C(25)-C(33) 114.3(10) 

O(21)-C(26)-C(25) 110.5(9) 

O(21)-C(26)-C(36) 106.8(9) 

C(25)-C(26)-C(36) 113.1(10) 

C(28)-C(27)-C(32) 117.2(11) 

C(28)-C(27)-C(22) 121.7(11) 

C(32)-C(27)-C(22) 120.9(11) 

C(29)-C(28)-C(27) 122.5(12) 

C(28)-C(29)-C(30) 118.8(11) 

C(29)-C(30)-C(31) 119.9(11) 

C(29)-C(30)-N(30) 119.8(11) 

C(31)-C(30)-N(30) 120.2(12) 

O(30)-N(30)-O(31) 123.8(12) 

O(30)-N(30)-C(30) 117.1(13) 

O(31)-N(30)-C(30) 119.0(11) 

C(32)-C(31)-C(30) 120.5(12) 

C(31)-C(32)-C(27) 121.0(11) 

C(34)-C(33)-C(25) 111.1(10) 

C(33)-C(34)-C(35) 111.7(10) 

C(34)-C(35)-C(36) 110.2(10) 

C(26)-C(36)-C(35) 108.4(10) 
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_____________________________________________________________  

  

 

Table 3.  Torsion angles [°] for gldh3. 

________________________________________________________________  

C(6)-O(1)-C(2)-C(3) 62.1(12) 

C(6)-O(1)-C(2)-C(7) -177.8(9) 

O(1)-C(2)-C(3)-C(4) -60.5(12) 

C(7)-C(2)-C(3)-C(4) -177.2(9) 

C(2)-C(3)-C(4)-F(4) 176.0(9) 

C(2)-C(3)-C(4)-C(5) 58.8(13) 

F(4)-C(4)-C(5)-C(13) 64.0(13) 

C(3)-C(4)-C(5)-C(13) -178.6(10) 

F(4)-C(4)-C(5)-C(6) -175.0(9) 

C(3)-C(4)-C(5)-C(6) -57.6(13) 

C(2)-O(1)-C(6)-C(5) -61.8(12) 

C(2)-O(1)-C(6)-C(16) 176.8(9) 

C(13)-C(5)-C(6)-O(1) -177.2(9) 

C(4)-C(5)-C(6)-O(1) 58.3(12) 

C(13)-C(5)-C(6)-C(16) -59.0(13) 

C(4)-C(5)-C(6)-C(16) 176.5(10) 

O(1)-C(2)-C(7)-C(12) 11.6(15) 

C(3)-C(2)-C(7)-C(12) 131.0(11) 

O(1)-C(2)-C(7)-C(8) -172.0(10) 

C(3)-C(2)-C(7)-C(8) -52.6(15) 

C(12)-C(7)-C(8)-C(9) -1.9(18) 

C(2)-C(7)-C(8)-C(9) -178.4(11) 

C(7)-C(8)-C(9)-C(10) 0.5(19) 

C(8)-C(9)-C(10)-C(11) 1.5(18) 

C(8)-C(9)-C(10)-N(10) 178.0(11) 

C(9)-C(10)-N(10)-O(11) -179.0(12) 

C(11)-C(10)-N(10)-O(11) -2.3(16) 

C(9)-C(10)-N(10)-O(10) 2.0(17) 

C(11)-C(10)-N(10)-O(10) 178.7(11) 

C(9)-C(10)-C(11)-C(12) -1.9(17) 

N(10)-C(10)-C(11)-C(12) -178.5(10) 

C(8)-C(7)-C(12)-C(11) 1.4(17) 

C(2)-C(7)-C(12)-C(11) 177.9(11) 
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C(10)-C(11)-C(12)-C(7) 0.4(17) 

C(4)-C(5)-C(13)-C(14) -178.3(10) 

C(6)-C(5)-C(13)-C(14) 61.5(13) 

C(5)-C(13)-C(14)-C(15) -58.6(13) 

C(13)-C(14)-C(15)-C(16) 53.4(14) 

C(14)-C(15)-C(16)-C(6) -51.9(14) 

O(1)-C(6)-C(16)-C(15) 176.0(10) 

C(5)-C(6)-C(16)-C(15) 54.5(14) 

C(26)-O(21)-C(22)-C(27) -178.1(10) 

C(26)-O(21)-C(22)-C(23) 58.9(13) 

O(21)-C(22)-C(23)-C(24) -53.2(14) 

C(27)-C(22)-C(23)-C(24) -174.7(11) 

C(22)-C(23)-C(24)-F(24) 176.9(10) 

C(22)-C(23)-C(24)-C(25) 52.5(15) 

F(24)-C(24)-C(25)-C(26) -177.4(9) 

C(23)-C(24)-C(25)-C(26) -54.2(14) 

F(24)-C(24)-C(25)-C(33) 58.3(14) 

C(23)-C(24)-C(25)-C(33) -178.5(11) 

C(22)-O(21)-C(26)-C(25) -61.6(13) 

C(22)-O(21)-C(26)-C(36) 174.9(10) 

C(24)-C(25)-C(26)-O(21) 56.2(13) 

C(33)-C(25)-C(26)-O(21) -177.2(10) 

C(24)-C(25)-C(26)-C(36) 175.9(10) 

C(33)-C(25)-C(26)-C(36) -57.5(14) 

O(21)-C(22)-C(27)-C(28) -178.2(11) 

C(23)-C(22)-C(27)-C(28) -57.0(17) 

O(21)-C(22)-C(27)-C(32) 7.0(17) 

C(23)-C(22)-C(27)-C(32) 128.3(12) 

C(32)-C(27)-C(28)-C(29) -1.5(19) 

C(22)-C(27)-C(28)-C(29) -176.5(12) 

C(27)-C(28)-C(29)-C(30) 3.7(19) 

C(28)-C(29)-C(30)-C(31) -3.8(19) 

C(28)-C(29)-C(30)-N(30) 179.5(11) 

C(29)-C(30)-N(30)-O(30) -26.2(17) 

C(31)-C(30)-N(30)-O(30) 157.1(12) 

C(29)-C(30)-N(30)-O(31) 156.8(12) 

C(31)-C(30)-N(30)-O(31) -19.9(18) 

C(29)-C(30)-C(31)-C(32) 2(2) 
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N(30)-C(30)-C(31)-C(32) 178.4(12) 

C(30)-C(31)-C(32)-C(27) 0.5(19) 

C(28)-C(27)-C(32)-C(31) -0.6(18) 

C(22)-C(27)-C(32)-C(31) 174.4(12) 

C(26)-C(25)-C(33)-C(34) 55.3(14) 

C(24)-C(25)-C(33)-C(34) 179.1(10) 

C(25)-C(33)-C(34)-C(35) -56.3(13) 

C(33)-C(34)-C(35)-C(36) 57.0(13) 

O(21)-C(26)-C(36)-C(35) 179.5(10) 

C(25)-C(26)-C(36)-C(35) 57.7(14) 

C(34)-C(35)-C(36)-C(26) -56.1(14) 

________________________________________________________________  
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X-ray structure of N-(Tosyl)-2-(4-bromophenyl)-4-fluoropiperidine 196b 
 
 

 
 

 
 

 
  Table 1.  Crystal data and structure refinement for gldh4. 

Identification code  gldh4 

Empirical formula  C18 H19 Br F N O2 S 

Formula weight  412.31 

Temperature  93(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 13.454(3) Å = 90°. 

 b = 9.5255(19) Å = 94.451(18)°. 

 c = 13.714(3) Å  = 90°. 

Volume 1752.2(6) Å3 

Z 4 

Density (calculated) 1.563 Mg/m3 

Absorption coefficient 2.485 mm-1 

F(000) 840 

Crystal size 0.120 x 0.120 x 0.120 mm3 

Theta range for data collection 2.61 to 25.34°. 

Index ranges -16<=h<=16, -11<=k<=10, -16<=l<=16 

Reflections collected 15768 

Independent reflections 3180 [R(int) = 0.1111] 

Completeness to theta = 25.00° 99.5 %  

Absorption correction Multiscan 

Max. and min. transmission 1.0000 and 0.9129 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3180 / 0 / 219 
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Goodness-of-fit on F2 1.219 

Final R indices [I>2sigma(I)] R1 = 0.0685, wR2 = 0.1472 

R indices (all data) R1 = 0.0731, wR2 = 0.1504 

Largest diff. peak and hole 0.468 and -1.099 e.Å-3 
 
 
 Table 2.   Bond lengths [Å] and angles [°] for  gldh4. 

_____________________________________________________  

N(1)-C(2)  1.470(6) 

N(1)-C(6)  1.485(6) 

N(1)-S(1)  1.611(4) 

C(2)-C(7)  1.533(6) 

C(2)-C(3)  1.548(7) 

C(3)-C(4)  1.505(7) 

F(4)-C(4)  1.425(5) 

C(4)-C(5)  1.506(7) 

C(5)-C(6)  1.516(7) 

C(7)-C(8)  1.395(6) 

C(7)-C(12)  1.399(6) 

C(8)-C(9)  1.374(7) 

C(9)-C(10)  1.382(7) 

C(10)-C(11)  1.377(7) 

C(10)-Br(10)  1.898(5) 

C(11)-C(12)  1.391(6) 

S(1)-O(1)  1.439(3) 

S(1)-O(2)  1.444(3) 

S(1)-C(13)  1.770(5) 

C(13)-C(18)  1.387(7) 

C(13)-C(14)  1.397(7) 

C(14)-C(15)  1.395(7) 

C(15)-C(16)  1.389(7) 

C(16)-C(17)  1.400(8) 

C(16)-C(19)  1.509(7) 

C(17)-C(18)  1.384(7) 

 

C(2)-N(1)-C(6) 116.6(4) 

C(2)-N(1)-S(1) 122.4(3) 

C(6)-N(1)-S(1) 120.4(3) 
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N(1)-C(2)-C(7) 110.5(4) 

N(1)-C(2)-C(3) 109.7(4) 

C(7)-C(2)-C(3) 114.6(4) 

C(4)-C(3)-C(2) 109.7(4) 

F(4)-C(4)-C(3) 108.6(4) 

F(4)-C(4)-C(5) 108.9(4) 

C(3)-C(4)-C(5) 111.1(4) 

C(4)-C(5)-C(6) 109.2(4) 

N(1)-C(6)-C(5) 111.4(4) 

C(8)-C(7)-C(12) 118.0(4) 

C(8)-C(7)-C(2) 122.0(4) 

C(12)-C(7)-C(2) 119.9(4) 

C(9)-C(8)-C(7) 121.1(5) 

C(8)-C(9)-C(10) 120.2(4) 

C(11)-C(10)-C(9) 120.1(4) 

C(11)-C(10)-Br(10) 119.6(4) 

C(9)-C(10)-Br(10) 120.2(4) 

C(10)-C(11)-C(12) 119.7(4) 

C(11)-C(12)-C(7) 120.8(4) 

O(1)-S(1)-O(2) 119.3(2) 

O(1)-S(1)-N(1) 107.4(2) 

O(2)-S(1)-N(1) 107.0(2) 

O(1)-S(1)-C(13) 107.9(2) 

O(2)-S(1)-C(13) 107.2(2) 

N(1)-S(1)-C(13) 107.5(2) 

C(18)-C(13)-C(14) 120.9(4) 

C(18)-C(13)-S(1) 120.2(4) 

C(14)-C(13)-S(1) 118.8(4) 

C(15)-C(14)-C(13) 118.3(5) 

C(16)-C(15)-C(14) 122.1(5) 

C(15)-C(16)-C(17) 117.6(5) 

C(15)-C(16)-C(19) 121.1(5) 

C(17)-C(16)-C(19) 121.2(5) 

C(18)-C(17)-C(16) 121.7(5) 

C(17)-C(18)-C(13) 119.2(5) 

Symmetry transformations used to generate equivalent atoms:  

 

 



 228 

Table 3.  Torsion angles [°] for gldh4. 

________________________________________________________________  

C(6)-N(1)-C(2)-C(7) 76.5(5) 

S(1)-N(1)-C(2)-C(7) -111.8(4) 

C(6)-N(1)-C(2)-C(3) -50.8(5) 

S(1)-N(1)-C(2)-C(3) 121.0(4) 

N(1)-C(2)-C(3)-C(4) 53.7(5) 

C(7)-C(2)-C(3)-C(4) -71.3(5) 

C(2)-C(3)-C(4)-F(4) 179.7(4) 

C(2)-C(3)-C(4)-C(5) -60.5(5) 

F(4)-C(4)-C(5)-C(6) 179.8(4) 

C(3)-C(4)-C(5)-C(6) 60.1(5) 

C(2)-N(1)-C(6)-C(5) 51.6(5) 

S(1)-N(1)-C(6)-C(5) -120.3(4) 

C(4)-C(5)-C(6)-N(1) -53.6(5) 

N(1)-C(2)-C(7)-C(8) -158.9(4) 

C(3)-C(2)-C(7)-C(8) -34.4(6) 

N(1)-C(2)-C(7)-C(12) 26.3(6) 

C(3)-C(2)-C(7)-C(12) 150.8(4) 

C(12)-C(7)-C(8)-C(9) 2.8(7) 

C(2)-C(7)-C(8)-C(9) -172.1(4) 

C(7)-C(8)-C(9)-C(10) 0.4(8) 

C(8)-C(9)-C(10)-C(11) -3.6(7) 

C(8)-C(9)-C(10)-Br(10) 174.4(4) 

C(9)-C(10)-C(11)-C(12) 3.5(7) 

Br(10)-C(10)-C(11)-C(12) -174.6(4) 

C(10)-C(11)-C(12)-C(7) -0.1(7) 

C(8)-C(7)-C(12)-C(11) -3.0(7) 

C(2)-C(7)-C(12)-C(11) 172.1(4) 

C(2)-N(1)-S(1)-O(1) 26.0(4) 

C(6)-N(1)-S(1)-O(1) -162.5(3) 

C(2)-N(1)-S(1)-O(2) 155.3(4) 

C(6)-N(1)-S(1)-O(2) -33.3(4) 

C(2)-N(1)-S(1)-C(13) -89.8(4) 

C(6)-N(1)-S(1)-C(13) 81.6(4) 

O(1)-S(1)-C(13)-C(18) 161.1(4) 

O(2)-S(1)-C(13)-C(18) 31.4(4) 

N(1)-S(1)-C(13)-C(18) -83.4(4) 
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O(1)-S(1)-C(13)-C(14) -20.3(4) 

O(2)-S(1)-C(13)-C(14) -150.0(4) 

N(1)-S(1)-C(13)-C(14) 95.2(4) 

C(18)-C(13)-C(14)-C(15) -0.5(7) 

S(1)-C(13)-C(14)-C(15) -179.1(3) 

C(13)-C(14)-C(15)-C(16) 0.9(7) 

C(14)-C(15)-C(16)-C(17) -1.0(7) 

C(14)-C(15)-C(16)-C(19) 178.5(5) 

C(15)-C(16)-C(17)-C(18) 0.7(7) 

C(19)-C(16)-C(17)-C(18) -178.8(5) 

C(16)-C(17)-C(18)-C(13) -0.3(8) 

C(14)-C(13)-C(18)-C(17) 0.2(7) 

S(1)-C(13)-C(18)-C(17) 178.8(4) 

________________________________________________________________  
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