
MACHINE CHECKABLE DESIGN PATTERNS

USING DEPENDENT TYPES AND DOMAIN

SPECIFIC GOAL-ORIENTATED MODELLING

LANGUAGES

Jan de Muijnck-Hughes

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2016

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/8968

This item is protected by original copyright

This item is licensed under a
Creative Commons Licence

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/8968

Machine Checkable Design Patterns
using Dependent Types and Domain
Specific Goal-OrientedModelling

Languages
by

Jan de Muijnck-Hughes

This thesis is submitted to the

University of St Andrews

in partial fulfilment for the degree of

Doctor of Philosophy

submitted on

2015-12-07

Abstract
Goal-Oriented Modelling Languages such as the Goal Requirements Language

(GRL) have been used to reason about Design Patterns. However, the GRL is a general
purpose modelling language that does not support concepts bespoke to the pattern
domain. This thesis has investigated how advanced programming language techniques,
namely Dependent Types and Domain Specific Languages, can be used to enhance the
design and construction ofDomain Specific Modelling languages (DSMLs), and apply
the results to Design Pattern Engineering.

This thesis presents Sif, a DSML for reasoning about design patterns as goal-
oriented requirements problems. Sif presents modellers with a modelling language
tailored to the pattern domain but leverages the GRL for realisation of the modelling
constructs. Dependent types have influenced the design and implementation of Sif
to provide correctness guarantees, and have led to the development of NovoGRL a
novel extension of the GRL.

A technique for DSML implementation called Types as (Meta) Modellers was
developed in which the interpretation between a DSML and its host language is im-
plemented directly within the type-system of the DSML. This provides correctness
guarantees of DSMLmodel instances during model construction. Models can only be
constructed if and only if the DSML’s type-system can build a valid representation of
the model in the host language.

This thesis also investigated design pattern evaluation, developing PREMES an
evaluation framework that uses tailorable testing techniques to provide demonstrable
reporting on pattern quality. Linking PREMES with Sif are: Freyja—an active pat-
tern document schema in which Sif models are embedded within pattern documents;
and Frigg—a tool for interacting with pattern documents.

The proof-of-concept tools in this thesis demonstrate: machine enhanced interac-
tions with design patterns; reproducible automation in the PREMES framework; and
machine checking of pattern documents as Sifmodels. With the tooling and techniques
presented, design pattern engineering can become a more rigorous, demonstrable, and
machine checkable process.

Candidate’s Declaration
I, Jan de Muijnck-Hughes, hereby certify that this thesis, which is approximately 54558
words in length, has been written by me, and that it is the record of work carried out
by me, or principally by myself in collaboration with others as acknowledged, and that
it has not been submitted in any previous application for a higher degree.

I was admitted as a research student inMay 2011, and as a candidate for the degree of
Doctor of Philosophy in December 2015; the higher study, for which this is a record,
was carried out in the University of St Andrews between 2011 and 2015.

Signature of Candidate: .

Date: 7th December 2015

Supervisor’s Declaration
I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of Doctor of Philosophy in the University of St
Andrews and that the candidate is qualified to submit this thesis in application for that
degree.

Signature of Supervisor: .

Date: 7th December 2015

Permission for Publication
In submitting this thesis to the University of St Andrews I understand that I am giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the
work not being affected thereby. I also understand that the title and the abstract will be
published, and that a copy of the work may be made and supplied to any bona fide
library or research worker, that my thesis will be electronically accessible for personal
or research use unless exempt by award of an embargo as requested below, and that
the library has the right to migrate my thesis into new electronic forms as required
to ensure continued access to the thesis. I have obtained any third-party copyright
permissions that may be required in order to allow such access and migration, or have
requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the publica-
tion of this thesis:

No embargo on any electronic nor print copy.

Signature of Candidate: .

Date: 7th December 2015

Signature of Supervisor: .

Date: 7th December 2015

Acknowledgements

It has been a long journey to reach this point and it reminds me of some guidance said
to me during my undergraduate days. Paraphrasing considerably:

Research should not be seen as a means to an end. It is about providing

answers to questions. It shouldn’t matter whether the answers you found

where the ones you were looking for. What should matter more is that you

can show where those answers come from, and that those answers can be

reproduced and shown.

Hopefully I have asked the right questions, and the answers are suitably provided. But
I could not have done this alone, nor without support.

First and foremost I would like to give thanks to my supervisor Ishbel Duncan,
who I managed to trick into accepting me as her PhD student through the offer of
treasure and service. Thank you for giving me the freedom to do my work, acting as
a sounding board for explaining concepts and ideas, and being patient. Please accept
this thesis as the ‘treasure’ I promised, and more importantly a sign that I have at last
finally got round to doing some work.

Next, I would like to thank Edwin Brady, the man in the pub who said to me:
HC SVNTDRACONES. Thank you for introducing me to the world of Dependent
Types, without which this PhDwould not be possible, and for inspiringme to consider
areas of future research. When it is Beer o’clock I’ll get the next round in, and promise
not to talk too much about work. I still will not playGo.

I give thanks to my internal examiner Juliana Küster Filipe Bowles for her support
and patience, and suggestions on how to improve the thesis. The final version of this
thesis has been improved greatly, and hopefully I have managed to get rid of all the
typographical errors. Obrigado.

I would also like to thank various people I have interactedwith overmy years here at
the University. Specifically, I would like to thankÖzgür Akgün, Chris Schwaab, Franck

vii

Slama, David Castro, Matúš Tejiščák, Victoria Davidson-Mayhew, SimonDobson, and
Philip Hölzenspies. The discussions and conversations we had were much appreciated,
helpful, needed, fruitful, and timely. To the Secretaries, Fixit, Systems, and Teaching
Fellows past and present, and countless others not mentioned, I thank you too.

Lieve ouders, zussen, en familie. Hartelijk bedankt voor jullie geduld en vertrouwen
in mij. Bedankt voor alles. Ik ben nu bijna klaar om één gewone baan te beginnen en
carriére te gaan maken. Ik denk dat ik het wel zal redden.

To my father, Diwedd y gân yw’r geiniog. Mae’n ddrwg y gân wedi bod yn hir.
Diolch yn fawr. Mae wedi bod yn anodd, ond yr wyf yn ei gwneud yn.

Lastly, I want to thank my darling Isabelle who has waited long enough for this
day. You have helped me through the strikes and the gutters, the ups and the downs,
and when the bear truly ate me. Jij bent m’n lief, m’n leven, m’n alles, het zonnetje in
mijn leven. Thank you for everything.

Jan de Muijnck-Hughes
St Andrews

7th December 2015

viii

Doe maar normaal, dan doe je al gek genoeg.

:DETA.REDAST:

xYGUSPU

Vh4QeMU8

Contents

Contents xi

1 Introduction 1
1.1 The Problem with Patterns . 2
1.2 Research Hypothesis . 4
1.3 Research Approach . 5
1.4 Contributions . 7
1.5 Research Output . 10
1.6 Organisation . 11

2 The State of Software Design Pattern Engineering 13
2.1 Software Design Patterns . 13
2.2 Pattern Languages . 15
2.3 Design Pattern Engineering . 16
2.4 Identifying Patterns . 17
2.5 Formal Modelling of Patterns . 17
2.6 Writing Patterns . 19
2.7 Pattern Evaluation . 21
2.8 Publishing Patterns . 24
2.9 Summary . 25

3 Domain Specific Goal-OrientedModelling 27
3.1 Goal Modelling . 27
3.2 The Goal-Requirements Language 28
3.3 Example: Information Secrecy . 30
3.4 Domain Specific Languages . 33
3.5 Domain Specific Modelling Languages 34

xi

Contents

3.6 DSML Creation Techniques . 35
3.7 DomainModelling and the GRL . 36
3.8 Summary . 37

4 Dependent Types &Well-Typed (Abstract) Interpreters 39
4.1 The Arith Language . 40
4.2 Abstract Syntax . 40
4.3 Type Systems . 41
4.4 Interpretation Semantics . 44
4.5 Dependent Types . 45
4.6 Well-Typed Interpreters . 50
4.7 Types as (Abstract) Interpreters . 54
4.8 Summary . 59

5 Sif: A Design PatternModelling Language 61
5.1 Overview . 61
5.2 A DSML for Patterns . 62
5.3 Language Specification . 63
5.4 The Sif Evaluator . 69
5.5 Case Studies . 78
5.6 Discussion . 86
5.7 Summary . 92

6 Freyja: A Pattern Document Description Schema 95
6.1 Schema Definition . 95
6.2 Library Provision . 101
6.3 Discussion . 102
6.4 Summary . 105

7 Frigg: A Utility for Working with Design Patterns. 107
7.1 Overview . 107
7.2 Feature Set . 108
7.3 Implementation Information . 109
7.4 Future Features . 110
7.5 Summary . 111

xii

Contents

8 Premes: A Pattern Evaluation Framework 113
8.1 Problems with Pattern Evaluation . 113
8.2 Approach . 114
8.3 Quality Indicators for Patterns . 115
8.4 Pattern Report Cards . 118
8.5 The PREMES Framework . 123
8.6 Evaluation . 126
8.7 Discussion . 130
8.8 Summary . 133

9 Engineering Patterns for Authentication 135
9.1 Overview . 135
9.2 The Problem of ‘Authentication’ . 137
9.3 Addressing Authentication . 140
9.4 Model Evaluation . 145
9.5 Writing Patterns . 147
9.6 Evaluating the Pattern . 149
9.7 Pattern Publication . 156
9.8 Summary . 156

10 NovoGRL: Re-Targeting the GRL for new Domains 159
10.1 Making the GRL a Language . 160
10.2 GRL-Derived Goal-Graphs . 162
10.3 Building the Goal-Graph Using G? 170
10.4 The Intermediate Representation: GExpr 174
10.5 Evaluating Goal Graphs . 181
10.6 Modelling the GRL as a DSML . 181
10.7 The Paper Modelling Language . 190
10.8 Experimental Evaluation . 197
10.9 Discussion . 198
10.10 Summary . 200

11 Types as (Meta) Modellers 201
11.1 Modelling with Differently Shaped Languages 202
11.2 The Paper PlanningModelling Language 203
11.3 Lists of Dependent Types . 206

xiii

Contents

11.4 Working with Interpretation Results 211
11.5 Type Threading . 213
11.6 Interpreter for PTodo . 215
11.7 Discussion . 220
11.8 Summary . 223

12 Conclusion 225
12.1 Language-Oriented Design of DSMLs 225
12.2 Better Implemented DSMLs . 226
12.3 Machine Checkable Design Patterns 227
12.4 Better Pattern Evaluation and Publication 228
12.5 Linked Concerns in Pattern Engineering 228
12.6 Future Work . 229

A Electronic Appendices 233

B GRL Forward Evaluation Algorithm 235
B.1 Overview . 235
B.2 Calculating Node Satisfaction . 236

C Collecting Dependent Types: Alternative Approaches 241
C.1 UsingWrapper Types . 242
C.2 Heterogeneous Vectors . 242
C.3 List of Dependent Pairs . 242
C.4 Custom Lists . 243

Bibliography 245

List of Figures 257

List of Tables 259

List of Definitions 261

List of Software 263

List of Publications 265

xiv

C
h
a
p
t
e
r 1

Introduction

The natural world is full of patterns that can be described formally using mathematics.
For example the shape of the horn belonging to the Bighorn Sheep

1 can be modelled
using the Fibonacci sequence, and the spiral of the nautilus shell follows a logarithmic
spiral. These patterns have arisen as a direct result of evolutionary design decisions as
made by nature. The patterns that we observed in nature are the ones that have stood
the test of time, and are proven to have use. When looking at the design of engineered
systems, common patterns of design will too naturally arise.

First described in The Timeless Way of Building [Ale79],Design Patterns are an
engineering technique taken from architecture in which well documented solutions are
presented for particular problems that occur consistently within a well defined context.
Design patterns address the separation of concerns between: (a) the conception of a
solution for a particular problem; and (b) its application to solve the given problem.
Within the domain of software engineering, design patterns are used to present a
good solution to a recurrent software engineering problem. It was at OOPSLA ’87
where it was first argued that the processes presented by Alexander [Ale79] were also
applicable to software engineering, in particular when working withObject-Oriented
(OO) programs. Beck and Cunningham [BC87] published the first paper that detailed
how pattern languages could be created for OO programs. Since the publication of
Beck and Cunningham [BC87], pattern-oriented approaches to software engineering

1Ovis canadensis

1

1. Introduction

have seen consideration, and growth into their own research area [BHS07; Gam+94;
Sch03].

Design patterns present a usability enabling construct that allows for complex,
hard to grasp, and detailed domain specific solutions to be distilled within a format
that makes the solution easy to use by non-domain experts. Patterns embody a domain
expert’s experience in solving these problems and provides a format through which
domain knowledge transfer can occur between these experts and non-domain experts
who wish to utilise the documented patterns [Gam+94; BC87]. Non-domain experts
can become empowered with domain expertise.

1.1 The Problem with Patterns

Although, design patterns present a novel technique for addressing domain knowledge
transfer they are themselves not without fault. Patterns are documents that contain a
mixture of natural language and formal models. However, the inherent ambiguity of
natural language can make interpretations over the meaning of what a pattern portrays
even more vague [WC02]. Such ambiguity can lead to pattern practitioners creating
patterns that are not actual patterns. Heyman et al. [Hey+07] presented an evaluation
of the then current software design pattern landscape, the evaluation noted that many
patterns found were not patterns. Pattern authors had produced patterns that were
not considered to be true patterns.

For example, Braga et al. [BRD98], presented the InformationSecrecypattern.
This pattern details how ‘cryptography’ addresses the problem of data confidentiality.
However, the presented pattern is not a true pattern. First, the pattern presents the
conflation of three well-known cryptographic solutions: Symmetric Cryptography,
Public KeyCryptography, andHybrid Schemes. Secondly, the forces associatedwith ad-
dressing the problem do not describe the problem of information secrecy, but describe
problems with selecting a cryptographic solution. Ostensibly, a design pattern is the
well-described, well-tested, and well-evaluated pairing between a problem and a solu-
tion for a given context. The pattern Information Secrecy is not well-described,
not well-tested, nor is it well-evaluated.

Yoshioka et al. [YWM08] detailed pattern engineering as two distinct life-cycles:
Pattern Creation—concerned with the identification and development of the pattern
itself; and Pattern Application–concerned with the selection and correct application

2

1.1. The Problem with Patterns

Creation

Application

Identification

E1

Creation

E2

Evaluation

E3

Publication

E4

Problem
Identification

A1

Selection

A2

Application

A3

Evaluation

A4

Figure 1.1: Pattern Engineering according to Yoshioka et al. [YWM08].

of the pattern. Figure 1.1, presents an enumeration of these two stages and details the
areas of concern that arise during pattern engineering.

With this notion of pattern engineering that guides the development of patterns,
how canbadpatterns such as the InformationSecrecypattern not only be detected
post creation, but be prevented from being created in the first place? Existing work has
already demonstrated how several of the concerns from Figure 1.1 can be addressed.

For instance, there have been several approaches to how patterns can be formally
verified. Goal-Oriented Modelling (GOM) techniques reason formally on patterns as
requirements models [GY01; LHM14; WM08; MWA06]. These models are agnostic
to how patterns are realised in software and provides a universal verifiable means to
reason about patterns.

Heyman [Hey13] provides a more formal programming language based approach
to reason about software design pattern composition. Here design patterns are ab-
stract software constructs modelled in Alloy. However, these models are not linked
to the resulting pattern document itself. Mana et al. [Man+13] proposed the idea of
Computer-Oriented Security Pattern (CoSP) in which design patterns are described
as XML documents, linking UMLmodels to software requirements and providing
a machine readable description of a pattern. However, like Heyman [Hey13] they
reason about software artefacts only, in this case using UML class diagrams, and do
not present a human-readable pattern document. Before CoSP, other XML formats
were presented for describing design patterns. For example, Welicki et al. [WLA05]
introduced Entity Meta-specification Language (EML) a specification language for

3

1. Introduction

describing patterns and pattern languages, and uses the specification to construct an
interactive pattern repository. However, like CoSP and the work in Heyman [Hey13],
the resulting solution only reasons on software artefacts and is not applicable to socio-
technical systems. Dearden and Finlay [DF06], investigated the use of Design Patterns
in Human Computer Interaction (HCI). Within Dearden and Finlay [DF06], the
authors detail work related to machine readable pattern documents for socio-technical
systems by Fincher [Fin04], detailing Pattern Language Markup Language an XML
based format for describing patterns and pattern languages. Pattern Language Markup
Language was extended into eXtended Pattern Language Markup Language (xPML)
by Kruschitz and Hitz [KH10] and Kruschitz [Kru09]. However, the presented docu-
ment helps detail a structured document and prohibits for formal descriptions of the
pattern itself to be encoded within the document. Further, the resulting pattern docu-
ments are themselves evaluated using informal processes such as Shepherding [Har99]
andWriter’s Workshops [Gab02]. These techniques group experienced pattern writers
with inexperienced ones and both work together to evaluate and improve the presented
patterns.

From the solutions described above, it becomes apparent that there is a disconnect
between how patterns are: represented formally; presented as pattern documents;
evaluated; and used to address an engineer’s existing problems. The formal repres-
entations of patterns detailed view patterns as software artefacts and do not take into
account a pattern’s emergent properties, or that patterns are documents. Nor can these
representations be used to model patterns for socio-technical systems. Current pattern
evaluation techniques also do not take advantage ofmore formal descriptions presented
by formal methods. There is a noticeable and distinct separation of concerns between
how patterns are: represented, evaluated, implemented, and applied. To address these
concerns, how design pattern engineering is approached and performed needs to be
rethought.

1.2 Research Hypothesis

The hypothesis presented and tested within this thesis is as follows:

Hypothesis. The disconnected stages within the Design Pattern Engineering lifecycle

can be linked through the creation of machine checkable, formally proven, programmable

4

1.3. Research Approach

design pattern documents.

Existing research has introduced the idea of machine checkable design pattern
documents—cf. CoSP from Mana et al. [Man+13], xPML from Dearden and Fin-
lay [DF06], and EML fromWelicki et al. [WLA06]. These are pattern documents
that can be processed and reasoned on using automatic programmable methods. Fur-
ther, existing research has also shown how formal models for design patterns can be
constructed—cf. the use of Alloy by Heyman [Hey13], and GOM as used by Gross
and Yu [GY01].

These existing research contributions only detail how to address several of the
stages within design pattern engineering separately. If each of the areas detailed for
pattern engineering can be addressed and linked then this unified approach could lead
to better and natural cohesion between the different areas and ultimately the creation
of more robust patterns.

1.3 Research Approach

To provide such machine checkable and formally proven design pattern documents,
the approach is to embed a formal machine checkable model of a design pattern within
the pattern’s own document. With such machine checkable design pattern documents,
a document can be used as part of pattern evaluation, publication and application.
This section details this approach further.

1.3.1 Domain Specific Modelling of Design Patterns

GOM techniques have been used to reason formally about design patterns and lan-
guages [GY01; LHM14;WM08;MWA06]. Here patterns aremodelled as requirements
models directly in a chosenGoal Oriented Modelling Language (GOML), typically
that of theGoal Requirements Language (GRL). With this approach pattern engineers
must first learn the chosen language. This can potentially lead to mistakes in language
use especially if the pattern engineer ‘misuses’ concepts from the GOML. Such misuse
can originate from a simple error in translating concepts from the pattern domain to
that of the GOMLs own domain. To aid in the correct use of GOMLs for the pattern
domain, a GOML oriented towards design patterns should be created.

5

1. Introduction

However, rather than construct a new GOML from first principles, it would be
prudent to use an existing modelling language. Domain Specific Modelling Languages

(DSML) are modelling languages tailored specifically for a chosen domain that maps
domain specific concepts on-top of an existing (meta) modelling language. With this
approach the host language provides an existing implementation of a language and
the DSML provides domain specific functionality. Thus, it stands to reason that a
Pattern-Oriented DSML can be created that utilises existing concepts from an existing
language. The resulting language would be tailored specifically for modelling design
patterns, thereby providing pattern engineers with more familiar pattern concepts.
Existing use of the GRL for modelling design patterns makes it an ideal candidate
meta-modelling language.

1.3.2 Building Better DSMLs using Dependent Types

The creation of DSMLs from a host language is hampered by the visual and graphical
nature of modelling languages, and the disconnect between the syntax used to create
models, the syntax used to reason about and work with models and implement the
domain mappings, and the formal semantics presented to reason about these domain
mappings. Tobolster the creation ofDSMLs and in particular domain specificGOMLs,
existing techniques from programming language research can be adapted to provide
formal descriptions of the DSMLs for patterns, the chosen meta-modelling language,
and the relationship between the two. Language-oriented design canbe used to enhance
and better DSML design. However, there is still a disconnect between the formalisms
and their realisation in code.

Dependent types are a programming language construct in which the types them-
selves are predicated on some value [Nor09; McB05; Bra05]. Programming languages
that support dependent types provide an environment that not only allows for more
precise descriptions of programs to be specified, but also an environment in which
formal descriptions of languages can be realised in code [AC99]. With formal descrip-
tions of a domain language and its meta-model implemented in a dependently typed
language, the formal description of the relationship between these languages can also
be implemented. Brady and Hammond [BH06] demonstrated how a dependently
typed language provides correctness by construction guarantees for working with and
transforming language constructs.

Dependently typed languages allow for a DSML to be created for patterns such

6

1.4. Contributions

that compile time and runtime guarantees can be made for, and between, the DSML
and its host language. Dependent types can be used to bolster the design, specification,
and implementation of a GOML for design patterns based on the GRL.

1.3.3 Machine Checkable Design Pattern Documents

With formally verified and machine checkable models for design patterns then what
next? Existing work has shown that design pattern documents can be made machine
readable using eXtensible Markup Language (XML). Given a formally verified and
machine checkable model, if such a model can be embedded née serialised within a
pattern document it can then also be deserialised and the model re-checked. Resulting
in active design pattern documents that are machine readable and machine checkable.
DSMLs can be combined with dependent types and XML to create machine readable
and checkable design pattern documents.

With such documents during the evaluation of a design pattern the pattern docu-
ments can be ‘machine checked’ to ensure that the original description given during the
design phase can be reproduced and is ‘valid’. Further, if the design pattern document
was active then transitively so too would the description of the presented solution. If
the solution presented can also be made machine readable then such a solution could
also aid design pattern application.

1.4 Contributions

The hypothesis presented in §1.2 requires that the different areas in design pattern
engineering be linked. §1.3 has outlined an approach that allows for the areas to be
linked through active pattern documents that are machine readable and checkable. To
achieve this goal the following contributions are presented that collectively support
the research hypothesis. Figure 1.2 illustrates how several of these contributions fit into
the design pattern engineering process as enumerated by Yoshioka et al. [YWM08].

1.4.1 Design Pattern Engineering

The first set of contributions are concerned with the modelling and verification of
design patterns.

7

1. Introduction

Pattern Creation (E2)

The Sif Language Pattern Writing

Pattern Evaluation (E3)

Report Card Framework

PREMES Eval Framework

Identification

E1

Specification
Generation

Specification Specification
Evaluation

Pattern Stub Writing

Design Pattern
Document

Planning Solution Quality

Pattern Goodness

Presentation Quality

Report Card Result Analysis Publication

E4

Figure 1.2: The Pattern Engineering Process with thesis contributions placed in situ.

The Sif Modelling Language Sif is a declarative requirements-based goal-oriented
modelling language for prototyping design patterns. Reasoning on design pat-
terns as problem-solution-context pairings. Sif has been designed as a DSML
based on the GRL to use the GRL’s existing modelling constructs.

The Sif Evaluator Associated with the modelling language itself, is the reference
implementation and an associated model evaluator. The reference implementa-
tion is presented as both an EDSL and DSL within Idris.

The Premes Framework Checking design patterns formally is not enough for
their verification. The Premes framework presents a holistic evaluation frame-
work for software design patterns that allows for pattern quality to be made a
tailorable, reproducible and measurable assessment within the pattern engineer-
ing process.

Freyja An XML schema used to describe active pattern documents, allowing for pat-
tern metadata, a Sif model description, and evaluation metrics to be annotated
through out the document itself.

The Frigg Tool Frigg is autility forworkingwithpatterndocuments in theFreyja
format to aid in their evaluation and publication.

8

1.4. Contributions

1.4.2 Techniques for Engineering DSMLs

The next set of contributions are concerned with howDSMLs can be constructed.

Language-Oriented Modelling Language Design Detailed is a language-oriented
type-driven approach for the design of declarative modelling languages.

Interpreters can be Model Builders Atechnique for buildingDSMLs as a series
of well-typed interpreters that detail the language transformations that must
occur between theDSML, and themeta-model that represents the host language.

Types as (Meta) Modellers Demonstrates how dependent types are leveraged
to embed within implementation of the DSML’s type-system the meta-model
to which the concepts are being mapped. This technique builds upon existing
ideas that combine abstract interpretation and dependent types. This technique
allows for DSMLs to be created that are structurally and semantically dimorphic.

1.4.3 Re-Imagining the GRL

These next set of contributions are the result of applying the above techniques for
DSML engineering to the GRL.

Formal Description A formal language-oriented description for a subset of the
GRL is presented.

GRL-as-a-Library The implementation of the GRL has been decoupled from a par-
ticular model creation environment allowing for model creation and evaluation
to be made accessible as-a-library.

NovoGRL The GRL has been implemented as a series of well-typed interpreters in
such a way that the syntax and semantics of GRLmodels is kept separate. Al-
lowing for DSMLs based upon the GRL to be constructed that are semantically
dimorphic, yet structurally isomorphic.

1.4.4 Techniques for Modelling with Abstract
Interpretations

The final set of contributions are presented detailing how the types as (meta) modellers

approach can be applied to, and realised for, structural dimorphic languages.

9

1. Introduction

Data Structure for collecting dependent types DList is anAlgebraic Data

Type (ADT) that facilitates the type-level collection of values contained within
the type of a dependent type. This data structure has useful applications for
working with the ‘interpretation’ of a value at the type level.

Data Structure for Interpretation Results Atechnique that requires interpret-
ation results to be represented in a ADT to allow for different/intermediate
interpretation results to be represented by the same type.

Type Threading A technique that requires indexing data types by the same value
to model explicitly the link between various structural views.

1.5 Research Output
During the course of the thesis, several peer-reviewed papers have been published, of
which I was the primary author of, or contributed to the content presented. Here these
papers are listed:

• J. de Muijnck-Hughes and I. Duncan. ‘Thinking Towards a Pattern Language
for Predicate Based Encryption Crypto-Systems’. In: Software Security and

Reliability Companion (SERE-C), 2012 IEEE Sixth International Conference on.
2012, pp. 27–32. doi: 10.1109/SERE-C.2012.34

• J. de Muijnck-Hughes and I. Duncan. ‘Issues Affecting Security Design Pat-
tern Engineering’. In: Proceedings of the Second International Workshop on

Cyberpatterns. Oxford Brookes University. July 2013, pp. 54–61

• I. Duncan and J. de Muijnck-Hughes. ‘Security Pattern Evaluation’. In: Service
Oriented System Engineering (SOSE), 2014 IEEE 8th International Symposium

on. Apr. 2014, pp. 428–429. doi: 10.1109/SOSE.2014.61

• J. de Muijnck-Hughes and I. Duncan. ‘What’s the PREMES behind your Pat-
tern?’ In: Proceedings of the 22nd Conference on Pattern Languages of Programs

(PLoP ’15). To appear in the post-conference proceedings. Pittsburgh, PA, USA:
ACM, Oct. 2015

Further, all of the research contributions and supporting software developed have been
made available as open-source software projects. These outputs have been listed in the

10

http://dx.doi.org/10.1109/SERE-C.2012.34
http://dx.doi.org/10.1109/SOSE.2014.61

1.6. Organisation

thesis’ backmatter, and versions used within the thesis are available in an electronic
appendix—Appendix A.

1.6 Organisation
The organisation of the work presented in this thesis is detailed as follows:

Background The first set of chapters provides background material and introduct-
ory material to the topics addressed in this thesis. Chapter 2 introduces back-
ground material for software design patterns. Chapter 3 details Goal-Oriented
Modelling, the GRL, and introduces the idea of DSMLs. Chapter 4 provides an
introduction to programming language theory, dependent types, andWell-Typed

(Abstract) Interpreters.

Machine Checkable Design Patterns These chapters detail the contributions
made towards machine checkable design patterns. Chapter 5 introduces the
Sif modelling language, detailing its design, implementation, and use to model
patterns. Chapter 6 details the Freyja pattern template and how it supports the
description of active pattern documents. Finally, Chapter 7 details the Frigg
tool, a utility for working with design patterns that brings together many of the
contributions from this thesis.

Pattern Evaluation The pattern evaluation framework Premes and pattern re-
port cards are detailed in Chapter 8, together with their use to evaluate existing
patterns.

Engineering Patterns for Authentication Chapter 9 presents a case study in
using the contributions to engineer patterns for authentication. The engin-
eered patterns presented are: Authentication through Shibboleths;
and Authentication through ID Cards. The case study demonstrates
how the patterns were modelled using Sif, and evaluated using the Premes
framework in conjunction with the supporting utilities Frigg and Freyja.

Building Domain Specific Goal Oriented Modelling Languages The final
set of chapters provides more technical details surrounding the construction
of domain specific goal-oriented modelling languages using dependent types.
These chapters should be considered in isolation from design patterns and the

11

1. Introduction

techniques are not bespoke to the pattern domain. Chapter 10 details the form-
alisation and re-engineering of the GRL to support re-targeting to different
domains. How dependent types can be used to provide stronger correctness by
construction guarantees between a DSML and a meta-modelling language is
detailed in Chapter 11.

Conclusions This thesis concludes in Chapter 12 with a discussion of machine check-
able design patterns, type-driven language oriented modelling, and possible
directions in which this research can go.

Domain Targeted Roadmaps The work presented in this thesis brings together
research from several different areas ofComputer Science, namelyDesignPatterns, Goal
Modelling, and Dependent Types & Formal Methods. A reader more or less familiar
with certain areas may want to read this thesis differently, and different domain-specific
road maps are suggested below.

Area of Interest Relevant Chapters

Design Patterns Chapters 2 and 5 to 9
Goal-Modelling Chapters 3, 5 and 10
Dependent Types & Formal Methods Chapters 4, 5, 10 and 11

12

C
h
a
p
t
e
r 2

The State of Software Design
Pattern Engineering

First described in The Timeless Way of Building [Ale79], Design Patterns are an
engineering technique taken from architecture in which well documented solutions
are presented for particular problems that occur consistently within a well defined
context. This chapter introduces software design patterns and provides information
on the current state-of-the-art.

2.1 Software Design Patterns

Software design patterns are used to present a good solution to a recurrent software
engineering problem. Since the publication of Beck and Cunningham [BC87] pattern-
oriented approaches to software engineering and language have seen consideration. For
example, pattern based approaches have been used to describe common architectures
for Cloud Computing [Feh+14], interaction patterns for HCI [Sef15], patterns for
programming in Java [Sar16] and forOperational Support Systems [AG09] to name a
few areas. But what exactly is a pattern?

Typically, the approach advocated by Alexander is that a pattern should address
the following core areas: (a) the context in which the pattern is being applied; (b) the
problem the pattern is solving; (c) the forces that drive the choice of solution from the

13

2. Design Pattern Engineering

problem; (d) the solution presented by the pattern including the solution’s dynamics

and structure; (e) the resulting context from application of the pattern; (f) the relations
with other patterns; and (g) guidance for pattern application.

One interesting use of patterns is to document solutions to security problems:
Security Design Patterns. First introduced in Yoder and Barcalow [YB97] such patterns
are used to describe well known security concepts and associated security mechan-
isms [Sch+06; Sch03; Fer13]. Pattern-oriented approaches that use security design
patterns are increasingly being used to develop secure systems [Fer+11]. Security pat-
tern languages are pattern languages within the security domain.

Use of design patterns allows for complex security concepts and mechanisms to
be expressed concisely and explicitly such that non-domain experts can understand
them, and consequently use them [DFL07]. When designing security systems abstract
patterns [FWY08] can be used to abstract over multiple similar patterns that address a
common security problem. According to Bunke et al. [BKS11] there are 409 known
security design patterns, providing solutions to security problems as diverse as access
control, session management, and identity management. These patterns were collected
through a systematic literature review of patterns published between the 1997 and 2010.
The relevant literature documenting these patterns can be found within Bunke et al.
[BKS11].

Not all documented patterns address problems within the same context. Different
types of patterns can be used to describe solutions for different areas. Henninger
and Corrêa [HC07] summarised the several different types of patterns that have been
described. From this list of pattern types several common types of patterns emerge that
can be used to describe software systems.

• Component Patterns: Patterns that specify how to achieve some functional-
ity i.e. software design and creation.

• System Patterns: Patterns that specify how to combine patterns i.e. architec-
ture and behavioural.

• Deployment Patterns: Patterns that specify how to deploy system patterns.

• Implementation Patterns: Patterns that specify how to implement/realise
some aspect within software/real world setting.

14

2.2. Pattern Languages

• Admin Patterns: Patterns that specify how the system should be admin-
istered.

• Generic Patterns: Generic Patterns that cannot be described using the other
pattern types.

2.2 Pattern Languages

PBE Pattern Language

Abstract Security Patterns

D
ep

lo
ym

en
t

T
yp

es

C
o
m
p
o
n
en

ts

Direct
Authentication

Brokered
Authentication

Federated
Identity

· · · Async.
Sec. Channel

PBE within
a Service

PBE as
a Service

Distributed
Security

Database
Access

Database
Submission

CP PBE KP PBE

Access
Control

Group Info.
Secrecy

Tokens/
Credentials

Token
Management

System
Administration

Figure 2.1: Example pattern diagram fromdeMuijnck-Hughes andDuncan [dMD12]
describing a proposed pattern language for Predicate-Based Encryption.

Often recurrent problems may not be solvable with a single pattern; they are too
complex and too big. Pattern Languages provide a means through which solutions
to complex problems can be solved. A pattern language is a network of predefined
patterns that define a process for resolving systematically a set of related interdependent
software development problems [BHS07]. Pattern languages are themselves described
within the pattern format, and are also illustrated as pattern diagrams [Ale+77]. A
pattern diagram is a directed graph in which nodes represent patterns and edges the
relationships between them. Within these Pattern Diagrams, a topological ordering
direction of top-to-bottom indicates the level of abstraction for contained patterns.
Higher patterns represent abstract concepts, and lower patterns concrete notions. This

15

2. Design Pattern Engineering

style of diagram is typically referred as theAlexandrian [Ale+77]. An example pattern
diagram for a proposed pattern language for Predicate-Based Encryption.

2.3 Design Pattern Engineering

Creation

Application

Identification

E1

Creation

E2

Evaluation

E3

Publication

E4

Problem
Identification

A1

Selection

A2

Application

A3

Evaluation

A4

Figure 2.2: Pattern Engineering according to Yoshioka et al. [YWM08].

The lifecycle of a pattern has two distinct stages. The first, Pattern Creation, is con-
cerned with the identification and development of the pattern itself. The second,
Pattern Application, details the application of said pattern. Yoshioka et al. [YWM08]
enumerated this engineering process into the following set of steps.

• Creation Building the Pattern.
E1: Finding a recurring problem and its corresponding solution from know-

ledge and/or experiences of software development.
E2: Writing the found pair with forces in a specific pattern format.
E3: Reviewing and revising the written pattern.
E4: Publishing the revised pattern via some public or private resource.

• ApplicationUsing the Pattern.
A1: Recognizing context and security problems in software development.
A2: Selecting software patterns that are thought to be useful for solving the

recognized problems.
A3: Applying the selected patterns to the target problem.
A4: Evaluating the application result.

16

2.4. Identifying Patterns

Figure 2.2 illustrates the connection betwee these steps. This thesis is concerned primar-
ily with the first stage of pattern engineering: Creation. For the remainder of this
chapter distinct stages from this process, and related topics, are introduced and detailed
further. During consideration of Step E2 Creation the topics of formal modelling, and
writing of a pattern document will be considered separately.

2.4 Identifying Patterns
Pattern identification is concernedwith the identification, and veracity, of the identified
problem. A common technique for identifying software patterns is to mine existing
software constructs (by hand or automatically) to identify the recurring structures that
are used to address some problem [BKS11]. The issue of pattern discovery is an open
research question and not the main focus of this thesis.

2.5 Formal Modelling of Patterns
Software design patterns are part software artefact, part design document. There have
been various attempts at the formal modelling of the emergent software artefact that
arises from a design pattern. This section considers this formal modelling.

2.5.1 Model Checking

Dong et al. has investigated the use of model checking to investigate formalising design
patterns. The authors tookUnifiedModelling Language (UML)models, typically used
to represent the software constructs, constructed a formal representation of the model
to formally verify the resulting formal model’s correctness [Don+07]. Following this,
the authors then investigated how to combine and verify the composition of the UML
models through verification of the composition of the underlying formal models.

Shiroma et al. [Shi+10] took an alternative model-based approach to investigate
security patterns. Concentrating on security patterns the authors investigated the
dependencies between patterns and modelling these dependencies as model transform-
ations.

One finalmodel checking approachwas demonstrated in thePhD thesis ofHeyman
[Hey13]. The author used the SAT solver Alloy [Jac12] to check design patterns and
their requirements, as well as their composition.

17

2. Design Pattern Engineering

2.5.2 Petri Nets

Petri Nets are a formalism used to model the behaviour of software systems [Pet62]. da
Silva Júnior et al. [dGM13] considered the use of Coloured Petri Nets, an enhancement
of Petri Nets to provide more abstraction, to model the structural and behavioural
properties of security patterns. Coloured Petri Nets provides a more formal system
uponwhich patterns are analysedwhen compared toUML.However, thework appears
to be constrained to reasoning about patterns for OO languages. How this work would
apply to non-OO languages is not clear, nor to patterns that operate within a socio-
technical context.

2.5.3 Formal Logic & Ontologies

An alternative approach to modelling design patterns is given by Dietrich and Elgar
[DE05]. The authors investigated the use of ontologies to capture patterns. Their
approach seeks to model design patterns in a programming language agnostic way.

Bayley and Zhu [BZ10] developed a strict subset of UML to capture design pattern
structure andbehaviour, andpresented a transformation technique to convert theUML
models into a formal description based on first-order predicate logic. The resulting
formal descriptions were used to reason about patterns, and their composition and
transformation.

2.5.4 Goal-Oriented Modelling

Formal approaches to design pattern modelling typically investigate the formal mod-
elling of software constructs. These approaches do not take into account emergent
properties such as quality of documentation, and goodness of fit between the problem
and solution. Further, these modelling approaches make an implicit assumption that
the underlying software constructs are based on OO design principles. Several existing
bodies of work have, to varying degrees, each investigated the applicability ofmodelling
design patterns and pattern languages using Goal-Oriented Modelling techniques.
Specifically using the Goal Requirements Language.

The earliest known attempt is inGross and Yu [GY01] in which the authors present
a Requirements-Driven approach to design pattern modelling. The authors identify
that a limitation in modelling design patterns stems from their heavy use of natural
language. To address these limitations, the authors model the forces of a design pattern

18

2.6. Writing Patterns

as non-functional requirements in a GRL model instance, and apply this model to
the design of a system in a secondary model instance. Building on from this work is
the work of Mussbacher et al. [MWA06] in which the authors present similar work.
Mussbacher et al. go further thanGross and Yu through illustration over the evaluation
of design patterns modelled using the GRL. Weiss andMouratidis [WM08] present a
means tomodel pattern languages using the GRL and extract from the graphical model
a formal model in Prolog to analyse satisfaction of system requirements. The latest
knownwork tomodel design patterns is in Li et al. [LHM14]. The authors concentrate
on the modelling of security patterns.

Common to all approaches is the need to interpret domain specific concepts from
the design pattern domain into concepts known and used by the GRL. In Gross and
Yu [GY01] the interpretation was minimal as the authors took a requirements driven
approach to design pattern specification, and thus could use the concepts from theGRL
directly. The other approaches presented concepts from the design pattern domain
and translated them into GRL concepts. Resulting in the use of the GRL as the host
language for modelling DSMLs.

However, the GRL is a requirements language and as such the semantic domain
targeted by its syntax is the modelling of socio-technical systems as goal-models. Al-
though design patterns can be used to represent socio-technical systems there is an
inherent troika of problem×solution×context w.r.t. the pattern’s structure. Although,
the problem×solution aspect can be modelled directly within with the GRL, these
present a single model instance. Examining different problem×solution pairings for a
particular context is not practically feasibility within the GRL.

2.6 Writing Patterns

Once the pattern has been identified, the next step is to develop the pattern document,
and describe the discovered pattern. When writing patterns advice is available on how
to codify and represent the identified pattern constructs. For example, Meszaros and
Doble [MD97], Wellhausen and Fießer [WF11] and Harrison [Har04] have presented
three known, and touted, writing guides. These documents provide guidance about
the development of the document and advice over naming and decomposition of the
ideas to be presented.

19

2. Design Pattern Engineering

2.6.1 Patterns are Documents

A naïve interpretation of a design pattern commonly seen is that the pattern is the
presented solution. Instead the pattern itself is an abstract concept that is collected and
described in a document. Patterns are described using a mixture of natural language
descriptions, and formal models. For patterns, these formal models are often presented
using one of the modelling languages fromUML.

These documents are presented as structured templates that present headings
common to many a pattern. Structured headings also allow for pattern authors to be
guided over the contents and description of their patterns. Common templates seen
include: theAlexandrian template that adheres to the core pattern areas detailed in
§2.1; the Pattern-Oriented Software Architecture (POSA) template used by authors of
the POSA series—see Buschmann et al. [BHS07] for an example; and the Patterns
2.0 format used for societal and non-software oriented patterns examples of which are
found in Guerra et al. [Gue+14].

However, not all patterns adhere to the known pattern templates. Pattern authors
are free to select templates that are more indicative of the pattern being described.
This unfortunately harms pattern engineering over how pattern documents are en-
coded [BKS11]. Which template are authors supposed to follow?

2.6.2 Encoding Design Pattern Documents

§2.5 detailed several approaches to the formal modelling of design patterns. These ap-
proaches concentrated on modelling the software artefact from the pattern document.
Although this is beneficial to reasoning about patterns in software, not all software
design patterns are technical in nature software. Nor do these approaches consider the
document itself.

Other work has looked to the encoding of the pattern document encoding design
pattern documents as XML documents. Early work into an XML based encoding
was by Lucrédio et al. [Luc+03]. The authors describe a tool used to construct an
interactive pattern repository for viewing design patterns.

HCI has worked to develop techniques and methodologies for working with pat-
tern documents. Dearden and Finlay [DF06] presented the state-of-the-art of HCI
patterns from 2006. Here the authors detail Pattern Language Markup Language

(PLML) and its successor xPML [Fin04]. These are XML schema for describing HCI
patterns. Of interest here is the typed encoding of relationships between other patterns.

20

2.7. Pattern Evaluation

A more recent summary of PLML and xPML can be found in Kruschitz and Hitz
[KH10] and Kruschitz [Kru09].

An alternative XML encoding for design patterns is that of EML. First introduced
in Welicki et al. [WLA05], EML is an XML schema for describing all kinds of patterns
and supporting concepts. The work byWelicki et al. [Wel+06] continued inWelicki
et al. [WLA06; Wel+06]. Rather than describe textual documents, EML looked to the
encoding of the pattern itself (software artefacts) in the XML schema. This is a marked
change from the previously discussed schema.

In a similar attempt toWelicki et al. [WLA06], Mana et al. [Man+13] looked to
describing security patterns within XML schema. Unlike Welicki et al. the work of
Mana et al. concentrated on the encoding of security requirements, software artefacts
in the form of UML, and the relations between the two. Further, Mana et al. provided
more textual documentation into their schema in comparison to the work of Welicki
et al.

Regardless of the presented XML encoding, a trade-off exists when encoding
design patterns as an XML schema between: encoding the human readable document;
encoding the pattern artefact; and encoding the link between different patterns.

2.7 Pattern Evaluation

Unfortunately, not all patterns created are in fact patterns [WC02; Hey+07], and
pattern evaluation is one of the lesser reported aspects within pattern research. When
looking to evaluate a pattern onemust determinewhether the problem is satisfied by the
solution, how ‘tried and testing’ the solution is, andhowwell documented the pattern is.
Further, the evaluation of a patternmust be reproducible, consistent, and allow for fine-
grained analysis of the presented pattern. There are several known evaluation practises
used within the pattern community, namely: Peer Review, Shepherding [WF11], and
Writer’s Workshops. However, these evaluation systems do not provide comprehensive
guarantees in all these areas. Nor do some evaluation systems provide comprehensive
guarantees that the method is reproducible, consistent, nor allow for fine-grained
analysis.

One of the difficulties in constructing an evaluation system for software design
patterns is that the subject domain covered is heterogeneous. A single general purpose
evaluation system cannot be, and should not be specified. For example, Bunke et al.

21

2. Design Pattern Engineering

[BKS11] detail that, among other things, not all patterns adhere to common pattern
templates. Any suggested evaluation process must be tailored to the patterns being
evaluated. The remaining part of this section on evaluation discusses several known
evaluation techniques used.

2.7.1 Shepherding

Shepherding is the recommended pattern evaluation technique for the PLoP series of
conferences: PLoP, EuroPLoP, and Viking PLoP. Shepherding is a process in which
experienced pattern writers (shepherds) are paired with pattern authors—their sheep.
Harrison [Har99] details a common shepherding process, and provides implementa-
tion guidance. The goal of shepherding is to capitalise upon the experienced writer’s
knowledge in creating patterns to guide and provide expert commentary on the presen-
ted pattern.

However, the shepherding process is a generalised technique that is applicable to
all patterns. It does not provide fine-grained nor reproducible guidance over how to
measure what constitutes a good pattern from a bad pattern. Nor does the process
detail how the solution presented should be evaluated to determine its quality. Further
it makes a tacit assumption that the advice of Meszaros and Doble [MD97] was used
to drive the writing of the pattern being evaluated. The advice offered byMeszaros and
Doble [MD97] tacitly provides a means to ensure good quality patterns by guiding
the authors to writing patterns in a good style. Other existing pattern writing guides
such as Wellhausen and Fießer [WF11] such Harrison [Har04] also detail how notions
of quality are accounted for during. The Shepherding process provides subjective
evaluation over the quality of the pattern itself and not the solution being described.

2.7.2 Writers Workshops

Writer’s Workshops are moderated Socratic discussions involving sets of like patterns.
Involved in these workshops are the pattern authors themselves, and a set of peers.
Traditionally, during the workshop the pattern author is asked to sit aside from the
group and listen to the discussion of their pattern. The group moderator leads the
discussions, ensuring that the strengths and weaknesses of the pattern are discussed
and that suggestions for improvements are made and noted. Schmidt [Sch06], Coplien

22

2.7. Pattern Evaluation

andWoolf [CW97] and Gabriel [Gab02] presents commonly used guidance used by
the pattern community for such workshops.

Remark. At PLoP 2015 a new style of writer’s workshop was trialled in which the
pattern author hadmore involvement in the discussion. This involvement was to spe-
cifically introduce the piece of work, provide a set aims for the feedback, and provide
clarification of points raised by participants.

2.7.3 Structured Approaches

Both Shepherding andWriter’s Workshops provide informal approaches to pattern
evaluation. There are, however, more structured approaches.

Heyman et al. [Hey+07] presents two methods of evaluation: the first determ-
ines if the presented pattern is a pattern; and the second provides an assessment over
documentation quality. For the former, Heyman et al. uses a set of simple criteria
to investigate the patterness of the presented pattern. Quality of documentation is
assessed using simple qualitative metrics to asses content quality per expected heading.
With each heading being weighted, a final score can be given to determine the overall
adherence to documentation quality. However, this approach concentrates of pattern
presentation and does not evaluate the pattern in other areas. For example, goodness
of the solution to address the problem.

Halkidis et al. [HCS04] performed a qualitative analysis of several security patterns
according to: (a) how well the pattern adheres to ten guiding principles for building
secure software [VM11]; (b) how well the pattern deters the software developer from
building an insecure system; and (c) how the pattern responds to different types of
attack. Similar work was also performed by B. H. Cheng et al. [Che+03]. The use of
qualitative evaluation criteria as used by Halkidis et al. [HCS04] is inherently prob-
lematic. Halkidis et al. [HCS04, Section 4] mention that some of the criteria specified
can only be used to assess the patterns implementation and not the pattern itself. For a
qualitative analysis of patterns, criteria assessing the patterns and not implementation
needs to be specified. The approach byHalkidis et al. is purely for security patterns and
concentrates of assessment of the quality of solution and not quality of documentation.

Laverdière et al. [Lav+06] presents a comprehensive set of criteria for security
design pattern evaluation using the Six Sigma approach. As with the approach taken by
Halkidis et al. [HCS04], this techniques concentrates on security patterns. However,
the guidance established by Laverdière et al. [Lav+06] does provide a more holistic

23

2. Design Pattern Engineering

treatment towards design pattern evaluation. Unfortunately, no implementation
guidance, nor results in using this technique were presented.

Anunderreported aspect of designpattern evaluation is that of usability. Thimthong
et al. [TCK13] explore the use of user studies for pattern evaluation. However, use of
user studies should be limited as the usefulness of such studies can be ineffective and
unhelpful if done improperly [GB08].

During PLoP ’15, Xia et al. [Xia+15] introduced a more structured approach to pat-
tern evaluation to bolster writer’s workshops. The authors took established evaluation
methodologies (checklists and code review) from software engineering and applied
them to evaluate design patterns. Checklists are used to represent guiding evaluation
criteria for design patterns, and detail what reviewers should look for. Perspectives
are used to guide the review from the view-point of an entity involved in the pattern
construction and domain of operation.

2.8 Publishing Patterns

Pattern Repositories are collections of patterns bundled together and presented for
consumption. Example pattern repositories canbe found: online [The13]; withinbooks
e.g. Schumacher et al. [Sch+06]; or (and most commonly) within academic literature.
Pattern repositories have also been presented as a single PDF document Kienzle et al.
[Kie+03].

However, these resources are either: (a) incomplete; (b) cannot be modified; and
(c) cannot be used programmatically. The Common Attack Pattern Enumeration and

Classification (CAPEC) repository [Cor13] is a good example of a pattern repository,
presenting a list of patterns describing system weaknesses.

Central to pattern engineering, and also research, is the creation of an easily ac-
cessible design pattern repository that can be used by researchers and developers alike.
The existence of such a pattern repository would provide pattern researchers with
a catalogue through which they can perform pattern related research. This would
also benefit pattern developers. For software developers, a centralised repository will
facilitate access to a variety of design patterns that they can examine/select for their
needs during pattern application.

Remark. Interestingly, how repositories are to be constructed was a topic of dis-
cussion at PLoP ’15 [SI15]. The authors led a discussion to foster support for the de-

24

2.9. Summary

velopment of an open and collaborative design pattern repository.

2.9 Summary
This chapter has introduced design patterns and their engineering. Although patterns
have been around since the mid-eighties the discipline of pattern engineering is rather
nascent. There is no comprehensive pattern repository from which patterns can be
selected. Formal modelling of patterns tends to concentrate on modelling software
architectures and little on modelling patterns themselves.

From a practitioners perspective tooling and practices to support pattern engineer-
ing is also lacking. The lack of common consensus of template headings, their encoding
in a document markup language, and their representation in code makes working
with patterns harder than what it should be. The lack of evaluation seen in published
patterns, leaves the efficacy of patterns in doubt. Why would an engineer use a solution
that was not evaluated? The evaluation process needs enhancement to not only be
reproducible and agnostic to the pattern being written, but also provide detailed evalu-
ation of the presented pattern. Design Patterns are supposed to be well-documented
solutions to recurrent problems.

However, one cannot solve design pattern engineering overnight or in a single
thesis. Design patterns appear in socio-technical systems and not just in software. One
of the more interesting modelling techniques for modelling patterns is that presented
by the GRL.

25

C
h
a
p
t
e
r 3

Domain Specific Goal-Oriented
Modelling

Chapter 10 introduces NovoGRL, a re-engineering of the Goal Requirements Lan-
guage (GRL) as an Embedded Domain Specific Language within Idris. Chapter 5
introduces Sif a Domain Specific Modelling Language (DSML) that uses NovoGRL
as its meta-model. This chapter introduces the reader to Goal-Oriented Modelling
(GOM), the Goal Requirements Language, and provides background information on
DSML creation.

3.1 Goal Modelling

GOM is commonly used in requirements engineering to reason about socio-technical
systems [Myl06]. Goal models describe: the set ofGoals associated with the problem,
the perceived requirements of a system; the Tasks required to address said goals, in-
cluding technical and non-technical artefacts; and the relationship between goals and
tasks. Goals are broken down into smaller goals, and the links between goals and tasks
annotated with some satisfaction metric that denotes the intended satisfaction of the
goal by a set of tasks. With goal satisfaction, comes the ability to analysis goal models
and determine if the given set of tasks can satisfy, and to what degree, a set of goals.

GOMLs such as i? [Yu97], GRL [UTN12], and Tropos [Bre+04] have been used

27

3. Domain Specific Goal-OrientedModelling

tomodel socio-technical systems as part of the requirements engineering process. These
languages allow for a stakeholder’s requirements to be modelled and reasoned upon
in conjunction with the proposed solution. A natural extension is the modelling of
security requirements for software systems [vLam01], in which goals represent security
requirements and tasks software artefacts. Goal models can be constructed to describe
software systems as a set of tasks and their relation to the ideal set of security require-
ments for the proposed software system. The resulting goal model can be analysed to
determine whether or not the software system satisfies the security requirements.

3.2 The Goal-Requirements Language

The GRL is a known GOML based on i? [Yu97] for requirements modelling, and has
been specifically designed to aid in reasoning over both functional and non-functional
requirements for socio-technical systems. Further, the GRL was incorporated into the
standard forUser Requirements Notation [UTN12].

3.2.1 Definition

Along with i?, the GRL is a graphical modelling language and requires the visual
construction of models. Figure 3.1 details the legend for the GRL. Core to the GRL
language is the representation of problems as a goal graph. Nodes (intentional elements)
detail constructs in the model, and labelled edges (element links) how the constructs
are linked.

Intentional elements can be a goal, soft-goal, task, or a resource. Goals are used to
describe functional requirements, and soft-goals non-functional requirements. Tasks
are actions that can be used to provide a solution to both goals and soft-goals. Tasks
alone cannot be used to satisfy goals, resources are used to specify constructs that are
required by both tasks and goals.

Element links are used to describe the structural and intentional relationships
between the model constructs. Elements need not be atomic and can be decomposed
into sub-elements, as such the GRL supports and, or, and xor element decompos-
ition. Intentional relationships are used to describe the effect that elements have on
each other. Contribution links are used to describe the direct impact between elements,
and correlation the side-effect that one element’s use has on another. Intentional links

28

3.2. The Goal-Requirements Language

��� ����� �� ���

������ �� ����� �������� �� ��� ������������� ����������� �������� ���������

�� �������� �� �������� ��� ����������� �������� ���� ������ ��� ��� �� �����
������ ������ ������ ��� ���������� ��������� ������ ���� ����� �� ���� ����� �� ��
������ ��������� ������� �� ������������ ��� � �������� ������� � ���� �� ������������
�� �������� ��������� ��� ������� �� ����� ������� ����� ��� ������� �� ����������
������������� ����� ��������� ��������� �� ��� ������������������� ��� ����� �� �����
������ �� �� �������� �� ���������� ���������� ������ ��� ����� ��� ������� ���������
�� �� ���������� �� ����� ���������� � ����������� �� ��� ������ �� ������� �������
������ ��� ������� �� ����������� ���� ��� ��� ������ �������� �� ��� ������ �� ���
����������� ��� ���� ����� �� �� ��������� ����� �� �� ���������� ��������� �� ��
���������� ��� ��������� �� �� ���������

��� ������� ����� ���� ������ ��� ��� ���� �� ������� �������� �������� �� ���
����������� ����� ����� ���������� ��� ����������� ������������� ���������� ������
���������� �������������� ��� �������������� ������������� ����� ����� �� �������
�� �� ���������� ���� ������������ ���� ���� �� ���� �� ��� ��������������
��� ���������� ��� ��� ��� ������������� ����� ��� ������������� �� ���������
�� ��������� ������ ������������ ����� �������� ������� ������� �� ��� ������� ��
������� �������� � ������������ ���� ��� ���� � ����������� ������������ ���� ����
������ ���� �� � ������������ ������������ �������� ����� ������� −��� ��� ����

������������� ������� �� ����������� ������� ��� �����������

Figure 3.1: Legend for the GRL [Amy+10].

are weighted according to the value of the contribution (or effect) of the link. These
contributions can either be qualitative or quantitative.

3.2.2 Model Evaluation

Evaluation algorithms for goal satisfaction in the GRL was described in Amyot et al.
[Amy+10] and UTN [UTN12]. Evaluation processes are either qualitative or quantit-
ative in approach, depending how the effect of the intentional elements were described.
Further select elements within the model will have an initial satisfaction value. Evalu-
ation strategies are used to propagate the effect of those satisfaction values through-out
the model. Giving each element in the model an associated evaluation value. The
direction of this propagation is dependent upon the evaluation strategy chosen. These
strategies are used to analyse goal models according to known criteria contained within
the model—initial satisfaction values. Different evaluation strategies are used to inter-
rogate the goal model:

• Forward Propagation Can goals be satisfied given the strategy for all leaf
nodes in the model?

29

3. Domain Specific Goal-OrientedModelling

• Backwards PropagationGiven goals that are already satisfied to somedegree,
what degree of satisfaction must each leaf node have?

• HybridAmixture of the other two styles.

Depending on the evaluation strategy chosen, different sets of elements within the
GRLmodel instance will be given initial satisfaction values.

Remark. Giorgini et al. [Gio+03] presents a formalisation of the evaluation se-
mantics for generic goal modelling. Interestingly, Amyot and Mussbacher [AM11]
mentions that no such formal evaluation semantics exist for the GRL.

3.3 Example: Information Secrecy

To further motivate Goal-OrientedModelling, and specifically use of the GRL, this
section demonstrates the goal-oriented modelling of a simple example. Key to the
understanding GOM are the concepts of: problems—the goal to be achieved; and solu-
tions—the means though which the goal can be satisfied. In this example the problem
of Information Secrecywill be modelled, and a solution Symmetric Cryptographywill
be presented. The resulting model will be evaluated to see how the solution affects the
problem and if the problem is solved.

3.3.1 The Problem: Information Secrecy

Information Secrecy is the problem of ensuring the confidentiality of data between
two entities Alice and Bob. Such that if Alice sends a message to Bob, only Bob is able
to read the message. To effectively model the problem, the goals (or requirements) of
the problem need to be identified.

For information secrecy, the root goal is to ensure that the data is kept confidential;
the goal of Data Confidentiality. However, it is naïve to think that this is the only
requirement. A more comprehensive list of requirements include1

1) Recipient Confidentiality—data should be viewable by the intended recipi-
ent only.

2) Suitable Security Level—the mechanism should be configurable for differ-
ent security levels.

1This list is not exhaustive.

30

3.3. Example: Information Secrecy

3) Suitable Performance—the mechanism should not be unnecessarily com-
putational expensive.

4) Comprehensible—end users must be able to use the solution.
5) Minimal Workflow Disruption–the resulting solution should haveminimal

impact on the workflow of the user.
6) Secure Implementation—the implementation of the solution must be se-

cure.
To consolidate the problem these goals can be grouped under a secondary goal Inform-

ation Secrecy and linked through AND decomposition. Thus, in the goal model these
conditions née requirementsmust bemet for the primary goal to be achieved. Figure 3.2
demonstrates the partial goal model for this problem. Of note, this goal model has a
root goal indicative of the final goal that needs to be satisfied. However, such a root
goal is not a necessary requirement in producing goal models. Goal models may have
several root goals that are not linked, nor subsumed under a higher level goal.

Figure 3.2: An example goal model for the problem of ‘Information Secrecy’.

3.3.2 The Solution: Symmetric Cryptography

Within GOM, the solution is the set of tasks/resources that when brought together
will have an effect (positive or negative) on the goals of the problem. Solutions are best
thought of as: the things we need to do to address the problem. This part of the study
examines how symmetric cryptography can be used to address information secrecy.
Symmetric cryptography provides developers with mathematically studied techniques
for encrypting data under a shared key. Translating into one possible set of tasks for
goal modelling, symmetric cryptography can be viewed as the combination of:

1) Mathematical Description—the operational characteristics commom to all
symmetric schemes;

2) Symmetric Algorithm—the specific algorithm used to encrypt;

31

3. Domain Specific Goal-OrientedModelling

3) Symmetric Key—an artefact of the solution used during encryption/decryp-
tion;

4) Algorithm Implementation—the realisation of the algorithm in code.

Figure 3.3: An example goal model for the problem of ‘Information Secrecy’ with a
solution using ‘Symmetric Cryptography’.

Figure 3.3 details the completed goal model. This model illustrates how the solution
affects the problem. These affects are summarised as follows:

1) Mathematical Description—symmetric cryptography has a positive affect
on data confidentiality through virtue of its operation, however, use of a shared
key harms recipient confidentiality.

2) Symmetric Key—mirrors the effects of the mathematical description but
w.r.t. the keys, an artefact of the solution.

3) Symmetric Algorithm—the specific algorithmwill allow for suitable security
levels to be selected, but also the choice of algorithm will have an affect on the
operational performance.

4) Algorithm Implementation—the realisation of the algorithm will affect
the security of implementation, performance of the algorithm, and how it is
introduced into an existing workflow.

Further, the effect that these tasks have on the goal are quantified through contribution
levels. These levels were presented in Figure 3.1.

3.3.3 Model Evaluation

The final consideration in this study, is model evaluation. Does the presented solu-
tion satisfy the given problem? First, a selection of nodes within the model must be
initialised with a suitable satisfaction level. This satisfaction level indicates to what

32

3.4. Domain Specific Languages

Figure 3.4: Goal model from Figure 3.3 after evaluation.

degree the node has been satisfied. From this, an evaluation algorithm propagates these
values across the model. These values were presented in Figure 3.1. For the model
under consideration, each of the tasks will be satisfied fully, and the goal nodes left
unsatisfied. Themodel fromFigure 3.3 can then be evaluated to determine if Symmetric
Cryptography does indeed address the problem of Information Secrecy. Figure 3.4
details the results of the evaluation. These results of the evaluation show that the goal
of information secrecy is not achieved as the sub-goal Recipient Confidentiality is not
achieved.

3.4 Domain Specific Languages

Domain Specific Languages (DSL) are special purpose languages tailored to a specific
application domain [Fow10; Ben86]. As DSLs are targeted for a specific application
domain their expressiveness is reduced in comparison to general purpose languages.
However, the main benefit for using DSL is that of usability. DSLs are constructed to
provide domain experts with an environment that is tailored to their domain. Such
tailoring allows domain experts to become productive in a familiar environment.

A problem in specifying DSLs is that all the functionality required by the domain
expert needs to be implemented within the DSL itself. Sometimes this functionality
already exists within an existing language. The language itself also needs to be imple-
mented. With DSL construction comes the burden of language and functionality
provision. Embedded Domain Specific Languages (EDSL) are DSLs that have been em-
bedded within a host language to capitalise upon the host language’s functionality and
language implementation. The development and use of DSLs and EDSLs have been

33

3. Domain Specific Goal-OrientedModelling

seen in many contexts such as programming, document markup, and data querying.
One well-known example of a DSL are macro languages for computing mathem-

atical expressions based upon data contained within a spreadsheet. The language is
designed for working with spreadsheets, and not for general purpose programming.
Another example is the interface language of the GNU utility bc2 that provides nu-
meric processing. This language allows uses to specify mathematical expressions using
well known operators, and not interface with the code implementing bc itself. Other
well known DSLs include XPath3 and XQuery4, DSLs for working with XML.

Shakespeare5, is a noteworthy family of EDSLs for working with known web-
technologies in Haskell. HTML templating is achieved using Hamlet; CSS specifica-
tions with Cassius or Lucius; and Javascript creation using Julius. These EDSLs
provide developers with Haskell-oriented constructs to work directly and specific-
ally with the relevant web technologies. Allowing the developer to work in the same
environment and use the power of the host language to interact with the presented
technologies.

3.5 Domain Specific Modelling Languages

The provision of DSLs is not restricted to programming. DSLs have been seen in other
settings,most notably to construct criteria for ‘smart collections’. File browsers andmail
applications present users with a means to construct boolean queries. The resulting
‘smart folders’ are then populatedwith results from the query. Amore interesting use of
DSLs is related tomodelling, specifically in the creation of DSMLs. Generally speaking,
DSMLs are the re-use of an existing modelling language for modelling domain specific
problems [Fra13].

Outside of modelling generic socio-technical problems, a secondary use of GOMLs
is as a host language for the creation of DSMLs [OFK15; LHM14; MWA06; GY01].
UML is a well known family of modelling languages for modelling different aspects of
a software system. For instance, Class Diagrams for modelling OO architectures; Com-
ponent Models for modelling component based architectures; and Activity diagrams
for modelling entity interactions. UML provides a generic modelling language and

2https://www.gnu.org/software/bc/
3http://www.w3.org/TR/xpath-31/
4http://www.w3.org/TR/xquery-30/
5https://hackage.haskell.org/package/shakespeare

34

https://www.gnu.org/software/bc/
http://www.w3.org/TR/xpath-31/
http://www.w3.org/TR/xquery-30/
https://hackage.haskell.org/package/shakespeare

3.6. DSML Creation Techniques

DSLs have been created to allow for UMLmodelling using non-standard notation—
cf. PlantUML6 &HUTN7. UML has also been used as the host language for the
creation of Domain Specific Modelling Languages (DSMLs). Two known examples
are SysML [Hau06] and UMLSec [Jür02] for better modelling of software systems
and security modelling.

The relationship between hostmodelling language and domainmodelling language
differs slightly from that seen with programming language based DSLs. Here the host
modelling language (or meta-model) represents a set of semantic and syntactic domain
constructs that the domain model either extends or translates their domain knowledge
to. Both SysML and UMLSec extend UML, and are not embedded within it.

3.6 DSML Creation Techniques

This section details several areas of existing work in DSML construction.
Frank [Fra13] discusses and provides guidance over the design and specification of

DSMLs. Detailing for example, selection of host language, requirements elicitation
and scrutiny, and evaluation of the resulting language including guidance for graphical
notation creation. The framework and techniques presented in this thesis (Chapters 10
and 11) detail the actual acts of DSML creation, and should be seen as a means to
implement the phase development of modelling tool from guidance presented.

Overbeek et al. [OFK15] details the creation ofGoalML aDSML for goalmodelling
within enterprise scenarios. The authors use multi-perspective modelling techniques
to provide stakeholders with different views of the scenario being modelling, their
GoalML being a single view. The work presented by Overbeek et al. differs from the
work presented in this thesis. This thesis is concerned solely with the construction
of DSMLs from the host language, Overbeek et al. address the use of goal modelling
within the Enterprise domain.

T. Clark and Barn [CB13] provide a language-driven approach to DSML creation.
Although their target languages are not necessarily goal-oriented the use of formal
language design is similar. The authors also look to treat domains as languages providing
abstract syntax and semantics, however, they take a different approach in realisation
of the language techniques. Rather than using dependent types and the creation of

6http://plantuml.org
7http://www.omg.org/spec/HUTN/

35

http://plantuml.org
http://www.omg.org/spec/HUTN/

3. Domain Specific Goal-OrientedModelling

interpreters, UML and OCL are used to implement the abstract syntax and semantic
mappings to the host language.

3.7 Domain Modelling and the GRL

TheGRLhas already seenuse as a host language for designpatterns—seeChapter 2 §2.5.4.
With these approaches there is a hard disconnect between the concepts of the design
pattern and their interpretation into the constructs of the host language. The domain
modelling occurs directly within the host language itself.

When using the GRL as a DSML the resulting model instances will also be a valid
GRL instance, however, not all GRL concepts may be used. When using graphical
languages, the modeller has to provide a mapping between the syntax and semantics of
the host and domain languages. This mapping is provided through a legend, however,
the onus is now on the users to ensure correct usage of the host language to model
domain concepts.

DSMLs are modelling languages in name only. Although, modellers can utilise
existing tooling of the host language to verify the correctness and structure of the
resultingmodel, verification of the DSML is harder to achieve. DSML users themselves
have to provide the guarantees over the correctness and structure of their model for
their domain in the host language by verifying the correctness of the interpretation
of their model into the host language, not to mention correctness of the evaluation
semantics.

Moreover, the modeller is free to use the remaining GRL concepts such as cor-
relation links, XOR decomposition or resource and soft goals in their model. How
these unused concepts will relate to the modelled domain will not be known, nor is the
effect that these untranslated concepts will have when determining goal satisfaction.
Further, the translation of concepts from the GRL into the modelled domain must be
performed manually by the user.

Finally, visual modelling languages such as GRL are typically presented as stan-
dalone programs and theirmodelling capabilities cannot be used in other programs. For
example, the known implementation of the GRL is tied to the Eclipse modelling plat-
form and is provided ‘as is’. The GRL cannot be used ‘as-a-library’ and functionality
to work with models outside of model evaluation does not exist.

36

3.8. Summary

3.8 Summary
TheGRL is amodelling language for reasoning about socio-technical problems. DSMLs
are custom modelling languages designed to model a particular domain but use an
existing modelling language for semantic (and structural) concepts.

The GRL is one such GOML, however, the GRL is not suitable for acting as the
host language for a DSML. The pictorial syntax of the DSMLmakes formal reasoning
about GRL derived constructs a harder, and also distinct, process. With the GRL not
only is there a hard disconnect between host and domain language but also the ability
to use these models elsewhere is missing.

To address the concerns of designing DSMLs from the GRL, NovoGRL was
created. NovoGRL is a language oriented re-engineering of the GRL and is designed
as an EDSL within the dependently typed language Idris. Further, NovoGRL also
allows for the semantic concepts of the GRL to be re-described for different domains.
With the creation of NovoGRL comes the ability to construct DSMLs. NovoGRL
was used as the host language for Sif, a DSML for design patterns. Sif has been
presented as bespoke tool offering a DSL for modelling design patterns.

37

C
h
a
p
t
e
r 4

Dependent Types &Well-Typed
(Abstract) Interpreters

Programming language theory is the study of how programming languages are created,
and provides formal methodologies for reasoning and working with these languages.
One of the ideas presented in this thesis is that (programming) language oriented
approaches provide for better foundations for the creation and application of both
GOMLs, and the use of these languages as a host language for DSMLs.

Programming languages offer a means to encode and represent instructions that
a computer can follow. These languages can be modelled formally using a variety of
techniques. Abstract Syntax to describe language expressions and statements; type-
systems to govern construction of well-formed expressions; and semantics to ensure
correct interpretation/execution of expressions. This chapter introduces these concepts
through consideration of a simple language Arith for integer arithmetic and boolean
algebra. Part of the material presented in this section is inspired by and adapted from
an excellent blog post Crash Course on Notation in Programming Language Theory by
Siek [Sie12].

Further, this chapter also details several styles of construction usedwithin this thesis
for the construction of Sif and NovoGRL. Most notably this chapter introduces the
reader to dependent types, a programming language construct that allows for software
programs to be reasoned on with greater precision.

39

4. Well-Typed (Abstract) Interpreters

Note. This chapter provides a comprehensive overviewof the technical background
required for this thesis, and targeted at those not familiar with programming language
design, dependent types, and working at the type level. It is recommended that for
those already experienced with programming language design and not with depend-
ent types, should jump to §4.5. For those already experienced with dependent types,
you should jump to §4.6.

4.1 The Arith Language
Through-out this chapter the formal description and implementation of a simple
language, Arith will be considered. This language extends the language specified
in Siek [Sie12]. The Arith language allows for the specification of expressions that
describe either integer arithmetic or boolean algebra. The supported operators are for:

• Integer Arithmetic: Addition, subtraction, multiplication, and division.

• Boolean Algebra: Conjunction, disjunction, and negation.

The next section, §4.2, describes how the syntax of Arith is described more formally.
§4.3 describes how well-formed Arith expressions are detailed and reasoned on using
types. The remaining sections detail the construction of an interpreter for Arith
and how dependent types provide correctness guarantees towards the interpreters
implementation.

4.2 Abstract Syntax
The syntax of programming languages can be described concisely using a formal nota-
tion such as Backus-Naur Form (BNF). Formal notations define the permissible ex-
pressions that are to be found within the language. Extended-Backus-Naur Form

(eBNF) [ISO96] and Augmented-Backus-Naur Form [CO08] are examples of popular
variants of BNF.

For Arith, language expressions include several binary operations on numbers, an
unary operation for negation, and parentheses for grouping expressions. An example
of a BNF grammar for Arith is given in Figure 4.1.
Programming Language Theorists are, however, in the business of creating languages
and BNF (and its popular variants) is a verbose means to present a language’s syntax.

40

4.3. Type Systems

� �
1 Expr = Num | Bool
2 | '-' Expr
3 | Expr '+' Expr | Expr '-' Expr
4 | Expr '*' Expr | Expr '/' Expr
5 | Expr '&&' Expr | Expr '||' Expr
6 | '!' Expr
7 | '('? Expr ') '?
8 Num = [0-9]+
9 Bool = 'true ' | 'false '� �

Listing 4.1: The syntax for Arith described using BNF.

e= i | b | −e | e + e | e − e | e / e | e ∗ e | ¬ e | e ∧ e | e ∨ e
b=True | False
i= place holder for any positive integer

Figure 4.1: The syntax for Arith.

For programming language theory a particular variant of BNF is used in which the
name of the language being defined is replaced by a variable used to range over all the
possible values of the language. Figure 4.1 depicts the BNF grammar from Figure 4.1
expressed usingmore popular notation. The resulting grammar is called abstract syntax.

Verbosity of syntax aside, notice how expressions are defined inductively, and that
from the syntax alone it appears to be possible to define boolean operations on integers,
and integer operations on booleans. The presented abstract syntax only provides a
definition of how the language will look, essentially what we say, and not if what we
say is correct. For the latter, a type system is required.

4.3 Type Systems

Type Systems helps us define a means to know and reason about language expressions.
Types are used in programming languages to differentiate between values, such that the
programmer can manipulate these values according to a prescribed set of rules—The
Type System. For example, Table 4.2 presents a series of values and their corresponding
types.

The set of types for a language are also described using abstract syntax, and is often
represented using T. The Arith language has two types of constructs: values and

41

4. Well-Typed (Abstract) Interpreters

expressions. These form the structure of the language. However, there are two kinds
of values and two kinds of expressions: Boolean and Integer. It is these kinds that form
the type system.

T=B | Z

The typeB, represents boolean values and expressions, andZ represents integer values
and expressions. A type need not be given explicitly for expressions, as the type for an
expression will be the type of the objects contained within.

Value Type Description
42 Nat Natural numbers

−273.15 Float Real numbers
496 Int Integer numbers

“Cou Cou!” String Textual value
Table 4.2: Example pairings of values and their types.

4.3.1 Well-Typed Expressions

Types help us to reason about the correctness of language expressions and ensure that
only valid expressions are constructed. The type of an expression is calculated from
the types within the expression itself. For example, given the expression (1+2). The
expression will have type Z as the result of evaluating the expression is the value 3,
which is an integer. Type systems are defined using relations that will allow for the
pairing of expressions to types. This relation is also known asWell-Typed, and will only
contain: correctly typed expressions paired with their type. For example:

((1+2),Z) ∈WellTyped

(True,B) ∈WellTyped

(True,Z) ∉WellTyped

(1+2∧True,B) ∉WellTyped

Note we do not have a means (yet) to ensure that only well-typed expressions are
constructed. These are typing rules and are introduced in §4.3.3. Before these typing
rules can be specified, the idea of Typing Environmentsmust first be introduced.

42

4.3. Type Systems

4.3.2 Typing Environments

When working with languages keeping track of what elements in the language have
what types is important. For simple languages, such as Arith, there is no need as
there are no variables. The resulting expressions can be clearly disambiguated from
each other. In languages with variables, however, simple relations are not enough.
Typing Environments are used to keep track of local variables and their types so that
expressions can be disambiguated by discerning the type of the variable. Traditionally,
typing environments are denoted by the Greek letter Γ .

Modelling complete typing environments is not required for Arith, as the lan-
guage does not have variables. Typing environments will not be considered. For more
information the reader can consult Siek [Sie12]. Regardless, the definition of Well-
Typed can be improved using the idea of a type-environment by including triples of the
form: (Γ,e,T). TheWellTyped set will contain expressions that have a type T derived
from a local context Γ .

(Γ,e,T) ∈WellTyped

To save on typing, the short hand Γ ` e :T is used. This is read: ‘in a context Γ , e has
type T’.

4.3.3 Typing Rules

Types and typing environments act as building blocks to help us construct well-typed
programs. To construct the set of relations forWellTyped, Typing Rules need to be
defined that specify how expressions are typed and how types interact when expressions
are combined.

What are Typing Rules?

Typing rules are a series of judgements that work in a particular context, with the top
line defining the inputs and the bottom line the result. The Arith language will have
the following small set of typing rules. Given that the language has no variables the
typing environment will be empty and is represented using the empty set.

Integer Number Arithmetic

Numbers
Γ ` i :Z Γ ` e :ZNegation

Γ `−e :Z

43

4. Well-Typed (Abstract) Interpreters

Γ ` e1 :Z Γ ` e2 :ZAdd
Γ ` e1+e2 :Z

Γ ` e1 :Z Γ ` e2 :ZSub
Γ ` e1−e2 :Z

Γ ` e1 :Z Γ ` e2 :ZMult
Γ ` e1∗e2 :Z

Γ ` e1 :Z Γ ` e2 :ZDiv
Γ ` e1/e2 :Z

Boolean Operations

Booleans
Γ `b :B Γ `b :BNot

Γ `¬b :B

Γ ` e1 :B Γ ` e2 :BAnd
Γ ` e1∧e2 :B

Γ ` e1 :B Γ ` e2 :BOr
Γ ` e1∨e2 :B

4.4 Interpretation Semantics
So far introduced, is the ability to: (a) model syntax; (b) represent types; and (c) de-
clare well-typed expressions. Generally speaking, semantics provide a means to reason
about what expressions in the languagemean. Denotational semantics and operational
semantics provide a means to reason about what languages do (denotational), and how
languages are executed—operational. For Sif this is an interpretation into an instance
of NovoGRL. For NovoGRL this is an interpretation into a graphmodelled in Idris.
The remainder of this section will detail how to provide an interpretation of Arith
from the formal notation to the Idris programming language. Here the notation � e �
will be used to denote the interpretation of an element, that is a transformation from
one language to another.

4.4.1 Interpreting Types

Figure 4.2 described how the types in the Arith language are to be interpreted to Idris
types. Here each type is interpreted directly into its Idris equivalent: Integer numbers
to Int; and booleans to Bool.

�T � :T→ Type

�Z �= Int

�B �= Bool

Figure 4.2: Interpretation and evaluation semantics for the types in Arith.

44

4.5. Dependent Types

4.4.2 Evaluating Expressions

Each expression in Arith will be transformed into their corresponding Idris equi-
valents, and simultaneously evaluated. Figure 4.3 presents the interpretation and
evaluation semantics for Arith.

�T � :T→ �T �
� i �= i
�b �=b

�¬x �= not � x �
�−e �=(−1) * � e �

� x+y �= � x � + � x �
� x−y �= � x � - � x �
� x /y �= � x � ‘div‘ � x �
� x∗y �= � x � * � x �
� x∧y �= � x � && � x �
� x∨y �= � x � || � x �

Figure 4.3: Interpretation and evaluation semantics for Arith.

Raw values are directly translated into Idris values with type Int. Negative numbers are
interpreted expressions multiplied by−1. Finally, the binary operations are mapped
directly to their Idris equivalents.

One question that might arise from this section is the computation of the return
type for the semantics described in Figure 4.3. Evaluating an Arith expression will
result in a value that has type boolean (B) or integer—Z. In many languages being able
to change the return type of a function based upon the functions input is not possible.
In languages that support full-spectrum dependent types: types can be computed. The
next section introduces dependent types further and the many benefits they have.

4.5 Dependent Types

Types are used to distinguish between different values that exist within a programming
language. Typically, types are ‘whole’ objects, represent singular concepts, and have a
single value. For example: String—words; Int—whole numbers; and Person—a

45

4. Well-Typed (Abstract) Interpreters

person. However, types need not be so whole, and can contain more information about
the values described.

Within several languages polymorphism allows for types to be index with other
types. A common use of this is the creation of container/collection data types in which
the type of the collection is indexed by the type of the element contained within. For
example, Table 4.4 illustrates how the Java Generics system supports such descrip-
tions [WN06]. Here the types are indexed using a secondary type representative of the
data contained within. With these polymorphic data structures greater specification
of a software program’s properties can be given, in conjunction with de-duplication
of coding structures for container objects. However, polymorphic classes as seen in
Java’s collection classes are only parameterised using types. Within Haskell, similar
polymorphic data structures can be constructed naturally, and also using the language
extension ofGeneralised Algebraic Data Type (GADT). However, types can only be
indexed using other types. A natural next step is to allow for types to be parameterised
by any value.

Type Description
List<String> List of String Objects.
List<Integer> List of Integer Objects.
Map<Integer, String> Mapping between Integers and a String.
Map<Integer, List<Foobar>> Mapping between Integers and a list of

‘Foobar’ objects.
Optional<Foobar> Optional type for an object ‘Foobar’.
Table 4.4: JavaGenericsused todescribe collectionswith the typeof the elements being
described within the type of the collection.

4.5.1 Dependent Types Explained

With dependently typed languages, types are no longer just a ‘descriptive label’ and can
contain more information pertaining to the value being describe. There are also more
than parameterised types as provided by GADTs. Within languages that provide full-
spectrum dependent types, types are treated as first class language constructs; types can
be computed. Allowing for a richer and more expressive type system to be constructed
that allows for a program’s properties to be specified with greater precision than before.
With such information being encoded within the type system itself the type-checker

46

4.5. Dependent Types

can now be used to reason about these properties and provide compile time guarantees
towards the correctness of software programs. Dependently typed languages such as
Idris [Bra13], Agda [Nor09], Epigram [MM04], and Cayenne [Aug98] provide pro-
grammers with an unparalleled amount of expressiveness over their software programs.

4.5.2 An Example: ‘Lists with Length’

The power of dependent types can be highlighted through description of the imple-
mentation of natural numbers, and their use in defining ‘lists with length’. In these
examples, and through-out the remainder of this thesis, the Idris language will be used.
For more information about Idris please consult the existing tutorial [Idr15].

Natural Numbers

Mathematically speaking, a natural number is described as any positive integer greater
than or equal to zero. This can be encoded using the ‘Peano’ representation [Pea89].
Peano presented a recursive definition for natural numbers that corresponds directly to
an ADT in which a natural number is either zero, or the successor of another natural
number. This structural representation is useful for the construction of mathematical
proofs.

data Nat : Type where
Zero : Nat
Succ : Nat -> Nat

Using this description, the natural numbers 0, 3, and 5 are described as:
• 0≡ Zero

• 3≡ (Succ (Succ (Succ Zero)))

• 5≡ (Succ (Succ (Succ (Succ (Succ Zero)))))

‘Cons’ Lists

Although Nat is not a dependent type, it can be used to construct one. First consider
the following definition of a list.

data List : (eTy : Type) -> Type where
Nil : List eTy
Cons : eTy -> List eTy -> List eTy

47

4. Well-Typed (Abstract) Interpreters

The List data type is a dependent type parameterised by the type of the elements
collected in the list. A list is specified inductively as the empty list (Nil), or an element
added to the head of another list—Cons1. For example:

[5] ≡ (Cons 5 Nil)

[0,1,1] ≡ Cons 0 (Cons 1 (Cons 1 (Cons 1 Nil))))

["H", "O", "I"] ≡ Cons "H" (Cons "O" (Cons "I" Nil))

Idris supports syntactic sugar for more readable list notation in programs. The Idris
compiler will convert an expression of the form: [x,...,y] into a cons-style repres-
entation. Any data structure that implements the constructors Nil and (::) have
access to this ‘sugar’.

Vectors

Vectors are comparable to List but the type is further indexed by the number of
elements contained within the list The data type Vect is defined as:

data Vect : (len : Nat) -> (eTy : Type) -> Type where
Nil : Vect Zero eTy
Cons : eTy -> Vect n eTy -> Vect (S n) elemTy

As the vector is constructed and elements are concatenated to the head of the vector, the
length value stored in the type of the vector is incremented by one. With the examples
defined earlier, their definition using Vectwill be:

[3] : Vect 1 Int A vector of integers with length one.
[0,1,1] : Vect 3 Int A vector of integers with length three.

["H", "O", "I"] : Vect 3 String A vector of strings with length three.

Concatenation of Lists & Vectors

Represention of a vector’s length using Nat ensures that lists of negative length cannot
be constructed. Further, with such access to the length of a list in its type more precise
descriptions can be used to describe operations on vectors in comparison to lists. For

1Traditionally, in functional languages based upon ML syntax, the Cons constructor is often
represented using an infix operator (::). For pedagogical reasons, this chapter uses a traditional
constructor. For the remainder of this thesis the infix operator will be used.

48

4.5. Dependent Types

example, consider the append operation (++) that concatenates two lists. Standard list
concatenation is defined as:

(++) : List ty -> List ty -> List ty
(++) Nil ys = ys
(++) (Cons x xs) ys = Cons x (xs ++ xs)

The concatenation is achieved by adding each element in the first list (xs) to the second
list—ys. This is the standard definition of list concatenation. The list concatenation
function, (++), will type check correctly against the type signature. However, the
function has been incorrectly implemented; there is a coding mistake. The list that is to
be returned is the first list (xs) appended to itself. Here the programmer is responsible
for ensuring that the implementation of their function acts according to the description
contained within the type signature. When using vectors, such problems are mitigated.
Compare the following implementation for vector append, with the one above for lists.

(++) : Vect a ty -> Vect b ty -> Vect (a+b) ty
(++) Nil ys = ys
(++) (Cons x xs) ys = Cons x (xs ++ ys)

The vector append function details that the resulting vector must not only contain
elements of the same type, but the length must be equal to the lengths of the two input
vectors combined. If the programmer were to provide an implementation of vector
append that returned the first list appended to itself, a type error would be generated.
This type error would detail how the resulting length would not be (a+b), thereby
reducing the possible set of errors that can be made by the programmer. By reasoning
about the length of a vector and the type of elements contained within, stronger more
precise specifications can be given towards operations and structures that use vectors.

4.5.3 Why Dependent Types?

Dependent type systems allow for types to depend on values. Use of these values can
lead tomore precise specifications to be presented, and thereby reducing the possible set
of errors that can be encountered. By offering a language that treats types as first-class
language objects and also provides full-spectrum dependent types, programmers are
given a powerful tool to specify and develop programs. Such power is useful when
constructing EDSLs; this is covered in the next section.

49

4. Well-Typed (Abstract) Interpreters

� �
1 data Arith = Num Int | Boolean Bool
2 | Neg Arith | Not Arith
3 | Add Arith Arith | Sub Arith Arith
4 | Div Arith Arith | Mul Arith Arith
5 | And Arith Arith | Or Arith Arith� �

Listing 4.2: A simple definition of Arith as an inductive ADT.

4.6 Well-Typed Interpreters

Augustsson and Carlsson [AC99] demonstrated how dependent types are used in
the creation of an interpreter for the Typed λ-Calculus [Bar92]. Here, Augustsson
and Carlsson modelled the calculus as an EDSL within Cayenne, a dependently typed
language [Aug98] of the time. The resulting interpreter is well-typed as it allows for
static compile guarantees over the types of expressions. This section takes the Arith
language from earlier in the chapter and constructs a well-typed interpreter for it within
Idris, together with a description of how the formalisms are implemented.

4.6.1 Language Definition

Figure 4.1 presented the abstract syntax for Arith. Within functional languages the
expressions for Arith can be encoded as an inductive ADT. Listing 4.2 presents one
such definition.

However, there are problems with this definition when it comes to implementing
the typing rules for the language. The types for an EDSL can be modelled within Idris
using an enumerated type2. For example, the set of types T in Arith can be encoded
in Idris as follows:

data ArithTy = TyNum | TyBool

In non-dependently typed functional languages typing rules can be modelled through
pattern matching, and the creation of an interpretation function that evaluates the
expressions according to their expected types. For example, using the language defin-
ition given in Listing 4.2, a partial description of an evaluation function using non-

2More complex types can be defined, but for the purposes of this explanation a simple enumerated
type is sufficient.

50

4.6. Well-Typed Interpreters

dependently typed expressions can be described as follows. First, a data type to collect
evaluation results is defined:

data EvalRes = Err String | BRes Bool | IRes Int

Evaluation will result either in an error if the example is ill-typed, a boolean value
for evaluating boolean expressions, or an integer for evaluating integer expressions.
However, to aid in creation of the evaluation function, EvalRes can be turned into
a Functor and then turned into an Applicative data structure. Both functors and
applicatives are functional programming techniques that provide for more abstract and
generalised programming. This tutorial is now starting to rely upon the need of more
complicated programming language techniques to demonstrate show to implement
the typing rules.

An alternative approach to implementing the typing rules is to still encapsulate
the result in EvalRes, but use patterns and pattern matching to pass the expressions
around. Listing 4.3 presents such an implementation of the eval function.

Within Listing 4.3, evalNum and evalBool are used to implement the evaluation
and error handling for dealing with numerical and boolean expressions respectively,
and also where negate negates arithmetic expressions. Only a naïve definition for
evalBool is given, as well as helper functions doAnd and doOr that implement con-
junction and disjunction of boolean terms.

However, this method of implemention for the evalutor for Arith is not the best
approach. First, it is rather verbose and requires the creation of custom data type to
handle errors and report successes. Second, it requires the creation of functions for
each expression, and also the creation of the interpreter. And third, it facilitates the
construction of ill-typed expressions that are only detected at run-(née)-evaluation
time.

Recall, that dependent types are types that can depend on values. With dependent
types, a better implementation of the typing rules involves parameterising the ADT
that represents expressions further by the enumerated type representing types in the
language—see Listing 4.4. What follows is a direct embedding of the typing rules
directly within the types of the expressions.

With this representation and construction of the language as an EDSL within
Idris, the ability to detect ill-typed expressions now becomes a compile time check.

51

4. Well-Typed (Abstract) Interpreters

� �
1 eval : Arith -> EvalRes
2 eval e@(Num x) = evalNum e
3 eval e@(Bool x) = evalBool e
4
5 eval e@(Not x) = evalBool e
6 eval e@(And x y) = evalBool e
7 eval e@(Or x y) = evalBool e
8
9 eval e@(Add x y) = evalNum e

10 eval e@(Sub x y) = evalNum e
11 eval e@(Mul x y) = evalNum e
12 eval e@(Div x y) = evalNum e
13 eval e@(Neg x) = negate x
14
15 evalBool : Arith -> EvalRes
16 evalBool (Boolean b) = BRes b
17 evalBool (And x y) = doAnd (evalBool x) (evalBool y)
18 evalBool (Or x y) = doOr (evalBool x) (evalBool y)
19 evalBool (Not x) = not x
20 evalBool _ = Err "NaB"
21
22 doAnd : EvalRes -> EvalRes -> EvalRes
23 doAnd (BRes x) (BRes y) = BRes $ x && y
24 doAnd _ _ = Err "Not BoolExpr"
25
26 doOr : EvalRes -> EvalRes -> EvalRes
27 doOr (BRes x) (BRes y) = BRes $ x || y
28 doOr _ _ = Err "Not BoolExpr"� �

Listing 4.3: Naïve implementation of an evaluation function for Arith.

� �
1 data Arith : ArithTy -> Type where
2 Num : Int -> Arith TyNum
3 Boolean : Bool -> Arith TyBool
4
5 Neg : Arith TyNum -> Arith TyNum
6 Add : Arith TyNum -> Arith TyNum -> Arith TyNum
7 Sub : Arith TyNum -> Arith TyNum -> Arith TyNum
8 Div : Arith TyNum -> Arith TyNum -> Arith TyNum
9 Mul : Arith TyNum -> Arith TyNum -> Arith TyNum

10
11 And : Arith TyBool -> Arith TyBool -> Arith TyBool
12 Or : Arith TyBool -> Arith TyBool -> Arith TyBool
13 Not : Arith TyBool -> Arith TyBool� �

Listing 4.4: Example of using Dependent Types to embed and model typing rules for
boolean and integer arithmetic expressions directly in theADT representing language
expressions.

52

4.6. Well-Typed Interpreters

Moreover, less code is required to ensure that expressions are well typed. This guaran-
tees correctness-by-construction of language expressions.

The Arith language does not have variables, and as such the typing environment
for Idris can be borrowed completely for modelling the language. If we were to provide
variables, then being able to track the types of variables is essential. For more informa-
tion how to achieve this in dependently typed languages readers are asked to consult for
more information: Augustsson and Carlsson [AC99], Brady and Hammond [BH12]
and The Idris Community [Idr15].

Remark. An alternative means to model this simple typed Arithmetic language is
to introduce functions types in the type to describe operations. This will allow for a
more compact and stronger definition. The implementation of theWell-Typed Inter-
preter in The Idris Community [Idr15], demonstrates this technique.

4.6.2 Implementing The Interpreter

With the implementation of the Arith language complete, the remainder of this sec-
tion discusses how to implement the interpreter. Evaluating expressions from Arith
will result in a value that is either a boolean or integer type. An interesting question
when constructing the interpreter is:How to return a value of the correct type? When
exploring earlier how to implement typing rules this was modelled using an ADT.
Within dependently typed languages, types can be computed using a function that
returns the correct type.

� �
1 interpTy : ArithTy -> Type
2 interpTy TyNum = Int
3 interpTy TyBool = Boolean� �

Listing 4.5: A Type Interpreter for the Arith language.

Within Idris the interpretation semantics defined in Figure 4.2 can be represented
as a function that when given a value returns the appropriate type. This function,
interpTy is detailed in Listing 4.5. Each type in the model is interpreted directly to its
Idris equivalent. This functionwill be used in the definition of the interpreter to ensure
that the result returned has the correct type. Further, notice the similarity between the
definition of interpTy and the formalism given in Figure 4.2.

53

4. Well-Typed (Abstract) Interpreters

The focus now turns to expression evaluation, and how the expressions in Arith
are transformed into their Idris equivalents and simultaneously evaluated. This inter-
pretation was presented in Figure 4.3. Listing 4.6 presents a possible implementation
in Idris.

As with the implementation of the type interpreter, note the similarities between
the formal representation, and implementation.

� �
1 interp : Arith t -> interpTy t
2 interp (Num x) = x
3 interp (Boolean x) = x
4 interp (Neg x) = (-1) * (interp x)
5 interp (Not x) = not (interp x)
6 interp (Add x y) = (interp x) + (interp y)
7 interp (Sub x y) = (interp x) + (interp y)
8 interp (Div x y) = (interp x) `div ` (interp y)
9 interp (Mul x y) = (interp x) * (interp y)

10 interp (And x y) = (interp x) || (interp y)
11 interp (Or x y) = (interp x) && (interp y)� �

Listing 4.6: Implementation of the evaluation semantics for Arith in Idris

A well-typed interpreter for the Arith language has now been constructed. De-
pendent types allows for these constructs to be implemented efficiently and concisely,
Generally speaking, Idris itself has good support for defining more advanced EDSLs
and with concepts not treated here—see Brady and Hammond [BH12]. However,
the correctness of the evaluation function has not yet been guaranteed. As with the
implementation of list concatenation presented in §4.5.2, there is a mistake in the
implementation. Lines 6 & 7 that details the evaluation of addition and subtraction
expressions for integer numbers has been evaluated using addition in both cases. Line 7
should subtract the interpretation of x from y. The next section details an approach
that can be used to avoid such mistakes.

4.7 Types as (Abstract) Interpreters

As the complexity of a language grows, it becomes increasingly more difficult to reason
formally about the language. In other cases the programmer might make a simple
mistake during implementation, for example the mistakes seen with list concatenation
(§4.5.2) and the interpreter for the Arith language—§4.6.2. If it can be shown, how-

54

4.7. Types as (Abstract) Interpreters

ever, that expressions in the language can be mapped to expressions from an existing
formalism then the formalism can be used to reason about the language itself. If the
execution costs of the formalism are lightweight in comparison to the original language
then this modelling can be said to be efficient. This is a core concept in the technique
ofAbstract Interpretation [JN95].

Abstract interpretation allows for correctness guarantees over a language to be given
in direct relation to an easier tomodel formalism. This technique has found success in a
variety of practical settings. One is the analysis of program execution for optimisations
by compilers. Another the analysis of program flow for detecting erroneous states, as
used by static analysis tools.

This section describes the technique of abstract interpretation and how, using de-
pendent types, abstract interpretations can be used to provide compile-time correctness-
by-construction guarantees and run-time checks to a language w.r.t. to a given abstrac-
tion.

4.7.1 ‘Casting Out the Nines’

To illustrate the technique of abstract interpretation, Jones and Nielson [JN95] show
how arithmetic computations are checked for correctness using the technique known
as: ‘Casting out the Nines’. This same illustrative example is repeated here.

Given an arithmetic expressione that evaluates to some valuev, the same operations
in e are performed. However, for each value in e that is greater than nine, the value is
replaced with the sum of its digits until the sum is less than nine. For the expression e
to be correct w.r.t. to the value v, the summodulo nine of the digits of vmust be equal
to the value obtained through ‘casting out the nines’ for e. Let the calculation to be
checked, be defined as follows:

123×457+76543 ?
= 132654

The result 132654 can be checked by reducing the expression on the left-hand side
by ‘casting out the nines’, and calculating the summodulo nine of the digits on the
right-hand side:

55

4. Well-Typed (Abstract) Interpreters

123×457+76543 ?
= 132654

6×16+25 ?
= 21 (mod 9)

6×7+7 ?
= 3

42+7
?
= 3

6+7
?
= 3

4
?
= 3

The results of the calculation performed on both the left and right hand sides (four
and three) are not equal. Hence, the answer found by the calculation is incorrect.
Modelling arithmetic operations, and thus checking the result of, using the cast the
nines technique allows for correctness guarantees to be made. As the complexity of the
calculations grow, the complexity of the correctness proof does not. One casts out the
nines.

4.7.2 Working with Abstract Interpretations

Aproblem, however, with the approach of abstract interpretation is that this modelling
and reasoning of a language w.r.t. an interpretation is normally performed external
to the implementation of the modelled language. There is a disconnect between the
two representations. As types in a dependently typed language can contain any value,
it stands to reason that a dependent type can be used to capture at the type level the
abstract interpretation of a given language. Brady [Bra05, Chapter 5] demonstrated this
approach by modelling operations on GMP integers with an abstract interpretation of
the same operations by using natural numbers. Capturing the abstraction at the type
level allows for compile time correctness-by-construction guarantees to be given over
the presented language; to build the language correctly, the abstract interpretationmust
also be constructed correctly. Further, by having access to the abstraction at run-time
allows for further checks to be made.

The work of Brady [Bra05] on using dependent types as abstract interpreters has
been taken further. Preliminary work by Castro et al. [Cas+15] demonstrates how
these techniques can be used to reason about structured parallel programs. The work
presented in this thesis is an application of the same techniques but used to provide
homomorphisms between DSMLs and the GRL.

56

4.7. Types as (Abstract) Interpreters

4.7.3 The Simplified Arith Language

Recall the Arith language from §4.2. Its complexity in operating over two domains
of operation (integer arithmetic and boolean algebra) is not suitable for introducing
how an abstract interpretation can be modelled using dependent types. To simplify the
example, the support for boolean algebra is dropped, the reformulation will support
integer arithmetic only3.

§4.7.1 has already shown how integer arithmetic can be checked using a ‘cast nines’
abstraction. The remainder of this section introduces the interpretation semantics for
transforming expressions in Arith to the ‘cast nines’ representation, and details its
implementation using dependent types. The same formal representation for Arith as
presented in §4.2 will be used to represent the simplified Arith language.

4.7.4 Implementing an (Abstract) Interpreter for Arith

Suppose there is a function castNine that sums the digits of a number until the result-
ing value is less than nine. Figure 4.4 presents interpretation semantics for constructing
the ‘cast nine’ abstraction of an expression from Arith.

�Arith � :Arith→Z

�Numn �= castNine(n)
�Negn �=(−1)∗castNine(n)

�Add x y �= castNine(� x �+ �y �)
� Sub x y �= castNine(� x �− �y �)
�Mul x y �= castNine(� x �∗�y �)
�Div x y �= castNine(� x �/�y �)

Figure 4.4: Interpretation semantics for abstracting Arith expressions into a ‘Cast
Nine’ abstraction.

As with the description of the ‘cast nine’ approach in §4.7.1, each expression in Arith
has the values first converted to their ‘cast nine’ abstraction prior to the operation being
performed. The inductive interpretation presented in Figure 4.4 will take any Arith
expression and compute the resulting abstract representation.

3Chapter 11 will detail techniques that provides abstractions for both boolean algebra and integer
arithmetic to be modelled.

57

4. Well-Typed (Abstract) Interpreters

Traditional Implementation

� �
1 convert : Arith ty -> Int
2 convert (Num n) = castNine n
3 convert (Neg n) = (-1) * convert n
4 convert (Add x y) = castNine $ (convert x) + (convert y)
5 convert (Sub x y) = castNine $ (convert x) - (convert y)
6 convert (Mul x y) = castNine $ (convert x) * (convert y)
7 convert (Div x y) = castNine $ div (convert x) (convert y)� �

Listing 4.7: Traditional Implementation of Interpretation Semantics from Figure 4.4

Traditionally computing the ‘cast nine’ representation of Arith expressions re-
quired the construction of an evaluation function separate from the standard evaluation
function. For example, Listing 4.7 details one such function. In this examplecastNine
is a pre-given function used to calculate the ‘cast nine’ representation of a given integer.
Notice, that the results of the operations are passed through the castNine function
to ensure that the abstraction is provided.

When constructing an evaluation function, the convert function fromListing 4.7
can be used to convert the expression to its ‘cast nine’ representation. This is shown
in Listing 4.8, where doEval evaluates Arith expressions. The actual result of the
evaluation (from doEval) is converted using sumMod9 that sums the digits mod nine
of the result. If the resulting values are equal (i.e. the result of calling convert and
sumMod9) then a run-time soundness guarantee can bemade over the result of doEval.

� �
1 eval : Arith ty -> Maybe Int
2 eval expr = let res = doEval expr in
3 if sumMod9 res == convert expr
4 then (Just res)
5 else Nothing� �

Listing 4.8: Evaluation function for Arith constructed using traditional techniques.

New Implementation

§4.6 introduced theWell-Typed Interpreter style of implementing the Arith language.
As types can be parameterised by more than one value, the data type used to represent
Arith expressions can be further parameterised by their ‘cast nine’ abstraction.

58

4.8. Summary

� �
1 data Arith : ArithTy -> Int -> Type where
2 Num : (v : Int) -> Arith TyNum (castNine v)
3 Neg : Arith TyNum a -> Arith TyNum (-1 * a)
4 Add : Arith TyNum a
5 -> Arith TyNum b
6 -> Arith TyNum (castNine (a + b))
7 Sub : Arith TyNum a
8 -> Arith TyNum b
9 -> Arith TyNum (castNine (a - b))

10 Mul : Arith TyNum a
11 -> Arith TyNum b
12 -> Arith TyNum (castNine (a * b))
13 Div : Arith TyNum a
14 -> Arith TyNum b
15 -> Arith TyNum (castNine (a `div ` b))� �

Listing 4.9: Dependently Typed Implementation of the Language Grammar& Inter-
pretation Semantics from Figure 4.4

With dependent types the interpretation of constructs from Arith to their ‘cast
nine’ representation now occurs directly within the type of Arith. Previously, this
was achieved using an external function—see convert from Listing 4.7. Using this
representation, not only do Arith expressions have to be well-typed, but they must
also be valid expressions in the ‘cast nine’ abstraction as well. This connection allows
for correctness-by-construction guarantees to be made w.r.t. to a given abstraction.
Listing 4.10 illustrates how the abstract representation ismade accessible during runtime
using Idris’ ability to access implicit type-level values and bring them down to the value
level.

� �
1 eval : Arith ty a -> Maybe Int
2 eval expr {a} = let res = doEval expr in
3 if sumMod9 res == a
4 then (Just res)
5 else Nothing� �

Listing 4.10: Evaluation function for Arith constructed using new techniques.

4.8 Summary
Programming language theory provides a series of techniques useful for defining and
working with languages. Formal grammars are used for defining abstract syntax; types

59

4. Well-Typed (Abstract) Interpreters

to describe expressions, typing rules to express correct composition of expressions; and
semantics to describe a language’s interpretation. This section has only covered the
basics of programming language theory, and more topics such as dealing with variables
have not been covered. Regardless, the knowledge presented in this section is enough
to understand how a declarative EDSL can be modelled and constructed within a
dependently typed language such as Idris. This is the style of construction that the
modelling languages in this thesis are presented.

Using dependently typed languages such as Idris provides programmers with an
environment to support compact, efficient, and correct implementations of EDSLs.
This was shown with the Well-Typed Interpreter for the Arith language. These
techniques are used in the implementation of Sif and NovoGRL, and the tooling to
support pattern document interaction.

The Types as (Abstract) Interpreter approach has illustrated how an abstract inter-
pretation for a language can be represented directly within the type of the expressions
representing the language. Such modelling allows for compile time correctness-by-
construction guarantees to be made, and also runtime checks to be made available. It is
using this technique that the Sif language was implemented with NovoGRL being
used as the abstract interpretation. Chapter 11 discusses this approach in more depth.

60

C
h
a
p
t
e
r 5

Sif: A Design PatternModelling
Language

This chapter introduces and details the Sif language and evaluator. Presenting its
design (§5.1 to 5.3); important aspects of the evaluator implementation (§5.4); and
evaluation of the language to model existing, and new design patterns—§5.5.

5.1 Overview

Sif is a requirements-based goal-oriented DSML for prototyping design patterns,
that uses NovoGRL (Chapter 10) as a host language. The language has been de-
signed as a declarative DSML for design patterns that respects the pattern troika of
problem×solution×context. Problem specifications are modelled separately from their
potential solutions such that different problem solution pairs can be combined and
evaluated to determine how well the given solution satisfies the presented problem.
Problems and solutions are parameterised by a domain of operation (i.e. context) such
that only problems and solutions indexed by the same domain can be paired.

Specifically, Sif problem specifications are modelled as requirements specifications
based upon the Furps requirements model [Gra92] in which requirements are cat-
egorised according to how they relate to the system being modelled. The categories
supported by Furps are: Functional; Usability; Reliability; Performance; or Sup-

61

5. Sif

portability. Problems are presented using textual descriptions, with associated forces
presented as a set of requirements that must be addressed by a solution. Use of Furps
provides a more nuanced requirements model to be provided in comparison to that of
the GRL. The GRL only provides goals and soft-goals, representing functional and
non-functional requirements.

Solution specifications are not designed per the software artefacts of the presented
solution. Not all software design patterns are software based. Rather solution specific-
ations are presented as a set of abstract properties that represent the different aspects of
the solution. A concrete link between a problem and solution is provided in the form
of traits that describe the advantages, disadvantages, and general aspects of the prop-
erty and the effect that these traits have on the requirements specified in the problem.
Each ‘affect’ that a trait has on a problem is detailed using a qualitative contribution
value originating from the GRL. Further, for each trait specified an evaluation value
(also taken from the GRL) must be given that describes the level of satisfaction that a
modeller has in the existence of said trait.

Alongside the language specification is the Sif evaluator, developed in the de-
pendently typed programming language Idris. This evaluator provides a reference
implementation of the Sif language as both a DSML and Embedded Domain Specific

Modelling Language (EDSML), and facilitates the creation of pattern document stubs
in various document formats, including that of Freyja—Chapter 6.

5.2 A DSML for Patterns

Existing work (Chapter 2 §2.5.4) investigated the use of the GRL to model design pat-
terns and pattern languages. Although, the GRL does provide a rich set of semantics to
model socio-technical systems the use of the GRL to model design patterns is nonethe-
less problematic. The GRL does not support pattern specific concepts in its language,
such as problems, solutions, forces, and contexts. This is reasonable as the GRL is
designed for modelling socio-technical systems and not design patterns. Nonetheless,
how pattern concepts are to be modelled in the GRL is open to debate.

With knowledge of DSMLs creation fromChapter 3 it makes sense to use the GRL
as a host language for a DSML that supports the modelling of design patterns but
leverages the concepts from the GRL. Here, the GRL is used as a meta-model to which
the concepts in Sif are interpreted, and from which the evaluation semantics originate.

62

5.3. Language Specification

Construction of valid GRLmodels will thus allow for these models to be evaluated
using existing techniques developed for the GRL. The support for socio-technical
modelling in the GRLmakes it a good host language for modelling design patterns.
With a DSML approach how pattern concepts are transformed into GRL concepts
can be formally specified. Moreover, modellers are presented with constructions and
idioms that are bespoke to design patterns.

A secondary concern is practical in nature. The GRL is a visual language that does
not support directly DSML creation. Chapter 10 presents a reformulation of the GRL,
NovoGRL to allow for creation of DSMLs.

5.3 Language Specification

This section presents the formal language specification for Sif detailing the abstract syn-
tax, type system, and interpretation into a GRLmodel instance. Chapter 10 introduces
and explains the syntax for the formal GRL notation used in this chapter.

5.3.1 Abstract Syntax

Figure 5.1 presents the abstract syntax for Sif togetherwith nominal typing information.
The type-system is explained further in §5.3.2. Documentation within Sif is treated
as a first class language construct. Many of the core language constructs require that
a descriptive title is to be given explicitly, together with an optional textual descrip-
tion. Such first-class treatment ensures that information can be collected and used
in the generation of the pattern document stubs. Much like their design, problem
specifications are presented as constructs that require a title and description, and a set
of requirements. Requirements are given a title and optional description, and different
constructors are used to denote to which requirement type the requirement belongs to
in the Furps model. Solution specifications are presented as a list of titled properties
that require a set of traits to be given. For each trait in the property, the satisfaction
value must be given together with a list of ‘affects’ that detail the effect that the trait
has on a requirement. Finally, domains of operation can be constructed that are used
within the type-system to ensure that the language constructs used within a single
pattern only operate within the same domain.

63

5. Sif

Sif= Sif | ϕ | p | γ | r | s | a | t | l

ϕ ∈Φ(γ)=Pattern t d p s
p ∈P(γ)= Problem t d {r1, . . . , rn}

r ∈R(γ)= Functional t d | Usability t d

| Reliability t d | Performance t d

| Supportability t d

s ∈ S(γ)= Solution t d {a1, . . . , an}
a ∈A(γ)=Property t d {t1, . . . , tn}
t ∈E(γ)=Adv t d q {l1, . . . , ln} | Dis t d q {l1, . . . , ln}

| Gen t d q {l1, . . . , ln}
l ∈L(γ)=Affect c r d
γ ∈G= Domain t d

q ∈Q=Denied | wDenied | wSatisfied | Satisfied
| Conflict | Unknown | None

c ∈C=Make | Help | SomePos | Unknown
| SomeNeg | Break | Hurt

t,d ∈ String= String Values

Figure 5.1: Abstract Syntax for the Sif modelling language.

5.3.2 Type-System

T=G | Q | C | Φ :G→T | P :G→T | R :G→T

| S :G→T | A :G→T | E :G→T | L :G→T

Figure 5.2: Types in the Sif modelling language.

Dependent types allow for types to depend on values. The types used to describe
pattern constructs are parameterised by the domain of operation that these constructs
must exist in. Use of dependent types in this manner allows for modelling constructs
to change domain yet remain structurally intact. Further, dependent types allows for
type-level guarantees to be made that problems and solutions must be in the same
context when being paired. Figure 5.2 presents the types for Sif, these types have the

64

5.3. Language Specification

following semantic meaning.

G the type given to a domain of operation.
Q the type given to satisfaction values.
C the type given to contribution values.
Φ the dependent type given to all patterns for a given domain.
P the dependent type given to all problems for a given domain.
R the dependent type given to all requirements for a given domain.
S the dependent type given to all solutions for a given domain.
A the dependent type given to all properties for a given domain.
E the dependent type given to all traits for a given domain.
L the dependent type given to all affects for a given domain.

With the set of types given, the typing rules for the language can be presented. With
these typing rules correctness by construction guarantees can be made with Sif model
instances. If a model is well-typed then it will also be structurally correct.

Problems and Requirements

First the typing rules for declaring problems and requirements are presented.

Γ ` t : String Γ `d : String Γ `γ :G
Γ ` (Functional t d) :R(γ)

Γ ` t : String Γ `d : String Γ `γ :G
Γ ` (Usability t d) :R(γ)

Γ ` t : String Γ `d : String Γ `γ :G
Γ ` (Reliability t d) :R(γ)

Γ ` t : String Γ `d : String Γ `γ :G
Γ ` (Performance t d) :R(γ)

Γ ` t : String Γ `d : String Γ `γ :G
Γ ` (Supportability t d) :R(γ)

Γ ` t : String Γ `d : String Γ ` rs : List (R(γ)) Γ `γ :G
Γ ` (Problem t d rs) :P(γ)

65

5. Sif

Traits and Affects

Next the rules governing creation of traits and affects are presented.

Γ ` c :C Γ ` r :R(γ) Γ `d : String Γ `γ :G
Γ ` (Affect c r d) :L(γ)

Γ ` t : String Γ `d : String Γ `as : List (L(γ)) Γ `γ :G
Γ ` (Adv t d as) :E(γ)

Γ ` t : String Γ `d : String Γ `as : List (L(γ)) Γ `γ :G
Γ ` (Gen t d as) :E(γ)

Γ ` t : String Γ `d : String Γ `as : List (L(γ)) Γ `γ :G
Γ ` (Dis t d as) :E(γ)

Solutions and Properties

The typing rules for solutions and properties are presented as follows.

Γ ` t : String Γ `d : String Γ `as : List (E(γ)) Γ `γ :G
Γ ` (Property t d as) :A(γ)

Γ ` t : String Γ `d : String Γ `as : List (A(γ)) Γ `γ :G
Γ ` (Solution t d as) : S(γ)

Pattern

Finally the typing rule that governs the creation of patterns is given.

Γ ` t : String Γ `d : String Γ `p :P(γ) Γ ` s : S(γ) Γ `γ :G
Γ ` (Pattern t d p s) :Φ(γ)

5.3.3 Interpretation Semantics

This section details the interpretation semantics for constructing NovoGRLmodel
instances1 from a Sif model instance. Figure 5.3 presents the interpretation semantics
for Sif using set notation to succinctly describe operations on lists. The interpretation
is a two stage process: first the problem is interpreted into a goal model; and secondly,
the solution is interpreted into a list of declarations that describe the elements of the
interpreted solution and their links to the goals and other elements in the model. The

1As a reminder, the definition of NovoGRL syntax is detailed in Chapter 10.

66

5.3. Language Specification

� Sif � : Sif→GRL
�Pattern t dw s �=�w �]? {x | x← � s �}

�Problem t d {r1, . . . , rn} �=;] r]? cs] (r ∧ cs)

where

r=Goal tUnknown
cs= {� r � | r← {r1, . . . , rn}}

� Functional t d �=Goal tUnknown
�Usability t d �=Goal tUnknown

�Reliability t d �=Goal tUnknown
�Performance t d �=Goal tUnknown

� Supportability t d �=Goal tUnknown

� Solution t d {a1, . . . , an} �=n∪xs∪ds∪ (n ∧ xs)

where

n=Goal tUnknown
(xs,ds)= {(

⋃
x,

⋃
xs) | (x,xs)← �a �,a← {a1, . . . , an}}

�Property t d {a1, . . . , an} �=(n, n∪xs∪ (
⋃
dds)∪ (n ∧ xs))

where

n=Goal tUnknown
(xs,dds)= {(

⋃
x,

⋃
rs) | (x,rs)← �a �,a← {a1, . . . , an}}

�Adv t d q {l1, . . . , ln} �=(n, {n
c−→ r | (c,r)← � l �, l← {l1, . . . , ln}})

where

n=Task t q

�Dis t d q {l1, . . . , ln} �=(n, {n
−c−→ r | (c,r)← � l �, l← {l1, . . . , ln}})

where

n=Task t q
�Gen t d q {l1, . . . , ln} �=(n, {n

c−→ r | (c,r)← � l �, l← {l1, . . . , ln}})

where

n=Task t q
� Link c r d �=(c,� r �)

Figure 5.3: Interpretation semantics for converting Sif expressions into GRL con-
structs.

67

5. Sif

problem itself becomes the top most goal of the NovoGRLmodel, with the require-
ments in the problem specification being interpreted as sub-goals linked using ‘and’
decomposition. Solutions are interpreted into a list of declarations. These declarations
specify a secondary goal model that is composed of tasks that represent the constituent
components of a solution specification (i.e. the solution itself, properties, traits and
affects) arranged hierarchically using AND decomposition links. The resulting No-
voGRLmodel will have a task representing the solution as its top most task with sub
tasks representing properties, and so on. The ‘affects’ model elements, represented by
the Link constructor are used to link traits directly to requirements in the problem
using contribution links with the satisfaction value being specified in the Sif model.
The satisfaction values given to traits are also used to provide a default satisfaction value
for their GRL interpretation. For traits that represent disadvantages their satisfaction
values are inverted to enable negative satisfaction values to be propagated through out
the model. For instance, disadvantages that are Satisfiedwill becomeDenied, and thus
Deniedwill be propagated. Had the satisfaction value not been inverted then only a
positive value would be propagated.

5.3.4 Model Evaluation

The evaluation of a Sif model instance seeks to determine how well the given problem
specification is satisfied by the presented solution. That is:How do the traits specified in

a solution’s properties a�ect the requirements of the problem presented? With Sif being
built uponNovoGRL, the existing evaluation semantics can be leveraged. To evaluate
a Sif model instance it is first converted into the NovoGRLmodel represention, and
the resulting model evaluated.

There are several knownalgorithms for evaluatingGRLmodels—seeChapter 3 §3.2.2.
For the structure of the GRLmodels that represent Sif models a forward evaluation
algorithm is required to determine if the goal nodes, representing the problem and
requirements, can be satisfied by the task nodes representing the traits. The other
known algorithms do not propagate the values in the correct direction. Further, no
initial evaluation strategy is required as the model is constructed with all leaf nodes
initialised to a default value.

68

5.4. The Sif Evaluator

5.4 The Sif Evaluator
This section presents the implementation of the model evaluator for Sif. Detailing
specifically its architecture, feature set, and use of dependent types.

5.4.1 Architecture Overview

Sif Executable

libSif

Convert

Eval

Check

CLI

DSL EDSL Converters

Common
Representation

Meta-Model
Builders

Problem Spec

Solution Spec

Prelude/

Figure 5.4: Architecture of the Sif Evaluator.

Figure 5.4 illustrates the core architecture for the Sif evaluator. This evaluator
presents the reference implementation of the Sif language and has been design for
the prototyping of Sif models and the construction of design pattern document
stubs. The evaluator has been implemented in Idris and uses dependent types to
provide correct-by-construction guarantees (see Chapter 4) and succinct language
implementation. Moreover, Idris’ support forAlgebraic E�ects allows for total control
over the construction and use of effectful operations [Bra15b]. For example, file IO,
state, performance metric gathering, and logging.

The evaluator itself is composed of a core library libSif that presents the reference
implementation of the language; and an interactive front-end (the Sif executable) that
allows for model instances to be constructed using a DSL and for other interactions
with Sif models.

Within libSif the ‘core’ language is implemented as a EDSL using dependent
types in the style of theWell-Typed Interpreter—see Chapter 4. With the resulting
implementation of the EDSL and DSL mirroring the abstract syntax presented in
Figure 5.1. This approach not only provides correct-by-construction guarantees over
language construction but also provides further correctness guarantees to be between

69

5. Sif

Sif and NovoGRL. The language has been implemented agnostic to the meta-model
it is interpreted to, and allows for different meta-models to be used. This is explained
more in §5.4.3 & §5.4.6. The language implementation also presents a common in-
terface for working with Sif model instances regardless of underlying meta-model.
Allowing, for example, evaluation functionality to be kept consistent across meta-
model implementations and for consistent serialisation of Sif model instances into
different publication formats—§5.4.5.

The ‘as-a-library’ construction style of the evaluator also allows the use of the
language both as tool to be used by modellers, and as-a-library for the inclusion of
programmatic basedmodelling of designpatterns. Thiswas used in the implementation
of the Frigg utility in Chapter 7. For this thesis, only the former aspect was explored
in more depth. In fact the evaluator was constructed using Sif-as-a-library.

5.4.2 The Sif DSL & Executable

The Sif executable is a command line program used to check, and allow interaction
with, Sif specification files. Figure 5.5 presents the grammar for the Sif DSL using
eBNF syntax [ISO96]. The grammar is presented sans declarations for theHaskell style
code comments supported by the language. During model evaluation the grammar
helps construct an Abstract Syntax Tree that is then used to build Sif model instances.
Chapter 9 presents example model instances specified using the Sif DSL. The Sif DSL
allows for problem and solutions to be defined in separate files. Problems are specified
together with the contexts in which the problem exist, together with the problem’s
requirements. Corresponding to the Problem expression in the language. Each lan-
guage construct in the problem file is associated with an identifier used in the solution
file. Solution files contain all the information required to construct the Solution
expression, and provide an abstract for the resulting pattern. The solution file uses the
identifiers specified in the problem file to refer to specific requirements, contexts, and
the problem itself. The interpreter for theDSL uses standard compiler implementation
techniques to link identifiers with expressions, detect uninitialised identifiers, and to
construct an environment that stores identifiers and their expressions. As specification
files are external to the evaluator, an externally defined Prelude is presented—see Ap-
pendix A. This prelude contains lists of problems and solutions with specific pairings
specified using a YAML2 configuration file. When an interactive session using the Sif

2http://yaml.org/

70

http://yaml.org/

5.4. The Sif Evaluator

〈file〉= ‘sif’, (〈pFile〉 | 〈sFile〉)

〈pFile〉= ‘problem’, 〈probDecl〉, 〈context〉?, 〈requirement〉+
〈probDecl〉= 〈doc〉?, 〈id〉, ‘<-’, ‘Problem’, 〈quotedStr〉
〈context〉= 〈doc〉?, 〈id〉, ‘<-’, ‘Context’, 〈quotedStr〉

〈requirement〉= 〈doc〉?, 〈id〉, ‘<-’, 〈reqType〉, 〈quotedStr〉
〈reqType〉= ‘Functional’ | ‘Usability’ | ‘Reliability’

| ‘Performance’ | ‘Supportability’

〈sFile〉= ‘solution’, 〈pattDesc〉, 〈solution〉
〈pattDesc〉= ‘Description’, (〈literalStr〉 | 〈quotedStr〉)
〈solution〉= 〈doc〉?, ‘Solution’, 〈id〉,

‘solves’, 〈id〉, ‘in’, 〈id〉, ‘{’, 〈prop〉+, ‘}’
〈prop〉= 〈doc〉?, ‘Property’, 〈quotedStr〉, ‘{’, 〈trait〉+, ‘}’
〈trait〉= 〈doc〉?, 〈traitType〉, 〈quotedStr〉, ‘is’,

〈sValue〉, ‘{’, 〈affect〉+, ‘}’
〈traitType〉= ‘Advantage’ | ‘Disadvantage’ | ‘General’

〈affect〉= ‘Affects’, ‘{’, 〈affectBody〉, (‘,’, 〈affectBody〉)?, ‘}’
〈affectBody〉= 〈cValue〉, 〈id〉, (‘by’, 〈quotedStr〉)?

〈cValue〉= ‘Makes’ | ‘Helps’ | ‘SomePos’

| ‘Unknown’

| ‘SomeNeg’ | ‘Hurts’ | ‘Breaks’

〈sValue〉= ‘Satisfied’ | ‘WeakSatis’

| ‘Unknown’

| ‘WeakDen’ | ‘Denied’

〈doc〉=(‘>’, 〈anyText〉)+
〈quotedStr〉= ‘"’, 〈anyText〉, ‘"’
〈literalStr〉= ‘"""’, 〈anyText〉, ‘"""’

〈id〉= [A−Za−z]+

〈anyText〉=Any text

Figure 5.5: eBNF grammar for the Sif Domain Specific Language

71

5. Sif

evaluator is started, the pairings presented in the YAML file are automatically loaded
into the evaluator for ‘interaction’. Further, the evaluator executable is modal in its
operation, with four modes of operations defined:

• Evaluation: Evaluation of problem-solution pairings and reporting of the
satisfaction values for each node in the resulting GRLmodel instance.

• Syntax Checking: Syntax checking (i.e. linting) externally defined files.
• Convert: Apattern document stub generator. Generation of pattern document
stubs from Sif models, output formats include several well-known mark-up
formats and the Freyja encoding. The generator uses the models own docu-
mentation to populate fields.

• Command-Line Interface: A command line interface to for interacting with
the distributed set of problem solution pairings, and accessing the modes of
operation. The CLI facilitates: viewing and evaluation of existing patterns; and
evaluation of externally defined problem-solution file pairings.

5.4.3 Abstract Patterns

A novel aspect of the evaluator is the implementation of the EDSL itself, and represent-
ation of the language expressions. The general construction of the expression language
is derived from theWell-Typed Interpreter—see Chapter 4—and is bolstered using the
Types as (Meta) Modellers approach detailed in Chapter 11.

However, with this style of construction an interpreter must be constructed for
each meta-model that the domain language is to be paired with. Recent work has
investigated the use of dependent types to aid in facilitating cross-language compilation
of functional languages [Bra15a]. Of interest in the work of Brady [Bra15a] is the
construction and support for interfacing with foreign libraries and support for IO
operations. Here dependent types are used to present generic IO operations with types
parameterised by the foreign function interface for the target language. Dependent
types allow programmers to write generic code that can be tailored for the correct
backend during compilation by the compiler itself. The techniques presented in Brady
[Bra15a] are used in the construction of the evaluator to provide abstract pattern
representations for each language expression. This is the Abstract Factory pattern
in action.

Listing 5.1 presents the SifExpr data type that represents Sif language expressions.

72

5.4. The Sif Evaluator

� �
1 data SifTy = TyAFFECTS | TyTRAIT | TyPROPERTY | TyREQ
2 | TySOLUTION | TyPROBLEM | TyPATTERN
3
4 data SifDomain = MkDomain String (Maybe String)
5
6 data SifExpr : (ty : SifTy)
7 -> (d : SifDomain)
8 -> (impl : SifTy -> SifDomain -> Type)
9 -> Type where

10 MkExpr : SifRepAPI impl => impl ty d -> SifExpr ty d impl� �
Listing 5.1: The core data types used to provide an abstract representation of Sif ex-
pressions.

This data type is parameterised by three data structures central to the language imple-
mentation, and is a wrapper around a concrete expression instance that is generically
represented. The first is an enumerated type SifTy representing the types in the Sif
language. This follows the use of enumerated types to provide a ‘meta-type-system’ in
theWell-Typed Interpreter. Second, is a simple data type SifDomain representing the
domain of operation that indexes expressions within Sif. A domain is represented as
having a title and possible description. The final parameter is an abstract description of
the concrete expression representation allowing for different representations (and thus
meta-models) to be explored for representing Sif model instances. The implementa-
tion of the representation must also be parameterised using SifTy and SifDomain.
These type-level parameters are presented to language expressions in the constructor.

Listing 5.2 presents the SifREPAPI interface, this interface ensures that operations
on language expressions are applicable to all representations, The SifREPAPI interface
declares and constrains the permissible operations on language representations to a fixed
set. These operations allow for inspection of language expressions and their contents,
and also the execution of the evaluation operation itself. This interface also constraints
the permissible representations of language expressions to be of type impl, the same
parameter declared in the type. SifExpr is also used to declare an implementation
that respects this interface. Further, the values in the type of the parameter in the
constructor are also used to populate the type of the resulting SifExpr type. These
data types allow for highly generic language expressions to be constructed. However, to
do so, factories need to be defined that allow for implementation agnostic expressions
to be generated such that only expressions parameterised by the same values can be
used together.

73

5. Sif

Note. Language expressions in the abstract syntax for Sif (§5.3.1) are parameterised
by their domain of operations. Here language expressions are also parameterised by
their domain of operation. This provides compile time and runtime guarantees that
only language expressions within the same domain can be combined.

� �
1 interface SifRepAPI (impl : SifTy -> SifDomain -> Type) where
2 getTitle : impl ty d -> {auto prf : HasMData ty} -> String
3 getDesc : impl ty d -> Maybe String
4 getRTy : impl TyREQ d -> RTy
5 getTTy : impl TyTRAIT d -> TTy
6 getSValue : impl TyTRAIT d -> SValue
7 getCValue : impl TyAFFECTS d -> CValue
8
9 getProblem : impl TyPATTERN d -> impl TyPROBLEM d

10 getSolution : impl TyPATTERN d -> impl TySOLUTION d
11
12 getReqs : impl TyPROBLEM d -> List (impl TyREQ d)
13 getProperties : impl TySOLUTION d -> List (impl TyPROPERTY d)
14 getTraits : impl TyPROPERTY d -> List (impl TyTRAIT d)
15 getAffects : impl TyTRAIT d -> List (impl TyAFFECTS d)
16 getReq : impl TyAFFECTS d -> impl TyREQ d
17
18 evalPattern : impl TyPATTERN d -> Sif.EvalResult
19 fetchMetaModel : impl TyPATTERN d -> MetaModel
20
21 getDomain : impl ty d -> SifDomain
22 getDomain {d} _ = d� �

Listing 5.2: The SifRepAPI interface that defines operations common to all model
representations.

5.4.4 Abstract Pattern Factories

Within the implementation of the Sif evaluator, a dependent record SifBuilder

captures a set of factories for building valid Sif expressions that are all tied to the same
implementation and domain. SifBuilder is indexed by the underlying language
representation used. These factories are functions stored within the record3. The
use of these factories are analogous to the use of constructors in constructing data
type instances. Dependent types are used to thread instances of SifExpr in the type

3In a functional language functions are first class.

74

5.4. The Sif Evaluator

� �
1 record SifBuilder (impl : SifTy -> SifDomain -> Type) where
2 ...
3 buildReq : (d : SifDomain)
4 -> RTy
5 -> String
6 -> Maybe String
7 -> SifExpr TyREQ d impl
8
9 buildProblem : (d : SifDomain)

10 -> String
11 -> Maybe String
12 -> List (SifExpr TyREQ d impl)
13 -> SifExpr TyPROBLEM d impl
14
15 buildSolution : (d : SifDomain)
16 -> String
17 -> Maybe String
18 -> List (SifExpr TyPROPERTY d impl)
19 -> SifExpr TySOLUTION d impl
20
21 buildPattern : (d : SifDomain)
22 -> String
23 -> Maybe String
24 -> SifExpr TyPROBLEM d impl
25 -> SifExpr TySOLUTION d impl
26 -> SifExpr TyPATTERN d impl
27 ...� �

Listing 5.3: Partial Declaration of the SifBuilderRecord.

signature to ensure that the expressions are in the same domain, and also that the typing
rules specified in §5.3.2 are adhered to. Listing 5.3 presents a partial declaration (for
illustrative purposes) of the SifBuilder record. When presenting a new language
implementation, only an instance of SifBuilderneeds to be defined for that language.
The rest of the evaluator implementation works with SifExpr.

Further, the expression factories in aSifBuilder instance are not used directly. An
API has been defined to providedmore usable type synonyms, and a set of functions to
abstract over accessing and calling the functions stored in a SifBuilder instance. For
example, the actual expression factory presented for constructing patterns is defined in
Listing 5.4, together with the expanded type-synonyms.

As with the use of dependent types in implementing typing rules, here the values
in the function’s type signature are used to ensure correct use. When building a pattern,
the presented problem and solutionmust both be parameterised over the same domain,

75

5. Sif

� �
1 mkPattern : SifBuilder impl
2 -> (d : SifDomain)
3 -> String
4 -> Maybe String
5 -> PROBLEM impl d −− S i f E x p r TyPROBLEM d imp l
6 -> SOLUTION impl d −− S i f E x p r TySOLUTION d imp l
7 -> PATTERN impl d −− S i f E x p r TyPATTERN d imp l
8 mkPattern impl d t desc p s = (buildPattern impl) d t desc p s� �

Listing 5.4: An example expression factory for pairing a problem and solution in Sif.

and have been constructed using the same underlying representation. This can be seen
in Listing 5.4, in which the values d and impl are propagated through out the type
signature. When this function is called the parameter’s types must all have the same
value. These values have been ‘threaded’ through the signature. This threading of
values is a common pattern when using dependent types4.

5.4.5 Pattern Document Stub Generation

Recall that a mode of operation for Sif is that of document stub generation. The
ability to convert documents to other well-known formats comes from a document
conversion library (inspired by a similar well-known tool called Pandoc5) developed
as part of the thesis. This tool is available online [dMH15c]. Documentation in Sif is a
first-class language construct and accessible for use by the EDSL implementation. It is
this documentation that provides the text stubs used to fill in sections of the generated
document.

An interesting use of dependent types is the construction of a generic conversion
function to convert pattern documents to a supported output format. Listing 5.5
details the dependent function. Here a well-typed interpreter has been constructed to
allow for a single function to convert the model to multiple named formats, returning
a data type specific for the output selected.

5.4.6 Meta-Model Representation

The final novel aspect of the evaluator is how the Sif language’s meta-model is represen-
ted and linked to the language constructs. Sif language constructs are ‘parameterised’

4See Chapter 11 §11.5 on Type Threading for more information
5http://www.pandoc.org

76

http://www.pandoc.org

5.4. The Sif Evaluator

� �
1 data SifOutFormat = ORG | LATEX | CMARK | XML | STRING | FREYJA
2
3 convTy : SifOutFormat -> Type
4 convTy LATEX = String
5 convTy CMARK = String
6 convTy ORG = String
7 convTy XML = XMLDoc
8 convTy STRING = String
9 convTy FREYJA = XMLDoc

10
11 convTo : (fmt : SifOutFormat)
12 -> PATTERN impl d
13 -> (convTy fmt)
14 convTo FREYJA p = Freyja.toXML (toFreyja p)
15 convTo XML p = toXML p
16 convTo EDDA p = toEdda p
17 convTo ORG p = org (toEdda p)
18 convTo LATEX p = latex (toEdda p)
19 convTo CMARK p = markdown (toEdda p)
20 convTo STRING p = toString p� �

Listing 5.5: A well-typed interpreter for converting patterns in Sif to supported
formats.

by the language’s meta-model. This style of construction allows for different meta-
models to be constructed and used to construct Sifmodel instances. This constructwas
detailed in §5.4.4. During the construction of the evaluator two SifBuilder factories
were constructed to represent two different construction styles for the interpretation
semantics detailed in §5.3.3.

The first style was a classical direct interpretation from a Sif expression to the
corresponding expression fromNovoGRL. This translation occurred during model
evaluation, and was presented to the evaluator just-in-time for use. Although this ap-
proach works, during the construction of the interpreter, there is a disconnect between
representing the domain language expressions and their interpretation. The validity of
the underlying meta-model (NovoGRLmodel instance) must be manually checked
for correctness post Sif model construction. The time of creation of the Sif model
thus differs from the time of check of the correctness of the underlying meta-model.
This leaves scope for possibly incorrect NovoGRLmodels to be constructed from Sif
models, and for this incorrectness to be discovered post creation and during use.

The second style of implementation used the types as (meta) modellers approach de-
tailed in Chapter 4 §4.7. Use of this approach allows for better construction guarantees
than the direct interpretation. Unlike the direct interpretation valid Sif constructs can

77

5. Sif

only be constructed if valid constructs in the meta-model are also constructed. Here
the time of creation of the Sif model is the same as the time of check of the underly-
ing meta-model. More information of this style of construction, and the differences
between these two techniques, is discussed further in Chapter 11.

5.5 Case Studies

This chapter has introduced the Sif modelling language, its design, and construction.
To investigate the use of Sif for modelling design patterns, the Sif was used to model
several design patterns both existing and new. Table 5.3 summaries the patterns con-
sidered/created during evaluation. This section details several, but not all, of these
patterns. In particular, this section discusses notable aspects of their modelling, con-
struction, and evaluation. The resulting Sif model files are presented as part of the Sif
prelude, distributed along side the evaluator’s implementation [dMH15g], and are also
provided in Appendix A.

5.5.1 Modelling the Policy Enforcement Points Pattern

Policy Enforcement Points (PEP) are fixed points in a software system that governs access
to objects by a subject. When a subject requests access to the object, the enforcement
point checks the access policies detailing the rights of the subject, and how the object
must be accessed. Zhou et al. [ZZP02] describes such a pattern for PEPs.

Modelling this pattern in Sif resulted in a problem definition for Policy Enforce-
ment, and a solution explicitly for Policy Enforcement Points. Interestingly, during
the construction of the problem specification it was noted that Zhou et al. [ZZP02]
do not explicitly state in their list of forces that the solution should explicitly enforce
policies. Forces are supposed to detail aspects of the problem that needs addressing.
For PEPs, policy enforcement should be a listed force.

When listing the consequences in using the solution several more unlisted forces
that are problem specific were also listed. These were: Universality—application to a
variety of deployment scenarios; andUnderstandability—ability of the developer to
implement the solution. This forces should instead be listed as forces that drive the
selection of the solution. This further highlights problems in creating patterns good
patterns.

78

5.5. Case Studies

Problem Solution Context

Abstract Data Types1
Simple Factory Default
OO Factories Default
Abstract OO Factories Default

Information Secrecy2
Symmetric Crypto Default
Asymmetric Crypto Default
Hybrid Crypto Default

Authentication3
Shibboleths Socio
ID Cards SocioTech
Digital Certificates Tech

Access Control4
Generic Door Lock Physical
Keyed Door Lock Physical
Coded Door Lock Physical

Token-Based Auth.3 ID-Cards SocioTech

Policy Enforcement5 Policy Enforcement Points Default

1 Taken from [Gam+94; Fre+04]. 2New/Inspired by [BRD98]. 3New patterns for
the thesis. 4 Taken/adapted from [WF11]. 5 Taken from [ZZP02].

Table 5.3: Summary of the patterns modelled using Sif during evaluation.

5.5.2 Modelling Factory Patterns

Gamma et al. [Gam+94] is a seminal book that presented several patterns for engin-
eering systems in OO languages. One of the patterns presented was the Factory
Pattern, detailing how data can be represented and created separately from its use.
Freeman et al. [Fre+04] also detail the pattern together with several variants. The
complete list of considered patterns being Simple Factory, OO Factories, and
Abstract OO Factories. The second study investigated modelling the factory
patterns from Freeman et al. [Fre+04] and Gamma et al. [Gam+94] to investigate how
different solutions can address the same problem.

Problem

Themodelling of these patterns first required identification of the problem common to
all factory patterns. This is the problem ofAbstract Data Types. That is, how to work
with data structures without knowledge of their concrete representation. Table 5.5

79

5. Sif

presents a set of six requirements for this problem, that were identified through analysis
of existing literature.

Type1 Requirement Description
1 F Language Agnostic The solution should limit the use of language

specific features.
2 S Minimal Dependen-

cies
The resulting code should have minimal de-
pendencies.

3 F Flexible Replace-
ment

There should be an ability to replace the
method of creation easily.

4 F Closed for Modifica-
tion

The creation and use of data instances should
be closed for modification.

5 F Agnostic Generation
of Objects

The solutionmust allow for the generation of
data structure instances without implement-
ation of data structures.

6 F Separate Data Struc-
tures

The solution must provide a means to separ-
ate representation and knowledge of the un-
derlying implementation.

1 For brevity the requirement types are listed by first letter only.

Table 5.5: Requirements for the problem ofAbstract Data Types.

Context

For these patterns it was decided not to model the contexts in which the problem and
solutions exist and the default context was chosen.

Solutions

The descriptions of the chosen patterns from Freeman et al. [Fre+04] were used to
model the solutions presented below. Table 5.7 presents the results of their evaluation.

Simple Factory The first solution presented is that for the Simple Factory pattern
that requires programmers to program against interfaces. These interfaces describe the
permissible operations on an abstract data structure. During development, program-
mers implement concrete implementations of the data structures that are interacted

80

5.5. Case Studies

Simple Factory OO Factory Abstract OO Factory
1 None Denied Denied
2 wSatisfied Satisfied wDenied
3 wDenied wSatisfied wSatisfied
4 Satisfied Satisfied Satisfied
5 Satisfied wSatisfied wSatisfied
6 Satisfied Satisfied wSatisfied

Overall wDenied Denied Denied
Table 5.7: Evaluation results for the factory patterns modelled in Sif.

with solely through the interface. Restriction of the interactions with the data structure
through the interface allows for different concrete implementations to be considered
without affecting code that uses the underlying implementation. The notions of inter-
faces, concrete products, factories, and clients were used as the core properties of the
solution. A fifth property was presented to represent the idea that not all languages
support interface programming. It is this last property and the idea that for each data
structure an explicit factory must be created that causes the solution to become weakly
denied.

OO Factories The second solution represents the Factory Method pattern. This
pattern extends the simple factory pattern conceptually and provides an interface for
creating data but lets the subclasses decide which class to instantiate. A factory method
allows a class defer instantiation to subclasses. As with the previous pattern similar core
notions were used to define the properties. However, with OO factories a more diverse
range were created to reflect the entire pattern. This pattern evaluates to denied due to
the use of explicit OO concepts that are a core part of the solution.

Abstract OO Factories The final solutionpresented is a refinement of theFactory
Method pattern. Providing an interface for creating families of related or dependent
data structures without specifying their concrete implementations. Table 5.7 shows that
a similar result is seen during evaluation as with the Factory Method pattern. However,
there are noticeable differences. For example, as this solution describes the creation of
a family of products, this will have a negative affect on minimal dependencies in the
resulting solution.

81

5. Sif

5.5.3 Modelling Information Secrecy

This case study investigated modelling solutions to information secrecy using cryp-
tographic solutions. This was inspired from initial readings of the Information
Secrecy pattern, first detailed in Braga et al. [BRD98]. This reading viewed a set of
patterns that were just wrong. For a demonstrable evaluation showing the badness of
the Braga et al. patterns see Chapter 8 §8.6 in which the report cards for the patterns
are detailed. The goals of the study were to investigate how to model:: (a) new patterns
based upon existing patterns; and (b) a set of patterns that solve the same problem.

Problem

Type Requirement Description
1 R Secure Implementa-

tion
The implementation should be implemented
securely.

2 U Minimal Workflow
Disruption

Themechanism should not impact on normal
operations.

3 U Comprehensible by
Non-Experts

Mechanism should be usable by non-experts.

4 P Suitable perform-
ance

Protecting data should not take forever.

5 P Suitable Security
Level

Different levels of security should be permit-
ted.

6 F Recipient Confiden-
tiality

Thedata should be viewable only by the inten-
ded recipient

7 F Data Confidentiality Core principle that ensures that the data is
kept confidential.

1 For brevity the requirement types are listed by first letter only.

Table 5.9: Requirements for the problem of Information Secrecy.

One of the noted problems with the treatment of information secrecy by Braga
et al. [BRD98] is that the problem description describes problems associated with the
use of cryptography and not the problem of information secrecy itself. Before any
cryptographic solutions can be modelled, a set of solution agnostic requirements must
be designed. Table 5.9 presents these new requirements.

82

5.5. Case Studies

Solutions

With the set of requirements defined, a set of cryptographic solutions can be mod-
elled. A second problem with the Information Secrecy as presented by Braga et al.
[BRD98] is that the design presents an agnostic cryptographic solution that does not
respect the known different types of ciphers available: Symmetric&Asymmetric. Nor
their known combination as a part of aHybrid scheme. To respect these usage patterns,
three solutions were modelled:

• Symmetric Cryptography: use of a shared key to encrypt and decrypt data
using the same key.

• Asymmetric Cryptography: use of key pairs for distinct encrypting and
decryption of data.

• Hybrid: use of symmetric cipher to encrypt payloads, and use of asymmetric
cipher to encrypt the symmetric key used.

For all the solutions modelled, they were described according to properties that de-
tail: (a) the mathematical constructs that support the solution; and (b) the operational
characteristics of the solution. Table 5.11 presents the results of model evaluation.

Symmetric Cryptography Symmetric ciphers have been developed to provide
fast operations over large data. To achieve such fast operations themathematics involved
requires that the operations are symmetric in nature and that the same key is used.
Further, different ciphers have differentmodes of operation that affects the behaviour of
the cipher used. Ultimately, although themathematics behind symmetric cryptography
is sound incorrect usage can cause problems.

Asymmetric Cryptography Asymmetric cryptographic schemes define a set of
three functions that when used together allow for data to be kept confidential without
the need for a shared key. A key theme in asymmetric crypto is the idea of separate
encryption and decryption key pairs. Data is encrypted under an encryption key such
that only the decryption key that is paired with the original encryption key can decrypt
the data. Although, asymmetric ciphers provide better functional operation, they are
known to be slow when dealing with large data. Further, with this solution incorrect
parameter choices will affect the security of the data.

83

5. Sif

Hybrid Cryptography Hybrid schemes present a combineduse of asymmetric and
symmetric encryption schemes to provide an efficient solution to information security.
Symmetric schemes are used to provide efficient encryption of data, regardless of data
size. The symmetric key is itself encrypted using an asymmetric scheme to provide
the functionality associated with asymmetric schemes. The efficiency of asymmetric
schemes are achieved as symmetric keys are small. This solution to information secrecy
was modelled by combining, adapting, and extending the model descriptions from the
previous two solutions.

Model Evaluation

Req. Sym Crypto. Asym Crypto. Hybrid Crypto.
1 wSatisfied wSatisfied wSatisfied
2 Satisfied wDenied wSatisfied
3 wSatisfied wDenied wSatisfied
4 wSatisfied wDenied wSatisfied
5 wSatisfied wSatisfied wSatisfied
6 Denied Satisfied wSatisfied
7 Denied wSatisfied wSatisfied

Overall Denied wDenied wSatisfied
Table 5.11: Evaluation results for the Information Secrecy patterns modelled in Sif.

Table 5.11 presents the results of running the evaluator against the three different
solutions. The results are interesting for a variety of reasons. Notice the mixture of
satisfaction values between the symmetric, asymmetric and hybrid solutions. This is
indicative of the strengths and weaknesses of both solutions in addressing the problem.

Even more interesting are the values obtained from the hybrid solution. Indic-
ating how when combined, the two cryptographic solutions satisfy the problem of
information secrecy better than they do individually. This aspect also highlights a
limitation of Sif in that it does not model pattern languages and prohibits for multiple
solutions to be combined to address a single problem. This aspect is further indicated
in the actual satisfaction values themselves for the requirements. For example, none
of the solutions out-rightly address the problem of information secrecy. Specifically,
the requirements used to denote data confidentiality has been evaluated to Denied

84

5.5. Case Studies

for symmetric solution. Although, the models present technical solutions, the prob-
lem they are addressing cannot be solved using the technical descriptions alone. For
cryptography to be used successfully, a whole host of problems and solutions must
be addressed first. This would require a pattern language to be modelled. How this is
achieved is left for future work.

5.5.4 Modelling Authentication

The tutorial from Chapter 9 demonstrates how Sif can model various authentication
patterns, detailing the construction of Authentication through Shibboleths
and Authentication through ID Cards. The next, and final, set of case stud-
ies discussed in this section details the remaining patterns constructed. Brown and
Fernandez [BF99] introduces the Authenticator pattern, a technical solution to
the problem of authentication with a remote service. Erber et al. [ESP07], Fernández
and Sinibaldi [FS03], Fernández and Warrier [FW03], Fernández [Fer07], Ajaj and
Fernández [AF10], Morrison and Fernández [MF06] andWeiss [Wei06] presented
similar authentication related patterns. Looking at authentication, this case study
specifically investigated both the modelling of problems, and modelling of problems
and solutions for different contexts.

Problems & Contexts of Authentication

Chapter 9 §9.2 discusses the problem of authentication and the contexts in which
it operates. Authentication is a problem that occurs across many different contexts
ranging from a purely social context, to a purely technical one. Although not supported
by the formal description of the language, the evaluator itself supports the specification
of problems and their contexts of operations. How, different problems and their
contexts are formally modelled in Sif are left for future work and is discussed further
in §5.6.

Onedifficulty found inmodelling theproblemof authentication (seeChapter 9 §9.2)
is that the resulting problem is too generic and does not take into account other ‘prob-
lems of authentication’. For example, authentication problems can be categorised
further by the ‘proof’ used to attest authenticity. An authentication mechanism will
either be: (a) Something you have—a physical token, for example an ID Card; (b) Some-

thing you know—a passphrase, for example a Shibboleth; or (c) Something you are—a
biometric marker, for example gait or finger print. These additional traits will affect

85

5. Sif

the set of requirements used to describe the problem. For problems to be accurately
modelled for these authentication mechanism the problem detailed needs to be ex-
tended in at least three ways: One for each of the types of ‘proof’. Within Sif this
requires a complete and separate problem file to be specified for each of the three types
of authentication: Token Authentication; Passphrase; and Biometric Authentication.
Modelling problems in Sif that are extensions of existing problems is too verbose.

Solutions to Authentication

The problems of efficient modelling files was also found when modelling solutions
to authentication. Three solutions were modelled, two of which were discussed in
Chapter 9. The third and final was the modelling of digital certificates for purely
technical authentication.

Further, a solution to Token Authentication was explored. For the pattern of
Token Authentication through ID Cards it was interesting to note the simil-
arities between the solution file created for the pattern: Authenticationthrough
ID Cards. The resulting files only differ w.r.t. to the difference in references found
between the problem specifications representing authentication and token authentica-
tion. This result further highlights the verbosity in modelling with Sif.

5.6 Discussion

This section presents a discussion over the language and its limitations.

5.6.1 Accuracy & Efficacy

§5.5 presented and discussed the results of using Sif to model several design pat-
terns. By virtue of being able to model both existing (Abstract Factory) and
new (Authentication through Shibboleths) design patterns, the ability of
Sif to model design patterns is self evident. However a question remains over the
accuracy and efficacy of the Sif language.

When compared with themeta-modelling languageNovoGRL, the scope of mod-
elling with Sif possesses inherent limitations. For one, problem specifications are
limited to listing sets of requirements only, how requirements interact with each other
cannot bemodelled. Modelling the effect that a requirement has on other requirements

86

5.6. Discussion

would allow for more precision w.r.t. to the modelling of the problem itself. Novo-
GRL allows for contributions and correlations to be modelled between requirements.
Incorporating this into the Sif language would greatly improve the language’s accuracy.

Another aspect for consideration is the modelling of properties. These properties
have a single type: Property, however, not all properties of a solution are the same.
A property might refer to an abstract concept, or pure software solution, or even an
administrative aspect. Identification of the different types of property will be useful
to allow for greater accuracy in pattern representation. The type of a solution trait
had an affect on the construction of the NovoGRLmodel instance. How different
types of properties may affect the traits contained within them and to the underlying
NovoGRLmodel instance could also affect accuracy ofmodelling. Further, Sif cannot
model the effect that properties within a solution have on each other. Modelling these
relationships would allow for a more accurate model to be produced.

NovoGRL can model satisfaction values and contribution values either qualitat-
ively or quantitatively. Qualitative values being represented by a fixed set of enumerated
values, and quantitative values bounded to the interval (0,100). Sif has been designed
to use the qualitative definitions of these values, presenting modellers with more de-
scriptive values. However, a side affect of using these values is that the values are too
discrete. They do not offer as fine-a-grained capture of the contribution that traits have
on requirements, nor the final satisfaction value. This was seen during the evaluation
when modelling the Authentication through Shibboleths pattern. When
the satisfaction value of the traitAct of C-Rwas changed from Satisfied to wSatisfied
the satisfaction value for several of the requirements were altered toUnknown.

A final accuracy aspect to consider is the role of ‘disadvantages’. Severval GOMLs
have extensions designed to model security-related concepts [MG07; MMZ07]. The
NovoGRLhas no such extensions. Although, resarch has considered the goal-oriented
modelling of security requirements [Gio+05; MMZ10], the focus of this thesis was
to improve upon existing work in modelling design patterns using the GRL. Here
disadvantages are a means to use existing GRL concepts to model negative traits within
a design pattern. Traits are generic modelling constructs. Sif is a general purpose
modelling language for design patterns. Being able to reason precisely on security
requirements was not considered in the initial design of Sif. Future considerations
will be to investigate how to enrich the concepts (security related and others) in Sif to
model design patterns more accurately.

87

5. Sif

5.6.2 Performance

The focus on this research was primarily on the correct construction of a modelling
language. Producing a language with efficient evaluation was not a prime concern.
Regardless, it was noted that during evaluation of the case studies detailed in §5.5, the
performance remained constant regardless of whether the direct or indirect represent-
ation was used. However, the modelling files constructed were not large, and could
be considered realistic in size and typical for what one would expect to see. Future
work will be to investigate the performance of the evaluator when operating on larger
models.

5.6.3 Alternative Meta-Modelling Language

The Sif language has been designed to use NovoGRL as its meta-modelling language.
Theoretically (and practically), Sif could be re-targeted for different meta-modelling
languages. One could even bypass the need for usingNovoGRLas themeta-modelling
language and directly interface with the evaluation mechanisms of the NovoGRL.
The use of the abstract factory pattern allows for code that uses the Sifmodelling
language to be closed for modification w.r.t. to the language implementation. Different
modelling language representations can be swapped out without affecting the rest
of the evaluator implementation. Which meta-modelling language Sif should be re-
targeted to is left open for further research. Other languages to consider are i? [Yu97],
and Tropos [Bre+04].

5.6.4 Choice of Implementation Language

Sif has been implemented in Idris, a general purpose dependently typed functional
language. From an engineering perspective, the choice of language is important and
affects how a program is developed.

Why Idris? Although Idris is not the only dependently typed language in existence
it is, however, the most practical and has been designed from conception to promote
general purpose programmingwith dependent types. Idris is a language for ‘RealWorld
Programming’. Another popular language, Agda, has better support for reasoning
with dependent types but is not as proficient when providing support for constructing

88

5.6. Discussion

interactive programs [Nor09]. Other dependently typed languages are not as feature
complete nor mature for real-world programming.

Why Functional and not Object-Oriented? The rich and expressive type
systems in dependently typed languages allows for more precise guarantees to be made
about programs—cf. Vect and List. This was shown in Chapter 4 when introdu-
cing dependent types, and Well-Typed (Abstract) Interpreters. However, Idris is a
functional language. The experimental evaluation presented in §5.5 noted that when
modelling patterns, the resulting specifications exhibited characteristics that could be
better modelled using an OO language such as Java. For example, modelling both
generic authentication problems and specific problems, could be better explained with
inheritance. Similarly, the combining of solutions to address a single problem could
be realised using object composition. Unfortunately, provision of this in Idris, would
require bespoke implementations of these constructs purely for the Sif language. In an
OO language one gets inheritance (or object composition) for free, but at the loss of the
rich and expressive type system provided by a language that supports dependent types.
Choice of an OO language would mean loosening of the construction guarantees af-
forded by theWell-Typed (Abstract) Interpreters approach of EDSL construction. Lost
too would be that ability to index language expressions by their domain and underlying
representation. An interesting question would be:Why can we not have both styles?

Scala6 is a multi-paradigmOO language that targets the Java Virtual Machine and
has limited support for dependent types. However, Scala’s support for dependent
types is known to be limited in comparison to other dependently typed languages.
Future research considerations may be to investigate the provision of a general purpose
dependently typed OO language.

5.6.5 Problems & Solutions and Multiple Domains

The type-system for Sif requires that the type associated with model constructs are
index by their domain of operation. This restricts the specification of these expressions
to be under a single domain. However, the relationship between constructs and a
domain are not necessarily one-to-one. For instance, a problem will exist in multiple
domains; the relationship is one-to-many. Take, for example, the modelling of patterns
for authentication in Chapter 9. The problem of authentication can be found across

6http://www.scala-lang.org

89

http://www.scala-lang.org

5. Sif

several domains, and the two presented solutions each exist in domains that are distinct
from each other. With solutions, it can be argued that a specific solution will only exist
in a single domain. Foe example, Shibboleths are a societal-based solution and do not
exist in the other presented domains. Fortunately, the formal description of problems
in Sif can be extend to provide this check. For example:

ys : ListG

p :P(ys)

y :G

s : S(y) y ∈ys t : String d : String

(Pattern t d p s) :Φ(γ)

Here, the pattern will be built if the domain of the solution is in the list of domains
associated with the problem. However, a problem arises when looking to index re-
quirements. It is not clear if the requirements should also be indexed by the same list
of domains as the problem, or should it be allowed that requirements be indexed by a
subset of the specified domains?

These changes will have an affect on the complexity of the implementation, and
might result in loss of the functionality affordedby the abstract pattern implementation.
The types become more complex. However, this is more of an engineering issue and
the checks are nonetheless decidable. Although, the implementation of the EDSL
follows the formalism exactly, the DSL does not. The implementation of the DSL (as
witnessed in Chapter 9) provides for a problem to be associated with multiple domains.
When constructing patterns from externally specified files, the specification’s AST is
inspected and only patterns can be constructed if the context specified by the solution
is found in the list of contexts specified with the problem.

5.6.6 Hard vs. Soft Requirements

The design of Sif allows for different requirements to be given a type from the Furps
requirements model. Allowing for greater accuracy when modelling requirements
when compared to the GRL. However, the GRL allows for requirements to be la-
belled either as: ‘hard’—a requirement with well defined terms for satisfaction; or
‘soft’—whether the conditions for satisfaction are not so well defined. This differ-
ence recognises that not all requirements are well defined. The current interpretation
semantics (§5.3.3) for Sif translate the requirements into hard goals only. How Sif
requirements map to soft goals was not considered. This affects the accuracy of the
underlying goal model w.r.t. to the requirement ‘hardness’.

90

5.6. Discussion

An improvement to the Sif language would be to further parameterise the type
for requirementsRwith a type to describe whether the requirement is: soft; or hard.
Take for example, the following amendment to Sif’s abstract syntax and type system:

k ∈K=Hard | Soft

r ∈R(γ,Hard)=HFunctional t d | . . .

r ∈R(γ,Soft)= SFunctional t d | . . .

T= . . . | K | R :G→K→T | . . .

The interpretation semantics can be extended to provide more accurate interpretation
of requirements. For example, functional requirements would be interpreted as follows.

�HFunctional t d �=Goal tUnknown

� SFunctional t d �= SGoal tUnknown

More interestingly with this amendment to Sif, the type-system has gained more
expressiveness and precision. The extra information within the type for requirements
can now be leveraged to reason more precisely about requirements in Sif. For example,
the number of hard and soft requirements in the problem specification, or possibly
how traits affect requirements. Further, if Sif were to be expanded to allow for decom-
position of requirements, typing rules can be constructed to use this new information
to reason more precisely on the decomposition. For instance, restrict decomposition
of hard requirements into other hard requirements only.

The described reasoning is only between different hard and soft requirements. An
even better improvement would be to further parameterise the type for requirements
by the kind of requirement being represented. For example:

k ∈K=Hard | Soft

f ∈F=TyFunc | TyUsab | TyReli | TyPerf | TySupp

r ∈R(γ,k,f)=Requirement t d

T= . . . | F | K | R :G→K→F→T | . . .

91

5. Sif

However, although the suggested improvements appear straightforward their im-
plementation is not. Sif abstracts away the underlying meta-model—§5.4.3 List-
ing 5.1 & Listing 5.2. The suggested improvements increases the engineering challenge
somewhat. When the suggested improvements are viewed in conjunction with §5.6.5,
the engineering challenge becomes even more challenging. These extensions to Sif are
left for futurework.

5.6.7 Modelling Pattern Languages

An aspect of Sif that has not been considered so far is its inability to model pat-
tern languages. Sif only models single patterns. During evaluation it was noted that
there were results that would be better modelled as a pattern language rather than a
single pattern. For instance, the pattern Information Secrecy usingHybrid En-
cryption was more a combination of the patterns Information Secrecy using
Symmetric Cryptography and Information Secrecy using Asymmetric
Cryptography. This is not surprising given that in practice asymmetric encryption
is not used on its own and is almost always used as part of a hybrid encryption scheme,
or through an integrated encryption scheme. The repetition of properties and traits
seen amongst the different solutions only enforces this.

An interesting extension to Sif would be to investigate the modelling of pattern
languages fully. Such a language could either provide a deep or shallow modelling of
patterns. A shallow modelling would only look to exploit and model the relationships
between many problem solution pairings. A deep modelling would be to look inside
the problems and solutions to explore the relationship between the different problem
requirements and solution properties. Further, it would be useful to explore how the
different types of patterns (presented in Chapter 2) would affect this modelling.

5.7 Summary

Chapter 2 §2.5.4 detailed how design patterns can be modelled using the GRL. Sif
provides a DSML to allow patterns to be reasoned on using the GRL but with domain
specific constructs. Future work will be to improve the accuracy of the language when
modelling design patterns.

Use of dependent types allows for the succinct implementation of a verified in-
terpreter for the language w.r.t. to the meta-modelling language in the style of the

92

5.7. Summary

Well-Typed Interpreter. Chapter 3 §3.7 noted the difficulty in constructing DSMLs
from the GRL. To address, and explore this, two representational backends to the
evaluator were constructed. The implementation of the Sif language constructs are
parameterised over the underlying meta-model representation. When combined with
use of the FactoryMethodpattern, and implemention techniques ofHigher-Order
Functions and Dependent Records, the evaluator allows for the creation of Sif model
instances using different model representations. Resulting in aDirect andAbstract

implementation of the interpreter from Sif to the GRL. The latter representation
uses dependent types to model the interpretation between the two directly within the
type of Sif’s implementation. This approach provides further guarantees towards the
correctness of the Sif language itself and when interpreting the model to the GRL,
and is described in more detail in Chapter 11. Modellers using the evaluator can choose
between a variety of modelling representations should they wish.

93

C
h
a
p
t
e
r 6

Freyja: A Pattern Document
Description Schema

This chapter presents an active document schema for describing pattern documents,
agnostic to their representation in code or for publication. Named Freyja, the schema
is presented using implementation agnostic tooling that facilitates their ability to
be machine readable. The presented schema allows for a Sif model and evaluation
scores to be embedded as metadata directly within the document itself. The resulting
documents are active and contain more information than the written text. With this
extra information tooling can be constructed to provide programmable interactions
with the document itself. This chapter presents the schema describing its structure,
provision as a software library, and discussion over its use.

6.1 Schema Definition

Representationally speaking a design pattern is just a structured document following a
predefined set headings—the pattern template. Such document structures are naturally
described and represented as XML schema. Freyja is a bespoke pattern template and
XML schema developed for this thesis. This section documents the schema definition,
and details the structure of the pattern template. Not all details for the schema are given,
a full listing is provided in Appendix A and available in the code repository [dMH15d].

95

6. Freyja

The schema is presented using the Relax NG Compact notation [CCM03].

Note. In thedefinitions that follow: desc is a simple element for providingdescrip-
tions; score presents an enumerated attribute denoting an evaluation result; and id
is an attribute for storing identifiers.

6.1.1 Pattern Template

Here the root element of the document is presented and provides the outline of the
pattern template used. Each pattern is described using an identifier id encoded as an
attribute, followed by a list of sectional elements. Presented below is the definition
for the root pattern element, this definition also highlights the order of the sectional
elements.

pattern = element pattern {
attribute id { text }

, name , summary , metadata , context , problem
, solution , evidence , studies , relations?

}

Each of these sectional elements are used to document different aspects of the pattern,
and have been given descriptive names. Aswith existing pattern templates salient details
over the problem, solution, and context are described. This template also requires
explicit mention of evidence detailing the existence/usefulness of the solution against
the problem, together with example case studies documenting solution application.
The remainder of this section will detail these elements.

6.1.2 Problem Specifications

The first major sectional element describes the problem being solved. Problems are
titled descriptions with a list of requirements describing elements of the problem that
must be addressed by the solution. Traditionally, pattern templates also present a list
of forces. Here problem’s are instead described using a requirements-oriented approach.
The problem element has the following definition:

problem = element problem {
score , name , desc , requirements

}

96

6.1. Schema Definition

The requirements element collects the list of requirements associated with the prob-
lem. The Furps requirements model has been used to model the different permissible
types of requirements. The definition for the requirements element and each of the
requirement types are presented below.

requirements = element requirements {
(element functional { id, score , name , desc }
| element usability { id, score , name , desc }
| element reliability { id, score , name , desc }
| element performance { id, score , name , desc }
| element supportability { id, score , name , desc }
)+

}

Each requirement type supports the same structure, an identifier id (presented as an
attribute), a name and a description. A secondary attribute score documents howwell
the requirement is graded w.r.t. to suitability. This is linked to the Premes evaluation
framework presented in Chapter 8.

6.1.3 Solution Descriptions

Classic pattern templates present solutions rather loosely using natural language, and
with emphasis given towards the solution’s structure and dynamics. Often these textual
descriptions are presented with accompanying UMLmodels. For the Sif modelling
language, an alternative approach to solution modelling was presented—see Chapter 5.
Solutions are described as solutions to requirements problems, and with this approach
solutions are presented as a set of properties that detail aspects of the solution and
how said aspects affect the requirements of the problem. For the document schema
presented these notions are incorporated with existing solution descriptions.

solution = element solution {
name , desc , models , properties

}

The remainder of this section details the sub elements detailing models and properties,
and traits and affects.

97

6. Freyja

Models

Solutions to problems have a structure, comprised of possible components, and a set
of dynamics describing the interaction between components within the structure. The
models element captures the different structures and dynamics associated with the
solution, and has the following definition:

models = element models {
(element structure { score , name , desc , model }
| element dynamic { score , name , desc , model }
)+

}

Models are either structural or dynamic, and are given a name, description, and amodel
element that allows for a non-XML based description of the model to be given. The
form that model takes is defined agnostic to intended language used. Such agnosticism
allows for different modelling languages to be represented that are not necessarily
bespoke to software architecture as UML is geared towards. For example, the contents
of model could also contain a Business Process Modelling (BPM) language model that
details a solution for more socio-technical oriented processes [KLL09].

Properties

Presented alongside the models are the solutions properties. Properties describe aspects
of the solution that affect the problem, describing how the problem is addressed and
in what manner. As with the definition in Sif, properties in Freyja are given a title,
description and many traits. The definition is:

properties = element properties {
element property { score , name , desc , traits }+

}

Traits

The definition for traits follow their Sif definition as well, describing the effect that
the property has on the problem being addressed. Their definition is:

traits = element traits
(element advantage {score , sValue , name , desc , as}

98

6.1. Schema Definition

| element disadvantage {score , sValue , name , desc , as}
| element general {score , sValue , name , desc , as}
)+

From the Sif definition, a trait’s satisfaction value is stored within an attribute. The
modeller provides a name and textual description for the trait, and then describes how
the trait affects the solution using affects.

Affects

The final set of elements to be described are the relations between traits and the problem
requirements they affect.

as = element affects {
element affect { cValue , id, text }+

}

For each effect, the direction is encoded by referencing the identification number of
the requirement as an attribute. The contribution value is encoded as an attribute and
sourced from Sif. Optionally, a description for the effect can be given to provide more
information.

6.1.4 Case Studies

Although the evidence element provides a section in which authors can show the
existence of the pattern, the effect of pattern application should also be described.
Classical pattern templates document this effect using sectional elements for establishing
first, the context in which the problem existed, and second the resolved context that arose
post pattern application. The template presented in this chapter takes an alternative
approach.

studies = element studies {
element study {

score
, name
, element before { text }
, element after { text }

}+
}

99

6. Freyja

The context element documents the physical context in which the problem occurs
with the problem being described in the problem element. The effect that solution
application has on the problem is already documented in the solution element. To
further illustrate the effect of pattern application, the studies element is introduced
to allow for the description of case studies to be given. These studies consist of a simple
title, together with elements used to detail the effect before and after pattern application.

6.1.5 Relations

The last major sectional element in the pattern document lists the relations that the
described pattern has towards other named patterns. Pattern languages typically codify
the relation between different patterns using a singular linked relationship: Patterns
are linked to other patterns. However, existing work in the modelling of patterns for
HCI identified several other naturally occurring links between patterns. Dearden and
Finlay [DF06] describe that the relationship between patterns is reminiscent of the
relationship between objects within UML class diagrams. Patterns can: extend other
patterns; use other patterns, implement other patterns; and are associated with other
patterns.

relations = element relations {
(element specialises { score , patternID , text }
| element requires { score , patternID , text }
| element linked { score , patternID , text }
| element implements { score , patternID , text }
)+

}

With these different kinds of links, the final set of elements in the pattern schema
describe the links, and kind of likes, that the presented pattern has with other named
patterns. The different relations are contained within the relations element, and
are described using the tag names: specialises for extending; requires for ag-
gregation; implements for realisation; and linked for association. For each different
relation element the element value can be used to provide descriptive text detailing the
relationship, and an attribute within the element to capture the identifier of the other
pattern that this pattern is linked to.

100

6.2. Library Provision

6.1.6 Metadata

Alongside the sectional elements of the pattern template, a metadata element is presen-
ted. The metadata element documents modification times, the list of authors and
auditors, alternative names for the pattern, and categorisation descriptors. The defini-
tion is:

metadata = element metadata {
element aliases { element alias { text }+ }

, element tags { element tag { text }+ }
, element created { xsd:date }
, element modified { xsd:date }
, element evaluated { xsd:date }
, element authors { element author { text }+ }
, element auditors { element auditor { text }+ }

}

6.2 Library Provision

By design XML schema are technology agnostic, and describes the structure of a
document. The schema presented in this chapter describes the structure of Freyja
encoded pattern documents. To promote the use of the schema in tooling, and to
promote machine-readable design patterns, a software library has also been developed.
This library is available online [dMH15d] and has been developed using Idris, the same
language used to develop Sif. The main functionality provided by the library is two
fold.

First, the library facilitates the serialisation of pattern documents from an XML en-
coding to custom data structures (records) and vice versa. The resulting data structures,
facilitating programmatic interaction with pattern documents.

Second, this library supports the transformation of pattern documents to other
document markup formats such as LATEX, CommonMark, and Org-Mode. Such func-
tionality being provided by the Edda software library, a document transformation
library written for Idris [dMH15c]. With access to document markup conversion tools,
the library allows for the encoded pattern documents to be transformed into other
formats for publication in a pattern repository.

The Freyja library is used as part of the Sif evaluator (Chapter 5) to construct
pattern document stubs from a Sif model, and by the Frigg tool (Chapter 7) for

101

6. Freyja

machine lead interaction with pattern documents.

6.3 Discussion

This discussion looks as the choice of headings in the pattern template, the idea of active
documents, alternative representations, and sufficiency of the active components.

6.3.1 Chosen Headings and their Semantics

The classicAlexandrian pattern template presents one possible set of default headings
to use when constructing pattern documents. During the creation of Sif, a natural
set of alternative headings emerged for three of the sectional elements used to describe
the problem, the solution, and their domain of operation. For the scope of this thesis
the precise set of headings chosen should not be seen as a major contribution. The
template chosen is just one example of how to encode pattern templates in a machine
readable form.

When compared to the classical template the problem and forces sections have
been merged and replaced with a single section for problems and listed together with a
set of requirements. This collects and isolates the problem description from the rest of
the pattern document, and enforces the writer to view the forces for the pattern solely
in conjunction with the problem and not the solution.

The context section is used as was intended with the classical template such that it
describes the domain of operation in which the pattern is to be applied.

Solutions within Freyja combine the classical headings of solution description
and the architectural details, and extend them with more structured headings. The
exact set of headings and their decomposition provides a reflection over how a solution
can be described. The architecture of the solution will need to be described using
some formal notation, for example UML or BPM, together with ontological details
provided alongside. Such ontological information and how it relates to the formal
models is described using the properties subsections. These sections allow for properties
(emergent or otherwise) to be detailed clearly. Further, within each of these subsections,
the traits (good, bad, or neutral) can also be described together with links to the precise
requirement from the problem that is affected. Thus, facilitating detailed descriptions
over the effect that a solution has on the pattern and allowing pattern designers greater
detail in describing their solutions.

102

6.3. Discussion

Two headings used in Freyja that are without counterparts in the classical pattern
template are theevidence andstudies sections. These sections allowpattern authors
space to document evidence of the present solution in action, and case studies to
document solution application.

6.3.2 Active Pattern Documents

Active Documents is a term most associated with reproducible research, and details:
(a) how authors can construct a document that encodes more information over the
content; and (b) provides readers with a document that can be interrogated andmanip-
ulated [Del+12; SD11]. Active documents are interactive documents. Such documents
are implemented using a combination of a markup languages that supports the embed-
ding ofmetadatawithin the document itself, and tooling to interact with the document.
A common triple seen is that of: Org-Mode

1 for the markup; Emacs
2 for interaction;

and Org-Babel3 to provide activation of the document’s active components. Other
known coupling of technologies to provide active documents include Mathematica
notebooks4 for interactive math notebooks, their Python/Juypter5 variants, and LATEX
when working with Sweave and R.

With Freyja comes the ability to describe active pattern documents, and construct
an infrastructure to support working with such documents. Use of XML allows for
machine readable pattern documents to be presented, and for extra information con-
cerning the pattern to be encoded within the document. Other markup languages
were considered for provision of active pattern documents. Popular data serialisation
languages such as Json 6 and YAML 7 are data-centric and not document-centric. Doc-
ument orientedmarkup languages such asCommonMark 8 are not expressive enough
and require use of extension elements that are not supported in all implementations,
or are not deployment agnostic as seen withOrg-Mode and its reliance on Emacs. For
this reason, an XML based format was chosen it is both: language and tooling agnostic.

1http://orgmode.org/
2https://www.gnu.org/software/emacs/
3http://orgmode.org/worg/org-contrib/babel/
4https://www.wolfram.com/technology/nb/
5http://jupyter.org/
6http://www.json.org
7http://www.yaml.org
8http://commonmark.org/

103

http://orgmode.org/
https://www.gnu.org/software/emacs/
http://orgmode.org/worg/org-contrib/babel/
https://www.wolfram.com/technology/nb/
http://jupyter.org/
http://www.json.org
http://www.yaml.org
http://commonmark.org/

6. Freyja

Document templates, through schema definitions, are well-defined and also presented
agnostic to the language of tool construction.

For Freyja the extra information relates to the Sif model representation of the
pattern, and evaluation data originating from Premes. Further, notice that the defini-
tion of models within the Freyja schema is left undefined. Model instances can be
inserted directly within the document, extracted using the tooling and reasoned about
directly.

6.3.3 Alternate Document Representations

The Freyja schema is not the first XML oriented pattern document schema to be
proposed. The serialisation of documents is important as it allows for programmatic
interaction to occur with pattern documents. Chapter 2 §2.6.2, documented several
known existing encodings. From the encodings presented, a common theme emerges
of using either: an XML based encoding; direct representation within a database; or
no representation at all. XML allows for programming language agnostic tooling to be
developed with the core schema being documented outwith the influence of any one
language.

The Freyja schema is document-centric and facilitates the representation of pat-
tern documents. This is a core theme within the thesis that a design pattern is a

document. Modelling of the complete document promotes a holistic view of a design
pattern. Other pattern representations focus on the modelling of the solution detailed
within the pattern itself, or focus on representing pattern languages.

6.3.4 Sufficiently Active?

Freyja is a schema for active pattern documents. The schema encodes the follow-
ing active components within the document: (a) a Sif model—the formal model
of the pattern; (b) partial evaluation scores—stemming from the evaluation process;
(c) architecture models—UML or some other modelling notation; and (d) sectional
divisions—the individual component’s of the document. However, are the resulting
documents sufficiently active? Are there any other aspects of the document that can be
interacted with?

CoSP investigated the use of combining the emergent properties associated with
the described solutions to the system models [Man+13]. The author’s developed an

104

6.4. Summary

XML schema to formally link these properties with artefacts, however, the resulting
document is not a true pattern document. CoSPs sacrifice the textual expressiveness
for more precise descriptions. The schema proposed in this chapter does not provide
a similar link as seen with the CoSP format. An area of improvement comes from
working out how to link the formal system’s models to the described properties and
traits.

Other schema such as PLML, xPML, and EML, also take into account the relations
between different patterns. Freyja provides shallow linkage between patterns to be
described. Provision of a deep modelling between individual solutions & problems,
indexed by their domain of application, would allow for deeper reasoning about pattern
languages to occur. Freyjaprohibits the efficient encoding of common elements found
between patterns, nor allows for them to be reasoned upon.

6.4 Summary
This chapter presents a crucial aspect in the quest for better engineered design patterns.
The Freyja document schema provides the interchange format for serialising and
representing pattern documents outside of software and is literally the rug that ties the
room together. Further, Freyja has active components and facilitates active machine
readable pattern documents to be created.

With machine readable documents comes the provision of machine based inter-
action. Tooling can be constructed to interact with these documents, modify them,
and transform them. Partial application of these ideas has already been presented in
the form of the Freyja library itself and its provision of custom data structures, seri-
alisation support, and transformation to different document formats. Although, the
library is implemented in Idris, the schema itself is programming language agnostic
and alternative interaction libraries can be constructed for other languages.

However, one must not be quick to think that Freyja is the pattern document
and the template to be used. Existing work in pattern document representation has
presented alternative takes that must be considered. For example, the CoSP schema
fromMana et al. [Man+13] highlights how a closer bond can be constructed between
the models representing the solution and solution properties. Future work can look
towards replicating this bond between solution models and patterns.

105

C
h
a
p
t
e
r 7

Frigg: A Utility forWorking
withDesign Patterns.

This chapter introduces and discusses a proof-of-concept tool Frigg that builds upon
several of the other contributions in this thesis, providing programmatic based interac-
tions with design pattern documents. This chapter provides an overview of the tool,
how it relates to the other contributions in this thesis, current limitations, and possible
future directions. Chapter 9 demonstrates use of the tool during the evaluation process.

7.1 Overview

Existing work on interacting with design patterns was detailed in Chapter 2 §2.6.2 in
which Lucrédio et al. [Luc+03] andWelicki et al. [WLA06] documented solutions for
interactive viewing platforms and knowledge management of pattern repositories. The
authors also explore how their systems can aid in the pattern application process using
tooling that combines code generation and UMLmodelling. Rather than concentrate
onproviding a system to solely viewpatterns andprovide code generation from solution
descriptions, the design of Frigg was motivated to investigate improvements to the
evaluation process and interactions with pattern documents. Frigg illustrates how
active pattern documents that are bothmachine readable and checkable canbe leveraged
within a tool.

107

7. Frigg

7.2 Feature Set

Frigg has been designed as a modal command-line application to work with a single
pattern document. The different modes of operation supported are:

• Document Conversion: Pattern documents can be converted from theXML
based representation to other document markup formats as supported by the
Freyja library.

• Readability Metric Calculation: Pattern documents are analysed to pro-
duce a readability metric using several known algorithms. These precise al-
gorithms used align with those discussed as part of the Premes framework to
grade Pattern Legibility in Chapter 8 §8.4.3.

• Weighted Template Adherence: Frigg accepts both weightings and grad-
ing schemes used as part of the Premes framework as input. These weights and
grades are used to calculate theWeighted Template Adherence for each specified
heading in the weightings file, accessing the scores stored as metadata within the
pattern document itself.

• Sif Model Checking: Frigg uses the Sif library to extract and evaluate the
embedded Sif model.

• Command-Line Interface (CLI): User-led interaction with pattern docu-
ments comes in the form of a CLI. This interface provides access to the other
described modes, together with fine-grained section based viewing of the loaded
pattern and the ability to run XPath queries over the document.

With the documented feature set presented, Frigg is a tool that can be used at dif-
ferent stages of the pattern engineering process. During the creation phase of pattern
engineering, Frigg can aid in the evaluation and publication of patterns. For pattern
publication, the tool supports translation of patterns documents into alternative pub-
lication formats for different media sources. For pattern evaluation, the tool can extract,
view, and calculate (automatically) evaluation data from the document directly. For
instance, calculating various metrics used in parts of the Premes evaluation frame-
work. Thus, allowing for parts of the framework to be automated. Lastly, the tool can
automatically extract and re-verify, the embedded Sif model representation.

108

7.3. Implementation Information

Further, patterns can be viewed and interacted with. This can be beneficial during
the application phase of pattern engineering for viewing patterns and interrogating
their contents. The use of XPath and section based views also facilitates fine-grained
viewing and querying of the document’s content.

7.3 Implementation Information

A pure Idris implementation was chosen to provide re-use of the modelling library
from Sif, and to further explore working with dependent types. The choice in using
Idris presents a restrictive engineering aspect in the implementation of Frigg. Idris’
package ecosystem is not mature. When the research was being undertaken Idris was in
its infancy and with little library support. This limits the possible feature set, any and
all library support would have to be constructed by hand. Many of the dependencies
created are listed and mentioned in the theses backmatter. Like the implementation of
Sif algebraic effects where used to provide total control over effectful operations—see
Chapter 5 §5.4.

An alternative approach would have been to use a language with a more compre-
hensive and maturer ecosystem to provide the user experience. However, this would
have required extension of the Sif evaluator to work outside of Idris. This would
necessitate facilitation of inter-process communication between an interaction layer
and a Sif evaluator process, an ‘IDE Protocol’—cf. Mehnert and Christiansen [MC14].
While possible the approach was too complex for the projects needs. The pure Idris
implementation was chosen for simplicity. An alternative approach might be to use
a foreign function interface, however, there is no support for interacting with Idris
libraries outside of Idris.

CMD-Line Readability XPath-Query

Sif Model
Checking

Template
Checking

Section
Display

Document
Conversion

Frigg Tool

libSif libEdda libRead

libFreyja libConfig libXML

libGRL

External Dependencies

weightings.conf

gradingscale.conf

pattern.xml

Figure 7.1: Feature-Set and dependency overview for Frigg.

109

7. Frigg

Figure 7.1 summarises the overall architecture of the Frigg tool and the depend-
encies that it relies upon. The application itself is lightweight and brings together
functionality from several existing libraries developed as part of the thesis itself. For
example, both the core libraries arising from the implementation of both Sif, Freyja,
and NovoGRL are used by Frigg to support the evaluation of pattern models, the
serialisation of pattern documents, and their conversion to other formats. The depend-
encies are enumerated as follows:

• libSifThe core library of the Sif language, described in Chapter 5 [dMH15g].

• libFreyja Serialisation and parsing support for Freyja encoded design pat-
terns [dMH15d].

• libGRLUsed by Sif to provide GRLmodelling capabilities [dMH15e].

• libReadA library implementing several known readability metrics [dMH15f].

• libEddaA document modelling and processing tool providing a common doc-
ument representation format and conversion tools [dMH15c].

• libConfigA library to support parsing of configuration files [dMH15a].

• libXMLA library to support modelling and processing of XML documents,
together with querying using XPath [dMH15i].

7.4 Future Features
There are several areas of improvement surrounding the engineering of the utility to
provide amore richer feature set. For example, allowingmultiple patterns to be ‘loaded’,
better quality of output for results from possible queries, and support for other pattern
templates. However, from a research perspective other areas for improvement relate to
the creation of active patterns.

UML Metrics Freyja presents an active document specification, and as part of
that specification is support for the presentation of UML models. An interesting
direction to take with Frigg is not only the verification and validation of the presen-
ted Sif models, but also of the UMLmodels inside. Part of the Premes framework
includes addressing the complexity of the presented coding solution. Having a design

110

7.5. Summary

pattern utility that presents UML complexity results automatically would be beneficial.
However that would require support for a UMLmodelling library that allows support
for metric collection as well as reasoning about different types of UMLmodel1.

More Automatic Evaluation Chapter 9 §9.6.2 demonstrated how the Sif evalu-
ation results were used, in part, to calculate theWeighted Solution Satisfaction grade for
the design patterns. The Frigg utility can be extended to incorporate the automatic
evaluation of this metric.

7.5 Summary
Frigg is a proof-of-concept tool for interacting with design pattern documents. The
functionality presented by the utility is limited, andmost of the functionality presented
by Frigg is not new. Regardless, Frigg demonstrates how the concepts and tooling
in this thesis can be used to enhance how patterns are interacted with. For instance,
facilitating for formal models embedded within the pattern document itself to be
extracted, inspected, and verified automatically. Further, this tool shows how portions
of the Premes framework can be supported through programmatic interaction with
the document itself. Chapter 9 documents how Frigg helps with pattern engineering
by demonstrating its use to evaluation patterns for authentication.

1An early research direction involved themodelling ofUMLmodels in Idris. However, the resulting
library and directions were dropped. The resulting library is available online [dMH15h].

111

C
h
a
p
t
e
r 8

Premes: A Pattern Evaluation
Framework

Patterns are not just abstract concepts, they are also living documents. Although,
the Sif modelling language can reason about patterns as requirements models, Sif
cannot be used to provide assurances towards the quality of the pattern document
itself. This thesis also presents Premes: A holistic evaluation framework for addressing
pattern quality. This chapter introduces the Premes evaluation framework; Pattern
Report-Cards—the reporting mechanism used within the framework; and provides
a discussion about the framework’s limitations by using the framework to evaluate
known patterns.

Note. Thework presented in this chapterwas originally presented at PLoP ’15 in de
Muijnck-Hughes and Duncan [dMD15].

8.1 Problems with Pattern Evaluation

To promote better evaluation practices, pattern evaluation must be seen in the same
regards as the evaluation of software systems or engineering results. Design pattern
evaluation must be reproducible, must be consistent, and must allow for a fine-grained
analysis of the presented pattern. Subjectivity of the assessor should also be managed

113

8. PREMES

and reduced. Without these traits the evaluation process will be laissez-faire.
One of the difficulties in constructing an evaluation system for design patterns is

that the subject domain covered by patterns is heterogeneous. Stipulating that patterns
are to be evaluated using a single generic system is dangerous. The generality of such a
systemmay not provide suitable treatment across important domain-specific aspects
of the pattern. Further, stipulating that all patterns regardless of domain should follow
the same pattern template is also too restrictive for similar reasons. Both Heyman et al.
[Hey+07] and Bunke et al. [BKS11] noted that their research was hampered in part but
the pattern template heterogeneity. A single general purpose evaluation system cannot
be, and should not be specified. The differences between different types of patterns
must not only be recognised but also celebrated. Any suggested evaluation process
must be tailored to the pattern being evaluated. A question that naturally arises is:

Can a holistic approach be taken to: (a) construct a pattern evaluation

system that tests for the quality of a pattern; (b) determine if the pattern

is a solution to a problem, is tried and tested, and well documented; and;

and (c) tailor the evaluation to the pattern(s) being evaluated?

8.2 Approach

The approach presented in this thesis is to establish a series of quality indicators drawn
from existing literature that, when tested for, provide a sign over pattern quality. With
these indicators, a mixture of qualitative and quantitative evaluation techniques are
used to construct an evaluation system that determines how well the indicator has
been satisfied. Use of quantitative and qualitative metrics allows for the quality of
a pattern to be measured allowing for problem areas relating to pattern quality to
be highlighted during the engineering process, and thus resolved before publication.
With such metrics, patterns can then be graded according to their quality w.r.t. to the
different indicators.

However, provision of summative feedback prohibits the provision of formative
feedback over why a pattern fails. When the summative feedback is analysed, this lack
of detail can lead to confusion over why a certain grade was allowed. Even more so this
can damage the transparency of the evaluation process. Evaluation results should be
enhanced by provision of formative feedback as well. Pattern Grades, combined with
formative feedback results in Pattern Report-Cards.

114

8.3. Quality Indicators for Patterns

Report Card Framework

Pattern Planning Solution Quality

Pattern Goodness

Presentation Quality

Report Card Analysis Report Feedback

Figure 8.1: Schematic overview of the stages and indicators of the Premes evaluation
framework.

Different patterns will have different requirements for their assessment. Remember
patterns do not exist in homogeneous domains. The Plan-Do-Check-Act (PDCA)
management cycle is a standardised technique used for establishing bespoke evaluation
procedures. Specification of such a management system for pattern evaluation allows
for the establishment and execution of an evaluation system that can also be tailored
to the pattern being evaluated. This management system can also be used to provide
guidance not only over how best feedback can be given to pattern writers, but also
guidance over how to execute the evaluation process.

With this combined framework (management system, evaluation system, and
indicators) comes a reproducible means to evaluate patterns, and through provision of
a tailored approach allows the quality to be assessed at a fine-grained level. Together
this is the Premes framework. Figure 8.1 presents a schematic overview of the entire
framework.

8.3 Quality Indicators for Patterns

When evaluating patterns the pattern document and its contents must inform the eval-
uation criteria used. Laverdière et al. [Lav+06] presented a set of desirable properties
for design patterns and nominal measures of their quality. These properties are taken
and combined with other existing bodies of work on pattern evaluation [WF11; Har04;
BKS11; MD97; Hey13]. From the presented corpus a set of quality indicators that, if
tested for, can be used to determine the quality of the presented pattern. If one analyses
the informal textual definition of a design pattern it can be argued that design patterns
are supposed to be: well-documented; tried & tested; and solutions to problems. The

115

8. PREMES

quality indicators are grouped around these three notions.

8.3.1 Quality of the Pattern Presented

Research performed by Bunke et al. [BKS11], Heyman et al. [Hey+07] andWinn and
Calder [WC02] have identified that a proportion of the presented patterns fail at being
patterns. Design patterns are supposed to be solutions to problems. But what exactly is a
design pattern supposed to be? Attempts at providing more formal definitions do exist
(see Chapter 2 §2.5) however, these definitions view design patterns as software artefacts
and do not necessarily take into account emergent properties of the pattern such as
documentation quality, and solution goodness. The first set of indicators determine if
the presented pattern is a pattern, and address in part the core areas of: context, problem,
forces, and solution.

Definition 1 (Pattern Coherency). The pattern presented must present a solution

to a recurrent problem for a particular context. The presented solution should match the

level of abstraction of the presented problem (its forces), and also the context in which the

problem exists.

Definition 2 (Pattern Atomicity). The pattern presented must be an entity from

which other sub-patterns cannot be extracted. A single pattern should present a single

discrete problem; the problem should not be composed of multiple problems. Related

problems should be referenced in the pattern document, and a group of linked patterns

should be presented as a pattern language.

Definition 3 (Problem Independence). The problem described together with its

forces should not be influenced in description and construction by the presented solution.

The problem should be independent from any presented solution.

8.3.2 Quality of Solution Presented

Design patterns are supposed to be tried & tested solutions. Many pattern documents
and guides stress that a design pattern is the successful resolution of a series of problem
forces by a series of actions within a particular context [WF11]. These next set of quality
indicators are concerned with the quality of the presented solution, and address in part
the core areas of: solution, and resulting context.

116

8.3. Quality Indicators for Patterns

Definition 4 (Solution Appropriateness). The solution presented should be a

solution for the presented problem. The presented solution should address the described

problem in its entirety for the given context, and not present a general solution that is

applicable to other problems.

Definition 5 (Solution Complexity). The presented solution should not be overly

complex, and should not be difficult to apply. Solution complexity will impact upon the

applicability of the pattern and how well it can be deployed to address the presented

problem.

Definition 6 (Solution Effectiveness). The pattern document should provide

evidence of the solution’s e�ectiveness and robustness for addressing the presented problem.

Such evidence can be used determine the quality of the solution and how well the problem

is addressed.

8.3.3 Quality of Pattern Presentation

The final set of indicators are related to pattern presentation. Design patterns are
supposed to be well-documented. Poorly presented ideas will be poorly received by
readers. As design patterns are ostensibly used for domain knowledge transfer (from
domain expert to non-domain experts) the quality of the presented pattern document
should also be assessed. Harrison [Har04], Heyman et al. [Hey+07], Yoshioka et al.
[YWM08] andWellhausen and Fießer [WF11] present work in evaluating a pattern
document’s presentation and content. This final set of indicators provides treatment
at the documentation level of all areas of concern within the pattern.

Definition 7 (Pattern Structure). Pattern templates are used to provide a common

structure for describing like patterns. A coherent structure provides better presentation

of the topics. Measuring the quality of adherence to a known template can be used to

indicate good structure. Further the chosen template should be suitable for the presented

pattern.

Definition 8 (Pattern Legibility). The language used in the pattern documentation

should convey clearly to the target audience the ideas being described. Use of overly

complex language, or too simple a use of language, can hamper the reader’s ability to

comprehend the presented material.

Definition 9 (Presentation Accessibility). The problem, solution, and ideas should

117

8. PREMES

be presented in a way that promotes accessibility and does not hamper the readers ability

to familiarise themselves with the concepts. Terminology, and concepts should be explained

clearly and presented appropriately.

8.4 Pattern Report Cards

This section presents PatternReportCards, an evaluation system that can be used
to test against the described indicators from §8.3. This system took inspiration from
educational report cards that detail how well a student is performing. For each of the
three quality areas several qualitative and quantitative techniques are used to gauge the
pattern’s quality. These techniques are used to create data points that can be used to
track the quality of the pattern during the engineering process. Further, the assessment
process has been designed to present pattern writers and auditors with a repeatable
means to determine pattern quality, and indicate areas of improvement. The remainder
of this section details the techniques used, and how they can indicate pattern quality.

8.4.1 Quality of Pattern Presented

The first part of the report card grades the pattern according to pattern quality using
qualitative measurements. Grading schemes have been presented that allow for each
of the quality indicators to be assessed. These schemes have been designed such that
better grades indicate patterns that have the correct form, and lesser grades degradation
of said form. The following list of tables presents The grading schemes for each of the
pattern quality indicators:

• Table 8.2 presents the grading scheme for Pattern Coherency.
• Table 8.4 presents the grading scheme for Pattern Atomicity.
• Table 8.6 presents the grading scheme for Problem Independence.

8.4.2 Quality of Solution Presented

The next section of the report card determines solution quality. For this next set
of grades quantitative values are obtained primarily from qualitative measurements.
For each indicator of solution quality a different measurement and transformation is
presented. Unlike the previous grading section, the formulations and values presented

118

8.4. Pattern Report Cards

A The pattern presents a well defined problem that is recurrent, describes a solu-
tion for that problem in a particular context, and both problem and solution
are at the same level of abstraction.

B The pattern represents a reasonably defined problem that is recurrent, the
solution addresses most of the problem presented for a particular context, and
the levels of abstraction for the solution and problem are the same.

C The pattern presents an ill-defined problem that is somewhat recurrent, the
solution addresses a substantial portion of the presented problem for a par-
ticular context, and the levels of abstraction for the solution and problem is
similar.

D The pattern presents an ill-defined but not recurrent problem, the solution
only addresses part of the problem specified for a particular context, and the
problem and solution have similar yet differing levels of abstraction.

E The pattern does not present a well defined nor recurrent problem, the solu-
tion does not address the problem for any context, and the problem and solu-
tion have differing levels of abstraction.

Table 8.2: Grade descriptor for the Pattern Coherency indicator.

A The pattern is sufficiently constrained and cannot be decomposed into smaller
patterns.

B The pattern presented is suitably constrained and aspects of the pattern could
be turned into other patterns.

C The pattern presented is not constrained to a single problem and aspects
should be decomposed into other patterns.

D The pattern presented addresses several unrelated problems and should be de-
composed into several smaller patterns.

E The pattern presented is in fact a pattern language and addresses many inter-
related problems, and should be decomposed into smaller patterns.

Table 8.4: Grade descriptor for the Pattern Atomicity indicator.

119

8. PREMES

A The problem presented is independent of the presented solution, and the
problem forces are not indicative of the solution being proposed.

B The problem presented is not influenced by the presented solution, and the
problem forces bear some resemblance to the issues affecting the solution.

C The problempresented is influenced somewhat by the presented solution, and
the problem forces resemble issues affecting the use of the solution.

D The problem presented is influenced by the presented solution, and the prob-
lem forces are descriptive of issues affecting the solution.

E The problem presented is directly influenced by the presented solution, and
the problem forces explicitly describe problems affecting the solution and not
the problem.
Table 8.6: Grade descriptor for the Problem Independence indicator.

are not generic to all patterns and will differ per pattern. Where appropriate suitable
descriptions are provided.

Solution Appropriateness

The first grading scheme is for solution appropriateness. Such appropriateness can
be made quantifiable by establishing a metric sourced from qualitative values. To
calculate this metric, one must first identify the problem forces, and assign a weighting
(percentage) to indicate the importance of each force. Secondly, a grading scheme is
defined to grade how well the solution addresses each of the problem forces in turn.
This grading scheme must also be represented by a scalar number. For each force,
multiplying each of the resulting grades by the force’s weighting, a metric for solution
appropriateness namely the weighted solution satisfaction, can be calculated.

Definition 10 (Weighted Solution Satisfaction). Given a set of forces F =

{f0, . . . ,fn}. Let W= {w1, . . . , wn} be a set of weightings for each f ∈ F such that∑n
i=0wi= 100. Let G= {1,2. . . ,m} be a bounded range of integer values that repres-

ents a grading scale. Let E= {e1, . . . , en},ei ∈G be a set of evaluation values for each

f ∈F. The weighted solution satisfaction for a pattern is calculated as follows:

n∑
i=0

wi×ei

120

8.4. Pattern Report Cards

Solution Complexity

The second grading scheme is related to solution complexity. Within software design
pattern literature, a solution’s structure and dynamics are often modelled using UML.
When presented with UMLmodels the solution’s complexity can be inferred by cal-
culating model complexity. For UML Class Models, complexity metrics have been
described [YWG04; ML05; Mar98; MGP03]. However, metrics for other UMLmod-
els such as deployment, component, and message sequence are not so well developed.
For coding-oriented implementation patterns, metrics for code quality can also be
constructed [LW12], and used to infer solution complexity. Regardless of UMLmodel
or provided code when determining the complexity of the given solution, a set of
metrics for solution complexity can be generated providing quantitative measures for
the report card. For patterns that do not provide software artefacts a qualitative grading
scheme can be presented instead. Table 8.8 presents one such example.

Complex The solution is too complex with a structure that contains too many
modules that have too many relations. Further, the interactions
between the components are toomany for the interactions described.

Adequate The solution presented has a structure and set of dynamics that are
suitable for addressing the problem presented.

Simple The solution presented has a structure and set of dynamics that are
too simplistic for the problem being addressed. This solution does
not capture enough detail for the problem presented.

Table 8.8: Sample grading scheme for Solution Complexity indicator.

Solution Effectiveness

The final aspect of solution quality is that of solution effectiveness. How effective
the solution address the problem can aid in determining pattern quality. Whereas
complexity can be quantitatively measured, effectiveness is a qualitative measurement
that can be performed through walk-throughs with especial regard to both normal
and abnormal usage. Some quantitative measures can come from taking the pattern
requirements and generating test cases to apply to the pattern design. Guidance from
requirements engineering evaluation practices will advise this process with especial
regard to the interface, inputs and outputs.

121

8. PREMES

Naïvely, a simple solution is to look for evidence of metrics and evaluation criteria
with the presented pattern document. With such a naïve measure the grading scheme
(shown in Table 8.10) can be employed to judge solution effectiveness.

8.4.3 Quality of Pattern Presentation

The final set of grading schemes presented are for pattern presentation. Here the
schemes presented are a mixture of quantitative values constructed from qualitative
measurements, and qualitative grading. Pattern presentation can be assessed according
to: adherence to known templates; use of representational aides; and quality of writing
style used.

Pattern Structure

Heyman et al. [Hey+07] presented a methodology for assessing the quality of pattern
documentation according to how well a pattern adheres to a given template:Weighted

Adherence to a Pattern Template. This indicator can be used in the report card to
determine the adherence a given pattern has towards a specified template. Each heading
in a given pattern template is associated with a weighting indicating the importance of
each heading within the template. During evaluation each heading is graded to indicate
the quality of provision. An adherence metric can then be calculated through summa-
tion of the scores for each element. The higher the score the greater the adherence to
the template. This is formalised as:

A The pattern presents ample evidence that the solution presented is effective.

B The pattern presents sufficient evidence that the solution presented is effective
but some aspects of the solutions effectiveness are not described.

C The pattern provides links to evidence that the presented solution is effective
in addressing the problem.

D The pattern alludes to the effectiveness of the solution but does not categoric-
ally present evidence attesting to the fact.

E The pattern does not present any evidence that the presented solution is effect-
ive in addressing the problem.
Table 8.10: Sample grading scheme for the Solution E�ectiveness indicator.

122

8.5. The PREMES Framework

Definition 11 (Weighted Adherence to Pattern Template). Given a pattern

template T. Let W= {w1, . . . , wn} be a set of weightings for each t ∈ T such that∑n
i=0wi = 100. Let G = {1,2. . . ,m} be a bounded range of integer values that

represents a grading scale. Let E= {e1, . . . , en},ei ∈G be a set of evaluation values for

each t ∈T. The weighted adherence to a pattern templates is calculated as:

n∑
i=0

wi×ei

Pattern Legibility

Pattern document legibility can be assessed using existing readability metrics such
as Flesch-Kincaid, Coleman, and FOG [Kin+75]. In readability metrics low scores
represent use of simplified language constructs, and higher scores represent more
complex language. Often such readability metrics are interpreted according to the
American Educational Grade Level to allow easy interpretation of the result. These
metrics are used to indicate how advanced, or simplified, the language used will be.
Allowing for the actual reading level of the document to be determined from the
intended reading level.

Presentation Accessibility

Table 8.12 presents the final grading scheme for assessing pattern accessibility. Access-
ibility can be determined by judging the pattern according to the terminology used
and clarity of the descriptions. This grading schemes requires that the existence and
suitability of additional presentation attributes be assessed together with the clarity of
presentation. Examples of additional presentation attributes can include the existence
of, for example, UMLmodels, diagrams, references to existing work and usage, and
code examples. This grading scheme differs from that of the readability metrics by
looking not at the language used but how the concepts are presented.

8.5 The PREMES Framework

The previous section introduced Pattern Report Cards and how they are used to grade
patterns. Several of the grading schemes presented are not generic to all patterns and
need to be tailored prior to use. The Premes approach uses the PDCA cycle (§8.2) to

123

8. PREMES

A The pattern is presented in an accessible manner using clear language. The
concepts and terminology used are explained appropriately.

B The pattern is presented in an accessible manner but does not use clear lan-
guage. The concepts and terminology are explained using unclear language.

C The pattern is presented using clear language but is nonetheless inaccessible.
The use of terminology is given but poorly explained and presented unsatis-
factorily.

D Thepattern is presentedusingunclear language,makesuse of terminology that
is poorly explained, and presented unsatisfactorily.

E Thepattern is presented using unclear and inaccessible language. Terminology
used is unfamiliar and unclear to the reader. The pattern is presented poorly.

Table 8.12: Grading scheme used for the Presentation Accessibility indicator.

manage the execution of the evaluation process and manage the introduction of the
required tailoring. This section describes the activities required for each of the four
stages, and the rationale behind each stage where appropriate.

Note. The description of Premes has been given under the assumption that the
pattern is to be reviewed by a group of auditors who are separate from the pattern
author. This is to aid in documenting the framework’s execution.

8.5.1 The Planning Stage

The first stage is a preparatory planning stage that requires for the scope and extent of
the evaluation to be established. The required activities involved are:

1) Identification of the patterns that are to be evaluated.
2) Agreement on the weightings to be used in the Report-Card process.
3) Identification of the Pattern Template used and weightings for the headings.
4) Agreement on the readability metric used for analysing language style.
5) Agreement on marking criteria for each of the qualitative grading schemes.
6) Agreement on number of iterations that the cycle will go through.
7) Agreement on how to collate results from different report cards.
8) Agreement on how results are to be reported.

This stage explicitly ensures that there is a consensus for how the evaluation is to
be conducted, and how each aspect of the evaluation is to be performed. This will

124

8.5. The PREMES Framework

included identifying how the evaluation is to be tailored for the particular set of patterns
presented. Of note is the agreement on how results are to be reported, allowing those
auditing the patterns to decided precisely what results the author will receive. For
example, provision of free flow formative feedback alongside the summative grading.

8.5.2 Grading the Pattern

The second stage documents the execution of the pattern report card process. The
required activities are:

1) Grade the Quality of Pattern Presented.
2) Grade the Quality of Solution Presented.
3) Grade the Quality of Pattern Presentation.
4) Creation of the Pattern Report Card.
5) Detail any formative feedback.

8.5.3 Analysing the Results

The third stage stipulates: the collection of the results from each of the report cards;
collation of the results into a single report card; and identification of actionable items.
The required activities involved are:

1) Discussion of the report cards’ results.
2) Collation of the results according to the agreed upon scheme.
3) Identification of actionable items and recommendations for change.
4) Ordering of actionable items in order of precedence.
5) Creation of a report detailing the results of the report card together with format-

ive feedback.
The report created must provide a summary of the grading schemes utilised in the
evaluation. This stage provides an agreed upon analysis of the results and present of a
coherent set of prioritised actionable items. These items can be produced alongside a
single document that contains a single report card for each pattern and more formative
textual feedback.

8.5.4 Results Reporting

The final stage of the process requires: the reporting of the results; improvement of
the pattern according to recommendations; and re-evaluation of the changed pattern.

125

8. PREMES

The required activities involved are:
1) Submission of the report card and recommendations.
2) Changes based upon the recommendations.
3) Submission of the amended pattern for review.
4) Reevaluation of the pattern.

8.6 Evaluation

To help determine the efficacy of the Premes approach, several existing patterns were
evaluated and report cards generated. These patterns provide a diverse set of pattern
types, and each use different pattern templates.

Guerra et al. [Gue+14] provides behavioural patterns that support developer work-
flows; Priebe et al. [Pri+04] details abstract patterns for software-based authorisation
management; and Braga et al. [BRD98] provides patterns for information security.
Table 8.13 lists the specific patterns chosen for evaluation, together with their grades
and summative scores. This section discusses the results of the evaluation and how the
report cards were generated.

8.6.1 Methodology

The tooling presented in this thesis (Freyja & Frigg) can aid in the evaluation of
software patterns presented. However, the behavioural patterns do not have structure
and explicit dynamics. Each of the patterns presented were encoded using the org-
mode syntax to provide syntactically similar pattern files. These files were analysed by a
simple tool written in Idris to automatically calculate the readability scores for each
document using the same tooling as exposed by the Frigg tool. The different pattern
templates were given a different set of weightings, and each set of identifiable forces
in each pattern were given equal weighting. A lightweight representation in code of a
pattern report card was also implemented in Idris, facilitating dynamic calculation of
theWeighted Solution Appropriateness, andWeighted Adherence to Pattern Template

values, as well as collation and printing of the results for each evaluation.
For assessment of solution complexity, the grading scheme detailed in §8.4.2 will be

usedwith an extra grade descriptor of ‘incomplete’ to represent incomplete information.
Assessment of solution effectiveness shall use a six point grading scale, represented
by the set {A,B,C,D,E,F}. Each point on the scale describes a different quality of

126

8.6. Evaluation

provision of evidence of the solutions effectiveness. Pattern legibility is determined by
theKincaid readability metric [Kin+75]. Appendix A presents the data files, utility
software, and raw results of the evaluation.

8.6.2 Results

Table 8.13 summaries the results of the evaluation. The remainder of this section
discusses the results of the evaluation around the three areas of the report card: Pattern
Quality, Solution Quality, and Presentation Quality. An detailed statistical analysis of
the result was not performed due to the low sample size. For larger evaluation sets, use
of statistical models could result in more analysis between the effect of the different
indicators and pattern quality.

Quality of Pattern

The quality of presented patterns were mixed. No overall group of patterns did partic-
ularly well. The patterns from Priebe et al. [Pri+04] and Braga et al. [BRD98] scored
low in comparison with the other patterns. If one looks at the problems and associated
forces from both sets of patterns, the forces and solutions are more indicative of the
solutions being presented than for the problem itself. Thus, explaining the low scores.

Also evident in all of the evaluations was the patterns lack of coherency. Although
many of the presented patterns had the right level of abstraction between the solution,
context, and problem, these three concepts were ill-defined.

Of note were the good scores for pattern atomicity. Here most pattern’s achieved
a grade B or higher. Not many authors proposed patterns that should have been
modelled as pattern languages.

Quality of Solution

Similar to the results for pattern quality, the results for solution quality were alsomixed.
All patterns lacked clear evidence over their effectiveness, with the complexity of the
solution hard to determine. Solution appropriateness was also hard to determine when
the forces were not explicitly given in the pattern. Of which the patterns from Priebe
et al. [Pri+04] are a good example, they all scored 0.0when calculating theWeighted

Solution Satisfactionmetric.

127

8. PREMES

So
ur
ce

Pa
tt
er
n

Q
ua
lit
y
In
di
ca
to
rs

1

Pa
tt
er
n

So
lu
tio

n
P
re
se
nt
at
io
n

I1
I2

I3
I4

I5
I6

I7
I8

I9

G
ue
rr
ae
ta
l.
[G

ue
+1
4]

Ch
oo

se
Yo

ur
W
ea

po
n

C
E

E
0
.5

in
co
m
pl
et
e

D
5
0
.0

9
.1
4

B
U
nd

er
st
an

d
Cl

as
sR

ol
e
in

A
rc

hi
te

ct
ur

e
C

B
B

0
.2
5

in
co
m
pl
et
e

D
5
0
.0

1
1
.7
2

B
Fu

nc
ti
on

al
it
y
Li
st

B
B

B
0
.5

ad
eq
ua
te

D
6
8
.7
5

8
.1
0

B
K
no

w
Yo

ur
N
ei
gh

bo
ur

ho
od

B
A

E
0
.7
5

ad
eq
ua
te

D
6
3
.7
5
1
0
.7
1

B

Pr
ieb

ee
ta
l.
[P
ri+

04
]

A
ut

ho
ri
sa
ti
on

C
B

C
0
.0

ad
eq
ua
te

D
5
2
.0

9
.6
4

B
Se
ss
io
n

C
D

B
0
.0

ad
eq
ua
te

D
3
6
.0

8
.3
0

C
R
BA

C
C

B
E

0
.0

ad
eq
ua
te

D
3
6
.0

8
.4
6

C
M
BA

C
C

B
E

0
.0

ad
eq
ua
te

D
3
6
.0

1
0
.0
2

C
Se
ss
io
n
M
BA

C
C

B
E

0
.0

ad
eq
ua
te

D
3
6
.0

9
.4
8
6

C

Br
ag
ae
ta
l.
[B
R
D
98
]

In
fo

rm
at

io
n
Se
cr

ec
y

B
E

E
0
.2
5

ad
eq
ua
te

D
4
1
.6
8

6
.8
3

C
M
es
sa
ge

In
te

gr
it
y

B
B

E
0
.4
1

ad
eq
ua
te

D
4
1
.6
8

7
.0
5

C
M
es
sa
ge

A
ut

he
nt

ic
at

io
n

B
B

B
0
.5

ad
eq
ua
te

D
5
0
.0
1

7
.0
0

C
Se
nd

er
A
ut

he
nt

ic
at

io
n

B
C

E
0
.2
5

ad
eq
ua
te

D
5
0
.0
1

7
.4
4

C
1
Fo
rb
re
vi
ty
th
ei
nd
ica
to
rs
ar
eg
iv
en

in
or
de
ro
fp
re
se
nt
at
io
n
fr
om

§8
.3.

Ta
bl
e8
.13
:S
um

m
at
iv
ep

at
te
rn

re
po
rt
ca
rd
sf
or
se
ve
ra
le
xi
sti
ng

pa
tte
rn
s.

128

8.6. Evaluation

When the solution was poorly presented, this hampered determining the solution’s
complexity, and effectiveness. Notice the low grades for solution complexity and
effectiveness, where no one pattern scored higher than adequate. This is expected as
the insufficient description did not present all the facts. For example, the efficiency
of the solution is important for the Information Secrecy problem. Solutions to
algorithm selection nor key length selection, for example, are not alluded to at all in
the pattern. Similarly, analysis of abstract patterns such as those presented by Priebe
et al. [Pri+04] makes determining solution quality harder. There was incomplete
information over the presented solution, and only UML class diagrams could be used
to judge the complexity of the presented solutions.

8.6.3 Quality of Presentation

The presentation quality for each pattern was also mixed. The patterns from Priebe
et al. [Pri+04] and Braga et al. [BRD98] exhibited poor adherence to their specified
templates. With only a third of the patterns scoring higher than 50.00. This was a
result of lack of information given.

The legibility indicators showed a degree of consistency within each of the indi-
vidual sets of patterns presented. Comparing between sets, it was interesting to see that
the Braga et al. [BRD98] patterns had the lowest and smallest interval: [6.84,7.44]
of size 0.6. Whereas, Priebe et al. [Pri+04] had an interval of [8.3,10.02] with size
1.72. Guerra et al. [Gue+14] had the highest and widest interval of [8.10,11.72]with
a difference in grades of 3.62. Comparing the intervals to the corresponding American
grade level, as indicated by the Kincaid readabilitymetric, the difference in grades varied.
The Guerra et al. [Gue+14] patterns differed by at most four grade levels; two grade
levels for the Priebe et al. [Pri+04] patterns; and one for the Braga et al. [BRD98]
patterns. It is interesting to note how one set of patterns varies when compared to
another. If one looks at the wording used in Understand Class Role in Archi-
tecture, the pattern with the highest readability score, it uses more complex words,
when compared to the lowest scored pattern of Information Secrecy. While this
may have an effect of the resulting scores, the Information Secrecy pattern uses
fewer words overall.

Finally, the accessibility indicator shows that many of the provided patters were
written with some assumed knowledge and that not all concepts were explained. This
raises a question over howmuch assumed knowledge should the pattern author expect

129

8. PREMES

of their reader, and howmuch should be presented in the documented or linked as a
reference.

8.7 Discussion

The Premes framework has coalesced into a single solution various techniques and
methodologies from various different fields such as requirements engineering, software
design, testing, andmodelling. The resulting solution evaluates patterns using amixture
of metrics gathered from quantitative and qualitative data sources. Use of the iterative
process presented, and gathered metrics, allows for pattern deficiencies to identified
and tracked during development. Allowing for weak pattern areas to be identified and
addressed. This section discusses the proposed framework according to: its scope; style
of feedback; measurement techniques; and areas for improvement.

8.7.1 Scope of Evaluation

§8.3 introduced the indicators used to identify quality. A question naturally arises over
how complete these indicators are in determining pattern quality.

An aspect not explicitly mentioned, nor tested for, is that of usability. How usable

is the pattern document by non-domain experts? Usability can be used to identify
how accessible the pattern document is, and also ease of pattern application. For
assessment of pattern usability such testingwould require user studies. Thimthong et al.
[TCK13] have explored this area. However, use of user studies should be limited as the
usefulness of such studies can be ineffective and unhelpful if done improperly [GB08].
Nonetheless, the presented quality indicators, and the tests for those indicators, in
fact test for important aspects relating to usability. For example, accessibility of the
language used to introduce the concepts, the known and perceived complexity of the
solution presented, and how well the auditor believes the concepts are made accessible.

A secondary problem in determining the scope of the analysis is that most of the
report card system is left purposely undefined. It is up to those auditing the pattern to
determine precisely what is involved in the analysis. For the quantitative portions of
the analysis such concerns can be minimised through specification of approved analysis
techniques whose scope and limitations are known. For the qualitative measurements,
more guidance can be produced to guide in selection of a qualitative value.

130

8.7. Discussion

Several of the indicators use information presented in the pattern as testing criteria.
If this information is badly presented this will affect the quality of the resulting evalu-
ation. This problem is addressed as part of the evaluation process. Having multiple
rounds of evaluation facilitates consideration of this information and ensure that the
information is sufficiently presented prior to the evaluation process.

8.7.2 Evaluation of Pattern Languages

Pattern language quality is just as important as individual pattern quality. The com-
bined use of several patterns together may affect the quality of the solution being
presented to address the larger problem being tackled. However, the Premes frame-
work evaluates patterns in isolation, and does not take into account related patterns,
nor the evaluation of pattern languages. The Premes approach is limited in effect-
iveness when used against pattern languages. Future work will be to investigate if the
approach can be extended to include pattern language evaluation.

8.7.3 Formative vs Summative Feedback

When using Pattern Report Cards in isolation the feedback is summative and prohibits
further explanation of why grades where awarded. When combined with the manage-
ment process more formative feeback can be given alongside the report card, allowing
explicit mention of a pattern’s deficiencies. More so, during the checking phase (§8.5.3)
there are no restrictions on the style and detail of the reports created. For example,
given the presented metrics and a sufficiently large data set more complex statistical
analyses could be performed on the data to determine further meaning.

8.7.4 Qualitative or Quantitative

The evaluation techniques proposed use a mixture of analyses: pure quantitative ana-
lysis; quantitative analysis derived from qualitative measurement; and pure qualitative
analysis. These techniques allow for the pattern quality to be measured, and also made
reproducible. However, such a mixture of evaluation techniques, especially the use of
qualitative measurements, increases the difficulty in ensuring consistent reproducible
evaluation scoring. Pure qualitative measurement is known for being highly subjective
and open to interpretation, with quantitative scoring based on qualitative measure-
ment less so. The requirement of subjective evaluation could have a detrimental effect

131

8. PREMES

on the quality of analysis: one person’s junk is another person’s treasure. In its current
state Pattern Report Cards offers too high a degree of subjectivity in its evaluation
with too many of the grading schemes being purely qualitative. Future work will be to
investigate how these subjective aspects of the evaluation can be made more objective
or the subjectivity cancelled out. There are several approaches that can be considered:

Better Guidance Anaïve first approach is toproducemore guidance for eachof the
grading schemes presented. This guidance would provide a more detailed description
over what a pattern would look like if it was to be awarded a specific grade. This will
facilitate use of the grading scheme in a more effective manner.

More Quantitative from Qualitative There will always be a subjective aspect
relating to pattern quality if qualitative techniques are employed. A second more
practical approach is to reduce the size of the qualitative measurements being taken.
This will reduce the effect that an auditor’s subjectivity will have on the grading. This
is achieved by transforming the purely qualitative measurements into a quantitative
grade calculated from qualitative measurements. Each of the quality indicators can be
broken down into individual attributes that can be measured qualitatively and these
values used to construct a quantitative grade. This is the approach taken for weighted
adherence to pattern template.

Psychometric Questionnaires A third and final approach is to fully embrace
and acknowledge the existence of subjectivity in quality evaluations. With this, psycho-
metric testing techniques such as Likert and Guttman Scales, can be used to determine
the auditor’s attitude towards pattern quality using these techniques. Such scales were
used by Thimthong et al. [TCK13] in their usability studies. In particular Likert Scales
measure a subject’s response according to their level of agreement or disagreement.
When applied to patterns, a psychometric test can be devised to determine the aud-
itor’s agreement level over the quality of the presented pattern. Key to the use these
techniques is the need to minimise the inherent biases present within the subject’s own
response such that a true picture of the subject’s attitude is measured. This can be used
to control and minimise the inherent bias as presented by the auditor.

132

8.8. Summary

8.7.5 Need for an Overall Grade

Pattern Report Cards do not provide an overall grade for the pattern being evaluated.
Although the individual grading schemes provide a detailed assessment over how well
a pattern performed, the lack of an overall grade may trouble the pattern writer over
how good their presented pattern is. This raises a secondary question of: Can di�ering

levels of quality be established given the disparate set of grading tools used for each

quality indicator? To aid in the creation of an overall grade, the disparate set of grades
needs to be interpreted to provide a single value that is indicative of pattern quality.
That is, a grade conversion and collation algorithm needs to be created. Given the
second approach to increasing objectivity in the evaluation given in §8.7.4, a better
approachmay be to harmonise the grading schemes such that the same reporting scale is
used. Each indicator would be divided into smaller weighted attributes that are used to
calculate a quality value for the indicator using the same reporting scale. The indicators
can also be assigned a weighting (denoting importance) such that a weighted average
can be constructed from the grades presented. From this differing levels of quality
could be established based on the possible range of the final value. This is left as future
work.

8.8 Summary
Building on top of existing academic work for pattern evaluation, Premes is an holistic
evaluationmechanism for design patterns. At the heart of this framework are Pattern
Report Cards. These report cards assess a pattern according to a set of quality
indicators. How the pattern is graded can be tailored per pattern and the management
cycle makes this tailoring an explicit process. Pattern Report Cards presents a
measurable and reproducible evaluation technique for design patterns, that allows
problem areas of a pattern to be highlighted during evaluation.

However, Pattern Report Cards are not perfect, and still suffer, to a degree,
from subjective scoring. Further, the more quantifiable measurements taken (i.e.
Weighted Solution Appropriateness) are dependent upon certain aspects of the pat-
tern being readily identifiable. Priebe et al. [Pri+04] presented a set of patterns that
had no identifiable set of forces. Lack of such information will harm the quality of
the evaluation reporting. However, it can be argued that this will become self-evident
during the evaluation, and can be reported back to the writer for clarification.

133

C
h
a
p
t
e
r 9

Engineering Patterns for
Authentication

Chapter 2 §2.3 introduced the engineering process for software design patterns as de-
scribed by Yoshioka et al. [YWM08]. This thesis presents tooling and techniques
that enhances the pattern engineering process to make it more robust and demon-
strable. Figure 9.1 illustrates the connection between the presented technologies and
the workflow associated with pattern development. This chapter illustrates the thesis
contributions further by providing a tutorial that details how patterns for the problem
of authentication can be engineered. Presented are patterns for: Authentication
through Shibboleths; and Authentication through ID Cards

Note. The scope of this chapter is to highlight how the contributions can enhance
design pattern engineering. The patterns presented are illustrative in nature, and their
veracity not the main concern.

9.1 Overview

The Authenticator pattern [BF99] presents a technical solution to the problem of
authenticationwith a remote service. This is not the only authentication related pattern
seen in literature. Erber et al. [ESP07], Fernández and Sinibaldi [FS03], Fernández

135

9. Engineering Patterns for Authentication

The Sif Language

PREMES

The Frigg ToolFreyja

Problem Solution

Sif DSL Sif DSL

Sif Model
Checker

Pattern
Stubb

XML

Pattern Writing Pattern
Document

XML

Report Card
Process

Pattern
Report Card

Weightings

INI

Grading Scheme

INI
Pattern

Transformer

· · ·LATEX Org CommonMarkXML

Figure 9.1: Tools and technologies presented in this thesis and their placement in the
pattern engineering process.

andWarrier [FW03], Fernández [Fer07], Ajaj and Fernández [AF10], Morrison and
Fernández [MF06] and Weiss [Wei06] each present a series of similar patterns for
authentication. These patterns differ in technologies used and domains of operation.

This tutorial describes how the Sif modelling language (Chapter 5) can be used to
produce a generic requirements-oriented problem specification for the ‘Authentication
Problem’. The resulting specification will be agnostic not only to the context in which
authentication appears but agnostic to any proposed solution. Using the created
problem specification, two solutions for authentication will be specified. The first,
Shibboleths, details how authentication can operate sans technology. The second,
ID-Cards, looks at authentication that requires use of technology. The evaluation
mechanism for Sif will be used to determine how well each of the presented solutions
satisfies theproblem. Sif can thenbeused to generate document stubs that adhere to the
pattern template Freyja—Chapter 6. Following the creationof the patterndocuments,
the resulting patterns are evaluated using the Premes framework (Chapter 8) helped
by the Frigg utility—Chapter 7—allowing for potential deficiencies to be identified.
The Frigg tool allows for various aspects of the evaluation process to be automated,
and for the pattern document to be transformed into other formats for publication.

136

9.2. The Problem of ‘Authentication’

9.2 The Problem of ‘Authentication’

The Authenticator pattern [BF99] presents a technical solution to the problem
of authentication with a remote service. This section details how a Sif problem spe-
cification for this problem can be constructed. Problems in Sif are modelled as sets
of requirements that are indexed by the domain of operations in which the problem
occurs. The full specification is presented at the end of this section in Listing 9.3, and
Chapter 5 §5.4.2 details the Sif DSL used.

9.2.1 Problem Declaration

The problem of authentication can be summarised as:

Given two entities Alice and Bob, how can Bob authenticate with Alice

such that Alice knows that Bob is who he says he is.

Authentication mechanisms are used to provide assurances over the identity of an
entity; or provenance of an object. When modelling problems with Sif we must first
declare the existence of the problem and then provide the problem’s requirements.
Listing 9.1 provides the initial declaration of the authentication problem. Sif only
allows for a single problem to be specified per file. The declaration onLine 1 informs the
Sif evaluator that a problem specification is being declared. When declaring problems
within a specification, the type of specification needs to be specified before the problem
instance itself can be given. Line 5 provides the declaration of the problem itself. The
left arrow (<-) declares and initialises the symbolic representation of the problem.
Right of the arrow is the type declaration Problem, and right of the type declaration is
the title associated with the symbol. This notation is used throughout the problem
declaration to assign values to symbols.

� �
1 sif problem
2
3 > How to a u t h e n t i c a t e e n t i t i e s such t h a t a s s u r a n c e s
4 > can be made o f t h e i r i d e n t i t y .
5 authentication <- Problem "Authentication"� �

Listing 9.1: Initial problem declaration for modelling the problem ofAuthentication

in Sif.

137

9. Engineering Patterns for Authentication

Preceding the problem declaration is the corresponding textual description for the
problem presented as Sif documentation. Model documentation is indicated using
‘Bird’ notation i.e. the ‘>’ operator.

9.2.2 Contexts of Operation

With the problem itself declared, the domains of operation cannowbe defined. Existing
literature has already provided a corpus of patterns that illustrate the various contexts
in which authentication can occur [ESP07; FS03; FW03; Fer07; AF10; MF06; Wei06].
These identified patterns illustrate that the problem of authentication exists in amyriad
of contexts. For this tutorial five different contexts were identified:

• Local Technical: How to perform authentication locally between entities
without human assistance. For example, Firmware Signing is a means for devices
to authenticate software locally on a machine.

• Remote Technical: How to perform authentication remotely between entit-
ies without human intervention. For example, Certificate-Based SSH Login is
an automatic authentication mechanism to allow two devices to communicate.

• Local Socio-Technical: How to perform authentication locally between
entities that require human involvement. For example, password based device
authentication.

• Remote Socio-Technical: How to perform remote authentication between
entities that require human involvement. For example, device pairing requires
human involvement to enter a ‘pairing code’ to allow two devices to pair with
one another.

• Societal: How to perform authentication between entities that does not re-
quire technology. For example, shibboleth’s and code phrases are challenge-
response mechanisms used to allow agents to authenticate with each other
without the need for technology.

Listing 9.2 shows how these contexts are declared in the specification file. The syntax
required for context declaration follows that for problem declarations. However, the
type differs and specifies that the resulting object is of type Context. For each context

138

9.2. The Problem of ‘Authentication’

� �
1 socio <- Context "Non -Technical"
2 sociotechLocal <- Context "Local Socio -Technical"
3 sociotechRemote <- Context "Remote Socio -Technical"
4 techLocal <- Context "Local Technical"
5 techRemote <- Context "Remote Technical"� �

Listing 9.2: Modelling of contexts in which authentication can take place in Sif.

defined, an identifier is required and an explanatory title. Each context can be docu-
mented, if themodeller wishes to providemore information. Duringmodel evaluation,
contexts are automatically assigned to the presented problem when presented with a
solution for a specified context.

9.2.3 Requirements

Next comes specification of requirements detailing aspects of the problem that the solu-
tion must address. For the problem of authentication, one possible set of requirements
can be:

• Proof of Authenticity: A proof is required that will attest to the authenticity
of an entity.

• Enrolment Solutions must have a means to enrol entities into the authentica-
tion procedure and provide them with proof of identity.

• Authentication Step: Solutions must have an authentication step in which
the proof of an entity’s identity will be tested.

• Changeable: Themeans of authenticationmust be changeable and re-enrolment
possible.

• Consistent: The act of authentication must be consistent and each authentica-
tion act, if repeated, must have the same outcome.

• Timely: Processing authentication requests must be timely. Further, the dura-
tion of the complete authentication process must be timely in its duration.

• Lockout: Entities that repeatedly authenticate incorrectly should be denied the
right to authenticate for some predefined period of time.

• Effortless: The authentication process should be effortless to perform.

139

9. Engineering Patterns for Authentication

� �
1 sif problem
2
3 > How to a u t h e n t i c a t e e n t i t i e s such t h a t a s s u r a n c e s
4 > can be made o f t h e i r i d e n t i t y .
5 authentication <- Problem "Authentication"
6
7 socio <- Context "Non -Technical"
8 sociotechLocal <- Context "Local Socio -Technical"
9 sociotechRemote <- Context "Remote Socio -Technical"

10 techLocal <- Context "Local Technical"
11 techRemote <- Context "Remote Technical"
12
13 enrollment <- Functional "Enrollment"
14 proof <- Functional "Proof of Authenticity"
15 authStep <- Functional "Authentication Mechanism."
16 changeable <- Functional "Changeable."
17 consistent <- Reliability "Authentication happens."
18 timely <- Performance "Timely Authentication."
19 lockout <- Functional "Limited access attempts."
20 effortless <- Usability "Effortless Authentication"� �

Listing 9.3: Sif Problem specification for the problem ofAuthentication.

Within Sif, types for requirements come from the Furps requirementsmodel [Gra92].
This model categorises requirements as being related to one of the following concepts:
Functional, Usability, Reliability, Performance, or Supportability. Allowing each re-
quirement to be given a type that better describes the requirement being detailed. For
example, the ‘consistent’ requirement is a reliability requirement rather than a purely
functional one. Listing 9.3 lists the complete problem specification and also details
the requirements for the problem together with their requirement types. For brevity,
documentation for each requirement has not be given. With the problem specification
given, the two potential solutions can now be investigated.

9.3 Addressing Authentication

The patterns presented by Hashizume et al. [HFH09], Hashizume and Fernández
[HF10], Braga et al. [BRD98], Cuevas et al. [Cue+09] and Cuevas et al. [Cue+10]
detail technological solutions to authentication. Common to these patterns, and other
non-pattern described solutions, is the idea that authentication requires some form of
enrolment step, a proof of authenticity, and the actual act of verifying the proof.

This sectionwill detail the construction of two solutions for authentication for two

140

9.3. Addressing Authentication

different contexts: Shibboleths—for the societal context; and ID Cards—for the socio-
technical context. These will result in Sif models for the patterns: Authentication
through Shibboleths; and Authentication through ID Cards. Evalu-
ation of these models is detailed in §9.6. For the sake of brevity, a more rigorous
treatment and discussion of ‘design rationale’ is given for modelling the Shibboleth
solution only.

9.3.1 Using Shibboleths

Technically, speaking a shibboleth is tried and tested societal authenticationmechanism
used to determine whether a person belongs to a certain social group. Shibboleths are
phrases whose true pronunciation will only be known to a specified social group, and
have been used throughout history in times of war to test persons of interest. Somewell
known examples from the SecondWorldWar are: Schrijver van Scheveningen—used by
theDutchResistance;Visser van Vlissingen—another phrase used byDutchResistance;
and Lollapalooza—used by US Soldiers in the Pacific Theatre. These phrases were
chosen due to the difficulty in pronunciation that non-native speakers and the enemy
had. For example, in Dutch the syllable ‘Sch’ has a very distinctive sound that only
a fluent/native Dutch speaker will be able to reproduce. In the Pacific Theatre most
speakers of an East Asian language will have difficulty in pronouncing the letter ‘L’.
Upon encountering a person who claims to be from a certain social group, the person
canbe challenged to pronounce the group’s shibboleth. If the person cannot pronounce
the shibboleth correctly it can be argued that the person is not an authentic member of
the social group, and should be ‘dealt with’.

To model shibboleths in Sif, the properties of the solution must first be identified
together with their traits. For this example two properties were identified representing
the ‘proof’ and ‘authentication procedure’. These properties are explained below,
together with how they are translated into a Sif solution specification. Listing 9.4
presents the resulting Sif model.

Modeling the Property ‘Trapdoor Pronunciation of a Known Phrase’

The first property models that a shibboleth is a difficult phrase to pronounce unless
you are aware of its true pronunciation. Properties are titled declarations that contains
a set of traits.

141

9. Engineering Patterns for Authentication

Property "Trapdoor Pronunciation of a Known Phrase" { ... }

For this property two traits can be identified. The first trait details the inherent ‘proof’
aspect of shibboleths, depending on the culture and phrased used, knowledge of how
to pronounce the phrase may be more wide spread than originally thought. This can
be translated into Sif as:

Trait "Known to a select few" is WeakSatis {
Affects { SomePos proof , SomePos authStep }}

Each trait will contain an Affects section that lists a set of affects as a pairing between
the impact of the trait on a requirement from the problem specification. The impact
values are sourced from the GRL.

Shibboleths are phrases that only a few should know how to pronounce. However,
use of a well-known phrase increases the likelihood that it will be learned by those out-
side the social group: Impostors. Thus, the trait is ‘weakly satisfied’ due to the weakness
associated with the possibility of a poorly chosen well-known phrase. Further, the trait
will have minimal impact upon the proof and authStep requirements identified in
Listing 9.3 because of this weakness.

The second trait details the testing and proof aspects of shibboleths when used for
authentication. The ability to pronounce the phrase is both the proof, and also the act
of authentication. The resulting Sif representation for this property is:

Trait "Pronunciation is the Proof" is Satisfied {
Affects { Makes proof , Helps authStep }}

When challenged, the ability to pronounce the shibboleth is the proof that the per-
son is authentic. The impact upon the requirements for authentication are that: (a) the
proof requirement is made (i.e. is satisfied) through existence; and (b) this ‘proof’
helps towards but does not satisfy the authentication step requirement—authStep.
Thus, this aspect is ‘satisfied’ as shibboleths as proofs is a sound idea; shibboleths have
been used as authentication mechanisms. For the authentication step to be satisfied
shibboleths need to be part of an organised challenge response mechanism. The focus
of the next property.

142

9.3. Addressing Authentication

Modelling the Property ‘Shibboleths are a Challenge-Response
Mechanism’

Knowledge of a shibboleth on its own does not constitute an authentication mechan-
ism. The chosen phrase must be used in a challenge-response context. This property
describes the use of shibboleths for authentication. As such identified traits will impact
the requirements dealing with the operation and implementation of an authentication
mechanism. The property is modelled as:

Property "Shibboleths are a C-R Mechanism" {...}

For this property, two traits were identified. The first recognises that Challenge Re-
sponse is an Authentication Mechanism. Challenge-response mechanisms are a known
authentication procedure in which upon request, an entity must provide proof of
authenticity. The act of challenge-response is also a repeatable procedure and this re-
producibility can help but not guarantee consistency of authentication; the complexity
of the procedure ultimately determines its consistency. Related is the idea of a lockout.
Detection of an incorrect response is deterministic, however, it is not clear howmany
attempts a person will have in reproducing the shibboleth before being locked out.
Translating this trait into Sif gives:

Trait "Challenge Response is Authentication" is Satisfied {
Affects { Makes authStep , Helps consistent

, Helps timely , Helps lockout }}

The next trait describes how entities learn and use shibboleths: Learning and Using
Shibboleths. To participate in the authentication procedure, entities must first learn the
shibboleth. New phrases can be acquired, and their difficulty will impact the ability of
an entity to learn the phrase.

Trait "Learning and Using Shibboleths" is Satisfied {
Affects { Makes enrollment , SomePos consistent

, Helps changeable , SomePos effortless }}

The trait ‘Learning and Using Shibboleths’ satisfies the enrollment requirement by
virtue of the fact that entities must learn the shibboleth. However, entities may forget
or make a mistake pronouncing the shibboleth when questioned. This ultimately will
affect the strength of impact on the consistent requirement: It helps but does not
make the requirement.

143

9. Engineering Patterns for Authentication

� �
1 sif solution
2
3 Solution "Shibboleths" solves authentication in socio {
4
5 Property "Trapdoor Pronunciation of a Known Phrase" {
6 Trait "Known to a select few" is WeakSatis {
7 Affects { SomePos proof , SomePos authStep }}
8
9 Trait "Pronunciation is the Proof" is Satisfied {

10 Affects { Makes proof , Helps authStep }}}
11
12 Property "Shibboleths are a C-R Mechanism" {
13 Trait "Learning and Using Shibboleths" is Satisfied {
14 Affects { Helps enrollment , SomePos consistent
15 , Helps changable , SomePos effortless }}
16
17 Trait "Act of C-R" is Satisfied {
18 Affects { Makes authStep , Helps consistent
19 , Helps timely , Helps lockout }}}}� �

Listing 9.4: Complete solution specification for using ‘Shibboleths’ for authentica-
tion.

Complete Specification

With the properties and traits of the solution modelled. The complete specification
can be brought together. The complete specification is given in Listing 9.4, collecting
the descriptions detailed earlier in this section.

A solution specification, like a problem file, begins with a declaration that is used
by the evaluator to recognise solution files. This is Line 1. Line 3, is the actual solution
declaration. Each solution is given a title and the identifier of the problem its solves
together with the identifier of the context in which the problem and solution operate.

The evaluation of this model is discussed in §9.6. The next part of this tutorial will
detail an alternative solution for authentication using identification cards that are used
in a socio-technical context rather than a purely social context.

9.3.2 Using Identification Cards

Shibboleths are a purely societal solution to authentication. The next solution to
authentication relies on both human interaction and technology to address problems
of authentication. ID Cards are ‘issued’ documents that attest to the identity of the
holder. Manyorganisations and governmental bodies issuememberswith identification

144

9.4. Model Evaluation

documents. Students at a university are given student cards, and employees in an
organisation are given staff cards. Upon enrolment with the issuing body, entities have
their identity asserted and an Identity Card is produced that represents the assurance
that the governing body attests to the identity of the entity in question. The cards
issued follow a standardised design unique to the governing body, and will display
salient details about the card holder.

Many RFID cards are also ‘active’ and respond to interactions with technology.
For instance, RFID-enabled Smart Cards have been used as the basis for ID Card
technology. The burdon of proof in ID Card systems, is the knowledge that only the
issuing body can reasonably attest and physically construct the cards. After enrolment
entities that possesses these cards can have their identities attested by others, often by
technological means. However, cards are physical tokens and can be lost, stolen, forged,
or hacked. These are known disadvantages of ID Cards.

From the description given so far a set of properties and traits of those properties can
be identified. Listing 9.5 presents the full listing of the Sifmodel solution for ID Cards,
together with supporting documentation illustrating how a more comprehensive Sif
solution file can look. Not all traits are neutral in their affect. For example, as ID
Cards can be stolen or hacked, these traits have been marked as being disadvantageous
and as such have a negative affect on the solution. Regardless of whether marking
traits as being positive (Advantage), neutral (Trait), or negative (Disadvantage), the
satisfaction value details the veracity of the trait. How a disadvantageous trait affects
the evaluation of the model is detailed in Chapter 5.

9.4 Model Evaluation

With themodelling files for the two patterns complete, the next stage in the engineering
process is to evaluate the patterns. Evaluation will take a problem solution pairing and
determine how well each of the problem requirements are satisfied by the presented
solution. Table 9.2 summarises the results of running the Sif evaluator on both mod-
els. The results show how both the presented solutions weakly satisfy the problem of
authentication. However, different levels of satisfaction are presented for each require-
ment. Both shibboleths and ID Cards satisfy the requirements of Proof of Authenticity

andAuthentication Mechanism, yet ID Cards presents more satisfied requirements.
This is due to the effect that the technology property has on the requirements.

145

9. Engineering Patterns for Authentication

� �
1 sif solution
2
3 Description """ID Cards are physical tokens handed out by
4 a governing authority and are used by people to verify
5 their identity."""
6
7 > ID Cards a r e p h y s i c a l t okens handed out by a g o v e r n i n g
8 > a u t h o r i t y . Use r s must e n r o l l w i th the body to be i s s u e d
9 > with an ID Cards .

10 Solution "ID Cards" solves authentication in sociotech {
11
12 > The ID Cards i s a token c a r r i e d by p e o p l e .
13 Property "ID Cards is a Token" {
14 > Only a u t h o r i s e d b o d i e s can c o n s t r u c t c a r d s .
15 Trait "Assignment of Cards" is Satisfied {
16 Affects { Makes enrollment , Makes proof }}
17
18 > Tokens can be s t o l e n / l o s t .
19 Disadvantage "Stolen/Lost Tokens" is WeakSatis {
20 Affects { Hurts consistent }}
21
22 > S p e c i f i c t okens can have a v a l i d i t y p e r i o d .
23 Advantage "Validity Period" is Satisfied {
24 Affects { Helps consistent , Helps changeable }}}
25
26 > Technology i s Used .
27 Property "Technology" {
28 > Cards can be made e l e c t r o n i c .
29 Trait "Machine Readable" is Satisfied {
30 Affects { Makes consistent , Makes timely
31 , Makes lockout , Makes effortless
32
33 > Technology i s not a lways r i g h t .
34 Disadvantage "Hackable" is WeakSatis {
35 Affects { Breaks consistent , Breaks timely , Breaks lockout }}}
36
37 > ID Cards a r e a s t a n d a r d i s e d means o f i d e n t i f i c a t i o n t h a t a r e
38 > a p p l i e d a c r o s s an o r g a n i s a t i o n and a d m i n i s t e r e d under a
39 > s i n g l e g o v e r n i n g body ' s r e m i t .
40 Property "Governing Body Issued" {
41 Trait "Standardised form of Identification" is Satisfied {
42 Affects { Makes enrollment , SomePos changeable
43 , SomeNeg effortless }}
44
45 Trait "Standarised Mechanism" is Satisfied {
46 Affects { Makes authStep }}}}� �

Listing 9.5: Complete solution specification for using ‘ID Cards’ for authentication.

146

9.5. Writing Patterns

Requirement Shibboleths ID Cards
Enrolment wSatisfied Satisfied
Proof of Authenticity Satisfied Satisfied
AuthenticationMechanism Satisfied Satisfied
Changeable wSatisfied wSatisfied
Authentication happens wSatisfied Satisfied
Timely Authentication wSatisfied Satisfied
Limited access attempts wSatisfied Satisfied
Effortless Authentication wSatisfied wSatisfied
Authentication wSatisfied wSatisfied

Table 9.2: Sif evaluation results for Authentication through Shibboleths&
Authentication through ID Cards.

When working with the evaluator, only three artefacts are presented. A single

solution file, together with the two solution files. Further, arbitrary pairings of files
cannot be presented to the evaluator. Had the presented files not matched in the
problem and solution and context pairing, the evaluator would have refused to run.

Note. The twomodels presented are for solutions in different contexts and that, as
with anymodelling, the strength of the results relies on the detail expressedwithin the
model.

9.5 Writing Patterns

The next stage in the pattern engineering process is the construction of pattern doc-
uments that describe the patterns in more detail. As well as the generation of several
known flavours of markdown languages, the Sif evaluator also facilitates the construc-
tion of Freyja encoded pattern stubs. The Freyja pattern template can be used for
creating active document specifications—see Chapter 6. When stubs are generated
using Sif, the evaluator will use the documentation in the Sif model files to fill in as
much of the document as possible. This leaves the pattern writer to literally fill in the

gaps.
For example, the Authentication through Shibboleths was modelled in

the previous section. Listing 9.6 gives theXML fragment corresponding to the problem

147

9. Engineering Patterns for Authentication

� �
...
<problem >
<name>Authentication </name>
<description >How to authenticate entities such that

assurances can be made of
their identity.</description >
<requirements >
<usability id="8">
<name>Effortless Authentication </name>
<description >To Be Added</description >

</usability >
<functional id="7">
<name>Able to set limited access attempts </name>
<description >To Be Added</description >

</functional >
<performance id="6">
<name>Timely Authentication </name>
<description >To Be Added.</description >

</performance >
<reliability id="5">
<name>Authentication happens </name>
<description >To Be Added</description >

</reliability >
<functional id="4">
<name> Changable </name>
<description >To Be Added</description >

</functional >
<functional id="3">
<name>Authentication Mechanism </name>
<description >To Be Added</description >

</functional >
<functional id="2">
<name>Proof of Authenticity </name>
<description >To Be Added</description >

</functional >
<functional id="1">
<name>Enrolment /name >
<description >To Be Added</description >

</functional >
</requirements >

</problem >
...� �
Listing 9.6: The problem description from the Freyja stub generated from the Sif
model for the pattern: Authentication through Shibboleths

148

9.6. Evaluating the Pattern

of authentication as described in Listing 9.3. Note how the name and documentation
from the Sif model have been serialised into the XML encoding, with a key phrase of
To Be Added to denote the missing content.

Listing 9.7 provides a similar partial snippet used as part of the solution description.
Listing 9.4 presents the corresponding Sif model. Patterns are more than just the
abstract concepts described in the Sif model. The Freyja encoding provides pattern
writers with an explicit means to provide more information over the structure and
dynamics of the presented solution using the XML tag model. For example, Listing 9.8
presents a possible UML component model to depict how one possible structural de-
scription can be given in the XML file. The textual UML notation from PlantUML1

was used to give a more human readable serialisation of the component model. Other
representations are permissible.

Although, XML is a machine-readable serialisation format, the resulting XML
encoded files can be hard to read. The Frigg tool presented in this thesis allows,
among other features, a means to provide more human-understandable views of a
Freyja encoded file. Listing 9.9 details how the problem description encoded in XML
(Listing 9.6) can be viewed using the Org-Modemarkdown syntax.

Appendix A presents the finalised written forms for both Authentication
through Shibboleths and Authentication through ID Cards. The next
section describes how the resulting patterns are evaluated for quality. To illustrate how
the evaluation detects good and bad qualitative aspects of a pattern, the Authentic-
ation through ID Cards pattern was written in a purposefully bad style.

9.6 Evaluating the Pattern

The next stage in the engineering process is pattern evaluation. To evaluate patterns
the Premes evaluation framework was developed—see Chapter 8. Pattern Report

Cards is a tailorable evaluation system that allows for a generic evaluation framework
to be tailored for a group of like patterns. This framework is based upon the Plan-
Do-Check-Act management cycle. The Frigg tool (Chapter 7) has been designed for
working with pattern documents to aid in report card generation. This section will
not explicitly report all aspects of the evaluation process but concentrate on reporting
how the framework was used to conduct the evaluation itself.

1http://www.plantuml.org

149

http://www.plantuml.org

9. Engineering Patterns for Authentication

� �
1 <solution >
2 <name> Shibboleths </name>
3 <description >To Be Added</description >
4 <models >
5 <dynamic modelTy="unknown">
6 <name> Example Dynamic </name>
7 <description > To Be Added</description >
8 <model><![CDATA[
9 "MODEL inserted here"

10]]></model>
11 </dynamic >
12 <structure modelTy="unknown">
13 <name>Example Structure </name>
14 <description >To Be Added</description >
15 <model><![CDATA[
16 "MODEL inserted here"
17]]></model>
18 </structure >
19 </models >
20 <properties >
21 <property >
22 <name> Shibboleths are a C-R Mechanism </name>
23 <description >To Be Added</description >
24 <traits >
25 <general svalue="SATISFIED">
26 <name> Act of C-R </name>
27 <description > The C-R mechanism is the authentication step

.</description >
28 <affects >
29 <affect cvalue="HELPS" id="7">clearly defined process ,

but confusion over which phrase used.</affect >
30 <affect cvalue="HELPS" id="6">parties will now the

result immediately.</affect >
31 <affect cvalue="HELPS" id="5">predefined phrases are

learned.</affect >
32 <affect cvalue="MAKES" id="3">very nature the C-R step

is the authentication step.</affect >
33 </affects >
34 </general >� �

Listing 9.7: An extract from the solution description from the Freyja stub generated
from the Sif model for the pattern: Authentication through Shibboleths.

150

9.6. Evaluating the Pattern

� �
1 <structure modelTy="uml -component">
2 <name> Example Structure </name>
3 <model><![CDATA[
4 component Subject
5 component Authenticator
6 component Enroller
7
8 interface "Enrollement" as enrol
9 interface "Authenticate" as auth

10
11 Authenticator - auth : provides
12 Enroller - enrol : provides
13
14 Subject ..> enrol : requests
15 Subject ..> auth : requests
16]]></model>
17 <description > Within the shibboleth setup there are three main

components. The subject requesting access. The
authenticator that performs the authenticity check. An
enrolment component that enrols a subject into the system.

18 </description >
19 </structure >� �

Listing 9.8: Example model given in PlantUML notation depicting the structure of
the solution from the Authentication through Shibboleths.

9.6.1 The Planning Stage

For analysing the two patterns the following decisions were made.

Quality of Pattern Presented For these patterns, the first part of the evaluation
does not require decisions to be made before execution of the evaluation process.

Quality of Solution Presented To calculate the weighted solution satisfaction

metric (see Chapter 8 §8.3.2) each requirement shall be treated equally and given the
same weighting i.e. each of the eight requirements has a weighting of 0.125. The
grading scheme used is based upon the satisfaction values from the GRL and presents
an example mapping of the qualitative satisfaction values to quantified values. The
mappings are given in Table 9.4. The Sif evaluation data will be used to assign a grade
to each of the requirements. For assessment of solution complexity, the grading scheme
detailed in Chapter 8 §8.4.2 will be used with an extra grade descriptor of ‘incomplete’.
Assessment of solution effectiveness shall be from a naïve assessment that looks for
evidence of effectiveness.

151

9. Engineering Patterns for Authentication

� �
1 frigg > :display problem
2 * Problem: Authentication
3 How to authenticate entities such that assurances can be made

of
4 their identity.
5 ** Requirements
6 ** FUNC: Able to set limited access attempts
7 Entities that repeatedly try to authenticate with incorrect

data should be
8 locked out of the system for some predefined period of time.
9 ** FUNC: Changable

10 The authentication step must be changable and re-enrollment
possible.

11 ** FUNC: Authentication Mechanism
12 Solutions must consist of an authentication step.
13 ** FUNC: Proof of Authenticity
14 A proof is required that will attest to the authenticity of

an entity.
15 ** FUNC: Enrolment
16 Solutions must have a means to enroll entities into the

authentication
17 procedure.
18 ** USAB: Effortless Authentication
19 The authentication process should not require undue effort to

do.
20 ** RELI: Authentication happens
21 Authentication must be consistent and that entities with up-

to-date
22 authentication details should authentication.
23 ** PERF: Timely Authentication
24 Processing authentication requests must not take forever , and

be timely
25 in their duration.� �
Listing 9.9: Using Frigg to provide a more human-understandable view of the
authentication problem encoded in Listing 9.6.

152

9.6. Evaluating the Pattern

Quality of Pattern Presentation For calculating the weighted adherence to
a pattern template it was decided that the classic Alexandrian template, detailed in
Chapter 2 §2.6.1, will be used. For this evaluation, the heading named Implementation

is replaced with Evidence, and an additional heading Case Studies added. Each heading
will be treated equally, thus for the eight headings in the template the weightings will be
0.125. The grading scheme usedwill be the same one used to calculateweighted solution
satisfaction. Pattern Legibility shall be assessed using the Flesch-Kincaid readability
metric [Kin+75].

Denied Conflict wDenied Unknown wSatisfied Satisfied
0.0 0.0 0.25 0.5 0.75 1.0

Table 9.4: Mappings fromGRL satisfaction values to quantitative values used for pat-
tern evaluation.

9.6.2 Grading the Pattern

Chapter 8 details how the qualitative indicators are to be scored, together with the
various grade descriptors used. This section details how the Frigg tool can be used to
aid in the grading process. Formative comments will not be reported in this tutorial.
Table 9.6 presents the resulting report cards for both patterns evaluated.

Indicator Shibboleths ID Cards
Coherency Grade A A
Atomcity Grade B B
Problem Independence A A
Solution Appropriateness 0.81 0.94

Solution Complexity Adequate Incomplete
Solution Effectiveness D B
Pattern Structure 162.5 37.5

Pattern Legibility 7.71 6.36

Presentation Accessibility B D
Table 9.6: Report Cards Grades for the Authentication through Shib-
boleths and Authentication through ID Cards patterns.

153

9. Engineering Patterns for Authentication

� �
frigg > :evaluate sif
WEAKSATIS ==> Requirement: Timely Authentication
WEAKSATIS ==> Requirement: Authentication happens
WEAKSATIS ==> Requirement: Effortless Authentication
WEAKSATIS ==> Requirement: Enrollment
SATISFIED ==> Requirement: Proof of Authenticity
SATISFIED ==> Requirement: Authentication Mechanism
WEAKSATIS ==> Requirement: Changeble
WEAKSATIS ==> Requirement: Able to set limited access

attempts
WEAKSATIS ==> Problem: Authentication� �

Listing 9.10: Re-Calculating the Sif Evaluation Result for the Authentication
through Shibboleths pattern.

Solution Appropriateness The satisfaction results for each pattern were presen-
ted earlier in Table 9.2. These results are not stored in the Freyja encoding. The
purpose of the Sif evaluator is to calculate these values. However, the Frigg tool
knows about Sif models and can recover the model from a Freyja encoded pattern
document. At the moment Frigg can be used to display the results of the Sif evalu-
ator. Listing 9.10 presents an example listing illustrating this for Authentication
through Shibboleths. These values are then used in-conjunction with the value
mappings in Table 9.4 to calculate the scores. Although, the calculations must be
performed by hand, Frigg can be extended to do the calculations automatically.

Pattern Structure The Frigg tool can also be used to calculate theWeighted-

Template Adherence metric automatically from the pattern document. Each head-
ing/tag in the document can be given a qualitatively described score using the score
attributed of the specification format. For example, <problem score ="A">. Feeding
the tool with a set of grade mappings that detail the template structure and weightings,
Frigg can automatically calculate the resulting value for template adherence. List-
ing 9.11 presents an example listing illustrating this for Authentication through
Shibboleths.� �

frigg > :evaluate template
162.5� �

Listing 9.11: Calculating Weighted-Template Adherence for the Authentication
through Shibboleths using Frigg.

154

9.6. Evaluating the Pattern

Pattern Legibility Readability metrics can be calculated automatically. Frigg has
support for calculating the values for a variety of known readabilitymetrics. Listing 9.12
demonstrates how this is achieved using the Frigg tool, and from which the required
readability metric can be selected.� �

frigg > :evaluate read
(FLESCH , 59.54554252199415)
(ARI , 7.248867302052787)
(KINCAID , 6.354149560117303)
(COLEMAN , 11.21700268817204)
(FOG , 4.996480938416423)
(SMOG , 6.404542420195273)� �

Listing 9.12: Calculating the readability scores for Authentication through ID
Cards using Frigg.

Remaining Descriptors The remaining aspects require subjective assessment, and
cannot be automated. The resulting grades for the remaining indicators were chosen
based upon the descriptions given in the grade descriptors from Chapter 8.

9.6.3 Analysing the Results

With the report cards constructed and summarised, the next stage is to analyse the
results. Recall, that the pattern Authentication through Shibboleths was
written in a good style, and the pattern Authentication through ID Cards in
a bad style. This is evident in the report-card, where for the indicator Pattern Structure

Shibboleths scored higher. This does not mean that Shibboleths are better. Analysis
of the results for Solution E�ectiveness and score for Solution Appropriateness show
that ID Cards score higher than Shibboleths and are ‘better’ than shibboleths in these
areas.

Further for both patterns, the report card also identifies that the pattern’s problem,
solution, and context are coherent. Such coherency could be the result of modelling the
pattern using Sif, allowing for patterns to be described in a manner more conducive
for respecting the problem×solution×context triple. However, this thesis does not
provide evidence to support this conclusion.

The report card can be used to produce a report providing detailed formative
feedback on the deficiencies presented in the pattern along side the already reported

155

9. Engineering Patterns for Authentication

summative feedback. The indicators in the report card can be used to situate the
feedback better. Further, the presented report can be concludedwith a set of prioritised,
actionable, items that provides advice on which areas are required for improvement.

9.6.4 Results Reporting

With the evaluation complete, the next stage is reporting and analysis of the results
document. With such a document comes precise feedback on the patterns deficiencies
and successes, allowing for improvements to the pattern to be targeted. With successive
iterations of the evaluation process, previous results documents can be compared to
track the improvement of the pattern.

9.7 Pattern Publication

The final stage in Software Design Pattern Engineering is that of pattern publication.
§9.5 already demonstrated how Frigg can be used to view Freyja encoded pattern
documents, an example of which was provided in Listing 9.6. Frigg can also be used
to convert the templates into other document-markup formats, for example LATEX,
Markdown, andOrg-Mode. Appendix A contains the result of converting the patterns
in this chapter to the different supported formats. Through automatic generation of
the pattern document to multiple documentation formats comes ease of distribution
of the pattern to different media.

9.8 Summary

This chapter presented a tutorial demonstrating how the various contributions in this
thesis are used for pattern engineering. Specifically, the contributions were used to
engineer two example patterns for the problem of authentication: Authentication
using Shibboleths and Authentication using ID Cards. Sif was used dur-
ing the creation phase to guide development of and machine check a requirements
model describing the pattern. The problem description was shared between the two
models. Freyja facilitated the encoding of the pattern document and requirements
model in a machine readable and checkable format. The resulting pattern document
and its encoded information was used by Frigg during the evaluation process. Here

156

9.8. Summary

Frigg was used to machine read and check the documents. Combination of these
tools can lead to an enhanced creation phase for pattern engineering.

157

C
h
a
p
t
e
r 10

NovoGRL: Re-Targeting the GRL
for newDomains

TheGRL is an existingGOMLthat presents a visualmodelling language—Chapter 3 §3.2.
However, when using a such a language with visual language constructs, a more formal
language-driven treatment for DSML creation is harder to produce. This arises due to
the disconnect between the notation used for the DSML, and its formalisation and
transformation into a host language model instance.

This chapter introduces NovoGRL a language oriented re-engineering of a subset
of the GRL. Specifically, this framework facilitates the provisioning of new semantic
overlays allowing for the language to be re-targeted for newmodelling domains. This
framework is used for the construction of DSMLs that are structurally equivalent to
the GRL but provide different semantic constructs.

In addition to the description of NovoGRL, two DSMLs are presented as case
studies to illustrate how the original GRL can be re-targeted for different domains.
The DSMLs presented are: (a) a replication of the GRL itself; and (b) a language used
for modelling academic paper writing. NovoGRL and the languages described in this
chapter are available online [dMH15e]. Further, the DSML that replicates the GRL
was used as the meta-modelling language to which Sif model instances are interpreted
to.

159

10. NovoGRL

10.1 Making the GRL a Language

Goal Graphs are a formalmodel for describing goalmodels as directed graphswhere each
node represents a goal, and the edges the links between each goal [Gio+03]. Giorgini
et al. [Gio+03] provide a formal definition for these goal-graphs.

Definition 12 (Goal Graph). Formally a Goal-Graph is a directed graph described

as a pairing 〈G,R〉, where G is a set of goals, and R is a set of goal relations over G.

Given the relation ({g1, . . . , gn})
r−→ g in R where gi ∈ G. Nodes to the left of the

relation are described as source goals, and the goal on the right is the target goal.

Using these goal-graphs, Amyot et al. [Amy+10] derived a series of evaluation tech-
niques to calculate model satisfaction.

The GRL is a graphical modelling language using visual cues to illustrate concepts,
and fixates upon the idea that modellers will use a visual means to both construct, view,
and reason about their goal-graphs. However, these visual cues and language constructs
are harder to reason about formally and also mechanically [MC01]. Furthermore,
when using visual modelling languages, the creation of a DSMLmust be performed
through adhoc methods unless the modelling language’s tooling explicitly supports
DSML creation. When working with GOMLs, the language syntax and type-system
are presented visually and their representation in code buried alongside the evaluation
semantics in the tooling.

To address these issues one has to first think of the graphical notation used as an
alternative view of the model. Programming languages are comprised of: an abstract
syntax to describe language expressions; a type-system to ensure the creation of well-
formed expressions; and semantics to ensure the correct execution of expressions.
These notions are linked together in the tooling provided for the language. Chapter 4
introduced the idea of theWell-Typed Interpreter and how a DSL can be modelled
as an EDSL within Idris, providing static compile-time correctness by construction

guarantees over the program and language implementation. This approach illustrated
how the language’s syntax, typing rules, and interpretation can be formally modelled
and implemented within the same system. Further, the Idris language has built in
support for tactic style theorem proving and auto implicit argument construction. Use
of these abilities further enables compile time checks to be performed for properties
of the language that enhances the correctness by construction guarantees made. With a
language-based approach to DSML construction, the GRL can be re-envisaged as a

160

10.1. Making the GRL a Language

declarative language (in the style of theWell Typed Interpreter [AC99]) from which
goal-graphs are constructed.

The interest in this thesis, however, is not with the (re)construction of the GRL
per se but rather its use as a meta-modelling language for constructing DSMLs, and
DSMLs primarily for reasoning about design patterns. Work by Brady and Hammond
[BH06] has shown how a verified staged interpreter can be written in a dependently
typed language to translate concepts between domains (i.e. languages) and provide
correctness by construction guarantees for these translations. Such an approach allows for
the structural equivalence between the two languages to be shown more formally, and
more importantly enforced during implementation. This approach can be combined
with theWell-Typed Interperter approach to allow for a more formal description of
the re-domaining of the GRL to occur if the interpretation between domains can be
specified.

GRL PML

G?

GLangGModel

Interp.

GExpr

Check/Insert Fail

GModel

Interp.

PML

Figure 10.1: Schematic illustrating howDSML relate to, and are interpreted into, No-
voGRL goal models.

However, this approach requires that for every DSML constructed, a bespoke
interpreter must also be constructed. To reduce the effort in constructing multiple
DSMLs, a two-stage interpreter is used. At different stages of interpretation different

161

10. NovoGRL

properties on the resulting intermediate forms can be checked. Figure 10.1 illustrates
this two stage process.

DSMLs are first translated into an intermediate representation that captures lan-
guage constructs common to all DSMLs: GExpr. This transformation is achieved
using transformation functions unique to the DSML. The resulting intermediate rep-
resentation provides the instructions for constructing the GRL goal-graph using an
internal modelling language: G?. A goal-graph constructed using G? is evaluated for
satisfaction using known techniques [Amy+10]. Interpreting down to a common rep-
resentation, allows for the construction of goal-graphs to be reasoned about regardless
of the DSMLs original language constructs.

Here DSMLs are defined as a variation of the GRL that uses structurally similar
language constructs to the GRL but with semantic constructs unique to the domain
of interest. The languages are structurally isomorphic, but semantically dimorphic..
Rather than modelling and constructing a separate evaluator for the DSML, interpret-
ation semantics can be presented that map how the constructs from the DSML are
translated into those from the GRL.

Note. For this initial attempt a subset of the GRL was chosen to be implemen-
ted. The framework does not support the GRL concepts of actors, and dependen-
cies between two actors. The evaluation strategy supported is qualitative, quantitative
evaluations are not supported.

10.2 GRL-Derived Goal-Graphs

NovoGRL is concerned with the construction of GRL-derived goal-graphs. This
section presents a top-down formal definition of the goal-graphs that underpin all GRL
models within this framework. Further, this section makes explicit several language
design decisions made in the GRL model, and w.r.t. to the implementation of the
goal-graphs. How goal-graphs are constructed is detailed in §10.3, and how correct by

construction guarantees are made in §10.4. The next section details the language G?
that enables the construction of the goal-graphs as described in this section.

TheUser Requirements Notation [UTN12] details the official GRL language spe-
cification in which the GRL is presented as a UML meta-model. This meta-model
effectively details the syntactical structure ofGRLmodels only. There is little detail over
correctness properties w.r.t. to model instances. Although the GRL authors detail that

162

10.2. GRL-Derived Goal-Graphs

their modelling tool supports user-defined semantic rules [Amy+10, § 2], important
semantic rules common to all GRLmodels are not documented sufficiently. For ex-
ample, it is not clear whether introduction of a cyclic dependency using decomposition
links should be a valid, however, specified in the same document is the restriction that
intentional links cannot affect resource nodes. López et al. [LFM11] identified a similar
problem in the i? goal-modelling language. During implementation of NovoGRL
several of these implicit assumptions were required to be made explicit.

10.2.1 Definitions

§10.1 already noted that goal models are directed graphs in which goals are nodes, and
their relations encoded as vertices. For GRL instances this is illustrated implicitly in the
UMLmeta-model that details the GRL syntax. However, Definition 12 is not suitable
as it does not encompass the language details specific to the GRL.

GRL Goal Graph

First the goal-graph definition is given, this definition resembles Definition 12 but is
less compact. The subsequent definitions will detail more of the required definitions.

Definition 13 (GRL Goal-Graph). Let gs= {g1, . . . , gn} be a set of goals, where

gi ∈N, and ls= {l1, . . . , lm} be a set of relations operating over the nodes in gs and

where li ∈L. A GRL goal-graphM is defined as the tuple 〈gs,ls〉 of goals gs and
relations ls. We letM denote the domain given to all GRL model instances.

The goal-graph is implemented as a graph data structure implemented in the adjacency
list style using a Binary Search Tree1. The definition of GModel is given as a type alias
for a graph with verticies of type GoalNode, and edges of type GoalEdge.

GModel : Type
GModel = Graph (GoalNode) (GoalEdge)

Goal Nodes

Goal nodes are defined as a tuple that collects the type of node in the graph, a satisfaction
value, and a unique identifier.

1deMuijnck-Hughes [dMH15b] details the precise implementation.

163

10. NovoGRL

Definition 14 (Goal Nodes). Given a node type e ∈N′
, a title t, and a satisfaction

value q ∈Q. A goal node g is defined as the tuple g= 〈e,t,q〉. We let N represent the

domain given to all nodes.

Goal nodes are implemented as a record that details a node’s type e, a title t, a possible
satisfaction valueq, andwhether or not the node is linked to other nodeswith structural
links through storing of the link type as the s.

record GoalNode where
constructor GNode
getNodeTy : GElemTy
getNodeTitle : String
getSValue : Maybe SValue
getStructTy : Maybe GStructTy

This implementation differs from the formal definition. By definition, node decom-
position stipulates that a node can have only one type of decomposition. This is an
emergent property of the graph data structure, thus representation of the decomposi-
tion type in the record itself facilitates a compact and efficient means to determine if
the node has a decomposition value.

Goal Edges

Within the GRL there are two types of links between goals: structural and intentional.
These can be represented directly in the graph as directed edges between two nodes.

Definition 15 (Intentional Link). Let x,y ∈N be two nodes. Given a contribution

value c ∈C that indicates the e�ect that x has on y, an intentional relation between x

and y is defined as the relation: x◦c
i
y. Where i ∈ {contrib, correl} indicates the type of

intentional link: contribution or correlation.

Note. The GRL syntax declares an additional intentional relation of means-end

between a resource nodes and non-resource nodes. These relations are special cases of
contribution links, and thus need not need be considered in the formal model.

Definition 16 (Structural Links). Let x ∈N be a goal, and ys= {y1, . . . , yn}⊂
N be the sub-goals that a node x decomposes into. Given a decomposition type d ∈
{∧,∨,⊕}, a decomposition relation between x and ys is defined as: x◦dys
With the goal-graph, edges are defined as either a structural or intentional link.

164

10.2. GRL-Derived Goal-Graphs

Definition 17 (Goal Edges). Let L = {l1, . . . , ln} be the set of all goal edges,

where each li ∈L is defined over goals from N, and is either an intentional link or a

structural link.

Edges are implemented as an ADTwith constructors for an intentional link together
with its contribution value, or a structural link.

data GoalEdge : Type where
Contribution : CValue -> GoalEdge
Correlation : CValue -> GoalEdge
Decomp : GoalEdge

Values and Weights

These final set of definitions detail miscellaneous values and weights used within the
goal-graph representation.

Definition 18 (Node Types). Let the types representing the di�erent kinds of nodes

in a goal-graph be:

N′ = {GOALty,SOFTty,TASKty,RESty}

Definition 19 (Contribution Values). Let the set of allowed contribution values

be:

C= {Make,Help,SomePos,Unknown,SomeNeg,Break,Hurt}

Definition 20 (Satisfaction Values). Let the set of allowed satisfaction values be:

Q= {Denied,wDenied,wSatisfied,Satisfied,Conflict,Unknown,None}

Definition 21 (Decomposition Link Types). The decomposition types of ‘and’,

‘or’, and ‘exclusive or’ are defined by the set:

{∧,∨,⊕}

Definition 22 (Intentional Link Types). The intentional link types of contribution

and correlation are defined by the set:

{contrib, correl}

These set definitions are implemented as enumerated ADTs.

165

10. NovoGRL

data GElemTy = GOALty | SOFTty | TASKty | RESty
data GStructTy = ANDty | XORty | IORty
data GIntentTy = IMPACTSty | AFFECTSty
data CValue = MAKES | HELPS | SOMEPOS

| UNKNOWN | SOMENEG | BREAK | HURTS
data SValue = DENIED | WEAKDEN | WEAKSATIS

| SATISFIED | CONFLICT | UNKNOWN
| NONE | UNDECIDED

10.2.2 Correctness of Edges

Several correctness properties associated with goal-graphs are now presented. These
correctness properties allow for the structure and composition of goal-graphs to be
reasoned about.

Well Formed Relations

This first set of properties detail the construction of relations when they are considered
in isolation from a goal-graph. Valid intentional links are relations that declare that a
goal x can affect other nodes aside from resource nodes and themselves. The formal
definition is:

Definition 23 (Well-Formed Intentional Link). Let l= x◦c
i
y be an intentional

link, where x,y ∈N, c ∈C, and i ∈ {contrib, correl}. l is a valid intentional link if:

wellFormedIntent(l)=
{
True x 6=y∧¬isResource(y)

False x=y∨ isResource(y)

Valid decomposition links are relations that declare that a goal x can be linked to a set
of unique nodes.

Definition 24 (Well-Formed Decomposition Link). Let s= x◦d {y1, . . . , yn}
be a structural link where x,yi ∈N, and d ∈ { ∧ , ∨ , ⊕ }. s is a valid decomposition

link if:

wellFormedDecomp(s)=

True x ∉ys∧∀a,b ∈ys,a 6=b
False x ∈ys∨∃a,b ∈ys,s=b

166

10.2. GRL-Derived Goal-Graphs

Valid Relations

We now define properties to describe the validity of a single relation w.r.t. to a goal-
graph. Relations are valid in a goal-graph, if they are both well-formed and the nodes
within the relation exist within the graph.

Definition 25 (Valid Intentional Link). Given a goal-graphM= 〈gs,ls〉 where
gs= {g1, . . . , gn},gi ∈N and ls= {l1, . . . , ln}, li ∈L. Let i ∈ ls= x◦ctyy be an

intentional link inM, where c ∈C, and ty ∈ {contrib, correl}. The intentional link i is
valid inM if:

validIntent(M, i)=

True wellFormedIntent(i)∧x,y ∈gs
False ¬wellFormedIntent(i)∨y ∉gs∨x ∉gs

Definition 26 (Valid Decomposition Link). Given a goal-graphM= 〈gs,ls〉
where gs= {g1, . . . , gn},gi ∈N and ls= {l1, . . . , ln}, li ∈ L. Let s ∈ ls= x ◦ty
{y1, . . . , yn} be a structural link inM, where ty ∈ {∧,∨,⊕}. The structural link s is
valid inM if:

validDecomp(M,s)=

True wellFormedDecomp(s)∧x ∈gs∧ys⊂ gs
False ¬wellFormedDecomp(s)∨x ∉gs∨∃y ∈ys,y ∉gs

10.2.3 Goal-Graph Properties

Next the correctness properties of goal-graph instances are considered. These properties
are used in §10.2.4 to define goal-graph correctness.

Goal Uniqueness

Goal uniqueness is a property to ensure that each goal within the graph is unique.

Definition 27 (Goal Uniqueness). Given a goal-graphM= 〈gs,ls〉 where gs=
{g1, . . . , gn},gi ∈N and ls= {l1, . . . , ln}, li ∈L.M has goal uniqueness if:

uniqueGoals(M)=

True ∀x,y ∈gs,x 6=y
False ∃x,y ∈gs,x=y

Valid Intentional Link

This property defines the correctness of all intentional links respective to a given goal in
the graph. This property is an extension to Definition 25 in which the set of intentional

167

10. NovoGRL

links from a given goal gmust all be valid, and that there can only be a single edge
between g and any other given node.

Definition 28 (Valid Goal Intentional Link). Given a goal-graphM= 〈gs,ls〉
where gs= {g1, . . . , gn},gi ∈N and ls= {l1, . . . , ln}, li ∈L. Let g ∈ gs be a goal
node inM, and let is= {g◦c1ty1 y1, . . . ,g◦

cn
tyn
yn}⊂ ls where tyi ∈ {contrib, correl}

and ci ∈ C. is is the set of intentional relations that goal node g a�ects either as

contribution or as a correlation. Let ys= {y1, . . . , yn} be the set of target nodes from

is that g a�ects. The goal node g has valid intentional links if:

validGoalIntent(M,g)=

True ∀i ∈ is,validIntent(M,i)∧∀x,y ∈ys,x 6=y
False ∃i ∈ is,¬validIntent(M,i)∨∃x,y ∈ys,x=y

Strongly Valid Intentional Links

An optional and stronger correctness property for the intentional relations associated
with a goal g inM is when the set is contains no duplicate edges. Formally this is given
as:

Definition 29 (Strongly Valid Goal Intentional Link). Given a goal-graph

M = 〈gs,ls〉 where gs = {g1, . . . , gn},gi ∈N and ls = {l1, . . . , ln}, li ∈ L. Let

g ∈ gs be a goal node in M, and let is = {g ◦c1ty1 y1, . . . ,g ◦
cn
tyn
yn} ⊂ ls where

tyi ∈ {contrib, correl} and c ∈ C. If validGoalIntent(M,g) = True then let cs =

{c1, . . . , cn} be the set of contribution values from is. The goal node g has strong valid

intentional links if:

stronglyValidIntent(M,g)=

True validIntent(M,g)∧∀x,y ∈ cs,x 6=y
False ¬validIntent(M,g)∨∃x,y ∈ cs,x=y

Valid Node Decomposition

This next property defines the correctness of structural links in the goal-graph. Core
to this property is the idea that nodes can be decomposed into other nodes, and that
a node cannot be decomposed into itself neither directly nor through a descendant.
That is, the structure of the decomposition constructs a sub-graph that is also a tree.

Valid structural relations are those that contain no cycles and each link emanating
from a parent node to a child nodemust each have the same decomposition type. More
formally:

168

10.2. GRL-Derived Goal-Graphs

Definition 30 (Valid Goal Decomposition). Given a goal-graphM= 〈gs,ls〉
where gs= {g1, . . . , gn},gi ∈ G and ls= {l1, . . . , ln}, li ∈L. Let g ∈ gs be a goal
node inM, and let ss⊂ ls= {g◦ty1 ys1, . . . ,g◦tyo ysm} be the set of decomposition

relations associated with g that have decomposition type tyi. Further we let ts =

{ty1, . . . , tyn} be the set of decomposition types from ss. The goal node g has valid

goal decomposition if:

validGoalDecomp(M,g)=



True ∀s ∈ ss,validDecomp(s)∧

∀tya,tyb ∈ ts,tya= tyb∧
ys⊂ gs

False ∃s ∈ ss,¬validDecomp(s)∨

∃tya,tyb ∈ ts,tya 6= tyb∨
∃y ∈ys,y ∉gs

Strongly Valid Node Decomposition

An optional though stronger correctness property for structural relations is that every
single structural relation declared must also be unique. Formally, this is given as:

Definition 31 (Strongly Valid Node Decomposition). Given a goal-graphM=

〈gs,ls〉 where gs= {g1, . . . , gn},gi ∈N and ls= {l1, . . . , ln}, li ∈L. Let g ∈ gs
be a goal node in M, and let ss = {g ◦ty1 ys1, . . . ,g ◦tyo ysm} ⊂ ls be the set of
decomposition relations associated with g. If validGoalDecomp(M,g)=True then let

s′ = g◦tyys,ys=⋃m
i=0ysi be the structural relation formed by unifying each set of

decomposition relations ysi from ss. The node g has strong valid node decomposition if:

stronglyValidGoalDecomp(M,g)=

True ∀a,b ∈ys,a 6=b
False ∃a,b ∈ys,a=b

Valid Structural Span

With these notions of valid node decomposition, the structural property that ensures
hierarchical correctness of goal decomposition from the root parent through to its
decedents can be defined:

Definition 32 (Structural Span). Given a goal-graphM= 〈gs,ls〉 where gs=
{g1, . . . , gn}, gi ∈G and ls= {l1, . . . , ln}, li ∈L. The structural span sspan(M,g)

169

10. NovoGRL

of a node g ∈ gs is defined as the sub-graph g′ that emerges by traversing all child nodes

along structural edges in ls where g is the root until a goal node with no structural edges

is encountered. If g has no structural edges then g does not have a structural span.

Definition 33 (Valid Structural Span). The structural span sspan(g) is a valid
span if the resulting span is also a tree.

validSSpan(M,g)=

True isTree(sspan(M,g))

False ¬isTree(sspan(M,g))

10.2.4 Goal-Graph Correctness

Goal-Graph correctness is defined using the definitions and properties given in this
section. A goal-graphM is valid if all the relations inM are valid and well-formed, all
the goals are unique, and all structural spans inM are also valid structural spans.

Definition 34 (Goal-Graph Correctness). Given a goal-graphM= 〈gs,ls〉 where
gs= {g1, . . . , gn}, gi ∈N and ls= {l1, . . . , ln}, li ∈L. Let is⊂ gs be a subset of
goals that have intentional links, and ss⊂ gs be a subset of goals that have structural
links.M is a correct goal-graph if

validGraph(M)=



True ∀i ∈ is,validGoalIntent(M,i)∧
∀s ∈ ss,validGoalDecomp(M,s)∧

∀s ∈ ss,validSpan(M,s)∧
uniqueGoals(M)

False ∃i ∈ is,¬validGoalIntent(M,i)∨
∃s ∈ ss,¬validGoalDecomp(M,s)∨

∃s ∈ ss,¬validSpan(M,s)∨
¬uniqueGoals(M)

10.3 Building the Goal-Graph Using G?

This section presents the formal definitions and implementation details for the model-
ling language G? used for goal-graph construction. This section begins with the formal
language definition for G?, building on the formal definition of goal-graphs given in
Definition 10.2.1. Second, the type-system used to govern construction of models from

170

10.3. Building the Goal-Graph Using G?

the declarations is given. Finally, interpretation semantics are given that detail how the
G?modelling language can construct goal-graphs, together with properties detailing
how the construction of correct goal-graphs is achieved.

The purpose of G? is to perform the insertion of valid goals and relations into the
model. The next language GExpr reasons about the validity of candidate goals and
relations such that only valid terms are inserted. Hence, within this language definition
the implementation and typing of relations are left semi-abstract and are considered in
§10.4.

10.3.1 Abstract Syntax

The modelling language G? has been designed as a declarative EDSL. Figure 10.2
presents the language definition for G?, together with nominal typing information.

G?=G? | x | l | m (10.1)
| m]N x | m]I i | m]S s (10.2)
| m]?

N {x1, . . . , xn} | m]?
I {i1, . . . , in} | m]?

S {s1, . . . , sn} (10.3)
m ∈M=Model {x0, . . . , xn} {l0, . . . , lm} (10.4)
x,y ∈N= 〈e, t, q, sTy〉 (10.5)
i ∈ I= x ◦ccontrib y | x ◦ccorrel y (10.6)
s ∈ S= x ◦∧ {y1, . . . , yn} | x ◦∨ {y1, . . . , yn} | x ◦⊕ {y1, . . . , yn} (10.7)
q ∈Q=Denied | wDenied | wSatisfied | Satisfied

| Conflict | Unknown | None (10.8)
c ∈C=Make | Help | SomePos | Unknown

| SomeNeg | Break | Hurt (10.9)
e ∈N′ =TyGoal | TySoft | TyTask | TyRes (10.10)

sTy ∈ S′ =∧ | ∨ | ⊕ (10.11)

Figure 10.2: Language definition for G?.

The core declarations for G? are presented on Lines 10.1 10.2 & 10.3. These declara-
tions allow for the declaration of nodes, edges, a goal-graph, and insertion functions.
With the precise constructors for goal-graphs and nodes on Lines 10.4 & 10.5. Inten-
tional links (Line 10.6) are binary, linking a source goal (x) to a target goal (y), allowing

171

10. NovoGRL

for the contribution value (Line 10.9) to be specified. Structural links (Line 10.7) are
one-to-many linking a single source goal (x) to many source goals—{y1, . . . , yn}.

G? also provides several operators for modification of the goal-graph:] for inser-
tion of a single expression; and]? for many. Note, many of the language constructs
for goal-graph representation are either adapted or taken directly from the definitions
given in §10.2.

10.3.2 Type System

This section presents the types and typing rules for G?. As a declarative EDSL con-
structed in Idris, we can leverage Idris’ existing mechanisms to manage the typing
environments for the language. The typing rules thus need not be given a context
or typing environment. Further, the typing rules for creation of satisfaction values,
contribution values, node types and decomposition types are not given for brevity.

The Types

The set of types specific to G? are:

T=M | N | S | I | C | Q | N′ | S′

with semantic meaning of:M—goal-graphs;N—nodes; S—structural declarations;
I—intentional declarations; C—contribution values; Q—satisfaction values;N′—the
type for all node type indicators; S′—the type for all decomposition type indicators.

Rules for Language Declarations
e :N′ t : String q :Q s : S′

Element〈e, t, q, sTy〉 :N

x :N y :N c :C
Contribution

x ◦c
contrib

y : I

x :N y :N c :C
Correlation

x ◦c
correl

y : I

x :N ys : List (N)
AND

x ◦∧ ys : S
x :N ys : List (N)

IOR
x ◦∨ ys : S

x :N ys : List (N)
XOR

x ◦⊕ ys : S

172

10.3. Building the Goal-Graph Using G?

Rules for Declaration Insertion

Single

m :M n :N Element
m]N n :M

m :M i : I Intentional
m]I i :M

m :M s : S Structural
m]S s :M

Many

m :M ns : List (N)
Element

m]?
N
ns :M

m :M is : List (I)
Intentional

m]?
I
is :M

m :M ss : List (S)
Structural

m]?
S
ss :M

These typing rules play several roles within the construction of goal-graphs. The first is
to ensure that the construction of the two different relation types can be distinguished.
The second, to ensure that correct graph construct (node or edge) are passed to the
correct insertion functions—see §10.4.6.

10.3.3 Interpretation Semantics

Given the various insertion operations and link definitions defined for G?, a set of
interpretation semantics are described in Figure 10.3 to denote how these operations
build up the goal-graph. Figure 10.3 does not present all the interpretations. Trans-
formations between contribution values, satisfaction values, and node type are not
given. These transformations are one-to-one mappings between the syntax given in
Figure 10.2 and enumerated types given in §10.2.1.

The construction of goal-graphs requires that each relation and goal are first trans-
formed into GoalEdge and GNode. Each relation is turned into a labelled edge that
details the source, destination, and label, with decomposition edges being transformed
into a set of edges. Edges are inserted into the graph using the insertLink function
that inserts the edge into the graph. Nodes use the insertNode function. The in-
sert many operation (]?) is interpreted as the interpretation of multiple insertion
operations.

Note. The insertion of intentional links swaps the source and target goal nodes
during construction of the labelled edges. This is to ensure that during construction

173

10. NovoGRL

�G? � :G?→Goal Graph
� 〈e, t, q, sTy〉 �= GNode � e � � t � �q � � s � (10.12)
� x ◦ccontrib y �= 〈�y �, � x �, Contrib � c �〉 (10.13)
� x ◦ccorrel y �= 〈�y �, � x �, Correl � c �〉 (10.14)

� x ◦∧ {y1, . . . , yn} �= {〈� x �, �y �, Decomp〉 | y← {y1, . . . , yn}} (10.15)
� x ◦∨ {y1, . . . , yn} �= {〈� x �, �y �, Decomp〉 | y← {y1, . . . , yn}} (10.16)
� x ◦⊕ {y1, . . . , yn} �= {〈� x �, �y �, Decomp〉 | y← {y1, . . . , yn}} (10.17)

�m]N x �= insertNode � x �m (10.18)
�m]?

N xs �= {�m]N x � | x← {x1, . . . , xn}} (10.19)
�m]I i �= insertLink � i �m (10.20)

�m]?
I is �= {�m]I i � | i← {i1, . . . , in}} (10.21)

�m]S ss �= {insertLink � s �m | s← � ss �} (10.22)
�m]?

S sss �= {�m]S ss � | ss← {ss1, . . . , ssn}} (10.23)

Figure 10.3: Interpretation semantics for G?

of the forward evaluation algorithms for the GRL graph traversal can be performed
top to bottom from root goal node to leaf goal node.

10.4 The Intermediate Representation: GExpr

The previous section introduced G?, the declarative language for the construction
of GRL goal-graphs. This section introduces GExpr, the intermediate language that
captures expressions common to all GRL-derived DSMLs. It is with this language that
structural and correctness properties of the goal-graph (as given in §10.2) are tested for.

10.4.1 Language Syntax

Like G?, GExpr has been designed as a declarative EDSL within Idris. While, G?
has been designed for goal-graph construction, the primary purpose of GExpr is to
facilitate the reasoning about all goal-graphs during construction. Various constructs
from G? have been brought forward and are reused in the definition of GExpr. The
language definition for GExpr is given in Figure 10.4.

174

10.4. The Intermediate Representation: GExpr

GExpr=GExpr | e | m] e | m]? {e1, . . . , en} (10.24)
e ∈G : J→T= x | i | s (10.25)
x,y ∈G(E)=Elemn t q s (10.26)
i ∈G(I)= Impacts x c y | Affects x c y (10.27)
s ∈G(S)=And x {y1, . . . , yn} | OR x {y1, . . . , yn} (10.28)

| XOR x {y1, . . . , yn}
J=E | I | S (10.29)

m ∈M=Model definition taken from G? (10.30)
q ∈Q= Satisfaction values taken from G? (10.31)
c ∈C=Contribution values taken from G? (10.32)
n ∈N′ =Node types taken from G? (10.33)

Figure 10.4: Language definition for GExpr.

Within GExpr, EDSL declarations have been unified under a single type that
allows for a unified set of expressions to be given for declaration insertion. Whereas the
syntax of G? is for the construction of the goal-graph, the syntax of GExpr is more
language oriented and introduces the declarative language that modellers build upon.

10.4.2 Types

GExpr introduces two new types to NovoGRL.

G : J→T the dependent type for expressions within GExpr. GExpr is implemented
in the style of theWell-Typed Interpreter such that its expressions have been
implemented as a inductive ADT that is parameterised by J the meta-type for
the different expressions. Listing 10.1 presents the implementation of GExpr.

J the meta-type for expressions within GExpr. This type has been implemented as
an enumerated type in which the constructors represent the types G(E), G(I),
and G(S) from GExpr.

data GTy = ELEM | INTENT | STRUCT

175

10. NovoGRL

� �
1 data GExpr : GTy -> Type where
2 Elem : GElemTy -> String -> Maybe SValue
3 -> GExpr ELEM
4 ILink : GIntentTy -> CValue
5 -> GExpr ELEM -> GExpr ELEM
6 -> GExpr INTENT
7 SLink : GStructTy -> GExpr ELEM
8 -> List (GExpr ELEM) -> GExpr STRUCT� �

Listing 10.1: Implementation of GExpr

10.4.3 Typing Rules

Parameterising GExprwith GTy allows for typing rules for expressions to be specified
and reasoned about directly at the type level. Ensuring that only well typed expressions
can be constructed; this is a compile time check. The Elem constructor represents
elements and stores the type of the element, its title, and a possible satisfaction value.
ILink represents intentional links, storing the type of intentional link, the value of
the contribution, and the elements in the link. Notice that for the ILink constructor,
the two GExpr expressions must be of type GExpr ELEM. Only elements can be ex-
pressed in a link. Similarly, SLink represents structural links, but allows for a single
element to be linked to multiple elements in a single expression. As with G?, GExpr
is also constructed as an EDSL allowing for the host system to take care of the typing
environment and context.

Element Declaration

n :N′ t : String q :Q s : S′
ElementElemn tq s :G(E)

Intentional Declarations
x :G(E) c :C y :G(E)

Contrib.Impacts x c y :G(I)
x :G(E) c :C y :G(E)

Correl.Affects x c y :G(I)

Structural Declarations
x :G(E) ys : List (G(E))

And x ys :G(S)
x :G(E) ys : List (G(E))

OR x ys :G(S)

x :G(E) ys : List (G(E))

XOR x ys :G(S)

176

10.4. The Intermediate Representation: GExpr

Single Declaration Insertion
m :M x :G(E)

Elements
m] x :M

m :M x :G(I)
Intentional

m] x :M
m :M x :G(S)

Structural
m] x :M

Many Declaration Insertion
m :M xs : List (G(E))

Element
m]? xs :M

m :M is : List (G(I))
Intentional

m]? is :M

m :M ss : List (G(S))
Structural

m]? ss :M

10.4.4 Interpretation Semantics

Dependently typed languages allow for types to be computed. With this functionality,
themultiple insertion operations inG? can be coalesced into a single pair of operations:
], and]?. Figure 10.5 presents the interpretation semantics for insertion using the
coalesced operations.

�GExpr � :GExpr→G?
�Elem e t q s �= 〈e, t, q, sTy〉
� Impacts x c y �= � x � ◦ccontrib �y �
�Affects x c y �= � x � ◦ccorrel �y �

�And x {y1, . . . , yn} �= � x � ◦∧ {�y1 �, . . . , �yn �}
�OR x {y1, . . . , yn} �= � x � ◦∨ {�y1 �, . . . , �yn �}

�XOR x {y1, . . . , yn} �= � x � ◦⊕ {�y1 �, . . . , �yn �}

�m] x �=


(x :G(E)) m]N � x �
(x :G(I)) m]I � x �
(x :G(S)) m]S � x �

�m]? {x1, . . . , xn} �=


(x :G(E)) m]?

N
{� x1 �, . . . , � xn �}

(x :G(I)) m]?
I
{� x1 �, . . . , � xn �}

(x :G(S)) m]?
S
{� x1 �, . . . , � xn �}

Figure 10.5: Interpretation semantics for GExpr.

177

10. NovoGRL

10.4.5 Property Checking

§10.2 detailed goal-graph correctness. To ensure that only valid models can be construc-
ted using the GExpr language the insertion of any expression e into a modelmmust
ensure that the property validGraph(m) holds post insertion of e. For elements this
requires that all nodes in the modelm are unique.

Definition 35 (Valid Element Insertion). Given a goal-graphM= 〈gs,rs〉 where
gs= {g1, . . . , gn},gi ∈N and rs= {r1, . . . , rn},ri ∈L. Let g be a goal to be inserted
intoM, g can only be inserted if the properties uniqueGoals(M) and validGraph(M)

holds post insertion of g.

For intentional links this requires that the intentional link presented is a valid inten-
tional link forM.

Definition 36 (Valid Intentional Link Insertion). Given a goal-graph M =

〈gs,rs〉wheregs= {g1, . . . , gn},gi ∈N and rs= {r1, . . . , rn},ri ∈L. Let l= x◦ciy
be an intention link that is to be inserted intoM, where x,y ∈N,c ∈C, i ∈ I. The link
l can only be inserted intoM if validIntent(M,i)=True, and validGraph(M) holds

post insertion of l.

For structural links this requires that the structural link presented is a valid structural
link forM

Definition 37 (Valid Decomposition Link Insertion). Given a goal-graphM=

〈gs,rs〉 where gs = {g1, . . . , gn},gi ∈ N and rs = {r1, . . . , rn},ri ∈ L. Let s =

x◦s {y1, . . . , yn} be a decomposition link that is to be inserted intoM, where x,yi ∈N
and s ∈ S. The link s can only be inserted intoM if validDecomp(M,s)=True, and
validGraph(M) holds post insertion of s.

These properties are essential when looking to construct goal-graphs using declarative
languages and can be checked for when updating the model using these constructs.

10.4.6 Implementation Details

GExprhasbeendesign as the intermediate representation common to allGRL-oriented
DSMLs. To ensure that all languages can be converted correctly to G? instances, the
GRL interface has been constructed. This interface forces language designers to specify
how the expressions from the DSML are to be translated into GExpr expressions. The
interface is defined as follows:

178

10.4. The Intermediate Representation: GExpr

interface GRL (a : GTy -> Type) where
mkGoal : a ELEM -> GExpr ELEM
mkIntent : a INTENT -> GExpr INTENT
mkStruct : a STRUCT -> GExpr STRUCT

With the use of this interface comes a restriction that all DSMLs must also be paramet-
erised using GTy.

Converting GExpr to G?

The conversionof GExpr expressions toG? expressions is achievedusing theconvExpr
function that is polymorphic in its return type. This function is an amalgamation of
the interpretation from a GExpr expression to a G? expression (see Figure 10.5), and
G? to the underlying graph-node representation—see Figure 10.3.

convExpr : {ty:GTy} -> GExpr ty -> interpTy ty
convExpr (Elem eTy t s) = GNode eTy t s Nothing
convExpr (ILink IMPACTSty cTy _ _) = Contribution cTy
convExpr (ILink AFFECTSty cTy _ _) = Correlation cTy
convExpr (SLink _ _ _) = Decomp

The function convExpr takes in a GExpr as a parameter and returns the converted
element. The return type is computed using the interpTy function that is detailed
below. As types are first class language constructs in Idris the return type of convExpr
is calculated during use.

interpTy : GTy -> Type
interpTy ELEM = GoalNode
interpTy INTENT = GoalEdge
interpTy STRUCT = GoalEdge

Choosing the correct Insertion Function

Insertion of multiple (]?) and single (]) elements into the goal-graph are governed
using the following functions.

insert : GRL expr => expr ty -> GModel -> GModel
insert {ty=ELEM} d m = insertElem (mkElem d) m
insert {ty=INTENT} d m = insertIntent (mkIntent d) m
insert {ty=STRUCT} d m = insertStruct (mkStruct d) m

179

10. NovoGRL

insertMany : GRL expr => List (expr ty)
-> GModel -> GModel

insertMany ds model = foldl (flip . insert) model ds

Both functions abstract over the intermediate representation and accepts expressions
that conform to the GRL interface, an existing model, and returns an updated model
with the new expression inserted. The interface allows for the DSML expression to be
interpreted into an GExpr instance. It is within the insert function that the domain
translation of expressions from new domain to the GRL domain takes place using the
mkElem, mkIntent, and mkStruct functions.

The insert function is exposed to DSML users to allow for a unified means
through which goal-graphs can be constructed. However, insert is right associative
and does not lead to an easy to use interface for building models. This is addressed
through provision of a left associative infix operator (\=) that allows users to build up
models from the left.

infixl 4 \=

(\=) : GRL expr => {ty : GTy} -> (m : GModel)
-> (d : expr ty) -> GModel

(\=) model decl = insert decl model

Property checks, and insertion, for the resulting goal-graph do not occur directly in the
insertion functions. The actual insertion of expressions into the graph are performed
by the specialised functions listed below. The semantics for insertion were detailed in
Figure 10.3.

insertIntent : GExpr INTENT -> GModel -> GModel
insertStruct : GExpr STRUCT -> GModel -> GModel
insertElem : GExpr ELEM -> GModel -> GModel

These functions will perform run time checks to decide if inclusion of the expression
will invalidate any structural or correctness properties according to the GRL standard.
The properties are detailed in Definitions 35 to 37, and theUser Requirements Nota-

tion [UTN12]. If the expression results in an invalid GRL model, the program will
terminate.

180

10.5. Evaluating Goal Graphs

10.5 Evaluating Goal Graphs
This section details model evaluation. Standard evaluation algorithms can be used to
evaluate a model for satisfaction [Amy+10]. These algorithms require that the given
GRLmodel instance is initialised according to a predefined strategy. A strategy is a list
of element and satisfaction value pairings. InNovoGRLonly the forward propagation
algorithm as described in Amyot et al. [Amy+10] and Appendix B was implemented.
The algorithm was implemented as a depth first graph traversal algorithm. It has been
made accessible to modellers in the framework using the following function:

evalModel : GModel -> Maybe Strategy -> List GoalNode

This function will initialise the model with a given strategy, if a strategy was given,
and perform the evaluation returning a list of nodes in the graph and their resulting
satisfaction value. This function will return an empty list if the model is incorrectly
initialised using the strategy. Within G?, strategies are defined as an association list of
GoalNode SValue pairings.

Strategy : Type
Strategy = List (GoalNode , SValue)

To construct strategies for DSML languages, a buildStrategy function is provided
that converts elements from the DSML to GoalNodes It is specified as:

buildStrategy : GRL expr =>
List (expr ELEM , SValue) -> Strategy

Although there are known evaluation algorithms for the GRL, there are no known
formal evaluation semantics [AM11]. Tropos and i? are cousin and parent to GRL,
and these languages have been provided with formal evaluation semantics [Gio+03]
based upon goal-graphs and a more restricted semantics for evaluation. Future work
will be to take the formal description of GExpr and construct a set of evaluation
semantics in the same style as presented by Giorgini et al. [Gio+03].

10.6 Modelling the GRL as a DSML
The previous sections described the implementation and design of NovoGRL for
DSMLconstruction. This section illustrates how this framework can be used to provide

181

10. NovoGRL

an implementation of the GRL itself.

10.6.1 Language Definition

GRL=GRL | e | m] e | m]? {e1, . . . , en} (10.34)
e ∈G′ :T→ ?= x | i | s (10.35)
x,y ∈G′(E)=Goal t q | SGoal t q | Task t q | Res t q (10.36)

i ∈G′(I)= x c−→ y | x
c

99K y (10.37)
s ∈G′(S)= x ∧ {y1, . . . , yn} | x ∨ {y1, . . . , yn} | (10.38)

x ⊕ {y1, . . . , yn} (10.39)
J=Meta type taken from GExpr (10.40)

m ∈M=Model definition taken from G? (10.41)
q ∈Q= Satisfaction values taken from G? (10.42)
c ∈C=Contribution values taken from G? (10.43)

Figure 10.6: Language definition for the GRL.

Figure 10.6 presents the language definition for the GRL. Recall that in the frame-
work expressions are a dependent type indexed by an element fromJ. These expressions
are then transformed into instances of GExpr through instructions specified in an im-
plementation of the GRL interface. As with the definition of GExpr, several constructs
from G? have been brought forward in the definition, and the language is declarative
in nature. That is, Goal graphs, definitions for contribution and satisfaction values
are reused from G?; insertion functions have been lifted from GExpr; and a model
specification is comprised of a series of expressions that either declare elements and links,
or perform insertion of these structures into the goal-graph. Lines 10.36, 10.37, & 10.39
detail the portions of the language specific to the GRL domain: Elements, Intention
Links, and Structural Links.

Table 10.2 illustrates how the abstract syntax specified in Figure 10.6 maps to both
the original graphical notation (given in Figure 3.1), and Idris implementation in List-
ing 10.2. The pictorial language constructs presented are a derivation of the original
constructs presented, in an effort to promote clarity in pictorial representation. The
changes made relate to the node style for soft goals and how evaluation values are

182

10.6. Modelling the GRL as a DSML

Construct Abstract Idris Pictorial

Goal Goal t q MkGoal t q
t

q

Soft Goal SGoal t q MkSGoal t q
t

q

Task Task t q MkTask t q t
q

Resource Res t q MkRes t q
t

q

Contrib. x
c−→ y MkImpact c x y x y

c

Correl. x
c

99K y MkAffects c x y x y
c

And x ∧ {y1, . . . , yn} MkAnd x ys

x

AND

y1 yn. . .
| |

Or x ∨ {y1, . . . , yn} MkIor x ys

x

OR

y1 yn. . .
| |

XOR x ⊕ {y1, . . . , yn} MkXor x ys

x

XOR

y1 yn. . .
| |

Table 10.2: Various representations of the GRL: pictorial, abstract syntax, and Idris.

183

10. NovoGRL

presented. The insertion operations are not comparable between syntaxes as the act of
insertion in the graphical representation is emergent functionality.

10.6.2 Type System

Within this implementation of the GRL a single new dependent type has been in-
troduced: G′ that is indexed by the meta-type J from GExpr. The typing rules for
declarations in GRL are presented below:

Elements
t : String q :Q

GoalGoal t q :G′(E)
t : String q :Q

Soft GoalSGoal t q :G′(E)

t : String q :Q
TaskTask t q :G′(E)

t : String q :Q
ResourceRes t q :G′(E)

Intentional Links
x :G′(E) c :C y :G′(E)

x
c−→ y :G′(I)

x :G′(E) c :C y :G′(E)

x
c

99K y :G′(I)

Structural Links
x :G′(E) ys : List (G′(E))

x ∧ ys :G′(S)
x :G′(E) ys : List (G′(E))

x ∨ ys :G′(S)

x :G′(E) ys : List (G′(E))
x ⊕ ys :G′(S)

Typing rules for declaration insertion need not be given. The language constructs in this
implementation of the GRL are first interpreted into constructions fromGExpr from
which the insertion of declarations is performed. §10.6.3 details how the constructs
bespoke to thisGRL implementation are transformed into constructs from theGExpr.

Idris Implementation

The Idris implementation of the GRL has been parameterised solely over GTy. In the
specification of GLang each of the element types for the GRL has been given its own
constructor, that allows for a title and possible initial satisfaction value to be specified.
Intentional links that provide contribution and correlation links between elements also

184

10.6. Modelling the GRL as a DSML

have their own constructors. Finally, each of the different structural decomposition
links can be specified using their own constructors.

� �
1 data GLang : GTy -> Type where
2 MkGoal : String -> Maybe SValue -> GLang ELEM
3 MkSoft : String -> Maybe SValue -> GLang ELEM
4 MkTask : String -> Maybe SValue -> GLang ELEM
5 MkRes : String -> Maybe SValue -> GLang ELEM
6
7 MkImpacts : CValue -> GLang ELEM
8 -> GLang ELEM -> GLang INTENT
9 MkEffects : CValue -> GLang ELEM

10 -> GLang ELEM -> GLang INTENT
11
12 MkAnd : GLang ELEM -> List (GLang ELEM)
13 -> GLang STRUCT
14 MkXor : GLang ELEM -> List (GLang ELEM)
15 -> GLang STRUCT
16 MkIor : GLang ELEM -> List (GLang ELEM)
17 -> GLang STRUCT� �

Listing 10.2: Definition of the Algebraic Data Type that represents GRL expressions.

10.6.3 Interpretation Semantics

To complete the creation of the GRL in NovoGRL, interpretation instructions must
be given to describe howGRL expressions are converted into expressions fromGExpr.
This is a simple one-to-one transformation between the languages, as detailed in Fig-
ure 10.7 and implemented in Listing 10.3.

With the specification of how the GRL implementation is to be interpreted into
expressions fromGExpr comes the ability of NovoGRL to construct GRL derived
goal-graphs using these declarations. Although, this example is not indicative over
how the GRL can be re-targeted to a new domain, it nonetheless illustrates how this
framework can be used to construct a DSML.

10.6.4 Modelling Academic Paper Writing

Using this DSML, model instances using the GRL syntax can be constructed and eval-
uated using NovoGRL. To illustrate the use of the GRL in this setting, consider the

185

10. NovoGRL

�G′(x) � :G′(x)→G(x)

�Goal t q �=ElemGOALty t q
� SGoal t q �=ElemSGOALty t q
�Task t q �=ElemTASKty t q
�Res t q �=ElemRESty t q
� x c−→ y �= Impacts � x � c �y �
� x c

99K y �=Affects � x � c �y �
� x ∧ {y1, . . . , yn} �=And � x � {�y1 �, . . . , �yn �}
� x ∨ {y1, . . . , yn} �=OR � x � {�y1 �, . . . , �yn �}
� x ⊕ {y1, . . . , yn} �=XOR � x � {�y1 �, . . . , �yn �}

Figure 10.7: Interpretation semantics for converting GRL expressions into GExpr
expressions.

� �
1 GRL GLang where
2 mkGoal (MkGoal s e) = Elem GOALty s e
3 mkGoal (MkSoft s e) = Elem SOFTty s e
4 mkGoal (MkTask s e) = Elem TASKty s e
5 mkGoal (MkRes s e) = Elem RESty s e
6
7 mkIntent (MkImpacts c a b) =
8 ILink IMPACTSty c (mkGoal a) (mkGoal b)
9 mkIntent (MkEffects c a b) =

10 ILink AFFECTSty c (mkGoal a) (mkGoal b)
11
12 mkStruct (MkAnd a bs) =
13 SLink ANDty (mkGoal a) (map (mkGoal) bs)
14 mkStruct (MkXor a bs) =
15 SLink XORty (mkGoal a) (map (mkGoal) bs)
16 mkStruct (MkIor a bs) =
17 SLink IORty (mkGoal a) (map (mkGoal) bs)� �

Listing 10.3: Interpreting GRL expressions into GExpr

186

10.6. Modelling the GRL as a DSML

goal-oriented modelling of academic paper writing using the GRL. The requirements
for this DSML stipulate:

The root goal of the graph is the paper itself. Each paper will have a single

abstract and bibliography, and multiple sections. These are the goals of

the model. Tasks performed during the creation process are related to the

writing and reviewing of the components. For each sub-goal, a single review

and writing task must be modelled.

The components of a paper aremodelled as goals, and actions for writing and reviewing
modelled as tasks. Components can be divided into sub-components through ‘and’
decomposition, and actions affect tasks and sub tasks throughweightedGRL intention
links.

PaperAbstract

Write

Review Biblio

Write

Review

s1

Write
Review

. . . s2

Write
Review

v

v

v

v

v
v

v
v

| |

| |AND

a

'

a

'

a

'

a

'

a

'

a

'
a

'

a

'

Figure 10.8: Generic instantiation of a GRLmodel for academic paper writing.

Use of the implemented evaluation mechanism will allow for a modelled TODO
list to be checked for satisfiability when presented with an initial strategy to represent
the state of each of the presented tasks. Figure 10.8 presents a sample GRL model,
illustrating the resulting generic model for all paper modelling instances. A specific
instance of this example for a paper that follows the classical scientific structure of
IMRAD is given in Figure 10.9.
To implement this model each of the pictorial language constructs needs to be represen-
ted using the GRLDSML. As the language is an EDSL, the model can be constructed
in several stages. The first stage (zero) requires declaration of the goal elements as
variables within the Idris language. For brevity they are not listed below, a complete
listing of these variables is given in Appendix A. Listing 10.4 details the next stage in
which these elements are inserted into an empty model.

187

10. NovoGRL

Paper

Abstract

Write

Review

Biblio

Write

Review

Intro

Write

Review

Method

Write

Review

Results

Write

Review

Discussion

Write

Review

|

|

|

|

| |AND

a

'

a

'

a

'

a

'

a

'

a

'

a

'

a

'

a

'
a

'

a

'
a

'

v

v

v

v

v

v

v

v

v

v

v

v

v

v v

v v

v v

Figure 10.9: Model instance of a GRLmodel for an academic paper.

� �
1 modelElements : GModel
2 modelElements = emptyModel
3 \= paper
4 \= abst \= wabs \= rabs \= bib \= wbib \= rbib
5 \= intro \= wIntro \= rIntro \= meth \= wMeth \= rMeth
6 \= res \= wRes \= rRes \= disc \= wDis \= rDis� �

Listing 10.4: Insertion of elements into a GRL Model to represent academic paper
writing.

Listing 10.5 details the second stage that requires the creation and insertion of the
structural links that detail the paper’s structure.

� �
1 modelStructure : GModel
2 modelStructure = modelElements
3 \= (And paper [bib ,abst ,intro ,meth ,res ,disc])� �

Listing 10.5: Insertion of structural information into a GRL model to represent aca-
demic paper writing.

Finally, the intentional links that link the tasks of reviewing andwriting to the individual
sections are created and inserted. Listing 10.6 illustrates this last stage and shows the
creation of the model for the paper.

With the constructed model, different strategies can be created to track the paper

188

10.6. Modelling the GRL as a DSML

� �
1 imradPaper : GModel
2 imradPaper = modelStructure
3 \=(MkImpacts MAKES wabs abst) \=(MkImpacts MAKES rabs abst)
4 \=(MkImpacts MAKES wbib bib) \=(MkImpacts MAKES rbib bib)
5 \=(MkImpacts MAKES wMeth meth) \=(MkImpacts MAKES rMeth meth)
6 \=(MkImpacts MAKES wRes res) \=(MkImpacts MAKES rRes res)
7 \=(MkImpacts MAKES wDis disc) \=(MkImpacts MAKES rDis disc)
8 \=(MkImpacts MAKES rIntro intro)
9 \=(MkImpacts MAKES wIntro intro)� �

Listing 10.6: Insertion of contribution links into a model for academic paper writing.

writing process. For example the initial state of the paper can be represented as follows:

myProgress : Strategy
myProgress = [(wabs , DENIED), (rabs , DENIED)'

(wbib , DENIED), (rbib , DENIED)'
(wIntro , DENIED), (rIntro , DENIED)'
(wMeth , DENIED), (rMeth , DENIED)'
(wRes , DENIED), (rRes , DENIED)'
(wDis , DENIED), (rDis , DENIED)]

and evaluation of the model as:

res : List (GNode , SValue)
res = eval imradPaper myProgress

Where res will return a list of the nodes in the model and their satisfaction values.
For this example, all nodes will be denied, and the paper not satisfied. As the tasks are
completed, the strategy can be updated with satisfaction values that are indicative of
the paper’s state. These strategies can be used to evaluate the model and keep track of
the writing process.

10.6.5 Cleaning up the Syntax

Using the GRL in its current form will result in type signatures and link declarations
that are verbose, and can lead to unwieldy model specifications and descriptions in
which implementation details are exposed unnecessarily to the user. Take the declara-
tion of the type for elements in the model and the constructor for the various relations.
Elements are given the type GLang ELEM. This is not descriptive and provides no
detail, aside from the GRL constructs, of what is being modelled. The constructor

189

10. NovoGRL

� �
1 syntax [a] "==>" [b] "|" [c] = MkImpacts c a b
2 syntax [a] "~~>" [b] "|" [c] = MkEffects c a b
3 syntax [a] "&=" [bs] = MkAnd a bs
4 syntax [a] "X=" [bs] = MkXor a bs
5 syntax [a] "|=" [bs] = MkIor a bs� �

Listing 10.7: Syntax extensions for prettifying GRL implementations in Idris

MkImpacts MAKES wabs abst is also not intuitive w.r.t. to which element is produ-
cing the effect.

This verbosity can be reduced, and more clarity given, using Idris’ support for cus-
tom syntax declarations, and type aliasing. Each element can be given its own type alias,
and links between elements can be give custom syntax that is more readable. Further,
Idris’ support for syntax definitions can be used to introduce syntax that mirrors the
abstract syntax used in the formal definition. Listing 10.7 presents several suitable syn-
tax declarations. With these syntax overlays, the intentional relations between elements
in the model can be represented. Listing 10.8 presents the results of using these syntax
overlays.

� �
1 imradPaper : GModel
2 imradPaper = modelStructure
3 \= (wabs ==> abst | MAKES) \= (wbib ==> bib | MAKES)
4 \= (wIntro ==> intro | MAKES) \= (wMeth ==> meth | MAKES)
5 \= (wRes ==> res | MAKES) \= (wDis ==> disc | MAKES)
6 \= (rabs ==> abst | MAKES) \= (rbib ==> bib | MAKES)
7 \= (rIntro ==> intro | MAKES) \= (rMeth ==> meth | MAKES)
8 \= (rRes ==> res | MAKES) \= (rDis ==> disc | MAKES)� �

Listing 10.8: Syntax Extensions applied to the code from Listing 10.6.

10.7 The Paper Modelling Language
Although, the model of academic paper writing presented in §10.6.4 is a valid GRL
instance, not all of the GRL concepts are used. Here the modeller is free to use the
remaining GRL concepts such as correlation links, XOR decomposition or resource
and soft goals in their model. How they relate to the domain of paper writing is not
known, nor is the effect that these untranslated concepts will have when determining
goal satisfaction. Further, the translation of concepts from the GRL into the modelled

190

10.7. The Paper Modelling Language

domain must be performed manually by the user. This is indicative of the problem in
producing DSMLs from the GRL.

When using this technique it is the modellers themselves that have to ensure not
only the correctness of their model for their domain in the host language, but also the
correctness of the interpretation of their model into the host language. These problems
can be addressed using NovoGRL to create a new DSMLs that is structurally equival-
ent to the GRL but uses domain specific terminology and constructs. The resulting
DSMLs are new semantic overlays for the GRL. To illustrate this re-domaining, this
section presents a DSML based on the GRL, the Paper Modelling Language (Pml),
that re-targets the GRL for the domain of academic paper writing.

10.7.1 Language Design

Figure 10.10 presents the abstract syntax for Pml. Recall the GRLmodel instance for
paper writing in Figure 10.9 with the generic construction in Figure 10.8. A distinct
usage pattern is present when using the GRL for modelling papers. The root goal of
the model represents the paper, and has ‘and’ structural decomposition to represent
the elements of the paper. Intentional links are made between each review and writing
task element to a paper element with a contribution value of MAKES.

Thus in the re-domaining of the GRL the node types are replaced with nodes that
represent directly, the paper, paper elements, and the tasks ofwriting and reviewing each
component. The intentional links will also be reduced to a single unlabelled edge that
allows for a writing or reviewing node to be linked to a component node only. Similarly,
the structural links will be reduced to a single ‘and’ decomposition that allows only
the root element to be decomposed into the paper components. Figure 10.10 presents
the resulting abstract syntax for the Pml. The restrictions in Pml on the creation of
structural and intentional links between the nodes are enforced using the type system.

10.7.2 Type System

The Pml is a simply-typed language in which each node and relation declaration are
typed. The list of types are as follows:

T=P | A | B | S | W | R | I | D

191

10. NovoGRL

PML=PML | e | s | i | m] d | m]? {d1, . . . , dn} (10.44)
e=Paper t | Abstract | Biblio | Section t | Write t | Review t (10.45)
i= e −→ e (10.46)
s= e ∧ e (10.47)

m ∈M=Model definition taken from G? (10.48)

Figure 10.10: Abstract syntax for language declarations in the PML.

with semantic meaning of: P—papers;A—abstracts;B—bibliographies; S—sections;
W—writing tasks;R—reviewing tasks; I—task assignment declarations;D—paper
building declarations.

The typing rules to ensure well-formed construction of language constructs from
Pml are as follows.

Element Construction

The AbstractAbstract :A
t : String Writing
Write t :W

t : String Reviewing
Review t :R

t : String The PaperPaper t :P
t : String

A SectionSection t : S

Intentional Relations Correct construction of the intentional relation that asso-
ciates the tasks of writing and reviewing each component of a paper is governed by the
following typing rules.

x :W y :A Writing Abstract
x −→ y : I

x :R y :A Reviewing Abstract
x −→ y : I

x :W y :B Writing Biblio
x −→ y : I

x :R y :B Reviewing Biblio
x −→ y : I

x :W y : S Writing Section
x −→ y : I

x :R y : S Reviewing Section
x −→ y : I

Structural Relations Ensuring that only paper nodes can be decomposed using
an ‘and’ relation is governed by the following rules:

x :P y :A Adding the Abstract
x ∧ y : S

x :P y :B Adding the Bibliography
x ∧ y : S

192

10.7. The Paper Modelling Language

x :P y : S Adding a section
x ∧ y : S

10.7.3 Interpretation Semantics

Figure 10.11 presents the interpretation semantics for converting language constructs
from Pml to GExpr as detailed in §10.7.1.

� PML � : PML→G(x)

�Paper t �=ElemGOALty t Unknown
�Abstract �=ElemGOALty “Abstract”Unknown

�Biblio �=ElemGOALty “Bibliography”Unknown
� Section t �=ElemGOALty tUnknown
�Write t �=ElemTASKty tUnknown

�Review t �=ElemTASKty tUnknown
� x −→ y �= Impacts � x �Make �y �
� x ∧ y �=And � x � � {y} �

Figure 10.11: Interpretation semantics for converting Pml expressions into GExpr ex-
pressions.

Paper and section elements are converted directly into goal nodes with no initial
satisfaction value. The Bibliography and Abstract are also converted into goals but are
populatedwith a default title. Reviewing andwriting tasks are converted into taskswith
no initial satisfaction value. Assignment of paper elements to a paper gets converted
into an ‘and’ decomposition link, with assignment of tasks into an intentional link
with a default contribution value of MAKES.

10.7.4 Implementation Details

To facilitate integrationwith theNovoGRL, Pmlmust be indexed by themeta-typeT
to instruct the framework how the language constructs are to be interpreted. However,
dependent types can be used further to provide an efficient and compact implement-
ation of Pml through further parameterisation of the type given to Pml language
constructs. The type system described in §10.7.2 is implemented through paramet-
erising the type of Pml with a secondary type: PTy.

193

10. NovoGRL

data PTy = ElemTy ETy | SLinkTy | ALinkTy

PTy represents the types for Pml. The element types are represented through the
construct ElemTy which is indexed by the type ETy that represents the type of each
node.

data ETy = PaperTy | SecTy | AuthTy
| RevTy | BibTy | AbsTy

Representing the types in this manner facilitates the compact representation of the
typing judgements in the style of theWell-Typed Interpreter. With the type-system
described in §10.7.2, Listing 10.9 presents an implementation of the Pml.

� �
1 data PML : PTy -> GTy -> Type where
2 MkPaper : String -> PML (ElemTy PaperTy) ELEM
3 MkSect : String -> PML (ElemTy SecTy) ELEM
4 MkBib : PML (ElemTy BibTy) ELEM
5 MkAbs : PML (ElemTy AbsTy) ELEM
6 MkAuth : String -> PML (ElemTy AuthTy) ELEM
7 MkRev : String -> PML (ElemTy RevTy) ELEM
8
9 AddElem : PML (ElemTy PaperTy) ELEM

10 -> PML (ElemTy x) ELEM
11 -> {auto prf : ValidPElem x}
12 -> PML SLinkTy STRUCT
13
14 AddAction : PML (ElemTy x) ELEM
15 -> PML (ElemTy y) ELEM
16 -> {auto prf : ValidAction x y}
17 -> PML ALinkTy INTENT� �

Listing 10.9: Pml implemented as a parameterised algebraic data type in Idris.

The Pml data structure, allows for the creation of paper and section elements that only
have a name as an argument. As bibliographies and abstracts have well-known names
their constructors have no arguments. The reviewing (MkRev) and writing (MkAuth)
elements can be given a description. No initial satisfaction value is required as this can
be set using a strategy.

Of interest here is the use of the Idris proof search mechanism to restrict the
specification of an action between two elements, and assignment of an element to a
paper. The types ValidPElem and ValidAction are used as predicates to ensure that
only valid elements can be assigned to a paper node, and that writing and reviewing

194

10.7. The Paper Modelling Language

processes can only be assigned to section, abstract, and bibliography elements. The
values within the ElemTy constructor are used to populate the predicates, accordingly.
These predicates implement the extra domain specific typing rules that determine valid
expressions in this language, and are evaluated at compile time. For ValidPElem the
following predicate was defined:

data ValidPElem : ETy -> Type where
SP : ValidPElem SecTy
BP : ValidPElem BibTy
AP : ValidPElem AbsTy

Listing 10.10 presents the instance of the GRL typeclass for Pml that implements the
interpretation semantics from §10.11.

� �
1 GRL (\x => PML ty x) where
2 mkGoal (MkPaper t) = Elem GOALty t Nothing
3 mkGoal (MkSect t) = Elem GOALty t Nothing
4 mkGoal (MkBib) = Elem GOALty "Bib" Nothing
5 mkGoal (MkAbs) = Elem GOALty "Abs" Nothing
6
7 mkGoal (MkAuth t) =
8 Elem TASKty (" Authoring " ++ t) Nothing
9 mkGoal (MkRev t) =

10 Elem TASKty (" Reviewing " ++ t) Nothing
11
12 mkIntent (AddAction x y) =
13 ILink IMPACTSty MAKES (mkGoal x) (mkGoal y)
14
15 mkStruct (AddElem x y) =
16 SLink ANDty (mkGoal x) [(mkGoal y)]� �

Listing 10.10: Interpretation semantics from §10.11 implemented in Idris

Use of Pml in its current form will result in type signatures and link declarations
that are verbose. This is the same as was seen with the DSML implementation of the
GRL given in §10.6. Similarly, use of type alias and syntax declarations can be used to
reduce the verbosity. For example:

syntax [a] "==>" [b] = AddAction a b
syntax [a] "&=" [b] = AddElem a b

195

10. NovoGRL

10.7.5 Model Construction

The running example that was introduced in §10.6.4, can now be modelled using the
domain specific Pml. A full listing of the resulting model is given in Appendix A.
Below are examples of how a paper and review task are declared.

paper : PAPER
paper = MkPaper "My First Paper"

rIntro : REVIEW
rIntro = MkRev "Intro"

Comparing how these constructs were declared using the GRL, domain specific terms
have nowbeen given to the elements. The fullmodel declaration is similar in appearance
to the one seen for theGRL. For instance, compare populating themodelwith elements
in Listing 10.4 for the GRL with the one for the Pml in Listing 10.11.

� �
1 modelElements : GModel
2 modelElements = emptyModel
3 \= paper
4 \= abst \= wabs \= rabs
5 \= bib \= wbib \= rbib
6 \= intro \= wIntro \= rIntro
7 \= meth \= wMeth \= rMeth
8 \= res \= wRes \= rRes
9 \= disc \= wDis \= rDis� �

Listing 10.11: Insertion of elements into a Pml model for academic paper writing.

Insertion of structural information for the GRL was presented in Listing 10.5.
Listing 10.12 presents the same procedure but for Pml.

� �
1 modelStructure : GModel
2 modelStructure = modelElements
3 \= (paper &= abst) \= (paper &= bib)
4 \= (paper &= intro) \= (paper &= meth)
5 \= (paper &= res) \= (paper &= dics)� �

Listing 10.12: Insertion of structural information into a Pmlmodel for academic paper
writing.

196

10.8. Experimental Evaluation

To complete the Pml model, the intentional links must now be inserted. For the
GRL this was detailed in Listing 10.6. Listing 10.13 presents the same procedure but for
Pml.

� �
1 paperPlan : GModel
2 paperPlan = modelStructure
3 \= (wabs ==> abst) \= (wbib ==> bib)
4 \= (wInto ==> intro) \= (wMeth ==> meth)
5 \= (wRes ==> res) \= (wDis ==> dis)
6 \= (rabs ==> abs) \= (rbib ==> bib)
7 \= (rInto ==> intro) \= (rMeth ==> meth)
8 \= (rRes ==> res) \= (rDis ==> dis)� �

Listing 10.13: Insertion of contribution links into a Pml model for academic paper
writing.

Modulo the use of syntax extensions (see Listing 10.7) notice, that there is now
no unnecessary leakage from the GRL of contribution values. However, with the
construction used above a more verbose syntax is required to assign components to a
paper, each elementmust be assigned using a separate declaration. This, can be resolved
through creation and use of a ‘hidden’ element used to denote valid components of a
paper. This will allow for the more compact notation to be restored.

10.8 Experimental Evaluation

NovoGRL is a re-engineering of the GRL for use as an EDSL within Idris such
that new semantic layers can be constructed on-top of the GRL. §10.6 and §10.7 have
presented the results of two case studies illustrating how such languages are constructed.
§10.6 detailed modelling of the GRL itself in NovoGRL, and §10.7 the construction
of a language for modelling academic writing.

For both DSMLs and the NovoGRL, each model constructed for the thesis was
cross-validated using the standard implementation of the GRL in the jUCMNav tool2.

Further, the evaluation mechanism of the NovoGRL was tested during construc-
ted using examples taken from Amyot et al. [Amy+10]. The results were also cross-
validated using the tooling from the jUCMNav tool. The models constructed and

2http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome

197

http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome

10. NovoGRL

tests are presented as part of the implementation of the NovoGRL and available
online [dMH15e].

10.9 Discussion
This section presents a discussion over NovoGRL and its limitations.

10.9.1 Re-Domaining

NovoGRL allows for provisioning of new semantic overlays for the GRL. Although
the GRL has been replicated itself, this new functionality, as demonstrated using Pml,
allows for domain specific constructs to be presented and used by the modeller. The
GRL is now extensible. The problems that were once seen when constructing DSMLs
over interpretation correctness can now be avoided. The interpretation process forces
DSML designers to ensure that their language can be translated into GRL constructs
with the GRL interface. Dependent types and the techniques presented provides a
concrete link between goal-oriented DSMLs and their host language.

10.9.2 The GRL is now Programmable

The GRL is a visual modelling language and requires modellers to use a bespoke
environment to construct and evaluate models. Modellers interact with their models
using visual tooling. With NovoGRL this environment is now programmable and
scriptable, as the language is an EDSL within Idris itself. NovoGRL models are
Idris programs. Although a DSL can be constructed, the ‘as-a-library’ provision of
NovoGRL allows for it to be used elsewhere. Either to embed GRLmodelling into
applications or as the base for a new DSML. The latter is how Sif was constructed.

10.9.3 Guarantees over Domain Unique Properties

The NovoGRL framework allows for the construction of DSMLs that are domain
specific variants of the GRL. When constructing goal-graphs (GModel) the framework
ensures the structural correctness of the model as a GRL instance. Although, the
proof search mechanism of Idris can be used to enforce correctness of relations (See
§10.4.5), other domain unique properties such as uniqueness of certain node types are
not catered for. For example, the implementation of the Pml given in §10.7 does not

198

10.9. Discussion

restrict the creation of combined paper planning models, something that should be
restricted. This lack of further property enforcement limits the ability of this framework
to provide guarantees towards non-GRL domain specific properties. Future work can
be to investigate how the framework can be extended to include arbitrary domain
specific checks of the constructed model.

10.9.4 Contribution and Satisfaction Modelling

This framework does not offer a means to provide interpretations of the satisfaction
and contribution values from the modelled domain to that of the GRL. For the Pml
the full range, nor the semantic meaning, for satisfaction and contribution values are
appropriate for modelling paper creation/todo management. Satisfaction values such
as DENIED, WEAKSATIS, and SATISFIED could be replaced with names more endemic
to the domain such as TODO, STARTED, and DONE. Similar considerations should be
made towards the translation of contribution values between the two domains. Future
work will be to consider how the mapping of these values from the modelled domain
to the GRL and the reverse transformation should be facilitated.

10.9.5 Performance

As detailed in Chapter 5 §5.6.2 this research was primarily focused on construction of
functionally correct modelling languages. Producing a language with efficient evalu-
ation was not a prime concern. However, as also mentioned in Chapter 5 §5.6.2 future
work will be to investigate the performance of the NovoGRL evaluation mechanism
when operating on large specifications.

10.9.6 Future Work

Aside from the existing areas of future work mentioned in this discussion, several other
areas can be considered.

The version of the GRLmodelled in NovoGRL is not complete, and only allows
for modelling of single systems. Furtherwork will be to provide a complete representa-
tion of the GRL that includes notions of beliefs, actors, and indicators. Actors represent
discrete units within the problem scenario. Modelling of actors will allow for more
discrete components in a DSML to also be modelled.

199

10. NovoGRL

Further, current property checks when constructing NovoGRLmodels are per-
formed at run time, duringmodel construction. ThePml case study demonstrated how
checks, when promoted to the type level, can become compile time and runtime checks
using Idris’ proof search mechanism. Future work will be to promote the property
checks to the type level so that they become compile, and not run time checks.

A further area of improvement will be to address error reporting. As NovoGRL
is an EDSL, Idris’ own error reporting mechanisms are used to report errors. Work has
been performed to allow for better EDSL error reporting [Chr14]. Future work will be
to improve upon the error reporting for G? and DSMLs built using it.

10.10 Summary
This chapter has presented NovoGRL a framework for constructing GRL-oriented
DSMLs. This framework was used to reconstruct the GRL, and present the Pml,
a requirements based modelling language for modelling the act of academic paper
writing.

NovoGRLhas beendesigned and constructedusing language-oriented techniques.
Dependent typeswere used for implementing the language and for property checking to
provide runtime and compile time guarantees over the correctness of various modelling
constructs. Ensuring that all expressions are well-formed through typing, and use of
Idris’ proof searchmechanism for additional expression construction checks. Providing
for a verified and efficient implementation of the formal language descriptions.

Further, the approach taken has allowed for the structural logic to be separated from
the semantic logic. The resulting languages are semantic overlays that are structurally
equivalent to the GRL but use domain specific terminology and constructs. Thus,
the resulting domain language will have a semantically different abstract syntax, and
different restrictions on the configurationof nodes and edges in comparison to theGRL.
It is this separation that allows for the GRL to be re-targeted for different domains.

200

C
h
a
p
t
e
r 11

Types as (Meta)Modellers

The Types as (Abstract) Interpreters approach detailed in Chapter 4 §4.7 introduced
how dependent types can provide guarantees over the correctness of a language w.r.t. to
a named ‘abstraction’. This was achieved by modelling the abstraction directly within
the type of the language. This technique allowed for the construction of:Well-Typed

(Abstract) Interpreters. This chapter details how this approach can also be applied to
the construction of a DSML and its meta-model, resulting in a new approach called:
Types as (Meta) Modellers.

When building a DSML from a host language, an important design decision is de-
termining how to interpret expressions from one language to another—i.e. from Sif to
NovoGRL. If the languages are not structurally isomorphic, that is they are structur-
ally dimorphic, then this structural difference makes modelling their interpretations at
the type level more cumbersome. This chapter also details several implementation tech-
niques used to aid practitioners when working with structurally dimorphic languages
using the Types as (meta) Modellers approach.

The techniques detailed in this chapter details how the interpretation semantics
for Sif were implemented in Idris. If one examines the structures of a Sif model w.r.t.
to the resulting GRLmodel, the two structures are not structurally isomorphic to one
another: Sif is list-recursive, and the GRLmodel is a directed graph.

Furthermore, the implementation of the interpretation semantics detailing the
transformation of a Sif model to a NovoGRL model is too extensive for inclusion

201

11. Types as (Meta)Modellers

directly in this thesis. It is available in Appendix A. Thus, to illustrate the techniques
employed when using this approach a smaller DSML for modelling the planning of
academic paper writing, PTodo, is introduced.

11.1 Modelling with Differently Shaped
Languages

Chapter 10 introduced NovoGRL and within §10.7 described Pml, a DSML used for
organising paper writing. The Pml is a re-domaining of NovoGRL, even though the
NovoGRL and Pml are semantically different they are structurally equivalent. For ex-
ample, compare the definitions for the ADTs that represent the PML, and NovoGRLs
intermediate language, GExpr. They are repeated from Chapter 10 for convenience.
First, the Pml:

data PML : PTy -> GTy -> Type where
MkPaper : String -> PML (ElemTy PaperTy) ELEM
MkSect : String -> PML (ElemTy SecTy) ELEM
AddElem : PML (ElemTy PaperTy) ELEM

-> PML (ElemTy x) ELEM
-> {auto prf : ValidPElem x}
-> PML SLinkTy STRUCT

MkBib : PML (ElemTy BibTy) ELEM
MkAbs : PML (ElemTy AbsTy) ELEM
MkAuth : String -> PML (ElemTy AuthTy) ELEM
MkRev : String -> PML (ElemTy RevTy) ELEM
AddAction : PML (ElemTy x) ELEM

-> PML (ElemTy y) ELEM
-> {auto prf : ValidAction x y}
-> PML ALinkTy INTENT

and second, GExpr:

data GExpr : GTy -> Type where
Elem : GElemTy -> String -> Maybe SValue

-> GExpr ELEM
ILink : GIntentTy -> CValue

-> GExpr ELEM -> GExpr ELEM
-> GExpr INTENT

SLink : GStructTy -> GExpr ELEM
-> List (GExpr ELEM) -> GExpr STRUCT

202

11.2. The Paper PlanningModelling Language

Not only are both languages indexed by GTy, but the constructors for each value in
GTy share a common shape modulo minor differences. This commonality aides in the
construction of an interpreter between the two languages. Each expression in Pml is
interpreted directly into a corresponding expression from GExpr.

However, the structure of the resulting model GModel bears little actual resemb-
lance to the structure of a data structure specified to work with a TODO list. Pml
prohibits domain specific properties of the domain model to be enforced in the lan-
guage itself. For example, restricting the resulting goal models to modelling one, and
only one, paper at a time, and ensuring that a paper can be linked to one abstract and
one bibliography. Further, the natural structure of a TODO list, is that of a list of
TODO items and tasks. A graph does not represent the natural structure of a TODO
list for paper writing.

These domain specific properties can be enforced through construction of a DSML
for academic paper writing that is not based on the GRL. Interpretation semantics can
then be given to detail how constructs in the language are to be mapped to the GRL.
The concept ofWell-Typed (Abstract) Interpreters is then used to provide a verified
interpreter from the language to the NovoGRL that is constructed directly within
the types of the DSML itself. To enable the construction of aWell-Typed (Abstract)

Interpreter for differently shaped languages several implementation techniques that
use dependent types have to be developed.

11.2 The Paper Planning Modelling Language

This section introduces the PTodo language for modelling the construction of aca-
demic papers. The host language for PTodo is that of the NovoGRL, as presented in
Chapter 10.

11.2.1 Language Design

Themodelling requirements of PTodomirror that of Pmlpresented inChapter 10 §10.7.
Papers are to bemodelledwith a single abstract and bibliography, andwill havemultiple
sections. Tasks performed during the creation process are related to the writing and
reviewing of the components. For each component of the paper, a single review and
writing task must be modelled, and initialised with a default satisfaction value. This
satisfaction value is sourced from the implementation of the GRL. The TODO list

203

11. Types as (Meta)Modellers

e=Abstract | Biblio | Section t | Paper t e e {e1, . . . , en}
| Write v e | Review v e | PTodo e {e1, . . . , em}

t= a StringValue
v ∈Q= taken fromNovoGRL.

Figure 11.1: Abstract syntax for the PTODOmodelling language.

will comprise of the paper paired with a list of the TODO items. Use of the GRL’s
evaluation semantics will allow for the modelled TODO list to be checked for satis-
fiability when presented with an initial strategy that represents the state of each of the
presented tasks. Figure 11.1 presents the abstract syntax for PTodo.

11.2.2 Type System

Toensure that onlywell-formed expressions canbe constructed, a type-system is defined.
The types for PTodo are used to distinguish between the different types of component
within a paper, the paper, and the different TODO items, and the TODO list itself.

T=P | A | S | B | I | L

With semantic meaning of: P the type given to papers;A the type given to abstracts;
S the type given to sections; B the type given to bibliographies; I the type given to
TODO items;L the type given to the TODO list itself.

Using these types, the following typing judgements ensure that only well-formed
expressions can be constructed.

11.2.3 Implementation

Listing 11.1 details a simple implementation of PTodo in Idris. Rather than model the
language expressions as an inductive ADT, PTodo can be implemented across several
bespoke data types. This provides a more natural style of implementation. The types
for PTodo can be modelled using a mixture of:

1) ADTs to represent the core constructs in the language of: a paper (Paper),
TODO item (Item), a paper’s components (Comp), and the TODO list itself—
TODOList;

204

11.2. The Paper PlanningModelling Language

Γ `Abstract :A Γ `Biblio :B
Γ ` t : String
Γ ` Section t : S

Γ ` t : String Γ `a :A Γ `b :B Γ ` ss : List (S)
Γ ` (Paper t a b ss) :P

Γ ` c : S Γ ` v :Q
Γ ` (Write c v) : I

Γ ` c : S Γ ` v :Q
Γ ` (Review c v) : I

Γ ` c :A Γ ` v :Q
Γ ` (Write c v) : I

Γ ` c :A Γ ` v :Q
Γ ` (Review c v) : I

Γ ` c :B Γ ` v :Q
Γ ` (Write c v) : I

Γ ` c :B Γ ` v :Q
Γ ` (Review c v) : I

Γ `p :P Γ ` is : List (I)
Γ ` (PTODOp is) :L

Figure 11.2: Typing rules for PTodo.

2) an enumerated type (CTy) to distinguish between components in the paper,
representing sections, abstracts, and bibliography.

Notice how in Listing 11.1, Comp is indexed by CTy to distinguish at the type level
different components. Using this implementation a TODO planner for academic
paper planning can be constructed.

11.2.4 Interpretation Semantics

With the syntax, types, and implementation for PTodo defined, interpretation se-
mantics can now be given that details how constructs from PTodomap to those in
the NovoGRL. Figure 11.3 details these semantics.

The rules given in Figure 11.3 detail how each of the paper components, and paper
itself, are transformed into a goal model in which the paper is represented by a root goal
node, and each component is linked to the root node using an ‘and’ decomposition
rule. Each of the TODO items are translated into a NovoGRL declaration pairing,
the task node from the NovoGRL and an intentional link with a contribution value
ofMake linking the task node to the component being affected. When presented with
a paper TODO list (PTodo), the resulting goal-graph that represents the paper itself

205

11. Types as (Meta)Modellers

� �
1 data CTy = STy | ATy | BTy
2
3 data Comp : CTy -> Type where
4 Sect : String -> Comp STy
5 Abst : Comp ATy
6 Bibl : Comp BTy
7
8 data Paper : Type where
9 MkPaper : (title : String) -> (abst : Comp ATy)

10 -> (bibl : Comp BTy) -> (sects : List (Comp STy))
11 -> Paper
12
13 data Item : Type where
14 Review : Comp ty -> (s : SValue) -> Item
15 Write : Comp ty -> (s : SValue) -> Item
16
17 data TODOList : Type where
18 MyList : String -> Paper -> List Item -> TODOList� �

Listing 11.1: Initial implementation of the PTodomodelling language.

has the elements and declarations from the TODO items inserted. The result from
this interpretation is a complete goal-graph and is evaluated using the NovoGRL
evaluation semantics.

However, the types of the expressions on the RHS in Figure 11.3 are not equivalent.
A NovoGRLmodel has typeM (GModel), and expressions are lists of single instances
with typeL (GLang INTENT or GLang STRUCT) orN (GLang ELEM). This will affect
how the interpreter will be constructed. How to deal with interpretation results will
be important.

Further, the implementation of PTodo given in Listing 11.1 is distributed over
several data structures. This will further affect how the meta-model for PTodo can be
modelled within the types. A question arises of: How to distribute and combine the

results in type?

11.3 Lists of Dependent Types

When representing language expressions as an inductive ADT, a natural pattern is to
collect a sequence (or set) of expressions in a container. One commonly used container
is that of the List data type. However, in dependently typed languages the values
detailed complicates the matter of the collection of values described using a dependent

206

11.3. Lists of Dependent Types

�PTODO � :PTODO→GRL
�Abstract �=Goal “Abstract”Unknown (11.1)

�Biblio �=Goal “Biblio”Unknown (11.2)
� Section t �=Goal tUnknown (11.3)

�Paper t a b {s1, . . . , sn} �=;] p]? {�a �,�b �}]? cs (11.4)
] (p ∧ cs)] (p ∧ {�a �,�b �})

where

p=Goal tUnknown
cs={� s1 �, . . . ,� sn �}

�Review v e �=(n,n
Make−−→ � e �) (11.5)

where

n=Task (“Reviewing” ++ e) v

�Write v e �=(n,n
Make−−→ � e �) (11.6)

where

n=Task (“Writing” ++ e) v
�PTODOp {i1, . . . , in} �=p]? es]? is (11.7)

where

(es,is)={(a,b) | (a,b)← � i �, i← {i1, . . . , in}}

Figure 11.3: Interpretation semantics for converting PTodo expressions into GRL
constructs.

type. Collection of items implies that all items must have the same type, and as such
must also have the same value. Such a limitation hampers the ability to construct
abstract interpreters using list inductive ADTs, the interpretations in the type must
also be collected. However, they are not all the same value.

11.3.1 A List of TODO Items

For example, Listing 11.2 lists a simple dependently typed ADT to represent items in a
TODO list. Here, NovoGRL is used as the meta-model such that each TODO item
is represented by a Goal element.

With the Item data structure if one wishes to collect a list of TODO items into

207

11. Types as (Meta)Modellers

� �
1 data Item : GLang ELEM -> Type where
2 Done : (title : String)
3 -> (desc : Maybe String)
4 -> Item (MkGoal title (Just SATISFIED)
5 TODO : (title : String)
6 -> (desc : Maybe String)
7 -> Item (MkGoal title Nothing)� �

Listing 11.2: A simple dependently typed ADT to represent items in a TODO list.

a collection such as List, the interpretation (the value contained within the type) of
the collected expressions must be the same. For example, given a list of TODO items
(detailed in Listing 11.3), the list todoswill fail to type check as each of the elements
within the list have different types due to their interpretation.

The first element interprets to: MkGoal "Abstract" (Just SATISFIED). The
second element to: MkGoal "Types as (Meta) Modellers" Nothing. Finally,
the third to: MkGoal "Introduction" Nothing. The List data structure has a
type that is parameterised by the single type given to all elements contained within the
list. To collect a list of elements with type Item the value specified within Itemmust
be exactly the same for each element. Further, when an enumerated type is used to
provide scopes over a data structure, for example to model a type-system, the value of
this enumeration will only add more points that will be fixed.

The question is:How to collect lists of dependent types such that the value within

the type can di�er?

� �
1 todos : ?myTypeIs
2 todos = [Done "Abstract" Nothing
3 , TODO "Types as (Meta) Modellers" Nothing
4 , TODO "Introduction" Nothing]� �

Listing 11.3: A list of TODO items with elements of type Item, with an unknown
type.

11.3.2 DList: A Data Structure for Collecting
Dependent Types.

To address the collection of values in types dependently typed languages such as Agda
provide a means to existentially quantify values in a parameterised type, collecting the

208

11.3. Lists of Dependent Types

value in the type as the structure is built. This is the All data type. During the research
project, no such comparable structure existed within the standard library of Idris. This
section introduces DList a comparable structure to All that allows for the collection
of values at the type and value level. DList differs further from All in that DList is a
‘proof-carrying’ living and breathing list. All represents a predicate that is used as an
external proof for a separate list.

� �
1 data DList : (aTy : Type)
2 -> (elemTy : aTy -> Type)
3 -> (as : List aTy)
4 -> Type where
5 Nil : DList aTy elemTy Nil
6 (::) : (elem : elemTy x)
7 -> (rest : DList aTy elemTy xs)
8 -> DList aTy elemTy (x::xs)� �

Listing 11.4: Definition of DList, a data structure to allow collection of Dependent
Types.

DList is a generalised cons-style ADT that allows for a value contained within the
type of a dependent type to be collected at the type-level. All elements within the list
come from the same family of indexed types and that the index within the type of the
element can differ. With DList, the family of indexed types is constrained to a singular
instance.

Listing 11.4 presents the definition of DList. In this definition: aTy is the type of
the value contained within the list element type; elemTy is the type of the elements
within the list; and as is the List containing the collected values within the type. Using
DList, lists can now be constructed for dependent types, collecting a single value from
within the type. Listing 11.5 illustrates how the list of foos from Listing 11.3 can be
specified using DList.

The benefit of this approach is that a single library of operations involving DList data
structures can be specified and developers can create lists of dependent types. Other
approaches are more cumbersome and do not allow for generic list style operations
to be provided for a data structure of type DList. Appendix C details these other
approaches further. DList and other containers available for use in Idris have been
made available online [dMH15b].

209

11. Types as (Meta)Modellers

� �
1 todos : DList (GLang ELEM) Item
2 [MkGoal "Abstract" (Just SATISFIED)
3 , MkGoal "Types as (Meta) Modellers" Nothing
4 , MkGoal "Introduction" Nothing]
5 todos = [Done "Abstract" Nothing
6 , TODO "Types as (Meta) Modellers" Nothing
7 , TODO "Introduction" Nothing]� �

Listing 11.5: Using DList to collect a list of elements of type Foo.

Unfortunately, the DList data structure only collects a single value from the type.
Dependent types that are parameterised using multiple elements must have all but a
single value fixed. A possible work around would be to weaken the relations between
the parameters in the type and allow arbitrary values to be collected in the type.

11.3.3 Relation to Abstract Interpreters

With DList comes the ability to collect the terms within a list of dependent types.
Listing 11.6 details a naïve representation of the actual list of TODO items modelled
using DList.

TODOList is indexed by an instance of a goal-graph (GModel) that is populated
using the list of elements obtained from the DList presented as an argument in the
MyList constructor. However, this does not result in a correct NovoGRL model
instance. Missing are the definitions of the tasks required to complete each goal item.
Alsomissing is ameans to specify contribution links between goals and themissing tasks.
Further, this implementation will result in a disconnected graph and will not evaluate.
Use of DList alone is not enough to add these features to this simple TODO list
implementation. To address these features a second technique needs to be introduced.

� �
1 data TODOList : GModel -> Type where
2 MyList : String
3 -> DList (GLang ELEM) Item es
4 -> TODOList (insertMany es emptyModel)� �

Listing 11.6: A naïve modelling of a TODO List with NovoGRL as the meta-model.

210

11.4. Working with Interpretation Results

11.4 Working with Interpretation Results

When working with values in the type for modelling, a crucial design decision is over
how the interpretation is represented. The data type TODOList from Listing 11.6 used
NovoGRL as the meta-model and required that the value in the type be the same type
as the meta-model itself. This restricts what form the meta-model can take. This is not
important when working with structurally isomorphic modelling languages, however,
for structurally dimorphic languages this presents a problem.

When working with inductive ADTs the language constructs are being built up
in both the domain language and the host language. If the resulting constructs in
the abstract interpretation cannot be represented in the type of the domain language
this will make combination of the abstract interpretation constructs harder to achieve.
For instance, §11.1 detailed that when interpreting a PTodo instance to its NovoGRL
representation, intermediate results needed to be calculated that were not of type
GModel. These results represented lists of declarations to be inserted into a GModel
instance. For example, Listing 11.7 shows how the TODO List example from the
previous section (§11.3) can be extended with a data type to represent tasks. Task
is indexed by a pair representing the interpretation of an Action to elements from
NovoGRL. This interpretation is that of a Task element and an intentional links
between the task element and the goal stored in the type representing items.

� �
1 data Task : (GLang ELEM , GLang INTENT) -> Type where
2 Action : (title : String) -> (desc : Maybe String)
3 -> (value : SValue) -> (todo : Item e)
4 -> Task (Pair (MkTask title (Just value))
5 (MkTask title (Just value) ==> e | MAKES))� �

Listing 11.7: A simple dependently typed ADT to represent tasks in a TODO list.

With Task, the data type for modelling TODOList’s can be improved to include these
tasks lists. However, a problem now arises of how to collect the NovoGRL representa-
tions at the type level, and use them to construct a valid GModel instance. Naïvely, one
might think to use DList to collect tasks into a list. Producing a parameter with type:

tasks : DList (GLang ELEM , GLang INTENT)
(\(e,i) => Task (e,i))
reprs

211

11. Types as (Meta)Modellers

However, use of an anonymous function results in a highly verbose type signature for
an instance of DList. Ameans to reduce this verbosity and to aid in the interpretation,
collection, and processing of the results is the use of a custom data type. This data
type is dedicated to the collection of the interpretation results for the expressions in
the meta-modelling language. Each constructor in the data type can be used to store
the interpretation (final or intermediate) for each expression in the host language. For
example, the index of Item can be wrapped using a record TaskReprwith projections
getElem and getIntent used to access the individual elements in the pair. TaskRepr
subsumes the functionality required from a pair with a simple type. Listing 11.8 presents
a rewriting of TODOList using TaskRepr, and the definition of TaskRepr.

� �
1 record TaskRepr where
2 constructor MkTRep
3 getElem : GLang ELEM
4 getIntent : GLang INTENT
5
6 data TODOList : GModel -> Type where
7 MyList : (name : String)
8 -> DList (GLang ELEM) Item es
9 -> DList TaskRepr Task rs

10 -> TODOList (insertMany (map getIntent rs)
11 (insertMany (map getElem rs)
12 (insertMany es emptyModel)))� �

Listing 11.8: A revised modelling of TODOListwith more complex types.

Unfortunately, use of TaskRepr results in a more complicated type. How the
GModel instance is constructed is exposed. The list of NovoGRLmodel constructions,
rs, needs to be processed and the results inserted within the GModel instance. Fortu-
nately, a function can be used to abstract away the computation required. Listing 11.9
demonstrates one such function: buildModel.

The use of custom data types and functions to work with interpretation results
allows for greater control over the construction of the meta model. A natural extension
to the use of custom data types is the convergence of all interpretation results into a
single ADT. This way the actual meta-model values and types are not exposed in the
type of the DSML. However, when modelling the DSML as an inductive ADT this
will lead to ambiguity at the type level over which constructor should be used with

212

11.5. Type Threading

� �
1 buildModel : List (GLang ELEM) -> List TaskRepr -> GModel
2 buildModel es ts = insertMany tis (insertMany tes modelAndGoals)
3 where
4 tis : List (GLang INTENT)
5 tis = map getIntent ts
6
7 tes : List (GLang ELEM)
8 tes = map getElem ts
9

10 modelAndGoals : GModel
11 modelAndGoals = insertMany es emptyModel
12
13 data TODOList : GModel -> Type where
14 MyList : (name : String)
15 -> DList (GLang ELEM) Item es
16 -> DList TaskRepr Task rs
17 -> TODOList (buildModel es rs)� �

Listing 11.9: A second revised modelling of TODOListwith added functions.

which function, andwhich result should be inserted into what. The next section details
a technique used to avoid such problems.

11.5 Type Threading

When modelling interpretation results in the type of an inductive ADT one must
be able to distinguish between different kinds of constructors. How a constructor is
interpreted may differ, not to mention the results themselves.

For example, imagine that both the Item (Listing 11.2) and Task (Listing 11.7 or
Listing 11.11) ADTs were to be represented as a single ADT: TODOItem. An enumer-
ated type (Ty) distinguishes between constructors for items and tasks. Both original
representations of these data structures have different interpretation results: Task is a
pair of an element-intentional link pairing; and Item a single element. A single ADT
(IRes) can be used to coalesce the different interpretation results together. However,
it is not clear when using IRes at the type level which constructor is being referred to.

Type Threading is a technique in which a set of data types are indexed by the
same enumerated type. Allowing for the view from above (type-level) to correspond
to the view from below—value-level. This technique was seen in the definition of
SifExpr in Chapter 5 §5.4.3, and also in the construction of NovoGRL. Chapter 10

213

11. Types as (Meta)Modellers

� �
1 data Ty = TyITEM | TyTASK
2
3 data IRes : Ty -> Type where
4 IResItem : GLang ELEM -> IRes TyITEM
5 IResTask : GLang ELEM -> GLang INTENT -> IRes TyTASK
6
7 interpItem : String -> Maybe SValue -> IRes TyITEM
8 interpItem title sval = IResItem $ MkGoal title sval
9

10 interpTask : String -> SValue -> IRes TyITEM -> IRes TyTASK
11 interpTask t s (IResItem to) = IResTask elem link
12 where
13 elem : GLang ELEM
14 elem = MkTask t (Just s)
15
16 link : GLang INTENT
17 link = (elem ==> to | MAKES)
18
19 data TODOItem : (ty : Ty) -> IRes ty -> Type where
20 Done : (title : String) -> (desc : Maybe String)
21 -> TODOItem TyITEM (interpItem title (Just SATISFIED))
22
23 TODO : (title : String) -> (desc : Maybe String)
24 -> TODOItem TyITEM (interpItem title Nothing)
25
26 Action : (title : String) -> (desc : Maybe String)
27 -> (value : SValue) -> (todo : TODOItem TyITEM e)
28 -> TODOItem TyTASK (interpTask title value e)� �

Listing 11.10: A revised implementation of Item and Task as a single inductive ADT
with interpretation results indexed by the same enumerate type to distinguished dif-
ferent kinds of constructors.

used the enumerated type GTy to ensure that the values from the presented domain
language are correctly mapped to the constructs in GCore. This is a quintessential
use of dependent types, detailing how the values used in the type can be leveraged to
provide greater precision in describing programs. In this case the values in the types are
used to constraint and enforce the relation between several different data structures
when they are used together.

With the ability to thread types, IRes and the TODOItem can now both be indexed
using the same enumerated type, Ty. This ensures that the right functions and interpret-
ation results are used together. Listing 11.10 details the implementation of TODOList,
IRes contains the interpretation results for both items and tasks, and these results can
be distinguished through the value of type Ty specificed in the type. The functions

214

11.6. Interpreter for PTodo

interpItem and interpTask are used to perform the actual interpretation of values.
Notice that as with Listing 11.11, use of functions to compute the interpretation result
provides for more succinct code to be written in the type of TODOItem.

With TODOItem, the implementation of TODOList can now be updated. List-
ing 11.11 presents the revised implementation. Asbefore, the interpretationof TODOList
results in the construction of a GModel instance, with the function buildModel used
to perform the actual building. Inspecting the constructor arguments for MyList, two
DList types are used to model the list of items and tasks, and to collect the interpret-
ation results. An anonymous function allows the TODOItem type (indexed by two
parameters) to have the correct shape for DList, and to ensure that only the interpret-
ation result is collected. The resulting NovoGRLmodel for this TODO list has, as its
root, an element representing the root goal: The completion of all items in the TODO
list.

11.6 Interpreter for PTodo
The formal definition and interpretation semantics for PTodo were given in §11.2.
This chapter has discussed several techniques, and illustrated their uses of examples
closely related to the PTodo language. This section details how the actual interpreter
for PTodo is constructed, showcasing the use of all the techniques described in this
chapter. The full implementation is not described here, and is provided in Appendix A,
and made available online [dMH15e].

11.6.1 Representing the Types

The enumerated types Ty and CTy are used to index data types to model the type
system of PTodo. Ty represents core things in the language—papers, TODO items,
and paper components). CTy distinguishes between different aspects of a paper. Their
implementation is:

data Ty = PAPERty | ITEMty | COMPty

data CTy = STy | ATy | BTy

An alternative implementation would be to combine the types into a single ADT. How-
ever, as it will be shown the view of interpretation results need not be concerned with

215

11. Types as (Meta)Modellers

� �
1 buildModel : String
2 -> List (IRes TyITEM)
3 -> List (IRes TyTASK) -> GModel
4 buildModel n is ts = insertMany tis $ insertMany tes m
5 where
6 root : GLang ELEM
7 root = MkGoal n Nothing
8
9 es : List (GLang ELEM)

10 es = map (\(IResItem x) => x) is
11
12 toRoot : GLang STRUCT
13 toRoot = (root &= es)
14
15 m : GModel
16 m = insert toRoot $ insertMany (root::es) emptyModel
17
18 ties : List (GLang ELEM , GLang INTENT)
19 ties = map (\(IResTask e i) => (e,i)) ts
20
21 tis : List (GLang ELEM)
22 tis = map fst ties
23
24 tes : List (GLang INTENT)
25 tes = map snd ties
26
27 data TODOList : GModel -> Type where
28 MyList : (name : String)
29 -> DList (IRes TyITEM) (\res => TODOItem TyITEM res) is
30 -> DList (IRes TyTASK) (\res => TODOItem TyTASK res) ts
31 -> TODOList (buildModel name is ts)� �

Listing 11.11: A revised implementation of TODOList using TODOItem from List-
ing 11.10.

the precise notion of a component as it gets interpreted to the same result. Further,
one could also parameterise the constructor COMPty to store a value with type CTy.
However, this will increases the complexity of the implementation unnecessarily.

11.6.2 Interpretation Results & Functions

Figure 11.3 details the interpretation semantics for PTodo. Each of the core language
constructs are either going to be interpreted into an element from NovoGRL, a
complete GModel instance, or a pairing between an element and a intentional link.
InterpRes (Listing 11.12) is used to represent these results, and uses Ty to distinguish
at the type level the different constructors.

216

11.6. Interpreter for PTodo

� �
1 data InterpRes : Ty -> Type where
2 ResComp : GLang ELEM -> InterpRes COMPty
3 ResPaper : GModel -> InterpRes PAPERty
4 ResITEM : GLang ELEM -> GLang INTENT -> InterpRes ITEMty� �

Listing 11.12: An ADT to collect intermediate interpretation results for PTodo.

With InterpRes, functions can now be defined to perform the interpretation.
The full details of which are provided in Appendix A. Here only the type signatures
are given.

The first function, interpComp, interprets a paper’s components intoNovoGRL
elements. Corresponding to Rules 11.1, 11.2 & 11.3 from Figure 11.3. The next function
converts the paper (an abstract, a bibliography, and a list of sections) into a NovoGRL
GModel instance—Rule 11.4.

interpComp : String -> InterpRes COMPty

Examining the type signature for interpPaper, a question arises over which argument
refers to which interpretation result w.r.t. the paper’s components. At the type level
it is not clear if the argument labelled a is the abstract or the bibliography. This is a
limitation of the design of this interpreter, if the developer has passed in the wrong
arguments to interpPaper an incorrectly constructed GModelwill arise.

interpPaper : String
-> InterpRes COMPty
-> InterpRes COMPty
-> List (InterpRes COMPty)
-> InterpRes PAPERty

However, this limitation can be addressed. Extending Ty to represent individual paper
components would be beneficial, and allow for more precision to be specified in the
type signature. This would require the addition of extra constructors to InterpRes
and more functions to perform the required interpretation. For each value in Ty a
function needs to be constructed. An alternative approach would be to parameterise
InterpRes further with CTy. Implying that both ITEMty and CMPty can also be
paired with a CTy value. For this example, this is not an appropriate solution, TODO
items do not have a bibliography, abstract, nor sections.

The function interpTODO interprets individual TODO items, corresponding to
Rule 11.5 and Rule 11.6 from Figure 11.3. Unlike the definition of interpPaper, no

217

11. Types as (Meta)Modellers

disambiguation is needed to distinguish between different components. The final
function is interpTODOs that constructs the GModel instance representing a TODO
list.

interpTODO : String
-> SValue
-> InterpRes COMPty
-> InterpRes ITEMty

The interpTODOS function, uses the interpretation results for a paper, and combines
it with the interpretation results for each item in theTODO list. This function provides
an implementation of Rule 11.7.

interpTODOS : InterpRes PAPERty
-> List (InterpRes ITEMty)
-> GModel

11.6.3 Data Structures

The functions from the previous section can now be used to enhance the data struc-
tures, originally presented in §11.2.3. Listing 11.13 presents these new functions. Now,
the interpreter for converting the TODO list to a GModel has been distributed and
embedded through the types of the program. Notice, that in the revised types for
PTodo, the use of DList in Paper and TODOList to collect the interpretations of
paper components. Further, the values within each data type are used to populate the
GModel. As with theWell-Typed (Abstract) Interpreter, a valid TODOList instance can
only be constructed if a valid GModel instance is also constructed. Thus, providing
stronger correctness-by-construction guarantees for PTodomodels.

11.6.4 Model Evaluation

With the ability to define models, a question arises over how they are to be evaluated.
Using the NovoGRL as the meta-model, allows for the existing evaluation semantics
to be used on the resulting meta-model. With PTodo, the meta-model can be made
accessible by bringing the meta-model down into the value level, as follows:

218

11.6. Interpreter for PTodo

� �
1 data Comp : InterpRes COMPty -> CTy -> Type where
2 Sect : (t:String) -> Comp (interpComp t) STy
3 Abst : Comp (interpComp "Abstract ") ATy
4 Bibl : Comp (interpComp "Biblio") BTy
5
6 data Paper : InterpRes PAPERty -> Type where
7 MkPaper : (t : String)
8 -> Comp a ATy
9 -> Comp b BTy

10 -> DList (InterpRes COMPty) (\x => Comp x STy) ss
11 -> Paper (interpPaper t a b ss)
12
13 data TODO : InterpRes ITEMty -> Type where
14 Review : (c : Comp a ty)
15 -> (s : SValue)
16 -> TODO (interpTODO "Review " s a)
17
18 Write : (c : Comp a ty)
19 -> (s : SValue)
20 -> TODO (interpTODO "Writing "s a)
21
22 data TODOList : GModel -> Type where
23 MyList : String
24 -> Paper m
25 -> DList (InterpRes ITEMty) TODO ts
26 -> PaperToDos (interpTODOS m ts)� �

Listing 11.13: A revised implementation of PTodowith the interpreter toNovoGRL
distributed and embedded through out the types.

evalTODO : TODOList m -> List GoalNode
evalTODO {m} l = evalModel m Nothing

The type-level value is made accessible using Idris’ built in mechanisms for working
with implicit values1. The function evalTODO returns the list of goal nodes in the
GModel instance m with their satisfaction value. For this example implementation,
nothing further is computed with the results. However, with further engineering
the results from the evaluation can be transformed back into the values of Item and
reported back to the user accordingly.

1
Programming in Idris details this further [Idr15].

219

11. Types as (Meta)Modellers

11.7 Discussion

This section presents a discussion over the techniques presented in this chapter and
areas of future work.

11.7.1 Direct or Abstract Interpreters

This thesis has demonstrated two different styles of construction for DSMLs within a
dependently typed language. Both of these styles are provided in the Sif evaluator—see
Chapter 5 §5.6.3.

The first, is a direct style of construction and requires for the separate implementa-
tion of the DSML from the interpretation to the meta-model itself. Naturally, this sep-
aration allows for different meta-models and interpretation semantics to be considered
for a DSML. However, this separation only allows for the correctness of construction
guarantees between a DSML and meta-modelling language to be checked once the
model has been constructed and checked explicitly. Mistakes in model construction
are now not guaranteed to be discovered unless the model is actively checked.

The second technique requires the meta-model to be constructed directly within
the types of the DSML itself. This technique provides stronger guarantees between
the host and domain language. The meta-model instance is constructed at the same
time as the DSML. Any mistakes made when constructing the two languages will be
detected at the same time.

The abstract interpretation technique also allows for the meta-modelling language
to be presented at the type-level. Allowing for a modelling language to be used as a
host language when both languages are structurally dimorphic. Further allowing for
the meta-modelling language to be made available for use in programs where use of
the meta-modelling language might not be apparent, or the implementation of an
interpreter non-obvious. The resulting DSML can differ in both syntax and structural
properties, but can nonetheless be modelled using the host language.

For example, compare the syntax and structural properties of Sif compared to
NovoGRL. They differ considerably, a GModel is a directed graph, and Sif is structur-
ally the union of two trees. However, both Sif and NovoGRL are two goal-oriented
languages. A more interesting use of the GRL may be the represention, at the type
level, of access control to data based on environmental conditions. The goal (file access)
might be restricted based on several system environmental resources, such as current

220

11.7. Discussion

user, time, user’s permissions et cetera. The values of these resources can be used to
populate a predefined goal model as a strategy, and if the goal is satisfied then access
could be granted.

Although the DSML and meta-modelling language are technically inseparable
the DSML can still be defined separately from the meta-model. The reference imple-
mentation for Sif (Chapter 5 §5.4.4) details how the pattern Abstract Factory
was combined with type-threading and interfaces to separate the abstract syntax of the
language from the meta-model.

11.7.2 Efficacy of InterpRes

The use of a bespoke indexed ADT (InterpRes) to capture intermediate interpret-
ation results resulted in PTodo becoming over engineered. The use of distinct data
structures was sufficient, and not only made the index Ty redundant but also the per-
vasive use of InterpRes. The result of interpreting the types Paper and Compw.r.t. to
the constructors in those types did not differ. When using the types as (meta) modellers

approach, pervasive use of an InterpRes like ADT is not required.

However, in the case that an inductive ADT is used, provision of InterpRes is
crucial. As noted in §11.4, interpretation results when used at the type level must have
the same type. Otherwise, the result cannot be stored. For example, the ‘Abstract-
Builder’ backend for Sif made use of abstract interpretation over an inductive ADT.
Here InterpRes was used to collect the intermediate results (GRL statements) for
processing. These intermediate results varied from lists of declarations, to a single
declaration, and to the meta-model instance itself. Further, look at the use of the GRL
to model PTodo. The GRL EDSL is indexed by GTy, an enumerated type, but the
resulting model will be of type GModel: Two different types.

Another aspect to consider is that in Idris, types are first class constructs. Use of this
option has not been explored in the construction of DSMLs using the types as (meta)

modellers approach. However, it is reasonable to suggest that language expressions for
a DSML can be additionally indexed over the type of the intermediate interpretation
results, and that this type be used to represent the interpretation result within the type
of the data structure. This resembles how DList allows for collection of values at the
type level. How this approach would work is left for future study.

221

11. Types as (Meta)Modellers

11.7.3 Collecting Dependently Typed Values

This chapter has introduced DList and the reasons behind its construction. When
working with dependent types DList has proven useful in simplifying the work associ-
ated with collecting lists of dependently typed values.

In the area of containers for dependent types, future work will be to explore how
other more container types can be constructed, for example: Balanced Binary Trees,
Dictionaries, and Graphs. Key to the construction of these data types will be how the
values in the types can be collected such that the container’s structure can be preserved
and the values made accessible at the type level.

11.7.4 Resource Usage

An aspect to consider with these two techniques is the lifetime and use of the meta-
model construct itself. Both PTodo and Sif are based on the GRL, and make use of
the meta-model for evaluation purposes.

A side effect of modelling information in types is that the extra information in the
type will impact memory usage and execution speed. Dependently typed programs
will be slower and larger to run if this information is not taken care of. Erasure, is a
technique that identifies information used during compile time that is irrelevant during
runtime [Mis08]. This irrelevant data is then erased when producing the program
executable.

With the types as (meta) modellers approach the meta-model can be used by the
program topresent evaluation results. TheDSML is not evaluateddirectly. For example,
the evalTODO function from §11.6.4 drops the meta-model down to the value level for
use. It is this ‘drop’ that makes the meta-model relevant. Programs that make use of
the meta-model at the value level will not have this information erased.

11.7.5 Correctness Guarantees

The types as (meta) modellers approach uses a variety of techniques to provide correct-
ness guarantees over a DSML and its interpretation into the meta-modelling language.
These approaches are realised using dependent types.

Well-typed interpreters are used to ensure that only well-formed and well-typed
expressions are constructed. For NovoGRL, this approach was used to also ensure
correct transformation between the semantic domains. Modelling type-systems with

222

11.8. Summary

enumerated types also allowed for type-threading and assurances to be made in con-
necting expressions to intermediate interpretation results.

Construction of the meta-model directly in the type ensures that a valid DSML
instance can only be constructed if the corresponding meta-model can also be construc-
ted. An important aspect to consider with such modelling is:When is the correctness

of a model checked? For both PTodo and Sif the intermediate results of interpreting
several expressions are declarations that are inserted into a model. This insertion hap-
pens at a later point past the definition site. The correctness check for the meta-model
only occurs when these declarations are being inserted into the model itself. However,
this is a property resulting from the declarative nature of how the NovoGRL was
constructed. These guarantees cannot be made a priori as the complete modelling
information is not known in advance.

An aspect not considered is the correctness of the resulting meta-model. The
approach detailed in this chapter only provides guarantees towards the shape and trans-
formation ofmodels. The arising semantics post transformation are not reasoned upon.
This is a result of implementing the languages as EDSLs in Idris and not restricting
the typing environment of the languages to variables only defined within the context
of the language expressions. The current implementation choice allows for free vari-
ables to be inserted into the model. The solution to this problem is to also model the
typing environment directly within the modelling of the languages. TheWell-Typed

Interpreter from The Idris Community [Idr15] details how such a restriction can be
implemented.

11.8 Summary

This chapter has demonstrated and discussed how the approach ofWell-Typed (Ab-

stract) Interpreters can be applied to modelling and provide stronger construction guar-
antees between a DSML and its meta-modelling language. However, this approach
does not provide guarantees over the correctness of the resulting model semantics,
semantically incorrect models can still be constructed. How this is to be addressed is
left for future work.

Meta-modelling languages are not always structurally equivalent to that of the
domain model. The techniques presented in this chapter can be used to bridge the gap
between the two structures. Especially when pairing declarative modelling languages

223

11. Types as (Meta)Modellers

(e.g. NovoGRL) with inductive languages (e.g. Sif), or those whose expressions are
distributed across several data types—PTodo.

Further, this work has investigated the construction of list oriented containers for
dependently typed values. The DList data structure was developed to allow the values
in a collection of types to be collected at the type level. The shape of the containers was
mirrored in the value in the type. Future work opens up to the area of constructing
dependently typed containers.

224

C
h
a
p
t
e
r 12

Conclusion

Design Patterns are supposed to be the well-described, well-tested, well-evaluated
pairing between a problem and a solution for a given context. Unfortunately, it is
the case that the patterns being developed, presented, and published are not well-
described, notwell-tested, and are sometimes not ‘true’ patterns. This thesis has seen the
design and introduction of tools and techniques for supporting and enabling machine
checkable design pattern documents. This thesis concludes with a retrospective of
the research hypothesis presented in Chapter 1 and the approach taken to address
the hypothesis by the contributions. This thesis ends with a look at future research
directions, ostensibly asking:What’s next?

12.1 Language-Oriented Design of DSMLs

Existing work saw the use of the GRL to reason about design patterns as requirements
models. However, use of the GRL is complicated by its pictorial language constructs
and inability to be re-domained to support domain specific concepts such as those for
design patterns. Through adoption of existing techniques fromprogramming language
theory a formal specification for a subset of the GRL was developed—Chapter 10.
This specification treated the GRL as a declarative language for the construction of
goal-graphs. The language-oriented specification presented an abstract syntax and
type-system to replace the use of UML.

225

12. Conclusion

The resulting formal specification, following programming language theory, was
used as the host language when detailing interpretation semantics from a domain
specific language to the GRL itself. The link between a domain language and its meta-
modelling language can now be described through language transformations. This was
demonstrated with various minor modelling languages throughout this thesis: GRL
in Chapter 10 §10.7; Pml in Chapter 10 §10.6; and PTodo in Chapter 11 §11.2. More
importantly this approach was used for the design of Sif itself—Chapter 5.

With this language-oriented approach, clear and precise language descriptions are
presented, together with clear transformation descriptions. DSML design has been
enhanced using these concepts from programming language theory.

12.2 Better Implemented DSMLs

Given a language oriented design forDSMLs specification, dependent types can be used
to provide greater guarantees between DSMLs and their meta-modelling language.
The rich and expressive type-system in a dependently typed language allowed for
stronger guarantees to be made in the implementation of both the DSMLs and the
meta-modelling language that followed their formal descriptions. By embedding a
domain specific type system within the data structures representing these languages,
greater and succinct reasoning about language expressions could be made: correctness-
by-construction.

Further, dependent types allowed for the transformation of a DSML to its meta-
modelling language to be implemented as a verified staged interpreter based on theWell-

Typed Interpreter approach. This was seen in the design of NovoGRL (Chapter 10)
where direct transformation occurred, and in the design of Sif where this transforma-
tion occurred between expressions at the value and type level.

However, the link between a DSML and its meta-modelling language can be made
stronger still through the types as (meta) modellers approach presented in Chapter 11.
When building expressions in the domain language, the corresponding expressions in
the meta-modelling language are also constructed in the type of the domain language.
Structurally correct domain models can only be constructed if the resulting meta-
model is also structurally correct. This was the construction method of Sif, and was
demonstrated in the construction of PTodo in Chapter 11.

Further, the implementationof Sifwasparameterisedby the context of operation—

226

12.3. Machine Checkable Design Patterns

Chapter 5 §5.4.3. This enforced, at the type level, that a problem and solution can only
be paired if they are indexed by the same domain. Additionally, dependent types were
used in the implementation of Sif to facilitate the ‘hot-swapping’ of meta-modelling
through implementation of the Abstract Factory pattern—Chapter 5 §5.4.4. This
allowed for direct and abstract interpretation constructions to be explored without
affecting the infrastructure common to all backends.

12.3 Machine Checkable Design Patterns

Chapter 5 introduced Sif, a GOML for modelling design patterns as goal-oriented
requirement models and has been designed as a DSML using as its meta-modelling
languageNovoGRL.Allowing for formalmodelling of design patterns using concepts
specific to patterns butultimately relying on amore general purposemodelling language
to evaluate the models. Chapter 5 §5.5 presented the results of using Sif to reason about
existing patterns determining the suitability of the presented solution to solve the
presented problem.

Patterns are not just requirements models, patterns are well-written and presen-
ted design documents. Freyja is an active pattern document schema presented in
Chapter 6 that allows not only for a pattern template to be presented but also for a Sif
model to be embedded directly within the metadata of the pattern document itself,
and made accessible programmatically. These design pattern documents are not only
machine readable but also machine checkable.

The machine checkable aspect of these documents was demonstrated through
introduction of the Frigg tool in Chapter 7. This utility was designed to facilitate
machine aided interaction with pattern documents allowing users to: compute vari-
ous metrics for a pattern document; produce pattern documents in various output
formats; query the document; and evaluate the embedded Sif model to check for satis-
faction. Although, the Frigg tool is not as feature rich as existing work it nonetheless
demonstrates howmachine checkable design pattern documents can be used.

227

12. Conclusion

12.4 Better Pattern Evaluation and
Publication

Machine checkable design pattern documents can enhance Design Pattern Enginering
for the creation of new patterns. Chapter 8 introduced the Premes evaluation frame-
work that provides demonstrable and reproducible reporting on the quality of a design
pattern document. Several indicators for pattern quality were identified and presented
in Chapter 8 §8.3. When combined with tailorable testing techniques, a Pattern Re-
port Card (Chapter 8 §8.4) can be produced. These report cards provide summative
and formative feedback on the quality of a design pattern. The Pattern Report
Cards element of Premes was used to evaluate several known patterns attesting to
their quality both good and bad—Section 8.6.

Anecdotal evidence indicated that when performed by hand the Premes frame-
work is cumbersome. However, the Frigg tool and Freyja schema demonstrate (see
Chapter 9) howmachine checkable design patterns can help with framework execution,
and also towards pattern publication. Premes and Sif are linked through Freyja,
as the schema allows for evaluation data to be stored as metadata inside, or directly
calculated from, the design pattern document itself. Further, the Freyja encoding also
presents well-defined transformations of the pattern document to other publication
formats. Howmachine checkable design patterns can help in pattern application was
not explored.

12.5 Linked Concerns in Pattern Engineering

Design patterns are more than just software artefacts, they are design documents. This
thesis has presented a pantheon of tooling (Sif, Frigg, Freyja) to support and en-
hance design pattern engineering through machine checkable design pattern docu-
ments. Dependent types were used to aid in the correctness of language and tool
construction.

With the presented tooling, pattern engineers (and auditors) have a means to
interact with pattern documents. Pattern auditors have a tool to aid in execution of
the Premes framework; Pattern writers have a tool to convert pattern documents into
alternative formats for publication; and Pattern users have a tool to view and interact
with patterns, allowing for inspection of document subsections and arbitrary querying

228

12.6. Future Work

of the document’s contents.

The tutorial presented inChapter 9 demonstrates how several of the stages in design
pattern creation can be brought together and each stage linked. Specifically, Figure 9.1
and Figure 1.2 illustrates how the thesis contributions bring together pattern creation,
evaluation, and publication. Unfortunately, this thesis did not investigate pattern
identification, this is still a concern to be linked in. Nor did this thesis investigate the
use of machine checkable design pattern documents as part of theApplication stage of
pattern engineering. There is still future work still to consider.

Regardless, of these deficiencies the work presented in this thesis does show how
the concerns can be linked, andmade more robust through the introduction of tooling
to aid in the design, writing, and evaluation of design patterns.

12.6 Future Work

The chapters detailing thesis contributions already detailed potential areas of future
work. This thesis concludes by highlighting several of those areas further.

12.6.1 Improve Accuracy of Sif Models

The current language specification for Sif does not support fine-grained modelling of
problems nor specifications. How requirements, traits, and properties interact with
each other cannot be modelled. Further, the quantitative values used for detailing
satisfaction and contribution are too obtuse. This lack of detail hampers the ability of
accurate pattern models to be constructed. With greater specification will come greater
accuracy.

Although Sif has this restriction, the NovoGRL language does not. Future work
will be to improve the accuracy of modelling using Sif by revisiting the mapping of
concepts from Sif to NovoGRL.

However, a seconddirectionwill to be to look the efficacy of usingNovoGRL.The
GRL was used due to is previous use in modelling design patterns. Alternate GOMLs
such as i? and Tropos present extra modelling concepts for richer goal models to
be constructed. Future work will be to look at how Sif could be re-targeted, and the
domain specific concepts presented mapped onto, these languages.

229

12. Conclusion

12.6.2 Modelling Pattern Languages

The engineering of pattern languages was not considered in this thesis. A second
avenue of research is the design and construction of a modelling language for reasoning
about patterns and pattern languages. Primarily, investigating how patterns can be
composed and combined. Heyman [Hey13] already investigated the composition of
design patterns as software artefacts as part of a formal analysis of software architectures.
In essence this details the construction of pattern languages. Future work will be to
investigate how the Sif language can be extended to reason about pattern languages.

12.6.3 Machine Checkable Pattern Application

The contributions towards machine checkable design patterns does not support check-
ing of pattern application. Behavioural and structural models used to represent a
solution are made accessible within Freyja.

Existing work has already shown how access to these models can enhance the use
of design patterns—Chapter 2 §2.6. Future work will be to investigate howmachine
checkable pattern application can be ascertained, and greater access to the underlying
models as well. This will also include investigation of how the properties and traits
within a Sif model can be linked to the model constructs presented.

12.6.4 Efficacy and Autonomic use of Premes

A lacking aspect in this thesis is that the efficacy and usability of Pattern Report
Cards and the Premes framework was not explored in greater detail. This efficacy
and usability should be explored. Part of the framework requires selection of grade
mappings, and the assignment and calculation of weighting values. Such a selectionwill
affect the calculation of the final score. Chapter 9 demonstrated how the satisfaction
values from the GRL can be used to generate these grades when provided with a
mapping from the qualitative data to a quantitative value. Further, the usability of the
presented framework was not investigated.

12.6.5 Domain Modelling

Anovel feature of NovoGRL is the ability to re-target the semantics to other domains.
In effect allowing for the GRL to be re-skinned. Future work will be to investigate

230

12.6. Future Work

and target other domains were goal-modelling would be useful. For example, goal-
modelling has been used for modelling the security of socio-technical systems. Novo-
GRL could be re-targeted to this domain to allow for better and more domain friendly
modelling.

A secondary re-targeting would be the further exploration of the types as (meta)

modellers approach to further enhance the link between domain model and meta-
model. The techniques employed do not provide guarantees towardsmodel evaluation,
only structurally correct models can be constructed. Future work will be to explore
how guarantees towards evaluation semantics can be given.

231

A
p
p
e
n
d
ix A

Electronic Appendices

Accompaniedwith this thesis are several electronic appendices providing copies of the:
software developed; example Domain SpecificModelling Languages created; example
model instances; and the raw data from the Premes evaluation. The contents are:

Directory Description
tutorial The Sif models, configuration files, and pattern documents

created as part of the tutorial—Chapter 9.
dsml-examples TheDSMLexamples fromChapter 10 inwhichNovoGRL is

used to construct modelling languages for planning academic
paper writing.

premes-results The raw results and utilities used as part of the Premes ana-
lysis from Chapter 8.

sif-prelude A copy of the current Sif prelude.
software A directory containing the software projects representing the

main thesis contributions: Sif, NovoGRL, Freyja, and
Frigg.

dependencies A directory containing the Idris projects that support the
main thesis contributions.

idris Adirectory containing the version of Idris that the thesis con-
tributions compile with.

233

A
p
p
e
n
d
ix B

GRL Forward Evaluation
Algorithm

There are no standardised evaluation algorithms detailed in the official specification
for the GRL [UTN12]. Rather, the standard details several exemplary algorithms for
how models can be evaluated for satisfaction. These algorithms were also detailed in
Amyot et al. [Amy+10]. Common to all algorithms is the definition of a Strategy that
represents a list of nodes in the model and a predetermined satisfaction value. One of
the exemplary algorithms presented was a forward propagation algorithm for determ-
ining goal satisfaction in which a predetermined set of nodes were given an initial sat-
isfaction value. As part of the NovoGRL framework a variant of this algorithm was
implemented that took into account the subset of the GRL that was implemented.
This appendix details the tailored algorithm inoperationonly. Amyot et al. [Amy+10]
contains amore detailed description of the algorithmand the reasoning behind its spe-
cification.

B.1 Overview
The algorithmoperates by visiting eachnode in themodel, and calculates a satisfaction
value for the node if and only if the node’s children are also satisfied. A queue is used
to keep track of the nodes that need to be visited, with nodes being removed from
the queue once they have been satisfied. The traversal is detailed in Algorithm B.1.
To ensure that model evaluation is total and guaranteed to terminate, a model is valid
for evaluation if all leaf nodes in the model have an initial satisfaction value. This is
formally presented in Definition 38. Prior to satisfaction evaluation, a node’s initial
satisfaction value is set either through a strategy or through a default node value of

235

B. GRL Forward Evaluation Algorithm

None.

Definition 38 (Evaluation Ready). Given a goal graphM= 〈gs,ls〉 where gs=
{g1, . . . , gn}, gi ∈N and ls= {l1, . . . , ln}, li ∈L. Let leafs⊂ gs, be the leaf nodes
inM, and rest⊂ gs where leafs∪ rest= gs.M is said to be evaluation ready if:

∀n ∈ leafs, isSatisfied(n)≡ True∨getSValuen≡None

Algorithm B.1: GRL Model Satisfaction
Data: The modelm= 〈gs,rs〉 ∈M
Result: {〈n1,q1〉, . . . ,〈nn,qn〉} the nodes fromm together with satisfaction

values.
1 next← enqueue?(gs, ;)
2 while next 6=; do
3 c← dequeue(next)
4 if ¬isSatisfied(c) then
5 cs′← {isSatisfied(x) | x← children(c) }
6 if ∀t ∈ cs,t≡True then
7 s←calcEval(c)
8 update c with s inm
9 else
10 enqueue(c,next)
11 return {〈v,getSValue(v)〉 | v← vertices(m) }

B.2 Calculating Node Satisfaction
Recall from the definition of a goal-graph given in Chapter 10 §10.2.1 that during goal-
graph construction the intentional edgeswere reversedduring insertion into the graph.
Thus, bydesign, all edges originating fromanoden go to the childrenofn in theGRL
model. The satisfaction value for a node is calculated through combination of the sat-
isfaction results for both the intentional and decomposition edges. This combination
is detailed in Algorithm B.2

B.2.1 Decomposition Edge Satisfaction
Given a node n = 〈e, t, q, sTy〉 in a goal-graphM = 〈gs,ls〉, the decomposition
satisfaction value forn is determined byweighted comparison of the child nodes. The
comparison is different for the three kinds of decomposition value. The calculation
function is presented in Function B.3.

236

B.2. Calculating Node Satisfaction

Function B.2: calcEval
Data: let n ∈N be the node to be evaluated.
Data: letm ∈M be the associated goal-graph.
Result: A satisfaction value: s ∈Q.

1 d←calcDecomp(n,m)
2 c←calcContrib(d, n,m)
3 return c

Function B.3: calcDecomp
Data: n ∈N
Result: q ∈Q

1 cs← {c | isDecompEdge(c), c← children(n) }
2 if cs 6=; then
3 cs′← {getSValue(c) | c← cs}
4 switch getDecompTy(c) do
5 case ∧ do return getDecompAnd(cs′)
6 case ∨ do return getDecompIOR(cs′)
7 case ⊕ do return getDecompXOR(cs′)
8 else
9 returnNone

And Decomposition

The ‘AND’ comparison is themaximum satisfaction value from the list of satisfaction
values from the child decomposition nodes, calculated using the following precedence
rules.

Denied< (Conflict≡Undecided)<wDenied<None<wSatisfied< Satisfied

Function B.4: getDecompAND
Data: qs= {q1, . . . , qn}where qi ∈Q
Result: res ∈Q such that res is the minimum value in {q1, . . . , qn} according

to the AND precedence rules.
1 res← foldr((λx,y→maxand(x,y)),Satisfied,qs)
2 return res

OR Decomposition

The ‘IOR’ comparison is themaximum satisfaction value from the list of satisfaction
values from the child decomposition nodes, calculated using the following precedence
rules:

237

B. GRL Forward Evaluation Algorithm

Denied<wDenied<None<wSatisfied< (Conflict≡Undecided)< Satisfied

‘XOR’ comparison is calculated using the same precedence rules as for ‘IOR’ but
takes the minimum value from the list presented.

B.2.2 Intentional Edge Satisfaction
Unlike decomposition edges, intentional edges areweightedwith a contribution value
that denotes themagnitude of the effect that onenodehas on another. The calculation
of a nodes satisfaction value is determined throughweighted analyses of these edges. It
is also here that the satisfaction value for decomposition edges are taken into account.

Function B.5: calcContrib
Data: d ∈Q
Data: n ∈N
Result: q ∈Q

1 cs← {c | ¬isDecompEdge(c), c← children(n) }
2 wcs← {weightedContribution(c) | c← cs}
3 counts← adjustCounts(append(d, wcs))
4 if noUnknown from counts > 0 then
5 returnUnknown
6 else
7 x←cmpWSandWD(counts)
8 y←cmpSatAndDen(counts)
9 return combineContribs(x, y)

Function B.5 outlines the complete steps. The first step is to determine the set of
weighted contribution values for the edges. The weightedContribution() is imple-
mented as a lookup table presented in Table B.2. Using these values and the decom-
position satisfaction value, a count is then taken for each possible satisfaction value.

If there is more than one ‘unknown’ value then the satisfaction for the node is
reported as Unknown. Otherwise, the final satisfaction value is determined through
comparison of the number of weakly satisfied and weakly denied values, and satisfied
and denied values. These comparisons are outlined in Functions B.6 & B.7, and their
comparison in the lookup table presented in Table B.1.

238

B.2. Calculating Node Satisfaction

Function B.6: cmpWSAndWD
Data: The tuple counts= 〈noSat,noWeakS,noWeakD,noDen,noKnown〉.
Result: A satisfaction value q ∈Q

1 switch counts do
2 case noWeakS> noWeakD do return wSatisfied
3 case noWeakD> noWeakS do return wDenied
4 case noWeakS≡ noWeakD do returnNone
5 otherwise do returnUnknown

Function B.7: cmpSatAndDen
Data: The tuple counts= 〈noSat,noWeakS,noWeakD,noDen,noKnown〉..
Result: A satisfaction value q ∈Q

1 switch counts do
2 case noSatis> 0∧noDen> 0 do return Conflict
3 case noSatis> 0∧noDen≡ 0 do return Satisfied
4 case noDen> 0∧noSatis≡ 0 do returnDenied
5 case noSatis≡ 0∧noDen≡ 0 do returnNone
6 otherwise do returnNone

Denied Satisfied Conflict None
Weakly Denied Denied wSatisfied Conflict wDenied

Weakly Satisfaction wDenied Satisfied Conflict wSatisfied
None Denied Satisfied Conflict None

Table B.1: Look-Up table for combineContribs. Column index is for the result of
cmpSatAndDen. Row index is for the result of cmpWSandWD.

239

B. GRL Forward Evaluation Algorithm

M
ak
e

H
el
p

So
m
e
Po

sit
iv
e

U
nk
no
w
n

So
m
e
N
eg
at
iv
e

H
ur
t

B
re
ak
s

D
en
ie
d

D
en
ied

wS
at
isfi

ed
wS

at
isfi

ed
No

ne
wS

at
isfi

ed
wS

at
isfi

ed
Sa

tis
fie
d

W
ea
kl
y
D
en
ie
d

wD
en
ied

wS
at
isfi

ed
wS

at
isfi

ed
No

ne
wS

at
isfi

ed
wS

at
isfi

ed
wS

at
isfi

ed
W
ea
kl
y
Sa

tis
fie
d

wS
at
isfi

ed
wD

en
ied

wD
en
ied

No
ne

wD
en
ied

wD
en
ied

wD
en
ied

Sa
tis
fie
d

Sa
tis
fie
d

wD
en
ied

wD
en
ied

No
ne

wD
en
ied

wD
en
ied

D
en
ied

C
on

fli
ct

Un
kn
ow

n
Un

kn
ow

n
Un

kn
ow

n
Un

kn
ow

n
Un

kn
ow

n
Un

kn
ow

n
Un

kn
ow

n
U
nk
no
w
n

Un
kn
ow

n
Un

kn
ow

n
Un

kn
ow

n
Un

kn
ow

n
Un

kn
ow

n
Un

kn
ow

n
Un

kn
ow

n
N
on

e
No

ne
No

ne
No

ne
No

ne
No

ne
No

ne
No

ne

Table B.2: Look-Up table forweightedContribution. Column index is for the contri-
bution value. Row index is for the Satisfaction value.

240

A
p
p
e
n
d
ix C

Collecting Dependent Types:
Alternative Approaches

Chapter 11 §11.3 introduced a cons-style data structure for collecting dependent types.
This chapter details alternative approaches that are not as flexible as that provided by
DList As a reminder the aim of these approaches is to allow for a set of elements of
the dependent type to be collected into a list. The dependent type is:

data FTy = A | B | C

data Foo : FTy -> Type where
||| Strings
FStr : String -> Foo A
||| Naturals
FNat : Nat -> Foo B
||| Pairs
FPair : Foo A -> Foo B -> Foo C

and the list to be constructed is:

foos : ?myTypeIs
foos = [FStr "Hello World"

, FNat 42
, FPair (FStr "Hello" (FNat 34))]

241

C. Collecting Dependent Types

C.1 Using Wrapper Types
An naïve approach to the problem is to introduce a secondary wrapper type that is
used to explicitly collect lists of dependent types specifically for Foo. For example:

data FNode = mkNode (Foo x)

This can facilitate the construction of lists of the form:

fs : List FNode
fs = [mkNode (FStr "Hello World")

, mkNode (FNat 42)
, mkNode (FPair (FStr "Hello") (FNat 34))]

However, this is cumbersome and requires the programmer having to extract the value
contained within an instance of FNode either through pattern matching or accessor
functions. Further, the values within the type are no longer exposed, if you are work-
ing at the type level, you have just lost information.

C.2 Heterogeneous Vectors
As an alternate approach Heterogeneous vectors (HVect) can be used. HVect are a
data structure for collecting lists of arbitrary typed elements. For example:

fs : HVect [Foo A, Foo B, Foo C]
fs = [FStr "Hello World"

, FNat 42
, FPair (FStr "Hello") (FNat 34)]

However, this may result in a program that has several unsafe constructs in which the
permissible set of elements contained within the list structure is malleable. HVect are
too loose.

C.3 List of Dependent Pairs
Dependent Pairs allow for the value in the type to be more dynamically presented.
This construct is used to introduce proofs that a value exists within a specific type.
For example, a list of Foo typed elements type can be specified using Dependent Pairs
as:

fs : List (x ** Foo x)
fs = [(_ ** FStr "Hello World")

, (_ ** FNat 42)
, (_ ** FPair (FStr "Hello") (FNat 34))]

242

C.4. Custom Lists

Notice how the list elements are now comprised of the element to be collected and
proof that the valuewithin the type exists. More information about dependent pairs is
available in the Idrismanual [Idr15]. Unfortunately, like the solution presented in §C.1
one has toworkwith dependent pairs and extract the element from the pair construct.
This will result in cumbersome code and lots of calls to the dependent pair’s accessor
functions or patternmatching. Further, access to the values in type is still not granted.

C.4 Custom Lists
The final alternate solution is the creation of a custom list that allows for the value in
the type to be collected within the type much the same way the values of the elements
are also collected. Take, for example the following data structure:

data FList : List FTy -> Type where
Nil : FList Nil
(::) : FList x -> FList xs -> FList (x::xs)

FList facilitates direct access to the collected elements at the value level, and at the
type level the values within the type. The collection of values in the type mirrors the
collection of the values. The list of foos can now be collected within a data structure.

fs : FList [A, B, C]
fs : [FStr "Hello World"

, FNat 42
, FPair (FStr "Hello") (FNat 34)]

However, this is a custom list construct for collections of Foo elements. Access has
now been lost to all functions that use list operations Custom operations now have to
be explicitly constructed forFListSecondly for each custom list that oneuses, distinct
operationsmust also be specified. The DList data structure is in fact a generic version
of FList that can be used to collect a dependent data structure and present at the
type-level the collection of a single value from each type.

243

Bibliography

[AC99] L. Augustsson and M. Carlsson. ‘An Exercise in Dependent Types: A
Well-Typed Interpreter’. In: In Workshop on Dependent Types in Pro-

gramming, Gothenburg. 1999.
[AF10] O. Ajaj and E. B. Fernández. ‘A Pattern for the WS-Trust Standard for

Web-Services’. In:AsianPlop2010. Ed. by H.Wahizaki and N. Yoshioka.
Vol. 1. GRACE-TR-2010-01. Center for global research in advanced soft-
ware science and engineering (GRACE). Tokyo, Japan: GRACE, Mar.
2010, pp. 9–20.

[AG09] C. Ashford and P. Gauthier.OSS Design Pattern. A Pattern Approach

to the Design of Telecommunications Management Systems. Springer
Berlin Heidelberg, 2009. isbn: 978-3-642-01396-6. doi: 10.1007/978-
3-642-01396-6.

[Ale+77] C. Alexander et al.A Pattern Language: Towns, Buildings, Construction.
New York: Oxford University Press, 1977.

[Ale79] C. Alexander. The Timeless Way of Building. Later printing. New York:
Oxford University Press, 1979. isbn: 0195024028.

[AM11] D.Amyot andG.Mussbacher. ‘UserRequirementsNotation:The First
Ten Years, The Next Ten Years (Invited Paper)’. In: Journal of Software
6.5 (2011).

[Amy+10] D. Amyot et al. ‘Evaluating GoalModels within the Goal-Oriented Re-
quirement Language’. In: International Journal of Intelligent Systems

25.8 (2010), pp. 841–877. issn: 1098-111X. doi: 10.1002/int.20433.
[Aug98] L.Augustsson. ‘Cayenne—ALanguagewithDependentTypes’. In:Pro-

ceedings of the Third ACMSIGPLAN International Conference on Func-

tional Programming. ICFP ’98. Baltimore, Maryland, USA: ACM, 1998,
pp. 239–250. isbn: 1-58113-024-4. doi: 10.1145/289423.289451.

[Bar92] H. Barendregt. ‘Lambda Calculi with Types’. In:Handbook of Logic in

Computer Science. Oxford University Press, 1992, pp. 117–309.
[BC87] K.Beck andW.Cunningham.Using Pattern Languages for Object-Oriented

Programs. Technical Report CR-87-43. Apple Computer, Inc. and Tek-
tronix, Inc., 1987.

245

http://dx.doi.org/10.1007/978-3-642-01396-6
http://dx.doi.org/10.1007/978-3-642-01396-6
http://dx.doi.org/10.1002/int.20433
http://dx.doi.org/10.1145/289423.289451

Bibliography

[Ben86] J. Bentley. ‘Programming Pearls: Little Languages’. In: Commun. ACM

29.8 (Aug. 1986), pp. 711–721. issn: 0001-0782. doi: 10.1145/6424.
315691.

[BF99] F. L. Brown and E. B. Fernandez. ‘The Authenticator Pattern’. In: Pro-
ceedings of the 1999 conference on Pattern languages of programs. PLoP
’99. 1999.

[BH06] E. Brady and K. Hammond. ‘A Verified Staged Interpreter is a Verified
Compiler’. In: Proceedings of the 5th International Conference on Gener-

ative Programming and Component Engineering. GPCE ’06. Portland,
Oregon, USA: ACM, 2006, pp. 111–120. isbn: 1-59593-237-2. doi: 10.
1145/1173706.1173724.

[BH12] E. Brady andK.Hammond. ‘Resource-Safe Systems Programmingwith
Embedded Domain Specific Languages’. In: Proceedings of the 14th In-
ternational Conference on Practical Aspects of Declarative Languages.
PADL’12. Philadelphia, PA: Springer-Verlag, 2012, pp. 242–257. isbn:
978-3-642-27693-4. doi: 10.1007/978-3-642-27694-1_18.

[BHS07] F. Buschmann et al.Pattern-Oriented Software Architecture: On Patterns

and Pattern Languages. Wiley series in software design patterns. John
Wiley & Sons, 2007. isbn: 9780471486480.

[BKS11] M. Bunke et al. ‘Application-Domain Classification for Security Pat-
terns’. In: PATTERNS 2011, The Third International Conferences on

Pervasive Patterns and Applications. Rome, Italy: ThinkMind, 2011,
pp. 138–143. isbn: 978-1-61208-158-8.

[Bra05] E.Brady. ‘Practical Implementationof aDependentlyTypedFunctional
Programming Language’. PhD thesis. DurhamUniversity, 2005.

[Bra13] E. Brady. ‘Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation’. In: Journal of Functional Program-

ming 23 (05 Sept. 2013), pp. 552–593. issn: 1469-7653. doi: 10.1017/
S095679681300018X.

[Bra15a] E. Brady. ‘Cross-Platform Compilers for Functional Languages’. Eng-
lish. Online. Submitted to TFP 2015. 2015.

[Bra15b] E. Brady. ‘Resource-Dependent Algebraic Effects’. English. In: Trends
in Functional Programming. Ed. by J. Hage and J. McCarthy. Vol. 8843.
LectureNotes in Computer Science. Springer International Publishing,
2015, pp. 18–33. isbn: 978-3-319-14674-4. doi: 10.1007/978-3-319-
14675-1_2.

[BRD98] A.M. Braga et al. ‘Tropyc: A Pattern Language for Cryptographic Soft-
ware’. In: Pattern Languages of Programs PLoP 1998. 1998.

246

http://dx.doi.org/10.1145/6424.315691
http://dx.doi.org/10.1145/6424.315691
http://dx.doi.org/10.1145/1173706.1173724
http://dx.doi.org/10.1145/1173706.1173724
http://dx.doi.org/10.1007/978-3-642-27694-1_18
http://dx.doi.org/10.1017/S095679681300018X
http://dx.doi.org/10.1017/S095679681300018X
http://dx.doi.org/10.1007/978-3-319-14675-1_2
http://dx.doi.org/10.1007/978-3-319-14675-1_2

Bibliography

[Bre+04] P. Bresciani et al. ‘Tropos: An Agent-Oriented Software Development
Methodology’. English. In:Autonomous Agents and Multi-Agent Sys-

tems 8.3 (2004), pp. 203–236. issn: 1387-2532. doi: 10.1023/B:AGNT.
0000018806.20944.ef.

[BZ10] I. Bayley and H. Zhu. ‘Formal Specification of the Variants and Behavi-
oural Features of Design Patterns’. In: Journal of Systems and Software

83.2 (2010), pp. 209–221. issn: 0164-1212. doi: 10.1016/j.jss.2009.
09.039.

[Cas+15] D. Castro et al. ‘Structure, Semantics and Speedup: Reasoning about
Structured Parallel Programs using Dependent Types’. Manuscript un-
der consideration with the Journal of Functional Programming. 2015.

[CB13] T.Clark andB. Barn. ‘DomainEngineering for SoftwareTools’. English.
In:Domain Engineering. Ed. by I.Reinhartz-Berger et al. SpringerBerlin
Heidelberg, 2013, pp. 187–209. isbn: 978-3-642-36653-6. doi:10.1007/
978-3-642-36654-3_8.

[CCM03] J. Clark et al. RELAX NG Compact Syntax Tutorial. The Organization
for the Advancement of Structured Information Standards (OASIS).
26thMar. 2003.

[Che+03] B.H. Cheng et al. ‘Using Security Patterns toModel andAnalyze Secur-
ity Requirements’. In: Security (2003).

[Chr14] D. R. Christiansen. ‘Reflect on Your Mistakes! Lightweight Domain-
Specific Error Messages’. Online. Submitted to Post-Procedings of TFP
2014. 2014.

[CO08] D. Crocker and P. Overell.Augmented BNF for Syntax Specifications:

ABNF. Request for Comments 5234. Internet Engineering Task Force.
IETF, Jan. 2008.

[Cor13] M. Corporation. Common Attack Pattern Enumeration and Classifica-

tion Repository. Online. 2013.
[Cue+09] A. Cuevas et al. ‘A Security Pattern for Untraceable SecretHandshakes’.

In: Emerging Security Information, Systems and Technologies, 2009. SE-

CURWARE ’09. Third International Conference on. June 2009, pp. 8–14.
doi: 10.1109/SECURWARE.2009.9.

[Cue+10] A. Cuevas et al. ‘Security Patterns for Untraceable Secret Handshakes
with Optional Revocation’. In: International Journal On Advances in

Security 3.1&2 (Sept. 2010), pp. 68–79. issn: 1942-2636.
[CW97] J. O. Coplien and B. Woolf. ‘A Pattern Language for Writers’ Work-

shops’. In: C PLUS PLUS REPORT 9 (1997), pp. 51–60.
[DE05] J. Dietrich and C. Elgar. ‘A formal description of design patterns using

OWL’. In: Software Engineering Conference, 2005. Proceedings. 2005 Aus-

tralian. Mar. 2005, pp. 243–250. doi: 10.1109/ASWEC.2005.6.

247

http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef
http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef
http://dx.doi.org/10.1016/j.jss.2009.09.039
http://dx.doi.org/10.1016/j.jss.2009.09.039
http://dx.doi.org/10.1007/978-3-642-36654-3_8
http://dx.doi.org/10.1007/978-3-642-36654-3_8
http://dx.doi.org/10.1109/SECURWARE.2009.9
http://dx.doi.org/10.1109/ASWEC.2005.6

Bibliography

[Del+12] M. Delescluse et al. ‘Making neurophysiological data analysis reprodu-
cible: Why and How?’ In:Neuronal Ensemble Recordings in Integrat-

ive Neuroscience 106.3–4 (2012), pp. 159–170. issn: 0928-4257. doi: 10.
1016/j.jphysparis.2011.09.011.

[DF06] A. Dearden and J. Finlay. ‘Pattern Languages in HCI: A Critical Re-
view’. In: Human-Computer Interaction 21.1 (2006), pp. 49–102. doi:
10.1207/s15327051hci2101_3.

[DFL07] N. Delessy et al. ‘A Pattern Language for Identity Management’. In:
Computing in the Global Information Technology, 2007. ICCGI 2007.

International Multi-Conference on. Mar. 2007, p. 31. doi: 10.1109/
ICCGI.2007.5.

[dGM13] L. S. da Silva Júnior et al.An Approach to Formalise Security Patterns.
Tech. rep. Montréal Quebéc: École Polytechnique de Montréal, 2013.

[Don+07] J.Dong et al. ‘ComposingPattern-BasedComponents andVerifyingCor-
rectness’. In: J. Syst. Softw. 80.11 (Nov. 2007), pp. 1755–1769. issn: 0164-
1212. doi: 10.1016/j.jss.2007.03.005.

[ESP07] R. Erber et al. ‘Patterns for Authentication and Authorisation Infra-
structures’. In: Proceedings of the 18th International Conference on Data-

base and Expert Systems Applications. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 755–759. isbn: 0-7695-2932-1. doi:10.1109/
DEXA.2007.114.

[Feh+14] C. Fehling et al. Cloud Computing Patterns. Fundamentals to Design,

Build, and Manage Cloud Applications. Springer Vienna, 2014. isbn:
978-3-7091-1568-8. doi: 10.1007/978-3-7091-1568-8.

[Fer+11] E. B. Fernández et al. ‘Using Security Patterns to Develop Secure Sys-
tems’. In: Software Engineering for Secure Systems: Industrial and Re-

search Perspectives. Ed. by H. Mouratidis. IGI Global, 2011. Chap. 2,
pp. 16–31. doi: 10.4018/978-1-61520-837-1.ch002.

[Fer07] E. B. Fernández. ‘Security Patterns and Secure Systems Design’. In:De-

pendable Computing. Ed. byA.Bondavalli et al. Vol. 4746. LectureNotes
in Computer Science. Springer Berlin / Heidelberg, 2007, pp. 233–234.
isbn: 978-3-540-75293-6. doi: 10.1007/978-3-540-75294-3_18.

[Fer13] E. B. Fernández. Security Patterns in Practice: Designing Secure Archi-

tectures Using Software Patterns. Wiley Software Patterns Series. Wiley,
2013. isbn: 9781119970484.

[Fin04] S. Fincher. Extended Pattern Language Markup Language. Online.
2004.

[Fow10] M. Fowler. Domain-Specific Languages. 1st ed. Addison-Wesley Signa-
ture Series. Addison-Wesley Professional, Oct. 2010. isbn: 0321712943.

248

http://dx.doi.org/10.1016/j.jphysparis.2011.09.011
http://dx.doi.org/10.1016/j.jphysparis.2011.09.011
http://dx.doi.org/10.1207/s15327051hci2101_3
http://dx.doi.org/10.1109/ICCGI.2007.5
http://dx.doi.org/10.1109/ICCGI.2007.5
http://dx.doi.org/10.1016/j.jss.2007.03.005
http://dx.doi.org/10.1109/DEXA.2007.114
http://dx.doi.org/10.1109/DEXA.2007.114
http://dx.doi.org/10.1007/978-3-7091-1568-8
http://dx.doi.org/10.4018/978-1-61520-837-1.ch002
http://dx.doi.org/10.1007/978-3-540-75294-3_18

Bibliography

[Fra13] U. Frank. ‘Domain-Specific Modeling Languages: Requirements Ana-
lysis and Design Guidelines’. English. In:Domain Engineering. Ed. by
I. Reinhartz-Berger et al. Springer Berlin Heidelberg, 2013, pp. 133–157.
isbn: 978-3-642-36653-6. doi: 10.1007/978-3-642-36654-3_6.

[Fre+04] E. Freeman et al. Head First Design Patterns. O’ Reilly & Associates,
Inc., 2004. isbn: 0596007124.

[FS03] E. B. Fernández and J. Sinibaldi. ‘More Patterns for Operating System
Access Control’. In: Proceedings of the 2003 European Conference on

Pattern Languages of Programs (EuroPLoP). 2003, pp. 381–398.
[FW03] E. B. Fernández and R. Warrier. ‘Remote Authenticator/Authorizer’.

In: Proceedings of the 10th Conference on Pattern languages of programs.
PLoP 2003. 2003.

[FWY08] E. B. Fernández et al. ‘Abstract Security Patterns’. In: Proceedings of the
15
th
Conference on Pattern Languages of Programs. PLoP ’08. Nashville,

Tennessee:ACM,2008, 4:1–4:2. isbn: 978-1-60558-151-4.doi:10.1145/
1753196.1753201.

[Gab02] R. P. Gabriel.Writers’ workshops & the work of making things. Addison-
Wesley, 2002.

[Gam+94] E. Gamma et al.Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1994.
[GB08] S. Greenberg and B. Buxton. ‘Usability Evaluation Considered Harm-

ful (Some of the Time)’. In: Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems. CHI ’08. Florence, Italy: ACM,
2008, pp. 111–120. isbn: 978-1-60558-011-1. doi: 10.1145/1357054.
1357074.

[Gio+03] P. Giorgini et al. ‘Formal Reasoning Techniques for GoalModels’. Eng-
lish. In: Journal onData Semantics I. Ed. byS. Spaccapietra et al.Vol. 2800.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003,
pp. 1–20. isbn: 978-3-540-20407-7.doi:10.1007/978-3-540-39733-
5_1.

[Gio+05] P. Giorgini et al. ‘Modeling security requirements through ownership,
permission and delegation’. In: 13th IEEE International Conference on

Requirements Engineering (RE’05). Aug. 2005, pp. 167–176. doi: 10.
1109/RE.2005.43.

[Gra92] R. B. Grady. Practical Software Metrics for Project Management and

Process Improvement. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1992. isbn: 0-13-720384-5.

[Gue+14] E. Guerra et al. ‘Patterns for Preparing for a Test Driven Development
Session’. In: Pattern Languages of Programs (PLoP) 2014. Hillside, 2014.

249

http://dx.doi.org/10.1007/978-3-642-36654-3_6
http://dx.doi.org/10.1145/1753196.1753201
http://dx.doi.org/10.1145/1753196.1753201
http://dx.doi.org/10.1145/1357054.1357074
http://dx.doi.org/10.1145/1357054.1357074
http://dx.doi.org/10.1007/978-3-540-39733-5_1
http://dx.doi.org/10.1007/978-3-540-39733-5_1
http://dx.doi.org/10.1109/RE.2005.43
http://dx.doi.org/10.1109/RE.2005.43

Bibliography

[GY01] D. Gross and E. Yu. ‘From Non-Functional Requirements to Design
throughPatterns’. English. In:Requirements Engineering 6.1 (2001), pp. 18–
36. issn: 0947-3602. doi: 10.1007/s007660170013.

[Har04] N. B. Harrison. Advanced Pattern Writing: Patterns for Experienced

Pattern Authors. Online. 2004.
[Har99] N. B. Harrison. The Language of Shepherding: A Pattern Language for

Shepherds and Sheep. Online. 1999.
[Hau06] M. Hause. ‘The SysML Modelling Language’. In: Fifteenth European

Systems Engineering Conference. 2006.
[HC07] S. Henninger and V. Corrêa. ‘Software Pattern Communities: Current

Practices and Challenges’. In: Proceedings of the 14th Conference on Pat-

tern Languages of Programs. PLOP ’07.Monticello, Illinois:ACM, 2007,
14:1–14:19. isbn: 978-1-60558-411-9. doi: 10.1145/1772070.1772087.

[HCS04] S. Halkidis et al. ‘A Qualitative Evaluation of Security Patterns’. In: In-
formation and Communications Security. Ed. by J. Lopez et al. Vol. 3269.
LectureNotes inComputer Science. SpringerBerlin /Heidelberg, 2004,
pp. 251–259. isbn: 978-3-540-23563-7. doi: 10.1007/978- 3- 540-
30191-2_11.

[Hey+07] T. Heyman et al. ‘An Analysis of the Security Patterns Landscape’. In:
Proceedings of the Third International Workshop on Software Engineering

for Secure Systems. SESS ’07. Washington, DC, USA: IEEE Computer
Society, 2007, p. 3. isbn: 0-7695-2952-6. doi: 10.1109/SESS.2007.4.

[Hey13] T. Heyman. ‘A Formal Analysis Technique for Secure Software Archi-
tectures (Een formele analysetechniek voor veilige softwarearchitecturen)’.
English. PhD thesis. Katholiek Universiteit Leuven, 6thMar. 2013.

[HF10] K. Hashizume and E. B. Fernández. ‘Symmetric Encryption and XML
Encryption Patterns’. In: Proceedings of the 16th Conference on Pattern

Languages of Programs. PLoP ’09. Chicago, Illinois: ACM, 2010, 13:1–
13:8. isbn: 978-1-60558-873-5. doi: 10.1145/1943226.1943243.

[HFH09] K. Hashizume et al. ‘Digital Signature with Hashing and XML Signa-
ture Patterns’. In: EuroPLoP. 2009.

[Idr15] The Idris Community. Programming in Idris. A Tutorial. 2015. url:
http://docs.idris-lang.org/en/latest/tutorial/.

[ISO96] ISO/IEC, ed.Extended BNF. InformationTechnology—SyntacticMeta-
Language ISO/IEC 14977 : 1996(E). International Standards Organisa-
tion (ISO), 1996.

[Jac12] D. Jackson. Software Abstractions. Logic, Language, and Analysis. MIT
Press, 2012. isbn: 0-262-01715-6.

250

http://dx.doi.org/10.1007/s007660170013
http://dx.doi.org/10.1145/1772070.1772087
http://dx.doi.org/10.1007/978-3-540-30191-2_11
http://dx.doi.org/10.1007/978-3-540-30191-2_11
http://dx.doi.org/10.1109/SESS.2007.4
http://dx.doi.org/10.1145/1943226.1943243
http://docs.idris-lang.org/en/latest/tutorial/

Bibliography

[JN95] N. D. Jones and F. Nielson. ‘Handbook of Logic in Computer Science
(Vol. 4)’. In: ed. by S. Abramsky et al. Oxford, UK: Oxford University
Press, 1995. Chap. Abstract Interpretation: A Semantics-based Tool for
Program Analysis, pp. 527–636. isbn: 0-19-853780-8.

[Jür02] J. Jürjens. ‘UMLSec: ExtendingUMLfor Secure SystemsDevelopment’.
English. In:UML 2002 – The Unified Modeling Language. Ed. by J.-M.
Jézéquel et al. Vol. 2460. Lecture Notes in Computer Science. Springer
BerlinHeidelberg, 2002, pp. 412–425. isbn: 978-3-540-44254-7. doi: 10.
1007/3-540-45800-X_32.

[KH10] C.Kruschitz andM.Hitz. ‘BringingFormalismandUnification toHuman-
Computer InteractionDesignPatterns’. In:Proceedings of the 1st Interna-
tional Workshop on Pattern-Driven Engineering of Interactive Computing

Systems. PEICS ’10. Berlin, Germany: ACM, 2010, pp. 20–23. isbn: 978-
1-4503-0246-3. doi: 10.1145/1824749.1824754.

[Kie+03] D. M. Kienzle et al. ‘Security Patterns Repository Version 1.0’. Online
[Accessed 2012-02-27]. 2003.

[Kin+75] J. P. Kincaid et al.Derivation of New Readability Formulas (Automated

Readability Index, Fog Count and Flesch Reading Ease Formula) for

Navy Enlisted Personnel. Tech. rep. Research branch rept. ADA006655.
Feb. 1975, p. 41.

[KLL09] R. K. Ko et al. ‘Business process management (BPM) standards: A Sur-
vey’. In: Business Process Management Journal 15.5 (2009), pp. 744–791.
doi: 10.1108/14637150910987937.

[Kru09] C. Kruschitz. ‘XPLML: a HCI Pattern Formalizing and Unifying Ap-
proach’. In: Proceedings of the 27th international conference extended

abstracts on Human factors in computing systems. CHI EA ’09. Boston,
MA, USA: ACM, 2009, pp. 4117–4122. isbn: 978-1-60558-247-4. doi:
10.1145/1520340.1520627.

[Lav+06] M.-A.Laverdière et al. ‘SecurityDesignPatterns: Survey andEvaluation’.
In: Electrical and Computer Engineering, 2006. CCECE ’06. Canadian

Conference on. 2006, pp. 1605–1608. doi: 10 . 1109 / CCECE . 2006 .
277727.

[LFM11] L. López et al. ‘Making Explicit Some Implicit i? Language Decisions’.
English. In: Conceptual Modeling—ER 2011. Ed. by M. Jeusfeld et al.
Vol. 6998. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2011, pp. 62–77. isbn: 978-3-642-24605-0. doi: 10.1007/978-3-
642-24606-7_6.

251

http://dx.doi.org/10.1007/3-540-45800-X_32
http://dx.doi.org/10.1007/3-540-45800-X_32
http://dx.doi.org/10.1145/1824749.1824754
http://dx.doi.org/10.1108/14637150910987937
http://dx.doi.org/10.1145/1520340.1520627
http://dx.doi.org/10.1109/CCECE.2006.277727
http://dx.doi.org/10.1109/CCECE.2006.277727
http://dx.doi.org/10.1007/978-3-642-24606-7_6
http://dx.doi.org/10.1007/978-3-642-24606-7_6

Bibliography

[LHM14] T. Li et al. ‘Integrating Security Patterns with Security Requirements
AnalysisUsingContextualGoalModels’. English. In:The Practice of En-
terprise Modeling. Ed. by U. Frank et al. Vol. 197. Lecture Notes in Busi-
ness InformationProcessing. SpringerBerlinHeidelberg, 2014, pp. 208–
223. isbn: 978-3-662-45500-5. doi: 10.1007/978- 3- 662- 45501-
2_15.

[Luc+03] D. Lucrédio et al. ‘MVCASE Tool–Working with Design Patterns’. In:
Proceedings of the 3rd Latin American Conference on Pattern Languages

of Programming (SugarLoafPLoP 2003). 2003, pp. 261–275.
[LW12] C. LeGoues andW.Weimer. ‘Measuring CodeQuality to Improve Spe-

cificationMining’. In: Software Engineering, IEEE Transactions on 38.1
(Jan. 2012), pp. 175–190. issn: 0098-5589. doi: 10.1109/TSE.2011.5.

[Man+13] A.Mana et al. ‘TowardsComputer-orientedSecurityPatterns’. In:PLOP
’13: Proceedings of the 20

th
Conference on Pattern Languages of Programs.

Hillside. 2013.
[Mar98] M. Marchesi. ‘OOA metrics for the Unified Modeling Language’. In:

Software Maintenance and Reengineering, 1998. Proceedings of the Second

Euromicro Conference on. Mar. 1998, pp. 67–73. doi: 10.1109/CSMR.
1998.665739.

[MC01] W. E. McUmber and B. H. C. Cheng. ‘A General Framework for Form-
alizingUMLwith Formal Languages’. In:Proceedings of the 23rd Interna-
tional Conference on Software Engineering. ICSE ’01. Toronto, Ontario,
Canada: IEEEComputer Society, 2001, pp. 433–442. isbn: 0-7695-1050-
7.

[MC14] H.Mehnert and D. R. Christiansen. ‘Tool Demonstration: An IDE for
Programming and Proving in Idris’. In: Dependently Typed Program-

ming 2014. Vienna, 2014.
[McB05] C. McBride. ‘Epigram: Practical Programming with Dependent Types’.

English. In:Advanced Functional Programming. Ed. by V. Vene and T.
Uustalu. Vol. 3622. LectureNotes in Computer Science. Springer Berlin
Heidelberg, 2005, pp. 130–170. isbn: 978-3-540-28540-3. doi:10.1007/
11546382_3.

[MD97] G.Meszaros and J. Doble. ‘A Pattern Language for PatternWriting’. In:
Pattern languages of program design 3. Ed. by R. C. Martin et al. Bo-
ston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997,
pp. 529–574. isbn: 0-201-31011-2.

[MF06] P.Morrison and E. B. Fernández. ‘The Credentials Pattern’. In: Proceed-
ings of the 2006 conference on Pattern languages of programs. PLoP ’06.
Portland, Oregon: ACM, 2006, 9:1–9:4. isbn: 978-1-60558-372-3. doi:
10.1145/1415472.1415483.

252

http://dx.doi.org/10.1007/978-3-662-45501-2_15
http://dx.doi.org/10.1007/978-3-662-45501-2_15
http://dx.doi.org/10.1109/TSE.2011.5
http://dx.doi.org/10.1109/CSMR.1998.665739
http://dx.doi.org/10.1109/CSMR.1998.665739
http://dx.doi.org/10.1007/11546382_3
http://dx.doi.org/10.1007/11546382_3
http://dx.doi.org/10.1145/1415472.1415483

Bibliography

[MG07] H.Mouratidis and P. Giorgini. ‘Secure TROPOS: A Security-Oriented
Extension of the TROPOSMethodology’. In: International Journal of
Software Engineering and Knowledge Engineering 17.02 (2007), pp. 285–
309. doi: 10.1142/S0218194007003240.

[MGP03] M.Manso et al. ‘No-redundantMetrics for UMLClass Diagram Struc-
tural Complexity’. English. In:Advanced Information Systems Engineer-

ing. Ed. by J. Eder and M. Missikoff. Vol. 2681. Lecture Notes in Com-
puter Science. Springer BerlinHeidelberg, 2003, pp. 127–142. isbn: 978-
3-540-40442-2. doi: 10.1007/3-540-45017-3_11.

[Mis08] R. N. Mishra-Linger. ‘Irrelevance, Polymorphism, and Erasure in Type
Theory’. PhD. Portland State University, 2008.

[ML05] S. Mahmood and R. Lai. ‘Measuring the Complexity of a UML Com-
ponent Specification’. In: Quality Software, International Conference on
(2005), pp. 150–160. issn: 1550-6002. doi: 10.1109/QSIC.2005.39.

[MM04] C. McBride and J. McKinna. ‘The View from the Left’. In: Journal of
Functional Programming 14 (01 2004), pp. 69–111. issn: 1469-7653. doi:
10.1017/S0956796803004829.

[MMZ07] F.Massacci et al. ‘Computer-aided Support for SecureTropos’. In:Auto-

mated Software Engineering 14.3 (2007), pp. 341–364. issn: 1573-7535.
doi: 10.1007/s10515-007-0013-5.

[MMZ10] F. Massacci et al. ‘Security Requirements Engineering: The SI* Mod-
eling Language and the Secure Tropos Methodology’. In:Advances in

Intelligent Information Systems. Ed. by Z. W. Ras and L.-S. Tsay. Berlin,
Heidelberg: Springer BerlinHeidelberg, 2010, pp. 147–174. isbn: 978-3-
642-05183-8. doi: 10.1007/978-3-642-05183-8_6.

[MWA06] G.Mussbacher et al. ‘Formalizing Architectural Patterns with the Goal-
Oriented Requirement Language’. In:Nordic Pattern Languages of Pro-

grams Conference (VikingPlop2006). 2006.
[Myl06] J. Mylopoulos. ‘Goal-Oriented Requirements Engineering, Part II’. In:

Requirements Engineering, 14
th
IEEE International Conference. Sept.

2006, pp. 5–5. doi: 10.1109/RE.2006.27.
[Nor09] U. Norell. ‘Dependently Typed Programming in Agda’. In: Proceedings

of the 4th International Workshop on Types in Language Design and

Implementation. TLDI ’09. Savannah, GA, USA: ACM, 2009, pp. 1–2.
isbn: 978-1-60558-420-1. doi: 10.1145/1481861.1481862.

[OFK15] S. Overbeek et al. ‘A Language for Multi-Perspective Goal Modelling:
Challenges, Requirements and Solutions’. In: Computer Standards &

Interfaces 38 (2015), pp. 1–16. issn: 0920-5489. doi: 10.1016/j.csi.
2014.08.001.

253

http://dx.doi.org/10.1142/S0218194007003240
http://dx.doi.org/10.1007/3-540-45017-3_11
http://dx.doi.org/10.1109/QSIC.2005.39
http://dx.doi.org/10.1017/S0956796803004829
http://dx.doi.org/10.1007/s10515-007-0013-5
http://dx.doi.org/10.1007/978-3-642-05183-8_6
http://dx.doi.org/10.1109/RE.2006.27
http://dx.doi.org/10.1145/1481861.1481862
http://dx.doi.org/10.1016/j.csi.2014.08.001
http://dx.doi.org/10.1016/j.csi.2014.08.001

Bibliography

[Pea89] G. Peano.Arithmetices Principia: Nova Methodo. Fratres Bocca, 1889.
[Pet62] C. A. Petri. ‘Kommunikation mit Automaten’. ger. PhD thesis. Uni-

versität Hamburg, 1962.
[Pri+04] T. Priebe et al. ‘A Pattern System for Access Control’. In: Research Dir-

ections in Data and Applications Security XVIII. Ed. by C. Farkas and P.
Samarati. Vol. 144. IFIP International Federation for Information Pro-
cessing. Springer Boston, 2004, pp. 235–249. isbn: 978-1-4020-8127-9.
doi: 10.1007/1-4020-8128-6_16.

[Sar16] V. Sarcar. Java Design Patterns. A tour of 23 gang of four design patterns

in Java. Apress, 2016. isbn: 978-1-4842-1802-0. doi: 10.1007/978-1-
4842-1802-0.

[Sch+06] M. Schumacher et al. Security Patterns: Integrating Security and Sys-

tems Engineering. Wiley series in software design patterns. John Wiley
& Sons, 2006. isbn: 9780470858844.

[Sch03] M. Schumacher. Security Engineering with Patterns: Origins, Theoret-
ical Models, and New Applications. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2003. isbn: 3540407316.

[Sch06] D. Schmidt.How to Hold a Writer’s Workshop. 2006.
[SD11] E. Schulte and D. Davison. ‘Active Documents with Org-Mode’. In:

Computing in Science Engineering 13.3 (May 2011), pp. 66–73. issn: 1521-
9615. doi: 10.1109/MCSE.2011.41.

[Sef15] A. Seffah. Patterns of HCI Design and HCI Design of Patterns. Bridging

HCIDesign andModel-Driven Software Engineering.Human–Computer
Interaction Series. Springer International Publishing, 2015. isbn: 978-3-
319-15687-3. doi: 10.1007/978-3-319-15687-3.

[Shi+10] Y. Shiroma et al. ‘Model-Driven Application and Validation of Security
Patterns’. In: Proceedings of the 10th Conference on Pattern Languages of

Programs. PLoP ’10. Oct. 2010.
[SI15] P. Scupelli andP. S. Inventado.Developing anOpen, Collaborative Design

Pattern Repository. Focus Group at PLoP ’15. 2015.
[Sie12] J. Siek. Crash Course on Notation in Programming Language Theory.

2012.
[Smi87] R. Smith. ‘Panel on Design Methodology’. In: Addendum to the Pro-

ceedings on Object-oriented Programming Systems, Languages and Ap-

plications (Addendum). OOPSLA ’87. Orlando, Florida, USA: ACM,
1987, pp. 91–95. isbn: 0-89791-266-7. doi: 10.1145/62138.62151.

[TCK13] T. Thimthong et al. ‘Evaluating Design Patterns of Commercial Web
Applications using Net Easy Score’. In: I.J. Information Technology and

Computer Science 5.8 (July 2013). doi: 10.5815/ijitcs.2013.08.09.

254

http://dx.doi.org/10.1007/1-4020-8128-6_16
http://dx.doi.org/10.1007/978-1-4842-1802-0
http://dx.doi.org/10.1007/978-1-4842-1802-0
http://dx.doi.org/10.1109/MCSE.2011.41
http://dx.doi.org/10.1007/978-3-319-15687-3
http://dx.doi.org/10.1145/62138.62151
http://dx.doi.org/10.5815/ijitcs.2013.08.09

Bibliography

[The13] The Hillside Group. Patterns Catalog. Online. 2013.
[UTN12] UTN.User Requirements Notation. Language Definition. Series Z: Lan-

guages and General Software Aspects for Telecommunication Systems
ITU-T Z.151. International Telecommunications Union. 2012.

[vLam01] A. vanLamsweerde. ‘Goal-OrientedRequirementsEngineering:AGuided
Tour’. In: Requirements Engineering, 2001. Proceedings. Fifth IEEE In-

ternational Symposium on. 2001, pp. 249–262. doi: 10.1109/ISRE.
2001.948567.

[VM11] J. Viega and G. McGraw. Building Secure Software: How to Avoid Secur-

ity Problems the Right Way. Addison-Wesley Professional Computing
Series. Addison-Wesley Professional, 2011.

[WC02] T.Winn andP. Calder. ‘Is this a pattern?’ In: Software, IEEE 19.1 (2002),
pp. 59–66. issn: 0740-7459. doi: 10.1109/52.976942.

[Wei06] M. Weiss. ‘Credential Delegation: Towards Grid Security Patterns’. In:
The Nordic Conference on Pattern Languages of Programs. 2006, pp. 65–
70.

[Wel+06] L. Welicki et al. ‘Patterns Meta-Specification and Cataloging: Towards
Knowledge Management in Software Engineering’. In: Companion to

the 21st ACM SIGPLAN symposium on Object-oriented programming

systems, languages, and applications. OOPSLA ’06. Portland, Oregon,
USA: ACM, 2006, pp. 679–680. isbn: 1-59593-491-X. doi: 10.1145/
1176617.1176670.

[WF11] T.Wellhausen and A. Fießer. ‘How toWrite a Pattern? ARoughGuide
for First-Time Pattern Authors’. In: Proceedings of the 16th European

Conference on Pattern Languages of Programs. EuroPLoP ’11. Irsee, Ger-
many:ACM,2011, 5:1–5:9. isbn: 978-1-4503-1302-5.doi:10.1145/2396716.
2396721.

[WLA05] L.Welicki et al. ‘AModel forMeta-Specification andCataloging of Soft-
ware Patterns’. In: Proceedings of the European Conference on Pattern

Languages of Programming 2005 (EuroPLoP 2005). 2005, pp. 261–275.
[WLA06] L.Welicki et al. ‘Meta-Specification andCataloging of Software Patterns

with Domain Specific Languages and Adaptive ObjectModels’. In: Pro-
ceedings of the European Conference on Pattern Languages of Program-

ming 2006 (EuroPLoP 2006). 2006, pp. 261–275.
[WM08] M.Weiss andH.Mouratidis. ‘Selecting Security Patterns that Fulfill Se-

curityRequirements’. In: International Requirements Engineering, 2008.

RE ’08. 16th IEEE. Sept. 2008, pp. 169–172. doi: 10.1109/RE.2008.
32.

[WN06] P. Wadler andM. Naftalin. Java Generics and Collections. O’Reilly Me-
dia, 2006. isbn: 9780596551506.

255

http://dx.doi.org/10.1109/ISRE.2001.948567
http://dx.doi.org/10.1109/ISRE.2001.948567
http://dx.doi.org/10.1109/52.976942
http://dx.doi.org/10.1145/1176617.1176670
http://dx.doi.org/10.1145/1176617.1176670
http://dx.doi.org/10.1145/2396716.2396721
http://dx.doi.org/10.1145/2396716.2396721
http://dx.doi.org/10.1109/RE.2008.32
http://dx.doi.org/10.1109/RE.2008.32

Bibliography

[Xia+15] T. Xia et al. ‘Two-level Checklists and Perspectives: Software Reading
Techniques for Pattern Writer’s Workshop’. Online. Submitted to the
InternationalConferenceonPatternLanguages ofPrograms 2015 (PLoP ’15).
2015.

[YB97] J. Yoder and J. Barcalow. ‘Architectural Patterns for Enabling Applica-
tion Security’. In: Proceedings of the Conference on Pattern Languages of

Programs (PLoP 1997). Monticello/IL, 1997.
[Yu97] E. Yu. ‘Towards Modelling and Reasoning Support for Early-Phase Re-

quirements Engineering’. In: Requirements Engineering, 1997., Proceed-

ings of the Third IEEE International Symposium on. Jan. 1997, pp. 226–
235. doi: 10.1109/ISRE.1997.566873.

[YWG04] T. Yi et al. ‘AComparison ofMetrics forUMLClassDiagrams’. In: SIG-
SOFT Softw. Eng. Notes 29.5 (Sept. 2004), pp. 1–6. issn: 0163-5948. doi:
10.1145/1022494.1022523.

[YWM08] N. Yoshioka et al. ‘A Survey on Security Patterns’. In: Progress in Inform-

atics 5 (2008), pp. 33–47. doi: 10.2201/NiiPi.2008.5.5.
[ZZP02] Y. Zhou et al. ‘Policy Enforcement Pattern’. In: PLoP 2002. 2002.

256

http://dx.doi.org/10.1109/ISRE.1997.566873
http://dx.doi.org/10.1145/1022494.1022523
http://dx.doi.org/10.2201/NiiPi.2008.5.5

List of Figures

1.1 Pattern Engineering according to Yoshioka et al. [YWM08]. 3
1.2 The Pattern Engineering Process with thesis contributions placed in situ. 8

2.1 ExamplepatterndiagramfromdeMuijnck-Hughes andDuncan [dMD12]
describing a proposed pattern language for Predicate-Based Encryption. . 15

2.2 Pattern Engineering according to Yoshioka et al. [YWM08]. 16

3.1 Legend for the GRL [Amy+10]. 29
3.2 An example goal model for the problem of ‘Information Secrecy’. 31
3.3 An example goal model for the problem of ‘Information Secrecy’ with a

solution using ‘Symmetric Cryptography’. 32
3.4 Goal model from Figure 3.3 after evaluation. 33

4.1 The syntax for Arith. 41
4.2 Interpretation and evaluation semantics for the types in Arith. 44
4.3 Interpretation and evaluation semantics for Arith. 45
4.4 Interpretation semantics for abstracting Arith expressions into a ‘Cast

Nine’ abstraction. 57

5.1 Abstract Syntax for the Sif modelling language. 64
5.2 Types in the Sif modelling language. 64
5.3 Interpretation semantics for converting Sif expressions into GRL con-

structs. 67
5.4 Architecture of the Sif Evaluator. 69
5.5 eBNF grammar for the Sif Domain Specific Language 71

7.1 Feature-Set and dependency overview for Frigg. 109

8.1 Schematic overviewof the stages and indicators of thePremes evaluation
framework. 115

9.1 Tools and technologies presented in this thesis and their placement in the
pattern engineering process. 136

257

List of Figures

10.1 Schematic illustratinghowDSMLrelate to, and are interpreted into,No-
voGRL goal models. 161

10.2 Language definition for G?. 171
10.3 Interpretation semantics for G? . 174
10.4 Language definition for GExpr. 175
10.5 Interpretation semantics for GExpr. 177
10.6 Language definition for the GRL. 182
10.7 Interpretation semantics for convertingGRLexpressions intoGExpr ex-

pressions. 186
10.8 Generic instantiation of a GRLmodel for academic paper writing. 187
10.9 Model instance of a GRLmodel for an academic paper. 188
10.10 Abstract syntax for language declarations in the PML. 192
10.11 Interpretation semantics for converting Pml expressions intoGExpr ex-

pressions. 193

11.1 Abstract syntax for the PTODOmodelling language. 204
11.2 Typing rules for PTodo. 205
11.3 Interpretation semantics for converting PTodo expressions into GRL

constructs. 207

258

List of Tables

4.2 Example pairings of values and their types. 42
4.4 Java Generics used to describe collections with the type of the elements

being described within the type of the collection. 46

5.3 Summary of the patterns modelled using Sif during evaluation. 79
5.5 Requirements for the problem ofAbstract Data Types. 80
5.7 Evaluation results for the factory patterns modelled in Sif. 81
5.9 Requirements for the problem of Information Secrecy. 82
5.11 Evaluation results for the Information Secrecy patterns modelled in Sif. . 84

8.2 Grade descriptor for the Pattern Coherency indicator. 119
8.4 Grade descriptor for the Pattern Atomicity indicator. 119
8.6 Grade descriptor for the Problem Independence indicator. 120
8.8 Sample grading scheme for Solution Complexity indicator. 121
8.10 Sample grading scheme for the Solution E�ectiveness indicator. 122
8.12 Grading scheme used for the Presentation Accessibility indicator. 124
8.13 Summative pattern report cards for several existing patterns. 128

9.2 Sif evaluation results for Authentication through Shibboleths
&Authentication through ID Cards. 147

9.4 Mappings from GRL satisfaction values to quantitative values used for
pattern evaluation. 153

9.6 ReportCardsGrades for theAuthenticationthroughShibboleths
and Authentication through ID Cards patterns. 153

10.2 Various representations of the GRL: pictorial, abstract syntax, and Idris. 183

B.1 Look-Up table for combineContribs. Column index is for the result of
cmpSatAndDen. Row index is for the result of cmpWSandWD. 239

B.2 Look-Up table for weightedContribution. Column index is for the con-
tribution value. Row index is for the Satisfaction value. 240

259

List of Definitions

1 Definition (Pattern Coherency) . 116
2 Definition (Pattern Atomicity) . 116
3 Definition (Problem Independence) 116
4 Definition (Solution Appropriateness) 116
5 Definition (Solution Complexity) . 117
6 Definition (Solution Effectiveness) 117
7 Definition (Pattern Structure) . 117
8 Definition (Pattern Legibility) . 117
9 Definition (Presentation Accessibility) 117
10 Definition (Weighted Solution Satisfaction) 120
11 Definition (Weighted Adherence to Pattern Template) 122

12 Definition (Goal Graph) . 160
13 Definition (GRLGoal-Graph) . 163
14 Definition (Goal Nodes) . 164
15 Definition (Intentional Link) . 164
16 Definition (Structural Links) . 164
17 Definition (Goal Edges) . 164
18 Definition (Node Types) . 165
19 Definition (Contribution Values) . 165
20 Definition (Satisfaction Values) . 165
21 Definition (Decomposition Link Types) 165
22 Definition (Intentional Link Types) 165
23 Definition (Well-Formed Intentional Link) 166
24 Definition (Well-Formed Decomposition Link) 166
25 Definition (Valid Intentional Link) 167
26 Definition (Valid Decomposition Link) 167
27 Definition (Goal Uniqueness) . 167
28 Definition (Valid Goal Intentional Link) 168
29 Definition (Strongly Valid Goal Intentional Link) 168
30 Definition (Valid Goal Decomposition) 169
31 Definition (Strongly Valid Node Decomposition) 169
32 Definition (Structural Span) . 169

261

List of Definitions

33 Definition (Valid Structural Span) . 170
34 Definition (Goal-Graph Correctness) 170
35 Definition (Valid Element Insertion) 178
36 Definition (Valid Intentional Link Insertion) 178
37 Definition (Valid Decomposition Link Insertion) 178

38 Definition (Evaluation Ready) . 236

262

List of Software

List of active software repositories containingup-to-date versionsof the codedeveloped
as part of the research project.

[dMH15a] J. de Muijnck-Hughes. Config: Utilities for processing configuration file

formats. 2015. url: https://github.com/jfdm/idris-config.
[dMH15b] J. deMuijnck-Hughes.Containers: Containers for Idris. 2015.url:https:

//github.com/jfdm/idris-containers.
[dMH15c] J. de Muijnck-Hughes. Edda: A Document Processing Engine inspired

by Pandoc. 2015. url: https://github.com/jfdm/edda.
[dMH15d] J. de Muijnck-Hughes. Freyja: A Design Pattern Document Description

Schema & Tooling. 2015. url: https://github.com/jfdm/freyja-
schema.

[dMH15e] J. deMuijnck-Hughes.GRL: The Goal Requirements Language in Idris.

2015. url: https://github.com/jfdm/idris-grl.
[dMH15f] J. de Muijnck-Hughes. Readability: Collecting Readability Metrics for

Documents. 2015. url: https://github.com/jfdm/idris-read.
[dMH15g] J. de Muijnck-Hughes. Sif-Lang: A Requirements-Based Model Checker

for Design Patterns. 2015. url: https://github.com/jfdm/sif-
lang.

[dMH15h] J. de Muijnck-Hughes.UML: A UMLModelling Library. 2015. url:
https://github.com/jfdm/idris-uml.

[dMH15i] J. de Muijnck-Hughes. XML: Modelling and processing XML using

DOM and XPath. 2015. url: https://github.com/jfdm/idris-
xml.

263

https://github.com/jfdm/idris-config
https://github.com/jfdm/idris-containers
https://github.com/jfdm/idris-containers
https://github.com/jfdm/edda
https://github.com/jfdm/freyja-schema
https://github.com/jfdm/freyja-schema
https://github.com/jfdm/idris-grl
https://github.com/jfdm/idris-read
https://github.com/jfdm/sif-lang
https://github.com/jfdm/sif-lang
https://github.com/jfdm/idris-uml
https://github.com/jfdm/idris-xml
https://github.com/jfdm/idris-xml

List of Publications

List of publications that were made during the research project.

[DdM14] I. Duncan and J. deMuijnck-Hughes. ‘Security Pattern Evaluation’. In:
Service Oriented System Engineering (SOSE), 2014 IEEE 8th Interna-

tional Symposium on. Apr. 2014, pp. 428–429. doi: 10.1109/SOSE.
2014.61.

[dMD12] J. deMuijnck-Hughes and I.Duncan. ‘ThinkingTowards aPatternLan-
guage for Predicate Based Encryption Crypto-Systems’. In: Software Se-
curity and Reliability Companion (SERE-C), 2012 IEEE Sixth Interna-

tional Conference on. 2012, pp. 27–32. doi: 10.1109/SERE-C.2012.
34.

[dMD13] J. de Muijnck-Hughes and I. Duncan. ‘Issues Affecting Security Design
Pattern Engineering’. In: Proceedings of the Second International Work-

shop on Cyberpatterns. Oxford Brookes University. July 2013, pp. 54–61.
[dMD15] J. deMuijnck-Hughes and I.Duncan. ‘What’s thePREMESbehindyour

Pattern?’ In: Proceedings of the 22nd Conference on Pattern Languages

of Programs (PLoP ’15). To appear in the post-conference proceedings.
Pittsburgh, PA, USA: ACM, Oct. 2015.

265

http://dx.doi.org/10.1109/SOSE.2014.61
http://dx.doi.org/10.1109/SOSE.2014.61
http://dx.doi.org/10.1109/SERE-C.2012.34
http://dx.doi.org/10.1109/SERE-C.2012.34

	Contents
	Introduction
	The Problem with Patterns
	Research Hypothesis
	Research Approach
	Contributions
	Research Output
	Organisation

	The State of Software Design Pattern Engineering
	Software Design Patterns
	Pattern Languages
	Design Pattern Engineering
	Identifying Patterns
	Formal Modelling of Patterns
	Writing Patterns
	Pattern Evaluation
	Publishing Patterns
	Summary

	Domain Specific Goal-Oriented Modelling
	Goal Modelling
	The Goal-Requirements Language
	Example: Information Secrecy
	Domain Specific Languages
	Domain Specific Modelling Languages
	DSML Creation Techniques
	Domain Modelling and the grl
	Summary

	Dependent Types & Well-Typed (Abstract) Interpreters
	The Arith Language
	Abstract Syntax
	Type Systems
	Interpretation Semantics
	Dependent Types
	Well-Typed Interpreters
	Types as (Abstract) Interpreters
	Summary

	Sif: A Design Pattern Modelling Language
	Overview
	A DSML for Patterns
	Language Specification
	The Sif Evaluator
	Case Studies
	Discussion
	Summary

	Freyja: A Pattern Document Description Schema
	Schema Definition
	Library Provision
	Discussion
	Summary

	Frigg: A Utility for Working with Design Patterns.
	Overview
	Feature Set
	Implementation Information
	Future Features
	Summary

	Premes: A Pattern Evaluation Framework
	Problems with Pattern Evaluation
	Approach
	Quality Indicators for Patterns
	Pattern Report Cards
	The PREMES Framework
	Evaluation
	Discussion
	Summary

	Engineering Patterns for Authentication
	Overview
	The Problem of "Authentication"
	Addressing Authentication
	Model Evaluation
	Writing Patterns
	Evaluating the Pattern
	Pattern Publication
	Summary

	NovoGRL: Re-Targeting the GRL for new Domains
	Making the GRL a Language
	GRL-Derived Goal-Graphs
	Building the Goal-Graph Using G
	The Intermediate Representation: GExpr
	Evaluating Goal Graphs
	Modelling the GRL as a DSML
	The Paper Modelling Language
	Experimental Evaluation
	Discussion
	Summary

	Types as (Meta) Modellers
	Modelling with Differently Shaped Languages
	The Paper Planning Modelling Language
	Lists of Dependent Types
	Working with Interpretation Results
	Type Threading
	Interpreter for PTodo
	Discussion
	Summary

	Conclusion
	Language-Oriented Design of DSMLs
	Better Implemented DSMLs
	Machine Checkable Design Patterns
	Better Pattern Evaluation and Publication
	Linked Concerns in Pattern Engineering
	Future Work

	Electronic Appendices
	GRL Forward Evaluation Algorithm
	Overview
	Calculating Node Satisfaction

	Collecting Dependent Types: Alternative Approaches
	Using Wrapper Types
	Heterogeneous Vectors
	List of Dependent Pairs
	Custom Lists

	Bibliography
	List of Figures
	List of Tables
	List of Software
	List of Publications

