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A changepoint analysis
of spatio-temporal point processes

Linda Altieri1,∗, E. Marian Scott2,, Daniela Cocchi1,, Janine B. Illian3,

Abstract

This work introduces a Bayesian approach to detecting multiple unknown change-

points over time in the inhomogeneous intensity of a spatio-temporal point pro-

cess with spatial and temporal dependence within segments. We propose a new

method for detecting changes by fitting a spatio-temporal log-Gaussian Cox pro-

cess model using the computational efficiency and flexibility of integrated nested

Laplace approximation, and by studying the posterior distribution of the po-

tential changepoint positions. In this paper, the context of the problem and

the research questions are introduced, then the methodology is presented and

discussed in detail. A simulation study assesses the validity and properties of

the proposed methods. Lastly, questions are addressed concerning potential un-

known changepoints in the intensity of radioactive particles found on Sandside

beach, Dounreay, Scotland.
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1. Introduction

In this work, we propose a method for carrying out a changepoint analysis

in the complex context of spatio-temporal point processes. Increasingly, spatio-

temporal point process data are becoming routinely available allowing questions

concerning changes in the intensity of the process to be addressed, such as5

in earthquake studies, where locations of earthquake epi-centres and strength

are mapped over time and where there is an interest assessing changes in the

intensity and spatial distribution of seismic events over recent years [1, 2], or

in occurrence of conflict data [3]. Other case studies derive from the field of

environmental monitoring, such as the dataset presented here.10

Our study is motivated by questions on the monitoring and recovery of ra-

dioactive particles from Sandside beach, North of Scotland, close to the former

Dounreay nuclear facilities [4].Minute fragments of irradiated nuclear fuel par-

ticles, generally similar to grains of sand, have been generated by historic prac-

tices at UKAEA Dounreay (http://www.dounreay.com/particle-cleanup).15

UKAEA Dounreay historically released particles primarily into the marine envi-

ronment Since 1984, particles have been found on the publicly accessible beach

at Sandside Bay. A variety of different monitoring systems have been used

and the frequency of monitoring has also varied over the period since routine

monitoring first began. The beach monitoring campaign has several purposes,20

primarily driven by the recovery of particles, and thus reduction of risk to the

public from encountering such particles and hence public reassurance. At the

same, it provides improved understanding and knowledge of the particle popula-

tion abundance and its change as a result of continued monitoring and retrieval

of particles offshore and historic site practices. Monitoring of the beaches (and25

in particular Sandside beach) has been ongoing for a number of years with the

first particles being detected in the 1980s. Over the past 15 years, two ma-

jor changes in the equipment used to detect the onshore particles have taken

place, representing known potential changepoints. In addition, offshore particle

retrieval campaigns are believed to have reduced the particle intensity for par-30
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ticles moved onshore with tides and currents with an unknown temporal lag,

potentially generating multiple unknown changepoints in the intensity function

of the particle distribution. Questions on how to construct a method able to de-

tect unknown changepoints in such a complex dataset are raised; the proposed

method has to deal with the issues of spatial inhomogeneity, spatial dependence35

among points and temporal dependence of the process.

1.1. Background and tools

For our work, we use a class of point process models called log-Gaussian

Cox Processes (LGCPs). Cox processes assume that the point distribution over

space is due to stochastic environmental heterogeneity, modelled as a random40

intensity function; given a realisation of the intensity surface, the distribution of

points follows an inhomogeneous Poisson process. In LGCPs, the logarithm of

the intensity surface over an observation window W is assumed to be a (latent)

Gaussian random field. For a review on point process models and LCGPs we

refer to [5] and [6]. LGCPs constitute a very flexible class of models that can45

potentially be extended to spatio-temporal data [7]; tractability issues that have

impeded the use of these models up to very recent years can now be overcome

using Integrated Nested Laplace Approximation (INLA, [8]).

INLA is an alternative option to MCMC methods for approximating the pos-

terior distribution of the parameters of interest; it is simulation free, which50

is the key to its speed, and it exploits two approximations. Firstly, a Laplace

approximation is employed to represent the posterior distributions with a Gaus-

sian shape; secondly, the Gaussian Field is substituted by a Gaussian Markov

Random Field with a sparse precision matrix, which makes calculations very

efficient. INLA returns the posterior probability of every time point of being a55

changepoint, allowing the changepoint positions to be inferred a posteriori.

Changepoint analysis is a well-established area of statistical research, frequently

applied in a temporal context, and less frequently over space [9]. The basic as-

sumption is that data are ordered and split into time segments following the

same model but under different parameter specifications [10]; the other com-60
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mon assumption is that observations are i.i.d.. The interest lies in detecting the

time and magnitude of the change(s). For a review of changepoint techniques

for temporal data we refer to [11]. We aim at understanding what happens

when the usual assumptions of a changepoint analysis (simply temporal i.i.d.

data) do not hold, which raises a few challenging issues especially when applied65

to the context of point processes.

1.2. Theoretical issues

While some of the existing changepoint methods can potentially be extended

to the general spatio-temporal context, for spatio-temporal point processes this

branch of analysis appears to be as yet relatively unexplored. Some substan-70

tial differences with regard to the standard changepoint analysis in time or in

space have to be taken into account: firstly, at every time point the datum is

not a single point but an irregular pattern of points, distributed over a pos-

sibly irregular observation window. Secondly, in many real situations, spatial

dependence among points and temporal dependence within time segments have75

to be taken into account, and analytically obtaining mathematical quantities

of interest, such as likelihood values and posterior distributions, is not trivial;

modelling dependence within data segments in the context of unknown multiple

changepoints is currently a challenge even for simple temporal series. Thirdly,

frequently point process data are collected over space, and it is not common80

to have repeated measurements in the same observation window over time, in

a sequence large enough to allow changepoint analysis. Most of the studies on

point processes aim at describing the behaviour of the intensity function, there-

fore its changes over time are certainly of interest, and the provision of tools for

changepoint analysis on spatio-temporal processes would enlarge the number85

of questions that can be answered, especially when spatial dependence among

points and temporal dependence within time segments are included.

1.3. Research questions

The aim of our work is to propose a method to find multiple unknown

changepoints over time in the inhomogeneous intensity of a spatio-temporal90
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point process, allowing for spatial and temporal dependence within segments.

When dependence is allowed, the segment marginal likelihood usually becomes

intractable, hence there is a need for fast computational methods, such as INLA,

providing an accurate and tractable approximation of the likelihood. The com-

putational speed and flexibility of INLA has not yet been exploited for a spatio-95

temporal changepoint analysis.

When applied to spatio-temporal point processes, a changepoint analysis of

the behaviour of the intensity function over time can address different aspects:

firstly, a change in scale, when the overall number of points increases or de-

creases significantly after a certain time point. Another option is a change in100

spatial structure, when the expected number of points remains constant, but

their distribution over space changes after a certain time point. Lastly, the

change can occur in both scale and spatial distribution. In the special case of a

change in scale only, and when spatial homogeneity can be assumed throughout

the whole time series, our method reduces to a traditional changepoint analysis105

on the time series of point counts. Our method allows changepoint detection

to be extended to any point process where the information concerning the spa-

tial distribution is of interest (as in the examples at the beginning of Section 1

state).

We aim at developing a method that is able to detect any of these changes110

over time, and that can therefore provide answers to a wider variety of cases

and carry much more information than a traditional changepoint analysis that

ignores spatial structure.

1.4. Motivation for the approach

In this study, we take a Bayesian approach to changepoint analysis for two115

main reasons. First of all, Bayesian inference allows knowledge brought by data

(the likelihood) to be enriched by including extra information in the prior dis-

tributions of the parameters; in many real situations some changepoints might

be considered more likely than others. Secondly, a Bayesian approach allows

dependence to be dealt with, while there are currently no satisfactory frequen-120
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tist solutions to the problem.

We use INLA to fit latent Gaussian models such as LGCPs as it brings substan-

tial advantages when it comes to detecting multiple changepoints in a spatio-

temporal point process context: first of all, very complex models can be fitted

using INLA; the extension to spatio-temporal models is computationally chal-125

lenging but feasible, and accurate and tractable approximations of the segment

marginal likelihoods can be produced. Secondly, we can explore all the time

series and compare the likelihood values resulting from different changepoint

positions to choose the best position a posteriori. This is more efficient than

traditional changepoint algorithms [11]; such a complex exploration in such a130

complex dataset would not be possible in reasonable time without INLA.

2. Methodology

2.1. Models

We consider a changepoint under four increasingly complex point process

models, and consider the case of both a single changepoint and multiple change-

points at unknown locations; we discretise the observation window into a fine

grid, and define yts ∼ Poi(|C|λts) as the number of points at time t = 1, . . . , T

in cell s = 1, . . . , S, where |C| is the cell area. As is traditional in changepoint

analysis [ref], we present the changepoint search as a test of two alternative hy-

potheses. H0 means no changepoint; H1 only concerns the number (1 or more)

of changes and is therefore a complex hypothesis that may be decomposed in

different sub-hypotheses for different changepoint positions.

We initially consider a model (Model 1) with an intercept, which assumes a spa-

tially homogeneous intensity λt; under each hypothesis (for the alternative, the

case of a single changepoint is displayed for simplicity) we model the logarithm

of the intensity function λt as:

H0 : log(λt) = µ+ εt for t = 1, . . . , T

H1 : log(λt) = µ1 + εt for t ≤ θ∗

log(λt) = µ2 + εt for t > θ∗

(1)
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where µ is the intercept and εt ∼ iidN(0, τε) is an unstructured error term.

Under H0 all values over both space and time depend on a single value for µ,

while under H1 µt is constant over space but allowed to vary over time: a sin-

gle changepoint in location θ∗ splits the dataset into two time segments with a

different value for the intensity function. In the more general case of M ≥ 2

changepoints, the equation under H1 is split into M + 1 segments defined by

the ordered changepoint locations θ1, θ2, . . . , θM .

Extensions to Model 1 (Equation (1)) include adding a temporal effect (Model

2) and an extension to inhomogeneous processes (allowing for a spatially inho-

mogeneous intensity function λts) by including a spatial effect (Model 3). All

effects are included in Model 4 (given in Equation 2).

H0 : log(λts) = µ+ φ+ ψs + εts for t = 1, . . . , T and s = 1, . . . , S

H1 : log(λts) = µ+ φ1 + ψ1s + εts for t ≤ θ∗ and s = 1, . . . , S

log(λts) = µ+ φ2 + ψ2s + εts for t > θ∗ and s = 1, . . . , S

(2)

µ is a common intercept and, within each time segment, φ is a random effect

modelled as an AR(1): φt = φt−1 +ut where ut ∼ N(0, τ−1
φ ). Priors are needed135

for the precision τφ ∼ Gamma(αφ, βφ). The spatial effect is ψs where the

basic space unit s is the grid cell. This approximation is needed for tractability

reasons, but INLA allows extremely fine grids while still being computationally

feasible. ψs is modelled as an intrinsic CAR, i.e. as a Random Walk in two

dimensions on a lattice, with a smooth neighbourhood structure that gives non-140

zero weights to the first 12 neighbours in the lattice [12]. Again, the precision

hyperparameter can be defined as τψ ∼ Gamma(αψ, βψ).

The current implementation of INLA in the R-INLA software (www.r-inla.org)

is not restricted to the spatial and temporal random fields chosen here.

2.2. Single changepoint detection145

The single changepoint detection procedure starts by comparing the sub-

hypotheses under H1, obtaining the marginal likelihoods conditional on different

changepoint locations. Afterwards, the highest likelihood is either compared to
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the likelihood under H0, or compared to a chosen threshold. To do this, we now

present two different Bayesian techniques.150

2.2.1. Bayes Factor method

We propose a modified version of the logarithm of the Bayes Factor, with

only one term for θ∗ instead of all possible θs:

γ
′
θ∗ = log(π(θ∗)) + q1(θ∗) + q2(θ∗)− l0 = log(π(θ∗)) + l1(θ∗)− l0. (3)

where θ∗ is the changepoint position returning the highest likelihood value un-

der H1, π(θ∗) is the value of the prior distribution at the changepoint, and

l1(θ∗) = q1(θ∗) + q2(θ∗) is the corresponding maximum log-likelihood under the

alternative hypothesis, obtained as a sum of two segment log-likelihoods. For155

the model with no changepoints, the maximum log-likelihood value under H0 is

greater than the maximum log-likelihood value under H1, as Bayes factors nat-

urally incorporate penalization for model complexity. If γ
′
θ∗ > 0, we reject the

null model of no changepoint, and the changepoint is estimated to occur at θ∗.

In conclusion, this method first compares the options under H1 and then tests160

the best one against H0 and is routinely used in Bayesian temporal changepoint

analysis [11].

2.2.2. Posterior Threshold method

An alternative option is to fix a posterior probability threshold to identify

changepoints. We consider the posterior distribution of the changepoint posi-165

tions coming from the likelihood values conditional on different options under

H1. Instead of testing them against H0, we use a decision threshold: if there are

peaks in the posterior distribution above the threshold, the highest peak corre-

sponds to the accepted changepoint. Suggestions for the choice of the threshold

are given in Section 5. This method has the advantage of being visually im-170

mediate and easy to explain to non-statisticians; moreover, it is very flexible as

the threshold choice can be adapted to the model fitting the data and to the

analysis context.
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2.3. Multiple changepoint detection

We now extend the method to an unknown number of changepoints; two175

approaches can be taken: a binary segmentation algorithm aimed at finding

one changepoint in each step, or a simultaneous search aiming at finding all

changepoints in one step.

2.3.1. Binary segmentation algorithms

For a general introduction to these methods we refer to [11], and in partic-180

ular for point processes to [13]. The idea of a binary segmentation procedure,

and the key to its simplicity, is to split the multiple search into a series of sub-

sequent searches; in each step, a single changepoint search is carried out, and

either method (BF or PT) can be used. When running such an algorithm, num-

ber and positions of changepoints are estimated sequentially at the same time:185

in each step, if a changepoint is found, its position is immediately chosen before

moving on to the next step, as we need to know where to split the data into

further segments.

The analysis can become computationally very demanding as T and M become

large, and methods are available for reducing time and memory storage require-190

ments [11]. The computational efficiency of INLA makes this algorithm feasible

even for complex spatio-temporal data.

2.3.2. Simultaneous changepoint search

The procedure we build follows a two level prior setting as in [14] and [15],

where a prior distribution is given to the number of changepoints and then a195

prior conditional on the number is given to the changepoint locations. As a

consequence, we first estimate the number of changepoints, then conditional on

that we identify the most likely positions. We then follow [14] with an extension

to spatio-temporal models. M + 1 conditional likelihoods are computed using

recursive equations, which give evidence for the model with m changepoints,200

m = 0, . . . ,M . If π(M) is non informative, the highest likelihood value L(Y |m)

corresponds to the chosen number of changepoints (see Section 2.4).

9



2.4. Posterior distribution

Irrespective of the detection method, the final goal of a Bayesian changepoint

analysis is to obtain a posterior distribution of the number and positions of205

changepoints.

In a single changepoint search, the algorithm produces a posterior distribution

assigning a probability to every potential changepoint position. For each model

scenario, we run the model T times under the alternative hypothesis. In each

run, we condition on the changepoint occurring at a different specific location210

θ ∈ {1, . . . , T} and fit one of the models; we obtain a conditional log-likelihood

value l1(θ) = q1(θ) + q2(θ) (see Section 2.2.1). The T -dimensional vector l1 =

{l1(θ), θ ∈ {1, . . . , T}} is then transformed following the usual Bayes Rule to

obtain the posterior distribution: in the absence of prior knowledge, rescaling

the likelihood vector to integrate to 1 gives the posterior distribution of interest.215

The time point corresponding to the maximum posterior value is taken as the

most likely changepoint position a posteriori θ∗. The decision on the significance

of the detected potential changepoint with respect to the null hypothesis can

be based on either the Bayes Factor or the Posterior Threshold method. The

computational expense of refitting each model many times for different potential220

changepoints is not prohibitive when using INLA.

In a multiple changepoint search, as for the binary segmentation algorithm,

a criterion for decision making must be chosen first in order to proceed with

the iterations. Any of the methods proposed in 2.2 can be used; once chosen,

the posterior distribution for each potential changepoint position is obtained for225

each step and time segment just as for the single search. Since time is discrete, a

final posterior distribution for the whole time series can be obtained by averaging

values pointwise and then rescaling in order to integrate to 1 and to deal with

a proper distribution. If a simultaneous search is carried out, we obtain M + 1

conditional data likelihoods L(Y |m = 0), L(Y |m = 1), . . . , L(Y |m = M), where230

Y is the whole dataset. Following the Bayes Rule P (m|Y ) ∝ L(Y |m)π(m), if

the prior is uniform M̂ = arg maxm{L(Y |m), m = 1, . . . ,M}. Conditional on

M̂ , the posterior positions for the changepoints are then estimated given the
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previous change (with the convention θ0 = 0), the data and M̂ . Assuming the

changepoint process is a Markov process we find them iteratively:235

P (θ1, . . . , θM̂ |Y, M̂) = P (θ1|Y, M̂)× P (θ2|θ1, Y, M̂)× · · · × P (θM̂ |θM̂−1, Y, M̂).

3. Simulation study

In order to assess and compare the performance of the methods proposed in

Section 2.1, we carry out a simulation study covering different situations.

3.1. Simulation design240

We fix a time series of T = 50 time points, and a grid of S = 20 × 20 =

400 cells. The observation window W is a square of area 100. We also ran

simulations in irregular polygonal windows, which did not lead to substantially

different conclusions; we therefore only consider the square window here.

We simulate point pattern data that follow an i.i.d. and an AR(1) process in245

time, respectively, for both single and multiple changepoint detection under H0

(no changepoint, λ = 1 over the whole series) and under different options for

H1:

• one large changepoint in scale (from λ1 = 1 to λ2 = 2)

• one small changepoint in scale (from λ1 = 1 to λ2 = 1.2)250

• three changepoints in scale (λ1 = 1, λ2 = 1.4, λ3 = 2.3, λ4 = 2)

• one changepoint in spatial structure

• one changepoint in both scale and spatial structure.

Figure 1 shows examples of the above listed changes. Panel (a) displays the

initial value for the intensity function; panel (b) shows a large change in scale255

(small change and multiple changes not displayed here); panel (c) a change in

spatial structure; panel (d) a change in both space and scale.

Data with a change in scale are generated under both a homogeneous (a single

value for λ over the window) and an inhomogeneous process (different values

11



Figure 1: Examples of simulated data, with the corresponding underlying intensity function:

initial intensity (a), large scale change (b), spatial change (c), spatial and scale change (d)

for λs over the window, with a mean value over space equal to the homogeneous260

λ). 100 replicates are generated for each case.

In order to find a sensible and not too arbitrary threshold for the PT method,

it is possible to use simulated data under the null hypothesis for assessing the

significance level α based on different threshold values. Once we find a value

such that the significance level does not exceed a certain limit (usually α ≤265

{0.01, 0.05, 0.1}), we use that threshold on data generated under the alternative

hypothesis in order to evaluate its power level, the ability to detect the correct

changepoint locations and the accuracy of the produced estimates.

3.2. Simulation results

After we fit Model 1 to 4 (Section 2.1) to all simulated patterns, we assess270

the performance of the proposed detection techniques: for a single search, the

BF and PT methods (2.2); for a multiple search, the simultaneous approach and

the binary segmentation algorithm combined with both BF and PT methods

(2.3). Methods are evaluated based on type I and type II errors (see Table

1), number and position of detected changepoints and accuracy of the intensity275

estimates (tables not reported here). Table 1 does not report results where the

data generation process and the nature of the model do not match: Model 1

and 2 are appropriate for spatially homogeneous data, while Model 3 and 4 are

only relevant to inhomogeneous data.

As for the ability to detect changepoints (i.e. to reject H0), Table 1 shows that280
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Table 1: ’Significance levels’ (type I errors) in data generated under H0 and ’power levels’ (1

- type II errors) in data generated under H1

Homogeneous process Inhomogeneous process

Model 1 Model 2 Model 3 Model 4

BF PT BF PT BF PT BF PT

IID

H0 λ = 1 0 ≤ 0.05 0 ≤ 0.05 0 ≤ 0.1 0 ≤ 0.1

H1

λ2 = 2 1 1 1 1 1 1 0 1

λ2 = 1.2 1 1 1 0.98 0 0.34 0 0.3

spatial 0.38 0.44 0.42 0.26 1.00 1.00 1.00 1.00

spat+scale 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mult BinSeg 1 1 0.99 1 0 0.93 0 0.26

mult Simult 1 1 0 0

AR(1)

H0 λ = 1 0.96 0.66 0.38 0.24 0.15 0.26 0 0.18

H1

λ2 = 2 1 0.97 0.81 0.75 0.53 0.81 0 0.52

λ2 = 1.2 1 0.73 0.43 0.36 0.19 0.54 0 0.37

mult BinSeg 1 0.98 0.94 0.91 0.55 0.84 0 0.67

mult Simult 1 1 0 0

when a change in scale is considered all methods perform quite well over the

first two models, but all detection techniques that use the BF method and the

simultaneous search become too conservative as soon as spatial dependence is

included (too many 0s in the table); the PT method performs better over all

models, also due to the possibility to tune the threshold value according to the285

model. We also covered different types of change in the intensity function which

involve the spatial distribution (labelled as ’spatial’ and ’spat+scale’ in Table

1). When a single change in spatial structure is considered, the performance

of all methods is excellent: changes in the spatial structure are detected with

both methods when using Models 3 and 4, which include a spatial effect, and290

changes in both scale and space are detected for all models.

Once the ability to reject H0 is assessed, we focus on the number of detected

changepoints. Results are correct in all H0 data: even in situations where some

changepoints were found, as in AR(1) data, they were correctly identified as

spurious changepoints (in a different location for every replicate). As regards295

the detection in H1 data, when a changepoint is detected with any method,

its location is either correctly identified or in a position so close to the true
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changepoint that the slight mislocation would be irrelevant in practice. Again,

spurious changes in time dependent data do not affect the conclusions, i.e. our

methods are still able to detect the correct changepoint locations despite the300

variability in the time series.

Lastly, given the detected changepoints, estimates are very accurate over all

the simulated scenarios; see Figure 2 for an example. When a changepoint

is not detected (e.g. third/fourth column in Figure 2), estimated values are

located in between the two segments’ true values, and when a changepoint was305

only detected in a proportion of the replicates (as happens with very small

changes), the true magnitude of the change is reduced. When a change in scale

is considered, the correct (increasing or decreasing) trend is always captured; as

can be seen from Figure 2, results are very accurate in reproducing both scale

and spatial trend.

Figure 2: Simulated intensity functions for four time segments, with three changepoints (top

panels) - Estimated segment intensities under the detection of two changepoints (bottom

panels)

310

4. Case study

Since the 1950s, Dounreay has been the site of several nuclear research estab-

lishments, most of which are now being decommissioned. Radioactive particles

have been found on local beaches in the North of Scotland since the 1990s as

a result of historic practices during nuclear fuel reprocessing at the Dounreay315
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plant (http://www.dounreay.com). The dataset used gives the particles’ loca-

tions on one of the local beaches, Sandside beach, during each of the years of

monitoring [16] (see Figure 3). The temporal data series consists of yearly point

pattern realizations, and additional information on the retrieval and radioac-

tivity level for each of the particles. The underlying intensity and its spatial320

structure are of interest, along with potential changes. For the questions pre-

sented in Section 1, this motivating dataset represents an adequate example of

an inhomogeneous spatio-temporal point process with changepoints over time.

MCMC goodness of fit tests [5] show that Cox processes fit data very well;

Figure 3: Radioactive particles detected on the Sandside beach between 1999 and 2013

in particular, the flexible class of log-Gaussian Cox processes is suitable for the325

problem as the distribution of particles could be due to an underlying driver

(tides and winds). Moreover, it is very straightforward to modify these models

by adding an intercept, random or smooth effects to the structured predictor;

the estimation with INLA is very fast (and precise) even for complex models and

this allows us to fit several different models without becoming computationally330

prohibitive.

4.1. Results on particle data

Table 2 displays a summary of the number and positions of detected change-

points in the data series for both a single and a multiple search. Results must

be interpreted carefully since the time series is very short. The first two de-335

tected changepoints in 2003 and 2006 correspond to the periods of equipment

changes and produce an increase in the point intensity; this supports that the
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Table 2: Results for a changepoint search on Sandside beach data - four log-Gaussian Cox

process models, two methods for single changepoint detection (BF and PT), three methods

for multiple changepoint detection (BF or PT with binary segmentation algorithm and a

simultaneous approach)

(a) Single changepoint detection

Model BF PT

Intercept 2006 2006

Temporal 2003 2003

Spatial — 2006

Sp-temp — —

(b) Multiple changepoint detection

Model BF BinSeg PT BinSeg Simultaneous

Intercept 2003, 2006, 2012 2003, 2006, 2012 2006

Temporal 2003 2003, 2006, 2012 2003

Spatial — 2006, 2012 —

Sp-temp — — —

changes in equipment have significantly improved the probability of detecting

particles. The third changepoint in 2012 is very close to the end of the series,

therefore conclusions must be drawn with some caution here; the results show340

some evidence of a decreasing intensity, which might be related to the offshore

retrieval campaign, suggesting a reduction of the arrival of particles on Sandside

beach. The results highlight the flexibility and reliability of our method with

the detection of the same changepoints using several techniques, as happens

with 2003 and 2006, which gives us more confidence in the decision. Further345

discussion can be found in Section 5.

An example of the analysis output is given in Fig. 4: this shows the estimated

intensity functions for multiple changepoint detection using the model including

spatial dependence and the Posterior Threshold method; they are derived by

the INLA estimates of the latent field. It can be seen in the Figure that the350

spatial structure of the intensity function is inhomogeneous with a low density

value in most of the window and a hot spot in the bottom-right area. The scale
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Figure 4: Estimated intensities for model 2 with Binary segmentation and PT method. (a)

1999-2005; (b) 2006-2011; (c) 2012-2013

of values in the intensity plots shows that there is an increase in the intensity

after 2006, and then a decrease in the last two years of the series.

5. Discussion355

The proposed new method is able to find unknown multiple changepoints in

the intensity of a spatio-temporal point process, including dependence within

time segments. A flexible class of models, Log-Gaussian Cox Processes, is used,

that allows unobserved environmental heterogeneity in the spatial patterns to

be accounted for. Changes in both intensity and structure of the patterns can360

therefore be detected. The models have been conveniently fitted using INLA,

thus providing a practically relevant case study of INLA in the new context of

spatio-temporal changepoint analysis.

We conclude with some comments and remarks on our method and results.

Firstly, the choice of threshold for the PT method tunes the conservativeness365

of conclusions: larger values (closer to 1) lead to more conservative results,

and smaller values (closer to 0) detect changepoints more easily. This choice

can therefore be informed by prior knowledge, if information on the location of

changepoints in the data series is available. In our simulation study, we propose

an objective way of obtaining a threshold.370

Secondly, as a final note on the multiple changepoint detection techniques, we

would like to highlight that models with several changepoints will not necessarily

be preferred. Indeed, in the binary segmentation algorithm up to 4 changepoints
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were detectable, but a fourth one was hardly ever found; moreover, in many sce-

narios less than three changes (i.e. two, or even zero) were detected, meaning375

that a model allowing for more data segments does not always describe data

better. The simultaneous approach too proves to be conservative on our data.

Thirdly, as regards results, the proposed method is not only satisfactory in

detecting where the changepoint(s) occur(s), but also in producing accurate es-

timates. The ability to detect changepoints does not depend directly on the380

INLA approach, but depends on the choice of the detection method. Given

the detection of changepoints, estimates are very accurate in reproducing both

spatial trend and scale of values of the intensity function over all the simulation

study.

Lastly, our approach provides flexible methods for obtaining fast results and385

reducing arbitrariness in taking decisions. Indeed, in the simulation study (Sec-

tion 3.2) we compare the performances of the different methods and we highlight

which ones are more conservative and which less so. If a single method must be

chosen for a specific case study, when there is prior knowledge about the occur-

rence of many changes a less conservative technique can be used; when strong390

evidence is needed, a more conservative one ought to be preferred. In addition,

the different methods often identify the same changepoints, therefore in absence

of prior knowledge we suggest using all detection methods to ensure robustness:

the changepoints found in all cases will be the most likely to be true, while the

other ones must be dealt with carefully and this is where prior knowledge can395

play a role. Thus, the speed and flexibility of our approach reduces subjectivity

and improves reliability of the results. The methodology discussed in this paper

aims at exploiting different types of information derived from fitting a number

of models. This is very different from a setting where one wishes to compare

several models; when this is of interest, the DIC is routinely used in Bayesian400

inference.

In addition, the required computational time is acceptable: in the simulation

study running the models took a few minutes for each replicate, and on real

data all results were obtained in less than 30 minutes in total.
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The set of presented models constitutes the basis for extensively analysing spa-405

tial inhomogeneity, spatial dependence and temporal dependence. Many promis-

ing extensions are possible. It is worth mentioning the role of the prior distribu-

tions: they can concern the number of changepoints, their locations and all the

effects hyperparameters, and it would certainly be of interest to test different

prior settings than the default ones in R-INLA [17], and check how strongly410

they can affect conclusions. Moreover, once the ability to include dependence

in the model is assessed, the focus may be on adding covariates and marks and

running some Bayesian model selection. Furthermore, the analysis can be fur-

ther extended to gradual changes in the intensity function, in order to compare

its performance with a study of the spatio-temporal trend of the series.415
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