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Abstract

Using a variant of Schreier’s Theorem, and the theory of Green’s relations, we show how to reduce
the computation of an arbitrary subsemigroup of a finite regular semigroup to that of certain associated
subgroups. Examples of semigroups to which these results apply include many important classes:
transformation semigroups, partial permutation semigroups and inverse semigroups, partition monoids,
matrix semigroups, and subsemigroups of finite regular Rees matrix and 0-matrix semigroups over
groups. For any subsemigroup of such a semigroup, it is possible to, among other things, efficiently
compute its size and Green’s relations, test membership, factorize elements over the generators, find
the semigroup generated by the given subsemigroup and any collection of additional elements, calculate
the partial order of the D-classes, test regularity, and determine the idempotents. This is achieved by
representing the given subsemigroup without exhaustively enumerating its elements. It is also possible
to compute the Green’s classes of an element of such a subsemigroup without determining the global
structure of the semigroup.
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1 Introduction

A semigroup is a set with an associative binary operation. There are many articles in the literature
concerned with the idea of investigating semigroups using a computer; early examples are [5, 6, 12,18,33].
There are also several examples of software packages specifically for computing with semigroups, such
as AUTOMATE [7], Monoid [22], SgpWin [27], Semigroupe [34], and more general computational algebra
systems, such as Magma [4], GAP [15], and Sage [42], with some functionality relating to semigroups; see
also [8].

Semigroups are commonly represented either by presentations (abstract generators and defining rela-
tions) or by a generating set consisting of a specific type of element, such as transformations, matrices, or
binary relations. In this paper, we are solely concerned with semigroups defined by generators.

Computing with semigroups defined by generators or with finitely presented semigroups is hard; it is
shown in [3] that testing membership in a finite commutative transformation semigroup is NP-complete,
and it is well-known that determining any ‘sensible’ property of a finitely presented semigroup is undecid-
able by the famous results of Post [35] and Markov [26]. However, in spite of the fact that the general case
is hard, it is still possible to compute with semigroups efficiently in many particular instances. Perhaps
more importantly, it is possible to perform calculations using a computer that it would be impossible
(several times over) to do by hand.

Algorithms, and their implementations, for computing semigroups defined by a generating set fall
into two classes: those that exhaustively enumerate the elements, and those that do not. Examples
of the first type are the algorithms described in [13] and implemented in Semigroupe [34], and those
in SgpWin [27]. Exhaustively enumerating and storing the elements of a semigroup quickly becomes
impractical. To illustrate, a transformation is a function from the set {1, . . . , n} to itself for some n ∈ N.
A semigroup whose elements are transformations and whose operation is composition of functions is called
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a transformation semigroup. For example, if each of the 99 = 387420489 transformations on a 9-element
set is stored as a tuple of 9 integers from 1 to 9 and α is the number of bits required to store such an
integer, then

99+1 · α = 3486784401 · α bits

are required to store these transformations. In GAP, for example, such an integer requires 16-bits, and so
approximately 6 gigabytes of memory would be required in this case. Therefore if we want to exhaustively
enumerate a semigroup, then we must be happy to do so with relatively small semigroups. Exhaustive
algorithms have the advantage that they are relatively straightforward to apply; if the multiplication of
a class of semigroups can be defined to a computer, then these algorithms can be applied. For example,
in Semigroupe [34] it is possible to compute with semigroups of transformations, partial transformations,
and several types of matrix semigroups including boolean matrices.

Non-exhaustive algorithms are described in [19, 20, 23, 24], and the latter were implemented in the
Monoid package [22] for GAP 3 and its later incarnations in GAP 4. In examples where it is not possible
to store the elements, these methods can be used to determine structural information about a semigroup,
such as its size and Green’s relations (see Section 2 for the relevant definitions). In many examples,
the non-exhaustive algorithms have better performance than their exhaustive analogues. However, on the
down side, the non-exhaustive algorithms described in [20,23,24] only apply to transformation semigroups.
The methods in [19] are analogues of the methods in [20] in the context of semigroups of binary relations;
but an implementation does not appear to be readily available.

To one degree or another, the articles [3, 19, 20, 23, 24] use variants of Schreier’s Theorem [45, The-
orem 2.57] and the theory of Green’s relations to reduce the computation of the semigroup to that of
its Schützenberger groups. It is then possible to use the well-developed and efficient algorithms from
Computational Group Theory [39, 41, 45], stemming from the Schreier-Sims Algorithm, to compute with
these subgroups. In this paper, we go one step further by giving a computational paradigm for arbitrary
subsemigroups of finite regular semigroups. Semigroups to which the paradigm can be efficiently applied
include many of the most important classes: transformation semigroups, partial permutation semigroups
and inverse semigroups, partition monoids, matrix semigroups, and subsemigroups of finite regular Rees
matrix and 0-matrix semigroups. We generalise and improve the central notions in [20,23,24] from trans-
formation semigroups to arbitrary subsemigroups of an arbitrary finite regular semigroup. For such a
subsemigroup, it is possible to efficiently compute its size and Green’s classes, test membership, factorize
elements over the generators, find the semigroup generated by the given subsemigroup and any collection
of additional elements, calculate the partial order of the D-classes, test regularity, and determine the
idempotents. This is achieved by representing the given subsemigroup without exhaustively enumerating
its elements. In particular, our methods can be used to determine properties of semigroups, where it is
not possible to store every element of that semigroup. It is also possible to compute the Green’s classes of
an element of such a subsemigroup without determining the global structure of the semigroup.

Although not described here, it is also possible to use the data structures provided to find the group
of units (if it exists), minimal ideal, find a small generating set, and test if a semigroup satisfies various
properties such as being simple, completely regular, Clifford and so on. The algorithms described in this
paper are implemented in their full generality in the GAP [15] package Semigroups [28], which is open
source software.

The analogue of Cayley’s Theorem for semigroups states that every finite semigroup is isomorphic to a
transformation semigroup. Consequently, it could be argued that it is sufficient to have computational tools
available for transformation semigroups only. An analogous argument could be made for arbitrary groups
with respect to permutation groups, but developments in computational group theory suggest otherwise.
For example, the Matrix Group Recognition Project has produced efficient algorithms for computing with
groups of matrices over finite fields; [1] and [21]. Similarly, for some classes of semigroups, such as sub-
semigroups of the partition monoid or a Rees matrix semigroup, the only known faithful transformation
representations are those that act on the elements of the semigroup itself. Hence, it is necessary in such
examples to exhaustively compute the elements of the semigroup before a transformation representation is
available. At this point any transformation representation, and the non-exhaustive methods that could be
applied to it, are redundant. Therefore, to compute with such semigroups without exhaustively enumer-
ating them, it is necessary to have non-exhaustive algorithms that apply directly to the given semigroups
and, in particular, do not require a transformation representation. It is such algorithms that we present
in this paper.

When considering matrix semigroups, it is straightforward to determine a transformation representa-
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tion. Even in these cases, it is sometimes preferable to compute in the native matrix representation: in
particular, where there are methods for matrix groups that are more efficient than computing a permuta-
tion representation.

The algorithms in this paper only apply to subsemigroups of a regular semigroup. However, it would be
possible to modify several of these algorithms, including the main one (Algorithm 11), so that they apply
to subsemigroups S of a non-regular semigroup U . In particular, if it were possible to determine whether
a given element was regular or not in U , then we could use the data structure for R-classes described in
Section 5 for the regular elements, and perform an exhaustive enumeration of R-classes of non-regular
elements in U . Or alternatively, it might be possible to use a combination of the approaches described
in this paper and those in [19, 20]. Such an approach would be possible with, say, semigroups of binary
relations. It is possible to check that a binary relation is regular as an element of the semigroup of all
binary relations in polynomial time; see [10, 37]. However, we did not yet follow this approach either in
the paper or in the Semigroups package since it is relatively easy to find a transformation representation
of a semigroup of binary relations.

This paper is organised as follows. In Section 2, we recall some well-known mathematical notions, and
establish some notation that is required in subsequent sections. In Section 3, we provide the mathematical
basis that proves the validity of the algorithms presented in Sections 5. In Section 4, we show that
transformation semigroups, partial permutation semigroups and inverse semigroups, partition monoids,
semigroups of matrices over a finite field, and subsemigroups of finite regular Rees matrix or 0-matrix
semigroups satisfy the conditions from Section 3 and, hence, belong to the class of semigroups with which
we can compute efficiently. Detailed algorithms are presented as pseudocode in Section 5, including some
remarks about how the main algorithms presented can be simplified in the case of regular and inverse
semigroups. In Section 6 we give several detailed examples.

2 Mathematical prerequisites

A semigroup S is regular if for every x ∈ S there exists x′ ∈ S such that xx′x = x. A semigroup S is a
monoid if it has an identity element, i.e. an element e ∈ S such that es = se = s for all s ∈ S. If S is a
semigroup, we write S1 for the monoid obtained by adjoining an identity 1S to S if necessary.

For any set Ω, the set ΩΩ of transformations of Ω is a semigroup under composition of functions,
known as the full transformation monoid on Ω. The identity element of ΩΩ is the identity function on
Ω, which will be denoted idΩ. We denote the full transformation monoid on the finite set {1, . . . , n} by
Tn. Throughout this article, we will write functions to the right of their arguments and compose functions
from left to right.

If X is a subset of a semigroup S, then the least subsemigroup of S containing X is denoted by 〈X〉;
this is also referred to as the subsemigroup generated by X. We denote the cardinality of a set X by |X|.

Let S be a semigroup and let x, y ∈ S be arbitrary. We say that x and y are L -related if the principal
left ideals generated by x and y in S are equal; in other words, S1x = S1y. We write xL y to denote that
x and y are L -related. In Section 3, we often want to distinguish between the cases when elements are
L -related in a semigroup U or in a subsemigroup S of U . We write xL Sy or xL Uy to differentiate these
cases.

Green’s R-relation is defined dually to Green’s L -relation; Green’s H -relation is the meet, in the
lattice of equivalence relations on S, of L and R; and D is the join. We will refer to the equivalence
classes as K -classes where K is any of R, L , H , or D , and the K -class of x ∈ S will be denoted by
Kx, or KS

x if it is necessary to explicitly refer to the semigroup where the relation is defined. We denote
the set of K -classes of a semigroup S by S/K .

In a finite semigroup, xDy if and only if the (2-sided) principal ideals generated by x and y are equal.
Containment of principal ideals induces a partial order on the D-classes of S, sometimes denoted ≤D ; that
is, Dx ≤D Dy if and only if S1xS1 ⊆ S1yS1.

Proposition 2.1 (cf. Proposition A.1.16 in [36]). Let U be a semigroup and let S be a subsemigroup of
U . Suppose that x and y are regular elements of S. Then xK Uy if and only if xK Sy, where K is any
of R, L or H .

Note that the previous result does not necessarily hold for K = D .
Let S be a semigroup and let Ω be a set. A function Ψ : Ω× S1 −→ Ω is a right action of S on Ω if

• ((α, s)Ψ, t)Ψ = (α, st)Ψ;
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• (α, 1)Ψ = α.

For the sake of brevity, we will write α · s instead of (α, s)Ψ, and we will say that S acts on Ω on the
right. Left actions are defined analogously, and we write s · α in this case, and say S acts on Ω on the
left. The kernel of a function f : X −→ Y , where X and Y are any sets, is the equivalence relation
{(x, y) ∈ X × X : (x)f = (y)f}. A right action of a semigroup S on a set Ω induces a homomorphism
from S to the full transformation monoid on Ω defined by mapping s ∈ S to the transformation defined
by

α 7→ (α, s)Ψ for all α ∈ Ω.

An action is called faithful if the induced homomorphism is injective. The kernel of a right action of
a semigroup S on a set Ω is just the kernel of the induced homomorphism, i.e. the equivalence relation
{(s, t) ∈ S × S : α · s = α · t (∀α ∈ Ω)}. The kernel of a left action is defined analogously.

If S acts on the sets Ω and Ω′ on the right, then we say that λ : Ω −→ Ω′ is a homomorphism of
right actions if (α · s)λ = (α)λ · s for all α ∈ Ω and s ∈ S1. Homomorphisms of left actions are defined
analogously. An isomorphism of (left or right) actions is a bijective homomorphism of (left or right)
actions.

If Ω is a set, then we denote the set of subsets of Ω by P(Ω). If S is a semigroup acting on the right
on Ω, then the action of S on Ω induces a natural action of S on P(Ω), which we write as:

Σ · s = {α · s : α ∈ Σ} for each Σ ⊆ Ω. (2.2)

We will denote the function from Σ to Σ · s defined by α 7→ α · s by s|Σ. We define the stabiliser of Σ
under S to be

StabS(Σ) = {s ∈ S1 : Σ · s = Σ}.

The quotient of the stabiliser by the kernel of its action on Σ, i.e. the congruence

{(s, t) : s, t ∈ StabS(Σ), s|Σ = t|Σ},

is isomorphic to
SΣ = {s|Σ : s ∈ StabS(Σ)}

which in the case that Σ is finite, is a subgroup of the symmetric group Sym(Σ) on Σ. The stabiliser SΣ

can also be seen as a subgroup of Sym(Ω) by extending the action of its elements so that they fix Ω \ Σ
pointwise. It is immediate that s|Σ · t|Σ = (st)|Σ for all s, t ∈ StabS(Σ).

If S acts on Ω, the strongly connected component (usually abbreviated to s.c.c.) of an element α ∈ Ω
is the set of all β ∈ Ω such that β = α · s and α = β · t for some s, t ∈ S1. We write α ∼ β if α and β
belong to the same s.c.c. and the action is clear from the context.

If S is not a group and α ∈ Ω, then

α · S1 = {α · s : s ∈ S1},

is a disjoint union of strongly connected components of the action of S. Note that α · S1 might consist of
more than one strongly connected component. If S is a group, then α ·S1 has only one strongly connected
component, which is usually called the orbit of α under S.

Proposition 2.3. Let S = 〈X〉 be a semigroup that acts on a finite set Ω on the right and let Σ1, . . . ,Σn ⊆
Ω be the elements of a strongly connected component of the action of S on P(Ω). Then the following hold:

(a) if Σ1 · ui = Σi for some ui ∈ S1, then there exists ui ∈ S1 such that Σi · ui = Σ1, (uiui)|Σ1
= idΣ1

,
and (uiui)|Σi

= idΣi
;

(b) SΣi
and SΣj

are conjugate subgroups of Sym(Ω) for all i, j ∈ {1, . . . , n};

(c) if u1 = u1 = 1S and ui, ui ∈ S are as in part (a) for i > 1, then SΣ1
is generated by

{(uixuj)|Σ1 : 1 ≤ i, j ≤ n, x ∈ X, Σi · x = Σj}.

Proof. Let θ : S −→ ΩΩ be the homomorphism induced by the action of S on Ω. Then (S)θ is a
transformation semigroup and the actions of (S)θ and S on Ω are equal. Hence (a), (b), and (c) are just
Lemma 2.2 and Theorems 2.1 and 2.3 in [23], respectively.
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We will refer to the generators of SΣ1
in Proposition 2.3(c) as Schreier generators of SΣ1

, due to the
similarity of this proposition and Schreier’s Theorem [45, Theorem 2.57]. If S is a semigroup acting on a
set Ω, if Σ,Γ ⊆ Ω are such that Σ ∼ Γ and if u ∈ S is any element such that Σ · u = Γ, then we write u to
denote an element of S with the properties in Proposition 2.3(a).

The analogous definitions can be made, and an analogous version of Proposition 2.3 holds for left
actions. In the next section there are several propositions involving left and right actions in the same
statement, and so we define the following notation for left actions. If S is a semigroup acting on the left on
a set Ω and Σ ⊆ Ω, then the induced left action of S on P(Ω) is defined analogously to (2.2); the function
α 7→ s · α is denoted by Σ|s; and we define

ΣS = {Σ|s : s · Σ = Σ}

and in the case that Ω is finite, ΣS ≤ Sym(Ω).

3 From transformation semigroups to arbitrary regular semi-
groups

In this section, we will generalise the results of [23] from transformation semigroups to subsemigroups of
an arbitrary finite regular semigroup.

Generally speaking, the central notion is that for a fixed semigroup U with a determined structure,
we can use the properties of U to produce algorithms to compute any subsemigroup S of U specified by a
generating set. For example, U can be the full transformation monoid or the symmetric inverse monoid on
a finite set. Roughly speaking, the subsemigroup S can be decomposed into its R-classes, and an R-class
can be decomposed into the stabiliser SL (under right multiplication on P(U)) of an L -class L in U and
the s.c.c. of L under the action of S on the L -classes of U . Decomposing S in this way will permit us
to efficiently compute many aspects of the structure of S without enumerating its elements exhaustively.
For instance, using this decomposition, we can test membership in S, compute the size, Green’s structure,
idempotents, elements, and maximal subgroups of S.

Throughout the remainder of this section we suppose that U is an arbitrary finite semigroup, and S is
a subsemigroup of U .

3.1 Equivalent actions on Green’s classes

We require the following actions of S: the action on P(U) induced by multiplying elements of U on the
right by s ∈ S1, i.e.:

As = {as : a ∈ A} (3.1)

where s ∈ S1 and A ⊆ U ; and the action of S on U/L defined by

Lx · s = Lxs (3.2)

for all x ∈ U and s ∈ S1. The latter defines an action since L is a right congruence.
In general, the actions defined in (3.1) and (3.2) are not equal when restricted to U/L . For example,

it can be the case that Lxs ( Lxs and, in particular, Lxs 6∈ U/L . However, the actions do coincide in one
case, as described in the next lemma, which is particularly important here.

Lemma 3.3. Let x, y ∈ U be arbitrary. Then Lx, Ly ∈ U/L belong to the same s.c.c. of the action of S
defined by (3.2) if and only if Lx and Ly belong to the same s.c.c. of the action of S defined by (3.1).

Proof. The converse implication is trivial. If Lx, Ly ∈ U/L belong to the same strongly connected
component under the action (3.2), then, there exists s ∈ S1 such that Lxs = Ly. Hence, by Green’s
Lemma [17, Lemma 2.2.1], the function from Lx to Lxs = Ly defined by z 7→ zs for all z ∈ Lx is a
bijection and so Lx · s = Lxs = {ys : y ∈ Lx}.

Although S does not, in general, act on the L -classes of U by right multiplication, by Lemma 3.3,
it does act by right multiplication on the set of L -classes within a strongly connected component of its
action. We will largely be concerned with the strongly connected components of the restriction of the
action on P(U) in (3.1) to U/L . In this context, by Lemma 3.3, we may, without loss of generality, use
the actions defined in (3.1) and (3.2) interchangeably.
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In general, it is impractical to compute directly with the actions defined in (3.1) and (3.2). However,
we can replace these actions by equivalent actions in the following sense.

Definition 3.4. We say that a right action of S on a set Ω is equivalent (via λ) to the action of S on U
by right multiplication if there exists a homomorphism λ : U −→ Ω of these actions where the kernel of λ
is L U , i.e. ker(λ) = {(u, v) ∈ U × U : (u)λ = (v)λ} = L U .

The following lemma justifies the use of the word “equivalent” in the previous definition.

Lemma 3.5. Suppose that S has a right action on a set Ω that is equivalent via λ : U −→ Ω to the action
of S on U by right multiplication. Then the following hold:

(a) if x, y ∈ U , then: (x)λ ∼ (y)λ if and only if Lx ∼ Ly under the action of S on U/L defined in (3.2);

(b) if Ω is the s.c.c. of an L U -class under the action of S on P(U) by right multiplication, then λ
induces an isomorphism from the natural action of StabS(Ω) on Ω to the action of StabS(Ω) on
{(x)λ : LUx ∈ Ω}.

Proof. (a) This follows immediately from the definition of a homomorphism of actions, and the assumption
that the kernel of λ is L U .

(b) Let X = {(x)λ : LUx ∈ Ω} and let θ : Ω −→ X be defined by (LUx )θ = (x)λ. Since the kernel of λ is
L U , it follows that θ is well-defined, and a bijection. If LUx ∈ Ω and s ∈ StabS(Ω), then, by Lemma 3.3,
it follows that

(LUx s)θ = (LUx · s)θ = (LUxs)θ = (xs)λ,

and since λ is a homomorphism of actions:

(xs)λ = (x)λ · s = (LUx )θ · s.

Thus θ is a isomorphism of the actions of StabS(Ω) on Ω and X, as required.

It follows from Lemma 3.5 that any statement about either of the actions of S defined in (3.1) or (3.2)
within a strongly connected component of L U -classes can be replaced with an equivalent statement about
the action of S within a strongly connected component of the action of S on Ω.

Throughout this section we suppose that S has a right action on some set Ω equivalent, via λ : U −→ Ω,
to the action of S on U by right multiplication. As an aide-mémoire, we will write (U)λ or (S)λ instead
of Ω. We also write ρ to denote the analogue of λ for left actions. More precisely, we suppose that S has
a left action on a set (U)ρ, the kernel of this action is RU , and there is a homomorphism ρ : U −→ (U)ρ
of the actions of S on U by left multiplication and of S on (U)ρ. In Section 4, we will show how to obtain
λ from Definition 3.4, and its analogue ρ, for several well-known classes of semigroups, such that we can
compute with the action of S on (S)λ and (S)ρ efficiently.

Recall that we write α ∼ β to denote that α and β belong to the same strongly connected component
of an action. We will make repeated use of the following lemma later in this section.

Lemma 3.6. Let x ∈ S and s, t ∈ S1 be arbitrary. Then:

(a) (x)λ ∼ (xs)λ if and only if xRSxs;

(b) (x)ρ ∼ (tx)ρ if and only if xL Stx;

(c) (x)λ ∼ (xs)λ and (x)ρ ∼ (tx)ρ together imply that xDStxs.

Proof. We only prove parts (a) and (c), since the proof of part (b) is dual to that of (a).
(a). (⇒) Suppose that (x)λ ∼ (xs)λ. Then LUxs and LUx belong to the same s.c.c. of the action of S

on U/L by right multiplication. Hence, by Proposition 2.3(a), there exist s ∈ S1 such that LUxs · s = LUx
and (ss)|LU

x
= idLU

x
. Hence, in particular, xss = x and so xsRSx.

(⇐) Suppose xRSxs. Then there exists t ∈ S1 such that xst = x. It follows that (x)λ · s = (xs)λ and
(xs)λ · t = (x)λ. Hence (x)λ ∼ (xs)λ.

(c). Suppose that (x)λ ∼ (xs)λ and (x)ρ ∼ (tx)ρ. Then, by parts (a) and (b), xRSxs and xL Stx.
The latter implies that xsL Stxs, and so xDStxs.
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3.2 Faithful representations of stabilisers

Let U be an arbitrary finite semigroup, and let S be any subsemigroup of U .
In the same way that it is impractical to compute with the action of S on the L -classes of U , it is

equally impractical to compute directly with the natural action of the stabiliser of an L -class in S on
that L -class. For example, the L -class L of any transformation x ∈ T10 with 5 points in its image has
5, 103, 000 elements but, in this case, UL has a faithful permutation representation on only 5 points.

With the preceding comments in mind, throughout this section we will make statements about arbitrary
faithful representations of UL, L ∈ U/L , rather than about the natural action of UL (or SL) on L. More
specifically, if x ∈ U and ζ is any faithful representation of ULU

x
, then we define

µx : StabU (LUx ) −→ (ULU
x

)ζ by (u)µx = (u|LU
x

)ζ for all u ∈ U. (3.7)

It is clear that µx is a homomorphism. Since S is a subsemigroup of U , it follows that StabS(LUx ) is a
subsemigroup StabU (LUx ) and SLU

x
is a subgroup of ULU

x
. Hence µx : StabU (LUx ) −→ (ULU

x
)ζ restricted to

StabS(LUx ) is a homomorphism from StabS(LUx ) to (SLU
x

)ζ.
It is possible that, since ζ depends of the L -class of x in U , we should use ζLU

x
to denote the faithful

representation given above. However, to simplify our notation we will not do this. Note that, with this
definition, (s, t) ∈ ker(µx) if and only if s|LU

x
= t|LU

x
. To simplify our notation, we will write Sx and Ux

to denote (StabS(LUx ))µx = (SLU
x

)ζ and (StabU (LUx ))µx = (ULU
x

)ζ, respectively. Analogously, for every

x ∈ U we suppose that we have a homomorphism νx from StabU (RUx ) into a group where the image of νx
is isomorphic to RU

x
U . We write xS and xU for (StabS(RUx ))νx and (StabU (RUx ))νx, respectively.

In the case that S is a transformation, partial permutation, matrix, or partition semigroup, or a
subsemigroup of a Rees 0-matrix semigroup, we will show in Section 4 how to obtain faithful representations
of the stabilisers of L - and R-classes as permutation or matrix groups. It is then possible to use algorithms
from Computational Group Theory to compute with these groups.

We will make repeated use of the following straightforward lemma.

Lemma 3.8. Let x ∈ U and s, t ∈ StabU (LUx ) be arbitrary. Then the following are equivalent:

(a) (s)µx = (t)µx;

(b) ys = yt for all y ∈ LUx ;

(c) there exists y ∈ LUx such that ys = yt.

Proof. (a) ⇒ (b) If (s)µx = (t)µx, then (s|LU
x

)ζ = (t|LU
x

)ζ and so s|LU
x

= t|LU
x

. It follows that ys = yt for

all y ∈ LUx .
(b) ⇒ (c) is trivial.
(c) ⇒ (a) Suppose that y ∈ LUx is such that ys = yt. If z ∈ LUx is arbitrary, then there exists u ∈ U1

such that z = uy. Hence zs = uys = uyt = zt and so s|LU
x

= t|LU
x

. It follows, by the definition of µx, that
(s, t) ∈ ker(µx) and so (s)µx = (t)µx.

The analogue of Lemma 3.8 also holds for StabU (RUx ) and νx; the details are omitted.

3.3 A decomposition for Green’s classes

In this section, we show how to decompose an R- or L -class of our subsemigroup S as briefly discussed
above. Recall that we supposed that S has a right action on some set equivalent via λ : U −→ (U)λ to
the action of S on U by right multiplication (Definition 3.4).

Proposition 3.9 (cf. Theorems 3.3 and 4.3 in [23]). If x ∈ S is arbitrary, then:

(a) {(y)λ : yRSx} is a strongly connected component of the right action of S on (S)λ;

(b) {(y)ρ : yL Sx} is a strongly connected component of the left action of S on (S)ρ.

Proof. We only prove the first statement, as the proof of the second is dual. Suppose y ∈ S and x 6= y.
Then yRSx if and only if there exists s ∈ S such that xs = y and xsRSx. By Lemma 3.6(a), xsRSx if
and only if (x)λ ∼ (xs)λ.
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Corollary 3.10. Let x, y, s, t ∈ S. Then the following hold:

(a) if xRSy and xsL Uy, then xsRSy;

(b) if xL Sy and txRUy, then txL Sy.

Proof. Again, we only prove part (a). Since xsL Uy, it follows that (xs)λ = (y)λ and, since xRSy, by
Proposition 3.9, (x)λ ∼ (y)λ = λ(xs). Hence xsRSx by Lemma 3.6, and, since xRSy by assumption, the
proof is complete.

Proposition 3.11 (cf. Theorems 3.7 and 4.6 in [23]). Suppose that x ∈ S and there exists x′ ∈ U where
xx′x = x (i.e. x is regular in U). Then the following hold:

(a) LUx ∩RSx = {y ∈ RSx : (y)λ = (x)λ} is a group under the multiplication ∗ defined by s ∗ t = sx′t for all
s, t ∈ LUx ∩RSx and its identity is x;

(b) φ : Sx −→ LUx ∩RSx defined by ((s)µx)φ = xs, for all s ∈ StabS(LUx ), is an isomorphism;

(c) φ−1 : LUx ∩RSx −→ Sx is defined by (s)φ−1 = (x′s)µx for all s ∈ LUx ∩RSx .

Proof. We begin by showing that x is an identity under the multiplication ∗ of LUx ∩RSx . Since x′x ∈ LUx
and xx′ ∈ RUx are idempotents, it follows that x′x is a right identity for LUx and xx′ is a left identity for
RSx ⊆ RUx . So, if s ∈ LUx ∩RSx is arbitrary, then

x ∗ s = xx′s = s = sx′x = s ∗ x,

as required.
We will prove that part (b) holds, which implies part (a).

φ is well-defined. If s ∈ StabS(LUx ), then xsL Ux. Hence, by Corollary 3.10(a), xsRSx and so ((s)µx)φ =
xs ∈ LUx ∩RSx . If t ∈ StabS(LUx ) is such that (t)µx = (s)µx, then, by Lemma 3.8, xt = xs.

φ is surjective. Let s ∈ LUx ∩RSx be arbitrary. Then xx′s = x ∗ s = s since x is the identity of LUx ∩RSx .
It follows that

LUx · x′s = LUs = LUx

and so x′s ∈ StabU (LUx ). Since xRSs, there exists u ∈ S1 such that xu = s = xx′s. It follows that
u ∈ StabS(LUx ) and, by Lemma 3.8, (u)µx = (x′s)µx. Thus ((u)µx)φ = xu = s and φ is surjective.

φ is a homomorphism. Let s, t ∈ StabS(LUx ). Then, since xs ∈ LUx and x′x is a right identity for LUx ,

((s)µx)φ ∗ ((t)µx)φ = xs ∗ xt = xsx′xt = xst = ((st)µx)φ = ((s)µx · (t)µx)φ,

as required.

φ is injective. Let θ : LUx ∩ RSx −→ Sx be defined by (y)θ = (x′y)µx for all y ∈ LUx ∩ RSx . We will
show that φθ is the identity mapping on Sx, which implies that φ is injective, that (y)θ ∈ Sx for all
y ∈ LUx ∩ RSx (since φ is surjective), and also proves part (c) of the proposition. If s ∈ StabS(LUx ), then
((s)µx)φθ = (xs)θ = (x′xs)µx. But xx′xs = xs and so (x′xs)µx = (s)µx by Lemma 3.8. Therefore,
((s)µx)φθ = (s)µx, as required.

We state the analogue of Proposition 3.11 for the action of S on U/R by left multiplication.

Proposition 3.12. Suppose that x ∈ S and there exists x′ ∈ U where xx′x = x. Then the following hold:

(a) LSx ∩RUx = {y ∈ LSx : (y)ρ = (x)ρ} is a group under the multiplication ∗ defined by s ∗ t = sx′t for all
s, t ∈ LSx ∩RUx and its identity is x;

(b) φ : xS −→ LSx ∩RUx defined by ((s)νx)φ = sx, for all s ∈ StabS(RUx ), is an isomorphism;

(c) φ−1 : LSx ∩RUx −→ xS is defined by (s)φ−1 = (sx′)νx for all s ∈ LSx ∩RUx .

We can also characterise an H -class in a subsemigroup of a semigroup in terms of the stabilisers of its
L - and R-class. Note that in the special case that S = U , it follows immediately from Proposition 3.11
that Ux is isomorphic to HU

x = LUx ∩RUx under the operation ∗ defined in the proposition.
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Proposition 3.13 (cf. Theorem 5.1 in [23]). Suppose that x ∈ S and there exists x′ ∈ U where xx′x = x.
Then the following hold:

(a) Ψ : xS −→ Ux defined by ((s)νx)Ψ = (x′sx)µx, s ∈ StabS(RUx ), is an embedding;

(b) HS
x is a group under the multiplication s∗ t = sx′t, with identity x, and it is isomorphic to Sx∩(xS)Ψ;

(c) HS
x under ∗ is isomorphic to the Schützenberger group of HS

x .

Proof. (a). Let φ : xS −→ LSx ∩ RUx be the isomorphism defined in Proposition 3.12(b), and let θ :
LUx ∩ RUx −→ Ux be the isomorphism defined in Proposition 3.11(c) (applied to U as a subsemigroup of
itself). Then, since LSx ∩RUx ⊆ LUx ∩RUx , φθ : xS −→ Ux is a embedding (being the composition of injective
homomorphisms). By definition, ((s)νx)φθ = (x′sx)µx = ((s)νx)Ψ, for all s ∈ StabS(RUx ).

(b). Note that HS
x = LSx ∩RSx = (LUx ∩RSx )∩ (RUx ∩LSx ). From Proposition 3.11(c), φ−1

1 : RSx ∩LUx −→
Sx ≤ Ux defined by

(s)φ−1
1 = (x′s)µx

is an isomorphism (where RSx ∩ LUx has multiplication ∗ defined in Proposition 3.11(a) as s ∗ t = sx′t for
all s, t ∈ RSx ∩ LUx ). Similarly, by Proposition 3.12(c), φ−1

2 : RUx ∩ LSx −→ xS defined by

(s)φ−1
2 = (sx′)νx

is an isomorphism. Hence if s ∈ HS
x , then, by Proposition 3.11(a),

(s)φ−1
2 Ψ = (x′sx′x)µx = (x′s)µx = (s)φ−1

1

and so φ−1
1 , restricted to HS

x , is an injective homomorphism from HS
x under ∗ into Sx ∩ (xS)Ψ.

If g ∈ Sx ∩ (xS)Ψ, then there exists a ∈ StabS(RUx ) such that (x′ax)µx = g. Since axRUx and xx′ is a
left identity in RUx , it follows that xx′ax = ax and so ax = xx′ax = ((x′ax)µx)φ1 ∈ RSx ∩ LUx ⊆ RSx where
φ1 is given in Proposition 3.11(b). Similarly, (a)νx ∈ xS implies that ax = ((a)νx)φ2 ∈ RUx ∩ LSx ⊆ LSx .
Therefore ax ∈ HS

x and (ax)φ−1
1 = (x′ax)µx = g, and so φ−1

1 is surjective and thus an isomorphism from
HS
x to Sx ∩ (xS)Ψ, as required.

(c). The Schützenberger group of H = HS
x is defined to be the quotient of StabS(H) by the kernel of

its action on H (by right multiplication on the elements of H). In our notation the Schützenberger group
of H is denoted SH , however in the literature it is usually denoted by ΓR(H). It is well-known that ΓR(H)
acts transitively and freely on H, see for example [36, Section A.3.1]. It follows that φ : ΓR(H) −→ H
defined by

(s|H)φ = xs

is a bijection. If s|H , t|H ∈ ΓR(H), then xs ∈ H and so xsx′x = xs ∗ x = xs, since x is the identity of H
by Proposition 3.11(a). Thus

(s|H · t|H)φ = xst = xsx′xt = (s|H)φ ∗ (t|H)φ

and φ is an isomorphism, as required.

The statement of Proposition 3.13 can be simplified somewhat in the case that the element x ∈ S is
regular in S and not only in U .

Corollary 3.14. Suppose that x ∈ S and there exists x′ ∈ S where xx′x = x. Then the following three
groups are isomorphic: HS

x under the multiplication s ∗ t = sx′t, Sx, and xS. Furthermore, Ψ : xS −→ Sx
defined by ((s)νx)Ψ = (x′sx)µx is an isomorphism.

Proof. Since x is regular in S, it follows that HS
x = LSx ∩ RSx = LUx ∩ RSx and, similarly, HS

x = RUx ∩ LSx .
So, the first part of the statement follows by Propositions 3.11(b) and 3.12(b).

By Propositions 3.12(b) and 3.11(c), respectively, there exist isomorphisms φ : xS −→ LSx ∩ RUx and
θ : LUx ∩RSx −→ Sx. Therefore since HS

x = LUx ∩RSx = RUx ∩ LSx , it follows that Ψ = φθ : xS −→ Sx is an
isomorphism.

We collect some corollaries of what we have proved so far.

Corollary 3.15. If x, y ∈ S are regular elements of U , then the following hold:
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(a) If xRSy, then SLU
x

and SLU
y

are conjugate subgroups of Sym(U). In particular, Sx and Sy are iso-
morphic;

(b) |RSx | equals the size of the group Sx multiplied by the size of the s.c.c. of (x)λ under the action of S
on (S)λ;

(c) If (x)λ ∼ (y)λ, then |RSx | = |RSy |;

(d) If xRSy and u ∈ S1 is such that (x)λ · u = (y)λ, then the function from LUx ∩RSx to LUy ∩RSx defined
by s 7→ su is a bijection.

Proof. (a). Since xRSy, it follows by Proposition 3.9(a) that LUx and LUy are in the same s.c.c. of the
action of S on the L -classes of U . Thus, by Proposition 2.3(b), it follows that SLU

x
and SLU

y
are conjugate

subgroups of the symmetric group on U , and so, in particular, are isomorphic.

(b). The set RSx is partitioned by the sets RSx ∩LUy = RSy ∩LUy for all y ∈ RSx . By Proposition 3.11(b),

|RSy ∩LUy | = |Sy| and by part (a), |Sy| = |Sx| for all y ∈ RSx . Thus |RSx | equals the number of distinct values

of λ when applied to elements of RSx multiplied by |Sx|. Proposition 3.9(a) says that {(y)λ : y ∈ RSx} is a
s.c.c. of the right action of S on (S)λ.

(c). This follows immediately from parts (a) and (b).

(d). Let s ∈ LUx ∩RSx be arbitrary. Then sRSxRSy and suL UxuL Uy, and so, by Corollary 3.10(a),
suRSy, i.e. su ∈ LUy ∩RSx . By Proposition 2.3(a), there exists u ∈ S1 such that suu = s for all s ∈ LUx ∩RSx .

Therefore s 7→ su and t 7→ tu are mutually inverse bijections from LUx ∩RSx to LUy ∩RSx and back.

For the sake of completeness, we state the analgoue of Corollary 3.15 for L -classes.

Corollary 3.16. If x, y ∈ S are regular elements of U , then the following hold:

(a) If xL Sy, then RU
x
S and RU

y
S are conjugate subgroups of Sym(U). In particular, xS and yS are

isomorphic;

(b) |LSx | equals the size of the group xS multiplied by the size of the s.c.c. of (x)ρ under the action of S
on (S)ρ;

(c) If (x)ρ ∼ (y)ρ, then |LSx | = |LSy |;

(d) If xL Sy and u ∈ S1 is such that u · (x)ρ = (y)ρ, then the function from RUx ∩ LSx to RUy ∩ LSx defined
by s 7→ us is a bijection.

3.4 Membership testing

Let U be a semigroup and let S be a subsemigroup of U . The next proposition shows that testing
membership in an R-class of S is equivalent to testing membership in a stabiliser of an L -class of U . Since
the latter is a group, this reduces the problem of membership testing in R-classes to that of membership
testing in a group, so we can then take advantage of efficient algorithms from computational group theory;
such as the Schreier-Sims algorithm [45, Section 4.4].

Proposition 3.17. Suppose that x ∈ S and there is x′ ∈ U with xx′x = x. If y ∈ U is arbitrary, then
yRSx if and only if yRUx, (y)λ ∼ (x)λ, and (x′yv)µx ∈ Sx where v ∈ S1 is any element such that
(y)λ · v = (x)λ.

Proof. (⇒) Since RSx ⊆ RUx , yRUx and from Proposition 3.9(a), (y)λ ∼ (x)λ. Suppose that v ∈ S1 is
such that (y)λ · v = (x)λ. Then, by Corollary 3.15(d), yv ∈ LUx ∩ RSx and so, by Proposition 3.11(c),
(x′yv)µx ∈ Sx.

(⇐) Since y ∈ RUx and xx′ is a left identity in its RU -class, it follows that xx′y = y. Suppose that
v ∈ S1 is any element such that (y)λ · v = (x)λ (such an element exists by assumption). Then, by
assumption, (x′yv)µx ∈ Sx and so by Proposition 3.11(b), yv = x · x′yv ∈ LUx ∩ RSx . But (y)λ ∼ (yv)λ,
and so, by Lemma 3.6(a), yRSyv, and so xRSyvRSy, as required.

The following corollary of Proposition 3.17 will be important in Section 5.
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Corollary 3.18. Let x ∈ S be such that there is x′ ∈ U with xx′x = x, and let y ∈ U be such that there
exist u ∈ S1 and v ∈ U1 with (x)λ ·u = (y)λ and xuv = x. Then yRSx if and only if yRUx, (y)λ ∼ (x)λ,
and (x′yv)µx ∈ Sx.

Proof. (⇒) That yRUx and (y)λ ∼ (x)λ follows from Proposition 3.17. Suppose u ∈ S and v ∈ U are such
that (x)λ · u = (y)λ and xuv = x. By Proposition 2.3(a) there exists u ∈ S1 such that xuu = x = xuv.
It follows that zu = zv for all z ∈ LSxu, and, in particular, yu = yv. Hence, by Proposition 3.17,
(x′yv)µx = (x′yu)µx ∈ Sx.

(⇐) It suffices by Proposition 3.17 to show that there exists w ∈ S1 such that (y)λ · w = (x)λ and
(x′yw)µx ∈ Sx. Since (x)λ ∼ (y)λ and (x)λ · u = (y)λ, by Proposition 2.3(a) and Lemma 3.8, there
exists u ∈ S1 such that xuu = x = xuv. Hence, as above, yu = yv and so (x′yu)µx = (x′yv)µx ∈ Sx, as
required.

We state an analogue of Proposition 3.17 for L -classes, with a slight difference.

Proposition 3.19. Suppose that x ∈ S and there is x′ ∈ U with xx′x = x. If y ∈ U is arbitrary,
then yL Sx if and only if yL Ux, (y)ρ ∼ (x)ρ, and (x′vy)µx ∈ (xS)Ψ where v ∈ S1 is any element
such that v · (y)ρ = (x)ρ and Ψ : xS −→ Ux defined by ((s)νx)Ψ = (x′sx)µx is the embedding from
Proposition 3.13(a).

Proof. The direct analogue of Proposition 3.17 states that yL Sx if and only if yL Ux, (y)ρ ∼ (x)ρ,
and (vyx′)νx ∈ xS. The last part is equivalent to ((vyx′)νx)Ψ = (x′vyx′x)µx = (x′vy)µx ∈ (xS)Ψ, as
required.

Propositions 3.17 and 3.19 allow us to express the elements of an RS- and L S-class in a particular
form, which will be of use in the algorithms later in the paper.

Corollary 3.20. Suppose that x ∈ S and there is x′ ∈ U with xx′x = x. Then

(a) if U is any subset of S1 such that {(xu)λ : u ∈ U} = {(y)λ : (y)λ ∼ (x)λ}, then

RSx = {xsu : s ∈ StabS(LUx ), u ∈ U};

(b) if V is any subset of S1 such that {(vx)ρ : v ∈ V} = {(y)ρ : (y)ρ ∼ (x)ρ}, then

LSx = {vtx : t ∈ StabS(RUx ), v ∈ V}.

Proof. We only prove part (a), since the proof of part (b) is dual.
Let s ∈ StabS(LUx ) and let u ∈ U be arbitrary. Since (xsu)λ = (xu)λ ∼ (x)λ, it follows, by

Lemma 3.6(a), that xsuRSx.
If yRSx, then, by Proposition 3.9, (y)λ ∼ (x)λ, and so there exists u ∈ U such that (x)λ · u = (y)λ.

Since xx′ is a left identity for RUx , xx′y = y. By Proposition 2.3(a), there is u ∈ S1 such that (y)λ·u = (x)λ
and yuu = y. Hence, by Proposition 3.17, x′yu ∈ StabS(LUx ) and y = x · x′yu · u.

We will prove the analogue of Proposition 3.17 for D-classes, for which we require following proposition.

Proposition 3.21 (cf. Theorem 6.2 in [22]). If x ∈ S is such that there is x′ ∈ U with xx′x = x, then
DS
x ∩HU

x = {sxt : s ∈ StabS(RUx ), t ∈ StabS(LUx )}.

Proof. Let s ∈ StabS(RUx ) and t ∈ StabS(LUx ) be arbitrary. It follows that (xt)λ = (x)λ and (sx)ρ = (x)ρ,
and so, by Lemma 3.6, xtRSx, sxL Sx, and xDSsxt. Also xtRSx implies that sxtRSsxRUx and sxL Sx
implies sxtL SxtL Ux, and so sxt ∈ HU

x , as required.
For the other inclusion, let y ∈ DS

x ∩HU
x be arbitrary. Then xDSy and so there is s ∈ S1 such that

sxL Sx and sxRSy. Hence s · RUx = RUsx = RUy = RUx and so s ∈ StabS(RUx ). Since sxRSy, there exists

t ∈ S1 such that sxt = y and so LUx · t = LUsx · t = LUy = LUx , which implies that t ∈ StabS(LUx ), as
required.

Proposition 3.22. Suppose that x ∈ S and there is x′ ∈ U with xx′x = x. If y ∈ U is arbitrary, then
yDSx if and only if (y)λ ∼ (x)λ, (y)ρ ∼ (x)ρ, and for any u, v ∈ S1 such that (y)λ · u = (x)λ and
v · (y)ρ = (x)ρ there exists t ∈ StabS(LUx ) such that

(x′vyu)µx · ((t)µx)−1 ∈ (xS)Ψ,

where Ψ : xS −→ Ux, defined by ((s)νx)Ψ = (x′sx)µx, is the embedding from Proposition 3.13(a).
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Proof. (⇒) Let y ∈ DS
x . Then there exists w ∈ S such that yRSwL Sx. By Proposition 3.9(a) and (b),

respectively, it follows that (y)λ ∼ (w)λ = (x)λ, and (x)ρ ∼ (w)ρ = (y)ρ.
Suppose that u, v ∈ S1 are any elements such that (y)λ · u = (x)λ and v · (y)ρ = (x)ρ. Then, by

Lemma 3.6, vyL Sy and yuRSy, and so vyuL SyuL Ux and vyuRSvyRUx. Thus vyuH Ux and, since
yRSyuL Svyu, it follows that vyuDSx.

By Proposition 3.21, there exist s ∈ StabS(RUx ) and t ∈ StabS(LUx ) such that vyu = sxt. Since
s ∈ StabS(RUx ), it follows that ((s)νx)Ψ = (x′sx)µx ∈ (xS)Ψ (by Proposition 3.13(a)). In particular,
x′sx ∈ StabU (LUx ) and so (x′vyu)µx = (x′sxt)µx = (x′sx)µx · (t)µx and so

(x′vyu)µx · ((t)µx)−1 = (x′sx)µx ∈ (xS)Ψ,

as required.

(⇐) Suppose that u, v ∈ S1 are any elements such that (y)λ ·u = (x)λ and v ·(y)ρ = (x)ρ. Since (y)λ ∼
(x)λ = (yu)λ and (y)ρ ∼ (x)ρ = (vy)ρ, it follows from Lemma 3.6(c), that yDSvyu. By assumption, there
exist s ∈ StabS(RUx ), t ∈ StabS(LUx ) such that

(x′vyu)µx = ((s)νx)Ψ · (t)µx = (x′sxt)µx.

In particular, by Lemma 3.8, xx′vyu = xx′sxt. Since xx′ is a left identity for RUx = RUvy, we deduce that

xx′vy = vy. Also, by Proposition 3.21, sxt ∈ DS
x ∩HU

x implies that RUsxt = RUx and so xx′sxt = sxt. Thus
yDSvyu = xx′vyu = xx′sxt = sxtDSx.

3.5 Classes within classes

The next two propositions allow us to determine the RS-, L S- and H S-classes within a given DS-class
in terms of the groups Sx, xS, and the action of S on (S)λ and (S)ρ.

If G is a group and H is a subgroup of G, then a left transversal of H in G is a set of left coset
representatives of H in G. Right transversals are defined analogously.

Proposition 3.23. Suppose that x ∈ S and there is x′ ∈ U with xx′x = x and that:

(a) C is a minimal subset of StabU (LUx ) such that {(c)µx : c ∈ C} is a left transversal of Sx∩(xS)Ψ in (xS)Ψ
where Ψ : xS −→ Ux, defined by ((s)νx)Ψ = (x′sx)µx, is the embedding from Proposition 3.13(a);

(b) {u1, . . . , um} is a minimal subset of S1 such that {ui · (x)ρ : 1 ≤ i ≤ m} equals the s.c.c. of (x)ρ under
the left action of S on (S)ρ.

Then {uixc : c ∈ C, 1 ≤ i ≤ m} is a minimal set of H S-class representatives of LSx , and hence a minimal
set of RS-class representatives for DS

x .

Proof. We start by proving that for all c ∈ C, there exists c∗ ∈ StabS(RUx ) such that c∗x = xc and that
xcL Sx. Suppose that c ∈ C is arbitrary. Then (c)µx ∈ (xS)Ψ and so there exists c∗ ∈ StabS(RUx )
such that ((c∗)νx)Ψ = (x′c∗x)µx = (c)µx. Hence, by Lemma 3.8, xx′c∗x = xc. Since c∗ ∈ StabS(RUx ),
Proposition 3.12(b) implies that c∗xRUx and c∗xL Sx, and so c∗x = xx′c∗x = xc. It follows that
xc = c∗xL Sx.

By the assumption in part (b) and by Lemma 3.6(b), uixL Sx for all i, and so uixcL SxcL Sx for all
i. Hence it suffices to show that {uixc : c ∈ C, 1 ≤ i ≤ m} is a minimal set of RS-class representatives for
DS
x . In other words, if yDSx, then we must show that yRSuixc for some i ∈ {1, . . . ,m} and c ∈ C, and

that (uixc, ujxd) 6∈ RS if i 6= j or c 6= d.
We start by showing that for every y ∈ DS

x ∩HU
x there is c ∈ C such that yRSxc. By Proposition 3.21,

there exist s ∈ StabS(RUx ), t ∈ StabS(LUx ) such that y = sxt. It follows that sxRUx and xtL Ux, and so,
by Corollary 3.10, sxL Sx and xtRSx. Thus sx ∈ LSx∩RUx , and so, from Proposition 3.12(c), (sxx′)νx ∈ xS
and ((sxx′)νx)Ψ = (x′sxx′x)µx = (x′sx)µx ∈ (xS)Ψ. If c ∈ C is such that (c)µx is the representative
of the left coset of Sx ∩ (xS)Ψ containing (x′sx)µx, then (x′sxg)µx = (x′sx)µx · (g)µx = (c)µx for some
g ∈ StabS(LUx ) such that (g)µx ∈ Sx ∩ (xS)Ψ. Thus, by Lemma 3.8, xx′sxg = xc. But sx ∈ RUx implies
that xx′sx = sx and so sxg = xc. Since xgL Ux, it follows from Corollary 3.10(a) that xgRSx and so
sxgRSsx. But xtRSx and so y = sxtRSsxRSsxg = xc.

If yDSx is arbitrary, then (y)ρ ∼ (x)ρ, by Proposition 3.22, and so there exists i ∈ {1, . . . ,m} such
that (y)ρ = ui · (x)ρ. By Proposition 2.3(a), there exists ui ∈ S1 such that uiuiy = y and ui · (y)ρ = (x)ρ.

13



Again by Proposition 3.22, (x)λ ∼ (y)λ and so there exists v ∈ S1 such that (y)λ · v = (x)λ. It follows
that yDSuiyv by Lemma 3.6(c). From Lemma 3.6(a), since (y)λ ∼ (x)λ = (yv)λ, it follows that yRSyv
and so (yv)ρ = (y)ρ. Thus (uiyv)ρ = ui · (yv)ρ = ui · (y)ρ = (x)ρ and so uiyvRUx. Dually, from
Lemma 3.6(b), uiyvL Ux and so uiyv ∈ DS

x ∩HU
x . Hence there exists c ∈ C such that uiyvRSxc and so

yRSyv = uiuiyvRSuixc, as required.
Suppose there exist i, j ∈ {1, 2, . . . ,m} and c, d ∈ C such that uixcRSujxd. Then, since xcRUxRUxd

(from the first paragraph), it follows that (xc)ρ = (x)ρ = (xd)ρ. Thus

ui · (x)ρ = ui · (xc)ρ = (uixc)ρ = (ujxd)ρ = uj · (xd)ρ = uj · (x)ρ

and, by the minimality of {u1, . . . , um}, it follows that ui = uj and i = j. By the analogue of Propo-
sition 2.3(a), there exists ui such that uiuixc = xc and uiuixd = xd. Hence since uixcRSujxd and
RS is a left congruence, it follows that xcRSxd. If xc = xd, then, by Lemma 3.8, (c)µx = (d)µx, and
by the minimality of C, c = d. Suppose that xc 6= xd. Then there exists y ∈ S such that xcy = xd.
We showed above that xcL SxL Sxd, and so xL Sxd = xcyL Sxy, and, in particular, y ∈ StabS(LUx ).
From Lemma 3.8 applied to xcy = xd, we deduce that (c)µx(y)µx = (cy)µx = (d)µx. This implies that
((c)µx)−1(d)µx = (y)µx ∈ Sx. Therefore (c)µx and (d)µx are representatives of the same left coset of
Sx ∩ (xS)Ψ in (xS)Ψ, and again by the minimality of C, c = d.

Next, we give an analogue of Proposition 3.23 for L S- and H S-class representatives.

Proposition 3.24. Suppose that x ∈ S and there is x′ ∈ U with xx′x = x and that:

(a) C is a minimal subset of StabS(LUx ) such that {(c)µx : c ∈ C} is a right transversal of Sx ∩ (xS)Ψ in
Sx where Ψ : xS −→ Ux, defined by ((s)νx)Ψ = (x′sx)µx, is the embedding from Proposition 3.13(a);

(b) {v1, . . . , vm} is a minimal subset of S1 such that {(x)ρ · vi : 1 ≤ i ≤ m} equals the s.c.c. of (x)λ under
the right action of S on (S)λ.

Then {xcvi : c ∈ C, 1 ≤ i ≤ m} is a minimal set of H S-class representatives of RSx , and hence a minimal
set of L S-class representatives for DS

x .

Proof. It follows from part (b) and Lemma 3.6(a) that xcviRSxcRSx, and so it suffices to show that
{xcvi : c ∈ C, 1 ≤ i ≤ m} is a set of L S-class representatives for DS

x . The proof is somewhat similar to
that of Proposition 3.23, and so we will omit some details.

If y ∈ DS
x ∩HU

x , then we will show that there is c ∈ C such that yL Sxc. By Proposition 3.21, there
exist s ∈ StabS(RUx ) and t ∈ StabS(LUx ) such that y = sxt. As in the proof of Proposition 3.23, it
follows that sxL Sx and xtRSx. Thus xt ∈ LUx ∩ RSx and so (x′xt)µx ∈ Sx. If c ∈ C is such that (c)µx
is the representative of the right coset containing (x′xt)µx, then there exists g ∈ StabS(RUx ) such that
(x′gx)µx ∈ Sx ∩ (xS)Ψ and (x′gxt)µx = (x′gxx′xt)µx = (c)µx. Hence, by Lemma 3.8, xx′gxt = xc. But
xtRSx and g ∈ StabS(RUx ) and so (gxt)ρ = g · (xt)ρ = g · (x)ρ = (x)ρ, which implies that gxtRUx. Since
xx′ is a left identity for RUx , xx′gxt = gxt, and so gxt = xc. Since gxRUx, from Corollary 3.10(b), gxL Sx
and so xc = gxtL Sxt. Therefore y = sxtL SxtL Sxc, as required.

The proof that an arbitrary y ∈ DS
x is L S-related to xcvi for some i and that (xcvi, xdvj) 6∈ L S if

i 6= j or c 6= d, is directly analogous to the final part of the proof of Proposition 3.23, and so we omit
it.

4 Specific classes of semigroups

In this section, we show how the results in Section 3 can be efficiently applied to transformation, partial
permutation, matrix, and partition semigroups; and also to subsemigroups of finite regular Rees 0-matrix
semigroups. More precisely, suppose that U is any of the full transformation monoid, the symmetric inverse
monoid, the general linear monoid over any finite field, the partition monoid, or a finite regular Rees 0-
matrix semigroup (the definitions of these semigroups can be found below) and that S is any subsemigroup
of U . Then, as described at the start of Section 3, we will show that there exist homomorphisms λ and ρ
of the actions of S on U by right and left multiplication whose kernels are L U and RU , respectively, and
where it is comparatively easy to compute with the actions of S on (S)λ and (S)ρ. For such subsemigroups
S, we also show how to obtain faithful representations of relatively small degrees of the stabilisers of L -
and R-classes under the action of S.
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4.1 Transformation semigroups

Let n ∈ N and write n = {1, . . . , n}. As already stated, a transformation of n is a function from n to
itself, and the full transformation monoid of degree n, denoted Tn, is the monoid of all transformations
on n under composition. We refer to subsemigroups of Tn as transformation semigroups of degree n. It is
well-known that the full transformation monoid is regular; see [17, Exercise 2.6.15]. Hence, it is possible
to apply the results from Section 3 to any transformation semigroup S.

Let f ∈ Tn be arbitrary. Then the image of f is defined to be

im(f) = {(i)f : i ∈ n} ⊆ n

and the kernel of f is defined by

ker(f) = {(i, j) : (i)f = (j)f} ⊆ n× n.

The kernel of a transformation is an equivalence relation, and every equivalence relation on n is the kernel
of some transformation on n. We will denote by K the set of all equivalence relations on n. The kernel
classes of a transformation f ∈ Tn, are just the equivalence classes of the equivalence relation ker(f).

The following well-known result characterises the Green’s relations on the full transformation monoid.

Proposition 4.1 (Exercise 2.6.16 in [17].). Let n ∈ N and let f, g ∈ Tn. Then the following hold:

(a) fL Tng if and only if im(f) = im(g);

(b) fRTng if and only if ker(f) = ker(g);

(c) fDTng if and only if | im(f)| = | im(g)|.

Proposition 4.2. Let S be an arbitrary transformation semigroup of degree n ∈ N. Then:

(a) λ : Tn −→ P(n) defined by (x)λ = im(x) is a homomorphism of the actions of S on Tn by right
multiplication, and the natural action on P(n) and ker(λ) = L Tn ;

(b) if L is any L -class of Tn, then SL acts faithfully on im(x) for each x ∈ L;

(c) ρ : Tn −→ K defined by (x)ρ = ker(x) is a homomorphism of the actions of S on Tn by left multipli-
cation, and the left action of S on K defined by

x ·K = ker(xy) where y ∈ Tn, ker(y) = K

and ker(ρ) = RU ;

(d) if R is any R-class of Tn, then RS acts faithfully on the set of kernel classes of ker(x) for each x ∈ R.

Proof. We will only prove parts (a) and (b); the proofs of parts (c) and (d) are analogous.

(a). It follows from Proposition 4.1 that ker(λ) = L Tn . If x ∈ Tn and s ∈ S are arbitrary, then
(xs)λ = im(xs) = im(x) · s = (x)λ · s and so λ is a homomorphism of the actions in part (a).

(b). Let x ∈ L and let ζ : SL −→ Sim(x) be defined by (s|L)ζ = s|im(x) where the action of s|im(x) on
im(x) (on the right) is defined by: i · (s|im(x)) = (i)s, for all i ∈ im(x). Let s ∈ StabS(L) be arbitrary.
Then xs ∈ L and so im(xs) = im(x), and, in particular, s acts on im(x). Thus ζ is well-defined. It is
routine to verify that ζ is a homomorphism. From the definition of ζ, s, t ∈ S have the same action on
im(x) if and only if xs = xt. But, by Lemma 3.8, xs = xt if and only if s|L = t|L and the action of SL on
im(x) is faithful.
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4.2 Partial permutation semigroups and inverse semigroups

A partial permutation on n = {1, . . . , n} is an injective function from a subset of n to another subset
of equal cardinality. The symmetric inverse monoid of degree n, denoted In, is the monoid of all partial
permutations on n under composition (as binary relations). We refer to subsemigroups of In as partial
permutation semigroups of degree n. A semigroup U is called inverse if for every x ∈ U there exists a unique
y ∈ U such that xyx = x and yxy = y. Every inverse semigroup is isomorphic to an inverse subsemigroup
of a symmetric inverse monoid by the Vagner-Preston Theorem; see [17, Theorem 5.1.7]. Since every
inverse semigroup is regular, we may apply the results from Section 3 to arbitrary subsemigroups of the
symmetric inverse monoid. We will give an analogue of Proposition 4.2 for subsemigroups of any symmetric
inverse monoid over a finite set, for which we require a description of the Green’s relations in In.

Let f ∈ In be arbitrary. Then the domain of f is defined to be

dom(f) = {i ∈ n : (i)f is defined} ⊆ n

and the image of f is
im(f) = {(i)f : i ∈ dom(f)} ⊆ n.

The inverse of f is the unique partial permutation f−1 with the property that ff−1f = f and f−1ff−1 =
f−1; note that f−1 coincides with the usual inverse mapping im(f) −→ dom(f).

Proposition 4.3 (Exercise 5.11.2 in [17].). Let n ∈ N and let f, g ∈ In be arbitrary. Then the following
hold:

(a) fL Ing if and only if im(f) = im(g);

(b) fRIng if and only if dom(f) = dom(g);

(c) fDIng if and only if | im(f)| = | im(g)|.

Proposition 4.4. Let S be an arbitrary partial permutation semigroup of degree n ∈ N. Then:

(a) λ : In −→ P(n) defined by (x)λ = im(x) is a homomorphism of the actions of S on In by right
multiplication, and the right action on P(n) defined by

A · x = {(a)x : a ∈ A ∩ dom(x)} for A ∈ P(n) and x ∈ In

and ker(λ) = L In ;

(b) if L is any L -class of In, then (In)L acts faithfully on the right of im(x) for each x ∈ L;

(c) ρ : In −→ P(n) defined by (x)ρ = dom(x) is a homomorphism of the actions of S on In by left
multiplication, and the left action on P(n) defined by

x ·A = {(a)x−1 : a ∈ A ∩ im(x)} for A ∈ P(n) and x ∈ In;

and ker(ρ) = RIn ;

(d) if R is any R-class of In, then RS acts faithfully on the left of dom(x) for each x ∈ R.

Proof. The proof of this proposition is very similar to that of Proposition 4.2 and is omitted.

4.3 Matrix semigroups

Let R be a finite field, let n ∈ N, and let Mn(R) denote the monoid of n × n matrices with entries in R
(under the usual matrix multiplication). The monoid Mn(R) is called a general linear monoid. In this
paper, a matrix semigroup is a subsemigroup of some general linear monoid. It is well-known that Mn(R)
is a regular semigroup [32, Lemma 2.1].

If α ∈Mn(R) is arbitrary, then denote by r(α) the row space of α (i.e. the subspace of the n-dimensional
vector space over R spanned by the rows of α). We denote the dimension of r(α) by dim(r(α)). The
notion of a column space and its dimension are defined dually. We denote the column space of α ∈Mn(R)
by c(α).

16



Proposition 4.5 (Lemma 2.1 in [32]). Let R be a finite field, let n ∈ N, and let α, β ∈Mn(R) be arbitrary.
Then the following hold:

(a) αLMn(R)β if and only if r(α) = r(β);

(b) αRMn(R)β if and only if c(α) = c(β);

(c) αDMn(R)β if and only if dim(r(α)) = dim(r(β)).

Proposition 4.6. Let R be a finite field, let n ∈ N, and let S be an arbitrary subsemigroup of the general
linear monoid Mn(R). Then the following hold:

(a) if Ω denotes the collection of subspaces of Rn as row vectors, then λ : Mn(R) −→ Ω defined by
(α)λ = r(α) is a homomorphism of the actions of S on Mn(R) by right multiplication, and the action
on Ω by right multiplication, and ker(λ) = LMn(R);

(b) if L is any L -class of Mn(R), then SL acts faithfully on r(α) for each α ∈ L;

(c) if Ω denotes the collection of subspaces of Rn as column vectors, then ρ : Mn(R) −→ Ω defined by
(α)ρ = c(α) is a homomorphism of the actions of S on Mn(R) by left multiplication, and the action
on Ω by left multiplication, and ker(ρ) = RMn(R);

(d) if R is any R-class of Mn(R), then RS acts faithfully on c(α) for each α ∈ R.

Proof. We will only prove (a) and (b); the proofs of parts (c) and (d) follow by analogous arguments. We
will write Lα to mean the L -class of α ∈Mn(R) in Mn(R) throughout this proof.

(a). It follows from Proposition 4.5(a) that (α)λ = (β)λ if and only if αLMn(R)β, and so ker(λ) =
LMn(R). We also have

(αβ)λ = r(αβ) = r(α) · β = (α)λ · β

for all α ∈Mn(R) and β ∈ S, and so λ is a homomorphism of actions.

(b). Let L be any L -class in Mn(R), let α ∈ L and let β, γ ∈ StabS(L). Then αβ ∈ L and so β acts
on r(α) by right multiplication. By Lemma 3.8, it follows that β and γ have equal action on r(α) if and
only if αβ = αγ if and only if α|L = β|L.

4.4 Subsemigroups of a Rees 0-matrix semigroup

In this section, we describe how the results from Section 3 can be applied to subsemigroups of a Rees
0-matrix semigroup. We start by recalling the relevant definitions.

Let T be a semigroup, let 0 be an element not in T , let I and J be sets, and let P = (pj,i)j∈J,i∈I be
a |J | × |I| matrix with entries from T ∪ {0}. Then the Rees 0-matrix semigroup M0[T ; I, J ;P ] is the set
(I × T × J) ∪ {0} with multiplication defined by

0x = x0 = 0 for all x ∈M0[T ; I, J ;P ] and (i, g, j)(k, h, l) =

{
(i, gpj,kh, l) if pj,k 6= 0

0 if pj,k = 0.

A semigroup U with a zero element 0 is 0-simple if U and {0} are its only ideals.

Theorem 4.7 (Theorem 3.2.3 in [17] or Theorem A.4.15 in [36]). A finite semigroup U is 0-simple if and
only if it is isomorphic to a Rees 0-matrix semigroupM0[G; I, J ;P ], where G is a group, and P is regular,
in the sense that every row and every column contains at least one non-zero entry.

Green’s relations of a regular Rees 0-matrix semigroup are described in the following proposition.

Proposition 4.8. Let U =M0[G; I, J ;P ] be a finite Rees 0-matrix semigroup where G is a group and P
is regular. Then the following hold for all x, y ∈ U :

(a) xL Uy if and only if x, y ∈ I ×G× {j} for some j ∈ J or x = y = 0.

(b) xRUy if and only if x, y ∈ {i} ×G× J for some i ∈ I or x = y = 0;
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Obviously, we do not require any theory beyond that given above to compute with Rees 0-matrix
semigroups, since their size, elements, and in the case that they are regular, their Green’s structure and
maximal subgroups too, are part of their definition. However, it might be that we would like to compute
with a proper subsemigroup of a Rees 0-matrix semigroup. Several computational problems for arbitrary
finite semigroups can be reduced, in part, to problems for associated Rees 0-matrix semigroups (the prin-
cipal factors of certain D-classes). For example, this is the case for finding the automorphism group [2],
minimal (idempotent) generating sets [9, 16], or the maximal subsemigroups of a finite semigroup. In the
latter example, we may wish to determine the structure of the maximal subsemigroups, which are not
necessarily Rees 0-matrix semigroups themselves. In the absence of a method to find a convenient repre-
sentation of a subsemigroup of a Rees 0-matrix semigroup, as, for example, a transformation semigroup,
we would have to compute directly with the subsemigroup.

Proposition 4.9. Let S be an arbitrary subsemigroup of a finite regular Rees 0-matrix semigroup U =
M0[G; I, J ;P ] over a permutation group G acting faithfully on n for some n ∈ N. Then:

(a) λ : U −→ J ∪ {0} defined by (i, g, j)λ = j and (0)λ = 0 is a homomorphism of the actions of S on U
by right multiplication, and the right action of S on J ∪ {0} defined by

0 · (i, g, j) = 0 · 0 = 0 = k · 0 and k · (i, g, j) =

{
j if pk,i 6= 0

0 if pk,i = 0

for all k ∈ J , and ker(λ) = L U ;

(b) if L is any non-zero L -class of U , then the action of SL on n defined by

m · (i, g, j)|L = (m)pj,ig for all m ∈ n

is faithful;

(c) ρ : U −→ I ∪ {0} defined by (i, g, j)ρ = i and (0)ρ = 0 is a homomorphism of the actions of S on U
by left multiplication, and the left action of S on I ∪ {0} defined by

(i, g, j) · 0 = 0 · 0 = 0 = 0 · k and (i, g, j) · k =

{
i if pj,k 6= 0

0 if pj,k = 0

for all k ∈ I, and ker(ρ) = RU ;

(d) if R is any non-zero R-class of U , then the action of RS on n defined by

R|(i, g, j) ·m = (m)g−1p−1
j,i for all m ∈ n

is faithful.

Proof. We only prove parts (a) and (b); parts (c) and (d) follow by analogous arguments.

(a). It follows by Proposition 4.8(a) that (x)λ = (y)λ if and only if xL Uy, for each x, y ∈ U , and so the
kernel of λ is L U . We will show that λ is a homomorphism of actions.

Let x ∈ U and s ∈ S be arbitrary. We must show that (xs)λ = (x)λ · s. If x = 0 or s = 0, then
(xs)λ = (0)λ = 0 = (x)λ · s. Suppose that x = (i, g, j) ∈ U \ {0} and s = (k, h, l) ∈ S \ {0}. If pj,k = 0,
then xs = 0 and so

(xs)λ = (0)λ = 0 = j · (k, h, l) = (x)λ · s.

If pj,k 6= 0, then
(xs)λ = l = j · (k, h, l) = (x)λ · s.

(b). Let x = (i, g, j) ∈ U \ {0} and let L = LUx = {(i′, g′, j) : i′ ∈ I, g′ ∈ G}. If (k, h, l) ∈ StabS(L) is
arbitrary, then, since L · (k, h, l) = L, it follows that pj,k 6= 0 and l = j. It follows that we may define a
mapping ζ : SL −→ G by ((k, h, l)|L)ζ = pj,kh.
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If (k1, h1, j), (k2, h2, j) ∈ StabS(L), then, by Lemma 3.8, it follows that

(k1, h1, j)|L = (k2, h2, j)|L if and only if (i, g, j)(k1, h1, j) = (i, g, j)(k2, h2, j)

if and only if (i, gpj,k1h1, j) = (i, gpj,k2h2, j)

if and only if pj,k1h1 = pj,k2h2.

Hence, ζ is well-defined and injective.
To show that ζ is a homomorphism, suppose that (k1, h1, j), (k2, h2, j) ∈ StabS(L). Then

((k1, h1, j)|L(k2, h2, j)|L)ζ = (((k1, h1, j)(k2, h2, j))|L)ζ

= ((k1, h1pj,k2h2, j)|L)ζ

= pj,k1h1pj,k2h2

= ((k1, h1, j)|L)ζ · ((k2, h2, j)|L)ζ,

as required.

4.5 Partition monoids

Let n ∈ N, let n = {1, . . . , n}, and let −n = {−1, . . . ,−n}. A partition of n ∪ −n is a set of pairwise
disjoint non-empty subsets of n∪−n (called blocks) whose union is n∪−n. If i, j ∈ n∪−n belong to the
same block of a partition x, then we write (i, j) ∈ x.

If x and y are partitions of n∪−n, then we define the product xy of x and y to be the partition where
for i, j ∈ n

(i) (i, j) ∈ xy if and only if (i, j) ∈ x or there exist a1, . . . , a2r ∈ n, for some r ≥ 1, such that

(i,−a1) ∈ x, (a1, a2) ∈ y, (−a2,−a3) ∈ x, . . . , (a2r−1, a2r) ∈ y, (−a2r, j) ∈ x

(ii) (i,−j) ∈ xy if and only if there exist a1, . . . , a2r−1 ∈ n, for some r ≥ 1, such that

(i,−a1) ∈ x, (a1, a2) ∈ y, (−a2,−a3) ∈ x, . . . , (−a2r−2,−a2r−1) ∈ x, (a2r−1,−j) ∈ y

(iii) (−i,−j) ∈ xy if and only if (−i,−j) ∈ y or there exist a1, . . . , a2r ∈ n, for some r ≥ 1, such that

(−i, a1) ∈ y, (−a1,−a2) ∈ x, (a2, a3) ∈ y, . . . , (−a2r−1,−a2r) ∈ x, (a2r,−j) ∈ y

for i, j ∈ n.
This product can be shown to be associative, and so the collection of partitions of n∪−n is a monoid;

the identity element is the partition {{i,−i} : i ∈ n}. This monoid is called the partition monoid and is
denoted Pn.

It can be useful to represent a partition as a graph with vertices n ∪ −n and the minimum number of
edges so that the connected components of the graph correspond to the blocks of the partition. Of course,
such a representation is not unique in general. An example is given in Figure 1 for the partitions:

x =
{
{1,−1}, {2}, {3}, {4,−3}, {5, 6,−5,−6}, {−2,−4}

}
y =

{
{1, 4,−1,−2,−6}, {2, 3, 5,−4}, {6,−3}, {−5}

}
and the product

xy =
{
{1, 4, 5, 6,−1,−2,−3,−4,−6}, {2}, {3}, {−5}

}
is shown in Figure 2.

A block of a partition containing elements of both n and -n is called a transverse block. If x ∈ Pn, then
we define x∗ to be the partition obtained from x by replacing i by −i and −i by i in every block of x for
all i ∈ n. It is routine to verify that if x, y ∈ Pn, then

(x∗)∗ = x, xx∗x = x, x∗xx∗ = x∗, (xy)∗ = y∗x∗.

In this way, the partition monoid is a regular ∗-semigroup in the sense of [31].
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Figure 1: Graphical representations of the partitions x, y ∈ P6.
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Figure 2: A graphical representation of the product xy ∈ P6.

If x ∈ Pn is arbitrary, then xx∗ and x∗x are idempotents; called the projections of x. We will write

Proj(Pn) = {xx∗ : x ∈ Pn} = {x∗x : x ∈ Pn}.

If B is a transverse block of xx∗ (or x∗x), then i ∈ B if and only if −i ∈ B. If B is a non-transverse block
of xx∗, then −B = {−b : b ∈ B} is also a block of xx∗.

Proposition 4.10 (cf. [11, 44]). Let n ∈ N and let x, y ∈ Pn. Then the following hold:

(a) xL Pny if and only if x∗x = y∗y;

(b) xRPny if and only if xx∗ = yy∗;

(c) xDPny if and only if x and y have the same number of transverse blocks.

The characterisation in Proposition 4.10 can be used to define representations of the actions mentioned
above.

Proposition 4.11. Let S be an arbitrary subsemigroup of Pn. Then:

(a) λ : Pn −→ Proj(Pn) defined by (x)λ = x∗x is a homomorphism between the action of S on Pn by right
multiplication and the right action of S on Proj(Pn) defined by

x∗x · y = (xy)∗xy = y∗x∗xy

and the kernel of λ is L Pn ;

(b) if L is any L -class of Pn, then SL acts faithfully on the transverse blocks of x∗x for each x ∈ L;

(c) ρ : Pn −→ Proj(Pn) defined by (x)ρ = xx∗ is a homomorphism between the action of S on Pn by left
multiplication and the left action of S on Proj(Pn) defined by

y · xx∗ = yx(yx)∗ = yxx∗y∗

and the kernel of ρ is RPn ;

(d) if R is any R-class of Pn, then RS acts faithfully on the transverse blocks of xx∗ for each x ∈ R.

Proof. We just prove parts (a) and (b), since the other parts are dual.

(a). Let x ∈ Pn and s ∈ S be arbitrary. Then

(xs)λ = (xs)∗xs = s∗(x∗x)s = (x)λ · s.
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Together with Proposition 4.10, this completes the proof of (a).

(b). Let x ∈ Pn be arbitrary and suppose that y ∈ StabS(LPn
x ). It follows that x∗x = (x)λ = (xy)λ =

(xy)∗xy = y∗x∗xy. We denote the intersection of the transverse blocks of x∗x with n by B1, . . . , Br and
we define the binary relation

py = {(i, j) ∈ r× r : ∃k ∈ Bi, ∃l ∈ Bj , (k,−l) ∈ x∗xy}.

We will show that py is a permutation, and that ζ : SLPn
x
−→ Sym(r) defined by (y|LPn

x
)ζ = py is a

monomorphism.
Seeking a contradiction, assume that there exist i, j, j′ ∈ r such that j 6= j′ and (i, j), (i, j′) ∈ py.

Then there exist k, k′ ∈ Bi, l ∈ Bj , and l′ ∈ Bj′ such that (k,−l), (k′,−l′) ∈ x∗xy. Since k, k′ ∈ Bi,
it follows that (k, k′) ∈ x∗x and so (k, k′) ∈ x∗xy. Since x∗xy is an equivalence relation, it follows that
(−l,−l′) ∈ x∗xy, which implies that (−l,−l′) ∈ y∗x∗xy = x∗x, and so (l, l′) ∈ x∗x, a contradiction. Hence
py is a function.

Since n is finite, to show that py is a permutation it suffices to show that it is surjective. Suppose that
i ∈ r and l ∈ Bi are arbitrary. Then (l,−l) ∈ x∗x = y∗x∗xy, and so by part (ii) of the definition of the
multiplication of the partitions y∗ and x∗xy, there exists k ∈ n such that (k,−l) ∈ x∗xy. In other words,
k belongs to a transverse block of x∗xy, and hence to a transverse block of x∗x. Thus there exists j ∈ r
such that k ∈ Bj and so (j)py = i, as required.

Note that, since x∗xy is an equivalence relation and py is a permutation, the transverse blocks of x∗xy
are of the form Bi ×−B(i)py .

Next, we show that ζ : SLPn
x
−→ Sym(r) defined by (y|LPn

x
)ζ = py is a homomorphism. Let y, z ∈

StabS(LPn
x ). It suffices to prove that pypz = pyz. If i ∈ r, then there exist k ∈ Bi, l, l

′ ∈ B(i)py , and
m ∈ B((i)py)pz such that (k,−l) ∈ x∗xy and (l′,−m) ∈ x∗xz. Since l, l′ ∈ B(i)py (a transverse block of x∗x),

(l,−l′) ∈ x∗x, and so (k,−m) ∈ x∗xy · x∗x · x∗xz = x∗xyx∗xz. Since xyL Pnx and x∗x is a right identity
in its L Pn-class, it follows that xyx∗x = xy and so x∗xyx∗xz = x∗xyz. In particular, (k,−m) ∈ x∗xyz,
and so (i)pyz = ((i)py)pz, as required.

It remains to prove that ζ is injective. Suppose that y, z ∈ StabS(LPn
x ) are such that py = pz. It suffices,

by Lemma 3.8, to show that xy = xz. We will prove that x∗xy = x∗xz so that xy = xx∗xy = xx∗xz = xz.
Since the transverse blocks of x∗xy are Bi × −B(i)py = Bi × −B(i)pz where i ∈ r, it follows that the
transverse blocks of x∗xy and x∗xz coincide. Suppose that (k, l) ∈ x∗xy where neither k nor l belongs to
a transverse block of x∗xy. It follows from the form of the transverse blocks of x∗xy that neither k nor l
belongs to a transverse block of x∗x. There are two cases to consider: k, l > 0 and k, l < 0. In the first
case, by part (i) of the definition of the mulitplication of x∗x and y, either (k, l) ∈ x∗x or k and l belong to
transverse blocks of x∗x. Since the latter is not the case, (k, l) ∈ x∗x and so (k, l) ∈ x∗xz. In the second
case, when k, l < 0, it follows from part (iii) of the definition of the multiplication of x∗x and y, that
(k, l) ∈ y and so (k, l) ∈ y∗x∗xy = z∗x∗xz. By part (iii) of the definition of the multiplication of z∗ and
x∗xz, either (k, l) ∈ x∗xz or both k and l belong to transverse blocks of x∗xz. Since the transverse blocks
of x∗xy and x∗xz coincide and contain neither k nor l, it is the case that (k, l) ∈ x∗xz. Thus x∗xy ⊆ x∗xz
and, by symmetry, x∗xz ⊆ x∗xy. Therefore xy = xz, as required.

5 Algorithms

In this section, we outline some algorithms for computing with semigroups that utilise the results in
Section 3. The algorithms described in this section are implemented in the GAP [15] package Semi-
groups [28] in their full generality, and can currently be applied to semigroups of transformations, partial
permutations, partitions, and to subsemigroups of regular Rees 0-matrix semigroups over groups.

Throughout this section, we assume that U is a finite regular semigroup, that S is a subsemigroup of
U generated by X = {x1, . . . , xm} ⊆ U for some m ∈ N. If U or S is not a monoid, then we can simply
adjoin an identity, to obtain U1 or S1, perform whatever calculation we require in U1 or S1 and then
return the answer for U . In other words, we may assume without loss of generality that U is a monoid
and that S is a submonoid of U . We denote the identity of U by 1U .

The purpose of the algorithms described in this section is to answer various questions about the
structure of the semigroup S = 〈x1, . . . , xm〉 generated by X = {x1, . . . , xm} ⊆ U .

Apart from this introduction, this section has 6 subsections. In Subsection 5.1, we outline some basic
operations that we must be able to compute in order to apply the algorithms later in this section. We
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then show how to perform these basic operations in the examples of semigroups of transformations, partial
permutations, matrices, partitions, and in subsemigroups of a Rees 0-matrix semigroup in Subsection 5.2.
In Subsection 5.3, we describe how to calculate the components of the action of a semigroup on a set, and
how to use this to obtain the Schreier generators from Proposition 2.3(c). In Subsection 5.4, we describe
a data structure for individual Green’s classes of S and give algorithms showing how this data structure
can be used to compute various properties of these classes. In Subsection 5.5, we describe algorithms that
can be used to find global properties of S, such as its size, R-classes, and so on. In Subsection 5.6, we
give details of how some of the algorithms in Subsection 5.5 can be optimised when it is known a priori
that S is a regular or inverse semigroup.

At several points in this section it is necessary to be able to determine the strongly connected compo-
nents (s.c.c.) of a directed graph. This can be achieved using Tarjan’s [43] or Gabow’s [14] algorithms, for
example; see also Sedgwick [38].

In the algorithms in this section, “:=” indicates that we are assigning a value (the right hand side of
the expression) to a variable (the left hand side), while “=” denotes a comparison of variables. The symbol
“←” is the replacement operator, used to indicated that the value of the variable on the left hand side is
replaced by the value on the right hand side.

5.1 Assumptions

As discussed at the start of Section 3, we suppose that we have a right action of S on a set (U)λ and
a homomorphism λ : U −→ (U)λ of this action and the action of S on P(U) by right multiplication,
where ker(λ) = L U (Definition 3.4). Furthermore, for every x ∈ U we assume that we have a faithful
representation ζ of the stabiliser ULU

x
and a function µx : StabU (LUx ) −→ (ULU

x
)ζ defined by

(u)µx = (u|LU
x

)ζ for all u ∈ U ;

see (3.7). We also assume that we have the left handed analogues ρ : U −→ (U)ρ and νx : StabU (RUx ) −→
(RU

x
U)ζ ′ (where ζ ′ is any faithful representation of RU

x
U) of λ and µx, respectively. Recall that we write

Sx = (StabS(LUx ))µx and xS = (StabS(RUx ))νx.

In order to apply the algorithms described in this section, it is necessary that certain fundamental
computations can be performed.

Assumptions. We assume that we can compute the following:

(I) the product xy;

(II) the value (x)λ;

(III) an element s ∈ U such that xss = x whenever (x)λ ∼ (x)λ · s = (xs)λ;

(IV) the value (x′s)µx, for some choice of x′ ∈ U such that xx′x = x, whenever (x)λ = (s)λ and
(x)ρ = (s)ρ;

for all x, y, s ∈ U . We also require the facility to perform the analogous computations involving the
functions ρ and the νx for all x ∈ S.

We will prove that s ∈ S in Assumption (III) exists. By the definition of λ, since (x)λ ∼ (xs)λ, it
follows that LUx ∼ LUxs under the action of S on U/L defined in (3.2). Hence, by Proposition 2.3(a), there
exists s ∈ S such that

LUxs · s = LUx and (ss)|LU
x

= idLU
x

and so xss = x. Given the orbit graph of (x)λ ·S, it is possible to compute s by finding a path from (xs)λ
to (x)λ and using Algorithm 2. However, this is often more expensive than computing s ∈ U directly from
s. Some details of how to compute Assumptions (I) to (IV) in the special cases given in Section 4 can be
found in the next section.

If s ∈ U satisfies Assumption (III) for some x ∈ S, then we note that xss = x implies that xsss = xs
and so by Lemma 3.8:

(ss)|LU
xs

= idLU
xs
.

Note that if s ∈ StabS(RUx ), then (sx)ρ = (x)ρ and, by Proposition 3.12(b), sx ∈ LSx ∩ RUx . In
particular, (sx)λ = (x)λ, and so, by Assumption (IV), we can compute:
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(V) the value ((s)νx)Ψ = (x′sx)µx whenever s ∈ StabS(RUx ).

We will refer to this as Assumption (V), even though it is not an assumption.
It will follow from the comments in Subsection 5.2 that the algorithms described in this paper can be

applied to any subsemigroup of the full transformation monoid, the symmetric inverse monoid, the partition
monoid, the general linear monoid, or any subsemigroup of a regular Rees 0-matrix semigroup over a group.
However, we would like to stress that the algorithms in this section apply to any subsemigroup of a finite
regular semigroup. In the worst case, the functions λ : U −→ U/L U and ρ : U −→ U/RU defined by
(x)λ = LUx and (x)ρ = RUx , and the natural mappings µx : StabS(LUx ) −→ SLU

x
and νx : StabS(RUx ) −→

RU
x
S for every x ∈ U , fulfil the required conditions, although it might be that our algorithms are not very

efficient in this case.

5.2 Computational prerequisites

In this section, we describe how to perform the computations required in Assumptions (I) to (IV) for
semigroups of transformations, partial permutations, partitions, and matrices, and for subsemigroups of a
Rees 0-matrix semigroup.

Transformations

A transformation x can be represented as a tuple ((1)x, . . . , (n)x) where n is the degree of x.

(I) The composition xy of transformations x and y is represented by ((1)xy, . . . , (n)xy), which can be
computed by simple substitution in linear time O(n);

(II) The value (x)λ = im(x) can be found by sorting and removing duplicates from ((1)x, . . . , (n)x) with
complexity O(n log(n));

(III) If x, s are such that im(x) and im(xs) have equal cardinality, then the transformation s defined by

(i)s =

{
(j)x if i = (j)xs ∈ im(xs)

i if i 6∈ im(xs)

has the property that xss = x (finding s has complexity O(n));

(IV) If x and s are transformations such that ker(x) = ker(s) and im(x) = im(s) and x′ is any transfor-
mation such that xx′x = x, then, from Proposition 4.2(b), (x′s)µx is just the restriction (x′s)|im(x)

of x′s to im(x), which can be determined in | im(x)| steps from x and s.

The analogous calculations can be made in terms of the kernel of a transformation, and the left actions
of S; the details are omitted.

Partial permutations

A partial permutation x can be represented as a tuple ((1)x, . . . , (m)x) where m is the largest value where
x is defined, and (i)x = 0 if x is not defined at i. The values required under Assumptions (I), (II), and
(IV) can be computed for partial permutations in the same way they were computed for transformations.

Assumption (III) is described below:

(III) if x, s are such that im(x) and im(xs) have equal cardinality, then the partial permutation s = s−1

has the property xss = x (finding s−1 has complexity O(n)).

Matrices over finite fields

The values required in Assumptions (I) to (IV) can be found for matrix semigroups in a similar way as
they are found for transformation and partial permutations, using elementary linear algebra; the details
will appear in [29].
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Rees 0-matrix semigroups

It should be clear from the definition of a Rees 0-matrix semigroup, and by Proposition 4.9, how to compute
the values in Assumptions (I) and (II). Assumptions (III) and (IV) are described below:

(III) if x = (a, b, i), s = (j, g, k) ∈ S are such that (x)λ = i ∼ (s)λ = k, then pi,j 6= 0. So, if l ∈ I is such
that pk,l 6= 0, then s = (l, p−1

k,lg
−1p−1

i,j , i) has the property that xss = x;

(IV) if x = (i, g, j) ∈ S, then there exist k ∈ I and l ∈ J such that pj,k, pl,i 6= 0. One choice for x′ ∈ U
is (k, p−1

j,kg
−1p−1

l,i , l). So, if h ∈ G is arbitrary and s = (i, h, j), then (x)λ = (s)λ and (x)ρ = (s)ρ.
Hence the action of (x′s)µx on m ∈ n (defined in Proposition 4.9(b)) is given by

m · (x′s)µx = (m)g−1h.

Partitions

A partition x ∈ Pn can be represented as a 2n-tuple where the first n entries correspond to the in-
dices of the blocks containing {1, . . . , n} and entries n + 1 to 2n correspond to the indices of the blocks
containing {−1, . . . ,−n}. For example, the partition x ∈ P6 shown in Figure 1 is represented by
(1, 2, 3, 4, 5, 5, 1, 6, 4, 6, 5, 5).

Given x ∈ Pn represented as above, it is possible to compute x∗ ∈ Pn in 2n steps (linear complexity).
This will be used in several of the assumptions.

(I) The composition xy of partitions x and y can be found using a variant of the classical Union-Find
Algorithm (complexity O(n2));

(II) The value x∗x can be found using (I) (complexity O(n2));

(III) If x, s ∈ Pn are such that (x)λ = x∗x ∼ (xs)λ = s∗x∗xs, then x∗x and s∗x∗xs have equal number of
transverse blocks. A partition s with the property that xss = x can then be found using a variant
of the Union-Find Algorithm (complexity O(n2));

(IV) If x, s ∈ Pn are such that (x)λ = (s)λ and (x)ρ = (s)ρ, then, by Proposition 4.11(b), (x∗s)µx is a
permutation of the transverse blocks of x, which can be found in linear time (complexity O(n)).

In practice, it is possible to compute the values required by these assumptions with somewhat better
complexity than that given above. However, this is also more complicated to describe and so we opted to
describe the simpler methods.

5.3 Components of the action

Let S be an arbitrary monoid acting on a set Ω on the right, and let 1S denote the identity of S. We
start by describing a procedure for calculating α · S = {α · s : s ∈ S} or Ω · S = {α · s : α ∈ Ω, s ∈ S}.
These are essentially the same as the standard orbit algorithm for a group acting on a set (see, for
example, [45, Section 4.1]), but without the assumption that S is a group. An analogous algorithm can
be used for left actions. We will refer to α · S as the component of the action under S of α.

In this subsection we present algorithms for computing: the components of an action of a semigroup
S; elements of S that act on points in the component in a specified way; generators for the stabiliser of
a set. Examples of how these algorithms can applied can be found in Section 6. The algorithms in this
subsection and the next are somewhat similar to those described in [24].

Suppose that X = {x1, . . . , xm} is a generating set for a monoid S acting on the right on a set Ω. If
α ∈ Ω and α ·S = {β1 = α, β2, . . . , βn}, then the orbit graph of α ·S is just the directed graph with vertices
{1, . . . , n} and an edge from i to gi,j labelled with j if βi · xj = βgi,j . The orbit graph of Ω · S is defined
analogously. A Schreier tree for α · S is just a spanning tree for the orbit graph with root at β1. More
precisely, a Schreier tree for α · S is simply a 2-dimensional array

v2 . . . vn
w2 . . . wn

such that βvj · xwj
= βj and vj < j for all j > 1.
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The orbit graph of Ω·S may not be connected and so it has a forest of (not necessarily disjoint) Schreier
trees rooted at some elements of Ω. To simplify things, we may suppose without loss of generality that
there is an α ∈ Ω such that α ·S = Ω ·S. This can be achieved by adding an artificial α to Ω (and perhaps
some further points) and defining the action of S on these values so that α · S contains all of the roots of
the Schreier forest for Ω · S.

Note that unlike the orbit graph of a component of a group acting on a set, the orbit graph of a
component of a semigroup acting on a set is, in general, not strongly connected. This makes several of the
steps required below more complicated than in the group case.

Algorithm 1 Compute a component of an action

Input: S := 〈X〉 where X := {x1, . . . , xm}, S acts on a set Ω on the right, and α ∈ Ω
Output: α · S, a Schreier tree for α · S, and the orbit graph of α · S
1: α · S := {β1 := α}, n := 1 [initialise α · S]
2: for βi ∈ α · S, j ∈ {1, . . . ,m} do [loop over: existing values in α · S, the generators]
3: if βi · xj 6∈ α · S then
4: n := n+ 1, βn := βi · xj , α · S ← α · S ∪ {βn}; [add βi · xj to α · S]
5: vn := i, wn := j, gi,j := n [update the Schreier tree and orbit graph]
6: else if βi · xj = βr ∈ α · S then
7: gi,j := r; [update the orbit graph]
8: end if
9: end for

10: return α · S, (v2, . . . , vn, w2, . . . , wn), {gi,j : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}

The Schreier tree for α · S produced by Algorithm 1 can be used to obtain elements ui ∈ S such that
β1 · ui = βi for all i using Algorithm 2. The standard method for a group acting on a set, such as the
procedure U-Beta in [45, p80], cannot be used here, due to the non-existence of inverses in semigroups.

Algorithm 2 Trace a Schreier tree

Input: a Schreier tree (v2, . . . , vn, w2, . . . , wn) for α · S, and βi ∈ α · S
Output: u ∈ S such that α · u = βi
1: u := 1S , j := i
2: while j > 1 do
3: u := xwju and j := vj
4: end while
5: return u

The right action of S on Ω induces an action of S on P(Ω). In Algorithm 3, Algorithms 1 and 2 are
used to obtain the Schreier generators from Proposition 2.3(c) for the stabiliser SΣ of a subset Σ of Ω
under this induced action.

Algorithm 3 Compute Schreier generators for a stabiliser

Input: the component Σ · S of Σ ⊆ Ω under the action of S on P(Ω), a Schreier tree and orbit graph for
Σ · S

Output: Schreier generators Y for the stabiliser SΣ

1: Y := {idΣ}
2: find the s.c.c. of Σ in Σ · S := {Σ1 := Σ, . . . ,Σr}
3: for i ∈ {1, . . . , r}, j ∈ {1, . . . ,m} do [loop over: Σ · S, the generators of S]
4: set k := gi,j [gi,j is from the orbit graph of Σ · S]
5: if Σk ∼ Σ1 then [Σk is in the s.c.c. of Σ1]
6: find ui, uk ∈ S such that Σ1 · ui = Σi and Σ1 · uk = Σk [Algorithm 2]
7: find uk ∈ U such that Σk · uk = Σ1 and (ukuk)|Σ1

= idΣ1
[Proposition 2.3(a)]

8: Y ← Y ∪ {(uixjuk)|Σ1
}

9: end if
10: end for
11: return Y
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In Algorithm 4 we give a more specialised version of Algorithm 3, which we require to find (StabS(LUx ))µx =
Sx where µx is the function defined at the start of this section.

Algorithm 4 Compute Schreier generators for Sx
Input: the component (x)λ · S of (x)λ, a Schreier tree and orbit graph for (x)λ · S
Output: Schreier generators Y for the stabiliser Sx
1: set Y := {1Sx

}, x1 := x
2: find the s.c.c. {(x1)λ, . . . , (xr)λ} of (x)λ in (x)λ · S
3: for i ∈ {1, . . . , r}, j ∈ {1, . . . ,m} do [loop over: the s.c.c. of (x)λ, the generators of S]
4: set k := gi,j [gi,j is from the orbit graph of (x)λ · S]
5: if (xk)λ ∼ (x1)λ then [(xk)λ is in the s.c.c. of (x1)λ]
6: find ui, uk ∈ S such that (x1)λ · ui = (xi)λ and (x1)λ · uk = (xk)λ [Algorithm 2]
7: find uk ∈ U such that xukuk = x [Assumption (III)]
8: Y ← Y ∪ {(x′uixjuk)µx} [Assumption (IV)]
9: end if

10: end for
11: return Y

Algorithms 3 and 4 can also be used to find generators for the stabiliser of any value in the component
Σ · S or (x)λ · S, if we have a Schreier tree for the s.c.c. rooted at that value. Algorithm 1 returns a
Schreier tree for the entire component (possibly including several strongly connected components) rooted
at the first point in the component. It is possible to find a Schreier tree for any s.c.c. rooted at any value
in the component by finding a spanning tree for the subgraph of the orbit graph the s.c.c. induces. Such
a spanning tree can be found in linear time using a depth first search algorithm, for example.

5.4 Individual Green’s classes

Data structures

By Corollary 3.15, we can represent the R-class RSx of any element x ∈ S as a quadruple consisting of:

• the representative x;

• the s.c.c. {(x)λ = α1, . . . , αn} of (x)λ under the action of S (this can be found using Algorithms 1
and any algorithm to find the strongly connected components of a digraph);

• a Schreier tree for {α1, . . . , αn};

• the stabiliser group Sx found using Algorithm 4.

The L S-class of x in S can be represented using the analogous quadruple using the s.c.c. of (x)ρ, and the
group xS. The Green’s H - and D-classes of x in S are represented using the quadruple for RSx and the
quadruple for LSx .

Size of a Green’s class

Having the above data structures, it follows from Corollaries 3.15(b) and 3.16(b) that |RSx | = n · |Sx| where
n is the length of the s.c.c. of (x)λ in (x)λ · S. Similarly, |LSx | is the length of the s.c.c. of (x)ρ multiplied
by |xS|. Suppose that x′ ∈ U is such that xx′x = x. Then, by Proposition 3.13(b), |HS

x | = |Sx ∩ (xS)Ψ|,
where Ψ : xS −→ Ux is defined by ((s)νx)Ψ = (x′sx)µx for all s ∈ xS. The group xS can be found using
the analogue of Algorithm 4, and we can compute the values (x′sx)µx for all s ∈ xS by Assumption (V).
The size of the D-class DS

x is just

|DS
x | =

|LSx | · |RSx |
|HS

x |
,

and so |DS
x | can be found using the values of |LSx |, |RSx |, and |HS

x |.
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Elements of a Green’s class

Corollary 3.20(a) states that

RSx = {xsu : s ∈ StabS(LUx ), u ∈ S, (x)λ · u ∼ (x)λ}.

If s, t ∈ StabS(LUx ) are such that (s)µx = (t)µx, then, by Lemma 3.8, xs = xt. It follows that if M is any
subset of StabS(LUx ) such that (M)µx = Sx and (s)µx 6= (t)µx for all s, t ∈M such that s 6= t, then

RSx = {xsu : s ∈M, u ∈ S, (x)λ · u ∼ (x)λ}.

If Y = {(y1)µx, . . . , (yk)µx} is a set of generators for Sx (from Algorithm 4), then every element of Sx is
of the form (s)µx where s ∈ 〈y1, . . . , yk〉. Thus the set M can be found by computing the elements of Sx,
and expressing each element as a product of the generators Y . An algorithm for finding the elements of
RSx is given in Algorithm 5.

Algorithm 5 Elements of an R-class

Input: x ∈ S
Output: the elements Y of the R-class RSx
1: Y := ∅
2: find the s.c.c. {(x)λ = α1, . . . , αn} of (x)λ, and a Schreier tree for this s.c.c. [Algorithm 1]
3: find the group Sx [Algorithm 4]
4: for i ∈ {1, . . . , n}, (s)µx ∈ Sx do [Loop over: the s.c.c., elements of the group]
5: find ui ∈ S such that α1 · ui = αi [Algorithm 2]
6: Y ← Y ∪ {xsui}
7: end for
8: return Y

The elements of an L -class can be found using an analogous algorithm. By the proof of Proposi-
tion 3.13(b), φ1 : Sx ∩ (xS)Ψ −→ HS

x defined by ((s)µx)φ1 = xs is a bijection. It follows that if we can
compute the intersection of groups Sx ∩ (xS)Ψ, then we can obtain the elements of HS

x . As mentioned
above, (xS)Ψ can be determined using Algorithm 4 and by Assumption (V).

The elements of a D-class are slightly more complicated to compute. In Algorithm 6 we show how to
find the R-classes in a given D-class of S and this combined with Algorithm 5 gives a method for finding
the elements of a D-class.

Classes within classes

By Proposition 3.23, if x ∈ S, x′ ∈ U is such that xx′x = x, and:

• C is a subset of StabU (LUx ) such that {(c)µx : c ∈ C} is a left transversal of Sx ∩ (xS)Ψ in (xS)Ψ
where Ψ : xS −→ Ux, defined by ((s)νx)Ψ = (x′sx)µx, is the embedding from Proposition 3.13(a);

• {ui · (x)ρ : 1 ≤ i ≤ m} is the s.c.c. of (x)ρ under the left action of S, where ui ∈ S for all i,

then {uixc : c ∈ C, 1 ≤ i ≤ m} is a set of H S-class representatives for LSx , and hence a set of RS-class
representatives for DS

x . Using this result in Algorithm 6 we show how to find the RS-classes of a DS-class.
Since (uixc)λ = (x)λ, it follows that Suixc = Sx for all i and all c ∈ C. Therefore, the data structures for
RSx and RSuixc are identical except for the representatives.

From Proposition 3.24, algorithms analogous to Algorithm 6, can be used to find the L S-classes in a
DS-class, the H S-classes in an RS-class, or the H S-classes in an L S-class.

Testing membership

Using Corollary 3.18 and 3.22, in Algorithms 7 and 8 we show how the data structures described at the
start of the section can be used to test membership in an R- or D-class.

Using Proposition 3.19, an algorithm analogous to Algorithm 7 (for R-classes) can be used to test
membership in an L -class. Testing membership in an H -class can then be accomplished by testing
membership in the corresponding L - and R-classes.
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Algorithm 6 R-classes in a D-class

Input: x ∈ S
Output: R-class representatives R of the D-class DS

x

1: R := ∅
2: find the s.c.c.s of (x)λ and (x)ρ and their Schreier trees [Algorithm 1]
3: find Sx ∩ (xS)Ψ [Algorithm 4 and Assumption (V)]
4: find C ⊆ StabS(LUx ) such that {(c)µx : c ∈ C} is a left transversal of Sx ∩ (xS)Ψ in (xS)Ψ

[Proposition 3.23(a)]
5: for (y)ρ in the s.c.c. of (x)ρ do
6: find ui ∈ S such that ui · (x)ρ = (y)ρ [Algorithm 2]
7: for c ∈ C do
8: R← R ∪ {uixc}
9: end for

10: end for
11: return R

Algorithm 7 Test membership in an R-class

Input: y ∈ U and the data structure of an R-class RSx
Output: true or false
1: if (x)ρ = (y)ρ and (y)λ ∼ (x)λ then
2: find u ∈ S such that (x)λ · u = (y)λ [Algorithm 2]
3: find u ∈ U such that (y)λ · u = (x)λ and xuu = x [Assumption (III)]
4: return (x′yu)µx ∈ Sx [Assumption (IV)]
5: else
6: return false
7: end if

Algorithm 8 Test membership in a D-class

Input: y ∈ U and the data structure for the D-class of x ∈ S
Output: true or false
1: if (x)λ ∼ (y)λ and (x)ρ ∼ (y)ρ then
2: find u1, u2 ∈ S such that (x)λ · u1 = (y)λ and u2 · (x)ρ = (y)ρ [Algorithm 2]
3: find u1 ∈ U such that (y)λ · u1 = (x)λ and xu1u1 = x [Assumption (III)]
4: find u2 ∈ U such that u2 · (y)ρ = (x)ρ, and u2u2x = x [the analogue of Assumption (III)]
5: find Sx ∩ (xS)Ψ [Algorithm 4 and Assumption (V)]
6: find C ⊆ S such that {(c)µx : c ∈ C} is a left transversal of Sx ∩ (xS)Ψ in Sx [Proposition 3.23(a)]
7: for c ∈ C do
8: if (x′u2yu1c)µx in (xS)Ψ then
9: return true

10: end if
11: end for
12: end if
13: return false
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Regularity and idempotents

An R-class R of S is regular if and only if there is x ∈ R such that HU
x is a group. Since y ∈ HU

x if and
only if (x)λ = (y)λ and (x)ρ = (y)ρ, it is possible to verify that an R-class is regular only by considering
the value (x)λ and the s.c.c. of (x)ρ. A similar approach can be used to to compute the idempotents in
an R-class.

How we test if the H -class in U corresponding to (x)λ and (y)ρ is a group, depends on the context.
For example:

Transformation semigroups: in the full transformation monoid, (x)λ and (y)ρ are an image set and
kernel of a transformation, respectively. In this case, the H -class corresponding to (x)λ and (y)ρ is
a group if and only if (x)λ contains precisely one element in every kernel class of (x)ρ. If (x)λ and
(y)ρ satisfy this property, then it is relatively straightforward to compute an idempotent with kernel
(y)ρ and image (x)λ;

Partial permutations: in the symmetric inverse monoid, (x)λ and (y)ρ are the image set and domain
of a partial permutation, respectively. In this case, the H -class corresponding to (x)λ and (y)ρ is a
group if and only if (x)λ = (y)ρ. Given such (x)λ = (y)ρ, the partial identity function with domain
(x)λ is the idempotent in the H -class;

Matrix semigroups: In this case, there is no simple criteria for the H -class of (x)λ and (y)ρ to be a
group.

Rees matrix semigroups: in a Rees 0-matrix semigroupM0[G; I, J ;P ], (x)λ = j ∈ J and (y)ρ = k ∈ I.
In this case, the H -class corresponding to (x)λ and (y)ρ is a group if and only if pj,k 6= 0. The
idempotent in the H -class is then (k, p−1

j,k, j);

Partitions: in the partition monoid, (x)λ = x∗x and (y)ρ = yy∗. In this case, the H -class Lx∗x ∩ Ryy∗
contains an idempotent if and only if the number of transverse blocks of yy∗x∗x equals the number
of transverse blocks of x∗x. If the previous condition is satisfied, then the idempotent contained in
Lx∗x ∩Ryy∗ is yy∗x∗x.

Algorithm 9 Regularity of an R-class

Input: a representative x ∈ S of an R-class of S
Output: true or false
1: find the s.c.c. of (x)ρ in S · (x)ρ [analogue of Algorithm 1]
2: for (y)ρ in the s.c.c. of (x)ρ do
3: if the H -class in U corresponding to (x)λ and (y)ρ is a group then
4: return true
5: end if
6: end for
7: return false

Algorithms analogous to Algorithms 9 and 10 can be used to test regularity and find the idempotents
in an L -class. A D-class D in S is regular if and only if any (equivalently, every) R-class in D is regular.
Hence Algorithms 6 and 9 and can be used to verify if a D-class is regular or not. It is possible to calculate
the idempotents in a D-class D by creating the R-class representatives using Algorithm 6 and finding the
idempotents in every R-class of D using Algorithm 10.

5.5 The global structure of a semigroup

In this section, we provide algorithms for determining the structure of an entire semigroup, rather than
just its individual Green’s classes as in the previous sections. Unlike the previous two subsections, the
algorithms described in this section differ significantly from the analogous procedures described in [24].

The main algorithm

Algorithm 11 is the main algorithm for computing the size, the Green’s structure, testing membership,
and so on in S. This algorithm could be replaced by an analogous algorithm which enumerates L -classes,
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Algorithm 10 Idempotents in an R-class

Input: x ∈ S
Output: the idempotents E of RSx
1: E := ∅
2: find the s.c.c. of (x)ρ in S · (x)ρ [analogue of Algorithm 1]
3: for (y)ρ in the s.c.c. of (x)ρ do
4: if the H -class H in U corresponding to (x)λ and (y)ρ is a group then
5: find the identity e of H
6: E ← E ∪ {e}
7: end if
8: end for
9: return E

rather than R-classes. In the case of transformation semigroups, in many test cases, the algorithm for
R-classes has better performance than the analogous algorithm for L -classes. This is one reason for
presenting this algorithm and not the other.

Since Green’s R-relation is a left congruence, it follows that representatives of the R-classes of S can be
obtained from the identity by left multiplying by the generators. The principle purpose of Algorithm 11
is to determine the action of S on its R-class representatives by left multiplication. In particular, we
enumerate R-class representatives of S, which we will denote by R. Since we are calculating an action
of S, we may also discuss the Schreier tree and orbit graph of this action, as we did in Algorithm 1. At
the same time as finding the action of S on its R-class representatives, we also calculate (S)ρ. Since
(x)ρ = (y)ρ if and only if xRUy, it follows that

(S)ρ = (R)ρ = {(x)ρ : x ∈ R}.

In Algorithm 11, we find an addition parameter, which is denoted by Ki. This parameter is used later in
Algorithm 13, which allows us to factorise elements of a semigroup over its generators.

If the subsemigroup S we are trying to compute is R-trivial, then Algorithm 11 simply exhaustively
enumerates the elements of S. In such a case, unfortunately, Algorithm 11 has poorer performance than
a well-implemented exhaustive algorithm, since it contains some superfluous steps. For example, the
calculations of (S)λ and the groups Sx are unnecessary steps if S is R-trivial. On a more positive note, in
some cases, it is possible to detect if a semigroup is R-trivial with relatively little effort. For example, if S
is a transformation semigroup of degree n, then it is shown in [40] that S is R-trivial if and only if its action
on the points in {1, . . . , n} is acyclic. In other words, it is possible to check whether a transformation
semigroup is R-trivial in polynomial time O(n3). At least in this case, it would then be possible to use the
L -class version of Algorithm 11 instead of the R-class version, or indeed, an exhaustive algorithm such
as that in [34].

From Algorithm 11, it is routine to calculate the size of S as:

|S| =
r∑
i=1

|Szi | · |s.c.c. of (zi)λ| · |{y ∈ R : (y)λ = (zi)λ}|. (5.1)

The elements of S are just the union of the sets of elements of the R-classes of S, which can be found
using Algorithm 5.

The idempotents of S can be found by determining the idempotents in the R-classes of S using
Algorithm 10. Similarly, it is possible to test if S is regular, by checking that every R-class or D-class
is regular using Algorithm 9. Note that the existence of an idempotent in an RS-class depends only
on the values of λ and ρ of the elements of that class. Hence if there are at least two distinct R-class
representatives x and y in S such that (x)λ = (y)λ and (x)ρ = (y)ρ, then S is not regular, since the
disjoint R-classes RSx and RSy cannot contain the same idempotents.

The D-classes of S are in 1-1 correspondence with the strongly connected components of the orbit
graph of R, which is obtained in Algorithm 11. Since we also find (S)ρ in Algorithm 11, it is possible to
find the D-classes of S, and their data structures, by finding the strongly connected components of the
orbit graph of R. The L - and H -classes of S can then be found from the D-classes using the analogues
of Algorithm 6 (for finding the R-classes in a D-class).
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Algorithm 11 Enumerate the R-classes of a semigroup

Input: S := 〈X〉 where X := {x1, . . . , xm}
Output: data structures for the R-classes with representatives R in S, the set (S)ρ, and Schreier trees

and orbit graphs for R and (S)ρ
1: set R := {y1 := 1S}, M := 1 [initialise the list of R-class reps]
2: set (S)ρ := {β1 := (1S)ρ}, N := 1 [initialise (S)ρ]
3: find (S)λ = (1S)λ · S [Algorithm 1]
4: find representatives (z1)λ, . . . , (zr)λ of the s.c.c.s of (S)λ [standard graph theory algorithm]
5: find the groups Szi for i ∈ {1, . . . , r} [Algorithm 4]
6: for yi ∈ R, j ∈ {1, . . . ,m} do [loop over: existing R-representatives, generators of S]
7: find n ∈ {1, . . . , r} such that (zn)λ ∼ (xjyi)λ
8: find u ∈ S such that (zn)λ · u = (xjyi)λ [Algorithm 2]
9: find u ∈ U such that (xjyi)λ · u = (zn)λ and znuu = zn [Assumption (III)]

10: if (xjyi)ρ 6∈ (S)ρ then [xjyiu is a new R-representative]
11: N := N + 1, βN := (xjyiu)ρ = xj · (yi)ρ, (S)ρ← (S)ρ ∪ {βN} [add (xjyi)ρ to (S)ρ]
12: vN := i, wN := j, gi,j := N [update the Schreier tree and orbit graph of (S)ρ]
13: else if (xjyi)ρ = βk ∈ (S)ρ then
14: gl,j := k where l is such that (yi)ρ = βl; [update the orbit graph of (S)ρ]
15: for yl ∈ R with (yl)ρ = (xjyi)ρ and (yl)λ = (zn)λ do
16: if (y′lxjyiu)µzn ∈ Szn = Syl then [xjyiRSyl]
17: Gi,j := l [update the orbit graph of R]
18: go to line 6
19: end if
20: end for
21: end if
22: M := M + 1, yM := xjyiu, R← R ∪ {yM} [add xjyiu to R]
23: VM := i, WM := j, KM := the index of (xjyi)λ in (S)λ [update the Schreier tree of R]
24: Gi,j := M [update the orbit graph of R]
25: end for
26: return the following:

• the R-representatives: R

• the Schreier tree for R: (V2, . . . , VM ,W2, . . . ,WM )

• the orbit graph of R: {Gi,j : i = 1, . . . ,M, j = 1, . . . ,m}
• the set (S)ρ

• the Schreier tree for (S)ρ: (v2, . . . , vN , w2, . . . , wN )

• the orbit graph of (S)ρ: {gi,j : i = 1, . . . , N, j = 1, . . . ,m}
• the parameters: (K1, . . . ,KM )
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In Algorithms 12, 13, 14, and 15, we will assume that Algorithm 11 has been performed and that the
result has been stored somehow. So, for example, if we wanted to check membership of several elements
in the semigroup U in its subsemigroup S, we perform Algorithm 11 only once.

Testing membership in a semigroup

In Algorithm 12, we give a procedure for testing if an element of U belongs to S. This can be easily
modified to return the R-class representative in S of an arbitrary element of U , if it exists (simply return
the element x in line 12). We require such an algorithm when it comes to factorising elements of S over
the generators in Algorithm 13.

Algorithm 12 Test membership in a semigroup

Input: S := 〈X〉 where X := {x1, . . . , xm} and y ∈ U
Output: true or false
1: let (S)λ = (1)λ · S and (S)ρ = S · (1)ρ [Algorithm 1]
2: if (y)λ 6∈ (S)λ or (y)ρ 6∈ (S)ρ then [y 6∈ S]
3: return false
4: end if
5: let (z1)λ, . . . , (zr)λ be representatives of the s.c.c.s of (S)λ
6: let R denote the R-class representatives of S [Algorithm 11]
7: find n ∈ {1, . . . , r} such that (zn)λ ∼ (y)λ
8: find u ∈ S such that (zn)λ · u = (y)λ [Algorithm 2]
9: find u ∈ U such that (y)λ · u = (zn)λ and yuu = y [Assumption (III)]

10: for x ∈ R such that (x)λ = (zn)λ and (x)ρ = (y)ρ do
11: if (x′yu)µx ∈ Szn = Sx then [xRSy]
12: return true
13: end if
14: end for
15: return false

Factorising elements over the generators

In this part of the paper, we describe how to factorise an element of S as a product of the generators of
S using the output of Algorithm 11.

Corollary 3.20(a) says that

RSx = {xsu : s ∈ StabS(LUx ), u ∈ S, (xu)λ ∼ λ(x)}.

Suppose that y ∈ S is arbitrary and that R denotes a set of R-class representatives of S. If we can write
y = xsu, where x ∈ R such that xRSy, s ∈ StabS(LUx ), and u ∈ S such that (xu)λ = (y)λ, then it suffices
to factorise each of x, s, and u individually.

The element x ∈ R can be found using the alternate version of Algorithm 12 mentioned above. Algo-
rithm 2, applied to (S)λ, can be used to find u such that (xu)λ = (y)λ.

Suppose that u ∈ U is such that (y)λ · u = (x)λ and xuu = x. Since (xs)λ = (x)λ, it follows from
Lemma 3.8 that xsuu = xs. If x′ ∈ U is any element such that xx′x = x, then from Proposition 3.11(a),
x is the identity of the group LUx ∩ RSx under multiplication ∗ defined by a ∗ b = ax′b. In particular,
xx′yu = yu since yu ∈ LUx ∩RSx . This implies that

xx′yu = yu = xsuu = xs

and so, by Lemma 3.8, (x′yu)µx = (s)µx. Since (yu)λ = (x)λ and (yu)ρ = (x)ρ, by Assumption (IV), we
can compute (x′yu)µx. Thus for any y ∈ S we can determine x, s, u ∈ S (as above) such that y = xsu.

We still require a factorisation of x, s, u ∈ S over the generators of S. Tracing the Schreier tree of
R returned by Algorithm 11 and using the parameter Ki, we can factorise x ∈ R; more details are in
Algorithm 13. We may factorise u over the generators of S using Algorithm 2 applied to the s.c.c. of (x)λ
in (S)λ.

Any algorithm for factorising elements of a group can be used to factorise (s)µx as a product of the
generators of Sx given by Algorithm 4. For example, in a group with a faithful action on some set, such
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a factorisation can be obtained from a stabiliser chain, produced using the Schreier-Sims algorithm. The
generators of Sx are of the form (uixkuj)µx, where ui is obtained by tracing the Schreier tree of (S)λ, xk
is one of the generators of S, and uj is obtained using Assumption (III). Therefore to factorise s over the
generators of S, it suffices to factorise the uj over the generators of S.

Suppose that {α1, . . . , αK} is a s.c.c. of (S)λ for some K ∈ N. Then from the orbit graph of (S)λ we
can find

a2, . . . , aK , b2, . . . , bK

such that
αj · xaj = αbj

and bj < j for all j > 1. In other words, (a2, . . . , aK , b2, . . . , bK) describes a spanning tree, rooted at α1,
for the component of the orbit graph of (S)λ, whose edges have the opposite orientation to those in the
usual Schreier tree. We refer to (a2, . . . , aK , b2, . . . , bK) as a reverse Schreier tree.

It follows that for any i ∈ {1, . . . ,K} we can use an analogue of Algorithm 2 to obtain v ∈ S such
that αj · v = α1. However, if u ∈ S is obtained using Algorithm 2 such that α1 · u = αj and z ∈ S
is such that (z)λ = α1, then it is possible that (uv)µz 6= (1U )µz. So, if w ∈ StabS(LUz ) is such that
(w)µz = ((uv)µz)

−1, then αj · vw = α1 (uvw)µz = (1U )µz. We have factorisations of v, since it was
obtained by tracing the reverse Schreier tree, and w, since it can be given as a power of uv (u and v
are factorised), over the generators of S. Hence vw is factorized over the generators of S, and it has the
properties required of uj from the previous paragraph.

We note that all the information required to factorise any element of S is returned by Algorithm 11
except the factorisation of (s)µx in Sx. So, Algorithm 13 is just concerned with putting this information
together. There is no guarantee that the word produced by Algorithm 13 is of minimal length.

Algorithm 13 Factorise an element over the generators

Input: S := 〈X〉 where X := {x1, . . . , xm} and s ∈ S
Output: a word in the generators X equal to s
1: let θ : X+ −→ S be the unique homomorphism extending the inclusion of X in S
2: suppose that (S)λ := {(z1)λ, . . . , (zK)λ} for some z1, . . . , zK ∈ S [Algorithm 1]
3: let R := {y1, . . . , yr} be the R-representatives of S [Algorithm 11]
4: let (V2, . . . , Vr,W2, . . . ,Wr) be the Schreier tree for R [Algorithm 11]
5: let (K1, . . . ,Kr) denote the additional parameter return from Algorithm 11
6: find yi ∈ R such that yiRSs [the modified version of Algorithm 7]
7: find a word ω1 ∈ X+ such that (ω1)θ = u ∈ S where (yi)λ · u = (s)λ [factorise u using Algorithm 2]
8: find u ∈ U such that (s)λ · u = (yi)λ, and yiuu = yi [Assumption (III)]
9: compute (y′isu)µyi ∈ Syi [Assumption (IV)]

10: find a word ω2 ∈ X+ such that (ω2)θ = y′isu [factorise s]
[factorise (y′isu)µyi over the generators of Syi and then factorise these generators over X]

11: ω3 := ε (the empty word), j = i [trace the Schreier tree of R, factorise yi]
12: while j > 1 do
13: find β ∈ X+ such that (zKj

)λ · (β)θ = (yj)λ
14: set ω3 := xWj

ω3β and j := Vj
15: end while [(ω3)θ = yi]
16: return ω3ω2ω1 [(ω3ω2ω1)θ = yiy

′
isuu = s]

The partial order of the D-classes

Recall that there is a partial order ≤D on the D-classes of a finite semigroup S, which is induced by
containment of principal two-sided ideals. More precisely, if A and B are D-classes of S, then we write
A ≤D B if S1aS1 ⊆ S1bS1 for any (and every) a ∈ A and b ∈ B.

The penultimate algorithm in this paper allows us to calculate the partial order of the D-classes
of S. This algorithm is based on [24, Algorithm Z] and the following proposition which appears as
Proposition 5.1 in [20]. The principal differences between our algorithm and Algorithm Z in [24] are
that our algorithm applies to classes of semigroups other than transformation semigroups, and it takes
advantage of information already determined in Algorithm 11.

33



Proposition 5.2 (cf. Proposition 5.1 in [20]). Let S be a finite semigroup generated by a subset X, and let
D be a D-class of S. If R and L are representatives of the R- and L -classes in D, then the set XR∪LX
contains representatives for the D-classes immediately below D under ≤D .

We described above that we find the D-classes (or representatives for the D-classes) of S by finding the
s.c.c.s of the orbit graph of the R-class representatives R of S. Thus, after performing Algorithm 11 and
finding the s.c.c.s of the orbit graph of R, we know both the D-classes of S and the R-classes contained
in the D-classes. In Algorithm 11, we obtain the R-class representatives of S by left multiplying existing
representatives. Therefore we have already found the information required to determine the set XR in
Proposition 5.2. In particular, we do not have to multiply the R-class representatives of a D-class by each
of the generators in Algorithm 14, or determine which D-classes correspond to the elements of XR.

In Algorithm 14 we represent the partial order of the D-classes D1, . . . , Dn of S as P1, . . . , Pn where
Pi contains the indices of the D-classes immediately below Di (and maybe some more). The elements of
Pi are obtained by applying Proposition 5.2 to Di.

Algorithm 14 The partial order of the D-classes of a semigroup

Input: S := 〈X〉 where X := {x1, . . . , xm}
Output: the partial order of the D-classes of S
1: let R denote the R-representatives of S [Algorithm 11]
2: let Γ := {Gi,j : 1 ≤ i ≤ |R|, 1 ≤ j ≤ m} be the orbit graph of R [Algorithm 11]
3: find the D-classes D1, . . . , Dn of S and Di ∩R for all i [find the s.c.c.s of Γ]
4: let Pi := ∅ for all i [initialise the partial order]
5: for i ∈ {1, . . . , n} do [loop over the D-classes]
6: for yj ∈ R ∩Di, xk ∈ X do [loop over: R-classes of the D-class, generators of S]
7: find l ∈ {1, . . . , n} such that yGj,k

∈ Dl [use the orbit graph of R]
8: Pi ← Pi ∪ {l}
9: end for

10: find the L -class representatives L in Di [the analogue of Algorithm 6, Proposition 3.24]
11: for zj ∈ L, xk ∈ X do [loop over: L -classes of the D-class, generators of S]
12: find l such that zjxk ∈ Dl [use the analogue of Algorithm 7 to find the R-rep. of zjxk]
13: Pi ← Pi ∪ {l}
14: end for
15: end for
16: return P1, . . . , Pn.

The closure of a semigroup and some elements

The final algorithm (Algorithm 15) we present describes a method for taking the closure of a subsemigroup
S of U with a set V of elements of U . The purpose of this algorithm is to reuse whatever information is
known about S to make subsequent computations involving 〈S, V 〉 more efficient.

At the beginning of this procedure we form (〈S, V 〉)λ by adding the new generators V to (S)λ. This
can be achieved in GAP using the AddGeneratorsToOrbit function from the Orb package [30], which
has the advantage that the existing information in (S)λ is not recomputed. The orbit (S)λ is extended
by a breadth-first enumeration with the new generators without reapplying the old generators to existing
values in (S)λ.

5.6 Optimizations for regular and inverse semigroups

Several of the algorithms presented in this section become more straightforward if it is known a priori
that the subsemigroup S of U is regular. For example, the R-classes of S are just the R-classes of U
intersected with S, and so are in 1-1 correspondence with (S)ρ. The algorithms become simpler still under
the assumption that U is an inverse semigroup since in this case we may define (x)ρ = (x−1)λ for all x ∈ U
and so it is unnecessary to calculate (S)ρ and (S)λ separately.

The first algorithm where an advantage can be seen is Algorithm 6. Suppose that S is a regular
subsemigroup of U , and x ∈ S. Then, by Corollary 3.14, Sx = (xS)Ψ and so it is no longer necessary to
compute (xS)Ψ or the cosets of Sx ∩ (xS)Ψ in (xS)Ψ in Algorithm 6. If U is an inverse semigroup with
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Algorithm 15 The closure of a semigroup and some elements

Input: S := 〈X〉 where X := {x1, . . . , xm} and any existing data structures for S, and V ⊆ U
Output: data structures for the R-classes with representatives R in 〈S, V 〉, the set (〈S, V 〉)ρ, and Schreier

trees and orbit graphs for R and (〈S, V 〉)ρ
1: set R̂ := {ŷ1, . . . , ŷk} to be the R-class representatives of S [Algorithm 11]
2: set R := {y1 := ŷ1 = 1S}, M := 1 [initialise the list of new R-reps]
3: define (1)ι = 1 [keep track of indices of old and new R-reps]
4: set (〈S, V 〉)ρ := (S)ρ, N := |(S)ρ| [initialise (〈S, V 〉)ρ]
5: set the Schreier tree of (〈S, V 〉)ρ to be that of (S)ρ [initialise the Schreier tree of (〈S, V 〉)ρ]
6: set the orbit graph of (〈S, V 〉)ρ to be that of (S)ρ [initialise orbit graph of (〈S, V 〉)ρ]
7: extend (S)λ to (〈S, V 〉)λ [as described above]
8: find representatives (z1)λ, . . . , (zr)λ of the s.c.c.s of (〈S, V 〉)λ
9: find the groups Szi for i ∈ {1, . . . , r} [Algorithm 4]

10: for xj ŷkv = ŷi ∈ R̂ do [j, k are obtained from the Schreier tree for R̂, k < i]
11: find n ∈ {1, . . . , r} such that (zn)λ ∼ (ŷi)λ (in (〈S, V 〉)λ)
12: find u ∈ S such that (zn)λ · u = (ŷi)λ [Algorithm 2]
13: find u ∈ U such that (ŷi)λ · u = (zn)λ and znuu = zn [Assumption (III)]
14: for yl ∈ R with (yl)ρ = (ŷi)ρ and (yl)λ = (zn)λ do
15: if (y′lŷiu)µzn ∈ Szn = Syl then [ŷiR〈S,V 〉yl]
16: G(k)ι,j := l [update the orbit graph of R]
17: define (i)ι := l [the old index i is the new index l]
18: go to line 10
19: end if
20: end for
21: M := M + 1, yM := ŷiu, R := R ∪ {yM} [add ŷiu to R]
22: VM := (k)ι, WM := j [update the Schreier tree of R]

23: KM := K̂i [the index of (xj ŷk)λ in (〈S, V 〉)λ from Algorithm 11 applied to S]
24: G(k)ι,j := M [update the orbit graph of R]
25: (i)ι := M [the old index i is the new index M ]
26: end for
27: return apply Algorithm 11 to the data structures for 〈S, V 〉 determined so far, and return the output
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unary operation −1 : x 7→ x−1, then Algorithm 6 becomes simpler still. In this case, it is unnecessary to
find the s.c.c. of (x)ρ. This follows from the observation that we may take (x)ρ = (x−1)λ, which implies
that (S)ρ = (S)λ and

u−1 · (x−1)ρ = (u−1x−1)ρ = (xu)λ = (x)λ · u.

Similar simplifications can be made in Algorithm 8.
The unary operation in the definition of U means that given an inverse subsemigroup S of U and

x ∈ S, that we can find x−1 without reference to S. Or put differently, the inverse of x is the same in
every inverse subsemigroup of U . For example, the symmetric inverse monoid has this property, but the
full transformation monoid does not. More precisely, there exist distinct inverse subsemigroups S and T
of Tn and x ∈ S ∩ T such that the inverse of x in S is distinct from the inverse of x in T .

As noted above, in a regular subsemigroup S of U , the R-classes are in 1-1 correspondence with the
elements of (S)ρ and the L -classes are in 1-1 correspondence with (S)λ. It follows that the search for R-
class representatives in Algorithm 11 is redundant in this case. Hence the R-classes, L -classes, H -classes,
size, and elements, of a regular subsemigroup can be determined from (S)λ and (S)ρ using Algorithms 2
and 4 alone. The D-classes of a regular subsemigroup S are then in 1-1 correspondence with the s.c.c.s
of (S)λ (or (S)ρ). In the case that U is an inverse semigroup, it suffices to calculate either (S)λ or (S)ρ,
making these computations simpler still. The remaining algorithms in Subsection 5.5 can also be modified
to take advantage of these observations, but due to considerations of space, we do not go into the details
here.

The simplified algorithms alluded to in this section have been fully implemented in the Semigroups
package for GAP; see [28].

6 Examples

In this section we present some examples to illustrate the algorithms from the previous section.
One of the examples is that of a semigroup of partial permutations. Similar to permutations, a partial

permutation can be expressed as a union of the components of its action. Any component of the action of
a partial permutation f is either a permutation with a single cycle, or a chain [i (i)f (i)f2 . . . (i)fr] where
i ∈ dom(f)\ im(f) and (i)fr ∈ im(f)\dom(f), for some r > 1. For the sake of brevity, we will use disjoint
component notation when writing a specific partial permutation f , i.e. we write f as a juxtaposition of
disjoint cycles and chains. For example,(

1 2 3 4 5 6
5 4 − 2 6 −

)
= [1 5 6](2 4).

We include fixed points in the disjoint component notation for a partial permutation f so that it is possible
to deduce the domain and image of f from the notation, and so that the notation for f is unique (up to
the order of the components, and the order of elements in a cycle); see [25] for further details.

Throughout this section, we will denote by S the subsemigroup of the symmetric inverse monoid on
{1, . . . , 9} generated by

x1 = (1 4)(2 6)(3 8)(5)(7)(9), x2 = (1 5 4 2 7 6)(3 9 8) x3 = (2 5 6), x4 = (1 3 2), (6.1)

by T the subsemigroup of the full transformation monoid on {1, . . . , 5} generated by

x1 =

(
1 2 3 4 5
1 3 2 4 5

)
, x2 =

(
1 2 3 4 5
2 3 1 5 4

)
, x3 =

(
1 2 3 4 5
1 3 3 2 2

)
, (6.2)

and we will use the notation of Sections 4.1 and 4.2.

Components of the action

Applying Algorithm 1 to S and α1 = (x1)λ = {1, . . . , 9}, we obtain:

(S)λ = { α1 = {1, . . . , 9}, α2 = {2, 5, 6}, α3 = {1, 2, 3}, α4 = {1, 4, 7},
α5 = {1}, α6 = {4, 6, 8}, α7 = {5, 7, 9}, α8 = {5},
α9 = ∅, α10 = {3}, α11 = {4}, α12 = {2},
α13 = {6}, α14 = {8}, α15 = {9}, α16 = {7} }.
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Figure 3: The orbit graph of (S)λ with loops and (all but one of the) edges to α9 omitted, and the Schreier
tree indicated by solid edges.

The Schreier tree is:

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
vi 1 1 2 2 3 3 3 4 4 5 6 7 10 10 12
wi 3 4 2 4 1 2 3 3 4 1 3 3 1 2 2

and the orbit graph is:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
gi,1 1 2 6 4 11 3 7 8 9 14 5 13 12 10 15 16
gi,2 1 4 7 2 8 3 6 11 9 15 12 16 5 10 14 13
gi,3 2 2 8 9 9 12 13 13 9 9 9 8 12 9 9 9
gi,4 3 5 3 10 10 9 9 9 9 12 9 5 9 9 9 9

.

Diagrams of the Schreier tree and orbit graphs of (S)λ can be found in Figure 3.
The strongly connected components of (S)λ are:

{{α1}, {α2, α4}, {α3, α6, α7}, {α5, α8, α10, α11, α12, α13, α14, α15, α16}, {α9}}.

From the Schreier tree, we deduce that

α1 = (x1)λ, α2 = (x1x3)λ, α3 = (x1x4)λ, α5 = (x1x3x4)λ, and α9 = (x1x3x2x3)λ.

In this case, we set s = s−1 in Assumption (III). Using Algorithms 2 and 4, after removing redundant
generators, we obtain Schreier generators for the stabilisers of x1, x1x3, x1x4, x1x3x4, and x1x3x2x3:

Sx1 = 〈x1, x2〉 ∼= D12, Sx1x3 = 〈(2 6), (2 6 5)〉 ∼= Sym({2, 5, 6}),
Sx1x4 = 〈(1 3 2), (1 2)〉 ∼= Sym({1, 2, 3}), Sx1x3x4 = Sym({1}) ∼= 1,
Sx1x3x2x3

= Sym(∅) ∼= 1,
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Figure 4: The orbit graph of (T )λ with loops omitted, and the Schreier tree indicated by solid edges.

where 1 denotes the trivial group.
Applying Algorithm 1 to T (defined in (6.2)) and (x1)λ = {1, 2, 3, 4, 5}, we obtain:

(T )λ = { α1 = {1, 2, 3, 4, 5}, α2 = {1, 2, 3}, α3 = {1, 3}, α4 = {1, 2},
α5 = {2, 3}, α6 = {3}, α7 = {2}, α8 = {1} },

the Schreier tree is:
i 2 3 4 5 6 7 8
vi 1 2 3 4 5 6 6
wi 3 3 1 2 3 1 2

and the orbit graph is:
i 1 2 3 4 5 6 7 8
gi,1 1 2 4 3 5 7 6 8
gi,2 1 2 4 5 3 8 6 7
gi,3 2 3 3 3 6 6 6 8

.

Diagrams of the Schreier tree and orbit graphs of (T )λ can be found in Figure 4.
The strongly connected components of (T )λ are:

{{α1}, {α2}, {α3, α4, α5}, {α6, α7, α8}}.

From the Schreier tree for (T )λ and Algorithms 2,

α1 = (x1)λ, α2 = (x1x3)λ, α3 = (x1x
2
3)λ, and α6 = (x1x

2
3x1x2x3)λ.

Using Algorithm 4, after removing redundant generators, we obtain Schreier generators for the stabilisers
Ty where y = x1, x1x3, x1x

2
3, x1x

2
3x1x2x3:

Tx1 = 〈x1, x2〉 ∼= D12, Tx1x3 = 〈(2 3), (1 2 3)〉 ∼= Sym({1, 2, 3}),
Tx1x2

3
= 〈(1 3)〉 ∼= Sym({1, 3}), Tx1x2

3x1x2x3
= Sym({3}) ∼= 1,

where 1 denotes the trivial group.

Individual Green’s classes

Let S be partial permutation semigroup defined in (6.1). The s.c.c. of (x1x3x4)λ contains 9 values:

{α5 = {1}, α8 = {5}, α10 = {3}, α11 = {4}, α12 = {2}, α13 = {6}, α14 = {8}, α15 = {9}, α16 = {7}},

and |Sx1x3x4
| = 1. It follows, by Corollary 3.15(b), that the size of the R-class of x1x3x4 in S is 9 · 1 = 9.

One choice for the Schreier tree (rooted at α5 = (x1x3x4)λ) of the s.c.c. of (x1x3x4)λ is:

i 8 10 11 12 13 14 15 16
vi 5 5 5 11 8 10 10 12
wi 2 4 1 2 3 1 2 2

A diagram of the Schreier tree can be found in Figure 5.
Since x1x3x4 = [2 1], using the Schreier tree and Algorithm 5, the elements of RSx1x3x4

are:

RSx1x3x4
= { x1x3x4 = [2 1], x1x3x

3
4 = (2), x1x3x

2
4 = [2 3],

x1x3x4x1 = [2 4], x1x3x4x2 = [2 5], x1x3x
3
4x1 = [2 6],

x1x3x
3
4x2 = [2 7], x1x3x

2
4x1 = [2 8], x1x3x

2
4x2 = [2 9] },

38



α5

α8 α10α11

α13 α15α14

α16

α12

x1

x1

x2

x2x2

x2

x3

x4

β1

β2 β3 β4

β5 β6 β7 β8 β9

β10

x1

x1 x1

x2

x2

x2

x3 x4

x4

Figure 5: Schreier trees for the strongly connected component of (x1x3x4)λ in (S)λ, and for (x1x3x4)ρ in
(S)ρ.

Since x1x3x
3
4 is an idempotent, it also follows that RSx1x3x3

is a regular R-class.
We will calculate the R-classes in DS

x1x3x4
using Algorithm 6. Since (x1x3x4)ρ = {2}, it follows

immediately that x1x3x4
S = {id{2}} is trivial. Set x = x1x3x4 and x′ = x−1 = [1 2]. The embedding

Ψ : xS −→ Ux (from Proposition 3.13(a)) defined by

((s)νx)Ψ = (x′sx)µx

maps id{2} to id{1}. Hence Sx ∩ (xS)Ψ = Sx = {id{1}}. It also follows from Proposition 3.23 that the
RS-class representatives of DS

x are in 1-1 correspondence with the s.c.c. of (x)ρ = {2}. Using the left
analogue of Algorithm 1, we obtain

S · (x)ρ = { β1 = {2}, β2 = {6}, β3 = {4}, β4 = {3}, β5 = {7},
β6 = {5}, β7 = ∅, β8 = {1}, β9 = {8}, β10 = {9} }

with Schreier tree:
i 2 3 4 5 6 7 8 9 10
vi 1 1 1 2 2 2 3 4 9
wi 1 2 4 2 3 4 1 1 2

A diagram of the Schreier tree can be found in Figure 5. Hence the RS-class representatives of DS
x are:

x1x3x4 = [2 1], x2
1x3x4 = [6 1], x2x1x3x4 = [4 1],

x4x1x3x4 = [3 1], x2x
2
1x3x4 = [7 1], x3x

2
1x3x4 = [5 1],

x1x2x1x3x4 = (1), x1x4x1x3x4 = [8 1], x2x1x4x1x3x4 = [9 1].

Since the number of RS-classes in DS
x is 9 and each RS-class has size 9, it follows that |DS

x | = 81.
We will demonstrate how to use Algorithm 7 to check if the partial permutation y = [1 5][2 7][3 9]

is RS-related to either of the generators x3 and x4 of S. Since (y)ρ = {1, 2, 3} and (x3)ρ = {2, 5, 6}, it
follows that (y, x3) 6∈ RS . However, (y)ρ = (x4)ρ and

(y)λ = {5, 7, 9} = α7 ∼ α3 = {1, 2, 3} = (x4)λ.

Tracing the Schreier tree of (S)λ from α3 to α7, we obtain u = x2 such that (x4)λ · u = (y)λ. It follows
that u = x−1

2 has the property that (y)λ · u = (x)λ. Also setting x′4 = x−1
4 , it follows that y ∈ RSx since

(x′4yu)µx = (x−1
4 yx−1

2 )µx = (1 2 3) ∈ Sx4 = Sx1x4 = Sym({1, 2, 3}).

The main algorithm

We now determine the global structure of the transformation semigroup T defined in (6.2). We will do
the same thing for the partial permutation semigroup S defined in (6.1) in the next subsection.
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Figure 6: The orbit graph of (T )ρ and R with loops omitted, and the Schreier tree indicated by solid
edges.

If x is a transformation of degree n ∈ N, then the kernel ker(x) of x is a partition of {1, . . . , n}. If
the classes of ker(x) are A1, A2, . . . , Ar, for some r, then to avoid writing too many brackets we write
ker(x) = {A1| · · · |Ar}.

Applying Algorithm 11 to T defined in (6.2), we find that the R-class representatives of S are:

y1 = 1T , y2 = x3, y3 = x2x3, y4 = x2
3,

y5 = x1x2x3, y6 = x3x2x3, y7 = x2x
2
3, y8 = x3x1x2x3,

y9 = (x2x3)2, y10 = x1x2x
2
3, y11 = x2

3x1x2x3, y12 = x1(x2x3)2,

and that

(T )ρ = { (y1)ρ = {1|2|3|4|5}, (y2)ρ = {1|2, 3|4, 5}, (y3)ρ = {1, 2|3|4, 5},
(y4)ρ = {1|2, 3, 4, 5}, (y5)ρ = {1, 3|2|4, 5}, (y6)ρ = {1, 4, 5|2, 3},
(y7)ρ = {1, 2, 4, 5|3}, (y8)ρ = {1, 2, 3|4, 5}, (y9)ρ = {1, 2|3, 4, 5},
(y10)ρ = {1, 3, 4, 5|2}, (y11)ρ = {1, 2, 3, 4, 5}, (y12)ρ = {1, 3|2, 4, 5} }.

The Schreier tree of the orbit graphs of R and (T )ρ are both equal:

i 2 3 4 5 6 7 8 9 10 11 12
vi 1 2 2 3 3 4 5 6 7 8 9
wi 3 2 3 1 3 2 3 2 1 3 1

and the orbit graph is:

i 1 2 3 4 5 6 7 8 9 10 11 12
gi,1 1 2 5 4 3 6 10 8 12 7 11 9
gi,2 1 3 5 7 2 9 10 8 12 4 11 6
gi,3 2 4 6 4 8 4 6 11 6 8 11 8

.

A diagrams of the Schreier tree and orbit graph can be found in Figure 6.
It is coincidentally the case that the R-class representatives of T are obtained by left multiplying

previous R-class representatives by a generator. In other words, the u and u in line 8 and 9 of Algorithm 11
are just the identity of T in this example. Hence the additional parameters returned by Algorithm 11 in
this case are (1, 2, 2, 3, 2, 3, 3, 3, 3, 3, 6, 3).

Recall that the strongly connected components of (T )λ have representatives: α1 = (x1)λ = {1, . . . , 5},
α2 = (x1x3)λ = {1, 2, 3}, α3 = (x1x

2
3)λ = {1, 3}, α6 = (x1x

2
3x1x2x3)λ = {3}, and sizes: 1, 1, 3, and 3,
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respectively. We saw above that |Tx1
| = 12, |Tx1x3

| = 6, |Tx1x2
3
| = 2, and |Tx1x2

3x1x2x3
| = 1. It follows from

Corollary 3.15(b) and (c) that

|T | = |RTx1
|+ 3|RTx1x3

|+ 7|RTx1x2
3
|+ |RTx1x2

3x1x2x3
|

= (1 · 1 · 12) + (3 · 1 · 6) + (7 · 3 · 2) + (1 · 3 · 1) = 75.

The orbit graph of R has 5 strongly connected components:

{y1 = x1}, {y2 = x3, y3 = x2x3, y5 = x1x2x3},
{y4 = x2

3, y6 = x3x2x3, y7 = x2x
2
3, y9 = (x2x3)2, y10 = x1x2x

2
3, y12 = x1(x2x3)2},

{y8 = x3x1x2x3}, {y11 = x3x1x2x3}

and so there are five D-classes in T .

Optimizations for inverse semigroups

The semigroup S defined in (6.1) is an inverse semigroup, since the inverses of the generators can be
obtained by taking powers. From Section 5.6, it follows that the R-class representatives of S are in 1-1
correspondence with the values in (S)λ and that (S)ρ = (S)λ. Hence the number of R-classes in S is 16,
and by tracing the Schreier tree of (S)λ, the R-class representatives are:

y1 = x1, y2 = x1x3, y3 = x1x4, y4 = x1x3x2,
y5 = x1x3x4, y6 = x1x4x1, y7 = x1x4x2, y8 = x1x4x3,
y9 = x1x3x2x3, y10 = x1x3x2x4, y11 = x1x3x4x1, y12 = x1x4x1x3,
y13 = x1x4x2x3, y14 = x1x3x2x4x1, y15 = x1x3x2x4x2, y16 = x1x4x1x3x2.

The strongly connected components of (S)λ are in 1-1 correspondence with the D-classes of S, and so
S has five D-classes. Representatives of L -classes can be obtained by taking the inverses of the R-class
representatives R.

It follows from Corollary 3.15(c) that

|S| = (12 · 12) + (22 · 6) + (32 · 6) + (92 · 1) + 1 = 172.

Testing membership

In this subsection, we will use Algorithm 12 to test if the following transformations belong to the semigroup
T defined in (6.2):

x =

(
1 2 3 4 5
1 2 3 3 1

)
and y =

(
1 2 3 4 5
2 3 3 2 2

)
.

Although (x)λ = {1, 2, 3} = α2 ∈ (T )λ, (x)ρ = {1, 5|2|3, 4} 6∈ (T )ρ, and so x 6∈ T .
Firstly,

(y)λ = {2, 3} = α5 ∈ (T )λ

and so the representative of the s.c.c. of (y)λ, which we chose above, is α3. Tracing the Schreier tree for
(T )λ from α5 back to α3, using Algorithm 2, we find u = x1x2 such that α3 · u = α5. Since x1, x2 are
permutations, u = x−1

2 x−1
1 has the property that α5 · u = α3 and yuu = y. The R-class representative

y6 ∈ R is the only one such that (y6)λ = α3 = (y)λ ·u and (y6)ρ = {1, 4, 5|2, 3} = (y)ρ. Thus to check that
y ∈ T , it suffices to show that the permutation (y′6yu)µx belongs to the group Ty6 = Tx1x2

3
= Sym({1, 3}).

We know that (y′6yu)µx is a permutation on {1, 3}, and so it must belong to Ty6 , and so y ∈ S.

Factorization

In the previous subsection we showed that

y =

(
1 2 3 4 5
2 3 3 2 2

)
is an element of T defined in (6.2). In this subsection, we will show how to use Algorithm 13 to factorize
y as a product of the generators of T . Recall that we will write y = xsu, where x ∈ R, u ∈ S is such
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that (x)λ · u = (y)λ, and s = x′yu, and that we factorise each of x, s, u separately. From the previous
subsection, the chosen R-class representative for y is:

x = y6 = x3x2x3 =

(
1 2 3 4 5
3 1 1 3 3

)
,

and one choice for x′ ∈ T5 is:

x′ =

(
1 2 3 4 5
2 2 1 4 5

)
.

From the previous subsection, u = x1x2 and u = x−1
2 x−1

1 . It follows that

s = x′yu =

(
1 2 3 4 5
2 2 1 4 5

)(
1 2 3 4 5
2 3 3 2 2

)(
1 2 3 4 5
2 1 3 4 5

)
=

(
1 2 3 4 5
3 3 1 1 1

)
and so (s)µx = s|im(x) = s|{1,3} = (1 3), which is the only generator of Tx. From Algorithm 4, one choice
for s such that s|im(x) = (1 3) is x2

3x1x
2
2. Hence

y = xsu = x3x2x3 · x2
3x1x

2
2 · x1x2 = x3x2x

3
3x1x

2
2x1x2.

Note that x3x2x3x
2
2 is a minimal length word in the generators that is equal to y.

The D-class structure

We showed above that the partial permutation semigroup S defined in (6.1) has five D-classes D1, D2,
D3, D4, and D5 with representatives x1, x1x3, x1x4, x1x3x4, and x1x3x2x3, respectively. The D-class D1

has only one R-class and one L -class. If we left multiply the unique R-class representative x1 of D1 by
the generators of S, then we obtain the R-class representatives:

x2
1D

Sx1, x2x1D
Sx1, x3x1 = (2 5)(6)DSx1x3, x4x1 = [1 8][2 4][3 6]DSx1x4

and so D2, D3 ≤D D1. Note that, since S is inverse, we have not performed Algorithm 11, and so we have
not previously left multiplied the R-representatives of S by its generators.

Right multiplying the unique L -class representative x1 of D1 by the generators of S we obtain:

x2
1D

Sx1, x1x2D
Sx1, x1x3 = (2)(5 6)DSx1x3, x1x4 = [4 3][6 1][8 2]DSx1x4,

which yields no additional information.
Continuing in this way, we obtain the partial order of the D-classes of S. A picture of the egg-box

diagrams of the D-classes of S and the partial order of D-classes of S can be seen in Figure 7. An analogous
computation can be used to find the partial order of the D-classes of the transformation semigroup T and
this is included in Figure 7.
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[34] Jean-Eric Pin. Semigroupe 2.01: a software for computing finite semigroups. Laboratoire
d’Informatique Algorithmique : Fondements et Applications (LIAFA), CNRS et Université Paris
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