
Interoperability in the OpenDreamKit Project:
The Math-in-the-Middle Approach

Paul-Olivier Dehaye1 Mihnea Iancu2 Michael Kohlhase2 Alexander Konovalov3

Samuel Lelièvre4 Dennis Müller2 Markus Pfeiffer3 Florian Rabe2

Nicolas M. Thiéry4 Tom Wiesing2

1 University of Zürich
2 Jacobs University

3 University of St Andrews
4 Université Paris-Sud

Abstract. OpenDreamKit – “Open Digital Research Environment
Toolkit for the Advancement of Mathematics” – is an H2020 EU Re-
search Infrastructure project that aims at supporting, over the period
2015–2019, the ecosystem of open-source mathematical software systems.
OpenDreamKit will deliver a flexible toolkit enabling research groups
to set up Virtual Research Environments, customised to meet the varied
needs of research projects in pure mathematics and applications.
An important step in the OpenDreamKit endeavor is to foster the inter-
operability between a variety of systems, ranging from computer algebra
systems over mathematical databases to front-ends. This is the mission
of the integration work package. We report on experiments and future
plans with the Math-in-the-Middle approach. This architecture consists
of a central mathematical ontology that documents the domain and fixes
a joint vocabulary, or even a language, going beyond existing systems
such as OpenMath, combined with specifications of the functionalities of
the various systems. Interaction between systems can then be enriched
by pivoting around this architecture.

1 Introduction

From their earliest days, computers have been used in pure mathematics to
make tables, prove theorems (famously the four colour theorem) or, as with the
astronomer’s telescope, to explore new theories. Computer-aided experiments,
and the use of databases relying on computer calculations such as the Small
Groups Library in GAP, the Modular Atlas in group and representation theory,
or the L-functions and Modular Forms Database (LMFDB, see later), are part
of the standard toolbox of the pure mathematician. Certain areas of mathematics
completely depend on these libraries. Computers are also increasingly used to
support collaborative work and education.

In the last decades we witnessed the emergence of a wide ecosystem of open-
source tools to support research in pure mathematics. This ranges from special-
ized to general purpose computational tools such as GAP, PARI/GP, LinBox,



MPIR, Sage, or Singular, via online databases like the LMFDB or online
services like Wikipedia, arXiv, to webpages like MathOverflow. A great op-
portunity is the rapid emergence of key technologies, in particular the Jupyter
(previously IPython) platform for interactive and exploratory computing which
targets all areas of science.

This has proven the viability and power of collaborative open-source develop-
ment models, by users and for users, even for delivering general purpose systems
targeting large audiences such as researchers, teachers, engineers, amateurs, and
others. Yet some critical long term investments, in particular on the technical
side, are in order to boost the productivity and lower the entry barrier:
– Streamlining access, distribution, portability on a wide range of platforms,

including High Performance Computers or cloud services.
– Improving user interfaces, in particular in the promising area of collaborative

workspaces as those provided by SageMathCloud.
– Lowering barriers between research communities and promoting dissemina-

tion. For example make it easy for a specialist of scientific computing to use
tools from pure mathematics, and vice versa.

– Bringing together the developer communities to promote tighter collabora-
tion and symbiosis, accelerate joint development, and share best practices.

– Structure the development to outsource as much of it as possible to larger
communities, and focus manpower on core specialities: the implementation
of mathematical algorithms and databases.

– And last but not least: Promoting collaborations at all scales to further im-
prove the productivity of researchers in pure mathematics and applications.
OpenDreamKit – “Open Digital Research Environment Toolkit for the

Advancement of Mathematics” [ODK] – is a project funded under the European
H2020 Infrastructure call [EI] on Virtual Research Environments, to work on
many of these problems.

In Section 2, we will introduce the OpenDreamKit project to establish the
context for the “Math-in-the-Middle” (MitM) integration approach described
in Section 3. The remaining sections then elucidate the approach by presenting
first experiments and refinements of the chosen integration paradigm: Section 4
details how existing knowledge representation and data structures can be repre-
sented as MitM interface theories with a case study of equipping the LMFDB
with a MitM-based programming interface. Section 5 discusses system integra-
tion between GAP and Sage and how this can be routed through a MitM
ontology. Section 6 concludes the paper and discusses future work.

2 The OpenDreamKit project (2015-2019)

The OpenDreamKit project runs for four years, starting in September 2015,
and involves about 50 people spread over 15 sites in Europe, with a total budget
of 7.6 million euros. The largest portion of that is devoted to employing an
average of 11 researchers and developers working full time on the project, while
the other participants contribute the equivalent of six people working full time.

2



OpenDreamKit’s goal is to develop Virtual Research Environments (VRE),
that is online services enabling groups of researchers, typically spread across
many countries, to work collaboratively on a per project basis. Rather than
constructing a large monolithic VRE, we have designed our proposal around
the long-term investments listed in the previous section, working on the large
scale yet modular integration of mathematical software. Our goal is a modular,
interoperable, and customisable VRE toolkit built out of relatively modest com-
ponents, interfaced through our approach to work on the grease to make this
work. According to the funding scheme, the project addresses, besides its techni-
cal goals, aspects such as outreach, dissemination, or tools to support teaching.

An innovative aspect of the OpenDreamKit project is that its prepara-
tion and management happens, as much as is practical and without infringing
on privacy, in the open. For example, most documents, including the proposal
itself, are version controlled on public repositories and progress on tasks and
deliverables is tracked using public issues (see [ODK]). This has proven a strong
feature to collaborate tightly with the community and get early feedback.

In practice, OpenDreamKit’s work plan consists of several work packages:
component architecture (modularity, packaging, distribution, deployment), user
interfaces (Jupyter interactive notebook interfaces, 3D visualization, documen-
tation tools), high performance mathematical computing (especially on multi-
core/parallel architectures), a study of social aspects of collaborative software
development, and a package on data/knowledge/software-bases.

The latter package focuses on the identification and extension of ontologies
and standards to facilitate safe and efficient storage, reuse, interoperation and
sharing of rich mathematical data, whilst taking provenance and citability into
account. Its outcome will be a component architecture for semantically sound
data archival and sharing, and integrate computational software and databases.
The aim is to enable researchers to seamlessly manipulate mathematical objects
across computational engines (e.g. switch algorithm implementations from one
computer algebra system to another), front end interaction modes (database
queries, notebooks, web, etc) and even backends (e.g. distributed vs. local).

In this paper, we discuss the general approach chosen to develop this seman-
tically aware component architecture.

3 Integrating mathematical software systems via the
Math-in-the-Middle approach

As discussed before, we aim to make our components interoperable at a mathe-
matical level. In particular, we have to establish a common meaning space that
will allow us to share computation, visualization of the mathematical concepts,
objects, and models between the respective systems. This mediation problem
is well understood in information systems [Wie92], and has for instance been
applied to natural language translation via a hub language [KW03]. Here, our
hub is mathematics itself, and the vocabulary (or even language) admits fur-
ther formalisation that translates into direct gains in interoperability. For this

3



reason, neither OpenMath [Bus+04] nor MathML [Aus+03] have the practical
expressivity needed for our intended applications.

3.1 A common meaning space for interoperability

One problem is that the software systems in OpenDreamKit cover different
mathematical concepts, and if there are overlaps, their models for them differ,
and the implementing objects have different functionalities. This starts with
simple naming issues (e.g. elliptic curves are named ec in the LMFDB, and
as EllipticCurve in Sage), persists through the underlying data structures and
in differing representations in the various tables of the LMFDB), and becomes
virulent at the level of algorithms, their parameters, and domains of applicability.

To obtain a common meaning space for a VRE, we have the three well-known
approaches in Figure 1.

peer to peer open standard industry standard

A B

C

D

EF

G

H

A B

C

D

EF

G

H

S

A B

C

D

EF

G

H

n2/2 translations 2n translations 2n− 2 translations
symmetric symmetric asymmetric

Fig. 1. Approaches for many-systems interoperability

The first does not scale to a project with about a dozen systems, for the
third there is no obvious contender in the OpenDreamKit ecosystem. Fortu-
nately, we already have a “standard” for expressing the meaning of mathematical
concepts – mathematical vernacular: the language of mathematical commu-
nication, and in fact all the concepts supported in the OpenDreamKit VRE
are documented in mathematical vernacular in journal articles, manuals, etc.
The obvious problem is that mathematical vernacular is too i) ambiguous: we
need a human to understand structure, words, and symbols ii) redundant : every
paper introduces slightly different notions.

Therefore we explore an approach where we flexiformalize, i.e. partially
formalize; see [Koh13] mathematical vernacular to obtain a flexiformal ontology
of mathematics that can serve as an open communication vocabulary. We call
the approach the Math-in-the-Middle (MitM) Strategy for integration and
the ontology the MitM ontology.

4



A B

C

D

EF

G

H

S

a b
c

d

ef
g

h

Fig. 2. Interface theories

Before we go into any detail on this ontology,
and how it induces a uniform meaning space – see
Section 4 for an example – we have to address an-
other problem: the descriptions in the MitM ontol-
ogy must simultaneously be system-near to make
interfacing easy for systems, and serve as an inter-
operability standard – i.e. be general and stable.
If we have an ontology system that allows mod-
ular/structured ontologies, we can solve this ap-
parent dilemma by introducing interface theo-
ries [KRSC11], i.e. ontology modules (the light pur-
ple circles in Figure 2) that are at the same time
system-specific in their description of mathematical concepts – near the actual
representation of the system and part of the greater MitM ontology (depicted by
the cloud in Figure 2) as they are connected to the core MitM ontology (the blue
circle) by views we call interface views. The MitM approach stipulates that
interface theories and interface views are maintained and released together with
the respective systems, whereas the core MitM ontology represents the mathe-
matical scope of the VRE and is maintained with it. In fact in many ways, the
core MitM ontology is the conceptual essence of the mathematical VRE.

3.2 Realizing and utilizing a MitM ontology

LF LF + X

FOL HOL

Monoid CGroup Ring

ZFC
f2h

add

mult

folsem

mod

Fig. 3. A OMDoc/MMT Theory Graph

Our current candidate for represent-
ing the MitM ontology is the OM-
Doc/MMT format [Koh06; MMT].
OMDoc/MMT is an ontology format
specialized for representing mathe-
matical knowledge modularly in a
theory graph: theories are collec-
tions of declarations of concepts, ob-
jects, and their properties that are
connected by truth-preserving map-
pings called theory morphisms. The latter come in two forms: inclusions and
structures that essentially correspond to object-oriented inheritance (direct in-
heritance and and inheritance modulo renaming and identification of symbols),
and view that connect pre-existing theories – in these all axioms of the source
theory have be to proven in the target theory. See [RK13] for a full account.
Figure 3 shows an example of a theory graph. It has three layers:

i) the (bottom) domain level which specifies mathematical domains as theo-
ries; here parts of elementary algebra. The hooked arrows are inclusions for
inheritance, while the regular arrows are named structures that induce the
additive and multiplicative structures of a ring.

ii) the logic level represents the languages we use for talking about the proper-
ties of the objects at the domain level – again as theories: the meta-theories
of the domain-level ones – the dotted arrows signify the meta-relation. At

5



this level, we also have inclusions and views (the squiggly arrows) which cor-
respond to logic translations (f2h) and interpretations into foundational
theories like set theory (here ZFC). Incidentally models can be represented
as views into foundations.

iii) The top layer contains theories that act as metalogics, e.g. the Logical
Framework LF and extensions which can be used to specify logics and their
translations.

The theory graph structure is very well-suited to represent heterogeneous collec-
tions of mathematical knowledge, because views at the domain level can be used
to connect differing but equivalent conceptualizations and views at the logic level
can be used to bridge the different foundations of the various systems. The top
level is only indirectly used in the MitM framework: it induces the joint meaning
space via the meta-relation.

MathF

CompF

PyF C++F

Sage GAP

EC

. . .

SEC

. . .

GEC

. . .

LEC . . .

SAGE

Algorithms

Database

Knowledge

Abstract Classes

GAP

Algorithms

Database

Knowledge

AbstractClasses

LMFDB
MongoDBKnowls Abstract Classes

induce induce

induce

generategenerate

refactor refactor

refactor

Fig. 4. The MitM paradigm in detail. PyF, C++F and CompF are (basic) foun-
dational theories for Python, C++ and a generic computational model. SEC,
LEC and GEC are theories for Sage, LMFDB and GAP elliptic curves.

If we apply OMDoc/MMT to the MitM architecture, we arrive at the situ-
ation in Figure 4, where we drill into the MitM information architecture from
Figure 2, but restrict at this stage to three systems from the OpenDreamKit
project. In the middle we see the core MitM ontology (the blue cloud) as an OM-
Doc/MMT theory graph connected to the interface theories (the purple clouds)
via MitM interface views. Conceptually, the systems in OpenDreamKit consist
of three main components:

i) a Knowledge Representation component that provides data structures for
the objects modeling mathematical concepts and their properties.

ii) a DataBase component that provides mass storage for objects, and

6



iii) a library of algorithms that operate on these.

To connect a system to an MitM-based VRE, the knowledge representation com-
ponent is either refactored so that it can generate interface theories, or a schema-
like description of the underlying data structures is created manually from which
abstract data structures for the system can be generated automatically – in this
version the interface theories act as an Interface Description Language.

In this situation there are two ways to arrive at a greater MitM ontology:
the OpenDreamKit project aims to explore both: either i) standardizing a
core MitM by refactoring the various interface theories where they overlap, or
ii) flexiformalizing the available literature for a core MitM ontology. For i), the
MitM interface views emerge as refinements that add system-specific details to
the general mathematical concepts1 For ii), we have to give the interface views
directly.

To see that this architecture indeed gives us a uniform meaning space, we ob-
serve that the core MitM ontology uses a mathematical foundation (presumably
some form of set theory), whereas the interface theories also use system-specific
foundations that describe aspects of the computational primitives of the re-
spective systems. We have good formalizations of the mathematical foundations
already; first steps towards a computational ones have been taken in [KMR13].

Our efforts also fit neatly alongside similar efforts underway across the sci-
ences to standardize metadata formats (for instance through the Research Data
Alliance’s Typing Registry Working Group [Rda]), except for a typically much
higher complexity in the typing since our objects of study are sometimes seen
as types and sometimes as instances (think of groups for instance).

4 LMFDB knowledge and interoperability

The L-functions and modular forms database is a project involving dozens of
mathematicians who assemble computational data about L-functions, modular
forms, and related number theoretic objects. The main output of the project
is a website, hosted at http://www.lmfdb.org, that presents this data so that
it can serve as a reference for research efforts, and is accessible for postgradu-
ate students. The mathematical concepts underlying the LMFDB are extremely
complex and varied, so part of the effort has been focused on how to relay knowl-
edge, such as mathematical definitions and their relationships, to data and soft-
ware. For this purpose, the LMFDB has developed so-called knowls, which are
a technical solution to present LATEX-encoded information interactively, heavily
exploiting the concept of transclusion. The end result is a very modular and
highly interlinked set of definitions in mathematical vernacular which can be

1 We use the word “interface theory” with a slightly different intention when compared
to the original use in [KRSC11]: There the core MitM ontology would be an interface
between the more specific implementations in the systems, whereas here we use
the “interface theories” as interfaces between systems and the core MitM ontology.
Technically the same issues apply.

7

http://www.lmfdb.org


easily anchored in vastly different contexts, such as an interface to a database,
to browsable data, or as constituents of an encyclopedia [Lmfc].

The LMFDB code is primarily written in Python, with some reliance on
Sage for the business logic. The backend uses the NoSQL document database
system MongoDB [Lmfa]. Again, due to the complexity of the objects consid-
ered, many idiosyncratic encodings are used for the data. This makes the whole
data management lifecycle particularly tricky, and dependent on different select
groups of individuals for each component.

As the LMFDB spans the whole “vertical” workflow, from writing software,
to producing new data, up to presenting this new knowledge, it is a perfect test
case for a large scale case study of the MitM approach. Conversely, a semantic
layer would be beneficial to its activities across data, knowledge and software,
which it would help integrate more cohesively and systematically.

Among the components of the LMFDB, elliptic curves stand out in the best
shape, and a source of best practices for other areas. We have generated MitM
interface theories for LMFDB elliptic curves by (manually) refactoring and flexi-
formalizing the LATEX source of knowls into STEX (see Listing 1.1 for an excerpt),
which can be converted into flexiformal OMDoc/MMT automatically. The MMT
system can already type-check the definitions, avoiding circularity and ensuring
some level of consistency in their scope and make it browsable through Math-
Hub.info, a project developed in parallel to MMT to host such formalisations.

Listing 1.1. STEX flexiformalization of an LMFDB knowl (original: [Lmfd])

\begin{mhmodnl}{minimal−Weierstrass−model}{en}
A \defi{minimal} \trefii{Weierstrass}{model} is one for which
$\absolutevalue\wediscriminantOp$ is minimal among all Weierstrass models
for the same curve. For elliptic curves over $\RationalNumbers$, minimal
models exist, and there is a unique minimal model which satisfies the
additional constraints $\minset{\livar{a}1,\livar{a}3}{\set{0,1}}$, and
$\inset{\livar{a}2}{\set{−1,0,1}}$.
This is defined as the reduced minimal Weierstrass model of the elliptic curve.
\end{definition}
\end{mhmodnl}

The second step consisted of translating these informal definitions into pro-
gressively more exhaustive MMT formalisations of mathematical concepts (see
Listing 1.2). The two representations are coordinated via the theory and symbol
names – we can see the STEX representation as a human-oriented documentation
of the MMT.

Listing 1.2. MMT formalisation of elliptic curves and their Weierstrass models
theory minimal Weierstrass model : odk:?Math =

include ?elliptic curve D

minimal : tm Ws model → tm Ws model D

is minimal : tm Ws model → prop \US = [A] (minimal A)
.
= A D

minimality idempotence : {A} ` minimal (minimal A)
.
= minimal A D

minimality of minimal Ws model :

8



{A} ` is minimal (minimal Ws model A) D
injective minimal Ws model :

{A,B} ` minimal Ws model A
.
= minimal Ws model B → ` A

.
= B D

M

Finally, we have to integrate computational data into the interface theo-
ries. Based on recent ongoing efforts [Lmfb] to document the LMFDB “data
schemata” we established OMDoc/MMT theories that link the database fields
to their data types (string vs. float vs. integer tuple, for instance) and mathemat-
ical types (elliptic curves or polynomials) – the latter based on the vocabulary
in the interface theories generated from the LMFDB knowls. This schema the-
ory is complemented by a theory on functorial hence composable MMT codecs,
which in turn acts as a specification for a collection of implementations in var-
ious programming languages (currently Python, Scala, and C++ for Sage,
MMT, and GAP respectively) which are first instances of a computational foun-
dation (see Section 3). For instance, one can compose two MMT codecs, say
polynomial-as-reversed-list and rational-as-tuple-of-int, to signify that the data
[(2, 3), (0, 1), (4, 1)] is meant to represent the polynomial 4x2 + 2/3. Of course,
these codecs could be further decomposed (e.g. for signaling which variable name
to use). The initial cost of developing these codecs is high, but the clarity gained
in documentation is valuable, they are highly reusable, and they drastically ex-
pand the range of tooling that can be built around data management.

A typical application Based on these MitM interface theories we can generate I/O
interfaces that translate between the low-level LMFDB API, which delivers raw
MongoDB data in JSON format into MMT expressions that are grounded in the
interface theories. This ties the LMFDB database into the MitM architecture
transparently. As a side effect, this opens up the LMFDB to programmatic
queries via the MMT API, which can be queried and can then relay them to the
LMFDB API directly and transparently.

5 Distributed collaboration with GAP/Sage

Another aspect of interoperability in a mathematical VRE is the possibility of
distributed multisystem computations, where e.g. a given system may decide to
delegate certain subcomputations or reasoning tasks to other systems.

There are already a variety of peer-to-peer interfaces between systems in
the OpenDreamKit project (see Figure 1), which are based on the handle
paradigm; for example Sage includes, among others, interfaces for GAP, Sin-
gular, and PARI. In this paradigm, when a system A delegates a calculation
to a system B, the result r of the calculation is not converted to a native A
object; instead B just returns a handle h (or reference) to the object r. Later,
A can run further calculations with r by passing it as argument to functions or
methods implemented by B. Some advantages of this approach are that we can
avoid the overhead of back and forth conversions between A and B, and that we

9



can manipulate objects of B from A, even if they have no native representation
in A.

The next desirable feature is for the handle h to behave in A as if it was a
native A object; in other words, one wants to adapt the API satisfied by r in B
to match the API for the same kind of objects in A. For example, the method
call h.cardinality() on a Sage handle h to a GAP object G should trigger in
GAP the corresponding function call Size(G).

This can be implemented using the classical adapter pattern, mapping calls to
Sage’s method to corresponding GAP methods. Adapter classes have already
been implemented for certain types of objects, like Sage’s PermutationGroup

or MatrixGroup. However, this implementation lacks modularity: for example,
if h is a handle to a mere set S, Sage cannot use the adapter method that maps
h.cardinality() to Size(S), because this adapter method is only available in
the above two adapter classes.

To get around this problem we have worked on a more semantic integration,
where adapter methods are made aware of the type hierarchies of the respective
systems, and defined at the highest available level of generality, as in Listing 1.3.

Listing 1.3. A semantic adapter method in Sage

class Sets: # Everything generic about sets in Sage
class GAP: # Adapter methods relevant to Sets in the Sage−Gap interface

class ParentMethods: # Adapter methods for sets
def cardinality(self): # The adapter for the cardinality method

return self.gap().Size().sage()
class ElementMethods: # Adapter methods for set elements

...
class MorphismMethods: # Adapter methods for set morphisms

...
class Groups: # Everything generic about groups in Sage

# This automatically includes features defined at a more general level

This peer-to-peer approach however does not scale up to a dozen systems.
This is where the MitM paradigm comes to the rescue. With it, the task is
reduced to building interface theories and interface views into the core MitM
ontology in such a way that the adapter pattern can be made generic in terms
of the MitM ontology structure, without relying on the concrete structure of
the respective type systems. Then the adapter methods for each peer-to-peer
interface can be automatically generated. In our example the adapter method
for cardinality can be constructed automatically as soon as the MitM interface
views link the cardinality function in the Sage interface theory on Sets with
the Size function in the corresponding interface theory for GAP.

We will now show first results of our experiments with interface theories and
interface views, including several applications beyond the generation of interface
theories that support distributed computation for Sage and GAP.

10



5.1 Semantics in the Sage category system

The Sage library includes 40k functions and allows for manipulating thousands
of different kinds of objects. In any large system it is critical to tame code bloat
by

i) identifying the core concepts describing common behavior among the ob-
jects;

ii) implementing generic operations that apply on all objects having a given
behavior, with appropriate specializations when performance calls for it;

iii) designing or choosing a process for selecting the best implementation avail-
able when calling an operation objects.

Following mathematical tradition and the precedent of the Axiom, Fricas,
or MuPAD systems, Sage has developed a category-theory-inspired “category
system”, and found a way to implement it on top of the underlying Python
object system [Dev16; SC]. In short, a category specifies the available oper-
ations and the axioms they satisfy. This category system models taxonomic
knowledge from mathematics explicitly and uses it to support genericity, control
the method selection process, structure the code and documentation, enforce
consistency, and provide generic tests.

@semantic(mmt=”sets”)
class Sets:

class ParentMethods:
@semantic(mmt=”card?card”, gap=”Size”)
@abstractmethod
def cardinality(self):

”Return the cardinality of ‘‘self‘‘”

Fig. 5. An annotated category in Sage

To generate interface
theories from the Sage
category system, we are
experimenting with a sys-
tem of annotations in
the Sage source files.
Consider for instance the
situtation in Figure 5
where we have annotated
the Sets() category in
Sage with @semantic lines that state correspondences to other interface theo-
ries. From these the Sage-to-MMT exporter can generate the respective interface
theories and views.

In ongoing experiments, variants of the annotations are tested for annotating
existing categories without touching their source files and providing the signature
or the corresponding method names in other systems when this information has
not yet been formalized elsewhere.

5.2 Exporting the GAP knowledge: type system documentation

As in Sage, the GAP type system encodes a wealth of mathematical knowledge,
which can influence method selection. For example establishing that a group is
nilpotent will allow for more efficient methods to be run for finding its centre. The
main difference between Sage and GAP lies in the method selection process. In
Sage the operations implemented for an object and the axioms they satisfy are
specified by its class which, together with its super classes, groups syntactically
all the methods applicable in this context. In GAP, this information is instead

11



specified by the truth-values of a collection of independent filters, while the
context of applicability is specified independently for each method. Breuer and
Linton describe the GAP type system in [BL] and the GAP documentation
[Gap] also contains extensive information on the types themselves.

Fig. 6. The GAP Knowledge Graph.

GAP allows some introspection of
this knowledge after the system is
loaded: the values of those attributes
and properties that are unknown on
creation, can be computed on demand,
and stored for later reuse.

As a first step in generating in-
terface theories for the MitM ontol-
ogy, we have developed tools to ac-
cess mathematical knowledge encoded
in GAP, such as introspection inside a
running GAP session, export to JSON
to import to MMT, and export as
a graph for visualisation and explo-
ration. These will become generally
available in the next GAP release. The
JSON output of the GAP object sys-
tem with default packages is currently
around 11 Megabytes, and represents
a knowledge graph with 540 vertices,
759 edges and 8 connected compo-
nents, (see Figures 6,7). If all packages
are loaded, this graph expands to 1616
vertices, 2178 edges and 17 connected
components.

There is, however, another source
of knowledge in the GAP universe:
the documentation, which is provided
in the GAPDoc format [LN12]. Be-
sides the main manuals, GAPDoc is
adopted by 97 out of the 130 packages currently redistributed with GAP. Con-
ventionally GAPDoc is used to build text, PDF and HTML versions of the
manual from a common source given in XML. The reference manual has almost
1400 pages and the packages add hundreds more.

The GAPDoc sources classify documentation by the type of the documented
object (function, operation, attribute, property, etc.) and index them by system
name. In this sense they are synchronized with the type system (which e.g. has
the types of the functions) and can be combined into flexiformal OMDoc/MMT
interface theories, just like the ones for LMFDB in Section 4. This conversion is
currently under development and will lead to a significant increase of the scope
of the MitM ontology.

12



Fig. 7. The GAP Knowledge Graph (fragment).

As a side-effect of this work, we discovered quite a few inconsistencies in the
GAP documentation which came from a semi-automated conversion of GAP
manuals from the TEX-based manuals used in GAP 4.4.12 and earlier. We devel-
oped the consistency checker for the GAP documentation, which extracts type
annotations from the documented GAP objects and compares them with their
actual types. It immediately reported almost 400 inconsistencies out of 3674
manual entries, 75% of which have been eliminated in the subsequent cleanup.

6 Conclusion

In this paper we have presented the OpenDreamKit project and the “Math-in-
the-Middle” approach it explores for mitigating the system integration problems
inherent in combining an ecosystem of open source software systems into a coher-
ent mathematical virtual research environment. The MitM approach relies on a
central, curated, flexiformal ontology of the mathematical domains to be covered
by the VRE together with system-near interface theories and interface views to
the core ontology that liaise with the respective systems. We have reported on
two case studies that were used to evaluate the approach: an interface for the
LMFDB, and a more semantic handle interface between GAP and Sage.

Even though the development of the MitM is still at a formative stage, these
case studies show the potential of the approach. We hope that the nontrivial cost
of curating an ontology of mathematical knowledge and interface views to the
interface theories will be offset by its utility as a resource, which we are currently
exploring; the unification of the knowledge representation components
1. enables VRE-wide domain-centered (rather than system-centered) documen-

tation;

13



2. can be leveraged for distributed computation via uniform protocols like the
SCSCP [HR09] and MONET-style service matching [CDT04] (the absence of
content dictionaries – MitM theories – was the main hurdle that kept these
from gaining more traction);

3. will lead to the wider adoption of best practices in mathematical knowledge
management in the systems involved; in fact, this is already happening.

Whether in the end the investment into the MitM will pay off also depends on
the quality and usability of the tools for mathematical knowledge management.
Therefore we invite the CICM community to interact with and contribute to
the OpenDreamKit project, on this work package and the others. Possible
contributions include
1. interfacing another system to the MitM architecture via interface theories
2. contributing to the MitM core ontology
3. MitM-refactoring existing integrations of mathematical software systems.

Acknowledgements The authors gratefully acknowledge the other partici-
pants of the St Andrews workshop, in particular John Cremona, Luca de Feo,
Steve Linton, and Viviane Pons, for discussions and experimentation which clar-
ified the ideas behind the math-in-the-middle approach.

We acknowledge financial support from the OpenDreamKit Horizon 2020
European Research Infrastructures project (#676541), from the EPSRC Collab-
orative Computational Project CoDiMa (EP/M022641/1) and from the Swiss
National Science Foundation grant PP00P2 138906.

References

[Aus+03] R. Ausbrooks et al. “Mathematical Markup Language (MathML)
v. 2.0.” In: World Wide Web Consortium recommendation (2003).

[BL] Thomas Breuer and Steve Linton. “The GAP 4 Type System: Or-
ganising Algebraic Algorithms”. In: Proceedings of the 1998 Interna-
tional Symposium on Symbolic and Algebraic Computation. ISSAC
’98. ACM, pp. 38–45.

[Bus+04] Stephen Buswell et al. The Open Math standard. Tech. rep. Ver-
sion 2.0. The Open Math Society, 2004.

[CDT04] Olga Caprotti, Mike Dewar, and Daniele Turi. Mathematical Ser-
vice Matching Using Description Logic and OWL. Tech. rep. The
MONET Consortium, 2004.

[Dev16] The Sage Developers. SageMath, the Sage Mathematics Software
System (Version 7.0). 2016. url: http://www.sagemath.org.

[EI] EINFRA-9: e-Infrastructure for Virtual Research Environment. url:
http://ec.europa.eu/research/participants/portal/desktop/

en/opportunities/h2020/topics/2144-einfra-9-2015.html.
[Gap] GAP – Groups, Algorithms, and Programming, Version 4.8.2. The

GAP Group. 2016. url: http://www.gap-system.org.

14

http://www.sagemath.org
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2144-einfra-9-2015.html
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/2144-einfra-9-2015.html
http://www.gap-system.org


[HR09] P. Horn and D. Roozemond. “OpenMath in SCIEnce: SCSCP and
POPCORN”. In: MKM/Calculemus Proceedings. Ed. by Jacques
Carette et al. LNAI 5625. Springer Verlag, July 2009, pp. 474–479.

[KMR13] Michael Kohlhase, Felix Mance, and Florian Rabe. “A Universal Ma-
chine for Biform Theory Graphs”. In: Intelligent Computer Math-
ematics. Ed. by Jacques Carette et al. Lecture Notes in Computer
Science 7961. Springer, 2013. doi: 10.1007/978-3-642-39320-4.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathe-
matical documents [Version 1.2]. LNAI 4180. Springer Verlag, Aug.
2006. url: http://omdoc.org/pubs/omdoc1.2.pdf.

[Koh13] Michael Kohlhase. “The Flexiformalist Manifesto”. In: 14th Inter-
national Workshop on Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC 2012). Ed. by Andrei Voronkov et al.
Timisoara, Romania: IEEE Press, 2013, pp. 30–36.

[KRSC11] Michael Kohlhase, Florian Rabe, and Claudio Sacerdoti Coen. “A
Foundational View on Integration Problems”. In: Intelligent Com-
puter Mathematics. Ed. by James Davenport et al. LNAI 6824.
Springer Verlag, 2011, pp. 107–122.

[KW03] H. Kanayama and H. Watanabe. “Multilingual translation via an-
notated hub language”. In: MT-Summit IX. 2003, pp. 202–207.

[Lmfa] LMFDB GitHub repository. url: https://github.com/LMFDB/

lmfdb.
[Lmfb] LMFDB inventory GitHub repository. url: https://github.com/

LMFDB/lmfdb-inventory.
[Lmfc] LMFDB Knowledge Database. url: http://lmfdb.org/knowledge/.
[Lmfd] LMFDB Knowledge Database entry for Minimal Weierstrass equa-

tion over the rationals. url: http://lmfdb.org/knowledge/show/
ec.q.minimal_weierstrass_equation.

[LN12] F. Lübeck and M. Neunhöffer. GAPDoc, A Meta Package for GAP
Documentation, Version 1.5.1. 2012. url: http://www.math.rwth-
aachen.de/~Frank.Luebeck/GAPDoc.

[MMT] Florian Rabe. The MMT Language and System. url: https://svn.
kwarc.info/repos/MMT/doc/html (visited on 10/11/2011).

[ODK] OpenDreamKit Open Digital Research Environment Toolkit for the
Advancement of Mathematics. url: http://opendreamkit.org.

[Rda] Research Data Alliance Type Registries Working Group. url: https:
//rd-alliance.org/groups/data-type-registries-wg.html.

[RK13] Florian Rabe and Michael Kohlhase. “A Scalable Module System”.
In: Information & Computation 0.230 (2013), pp. 1–54.

[SC] Nicolas M. Thiéry et al. Elements, parents, and categories in Sage:
a primer. url: http://combinat.sagemath.org/doc/reference/
categories/sage/categories/primer.html.

[Wie92] Gio Wiederhold. “Mediators in the architecture of future informa-
tion systems”. In: Computer 25.3 (1992), pp. 38–49.

15

http://dx.doi.org/10.1007/978-3-642-39320-4
http://omdoc.org/pubs/omdoc1.2.pdf
https://github.com/LMFDB/lmfdb
https://github.com/LMFDB/lmfdb
https://github.com/LMFDB/lmfdb-inventory
https://github.com/LMFDB/lmfdb-inventory
http://lmfdb.org/knowledge/
http://lmfdb.org/knowledge/show/ec.q.minimal_weierstrass_equation
http://lmfdb.org/knowledge/show/ec.q.minimal_weierstrass_equation
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc
https://svn.kwarc.info/repos/MMT/doc/html
https://svn.kwarc.info/repos/MMT/doc/html
http://opendreamkit.org
https://rd-alliance.org/groups/data-type-registries-wg.html
https://rd-alliance.org/groups/data-type-registries-wg.html
http://combinat.sagemath.org/doc/reference/categories/sage/categories/primer.html
http://combinat.sagemath.org/doc/reference/categories/sage/categories/primer.html

	Interoperability in the OpenDreamKit Project: The Math-in-the-Middle Approach

