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Abstract

In this thesis we examine properties and constructions of graph au-
tomatic semigroups, a generalisation of both automatic semigroups
and finitely generated FA-presentable semigroups. We consider the
properties of graph automatic semigroups, showing that they are
independent of the choice of generating set, have decidable word
problem, and that if we have a graph automatic structure for a
semigroup then we can find one with uniqueness. Semigroup con-
structions and their effect on graph automaticity are considered. We
show that finitely generated direct products, free products, finitely
generated Rees matrix semigroup constructions, zero unions, and
ordinal sums all preserve unary graph automaticity, and examine
when the converse also holds. We also demonstrate situations where
semidirect products, Bruck-Reilly extensions, and semilattice con-
structions preserve graph automaticity, and consider the conditions
we may impose on such constructions in order to ensure that graph

automaticity is preserved.

Unary graph automatic semigroups, that is semigroups which
have graph automatic structures over a single letter alphabet, are
also examined. We consider the form of an automaton recognis-
ing multiplication by generators in such a semigroup, and use this
to demonstrate various properties of unary graph automatic semi-

groups. We show that infinite periodic semigroups are not unary



ii

graph automatic, and show that we may always find a uniform set
of normal forms for a unary graph automatic semigroup. We also de-
termine some necessary conditions for a semigroup to be unary graph
automatic, and use this to provide examples of semigroups which are
not unary graph automatic. Finally we consider semigroup construc-
tions for unary graph automatic semigroups. We show that the free
product of two semigroups is unary graph automatic if and only if
both semigroups are trivial; that direct products do not always pre-
serve unary graph automaticity; and that Bruck-Reilly extensions

are never unary graph automatic.
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Chapter 1

Introduction and

Background

Graph automatic semigroups are an extension of the concept of automaticity, as
introduced for groups in [18] and for semigroups in [14]. They can also be seen as
an extension of finitely generated FA-presentable semigroups, as considered in
[9]. As a generalisation of both these concepts, it is interesting to examine which
properties of FA-presentable semigroups and automatic semigroups extend to

the graph automatic case.

Graph automatic groups and semigroups can also be considered as those
whose Cayley graphs admit an automatic presentation, as in the sense of [26].
The concept of a Cayley FA-presentable group was considered in [7], where it
is shown that there exist semigroups whose Cayley graphs are FA-presentable
which are not automatic. The concept of the Cayley graph of a semigroup being
FA-presentable was discussed in [9], where it is used to show that the classes of

automatic semigroups and FA-presentable semigroups are incomparable.

The main study of graph automatic groups is in [25]. Here, the authors
examine properties and constructions of graph automatic groups. As with au-

tomatic groups, the definition of graph automatic groups considers the group as
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a semigroup. Therefore it is natural to extend the concept of graph automaticity
to semigroups, and examine whether the properties of graph automatic groups
still hold in the semigroup case, and to examine further semigroup-theoretic

constructions.

In this thesis we provide an introduction to the theory of graph automatic
semigroups. We begin by providing some background definitions in this chapter.

In Chapter 2 we introduce the concept of graph automatic semigroups and
give some initial examples. We compare the concept of graph automaticity with
automaticity and FA-presentability, showing that any automatic semigroup is
graph automatic, and that any finitely generated FA-presentable semigroup is
graph automatic. We also show that graph automaticity of a semigroup is
equivalent to FA-presentability of the Cayley graph of the semigroup, and so
we may consider our graph automatic semigroups as FA-presentable structures.
We then demonstrate some of the properties of graph automatic semigroups,
namely that the existence of a graph automatic structure is independent of the
choice of finite generating set, that every graph automatic semigroup has an
injective graph automatic structure, and that graph automatic semigroups have

decidable word problem.

In Chapter 3 we consider substructures of graph automatic semigroups. We
examine the conditions under which subsemigroups and ideals of graph auto-
matic semigroups can be shown to be graph automatic, in particular showing
that left ideals and large subsemigroups preserve graph automaticity. We then
go on to consider small extensions of graph automatic semigroups, and demon-
strate some situations where these can be shown to preserve graph automaticity.

Chapters 4 and 5 consider semigroup constructions. We examine whether
various semigroup constructions preserve graph automaticity, and whether graph
automaticity of the semigroup construction implies graph automaticity of the
original semigroups. In Chapter 4 we consider various products of semigroups,
examining free products, semidirect products, direct products and Bruck-Reilly

extensions. In Chapter 5 we examine unions of semigroups. We consider Rees
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matrix constructions, semilattices of semigroups, zero unions, and ordinal sums.
Throughout both these chapters we also compare our results regarding construc-

tions to the similar results for automatic and FA-presentable semigroups.

For the final two chapters we focus on graph automatic semigroups which
have a graph automatic structure over a single letter alphabet. In Chapter
6 we introduce these unary graph automatic semigroups and consider some
of their properties. We show that infinite unary graph automatic semigroups
are not periodic and that we can find a uniform set of normal forms for their
elements. We also show that there are restrictions on the forms of the automata
which recognise multiplication in unary graph automatic structures, and provide
examples of semigroups which are and which are not unary graph automatic.
Chapter 7 then revisits the constructions from Chapters 4 and 5 in the context

of unary graph automatic semigroups.

1.1 Languages and Automata

In this section we include some standard definitions and results from automata
and language theory. More background to this topic can be found in any stan-
dard formal language theory book, such as [31], [23], [27] and the introductory

chapter of [18].

An alphabet is a set of symbols, and a finite sequence of such symbols is
called a word. The symbol € represents the empty word, that is the word of
length zero. We may concatenate two words o = ajas . ..a., and 8 = b1by ... b,
by joining them together to form a new word «- 3 = aias ... a,b1bs ... by, often
denoted as just . Note that € - o = o - € = « for any word . The set of all
possible words over an alphabet A is denoted A*, and the set of all words with

positive length (i.e all strings excluding the empty word) is denoted A*.

A language is any subset of A*. If L and K are languages over A then LNK,

LUK and L\ K are also languages. We may also concatenate languages to get
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the product of two languages, written K - L or KL and defined to be
KL={aB:a€ K,p € L}.

We may take the Kleene star of a language, defined to be

Uz

1€Np

where LY = {e} and L' = L. L. In a similar way, we have that

Lt=Jr.

€N

A many-variable language is a language over an n-tuple of alphabets
(A1, As,...,Ap)

consisting of n-tuples of words (a1, ag, ..., an), with a; € AF. We may consider
such a string as a string of n-tuples, in which case we must include a padding
symbol, $, not already in our alphabets, to account for the case where the words

«; have different lengths. Thus we consider words over the padded alphabet
B = (B x By x---x B,)\ {(8,8%,...,9)},

where B; = A; U{$}. Then given a word (a1, @, ..., ay) over B such that o is
the longest word for 1 < j < n, we pad each word «; with $ symbols at the end
in order to make each word have the same length as «;. In this way we may

think of our words as the concatenation of letters which are n-tuples from B.

If we have languages K and L over the alphabets A; and A, respectively,
then we may take their direct product to get a new language over the padded

alphabet ((A; U {$}) x (A2 U{$}))\ (8,9).
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1.1.1 Regular Languages

Regular expressions over a language A are defined as follows.
e Each of ), ¢ and a, for each a € A are regular expressions.
e If r and s are regular expressions, then so is r U s.
e If r and s are regular expressions, then so is rs.
e If r is a regular expression, then so is 7*.

Every regular expression can be derived by finitely many applications of the
above steps, and any regular expression defines a language. A language is regular
if it is the language defined by some regular expression.

If A, Ay and A are finite alphabets then regular languages have the following

properties :
e ), AT and A* are regular languages.
e any finite subset of A* is a regular language.

o if K C A* and L C A* are regular, then K UL, KNL, K\ L, KL and L*

are all regular.

o if K C Aj is regular, and ¢ : A} — A} is a homomorphism (see Section

1.2), then @K is regular.

o if K C A} is regular, and ¢ : A} — A} is a homomorphism, then ¢ 1K is

regular.
o if K C A} and L C A} are regular, then K x L is regular.

o if U C A" x A* is regular, then

{a € A" : (o, 3) € U for some § € A*}

is regular.



6 1. INTRODUCTION AND BACKGROUND

See [22], for example, for proofs of the first five of these properties, and [5]
for the proofs of the final two.

Note that when we refer to K x L, we are implicitly taking the padded
versions of these languages to allow for words of different lengths. If we have
two regular languages which are padded products in this way, then the following
result, which is Lemma 5.3 of [2], gives us a condition for regularity of their

concatenation.

Proposition 1.1.1 (Theorem 3.3 of [17]). Let A be an alphabet and let M and
N be regular languages over ((A*U{8$}) x (A*U{$}))\{($,8)}. If there exists a
constant C' such that for any two words wy,ws € A* we have that (w1, ws) € M
implies that

[fwi] = Jwel| < C,

then the language M N 1is regular.

In particular, note that this condition will always be satisfied if the first of

our languages is finite.

If we have a regular language R over the padded alphabet A; x A; we denote

the set of words which appear in the first component of R by

RY = {a € A} : (a, ) € R for some f € A}}

and the set of words which appear in the second component of a word from R
by
R® = {p € A5 : (o, ) € R for some a € A}}.

These are both regular.

The following result of [14], which follows from a result of [18], will also be

useful.

Proposition 1.1.2 (Proposition 2.3 of [14]). Let X be a finite alphabet. If



1.1. LANGUAGES AND AUTOMATA 7

U,V C¥* x X* are regqular, then

{(a,y) € ¥ x X* : there exists § € X* such that (o, 3) € U and (8,7) € V}

is reqular.

Proof. This follows from Theorem 1.4.6 of [18]. O

1.1.2 Finite State Automata

Definition 1.1.3. A (deterministic) finite state automaton is a 5-tuple &/ =

(%, S, qo0, F,0), where
e Y is a finite alphabet,
e S is a finite set of states,
e g € S is a distinguished start state,
e FC Sis aset of accept states, and

e 0:5x XY — Sisa transition function (which may be a partial function).

We will often refer just to an automaton when we mean a deterministic finite
state automaton.

Let o = (%, S, qo, F,0) be a finite state automaton. Then we say that < ac-
cepts a word @ = aqas . ..a, € X* if there is a sequence of states qg, q1,¢2, - - -, qn
such that 0(g;,a;+1) = qi+1 and ¢, € F.

If L is the set of words accepted by <7 then we say L is the language accepted
or recognised by <.

An automaton is nondeterministic if the transition function can also read the
empty word, and may output multiple states, that is § : S x (XU {e}) — P(S).
Every nondeterministic automaton is equivalent to a deterministic automaton,

and so we may assume that our automata are deterministic.

Proposition 1.1.4 (Kleene’s Theorem). Regular languages are precisely the

languages recognised by finite state automata.
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1.2 Semigroups

In this section we introduce some basic definitions of semigroup theory. These
definitions are standard and can be found in any introductory book on semigroup
theory, such as [24], [15] and [19].

A semigroup is a set with an associative binary operation -, that is
(r-s)-t=r-(s-1t)

for all r,s,t € S. We will frequently omit the operator and merely write st for
s -t. We often refer to our binary operation as multiplication. A semigroup is

commutative if in addition we have that
st =ts

for all s,t € S.

Note that throughout this thesis we shall assume that our semigroups are
non-empty.

If S contains an element e such that es = s for all s € S then e is a left
identity of S. Similarly, if se = s for all s € S then e is a right identity of S,
and if e is both a left and a right identity then we call it the identity of S, often
denoted 1. Note that a semigroup can have at most one identity element. A
semigroup with an identity is called a monoid.

A group is a monoid with the additional condition that for each s € S there
is a unique element s~! such that ss™! =1 = s7!s.

If S contains an element z such that zs = z for all s € S then z is a left
zero. Similarly, if sz = z for all s € S then z is a right zero, and if z is both a
left and a right zero for S then it is a zero.

An idempotent is an element e € S such that e? = e.

A non-empty subset T" of S is a subsemigroup if it is closed under multipli-

cation, that is st € T for all s,t € T. If a subsemigroup of S is a group with
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respect to the operation of S then it is a subgroup of S. A non-empty subset [
of S is a left ideal if SI C I, and a right ideal if IS C I. If I is both a left and
a right ideal then S is a (two-sided) ideal. Every left, right or two-sided ideal is
also a subsemigroup.

An element of a semigroup ¢ € S is left cancellative if for all s;t € S we
have that c¢s = ct implies s = t. The element c is right cancellative if sc = tc
implies that s = ¢, and is cancellative if it is both left and right cancellative. A
semigroup S is cancellative (or left cancellative or right cancellative) if all ele-
ments of S are cancellative (respectively left cancellative or right cancellative).
Groups are always cancellative.

If S and T are semigroups then a semigroup homomorphism is a map @ :
S — T such that p(s)p(t) = p(st) for all s,¢t € S. If S and T are monoids then
a monoid homomorphism has the additional property that ¢(1g) = 17, where
lg and 17 are the identity elements of S and T respectively. In either case,
if ¢ is a bijection then we call ¢ an isomorphism, and if S = T then ¢ is an
endomorphism. If ¢ is an isomorphism and S = T then it is an automorphism.

A generating set X for a semigroup S is a set such that any element of S is
a finite product of elements from X. If X is a generating set of S then we write
S = (X). If there is a finite set X = {x1,x2,...,2,} such that X generates S
then S is finitely generated, and we may write S = (x1, %2, ..., Z,). A semigroup
is monogenic if it is generated by a single element.

Given a set X, the set X+ under the operation of concatenation is the free
semigroup on X, and the set X* under concatenation is the free monoid on X.

A relation R on a set X is a subset of X x X. Two elements x and y are
related if (xz,y) € R. This is often written as zRy. A relation is reflexive if
(z,z) € R for all x € X, symmetric if (z,y) € R implies that (y,z) € R, and
transitive if (x,y) € R and (y, z) € R implies that (z,2) € R, for all z,y,2 € X.
A relation which is reflexive, symmetric and transitive is an equivalence relation.
A congruence p on a semigroup S is an equivalence relation on S such that if

(x,y) € p then (zz,zy) € p and (zz,yz) € p for all z € S. The set of all
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equivalence classes of a congruence p forms a semigroup S/p, known as the
quotient of S by p.

A semigroup presentation for a semigroup S is a pair (X | R), where X
is a set and R C X+ x X7 is a set of relations. This defines the semigroup
isomorphic to the quotient X ¥ /p, where p is the least congruence containing R.
A semigroup is finitely presented if both X and R are finite.

A monoid presentation for a monoid is (X | R), where X is a set and
R C X* x X* is a set of relations. This defines the semigroup isomorphic to the
quotient X*/p, where p is the least congruence containing R.

The semigroup free product of semigroups S and T is the set of all finite
strings s182...8, for n > 1, where s; € SUT for 1 <i<n ands; € S if and

only if s;4+1 € T. Then multiplication is defined as

S§182 ... 8pt1ta .. . tm, ifs,€eSandt; €T ors, €T andt; €S
st =

8182 ... 8p_1Uto ... ty,, if s,,t1 € Sor sy, t1 €T

for s =s182...8, and t = t1ts...t,,, and u = s,t; when both s,, and t; are in
S or both are in T'.

The direct product of semigroups S and 7' is the set S x T with multiplication

(s,t)(s',t') = (s5',tt)

for s,s’ € Sand t,t' € T.

The Cayley graph of a semigroup S with respect to a finite generating set X
is the directed graph whose vertices are the elements of the semigroup S, with
edges labelled by the elements of X, where there is a directed edge between two

vertices s and t labelled by x € X if and only if sz =t.



Chapter 2

Graph Automatic
Semigroups: An

Introduction

In this chapter we will introduce the concept of graph automatic semigroups,
provide some examples of such semigroups, and examine some of their proper-
ties. We will also consider some concepts which are related to graph automatic-
ity, namely automaticity and FA-presentability, and examine the relationships

between these concepts and graph automaticity.

2.1 Definition and Examples

In [25], the authors define a graph automatic group and examine various prop-
erties and constructions relating to these groups. However, the definition of a
graph automatic group does not rely on the existence of an identity or inverses,
it merely requires that the multiplication in the group is recognisable. Thus
the definition given in [25] treats the group as a semigroup, and so would seem

more natural as a semigroup definition. Hence we may use the same definition

11
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for a graph automatic semigroup.

Definition 2.1.1. Let S be a semigroup generated by a finite set X. We
call S Cayley graph automatic (or merely graph automatic) if and only if there
exists a finite alphabet X, a regular language R C ¥*, and a surjective mapping

v: R — S, for which the sets

R_={(a,8) € Rx R:v(a) =v(B)}

and

R, ={(.8) € R x R: v(a)z = v(3)}

are regular, for each z € X. In this case we say that (X,%, R,v) is a graph

automatic structure for S.

For brevity, we will usually omit the word Cayley, referring to our semigroups
as graph automatic.

Note that this definition seemingly relies on our choice of generating set, X.
For the moment, we say that a semigroup is graph automatic as long as it has a
graph automatic structure for some finite generating set. We will examine the
effect that the choice of generating set has on graph automaticity in Section 2.4.

We now give some examples of graph automatic semigroups. We begin by

showing that any finite semigroup is graph automatic.

Example 2.1.2. Let S = {s1,892,...,8,} be a finite semigroup. Then S is
finitely generated by the set S itself. Let ¥ = {aj,as,...,a,} and R = X.
Define v : R — S by

v(a;) = s;.

This is clearly surjective. Then the set

R_={(,f) e RxR:v(a)=v(B)}

= {(as,a;) : 1 <i<n}
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is finite, and so is regular. For each s € S, we have that

R ={(a, f) € Rx R:v(a)s = v(B)}

={(a;,a;) E RX R:s;s =s;}

is also finite, and so is regular. Hence S is graph automatic, and

(8,2 ={a1,a2,...,a,},R="{a1,as,...,a,},v)

is a graph automatic structure for S.

Next we consider the bicyclic monoid. This is the semigroup defined by the
monoid presentation

B ={bc|bc=1).

Note that every element of B can be expressed as c¢’b’ for some 7, j € Ny. More
information regarding the bicyclic monoid can be found in [15] or [24]. In the

following example we show that the bicyclic monoid is graph automatic.

Example 2.1.3. Consider the bicyclic monoid, B = {c¢'b’ : i,j € Ng}. Then
B is generated as a semigroup by the set X = {b,c}. Let ¥ = {8,~} and let
R =~*3*. We define v: R — B by

v(y'3) =c'v

which is surjective, and we have that

R_ ={(y'#,7"8") e Rx R:v(y'8) = v(v"B')}
={(v'#,7'8) :i,j € No}

={(o, ) : a € R}
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is regular. Then

Ry ={(v'#,v*B") € Rx R:v(v'#)b=v(v"3")}
={(v'#7,7'37%") 1,5 € No}

={(,a):a € R}(S,0)

is regular, and

Re ={(v'#,7*B') € Rx R:v(v'#)c = v(y*8")}
={(v'#,7'# )i €Ny, j e NFU{(v', ") 1 i € No}

={(a,a) @ € R}(B,8) U (7,7)"($,7)

is regular. Hence B is graph automatic, with graph automatic structure

(X = {b’ C}v Y= {/877}7R = 'y*ﬂ*71/).

In our next example we consider finitely generated free semigroups. Recall
that a semigroup F is free if it is given by the semigroup presentation (X | ).

We now show that any finitely generated free semigroup is graph automatic.

Example 2.1.4. Let Fx be the free semigroup generated by the set X =
{z1,22,...,2p}. Let ¥ ={ay,as,...,a,} and R = 3", We define v: R — Fx
by

v(ag, Gky - - - Ak, ) = Ty Thy - - - Tk,
for k; € {1,2,...,n} and m € N. Note that this is surjective. Then
R_ ={(ag, ... ax,,, a5, ...a;) € RxR:v(ag, ...ax,) =v(a; ...a;)}

={(ak, -..ak,, (K, -..ag, ) 1 <k <n}

={(a,a) :a € R}
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is regular, and for any x; € X we have that

Ry, ={(ak, ... ak,,,a;, ...a;,) €E RXR:v(ak, ...a, )z =v(aj ...a;)}
= {(akl e Qg Ay ...akmai) 01 S kl §n}

={(a,a) : « € R}($,a;)
is regular. Thus Fx is graph automatic, with graph automatic structure
(X ={z1,22,...,7,}, X = {a1,0az,...,a,}, R=3",v).

In a similar way, we may also show that any finitely generated free monoid is
also graph automatic, by replacing X in the above example by ¥* and defining
v(e) = 1, then proceeding in a similar way. We will see an alternative way of
demonstrating this fact in Section 3.2.

Note that in Section 2.2 we will see an alternative way of showing that the
semigroups in Examples 2.1.3 and 2.1.4 are graph automatic, as a consequence

of Proposition 2.2.2.

2.2 Concepts Related to Graph Automaticity

We now examine some other ways of representing semigroups with regular lan-
guages and see how they relate to graph automaticity. In particular we look at

automaticity and FA-presentability.

2.2.1 Automaticity

The concept of automatic groups was first introduced in [18], and this idea was
extended to semigroups in [14]. We consider the definition of an automatic

semigroup, as given in [14].

Definition 2.2.1. Let S be a semigroup, A be a finite set, L be a regular subset
of AT, and ¢ : AT — S be a homomorphism with ¢(L) = S. Then (4, L, ¢) is
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an automatic structure for S if

Lo={(a,8) e Lx L:p(a) =)}

and

Lo ={(a,8) € Lx L: p(a)a=¢(0)}

for each a € A are regular. A semigroup is automatic if it has an automatic

structure for some A and L.

Note that this definition is quite similar to our definition of a graph auto-
matic semigroup. However, for an automatic semigroup the alphabet and the
generating set are conflated, and the surjective map becomes a homomorphism.

In [14], the authors examine numerous properties of automatic semigroups,
in some case showing that properties can be generalised from automatic groups
but also highlighting properties which do not generalise. These results include
the fact that that the word problem for automatic semigroups is decidable in
quadratic time; that automatic semigroups have a structure with uniqueness
(that is a structure where the homomorphism is also a bijection); that the
existence of an automatic structure does depend on the choice of generating set;
and that, unlike automatic groups, automatic semigroups are not necessarily
finitely presented. The authors also consider semigroup constructions which
preserve automaticity. For example, it is shown that adding and removing
identity and zero elements preserves automaticity, and that the free product of
two semigroups is automatic if and only if each semigroup is automatic. Further
constructions have been considered elsewhere, for example in [12] it is shown
that the direct product of two automatic semigroups is automatic if and only if
it is finitely generated; in [13] it is shown that completely-simple semigroups are
automatic if and only if their base group is automatic; and in [21] it is shown
that automaticity is preserved by small extensions and large subsemigroups. A
survey of results regarding constructions of automatic semigroups is given in [2].

In [25] it is stated that any automatic group is also a graph automatic group.
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This is also true for semigroups.
Proposition 2.2.2. Fvery automatic semigroup is graph automatic.

Proof. Let S be an automatic semigroup. Then S has an automatic structure
(A, L, p) and comparing the two definitions we see that A can be identified with
X, then ¥ = A and R= L, and v = ¢, so S has a graph automatic structure
(A A L, p). O

However, the converse does not hold; there are semigroups which are graph
automatic but not graph automatic. We shall see examples of such semigroups

in Section 2.3.

2.2.2 FA-Presentability

We now consider FA-presentability, a concept which is defined for a general
relational structure. We begin by considering FA-presentable structures in gen-
eral, after which we will examine particular types of FA-presentable structures,
namely semigroups and Cayley graphs.

FA-presentable structures were first introduced in [26]. They are defined as

follows.

Definition 2.2.3. Let S = (S, R1, Ra, ..., R,) be a relational structure, where
each relation R; is of arity r;. Let A be a finite alphabet and L C A* be a
regular language over A. Let ¢ : L — S be a surjective mapping. Then (L, )

is an automatic presentation for S if the relations

L ={(a,) € L x L:(a)=v(B)}

and

LRi = {(a17a2’ .- '7aTi) eL": (w(al)aw(OQ)v s 71!)(047‘1')) € Rz}

are regular for each R;. A structure with an automatic presentation is FA-
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presentable.

It is shown in [26] that any FA-presentable structure has an injective au-
tomatic presentation, and in [6] it is shown that any FA-presentable structure
has an automatic presentation over a two letter alphabet. These may be ob-
tained simultaneously, by first finding an FA-presentable structure over a binary
alphabet and then restricting this to an injective automatic presentation.

We now consider FA-presentable semigroups, which were studied in [9]. In
this setting, we view our semigroup as a relational structure, where the binary

operation o is viewed as a ternary relation.

Definition 2.2.4. Let S be a semigroup, let L be a regular language over a
finite alphabet A and let ¢ : L — S be a surjective mapping. Then (L, ) is an

automatic presentation for S if

and

Lo ={(a,8,7) € L* : Y (a)¥(B) = ¥ (7)}

are both regular. A semigroup is FA-presentable if it has an automatic presen-

tation for some L and 1.

Comparing this to our definition of a graph automatic semigroup, we see that
while graph automaticity requires us to be able to recognise only multiplication
by generators, an FA-presentable structure recognises all multiplication in the
semigroup.

Constructions of FA-presentable semigroups are examined in [10]. Among
the results it is shown that the direct product of two FA-presentable semigroups
is FA-presentable, but the converse does not hold; that the free product of two
semigroups is FA-presentable if and only if the semigroups are both trivial; that
adding and removing zero and identity elements preserves FA-presentability;

and that FA-presentable semigroups are not closed under taking small exten-
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sions.
Note that an FA-presentable semigroup need not be finitely generated. In
the case where an FA-presentable semigroup is finitely generated, however, we

have that it is also graph automatic.

Proposition 2.2.5. Finitely generated FA-presentable semigroups are graph

automatic.

Proof. Let S be a finitely generated FA-presentable semigroup with automatic
presentation (L,v). Then L_ is regular, so we merely need to show that L, is
regular for each x in our finite generating set X. Fix [ such that (8) = « for
some x € X. Then

(Lx{B} xL)NL,

is regular and we may obtain L, by reading only the first and third components.

Hence L, is regular and (X, A, L, ) is a graph automatic structure for S. O

Note that the classes of automatic semigroups and FA-presentable semi-
groups are incomparable. This is demonstrated in [9], by considering the Cayley
graphs of semigroups as FA-presentable structures. We will see that the Cayley
graph of a semigroup being FA-presentable is equivalent to the semigroup being
graph automatic.

We may view a directed, labelled graph as a relational structure. If I' =
(V, E) and the edges of I' are labelled by some finite set L, then the underlying

set is the set of vertices, and our relations are

E ={(u,v) € VxV:(u,v) € F and is labelled [}

for each | € L.
In particular, we consider the case where I' is the Cayley graph of some
finitely generated semigroup S. In this case we see that S is graph automatic

precisely if ' is FA-presentable
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Proposition 2.2.6. A finitely generated semigroup is graph automatic if and

only if the Cayley graph of the semigroup is FA-presentable.

Proof. Let S be a graph automatic semigroup with structure (X, %, R,v). Then
R_ and R, are regular, for each x € X. The Cayley graph of S is given by
I' = (S, E), with (s,t) € E if and only if sz = ¢ for some € X. So (o, 8) € Ry
if and only if (v(«),v(0)) € E5. So we have that R, = Rg,. Thus we have that
(R, v) is an automatic presentation for I'.

Conversely, if L is a regular language over a finite alphabet A and (L, ) is
an automatic presentation for the Cayley graph I' = (S, E)) labelled by X, then

each of the relations L— and Lg, are regular, where

Lg, = {(a,B3) € L x L: (¢(a),¢(B)) € E is labelled by 2}

={(, ) € L X L: ¢(a)x = (B)}

=L,
and so (X, A, L,4) is a graph automatic structure for S. O

Thus we may consider our graph automatic semigroups as semigroups whose
Cayley graphs are FA-presentable. This means that our graph automatic semi-
groups immediately inherit the properties of FA-presentable structures. For
example, we can immediately say that every graph automatic structure has an

injective binary graph automatic structure.

2.3 Further Examples

In this section we consider further examples of graph automatic semigroups.
Propositions 2.2.2 and 2.2.5 immediately allow us to find multiple examples.
For example, finite semigroups, the bicyclic monoid, and finitely generated free
semigroups are all examples of automatic semigroups given in [14]. Thus we

could have used Proposition 2.2.2 to immediately determine that they were
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graph automatic, rather than proving it directly as we did in Examples 2.1.2,
2.1.3, and 2.1.4.

Using results from Section 2.2, we may show that any finitely generated com-
mutative semigroup is graph automatic, with the help of the following proposi-

tion from [9].

Proposition 2.3.1 (Theorem 6.1 of [9]). Every finitely generated commutative

semigroup admits an automatic presentation.

Now as every finitely generated FA-presentable semigroup is graph automatic

(Proposition 2.2.5), we have that:

Corollary 2.3.2. FEvery finitely generated commutative semigroup is graph au-

tomatic.

Proof. Every finitely generated FA-presentable semigroup is graph automatic,
by Proposition 2.2.5. Then as every finitely generated commutative semigroup

is FA-presentable, it is also graph automatic. O

Note that such semigroups are not necessarily automatic. In [20] the authors
show that there exist finitely generated commutative semigroups which are not

automatic by finding an example of such a semigroup, which is given below.

Example 2.3.3 (Example 4.1 of [20]). The semigroup defined by the presen-

tation

(a,b, z,y |aax = bx, bby = ay, ab = ba, ax = za,

ay = ya,br = xb, by = yb, xy = yx)

is commutative but not automatic.

This provides us with an example of a semigroup which is graph automatic

but not automatic.

Proposition 2.3.4. There exist graph automatic semigroups which are not au-

tomatic.
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Proof. The semigroup in Example 2.3.3 is a finitely generated commutative
semigroup, thus is graph automatic by Corollary 2.3.2. However, it is not auto-

matic, as shown in [20]. O

We also have examples of semigroups which are graph automatic but not
FA-presentable. To find an example of a graph automatic semigroup which is

not FA-presentable, we use the following proposition.

Proposition 2.3.5 (Proposition 4.1 of [10]). The semigroup free product of two

semigroups S and T is FA-presentable if and only if S and T are trivial.

This allows us to show that there are semigroups which are graph automatic

but not FA-presentable.

Proposition 2.3.6. There exist graph automatic semigroups which are not FA-

presentable.

Proof. The free group on two generators, Fb, is an example of a semigroup
which is graph automatic but not FA-presentable. In Example 2.1.4 we saw
that any finitely generated free semigroup is graph automatic, so in particular
F; is graph automatic. However, as Fj is the free product of two monogenic
free semigroups, it is not FA-presentable by Proposition 2.3.5. In fact, this
can be extended to say that any Fx with |X| > 1 is graph automatic but not
FA-presentable. O

Thus we see that the class of graph automatic semigroups is distinct from
both automatic and FA-presentable semigroups.

Another, non-commutative, example of a semigroup which is graph auto-
matic but not automatic is the Heisenberg group Hs(Z), that is the subgroup

of SL(3,7Z) consisting of upper triangular matrices of the form

0 1 ¢
0 0 1
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In [18] the authors show that the Heisenberg group is not automatic. How-
ever, it is shown to be a graph automatic group in [7]. Thus it is also a graph

automatic semigroup, which we demonstrate directly below.

Example 2.3.7. We show that H3(Z) is a graph automatic semigroup. Let
Hs(Z) be generated by X = {A, B,C}, where

110 1 0 1 100
A=10 1 0|,B=10 1 0ofl,andC=1]0 1 1
00 1 0 0 1 00 1

Let ¥ = {0,1} and L = ¥*. Then we may take R = L3 over a padded alphabet
%33 and define v : R — H3(Z) by

1 a b
V(OZvﬂ?’Y) = 0 1 C
0 0 1

where «, § and -y are the binary representations of a, b and ¢ respectively. Then

R: = {((alaﬁlvryl)7 (a2aﬁ2772)) €ERxXR: V(Oélyﬁla’}/l) = V(a27ﬁ2772)}
={((a1,51,7m), (a2,82,72)) € RX R: a1 = g, 01 = B2, and 1 = y2)}

={(o,a): a € R}

is regular as we can easily check equality of binary words using automata. Then

for our generators, we have that

R = {((a1,B1,m), (a2, f2,72)) € Rx R:v(an, Bi,1)A = v(ag, B2,72)}
= {((041,517’71); (a2aﬁ2772)) ERXR: a1 + 1= a2aﬁl = 627 and Y1 = 72}

={((a1,B1,7), (1 +1,61,7)) : a1, 81,7 € L},
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and

Rp = {((a1,81,m), (a2, B2,72)) € R x R:v(a1, B1,m)B = v(ag, B2,72)}
= {((0417/61771)7 (C¥2,,827’}/2)) €eRxXR: a1 = 042761 + 1= 52, and Y1 = '72}

= {((o1, B1,m), (a1, 81 + 1,7m)) s a1, B1,m € L}

and

Re = {((a1,B1,m), (a2, B2,72)) € R X R: v(ag, f1,71)C = v(az, B2,72)}
= {((a1,B1,7m), (a2, 52,72)) € RX R: a1 = oz, 1 = fo, and 71 + 1 = 2}

= {((a1,B1,m), (01, B1,m + 1)) a1, 1,711 € L}

are regular, as we can check equality of binary words, and use automata to add

one to a binary word. Thus

({A4,B,C},%° R,v)

is a graph automatic structure for Hs3(Z).

In fact, we may easily extend this to any Heisenberg group H,,(Z), consisting
of n X n matrices with entries 1 on the diagonal and 0 everywhere else other
than the first row and last column, as noted in [25]. In this case, the generating
set consists of all the n x n matrices that differ from the identity matrix only by
containing a single additional entry of 1, either in the first row or last column.

As well as not being automatic, we also have that the Heisenberg is not
FA-presentable. This follows from the classification of finitely generated FA-
presentable groups, given in [28]. A group is virtually abelian if it has an abelian

subgroup of finite index. We then have the following result:

Proposition 2.3.8 (Theorem 8 of [28]). Let G be a finitely generated group;

then G has an automatic presentation if and only if G is virtually abelian.

As the Heisenberg group is not virtually abelian, it is therefore not FA-
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presentable. Thus the Heisenberg group provides us with an example of a group,
and hence a semigroup, which is neither graph automatic nor FA-presentable.
We will see an example of a non-group semigroup which is graph automatic

but neither automatic nor FA-presentable in Section 4.1.

2.4 Properties of Graph Automatic Semigroups

In this section we will examine some of the properties of graph automatic semi-
groups. We will show that graph automaticity does not depend on our choice
of generating set; that each element of a graph automatic semigroup is rep-
resented by a regular language; that we can always find a graph automatic
structure where our map is a bijection; and that graph automatic monoids have

decidable word problem.

2.4.1 Generating Sets

We begin by looking at the impact of the choice of generating set on graph
automaticity. Note that Definition 2.1.1 requires that we merely have a graph
automatic structure for some choice of generating set, and so we ask whether
this choice of generating set impacts our ability to find a graph automatic struc-
ture. Certainly for automatic semigroups the choice of generating set does have
an effect on our ability to find an automatic structure. In [14], the authors pro-
vide an example of a semigroup where the existence of an automatic structure

depends on the choice of generating set. This example is given below.

Example 2.4.1 (Example 4.5 of [14]). Let F' be the free semigroup gener-
ated by {a,b,c}, and consider the subsemigroup S of F generated by X =
{¢,ac,ca,ab,baba}. Then S has an automatic structure with respect to this
generating set, thus is an automatic semigroup. However, S does not have an

automatic structure with respect to the generating set X U {abab}.

Thus the choice of generating set does affect our ability to find an auto-

matic structure, and we say that a semigroup is automatic as long as it has an
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automatic structure for some finite generating set.

In [9] it is shown that if the Cayley graph of a semigroup is FA-presentable
then this does not depend on the choice of generating set. Thus, as this is
equivalent to a semigroup being graph automatic, we may immediately say that
the existence of a graph automatic structure is independent of the choice of
generating set. However, we will show this directly, illustrating how a graph

automatic structure for a new generating set may be found.

We begin by noting that if we have a graph automatic structure then the
language recognising multiplication by any element is regular, not merely the

languages recognising multiplication by a generator.

Proposition 2.4.2. If S is graph automatic with structure (X,%, R,v) and
y € S then Ry, = {(a,8) € Rx R:v(a)y =v(B)} is regular.

Proof. We follow the proof of Proposition 3.2 of [14]. Let y = 125z, for

some x; € X. As S is graph automatic we have that

R., ={(a,a1) € RX R:v(a)x; = v(ag)}

R3;2 :{(Oél,Oég) ceRxR: V(OQ)IQ = I/(OQ)}

R., ={(an-1,8) € Rx R:v(an_1)xn, =v(B)}

are regular. Then by Proposition 1.1.2 we have that the sets

Ry 2, = {(a,a2) € R X R: thereis a a3 € R such that (a, 1) € Ry,
and (a1, a2) € Ry, }
Ry zyws = {(a,a3) € R X R: there is a as € R such that (o, a2) € Ry, z,

and (a2, as3) € Ry, }
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Riiwoz, ={(a,0) € Rx R: thereis a a,—1 € R such that

(yan—1) € Ryy..n,_, and (an—1,0) € Ry, }

are regular. Hence R, = R, ..., is regular. O

n

We now use this to show that graph automaticity is independent of our

choice of generating set.

Theorem 2.4.3. Let S be a graph automatic semigroup with respect to some
finite generating set X. Then S is graph automatic with respect to any finite

generating set.

Proof. Let (X, %, R,v) be a graph automatic structure for S. Let Y be a dif-
ferent finite generating set for S and let y € Y. Then y can be written as
Y = T1T2- - Ty for some x € X, and by Proposition 2.4.2 we have that R, is

regular. Thus (Y, X, R, v) is also a graph automatic structure for S. O

Note that Proposition 2.4.2 holds for automatic semigroups. However, upon
change of generating set, while we still have the map v that is required for a

graph automatic semigroup, we may not be able to find a homomorphism.

2.4.2 Preimages

We now consider the set of words representing a particular element in a graph
automatic semigroup. We shall see that the preimage of each element is a regular

language, in the same way as was shown for automatic semigroups in [14].

Proposition 2.4.4. Let S be a graph automatic semigroup with graph automatic

structure (X, X, R,v). Then for any s € S the set {o € R : v(«) = s} is reqular.

Proof. We follow the proof of Lemma 3.1 in [14]. Let 8 € R such that v(5) = s.

Then for any o € R we have that (a, 8) € R— if and only if v(a) = s. Let

L={(a,p): @ € Ryv(a) = s}



28 2. GRAPH AUTOMATIC SEMIGROUPS

= R=N (R x{B}).

So L is regular. Thus

LW = {a € %*: (a,8) € L for some § € £*},

which is obtained by reading the first tape of L, is regular. But (o, d) € L means

we must have § = 3 and so

LW ={aex*:(a,B) € L}

={a € R:v(a)=s}.

Thus {a € R: v(a) = s} is regular. O

This means that each element is represented by a regular language, a fact
which will become useful when we later consider various semigroup construc-

tions.

2.4.3 Structures with Uniqueness

A semigroup has a graph automatic structure with uniqueness if there exists
a graph automatic structure where each element of the semigroup is repre-
sented by precisely one word in our language. Alternatively, we can think of
this as a structure where the map between the language and the semigroup is
also injective (and hence is a bijection). Automatic semigroups have structures
with uniqueness [14], as do FA-presentable structures [6]. As graph automatic
semigroups are those whose Cayley graphs have an FA-presentable structure by
Proposition 2.2.6, we must also have a structure with uniqueness for any graph
automatic semigroup. We illustrate this below, demonstrating how we may turn
any graph automatic structure into one with uniqueness.

We will use the shortlex ordering on elements of our language. Take a

language R over an alphabet ¥. We introduce an ordering <y on the elements
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of 3. We say that « precedes (3 lexicographically if &« = ajas ..., and § =
B102 ... 0n, a; = B; for i = 1,2,... k for some k < n, and in the first place
where they differ agy1 <s Or+1 with respect to the ordering on ¥. Then for
words «, f € R we have that a <; § if and only if |a| < |5] or |a] = |5] and «
precedes 3 lexicographically, where <, denotes the shortlex order.

We impose this ordering on the language for our graph automatic structure,

and use it to find a structure with uniqueness.

Proposition 2.4.5. Let S be a graph automatic semigroup. Then S has a graph

automatic structure with uniqueness.

Proof. Let (X,X, R,v) be a graph automatic structure for S. Consider

L={a€eR: if (a,p) € R= for any § € R then a <, (5},

where a <; [ indicates that « is less than or equal to 8 in the shortlex order.

We will show that L is regular. Consider

K =R_n{(a,p):a>, 3}

={(a,0) : (o, 8) € R= and a >, 8}

(where again >, indicates the shortlex order). As S is graph automatic R_ is
regular, and as the shortlex order is recognisable by a finite state automaton

{(a, B) : @ > B} is regular. Thus K is regular. Now let

J={a€eX": (a,p) € K for some § € ¥*}

={a€R:(a,p) € R= and a >, (§ for some (§ € R}.

Note that J = K, thus is regular. Then

L=R\J

={aeR: if (o,8) € R= for any § € R then a <; §}
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is regular.
Now consider the restriction map v|;, : L — S. This is a surjective map

where each element of S is represented by precisely one element of L. Then

L-=R_N(Lx1L)

and

Ly=R,N(LxL)

are regular for x € X. So (X,X, L,v|;) is a graph automatic structure for S

with uniqueness. O

So we may take any graph automatic structure for a semigroup and turn it
into a structure with uniqueness by taking only the shortest word (with respect
to the shortlex ordering) representing each element of our semigroup. Hence
from this point onwards we may assume, without loss of generality, that all our

graph automatic structures are structures with uniqueness.

2.4.4 The Word Problem for Monoids

The word problem for semigroups asks whether, given two strings of generators
for a semigroup, we can determine whether these represent the same element of
our semigroup.

In [25] it is shown that graph automatic groups have soluble word problem.
In this proof, the generating set can be considered as a monoid generating set,
and so the same proof can be used to show that graph automatic monoids have

decidable word problem. We first require the following lemma.

Lemma 2.4.6 (Lemma 8.1 of [25]). Let ¥ be a finite alphabet, n € N, D C
(%), and f : D — X* be a function whose graph is FA-recognisable. Then
there exists a linear time algorithm that given d € D computes the value f(d).
Furthermore, there is a constant K such that |f(d)| < |d| + K for any d € D,

where |d| = max{|d;| : i=1...n} ford = (d1,...,dy,) € (Z*)™.
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We now reproduce the proof of Theorem 8.2 from [25], to show that graph

automatic monoids have decidable word problem.

Proposition 2.4.7. The word problem for graph automatic monoids is decidable

in quadratic time.

Proof. Let S be a graph automatic semigroup with graph automatic structure
with uniqueness (X, X, R,v). By Proposition 2.4.5 we may assume that v is
a bijection. Let w = z1x5...x, be a word made up of generators z; € X,
and let @ be the element of S defined by w. We want to find the unique
word v~} (w) € R representing w. Let oy = v~ 1(w;) for 0 < i < n, where
w; = XT1x3...T;, and w; is the element of the semigroup defined by w;, with
wo = 1.

For every z € X, the function f, : R — R defined by f.(a) = v~ (v(a)z)
is FA-recognisable, as it takes the word in the second component of R, which
corresponds to « in the first component. As v is a bijection, there is precisely
one such word. Hence by Lemma 2.4.6, given o € R we can compute 5 = f,(«)
in time C,|ca| for some constant C,, and there is a constant K, such that
|fo(@)] < |a|+ K, for every a € R. Now as X is finite, we let C' = maxC, and
K =max K. Then |a;4+1] < |a;| + K < |ap| + (¢ + 1) K. Thus we may compute
ap in time Y C(lag| +iK) = O(n?).

Hence, to check if two elements w and v are equal, we may compute their

representatives o and 3 in quadratic time, and then input (¢, ) into the au-

tomaton recognising R_. O

In fact, we will see in Subsection 3.2.1 that we may generalise this further
to show that all graph automatic semigroups have decidable word problem, by
converting our semigroup into a monoid whilst preserving graph automaticity.

Note that automatic semigroups also have word problems which are decid-

able in quadratic time [14].
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Chapter 3

Subsemigroups and

Extensions

In this chapter we will consider various types of substructures of graph auto-
matic semigroups. We will begin by examining how graph automaticity is pre-
served by subsemigroups and ideals. We then consider how graph automaticity
is preserved when adding or removing finitely many elements, beginning with
identities and zeroes, then continuing on to look at more general small exten-

sions.

3.1 Subsemigroups and Ideals

We consider subsemigroups of graph automatic semigroups. We shall see that,
similarly to both automatic semigroups and graph automatic groups, there are
certain situations when we can ensure that graph automaticity is preserved. We
begin by defining regular subsemigroups, generalising the definition of regular

subgroups as defined in [25].

Definition 3.1.1. Let S be a graph automatic semigroup with graph automatic

33
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structure (X, %, R,v). A finitely generated subsemigroup 7" of S is regular if

voIT = U v I(t)C R
teT

is a regular language.

In [25] it is shown that that regular subgroups of graph automatic groups are
themselves graph automatic. We now see that this also holds in the semigroup

case.

Theorem 3.1.2. Let S be a graph automatic semigroup with graph automatic
structure (X, %, R,v). Let T be a finitely generated regular subsemigroup of S.

Then T s graph automatic.

Proof. Let T be generated by a finite set Y. By Theorem 2.4.3 we have a graph
automatic structure for S with respect to any finite generating set, and so we
may assume that Y C X. Let L = v~ !'T. Then L is regular by assumption,

and v|, : L — T is onto. Now
L_=R_N(Lx1L)

and

L,=R,N(LxL)
for y € Y are regular, so (Y, X, L,v|.) is a graph automatic structure for 7. [

If a subsemigroup of a graph automatic semigroup is not regular, it does
not necessarily mean that it is not graph automatic, as we see in the following

example.

Example 3.1.3. Let S = Ny x Ny under addition. We shall see that S is graph
automatic, but has a subsemigroup which is not regular, despite being graph
automatic in its own right.

We first show that S is graph automatic. Let X = {(0,0), (1,0), (0,1)}. This
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is a generating set for S. Let ¥ = {a,b} and R = a*b*. We define v : R — S by
v(@™") = (m,n),
which is a bijective map. Hence
R_ ={(o,q) : a € R}
is regular, and R ) = R= is regular. Next we have that

R0 = {(a't,a*b)) e Rx R: k=i +1and | = j}
= {(a"V’,a""V) 0,5 € No}

= (a,%)(a,a)"(b,b)",
which is regular. Finally we have that

Ry = {(@V,a*tye Rx R:k=iandl=j+1}
= {(a'¥’,a't’ 1) 14,5 € No}

= <a7 a)*(bv b)*($v b)»

which is regular. Thus we have that S = Ny x Ny has graph automatic structure
(X7 {a7 b}7 a’*b*’ V)'
Now we show that S has a non-regular subsemigroup. Consider the sub-

semigroup

T ={(n,n):neNp}CS.

Then we have that

v = "

and it is well known that this is not a regular language (see [31], for example).
Hence T is not a regular subsemigroup. However, T is isomorphic to Ny, which

does have a graph automatic structure, as we will see in Section 3.2. Thus we



36 3. SUBSEMIGROUPS AND EXTENSIONS

see that it is possible to have a graph automatic subsemigroup which is not a

regular subsemigroup with respect to our original graph automatic structure.

This example shows that if a subsemigroup is not regular it does not nec-
essarily mean that it is not graph automatic. So it may be possible to find a
graph automatic structure for the subsemigroup which is completely unrelated
to that of the semigroup. However, this also means that it is difficult to say that
such a subsemigroup is not graph automatic, as it is necessary to rule out every
possible choice of language and surjection. Thus it is difficult to comment on
graph automaticity of non-regular subsemigroups, and we focus on situations
where our subsemigroup can be shown to always be regular.

One case in which a subsemigroup is always regular is when it is a finitely

generated left ideal, as we see below.

Theorem 3.1.4. If a finitely generated subsemigroup of a graph automatic

semigroup s a left ideal, then it is a reqular subsemigroup.

Proof. Let S be graph automatic with structure (X, 3, R,v). Let T be a left
ideal of S generated as a subsemigroup by a finite subset Y. Without loss of

generality we may assume that ¥ C X. Recall that

R® ={a e R:v(a) € Sz}

={ae¥":(6,a) € R, for some J € £}
is the second component of R, and so is regular. Then
v 'Y u U R;Q) ={a€eR:v(a)eT}

yey

)

is regular, as ¥ 'Y is finite and each RZ(,2 is regular. O

It then follows that finitely generated left ideals of graph automatic semi-

groups are themselves graph automatic.



3.2. ZEROS AND IDENTITIES 37

Corollary 3.1.5. Finitely generated left ideals of graph automatic semigroups

are graph automatic.

Proof. A finitely generated left ideal of a graph automatic semigroup is regular,

by Theorem 3.1.4, and hence is graph automatic, by Theorem 3.1.2. O
It is natural to ask whether an analogous result holds for right ideals.

Question 3.1.6. Are finitely generated right ideals of graph automatic semi-

groups necessarily graph automatic?

Note that the proof of Theorem 3.1.4 relies on the fact that the automata
recognising multiplication by elements in the left ideal must only accept repre-
sentatives of elements of the left ideal on the second tape. This results from our
automata accepting languages that represent multiplication by a generator on
the right. Thus we cannot use the same method for right ideals, and so in order
to answer this question it would be necessary to take a different approach. In
fact, it may be possible that even if right ideals are graph automatic they may

not be regular like left ideals.

Question 3.1.7. Are finitely generated right ideals of graph automatic semi-

groups always regular?

3.2 Zeros and Identities

In this section we begin to examine the effect of adding and removing elements
to a graph automatic semigroup. We consider what happens when we add and
remove certain distinguished elements, namely identities and zeroes.

Note that adding and removing identities and zeroes preserves both auto-
maticity and FA-presentability of semigroups (see [14] and [10] respectively).
Thus it seems likely that the same results will hold for graph automatic semi-
groups.

We begin by considering the case where we add and remove a zero element.

We may add a zero element to any semigroup S by taking an element z which
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does not belong to S and defining multiplication for s,t € SU {z} by st = z if
s = z or t = z or both, and multiplication is as in S otherwise. We denote this
new semigroup by S°.

We examine the relationship between S and S when one or the other is
graph automatic, and see that graph automaticity of one implies that the other

is also graph automatic.

Proposition 3.2.1. A semigroup S is graph automatic if and only S° is graph

automatic.

Proof. Suppose S is graph automatic with structure (X, ¥, R, v). Consider S =
SU{z}, which is generated by X' = X U{z}. Let ¥’ = XU {(} for some ( ¢ &
and let R = RU{(}. As R is regular we have that R’ is also regular. Define

V' : R — SY by

and note that surjectivity of v implies that v/ is also surjective.

Now

RL ={(o, ) € R x R : /() =v/'(B)}

= R=U{(¢, O},

which is regular. We also have that

R, ={(a,8) e R" x R : 2=1'(B)}
={(e,():a € R}

=R x{c},

which is regular. Finally, for x € X we have

R, ={(a,B8) € R x R : V'(a)z = V' (B)}
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=R, U {(Ca C)}v

as for o # ¢ we cannot have v'(a)x = v/(¢) = z or V'(a) = V/({)x = z. Thus
R, is regular, and S° is graph automatic with structure (X', %', R, 7).

Conversely, suppose S° is graph automatic with structure (X, %, R,v). Let

Z =v71(2)

={a € R:v(a) =z}

This is regular by Proposition 2.4.4. Let Y = X \ {z}, so Y generates S. As
Z is regular R\ Z is also regular and thus S is a regular subsemigroup of S°.
Hence, by Theorem 3.1.2, we have that S is also graph automatic with graph

automatic structure (Y, 3, R\ Z,v|g\ z). O

Next, we consider the analogous case for identities. We may add an identity
element to any semigroup S by taking an element e which is not an element of
S and defining multiplication for s € SU {e} by se = es = s and multiplication

is as in S otherwise. We denote this new semigroup by S*.

We consider the relationship between S and S', and see that graph auto-

maticity is again preserved by the addition or removal of the identity.

Proposition 3.2.2. A semigroup S is graph automatic if and only if S is

graph automatic.

Proof. Let S have graph automatic structure (X, Y, R,v). Then S = SuU{e} is
generated by X’ = XU{e}. Let ¥’ = BU{n} for some n ¢ . Then R’ = RU{n}

is regular. Now define v/ : R’ — S by
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and note that v/ is surjective due to the surjectivity of v. Now

R_={(a,8) e R x R :V'(a) =V'(B)}

= R_U{(n,n)}

as we cannot have v(n) = v(a) for & € R. So R— is regular. Then we have that

R, ={(a,3) € R" x R : V'(a)e =V (B)}

=RL

is regular also. Finally, for z € X we have

R, ={(a,B) € R x R : V(o) = V'(B)}
= Ry U{(a,n) € Rx{n} : v(a)x = e} U{(n, B) € {n} x R:x =v(B)}.

But e = v(a)x is impossible as v(«) and = are both elements of S but e ¢ S, so

this second set is empty. Then, as

{(n,B):6eRx=v(B)}={n x{BeR:v()=ur}

is regular by Proposition 2.4.4 and R, is regular, we have that R! is regular.
Thus St is graph automatic with structure (X', %, R', /).

Conversely, suppose that S! is graph automatic with structure (X, %, R, v).
Then Y = X \ {1} generates S. Let

L={a€R:v(a)=ce}.

This is regular by Proposition 2.4.4. Then R\ L is a regular language represent-
ing S, and so S is a regular subsemigroup of S'. Hence S is graph automatic

by Theorem 3.1.2, with structure (Y, 3, R\ L,v|r\1) O

Thus we have seen that adding and removing both zeroes and identities
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preserves graph automaticity. These results now allow us to form new examples
of graph automatic semigroups by adding zeroes and identities to the examples
given in Chapter 2. In particular, we may now easily show that finitely generated

free monoids are graph automatic.

Example 3.2.3. Let Mx be the free monoid generated by a finite set X. Then
M is the free semigroup generated by X with an identity adjoined. We have
seen that finitely generated free semigroups are graph automatic in Example

2.1.4. Thus by Proposition 3.2.2, we have that Mx is also graph automatic.

3.2.1 The Word Problem for Semigroups

We may also use Proposition 3.2.2 to extend our result from Chapter 2 regarding
decidability of the word problem for graph automatic monoids.

We have seen that adding and removing identities preserves graph automatic-
ity. We may now use this fact to generalise Proposition 2.4.7, which states that
graph automatic monoids have decidable word problem, in order to show that
graph automatic semigroups also have decidable word problem. Note that this
approach echoes that of [14], where the authors show that automatic monoids
have decidable word problem and then use the analogous result to Proposition

3.2.2 for automatic semigroups to generalise the result to semigroups.

Theorem 3.2.4. The word problem in graph automatic semigroups is decidable

in quadratic time.

Proof. Let S be a graph automatic semigroup with structure (X,%, R,v). We
may adjoin an identity to S, preserving graph automaticity by Proposition 3.2.2.
Then S! has graph automatic structure (X', %', R',1'). We now have a graph
automatic monoid, which has decidable word problem by Proposition 2.4.7.
Given strings w = x1x2 ...z, and v = Y1y . . . Y, for some z;,y; € X, we may
find representatives o, 3 € R C R’ for w and v in quadratic time, and check
their equality by inputting (a, 3) into the automaton recognising (R’)—. These

represent the same element of S if and only if they represent the same element
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of S, and so the word problem of S is also decidable in quadratic time. O

Note that this provides us with one way of showing that a semigroup is
not graph automatic. Any semigroup whose word problem is not solvable in

quadratic time cannot be graph automatic.

3.3 Large Subsemigroups and Small Extensions

In the previous section we have seen that we may add and remove identity
and zero elements of our semigroup and preserve graph automaticity. We now
expand on this, and consider what happens when we add or remove finitely
many elements. In particular, we consider subsemigroups of finite Rees index,
and consider whether such constructions preserve graph automaticity.

Let S be a semigroup with a subsemigroup T'. We call |S\ T'| the Rees index
of T"in S. If T has finite Rees index in S then we call S a small extension of
T, and say that T is a large subsemigroup of S.

It is shown in [21] that a semigroup containing a subsemigroup of finite Rees
index is automatic if and only if the subsemigroup of finite Rees index is also
automatic. Large subsemigroups of FA-presentable semigroups are also FA-
presentable, as shown in [10]. However, FA-presentability is not preserved by
small extensions. An example is given in [10] of a small extension which does not
preserve FA-presentability. Note that this example is not finitely generated, and
thus is not graph automatic. We will now examine whether large subsemigroups
and small extensions preserve graph automaticity.

We begin by considering whether large subsemigroups inherit the property

of being graph automatic.

Theorem 3.3.1. Let S be a graph automatic semigroup and T be a subsemi-

group of finite Rees index in S. Then T is graph automatic.

Proof. Let S have graph automatic structure (X, %, R,v). Let A = S\T. Then

K={aeR:v(a) e A}
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= U{aER:u(a):a}

acA

is regular as A is finite and for each a € A the set {a € R: v(a) = a} is regular

by Proposition 2.4.4. So

v T ={a€R:v(a)¢ A}

=R\ K

is regular. Thus by Theorem 3.1.2, T is graph automatic. O

Next we consider small extensions. Note that small extensions can be viewed
as the semigroup analogue of finite group extensions. In [25], the authors show
that finite extensions of graph automatic groups are graph automatic. It may
therefore be expected that a similar result holds in the semigroup case, and small
extensions preserve graph automaticity. However, this is not immediately clear,
as it is difficult to show that our small extension is regular without knowing how
the adjoined elements interact with the original elements of the semigroup. Thus
we cannot at present say that small extensions of graph automatic semigroups
are always graph automatic.

In some specific cases we are able to show that graph automaticity is pre-
served, if there are restrictions placed on how our elements can interact. In
particular, when our large subsemigroup is a right ideal then we see that graph

automaticity is preserved.

Proposition 3.3.2. Let S be a semigroup with a graph automatic right ideal of

finite Rees index. Then S is graph automatic.

Proof. Let T be a graph automatic right ideal of finite Rees index in .S, with

graph automatic structure (X, X, R,v). Let
S\T: C = {01702,...,Cn},

and let C = {¢1,é,...,¢,} be a set of symbols in one-to-one correspondence
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with C such that C N'Y = (). Then S is generated by X UC and R = RUC is

a regular language over the alphabet ¥ U C. Define 7 : R — S by

and note that 7 is surjective by the surjectivity of v. Now

R_ ={(o,8) € Rx R:v(a) =v(B)}

=R_U{(G,¢):¢¢€C}

is regular. Let x € X. Then

R, ={(a,8) € Rx R:v(a)z =1v(B)}
=R, U{(a,B) € C x C:v(a)z =1(B)}

U J (@} x{BeR:cix=v(B)}

1<i<n

Then R, is regular, {(a,3) € C x C : v(a)xr = p(B)} is finite, and for each
1 <i<n we have that {8 € R: ¢;x = v(0)} is empty if ¢;x ¢ T, or is regular
by Proposition 2.4.4 if ¢;x € T. Thus R, is regular. Note that we cannot have
v(a)xr = v(B) for « € R and 8 € C because T is a subsemigroup, hence is

closed. Now let ¢ € C. Then

R.={(a, ) € Rx R:v(a)c=v(B)}
=R.U{(a,B8) € C x C:v(a)z =1(B)}

U J (@} x{BeR:cic=v(B)}).

1<i<n

Note that we cannot have 7(a)c = 7(3) for a € R and 3 € C because T is a

right ideal, and that for each 1 < i < n we again have that {8 € R : ¢;c = v(f8)}
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is empty if ¢;c ¢ T and is regular by Proposition 2.4.4 otherwise. Then

R. ={(a,8) € RXx R:v(a)e=v(B)}

= U {(a, ) € R x R: 3y € R such that v(y)z = v(a) and v(y)xc = v(03)}
r€X

U{(,B3) € v ' X x R:v(a)e=v(B)}

= U ({(a,ﬁ) € Rx R:3y e R such that (a,7) € R, and (7, 8) € Rue}
reX

U (v Hz) x V_l(.’L‘C)))

where R, = {(a,7) € R x R : v(a) = v(y)z}. Note that R, is regular, as it
is merely the language R, with the components exchanged, and as = and zc
are fixed, each of the languages v~!(z) and v~!(xc) are regular by Proposition
2.4.4. Then as T is a right ideal, we have that zc € T so R, is regular. Thus R,
is regular. This means that R, is also regular, as it is a union of finitely many
regular languages. Hence (X UC,X U C, R, ) is a graph automatic structure
for S. O

Comparing this with Corollary 3.1.5, we note that the asymmetric nature of
the definition of graph automaticity results in the situation where we can restrict
a graph automatic semigroup to a left ideal and preserve graph automaticity,
and can extend a right ideal to preserve graph automaticity. However we cannot
at present say whether these results hold the other way round.

Given an arbitrary small extension of a graph automatic semigroup, we
cannot show that the extension is graph automatic in the same way. If we take
an infinite semigroup T with graph automatic structure (X, ¥, R, v) and adjoin
elements C' = {cj,...,c,} then a problem arises as we do not know how the
elements in C multiply with elements from 7. Thus showing that the language
accepting multiplication by an element from C' is regular becomes problematic.
In particular, for a fixed ¢1,co € C there may be infinitely many solutions to

te; = co and so we cannot ensure that the language L = {a € R : v(a)c1 = ca}
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is regular. Similarly, if T" is an arbitrary semigroup we are unable to show that

the language K = {(o, ) € R x R : v(a)c = v(F)} is regular.

To work around these problems we introduce some additional conditions on
our small extension. In the case where T is a group we may use the fact that v(«)
has an inverse to show that the set K must be empty, else v(a) 'v(8) =c€ T
which is a contradiction. To ensure that the set L is regular, we consider the
case where our semigroup is of finite geometric type, which will force L to be

finite, hence regular.

A semigroup S is said to be of finite geometric type if it is finitely generated
and for every p € S there exists k € N such that the equation xp = ¢ has at
most k solutions for every g € S. This concept was introduced in [30] in order
to provide a geometric characterisation of automatic monoids in a similar way

to the geometric characterisation of automatic groups.

Note that if a finitely generated semigroup is of finite geometric type, this

means that the in-degree of each vertex of the Cayley graph is finite.

We now show that with these restrictions, we can demonstrate the graph

automaticity of a small extension.

Proposition 3.3.3. Let S be a semigroup of finite geometric type with a sub-
group T of finite Rees index in S. If T is graph automatic then S 1is graph

automatic.

Proof. Let T be a subgroup of finite index in S, with graph automatic structure

with uniqueness (X, %, R,v). Let

S\T=C=A{e1,...,cn}

and let C' be a set of symbols in one-to-one correspondence with C' such that

YNC =0. Now X = X UC is a finite generating set for S. Let ¥ = XU C and
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R =RUC. Then R is regular and 7 : R — S defined by

is surjective by the surjectivity of v.

Now

R_ = R_U/{(¢,¢):¢,€C}

is regular. Let z € X. Then

R, =R, U{(a,3) € Rx C:v(a)x = v(B)}
U{(a,3) €C x R:v(a)r =v(B

U{(a,B) € C x C:v(a)r =1(B)}.

The first of these sets is regular because T is graph automatic. The second is
empty, as multiplying two elements of T' cannot give an element of S\ T. The

third set equals

Ude} x {8 € R:cix = w(B)}),

c;
which is regular as either c;x € T and regularity follows from Proposition 2.4.4,
or this set is empty. Finally, the fourth set is finite and so is regular. Thus R,

is regular.
Now let ¢ € C. Then

R.=R.U{(a,3) € Rx C:v(a)c

I

N
—~
K{
=
==

U{(a,8) €C x R:v(a)c=v(p

U{(a,8) € C x C:v(a)c=0(B)}.

Then R. is empty as T is a subgroup, so we cannot have v(a)c = v(3) or we
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would have ¢ = v(a)~'v(8) € T, a contradiction. The second set is equal to

e e R:v(a)e = c;} x {a:}),

Ci

which is regular as there are only finitely many « satisfying v(a)c = ¢; because
S is of finite geometric type. The latter two sets are regular as in the case of R,.

Hence R, is regular, and so S is graph automatic with structure (X, 3, R, v). O

Thus we have certain situations where we can ensure that small extensions
preserve graph automaticity. However, it remains to be seen whether this is the

case in general.

Question 3.3.4. Are small extensions of graph automatic semigroups always

graph automatic?



Chapter 4

Constructions for Graph

Automatic Semigroups:

Products

In this chapter we consider how a number of semigroup constructions preserve
graph automaticity. In particular we examine constructions which can be consid-
ered as products of semigroups. We look at free products, semidirect products,
direct products and Bruck-Reilly extensions. We also compare these results to

the parallel results for automatic and FA-presentable semigroups.

4.1 Free Products

We begin by considering the free product of two graph automatic semigroups,

and see that this preserves graph automaticity.

Theorem 4.1.1. If S; and Sy are graph automatic semigroups then the free

product Sy * Sy is graph automatic.

Proof. We follow the idea of the proof of Theorem 6.1 in [14]. Let (X1,%1, R1, 1)

and (Xa,Xs, Ro,2) be graph automatic structures with uniqueness, with e ¢

49
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Ry, Ry, for the semigroups S; and Sy respectively. Without loss of generality
we may assume Y1 N X9 = 0. Let X = X; U X,, so X generates S = S * Ss.
Let ¥ = X1 UXs and define R C ¥* to be

R = (R U{e})(RoR1)"(R2 U{e}) \ {e}.

This is the language consisting of strings where words from R; and R, alternate,

and is regular. Now define v : R — S by

vi(on)va(az) - Vi mod 2)+2(0n), @1 € Ry
v(a) =

vo(ar)vi(a2) -+ V(n mod 2)+1(n), @1 € Ry
for a = avjan - - -, with o; € Ry if and only if a;41 € Ro for 1 <i<n—1. As
v1 and v, are surjections we have that v is also surjective, and as each s; € S}

and sy € Sy is represented by a unique element of R, and Rs respectively we

must have that each s € S is represented by a unique element of R. Thus

R_ ={(o,a): « € R}

is regular. Now let

K1 = (R U{e})(RaRa)™ \ {e}

and

Ky = (Rl U {6})(R2R1)*R2

So K is the set of words in R which end with a word from Ry, and K> is the
set of words in R which end with a word from Rs. Then K; N Ky = () and
Ky UKy = R. Let x € X; and let £ be the unique word in Ry which represents

x. Then

R, ={(a,8) € Rx R:v(a)x =v(0)}

=(R1)2 U{(a,a) : a € Ka}((Ry). U{($,€)}).
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So R, is regular for z € X;. Similarly, if y € X5 and ¢ € Rs is the unique word

representing y then

Ry = (Ra)y U{(e, @) : v € K1 }((Ra)y U{(3,0)})-

Thus (X, 3, R,v) is a graph automatic structure for S. O

In [25] it is shown that taking the group free product of two graph automatic
groups preserves graph automaticity. Note that if we want to take the monoid
free product then the proof of Theorem 10.8 from [25] for the group free product

still holds for the monoid case. We reproduce the proof below.

Proposition 4.1.2. The monoid free product of two graph automatic semi-

groups s graph automatic.

Proof. Let M7 and M5 be graph automatic monoids with structures with unique-
ness (X1,%1, R1,v1) and (Xa, X, Ra, v2) respectively, such that Ry N Ry = {e}
and in each structure e is the representative of the identity element, 1. Each
non-identity element of M; % My has a normal form mims...m,, where each
m; € My U My, with m; # 1 and m; € M; if and only if m;11 € Ms, and
m; € Mo if and only if m;; € My, for all ¢ > 1. Now, as in Theorem 4.1.1, we

let X = X7 UXs, let ¥ =X, UXs and define R C X* to be
R = (Rl U {6})(R2R1)*(R2 U {6})
Now define v : R — S by

vi(a1)ve(az2) -+ Vin mod 2)+2(an), a1 € Ry
v(@) = vy(ar)vi(as) - -- V(n mod 2)+1(@n), a1 € Ry

1, a=c¢€

for @« = aqag---ay, with a; € Ry if and only if ;41 € Ry for 1 < i <n — 1.

Then the uniqueness of our graph automatic structures together with our normal
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forms give us that v is a bijection and so

R_ ={(o,) : @ € R}

is regular. Now, similarly to the semigroup case, we let

Ky = (Ry U{e})(R2R1)" \ {€}

and

KQ = (R1 U {6})(R2R1)*R2

and so we have that Ky U Ko U {e} = R. Then

Ry ={(, ) : a € Ky U{e}}((R1)x U{(e,€)}),

where v1(§) = z, and

Ry ={(a,a) : a € Ky U{e}}((Re)y U{(e,O)})

where 15(¢) = y. These are both regular languages, hence M; * M is graph

automatic. O
Note that taking the free product of two automatic semigroups preserves
automaticity, and in this case the converse also holds, as shown in [14].

Proposition 4.1.3 (Theorem 6.1 of [14]). Let Sy and Sz be semigroups. Then

S1 % So is automatic if and only if both S1 and Sy are automatic.

The equivalent result does not hold for FA-presentable semigroups. In fact,

FA-presentability is only preserved by free products in the trivial case.

Proposition 4.1.4 (Proposition 4.1 of [10]). The semigroup free product of two

semigroups S, and So is FA-presentable if and only if S1 and S are trivial.

We may use these results to construct examples of semigroups which are

graph automatic but neither automatic nor FA-presentable.
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Example 4.1.5. Let S be the (semigroup) free product of the Heisenberg group
H3(Z) with a finite semigroup 7. Then both H3(Z) and T are graph automatic,
and so their free product is graph automatic by Theorem 4.1.1. Now as H3(Z)
is not trivial, S cannot be FA-presentable by Proposition 4.1.4. Additionally,
as H3(Z) is not automatic, S cannot be automatic by Proposition 4.1.3. Hence

S is graph automatic, but neither automatic nor FA-presentable.

We now ask whether graph automaticity of a free product implies that the
original semigroups are graph automatic, as is the case for automatic semi-
groups. In [14], automaticity of the semigroups in the product is demonstrated
by showing that their preimages are regular languages. However, when we do
not have a homomorphism we cannot easily demonstrate that our semigroups

are regular, so we ask:

Question 4.1.6. If the free product of two finitely generated semigroups is
graph automatic, are the semigroups themselves graph automatic? If the monoid
free product of two finitely generated monoids is graph automatic, are the

monoids graph automatic?

4.2 Semidirect Products

We now consider semidirect products of graph automatic semigroups. We will
see that graph automaticity is preserved by semidirect products under certain
conditions. We begin by recalling the definitions of semigroup actions and
semidirect products.

A semigroup S acts on a set X on the left if there is a function o : Sx X — X

defined as o(s,z) = *z, such that for any z € X and s,t € S we have

sty =°("z).

If the arbitrary set X is replaced by a semigroup 7', then we have that the

action of each element of S is equivalent to an endomorphism of 7', which is
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denoted 7(s) : T'— T and defined to be

T(s)(t) = °t.

Let S and T be semigroups and 7 : S — End(7T') be a homomorphism from
S into the endomorphism semigroup of 7. The semidirect product T x . .S of S

and T over 7 is the set T x S with multiplication

(t1,81)(t2, s2) = (t1 (' t2), s152)

where °t denotes the left action of s on t.
We also define two homomorphisms, ¢ and @2, which will be used through-

out this section and the next section.

Definition 4.2.1. Let 3; and X5 be finite alphabets, and let

U= ((Z1U{8}) x (B2 U{$})) \{(5,9)}.

Then we define ¢ : ¥* x ¥* — X7 x X7 and @9 : ¥* x ¥* — 33 x 33 by

o1 :((K1, A1), (K2, A2)) = (K1, K2),
((Kl’)‘l)’$) = (K1,$)7
(8, (K2, A2)) = (8, K2)

and

o2 (K1, A1), (K2, A2)) = (A1, A2),
((Rla)‘l)7$) = ()‘1,$)7
($, (Iig, )\2>) = ($,)\2)

Now if K and L are regular languages over the alphabets ¥ and Yo respectively,

and R = K x L, then we have that R is also a regular language, and we may
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apply 1 and @9 to R X R. Then p;(Rx R) C K X K and po(RXx R) C L x L
are regular languages, as are ¢; *(K x K) C Rx Rand ;' (L x L) C Rx R, as
direct products, homomorphic images, and homomorphic preimages of regular

languages all preserve regularity.

We now examine when graph automaticity is preserved by semidirect prod-

ucts.

Theorem 4.2.2. Let S be a finite semigroup and let T be a graph automatic
semigroup. If the semidirect product T X ;S is finitely generated then it is graph

automatic.

Proof. Let S = {s1, $2,...,5,} be a finite semigroup, and let T be a graph auto-
matic semigroup with graph automatic structure with uniqueness (Y, X1, K, v).
As S is finite it is also graph automatic, with structure (S, Yo = {a,...,an},
L =A{ay,...,an}, ), where p(a;) = s;. Let X be a finite generating set for
Tx,S let ¥=((21U{$}) x (X2U{3}))\(3,9) and let R = K x L. We define
¥:R—Twx,S by

for o = (k,A) € R. Then
R_ ={(a,a):a € R}

is regular by the uniqueness of our original structures, and for (a,b) € X we

have that

Riap) = {((B ), (7, 05)) € Rx R:w(8)"*Va = v(y) and p(ai)b = p(ay;)}
= {<(ﬁ’ai)’ (’Yaaj)) ERxXR: (ﬁv'y) € Ksiq and s;b = Sj}

= U @ (Ksia) Ny ' ({au} x {ay € L sib = s;}))

1<i<n

Now as S is finite, the set {o;; € L : s;b = s;} is finite also. We also have that

cpfl(Ksia) is regular, as the homomorphic preimage of a regular language is
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regular. Thus R, ) is a finite union of regular languages, thus is regular, and

so we have that T x, S is graph automatic with structure (X, X, R, ). O

In [25] the authors show that graph automaticity is preserved under certain
conditions when taking the semidirect product of two groups. Namely, graph
automaticity is preserved when the automorphism involved in the semidirect
product is automatic, that is the graph of the automorphism is a recognisable
language. Thus we consider whether this same result will hold for semigroups.
In the proof above, we relied on the fact that one of our semigroups was finite
in order to show that our language recognising multiplication by a generator
was regular. However, we cannot compare this directly with the group case, as
n [25], they consider the semidirect product S x, T, that is where S acts on
T on the right. In the groups case, a right action is equivalent to a left action.
However, for semigroups we must instead consider the semidirect product S x..T
as a separate case. Here we replace our left action by a right action.

A semigroup S acts on a set X on the right if there is a function o : X xS —

X, defined as o(x, s) = x*, such that for any € X and s,¢ € S we have

As before, when X is a semigroup we have that the action of each element of .S
is equivalent to an endomorphism of X, and in this case we define the semidirect

product to be the set S x T with multiplication

(s1,t1)(s2,t2) = (5152, (17%)t2).

In this case we consider the case when the endomorphisms involved in the semidi-
rect product are recognisable.

In general, we will call a homomorphism automatic if the homomorphism
can be represented by a recognisable language. More explicitly, let ¢ : S — T

be a homomorphism, and let K and L be regular languages over the alphabets
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3, and ¥, respectively, such that there exist surjective maps v : K — S and

w: L — T. Then ¢ is automatic if the set

{(a,8) € K x L: p(v(a)) = pu(B)}

is a regular language. In this case we say that ¢ is automatic with respect to
(31, K,v) and (X3,L,u). If the semigroups S and T have graph automatic
structures (X, %1, K,v) and (Y, X, L, 1) respectively, we may say that ¢ is
automatic with respect to the graph automatic structures of S and 7. Note

that if S =T then we may omit the reference to the second structure.

In particular, in the case where S is a graph automatic semigroup with
structure (X, ¥, K, v), and our homomorphism is a right action on the semigroup

S, we require that the language

{(a, 8) € K x K :v(a)® = v(B)}

is regular with respect to the graph automatic structure of S.

We now see that graph automaticity is preserved in the semigroup case if

our endomorphism is automatic, analogously to the group case.

Theorem 4.2.3. Let S and T be graph automatic semigroups such that the
semidirect product S X, T is finitely generated by some set Y. For each s € S
such that (s,t) € Y for somet € T let 7(s) be an automatic homomorphism with

respect to the graph automatic structure of T. Then S x, T is graph automatic.

Proof. Let S and T be graph automatic with graph automatic structures with
uniqueness (X1,%1, L, 1) and (Xa, Xa, K, v) respectively. Let Y be a finite gen-
erating set for S x, T. Now let ¥ = ((X; U {$}) x (B2 U {$})) \ (§,9), let
R=Lx K, and define ¢y : R — S x, T by
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for o = (A, k) € R. Then

R_ ={(o,) : @ € R}

is regular by the uniqueness of our original structures, and for (a,b) € Y we

have

Riapy ={((a1,2), (51,62)) € R x R: plar)a = p(B1) and v(az)"b = v(52)}
={((a1,@2), (f1,02)) € Rx R: (a1,01) € L, and there exists some
v € K such that (ag,7) € E, and (v, 32) € K3}
=7 (L) Ny H{(ag, f2) € K x K : there exists some v € K such

that (ag,7) € E, and (v, 82) € Ky},

where F, is the language recognising the endomorphism 7(a). As E, is regular
by assumption, we have that R, is regular. Hence (Y,X, R,1) is a graph

automatic structure for S x, T. O

Note that the differences in Propositions 4.2.2 and 4.2.3 come from the fact
that in the definition of a graph automatic semigroup we are recognising multi-
plication on the right. The consequence of this is that the languages which we
wish to recognise differ depending on whether we have a right action or a left

action.

4.3 Direct Products

We now consider the direct product. Direct products are equivalent to the
semidirect product where 7(s) is the identity map for all s € S. However, we
shall consider them in their own right. In [14] it is shown that the direct product
of two automatic monoids is automatic, and in [12] this result is extended to
show that the direct product of two automatic semigroups is automatic if and

only if it is finitely generated. We will show that the analogous results holds for
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graph automatic semigroups. We begin by considering the monoid case, as the
direct product of two graph automatic (and thus finitely generated) monoids
is always finitely generated and we can easily find a finite generating set when

attempting to find a graph automatic structure.

Proposition 4.3.1. Let M, and Ms be graph automatic monoids. Then My x

My is graph automatic.

Proof. Let (X1,%1,K,v1) and (Xs,39, L,v5) be graph automatic structures
with uniqueness for M; and My respectively. Let M = My x M. If e; and es
are the identities of My and M5 respectively then we have that M is generated
by X = (X1,e2) U (e1,X2). Let ¥ = (X1 U{$}) x (X2 x {$})) \ ($,$) and let
R =K x L. Define v: R — M by

v(e, B) = (n(a),v2(0))-

Then as v; and v are surjective v is also surjective. Let ¢; and (2 be the
homomorphisms given in Definition 4.2.1.

Now

R_ ={(a,a):a € R}

by the uniqueness of our original structures and so R— is regular. Let y =

(z,e2) € X. Then

Ry ={((a1,a2),(B1,52)) € R x R: (v1(a1)z,v2(az)) = (v1(61),v2(62))}
={((a1,2), (81, 2)) € R x R:vi(on)r = v1(B1) and v2(az) = v2(B2)}

=1 (K) Ny ' (L=).

Now let z = (e1,2) € X. Then

R, ={((a1,a2),($1,52)) € R x R: (vi(an),va(az)z) = (v1(81),v2(52))}

={((a1,@2), (B1,52)) € R x R:vi(a1) =vi(61) and va(az)r = v2(62)}



60 4. CONSTRUCTIONS: PRODUCTS

=o7 (K=) Ny (La).

So R, is regular for any € X and (X, %, R,v) is a graph automatic structure

for M. O

In the semigroup case, the direct product is not necessarily finitely generated.
Conditions for finite generation of direct products are given in [29]. In particular,

we have:

Proposition 4.3.2 (Lemma 2.3 of [29]). Let S and T be two semigroups. If T

is infinite and S x T is finitely generated, then S? = S.

This leads to the following result for the case where we have two infinite

semigroups.

Proposition 4.3.3 (Theorem 2.1 of [29]). Let S and T be infinite semigroups.
Then S xT is finitely generated if and only if both S and T are finitely generated
and S?> =S and T?* =T.

Furthermore, we have a way of finding a finite generating set for our direct
product S x T based on the generating sets of S and T. To do so we require
that our semigroups have a full generating set, that is a generating set A such
that A2 C A. If our direct product is finitely generated, then we can find such

generating sets due to the following proposition.

Proposition 4.3.4 (Proposition 2.10 of [29]). A semigroup S has a full gener-
ating set A if and only if S2 = S. Furthermore, if S is finitely generated, A can

be chosen to be finite.

This now allows us to find our finite generating set for the direct product

using the following proposition.

Proposition 4.3.5 (Corollary 2.11 of [29]). Let S and T be two semigroups
with S? =S and T?> =T, and let A and B be full generating sets for S and T
respectively. Then the set A x B is a full generating set for S x T. Moreover,

if S x T is finitely generated, then the sets A and B can be chosen to be finite.
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We now may use these results to show that the finitely generated direct
product of graph automatic semigroups is also graph automatic, and in partic-
ular we may use the generating sets for our original semigroups to find our new

graph automatic structure.

Theorem 4.3.6. Let S and T be graph automatic semigroups. Then S x T is

graph automatic if and only if it is finitely generated.

Proof. Let S and T be graph automatic semigroups with structures (A, 31, K, v)
and (B, X9, L, 1) respectively and suppose that S x T is finitely generated.

If S and T are both infinite and S x T is finitely generated then S? = S
and 72 = T and we may choose A and B in such a way that A x B is a finite
generating set for S x T by Proposition 4.3.5. Let ¥ = ((X; U {$}) x (82 x
{$}))\ ($,%) and R= K x L. Define ) : R — S x T by

for « = (k,\) € R. As both v and p are surjective 9 is also a surjection. Let

1 and @2 be homomorphisms as defined in Definition 4.2.1. Now

R= ={((a1,a2), (81, 02)) : v(an) = v(b1) and plaz) = p(G2)}

=1 K- Ny Lo

so R— is regular. Now let (a,b) € A x B. Then

Riap) ={((a1,a2), (B1,52)) : v(ar)a = v(B1) and p(az)b = p(B2)}

=1 Ko Ny 'Ly

80 R4 is regular. Thus (A x B,X,R,%) is a graph automatic structure for
SxT.
Now suppose that S is finite and T is infinite. Then S x B is a finite

generating set for S x T and the rest follows as in the previous case.
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Finally, if S and T are finite then so is S x T, thus it is graph automatic.
Conversely, suppose that S x T is not finitely generated. Then S x T' cannot

be graph automatic, as graph automaticity requires a finite generating set. [

It is natural to now ask whether the converse to this result holds: if we
have a direct product S x T which is graph automatic, are the semigroups S
and T graph automatic also? Note that this does not hold for FA-presentable
semigroups, as a counterexample is given in [10].

We see that if the direct product of two monoids, where one is finite, is graph

automatic, then we may show that both monoids must also be graph automatic.

Proposition 4.3.7. Let My and My be monoids, with My finite, such that

My x My is graph automatic. Then My and My are graph automatic.

Proof. As M is finite it is graph automatic. We will show that M> must also
be graph automatic.

Let Mj x M3 be graph automatic with structure with uniqueness (X, 2, R, v).
Let

7TZM1><M2—>M2

be the projection onto My. Then define p = mov : R — M. So u is surjective,
and My is generated by Y = 7(X), which is finite as X is finite. We claim that
(Y,%, R, 1) is a graph automatic structure for M.

Let

R_ ={(a,8) € Rx R: u(a) = u(B)}

and

Ry ={(a,8) € Rx R: p(a)y = pu(B)}

for y € Y. Note that we use the notation R— and R, to distinguish these
languages which detect equality and multiplication of words from R under the
map p from R— and R, which recognise equality and multiplication of words
from R under the map v. We now show that these are regular languages. As

R_ = R; we need only consider the Ry, as we may assume that 1 € Y.
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Now as M is finite, |J R4, is a finite union of regular languages, thus
ac M,

is regular. Recall that

R, ={(a,8) € Rx R:v(a) =v(B)x}.

Then R, is regular if and only if R, is regular and so we also have that
U R(a,1) is a regular language. Let

a€M;

Wy, ={(a, 8) € &* x ¥* : Iy € ¥* such that ( U R (1)
a€M;

and (v, ) € U Ry}
a€M;

={(a,8) € R x R: 3y € R such that ( U R(a 1)
a€M;

and (v, ) € U R(a’y

ac My
Note that W, is regular. Now we claim that («,3) € R, if and only if (o, 3) €
W,.

Let (o, B) € Ry, with v(a) = (ma,na) and v(3) = (mg,ng). So u(a)y =
w(B). Let v =v~1(1,n,). Then

o (a’,—)/) € R(ma71)7 and

V(V)(mﬁvy) = (Lna)(mﬁvy)
= (mﬁ,nay)
= (mﬁvnﬁ)

=v(P)
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SO (775) € R(mg,1)~ Thus (a76) € Wy

Now let (o, 3) € W,,. So there exist v € R and a,b € M; such that v(a) =
v(y)(a,1) and v(y)(b,y) = v(B). So (Ma,na) = (Mmya,ny) and (myb,nyy) =
(mg,ng). Thus

pla)y =nay = nyy =ng = ()

so (o, B) € Ry,.
Thus we have shown that (, 3) € W, if and only («, 8) € R,. Then as W,
is regular we must have that Ry is also regular, and so we have that M; x My

is graph automatic with graph automatic structure (Y, X, R, p). O]

In fact we may extend this to the case where we have the direct product of

a finite monoid with an infinite semigroup.

Corollary 4.3.8. Let M be a finite monoid and S be a semigroup such that

M x S is graph automatic. Then S is graph automatic.

Proof. Let (m1,s1) € M x S and (mag, s2) € M x St. Then (my, s1)(ms, s2) =
(m1ma,s182) € M x S and so M x S is a right ideal in M x S'. As M is finite
we have that M x S has finite Rees index in M x S'. So as M x S is graph
automatic, M x S is also graph automatic by Proposition 3.3.2. Now we are
in the monoid case, and so S' is graph automatic by Proposition 4.3.7. Hence

S is graph automatic by Proposition 3.2.2. O

The question remains whether this result will hold in general for the direct

product of two semigroups.

Question 4.3.9. If S and T are semigroups and S x T' is graph automatic then

are S and T necessarily graph automatic?

4.4 Bruck-Reilly Extensions

We now consider Bruck-Reilly extensions of monoids, and examine when they

preserve graph automaticity.
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Recall that the Bruck-Reilly extension of a monoid M = (A | R) determined

by the homomorphism 6 : M — M is defined as

BR(M,0) = (A,b,c| R,bc = 1,ac = ¢(0a),ba = (a)b for a € A).

This gives us the set
NO X M x NO

with multiplication defined as

(m,s,n)(p,t,q) = (m —n+k, 08" (s)0"P(t),q — p+ k)

for k = max{n, p}.
In particular, note that we can write a = (0,a,0) for a € A, b = (0,1,1),

and ¢ = (1,1,0), and so multiplication by generators is defined as follows:

(m, s,n)(0,a,0) = (m,s0"(a),n)

(m,s,n)(0,1,1) = (m,s,1+n)

(m,s,n—1), n>1
(m, s,n)(1,1,0) =

(m+1,6(s),0), n=0
for any (m,s,n) € M.

In [8] it is shown that if a Bruck-Reilly extension is automatic then its base
semigroup is automatic. We also have that if a Bruck-Reilly extension is FA-
presentable, then its base semigroup also admits an automatic presentation, as
shown in [10].

We consider whether this is also the case for graph automatic semigroups,
and see that if 6 is an automorphism then the base semigroup of a graph auto-

matic Bruck-Reilly extension is also graph automatic.

Theorem 4.4.1. Let T be a monoid and 6 be an automorphism of T. Let
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S = BR(T,0) be graph automatic. Then T is also graph automatic.

Proof. Let (X, X, R,v) be a graph automatic structure for S. Consider the sec-
ond component of R}, denoted R£2). This is a regular language which represents
all left multiples of b. As every element of S can be expressed as c'tb’ for some

t €T and i,j € Ny we get that
K =R\ R

is a regular language representing all the elements of S where j = 0. Now
consider

K.=R.N(K x K).

The second component of this, ng)

, is a regular language representing all ele-
ments of the form c'tc = ¢t*10(t) for t € T,i € Ny. As 6 is an automorphism,

this is all elements of the form ¢*t where ¢ > 1. Then
L=K\K®

is a regular language representing all elements of S where ¢ = 7 = 0. Thus L is
a regular language representing the subgroup 7" and so T has a graph automatic

structure by Theorem 3.1.2. O

Note that we do not require € to be an automorphism in order to preserve
graph automaticity. If our Bruck-Reilly extension uses the trivial homomor-

phism, we can also show that the base semigroup is graph automatic.

Proposition 4.4.2. Let T be a monoid and 6 : T — {11} be the trivial ho-
momorphism. Let S = BR(T,0) be graph automatic. Then T is also graph

automatic.

Proof. Let (X,%, R,v) be a graph automatic structure for S with uniqueness.

Note that as € is the trivial homomorphism we have that tc = ¢ and bt = b for
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any t € T. Let v € R be the unique word such that v(y) = ¢. Consider

L:(RX{V})ORC

={(o,7): @ € R and v(a)c = c}.

Now for any s € S we have that s = c'tb’ for some t € T and i,j € Ny, and so
sc = (c'th?)c = cif and only if i = j = 0 or s = cb. Let 6 € R be the unique
word such that v(§) = ¢b. Then

L= H(T)u{s}) x {7}

and so

v H(T) = L\ {5},

where L) is the first component of L, is regular. Thus, by Theorem 3.1.2, T

is graph automatic. O

Thus Theorem 4.4.1 does not only hold when we have an automorphism,

and so we ask whether this is the case for Bruck-Reilly extensions in general.

Question 4.4.3. If we have a graph automatic Bruck-Reilly extension with any

homomorphism, is the base semigroup necessarily graph automatic?

We next consider the converse of this, namely whether the Bruck-Reilly
extension of a graph automatic monoid M is graph automatic. We begin by
considering the case where our homomorphism 6 is automatic with respect to the
graph automatic structure of M, that is M is graph automatic with structure
(X,3, R,v) and the set {(a,5) € R x R:0(v(a)) = v(B)} is regular.

Note that if  is regular then 6™ is regular for any n € N. However, in order
to use this to show that our Bruck-Reilly extension is automatic, we would need
to take the union of infinitely many regular languages, one for each 6. As we
cannot ensure that this union is regular, we instead consider the case where

the powers of 6 eventually stabilise, that is there exists some constant k£ € N
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such that 8™ = 0"+ for all n > k. In this case we can now show that our

Bruck-Reilly extension is graph automatic.

Theorem 4.4.4. Let T be a graph automatic monoid, 6 : T — T be a homo-
morphism which is automatic with respect to the graph automatic structure of
T, and m € N be a constant such that 0™ = 6" for allm > m. Then BR(T,0)

s graph automatic.

Proof. Let T be graph automatic with structure with uniqueness (X, %, R,v).
Let X' = X U{b,c}, let ¥’ =X U{B,~}, and let

L={yfa:ijeNyac R}
=7"0"R.
Then p : L — BR(T, 6), defined by

N(’Yiﬂja) = (iv I/(Oé),j),

is a surjection.

Now

Lo ={(y'Far,v*flaz) € Lx L: (i,v(a1),5) = (k,v(az),0)}

={(o,a) : @ € L},

as p(y'Far) = p(y*flaz) gives us i = j, k =l and v(a1) = v(ag), so a1 = ay
by the uniqueness of our original structure.

Then for € X we have that (0,x,0) is a generator of T" and

Lo,z,0) :{(Viﬁjala'ykﬁla?) € L xL:(i,v(a1),5)(0,2,0) = (k,v(az),1)}
={(v'F 1,7 Flaz) € L x L: (i,v(an)t’ (2), 5) = (k,v(az), )}
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=(1,9)*(8,8)"™ (8, B)* Rgm ) U | (7:7)" (8, B) Rgs ().
j<m

Hence L(g,4,0) is regular.

Next

Ly = L1
={(vF a1, Blaz) € Lx L: (i,v(en),1)(0,1,1) = (k,v(az), 1)}
={(v'Far, 7" Blaz) € L x L: (i,v(en),j + 1) = (k,v(az), )}
={(v'Fai, v Blas) € Lx L:k=14,l=j+1and (a;,a2) € R_}

= (1, (B,8)" (8, B){(a,a) : € R}
is regular, and

Le=Lq,1,0)
={(v'Far, 7 Blaz) € Lx L: (i,v(en),5)(1,1,0) = (k,v(az), D)}
={(v'Far,y*Blaz) € Lx L:j>1,(i,v(n),j— 1) = (k,v(as),1)}
U{(y'ar,7Paz) € Lx L: (i = 1,0(v(n)), 0) = (k,v(az), 1)}
={(v'Bla1,7*Blaz) e Lx L:k=1i,l=j—1and (a1,02) € R_}
U{(y'a1, ") € Lx L:k=1i+1and 8(v(a1)) = v(ag)}
=(7,7)"(8,8)"(8,9){(a, ) : @ € R}

U (1) (81, a2) € Rx R: 0(v(ar)) = v(az)}

is regular, as the set {(a1,a2) € Rx R: 0(v(aq)) = v(az)} is regular by the au-
tomaticity of §. Thus BR(T, 6) is graph automatic with structure (X', %', L, u).
O

In particular, if 6 is the identity homomorphism then we may use this to

show that our extension is graph automatic.

Proposition 4.4.5. Let T be a graph automatic monoid and 8 : T — T be the
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identity homomorphism. Then S = BR(T, 0) is graph automatic.

Proof. Let T be a graph automatic monoid with graph automatic structure with
uniqueness (X,3, R,v). Let 6 : T — T be defined by 6(¢t) = ¢ for all t € T.

Then the language recognising 6 is

Ly ={(, 8) € Rx R: 0(v()) = v(B)}

={(a,a) : « € R},

which is regular, thus 6 is a regular homomorphism. We also have that 8" =
0 for any n € N and so by Theorem 4.4.4 we have that BR(T,6) is graph

automatic. O

In a similar way, if 8 is the trivial homomorphism we can also show that a

Bruck-Reilly extension is graph automatic.

Proposition 4.4.6. Let T be a graph automatic monoid and 0 : T — T be

defined by 0(t) =1 for allt € T. Then S = BR(T,0) is graph automatic.

Proof. Let T be a graph automatic monoid with graph automatic structure with
uniqueness (X, %, R,v). Let § : T — T be defined by 0(t) = 1 for all t € T.

Then the language recognising 6 is

Ly = R x {n},

where 7 is the unique element of R such that v(n) = 1. Then Ly is regular,
and 6" = 6 for any n € N, so by Theorem 4.4.4 we have that BR(T, 6) is graph

automatic. 0

It is natural to ask whether this type of result holds in general. Note that
Bruck-Reilly extensions of automatic monoids are not necessarily automatic; an
example of such an extension is given in [8]. In [10] an example of a Bruck-Reilly

extension of an FA-presentable semigroup which is not FA-presentable is given.
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Therefore, it seems likely that Bruck-Reilly extensions of graph automatic
semigroups are not always graph automatic, and that it is necessary to have
a regularity condition on the homomorphism. We ask whether it is necessary
that our homomorphism is regular. However, it is not clear how we may isolate

a language representing the homomorphism in order to show that it is regular.

Question 4.4.7. Are Bruck-Reilly extensions of graph automatic monoids al-

ways graph automatic?
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Chapter 5

Constructions for Graph
Automatic Semigroups:

Unions

In this chapter we consider some further semigroup constructions and whether
they preserve graph automaticity. In particular, we examine those constructions
which can be considered as taking the union of semigroups. We look at zero

unions, ordinal sums, Rees matrix constructions, and semilattice constructions.

5.1 Zero Unions

In this section we will consider the zero union of graph automatic semigroups.
Let S and T be semigroups and let 0 be an element not in S or T'. The zero

union of S and T, denoted S Uy T, is the disjoint union S UT U {0} with

xyasin S, ifz,ye S
TY=gayasinT, ifx,yeT

0, otherwise .

73
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We will now see that zero unions preserve graph automaticity.

Proposition 5.1.1. The zero union S Uy T of semigroups S and T is graph

automatic if and only if S and T are both graph automatic.

Proof. Let S and T be graph automatic semigroups with structures (X, 31, K, v)
and (Y, X, L, i) respectively. Without loss of generality assume that KNL = ().
Let Z = X UY U {0} be a generating set for S Uy T, where 0 is an element
disjoint from both S and T'. Let ¥ = ¥, UX2 U{(} and R = KU LU{(}, where

¢ is some symbol not contained in either of K or L. Define A : R — S Uy T by

v(a), faekK
AMa) =1 (), ifael

0, if o =¢

so R is regular and A is surjective. Now we have that

R_=K_UL_U{(O},

and

RO:RX{C}a

which are both regular. Then for x € X we have that

Ry = Ky U (L x {C})

and for y € Y we have that

Ry =Ly, U(K x{C}).

Hence R, and R, are also regular. Thus (X UY U {0},%,R,\) is a graph
automatic structure for S Ug T'.

Conversely, suppose that SUgT is graph automatic with structure (X, %, R, v)
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with uniqueness. Let ¢ € R denote the unique element such that v(¢) = 0. Let

Xgs C X be the subset of X which generates S, and let x € Xg. Now

Ry =R x {(}

is regular and so

L =R, \ Ry

={(a,8) € R x R:v(a)x = v(B) such that v(3) # 0}

is regular. Then to have v(a)z # 0 we must have v(a) € S. So

LW ={a e R: (a,) € L for some 3 € R}

=719

isregular. Then as S is a regular subsemigroup of SUgT it is graph automatic by
Theorem 3.1.2. Similarly, T' can be shown to be regular, hence graph automatic,

in the same way. O

5.2 Ordinal Sums

We now consider ordinal sums of graph automatic semigroups.

Let S and T be semigroups. Then the ordinal sum of S and T with ordering

S > T is the disjoint union S U 7T with multiplication

rzyasin S, ifz,ye S
Ty =
xyasin T, ifz,yeT

and if x € S and y € T then
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We now see that ordinal sums preserve graph automaticity.

Proposition 5.2.1. The ordinal sum of two semigroups is graph automatic if

and only if the two semigroups are graph automatic.

Proof. Suppose that S and T are graph automatic semigroups with structures
(X,%1,K,v) and (Y, X9, L, u) respectively. Let U be the ordinal sum of S and
T with ordering S > T. Then U is finitely generated by XUY. Let 3 = ¥, U,
and let R = K U L. Define ¢y : R — U by

via), fae K
Pla) =
wula), ifae L.

By the uniqueness of our original structures, R— is regular. Let € X. Then

Ry ={(,0) € K x K :v(a)e = v(B)} U{(e, f) € L x L : ple)z = p(B)}

= K,UL_.

Let y € Y. Then

Ry ={(a,p) € K x L:v(a)y = p(B)} U{(a,B) € L x L:pla)y = pu(B)}

— (K x u~ (y)) U Ly

Thus R, and R, are regular and so (X UY, 3, R, ) is a graph automatic struc-
ture for U.

Conversely, suppose that U is graph automatic, with structure (X, %, R, v).
Then T is a finitely generated ideal of U, and so by Theorem 3.1.4 we have
that v~ '7 is regular, and so T is graph automatic by Theorem 3.1.2. We then
have that =18 = R\ ¢~!T, and as this is regular we also have that S is graph

automatic by Theorem 3.1.2. O

Note that this now provides an alternative way to show that adding or

removing zeroes and identities preserves graph automaticity. We have that S!
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is the ordinal sum of {1} and S, with ordering {1} > S, and so we may use
Proposition 5.2.1 to immediately deduce that adding an identity preserves graph
automaticity, as previously demonstrated in Proposition 3.2.2. Similarly, S° is
the ordinal sum of {0} and S with ordering S > {0}, and so can be shown
to be graph automatic using Proposition 5.2.1, as an alternative method to

Proposition 3.2.1.

5.3 Rees Matrix Semigroups

We now consider Rees matrix semigroups.
Recall that a Rees matriz semigroup M[S; 1, J; P] is the set I x S x J, where
S is a semigroup, I and J are index sets, and P = (pj;) ecicr is a matrix with

entries from S. Multiplication is given by
(ia S, ])(ka tv l) = (Za Spjkt7 l)

In [13] it is shown that if S is a group and I and J are finite sets, then
M][S; 1, J; P] is automatic. This is extended to the case where S is a semigroup
in [16], provided M][S;I,J; P] is finitely generated. We consider the graph
automatic case, and show that if our Rees matrix semigroup is finitely generated
then graph automaticity is preserved. In [4] the authors give conditions for a

Rees matrix semigroup to be finitely generated, namely:

Proposition 5.3.1 (Main Theorem of [4]). Let S be a semigroup, let I and J
be index sets, let P = (pj;)jericr be a J x I matriz with entries from S, and let
U be the ideal of S generated by the set {pj; : j € J,i € I} of all entries of P.
Then the Rees matriz semigroup M[S;1,J; P] is finitely generated if and only

if the following three conditions are satisfied:
e both I and J are finite;

o S is finitely generated; and
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o the set S\ U is finite.

However, we will only require the first condition in order to show that Rees
matrix constructions preserve graph automaticity. Also note that the second

condition is immediately satisfied if .S is graph automatic.

Theorem 5.3.2. Let S be a graph automatic semigroup. Then any finitely

generated Rees matriz semigroup M[S; 1, J; P| is graph automatic.

Proof. Let T = M|[S;I,J; P] be a finitely generated Rees matrix semigroup
with finite generating set Y. By Proposition 5.3.1, I and J must be finite for
T to be finitely generated. As S is graph automatic it has a graph automatic
structure with uniqueness, (X, X, R,v). As a set, we have that T =1 x S x J,
and so for each ¢ € I and j € J we introduce a new alphabet ¥;; such that
there is a bijection 1;; : ¥ — X;; defined by 9;;(a) = a;; for all letters a € X.
Then we may extend each of the 1;; to an isomorphism t;; : ¥* — ¥7;. Then
¥:;(R) = R;j is a regular language isomorphic to R.

Let T={Y

Y;;and L= R;;, which is regular as I and J are

el jed el,jed

finite. Define p: L — T by

N(aij) = (i,v(), )

for a;; € R;;. Thus if an element s € S is represented by a word o € R then
the element (i, s, j) is represented by v;;(a) = ay;.

Now

L. ={(o,a):a € L},

as fu(ai;) = p(Bmn) gives (4, v(a), j) = (m,v(5),n) so we must havei = m, j =n
and a = 3 by the uniqueness of the graph automatic structure for S.

Now let yi; = (k,y,l) € Y be a generator of T. Then if (ayj;, Bmn) € Ly,

we have that (i, v(a)p;ry,l) = (m,v(6),n) so we must have m = i,n = [ and
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(o, ) € Rp,y- Let @i 2 ¥ x X — 85 x X be a homomorphism defined by
pijala, B) = (aij, Bu).
Note that the image of R x R under ¢;;; will be R;; x R;;. Then we have that
©ijil(Re) = {(auj, Bir) € Rij X Ry : (o, B) € Ry}

and so

Ly ={(a, B) € Lx L (i,v(a)pjry, 1) = (i,v(8), 1)}

= U {(aij,ﬁil) eLxL: (Oé,ﬁ) € Rpjky}

iel,jeJ

= | via(R.)

iel,jed

is a regular language, as k and y are fixed and for each j € J we have that R, ,,

is regular. Hence T is graph automatic, with structure (Y, II, L, u). O

We now ask whether the converse holds.

Question 5.3.3. If a Rees matrix semigroup is graph automatic, is the base

semigroup necessarily graph automatic also?

Note that if we consider a completely simple semigroup S, that is a Rees
matrix semigroup S = M|[G; I, J; P] over a group G, then it was shown in [13]
that S is automatic if and only if G is automatic. Similarly, it was shown in
[10] that the corresponding result holds for FA-presentable semigroups.

In order to show that this also holds for graph automatic semigroups, we
would like to isolate a copy of G, for example the set {1} x G x {1}. Tt is easy
to isolate I x G x {1}, as this is a left ideal, and so is a regular subsemigroup.
The difficulty arises when we wish to isolate {1} x G x J, as we do not know
how to show that this is regular. It is only in the case where I = {1} that we

know this must be regular and so can show that G is graph automatic.
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Proposition 5.3.4. Let S = M[G;{1}, J; P] be a graph automatic Rees matriz

semigroup over a group G. Then G is also graph automatic.

Proof. Let S = M[G; {1}, J; P] be graph automatic with structure (X, X, R, v).
Note that G must be finitely generated by Proposition 5.3.1. Consider the set
{1} x G x {1}. This is isomorphic to the group G, and so if we can show that it

is a regular subsemigroup of S then we must have that G is graph automatic.

Let (1,9,1) € {1} x G x {1} and (1,h,5) € S. Then

(17 h7])(1aga 1) = (17 hpjlgv 1)

and so the set {1} x G x {1} is a left ideal in S. Thus by Theorem 3.1.4, we
have that {1} x G x {1} is a regular subsemigroup of S, and thus G is graph

automatic. O

Note that this result does not necessarily follow for semigroups, as if we have
a Rees matrix semigroup M|[S;I,J; P] then {1} x S x {1} is not necessarily
isomorphic to S when §' is not a group.

We next consider the Rees matriz semigroup with zero, M°[S; I, J; P], which
is the set (I x S x J) U {0} for some element 0 ¢ S, where S is a semigroup,
I and J are sets, and P = (pj;)jesicr is a matrix with entries from S U {0}.

Multiplication is given by

(i7 Y ’k:ta l)a if Djk 7é 07
(s, i) kst ) =4 '

0 ifpjk:O

and

0(i,s,5) = (i,s,5)0 = 0> = 0.

Note that Proposition 5.3.1 still holds for Rees matrix semigroups with zero, as
shown in [4].
We now see that if the base semigroup is graph automatic, then any finitely

generated Rees matrix semigroup with zero is also graph automatic.
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Theorem 5.3.5. Let S be a graph automatic semigroup. Then any finitely

generated Rees matriz semigroup with zero M°[S; I, J; P] is graph automatic.

Proof. Let T = MP°[S;I,J; P] be a finitely generated Rees matrix semigroup
with zero, generated by the finite set Y. By Proposition 5.3.1, I and J must be
finite for T" to be finitely generated. Let S be graph automatic with structure

with uniqueness, (X, %, R,v).

As in Theorem 5.3.2, we introduce a new alphabet ¥;; for each ¢ € I and j €
J, and define maps ;; : ¥ — 3;; defined by ;;(a) = a;; for all letters a € X.

We then extend each map to an isomorphism z/jij : X — XY so we have that

i
¥;;(R) = R;; is a regular language isomorphic to R. Let IT = Uier jes 2y U{C}

and L = R;; U{C}. Then L is regular as I and J are finite. Define

il jeJ
pw:L —T by
(i,v(c),j), a=a; € Ryj
pla) =
0, a=C(.

Now

L. ={(a,a):a€ L}

as in Theorem 5.3.2, and

Lo =L x {¢},

which are both regular.

Let yr = (k,y,1) € Y \ {0} be a generator of T and let ¢;; ;4 : * X T* —

>i; X X3 be the homomorphism defined by
wiji(a, B) = (0uj, Ba),
as in Theorem 5.3.2. We have that

Ly, = U Ki; U {(¢. O}

iel,jeJ
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where

Gijjt(Rpjiy)s Pik #0

Ri; x{¢},  pjr=0.

Kij =

As @i j1(Rp,.y) is regular for each choice of i and j, we have a finite union
of regular languages, and so L,,, is regular. Hence T is graph automatic with

structure (Y, II, L, u). O

5.4 Semilattices of Semigroups

We now consider semilattices of semigroups. In [10], the authors classify finitely
generated FA-presentable Clifford semigroups, that is semigroups which are
strong semilattices of groups, and also show that FA-presentable semigroups
are not closed under strong semilattices in general. We shall consider semilat-
tices and strong semilattices of semigroups, rather than just those of groups.
Recall that a semilattice is a commutative semigroup of idempotents. A
semigroup S is a semilattice of semigroups if S can be decomposed into a disjoint

union of semigroups | J S, for a semilattice Y, such that if s € S, and t € 5,

ueyY
we have st € Sy,.
We see that if a semilattice of semigroups is graph automatic then each

constituent semigroup is also graph automatic.

Theorem 5.4.1. Let S = Sy be a semilattice of semigroups over a finite

ueyY
semilattice Y. If S is graph automatic and S, is finitely generated for each

u €Y then each S, is graph automatic.

Proof. Let S have graph automatic structure (X, %, R,v). For each u € Y let
Sy be generated by X,,. Let 0 be the bottom element of the semilattice. Note
that there must be such an element as Y is finite. Then S is a finitely generated
ideal of S and so is graph automatic by Corollary 3.1.5. Let u € Y \ {0}. Let

I be the ideal of S generated by S,. This ideal is generated by |J, ., X,. By

v<u

Theorem 3.1.4, we have that v~'I is a regular language. Let .J be the ideal
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generated by |J, ., X,. Then v~1J is also regular. Thus v=1S, = v~ 1T\ v=1J

v<u

is regular, and so by Theorem 3.1.2 we have that S, is graph automatic. O

We next examine the case where we have a strong semilattice of semigroups.

If a semigroup S can be decomposed into a semilattice of semigroups S =
Uuey S, for a semilattice Y, and in addition we have homomorphisms ¢, , :
Sy — S, for u > v satisfying

Pu,u = idSu

and

Py,w © Puw = Pu,w

for w > v > w, such that for s € S, and ¢t € S, our multiplication is given by

st = Pu,uv <s>4pv,uv (t)a

we have a strong semilattice of semigroups.
In [3] the authors give the following condition for finite generation of strong

semilattices of semigroups.

Proposition 5.4.2 (Theorem 6.1 of [3]). A strong semilattice of semigroups
S = Uyey Su is finitely generated if and only if Y is finite and every semigroup

Sy foruw €Y is finitely generated.

Thus, as graph automaticity implies finite generation, we have the following

corollary to Theorem 5.4.1.

Corollary 5.4.3. Let S = Sy be a strong semilattice of semigroups. If S

u€yY

is graph automatic then each S, is graph automatic.

We shall now consider the converse, that is given a semigroup which can
be expressed as a semilattice of graph automatic semigroups, is the semigroup
itself necessarily graph automatic? In particular we consider the case where we

have a strong semilattice of semigroups.
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In [13] the authors consider Clifford semigroups, that is semigroups which
are strong semilattices of groups. An example is given of a semilattice of two
automatic groups which is not automatic. We consider if this is also the case

for graph automatic semigroups.

We begin by looking at the case where all our homomorphisms ¢, , are
automatic with respect to the graph automatic structures of the corresponding
semigroups S, and S,,. That is, if S, and S, are graph automatic with structures
(Xu, Zu, Ry, vy) and (X, Xy, Ry, vy) respectively, and ¢y, : Sy — Sy, we have
that

{(a,8) € Ry X Ry & pup(vu(e)) = vy(8)}

is regular.

Proposition 5.4.4. Let Y be a finite semilattice and let S = | Sy be a

uey
strong semilattice over Y where each S, is graph automatic. If each homo-

morphism ., Sy, — S, is automatic with respect to the graph automatic

structures of Sy and S,, then S is graph automatic.

Proof. Let S = |J,cy Su be a strong semilattice of semigroups over the finite
semilattice Y, such that each of the S, is graph automatic. Thus each S, has

graph automatic structure (X, Xy, Ry, ). Let X = Xy. Then as S is

ueyY

the union of the S, we have that X is a generating set for S, which is finite as

each of the X, are finite. Let ¥ = Y,and R=J R,. As each R, is

ueY ueyY

regular then R is also regular. Define v : R — S by

v(@) = (@)

for « € R,. We have

which is regular.

Now let z, € X,. Note that if s,x, =t in S for some s, € S, then t € Sy,.
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Thus

va = U {(auaﬁuv) € Ry X Ryy : Qau,uv(yu(au))@uuv(zv) = Vuv(ﬂuv)}
ueyY

= U {(aw, Buv) € Ru X Ruy (V;ul(@u,uv(yu(au»)vﬁuv) € (Ruv) iy, uo ()}

ueyY

U {(vu, Buv) € Ry X Ryy ¢ there exists vy, € Ry, such that
ueY

(O, Yuw) € Ly, .. and (Yo, Buv) € (Ruv)gov,w(zu)}v

where

Lgou,uv = {(a75) € Ry X Ryy : (Puﬂw(y(a)) = V(ﬁ)}

is the language recognising ¢, .. As all our homomorphisms are regular we have

that L is regular, and as Sy, is graph automatic we have that (R,,)

Puv,uv (w'v)

Pu,uv

is regular. Thus R, is regular, and so S is graph automatic with structure

(X,S,R,v). O

We now use this to give examples of situations where we have a semilattice of
semigroups which is graph automatic, beginning with the case where our strong
semilattice consists of isomorphic semigroups and all the homomorphisms are

the identity.

Proposition 5.4.5. Let Y be a finite semilattice and let S = |J S be

u€eyY
a strong semilattice over Y where all the S, are copies of a graph automatic
semigroup T'. Let each homomorphism @, , : S, — S, be the identity homo-

morphism. Then S is graph automatic.

Proof. Let T be a graph automatic semigroup with structure with uniqueness
(X,X,R,v). For each u € Y we take a copy of T indexed by w, namely S, =

{su:s €T} Let S=J,.y Su be a strong semilattice of semigroups. As T is

ueyY

graph automatic, each S, is graph automatic with structure (X, 2., Ry, V).
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Consider @, ,, : Sy, — S, defined by ¢y »(sy) = s,. Then

Ly, , ={(a,B) € Ry X Ryt pup(vu(a)) = vy(B)}

={(a, @) : « € R}

which is regular as we can easily construct an automaton which recognises if we
have two copies of the same word but with different indices. Thus by Proposition

5.4.4 we have that S is graph automatic. O

We may also show that a strong semilattice of isomorphic semigroups with

an idempotent is graph automatic, if all the homomorphisms are trivial.

Proposition 5.4.6. Let Y be a finite semilattice and let S = | S be

ueyY
a strong semilattice over Y where all the S, are copies of a graph automatic
semigroup T containing a distinguished idempotent e. Let each homomorphism

Guyp Sy — Sy be defined by @y u(sy) = €, for each s, € Sy,. Then S is graph

automatic.

Proof. Let T be a graph automatic semigroup with structure (X, %, R, v) with
uniqueness. For each u € Y we take a copy of T indexed by u, namely S, =

{su:8€T}. Let S=J,.y Su be a strong semilattice of semigroups. As T is

uey
graph automatic, each S, is graph automatic with structure (X, 3., Ry, Vy)-

Counsider @, ,, : Sy, — S, defined by ¢, ,(s,) = €,. Then

qu,v ={(a, B) € Ru x Ry : pun(vu(a)) = v,(8)}

:Ru X {771)}7

where n, is the unique word in R, representing e,. This is a regular language,

and so by Proposition 5.4.4 S is graph automatic. O

We now consider whether the homomorphisms associated to a graph auto-
matic strong semilattice of semigroups must be automatic. We begin by con-

sidering the case where all our constituent semigroups are monoids.
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Proposition 5.4.7. Let S = Sy be a strong semilattice of monoids over

ueyY
a finite semilattice Y. If S is graph automatic then each homomorphism ¢, :
Sy — Sy is automatic with respect to the graph automatic structures of S, and

Sy.

Proof. Let S = |J Sy be graph automatic with structure (X, %, R,v). By

ueyY
Corollary 5.4.3, each S, is graph automatic with structure (X,,%, Ry, ),
where R, = v~15, and v, is the restriction of v to S,.

Consider the homomorphism ¢, ,,. Note that this is a monoid homomor-

phism, and so we must have that ¢, 4, (1y) = Ly Let

qu,uv ={(,8) € Ry X Ry : Puyuv(Vu(@)) = vun(8)},

that is the language recognising ¢y w.,. We want to show that this is regular.

As S is graph automatic we have that

Rlu = U {(O&,ﬁ) € Ry X Ryy : qu,uv(Vu(a))@Uﬂw(lU) = V“U(ﬁ)}

u€Y

= [J{(e.B) € Ru x Ruw : Puuw(vu(@) Luw = v (8)}
u€eY

= U {(aaﬁ) S Ru X Ru’u : (pu,uv(yu(a)) = Vuv(ﬁ)}
ucY

is regular. Then as S, is graph automatic we have that R, is regular for each

u €Y, and so

Rlv N (Ru X R) = {(Ol,ﬂ) € Ru X Ruv : qu,uv(l/u(a)) = Vuv(ﬂ)}

=L

Pu,uv

is regular. O

We now use this to show that homomorphisms for any graph automatic
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strong semilattice of semigroups must be automatic.

Proposition 5.4.8. Let S = (J,cy Su be a strong semilattice of semigroups
over a finite semilattice Y. If S is graph automatic then each homomorphism
Pupw : Su — Sy 15 automatic with respect to the graph automatic structures of
Sy and S, .

Proof. Let S = Sy be graph automatic with structure (X, 3, R,v). We

ueY
consider each of the semigroups S, for u € Y and adjoin an identity to each
in order to get S.. We also extend each of the homomorphisms associated

with our semilattice, with ¢, , : S, — S, being extended to a homomorphism

Guw : SL— SL, given by

We now form a new semigroup S = Uwey Sl which has multiplication defined
by

5t = Puuv(8)Po,un (t)

for s € S} and t € S!. Thus we have formed a new semigroup which is a strong

semilattice of monoids.

Now S is an ideal of S, and S has finite Rees index in S. Thus, by Proposition
3.3.2 we have that S is also graph automatic with structure (X U {1, : u €
Y}, Y UC, R = RUC,p), where C = {c, : u € Y} is a set in one-to-one

correspondence with the set {1, : v € Y} and

Then by Proposition 5.4.7 each homomorphism ¢, , is automatic with respect
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to the graph automatic structures of S. and S} and so

L@u,v ={(a, ) € Ru X Rv : @u,w(ﬂu(a)) =0,(0)}}

= {(O"ﬂ) € Ry X Ry : SDu,v(’/u(O‘)) = Vv(ﬁ)} U {(chv)}

is regular, and so
Lo, =Lg,, \{(cucv)}

is regular.

Combining these results gives the following theorem.

89

Theorem 5.4.9. A strong semilattice of semigroups S = J,cy Su is graph

automatic if and only if each constituent semigroup is graph automatic and each

homomorphism @, : Sy — Sy is automatic with respect to the graph automatic

structures of S, and S,.

Proof. This follows from Corollary 5.4.3, Proposition 5.4.8, and Proposition

5.4.4.

O
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Chapter 6

Unary Graph Automatic

Semigroups

In this chapter we consider a special case of graph automatic semigroups, namely
those whose alphabets contain a single letter. We call such semigroups unary
graph automatic. We will examine the structure of the automata which recognise
such semigroups, and then apply this to demonstrate some properties of unary

graph automatic semigroups.

6.1 Definition and Examples

Definition 6.1.1. A semigroup S is unary graph automatic if it has a graph
automatic structure (X, {a}, R,v). When our alphabet consists of a single letter

we will often write our structure as (X, a, R, v).

Similarly to the general case, we may show that all finite semigroups have a

unary graph automatic structure.
Proposition 6.1.2. Any finite semigroup is unary graph automatic.

Proof. Let S = {x1,22,...,7,} be a finite semigroup. Let R = {a,a?,...,a"}.

91
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Then we define v : R — S by v(a¥) = 2. So

R_ ={(a",a"):1<i<n}

and

R, ={(d",a’) € Rx R: x;x = x;}

for each x € S are all finite, thus regular. Hence (S, a, R,v) is a unary graph

automatic structure for S. O

Therefore, as in the general graph automatic case, we will primarily be
interested in infinite semigroups.

It follows from the properties of general graph automatic semigroups that
unary graph automatic semigroups have a structure with uniqueness. This
means that for a unary graph automatic semigroup we may find a structure
(X,a, R,v) such that v is a bijection v : R — S. We use the following result
from [11] to show that if we have an infinite semigroup we can always choose

our language R to be the entirety of a* and still maintain injectivity.

Proposition 6.1.3 ([11], Theorem 9). Let S be an infinite relational structure
that admits a unary automatic presentation. Then S has an injective unary

automatic presentation (a*,1)).

Now graph automatic structures are special cases of FA-presentable struc-
tures, as shown in Subsection 2.2.2. Namely, a semigroup is graph automatic if
and only if its Cayley graph is FA-presentable, and in particular a semigroup is
unary graph automatic if and only if its Cayley graph has a unary automatic
presentation. Hence we may apply Proposition 6.1.3 to unary graph automatic

semigroups.

Corollary 6.1.4. Let S be an infinite unary graph automatic semigroup. Then

S has an injective unary graph automatic structure (X, a,a*,v).

From this point on we may assume that all our unary graph automatic
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structures are structures with uniqueness, and that for any infinite unary graph
automatic semigroups our structure is of the form (X, a,a*,v).
We now give some examples of unary graph automatic semigroups. We begin

by showing that N has a unary graph automatic structure.

Example 6.1.5. Consider (N, +), generated by {1}. We show that this is unary

graph automatic. Let v : a* — N be defined by v(a™) =n + 1. Then

(@)= ={(a",a™) : v(a") = v(a™)}

=(a,a)*

and

are both regular, thus ({1}, a,a*,v) is a unary graph automatic structure for N.
Next we see that Z is unary graph automatic.

Example 6.1.6. Consider (Z,+) with generating set {1, —1}. We show that Z
is unary graph automatic.

Let v : a* — Z be defined by

This is injective and so

is regular.

Then
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= (aZ’ a2)*{(6’ a2)7 (a37a)} U {(a7 6)}

and

are regular, so ({1,—1},a,a*,v) is a unary graph automatic structure for Z.

Finally we show that the free product of two trivial semigroups is unary

graph automatic.

Example 6.1.7. Let S = {s} and T" = {¢} be trivial semigroups. We show

that S« T is unary graph automatic. Let ¥ = {a} and R = a*. Define a map

v— ST by
s(ts)?, r=0
s(ts)t, r=1
1/(@4‘1‘”)
t(st)?, r=2
t(st)?s, r=3.

Note that this map is injective, so R— is regular. Then

R :{(a4q,a4q) :q €N} U {(a4q+17a4(q+1)) .q €N}
U {(a4q+2,a4q+3) g€ N} U {(a4q+3’a4q+3) qc N}

:(a4’ a4)* U (a47 a4)*{(a7 a4)7 (GQ’ a3)’ (GS, ag)}

and

Ry ={(a*,a*™") : g e N}U{(a"*!,a**") : g e N}
U {(a4q+2, a4q+2) :qeN}U {(a4q+3,a4(q+1)+2) :q €N}

=(a*,a*)*{(8,a), (a,a), (a*,a*), (a’,a®)}
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so Rs; and R; are regular. Hence ({s,t},a,a*,v) is a unary graph automatic

structure for S * T

We will see more examples of unary graph automatic semigroups in Sections

6.3 and 6.6.

6.2 Unary Automatic Semigroups and Unary

FA-Presentable Semigroups

We now consider the relations between unary graph automatic semigroups and
other unary structures. We begin by looking at unary automatic semigroups.

For an automatic semigroup to be represented by a single letter alphabet
it must be generated by a single element. This means that the only unary
automatic semigroups are monogenic semigroups, and in particular the only
infinite unary automatic semigroup is the free monogenic semigroup. Now as
any finite semigroup is unary graph automatic, we have examples of semigroups
which are unary graph automatic but not unary automatic, namely any finite
semigroup generated by more than one element.

Unary FA-presentable semigroups are discussed in [11]. In this paper the
authors examine the properties of unary FA-presentable semigroups, showing
that they are locally finite and must satisfy some Burnside identity. They go
on to consider the Green’s relations of unary FA-presentable semigroups, and
examine which constructions preserve unary FA-presentability. In particular,
we note that the authors also show that finitely generated semigroups are unary
FA-presentable if and only if they are finite (Corollary 14, [11]). This means
that the semigroups which are both unary FA-presentable and unary graph
automatic are precisely finite semigroups. However, we have seen in Examples
6.1.5, 6.1.6 and 6.1.7 that there exist unary graph automatic semigroups which
are not finite. Thus we have examples of graph automatic semigroups which are

not unary FA-presentable.
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Excluding N, any infinite unary graph automatic semigroup will be neither
unary automatic nor unary FA-presentable, thus Examples 6.1.6 and 6.1.7 give
us semigroups which are unary graph automatic but neither automatic not FA-

presentable.

6.3 Automata for Unary Graph Automatic
Structures

We now consider the possible structures of the automata associated with infinite
unary graph automatic semigroups. By Corollary 6.1.4, we may assume that we
have an injective unary graph automatic structure (X, a,a*,v). As our structure
is injective, the automaton which checks equality always accepts the language
(a,a)* and so we need only examine the automata that accept the languages for
multiplication by generators. We will refer to these as acceptor automata.

An acceptor automaton, A,, will accept words over the alphabet {(a,a),
(a,9),(8,a)}. We take a deterministic automaton accepting our language, but
for simplicity we ignore any sink states, meaning that our transition function is
a partial function. So when we discuss the possible structures of our automata
we refer only to those paths which can lead to an accept state. In practice this
means that each state will have at most one transition labelled by each of (a, a),
(a,$) and ($,a).

We now consider restrictions on the structure of our automata. Firstly, as
we are accepting infinite languages our automata must contain at least one
circuit or loop. Note that once we read (a,$) or ($,a) we can only read further
letters of this form, so any circuit must be labelled with a single letter over our
extended alphabet. We will refer to a circuit whose arrows are all labelled by
(a,a) as an (a, a)-circuit, and similarly we have (3, a)-circuits and (a, $)-circuits.
These circuits may have offshoots, by which we mean finite paths leading to
accept states. If we have a ($, a)-circuit or an (a, $)-circuit we cannot have any

offshoots on the circuit, due to the deterministic nature of our automata and
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the fact that once we read $ in a component we must continue to do so. If we

have an (a, a)-circuit, we may have offshoots labelled by either (a,$) or ($,a).
The following lemmas allow us to determine the possible structures for the

acceptor automata for a unary graph automatic semigroup. We operate under

the following assumptions:

e Our semigroup is infinite.

We have a unary graph automatic structure (X, a, R, ), where v is injec-

tive and R = a*.

The automaton <7, recognises the language (a*),.

We form 47, by taking a deterministic automaton and removing any states

and their associated transitions which can never lead to an accept state.

We are particularly interested in the forms and positions of circuits. We first

see that we can immediately rule out one type of circuit.

Lemma 6.3.1. An acceptor automaton for a unary graph automatic semigroup

cannot have a (3, a)-circuit.

Proof. Suppose that 7, contains a (8, a)-circuit of length p. There must be an
accept state somewhere on the circuit. Let (a’,a’) be the first word accepted
by a state on this circuit. Then for any n € N we have that (a?, a/TP") is also
accepted by the automaton, as we may traverse the circuit multiple times and
return to the accept state. Hence we have v(a’) = v(a’*t"?) for any n € Nj.

This contradicts the injectivity of our structure. O

We next consider what happens if we have multiple circuits, and see that
they cannot be placed successively, in the sense that a path to an accept state

cannot go through one circuit and then into a second circuit.

Lemma 6.3.2. An acceptor automaton for a unary graph automatic semigroup

cannot have two successive circuits.
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Proof. Suppose that o7, has two successive circuits. As o7, is deterministic,
these circuits must be of distinct types, else there would be a point where we
leave the first circuit to enter the second where we have two edges leaving one
state labelled with the same letter, which contradicts the determinism of our
automaton. We cannot have a (3, a)-circuit and we cannot read (a,a) after
reading (a, $), thus the only way to have successive circuits is to have an (a, a)-
circuit followed by an (a, $)-circuit. We suppose that this is the case and let
p be the length of the first circuit and g be the length of second circuit. We
consider the form of words which are accepted by some accept state s on the
(a,$)-circuit. This state will accept words of the form (a™P*% a™PT)(a™dt7, §)
for all n,m € N, where 7 is the length of the path from the start state to the
point at which we leave the first circuit and j is the finite length of the path
from the place where we leave the first circuit to s on the second circuit.

We now consider the effect of traversing the two circuits multiple times by
varying the values of m and n, and show that it is possible for this automaton to
accept two different words with the same first components. First let n = 3¢ and
m = 2p. Then the state 5 accepts the word (a®??ti+7 q2Pa+%). Now let n = 2q
and m = 3p. Then 5 also accepts the word (a’?4+itJ ¢3P4+%) Now we have
that v(a?Pit?) = v(a®P4T49)x = v(a®P97?), a contradiction to the injectivity of

our structure. Thus we cannot have two successive circuits. O

This still allows our automaton to contain multiple circuits, but only if they
are not successive. We can have multiple circuits labelled (a,$) but the deter-
minism of our automaton means that we can have at most one (a, a)-circuit,
as if we had multiple (a,a)-circuits both would have to be preceded by a path
labelled (a,a) and so at some point there would have to be a place where the
initial path labelled (a, a) split into two paths labelled (a,a), contradicting the
determinism of our automaton. Note that if we have multiple circuits we can
alter the form of our automaton to get an equivalent automaton where all the
circuits have the same length and are the same distance away from the start

state, whilst maintaining the determinism of our automaton.
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Lemma 6.3.3. If an acceptor automaton for a unary graph automatic semi-
group has distinct circuits then we can find an equivalent automaton such that
all circuits have the same length p and each circuit is the same distance from
the start state. Moreover, each accept state will accept words of a different

remainder when their lengths are considered modulo p.

Proof. Suppose that <7, has k circuits. As our automaton is deterministic and
we cannot have a ($,a)-circuit, we can have at most one (a,a)-circuit, and
the rest must be (a,$)-circuits. We number the circuits from 1 to k& and let
circuit 7 have length w; for 1 < ¢ < k. Let p = lem(uy,ug,...,ug). Then we
may construct an equivalent automaton where all circuits have length p by the
following process. Suppose that the first circuit consists of states 51,8, ..., 8,.
Then instead of closing the circuit, we may extend it by introducing new states
5,85, ...,5, between states 3, and 51, where state 3, behaves the same as state
S;, meaning it has the same offshoots and is an accept state precisely if §; is an
accept state. This is illustrated in Figure 6.1. We may repeat this process ny
times in order to get a circuit of length uyn; which accepts the same words as
our original circuit. In a similar way we extend the ¢th circuit by repeating it n;
times. Then by choosing each of the n; appropriately we can extend all circuits

to have length p, where p is a common multiple of all the u;.

oRe
() (%)
DO
Figure 6.1: The process of extending the size of a circuit. States which are the

same colour will have the same finite offshoots and will be the same type of
state (accept or reject).

Note also that the paths prior to entering each circuit may be of different

lengths. However, we can form an equivalent automaton by ‘unravelling’ part
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of the shorter circuit to ensure that the path length to both circuits is the same.
Let states to,%1,...,tx, 50 be the sequence of states along the path from the
start state to a circuit, with 59 being the state where we enter the circuit. Then

if we wish to extend the finite path by [ = gp + r states for some ¢ € N and

0 < r < p, and the circuit has states 5, 32,...,5,-1, we introduce new states
581), o 521_)1, e Eéq), e _](;1_)1, §§q+1), 59D after state £y, Each state §§-i)

behaves in the same way as 5;, meaning it has the same offshoots and is an accept

state precisely if 5; is an an accept state. However, instead of the transition
(@) (@)

from §,”; to s, which would close the circuit we have a transition with the
same label from 51(21 to Eéi“). Then from state 527" we will enter the circuit

at state §.41 if » #% p — 1 and state 5y if r = p — 1. This process is shown
in Figure 6.2. Thus if we have multiple circuits we may apply this process to
all but the one with the longest path to the circuit in order to make the path

lengths to all our circuits the same.

O-O-0-O0-O-0OwW @

Figure 6.2: The process of extending the length of a path. States which are
the same colour will have the same finite offshoots and will be the same type of
state (accept or reject).

We now consider the first components of the words accepted by each circuit.
Each state on a circuit accepts words of the form a®T"**" in the first component,

where ¢ is the length of the path before reaching a circuit and 0 < 7 < p. Due
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to the fact that v is a bijection, each such word must be accepted precisely once
in the first component, as each element of the semigroup can be multiplied by
z (and so each representative must be accepted by the automaton) resulting
in precisely one element (and so a word cannot appear in the first component
of two different words). Thus each state must accept words with a different

remainder modulo p. O

We illustrate this process with an example of how it is applied to a specific

automaton.

Example 6.3.4. We begin with the automaton in Figure 6.3. Note that this
has the correct format to possibly be an acceptor automaton for some graph

automatic semigroup.

Figure 6.3: The original automaton

We wish to change this automaton into an equivalent automaton, where the
paths to the circuits and the circuits themselves have the same length. Thus we
wish to extend the upper circuit and the lower path. We begin by considering

the circuit lengths. We wish both circuits to have length p, where p is a multiple
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of both current circuit lengths. Thus we may take p = 6, and so we only need

to extend the (a,$)-circuit. This is shown in Figure 6.4.
Before: After:

Figure 6.4: The (a, $)-circuit before and after it is extended.

Before:

After:

(a,8)
(8, a)T (a,$)

--0—0 O O
(a,a) ~ (a,a) (a,a)é(a,a) (a,a)
)

(3,a

Figure 6.5: The path to the (a,a)-circuit before and after it is extended
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Next we wish the paths before entering the circuits to be the same length.
We take the shorter path, which leads to the (a, a)-circuit, and extend it to the
length of the longer path. This extension is shown in Figure 6.5. Note that this
results in the entry state to the circuit being changed. We may now combine
these processes to get a new automaton, shown in Figure 6.6, which is equivalent

to the original automaton.

start

Figure 6.6: The new form of our automaton

Finally, we consider the behaviour of an acceptor automaton when the only

circuit is an (a, $)-circuit.

Lemma 6.3.5. If an acceptor automaton for a unary graph automatic semi-
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group contains only one circuit, which is labelled (a,$), then we can find an

equivalent automaton where this circuit has length one (i.e. it is a loop labelled
(a,9)).

Proof. Suppose &, has only one circuit, which is labelled (a,$). This cannot
have any offshoots by determinism of our automata. Now as every power of a
must be accepted by some accept state, we must have that every state along

our circuit is an accept state. This is equivalent to a circuit of length one. [
These lemmas now enable us to give a description of our acceptor automata.

Theorem 6.3.6. Let S be an infinite semigroup with an injective unary graph
automatic structure (X, a,a*,v). Then any acceptor automaton for S is equiv-
alent to one of the following, when we consider only the states and transitions

which may lead to an accept state.

1. A finite path labelled (a,a), which may have finite offshoots labelled (a,$)
or ($,a), then a finite path labelled (a,$) followed by a single loop of the
form (a,$).

2. A finite path labelled (a,a), followed by a single circuit of the form (a,a).
Both the path and the circuit may have finite offshoots labelled (a,$) or
(3,a).

3. A finite path labelled (a, a), which has finitely many branches labelled (a, $)
leading to circuits labelled (a,$) and may end in a circuit labelled (a,a).
Both the (a,a)-path and the (a, a)-circuit may have finite offshoots labelled
(a,$) or (8,a). Fach circuit is the same distance from the start state, each
circuit has the same length q, and each accept state will accept words in

the first component of different remainders modulo q.

The third of these structures is the most general form, with type 1 and 2
being specific cases of type 3. From this point on we will assume that any
acceptor automaton for a unary graph automatic semigroup has one of these

forms.
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These automata are illustrated in Figure 6.7. Note that not every state will
be an accept state, we merely illustrate the possible paths to reach accept states,
and the accept states must be distributed in such a way that every power of a

is accepted in the first component of precisely one word.

Key

— Edge reading (a, a)
77777 ; Finite path reading (a, a)
— Edge reading (a, $)
————— ) Finite path reading (a, $)

)

a
)

Finite path reading (a,$) or finite

path reading ($,a) or one of each

(
Finite path reading ($
(

Type 1 automaton:

Type 2 automaton:
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Type 3 automaton:

Figure 6.7: Forms of acceptor automata for unary graph automatic semigroups

6.3.1 Examples of Automata

We shall now see examples of semigroups which have each type of automaton.
We begin by noting that any infinite unary graph automatic semigroup with a

zero will have an automaton of type 1.

Example 6.3.7. Let S be a unary graph automatic semigroup with a zero ele-
ment, z € S. Let S have injective unary graph automatic structure (X, a,a*,v)

with x € X. Then as z is a zero we have that

(a*), = a* x a¥,
where v(a*) = z. Therefore the automaton accepting .27, must be of type 1, and
is illustrated in Figure 6.8. Note that each path to an accept state has length
k.

Figure 6.8: Example of a type 1 automaton.

o o ke
8.a)%7 ($,0)" L7 (8,0)*727

start —(Cf CF CF----- O———0= (a,8)

(a;a) (a;a) (a,a)k=3 (a;a)

Next we return to one of our examples from Section 6.1 to provide us an
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example of an automaton of type 2.

Example 6.3.8. In Example 6.1.6 we saw that Z is a unary graph automatic

semigroup with injective structure ({1, —1},a,a*,v). Consider

(a*)1 = (a*,a*)*{(e,a*), (a®, a)} U {(a,€)}.

The automaton &7 is a type 2 automaton, as illustrated in Figure 6.9.

Figure 6.9: Example of a type 2 automaton.

(a:9) (a,9)
@a) | @e) a9 G

C
©)

start

(a,a) (a,a)

Q
)

$,a) — ($,a) (a,a)
(a,9)

(a;$)

Finally we give another example of a unary graph automatic semigroup, in

order to give an example of a type 3 automaton.

Example 6.3.9. Let S be the semigroup defined by the presentation

(z,y | zy = yxr = x)
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and define v : a* — S by

Then as v is a bijection we have that (a*)= is regular, and we also have that

(a")e = (a®,a%)"(e,a*) U ((a*)"a x {e})

and

(a*)y = (a27 a2)*(a, a3) U (a27 a2)*

are regular. Thus S is unary graph automatic with structure ({z,y},a,a*,v).
We now consider o7, and see that this is an example of an automaton of type

3, as shown in Figure 6.10.

Figure 6.10: Example of a type 3 automaton.

(a,$) (,8)
(a,$)
Q
(a,8) (a,a)
ot (@D (@) @
($,a) $,0)| (@)
O O
($,a) ($,a)
) o

Thus we see that it is possible to get all three types of automaton as an
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acceptor automaton for some unary graph automatic semigroup.

6.4 Periodicity

A semigroup is periodic if every monogenic subsemigroup is finite. In this sec-
tion we use the structure of our automata to show that infinite unary graph
automatic semigroups are not periodic. We first note that we may express our
semigroup in terms of normal forms, such that our set of normal forms is prefiz-
closed, that is if a word x5 ...z, belongs to our set of normal forms N, then

T1To...T is also in N for any 1 < k < n.

Lemma 6.4.1. Let S be a semigroup generated by a finite set X. Then there

is a set of unique normal forms N C X™* for S such that N is prefiz-closed.

Proof. Let S be a semigroup which is finitely generated by a set X. To construct
a set of prefix-closed normal forms for S, we begin by imposing an ordering on

the elements of X. We then define the set of normal forms to be

N ={we Xt : ifve X" represents the same element of S

as w, then w <z v},

where <, represents the shortlex order. Suppose that N is not prefix-closed.
Then there is some word z1xs ...z, € N such that x; € X and z122...2,, ¢ N
for some m < n. Then we must have another word y1y2...y; € N, with
y; € X, which represents the same element of the semigroup as x1xs ... ZTm,
with y1y2...y1 <s T122...2,. But then y1ys...yiTm11 ... Ty represents the
same element of the semigroup as z12o...2, and Y1yY2 ... YTmel - Tn <s
T1Tg...Tp, and so z1Zo ...z, ¢ N, a contradiction. Thus N is prefix-closed.

O

We now use this to show that the only periodic unary graph automatic

semigroups are finite semigroups.
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Theorem 6.4.2. Infinite unary graph automatic semigroups are not periodic.

Proof. Let S be a unary graph automatic semigroup with structure (X, a, a*,v).
By Lemma 6.4.1, there is a set of unique normal forms, N C X*, for the elements
of S such that N is prefix-closed.

We consider the automata 27, for each x € X. The automaton .27, contains
circuits of length A,. Let A be the lowest common multiple of the A,. Similarly,
let v, be the maximum length of a path before reaching a circuit in <7, and let
~ be the maximum of the v,. Now any word longer that A+~ must be accepted
by a state on a circuit or an offshoot of a circuit of each o7,.

Note also that if a word (a™,a™) is accepted by the automaton &7, then we
have some bound b, such that m < n + b,. This is because we cannot have
a (8, a)-circuit, and so there is a bound on how much multiplication by = can
increase the length of our representative. Let b be the maximum of the b,.
Then for any word (a™,a™) accepted by any of our acceptor automata we have
m < n+b.

Consider «7,. If this contains (a, $)-circuits, then for each such circuit there
is a fixed word a’* such that words of the form (a*,a’=) are accepted by .27,
for infinitely many k. There are at most finitely many such a’= associated with
each &, one for each (a,$)-circuit. Let F, be the set of all words accepted
by any state before we reach a circuit in 7, together with the finitely many
choices for a/=. If @/, does not contain an (a,$)-circuit then F, is merely the
set of words accepted before reaching the circuit in o7,. Let F' be the union of
the sets F,. This set is finite, as each F, is finite, and we let af be the longest
word in this set.

As S is infinite, we have arbitrarily long products of generators representing
distinct elements of our semigroup. We must also have elements represented by
arbitrarily long words of a*. Note that if an element is represented by a word
of length f 4+ m then it must be a product of at least [m/b] generators, as once
we leave I’ we can only increase a word by at most b each time we multiply by

a generator. We take a word a? where p > f 4+ Ab and consider the element
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v(a?) = w. Then w has normal form

W =T1T2...Tp

such that all prefixes of w give different elements of the semigroup. There is a

corresponding sequence of words

apl’ap27'.'7apn

such that aP' represents x1xo...x; for I =1...n and a? = aP~. It follows that

(aPi,aPi+1) is accepted by A for1<i<n-—1

Tig

Note that there is a point ¢; in this sequence such that from a?* onwards
our words do not represent elements of F. There must be at least (p— f)/b > A
elements left in the sequence. Consider a?2, where this is the first word in
the sequence after a?* where ¢ < ¢o. Continuing in this manner we get a
subsequence

a®, a®, ... al*

such that a%+! is the first word in the original sequence such that ¢; < g;y1.

Note that g;+1 < q; + .

Now as w is longer than f + Ab, we must have at least A\ increases in the
sequence of words aPi after leaving the set F, and so we have that k£ > A.
Hence the sequence a?,a?,...,a% must contain two words a? and a?% such
that ¢; = ¢; mod A\. Then these two words are accepted by the same state of
some automaton. Let v = y1y2 ...y be the sequence of generators such that

v(a®)v = v(a®).

Applying v repeatedly gives an infinite sequence of elements

z, 20, 202, 20°, . ..
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represented by distinct words

a¥i a¥ qitd gt

where d = ¢; — ¢;. As our structure is injective, these must all be distinct
elements of our semigroup, and so v is an element of infinite order. Thus S is

not periodic. O

Note that infinite automatic semigroups are also never periodic. It is shown
that automatic groups are not periodic in [18], and the same proof can be used

for semigroups. This leads us to ask:

Question 6.4.3. Are infinite graph automatic semigroups ever periodic?

6.5 Proving Non-Unary Graph Automaticity

Unlike the general graph automatic case, we are able to show that certain semi-
groups are not unary graph automatic. We use the structure of our automata to
determine a structure for certain types of unary graph automatic semigroups,
which in turn we may use to find examples of semigroups which are not unary
graph automatic. We first introduce some notation. For a semigroup S and sets

A, B C S we define the set
AB ' ={se€ S:sBnA#0}.

This means that the set AB~! is the set of all elements of S which are translated
to an element of A by an element of B. We now use this to provide a structure

for certain unary graph automatic semigroups.

Proposition 6.5.1. Let S be an infinite unary graph automatic semigroup. Let

x € X be an element of infinite order such that

o o, is of type 2,
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o sx' £ s for any element s € S and any i € N, and
o for every finite set F C S, the set F(x)~! is also finite.

Then S can be written as Ax* for some finite set A C S.

Proof. Let S be an infinite unary graph automatic semigroup with injective
unary graph automatic structure (X,a,a*,v). Without loss of generality we
may assume that z € X.

We now consider the first components of the words accepted by each state
of o7,. Note that the injectivity of our structure ensures that each word in
a* will appear in the first component of precisely one word accepted by <7,
and so we cannot have words with the same first component being accepted by
different accept states. Thus we may use the accept states of <7, to partition
our language.

Let 51,...,5j, t1,...,tx be the accept states of .oZ,, where the 5; are the
states before reaching the circuit and the #; are the states either on the circuit
or on an offshoot of the circuit. We have a finite set F' consisting of all the words
in a* which are the first component of a word accepted by the states 5;, and
finitely many sets Py, - - - , P, corresponding to the accept states ty, ..., in the
same way. In each P;, the lengths of the words form an arithmetic progression.

Each arithmetic progression has common difference d, where d is the length
of the circuit in «7,. There is a natural ordering on each of the sets P;, defined
by the length of the words. Let p; € P; be the word in each of the sets P; such
that from p; onwards no word is mapped by = to a word in F. This means
that from this point onwards the words are always accepted by a state on the
circuit of ;. Then from this point onwards we have v(a™)z = v(a™) if and
only if v(a™+%)x = v(a™*?), and so above p; each of our sets is mapped rigidly
to another. Due to injectivity, each P; has precisely one set P; which is mapped
to it. Hence we may follow a path between the sets, going from a™ to a™ if and
only if v(a™)x = v(a™). Note that there can be no closed paths, as a closed

path would give us v(a’)z* = v(a’) for some i,k € N. Let p’ be the first time
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we return to P; after following this path through from p;. The two are distinct,
as there are no closed paths.

We must also have p, > p;. If we have some p} < p; then this means we
must have a path through the sets P; which is always decreasing. Any such path
must end in the set F. But then any element represented by a word from P; can
be mapped to the finite set F' by repeated multiplication by z, as starting at
any point above p; will give the same decreasing pattern which must eventually
end in F, and so F(z)~! is not a finite set, a contradiction.

Now consider

A':FUU{a”GPi:angpg}.

We can reach any word in any of our sets P; by starting from an element in A’
and following the path that comes from multiplying by = repeatedly. Hence we
can reach any element of S by taking an element represented by a word in A’
and multiplying repeatedly by . Then if A = v(A4’') = {v(«a) : a« € A} we have
S = Ax*. O

This result will allow us to give several examples of graph automatic semi-
groups which are not unary graph automatic. We first note that if we have a

right-cancellative element, our acceptor automaton must be of type 2.

Proposition 6.5.2. An acceptor automata <7, for a right-cancellative element

x must be of type 2.

Proof. Let S be unary graph automatic with injective unary graph automatic
structure (X, a,a*,v). Let x € X be right-cancellative and suppose that <7, is
not of type 2. Then <7, has an (a, $)-circuit and so accepts words (a”,a*) and
(a™,a*) for some n,m,k € N with m # n. So v(a")z = v(a*) = v(a™)z. Then
as x is right-cancellative we have that v(a™) = v(a™), a contradiction to the

injectivity of our unary graph automatic structure. O

Note also that if our semigroup is cancellative then the second condition of

Proposition 6.5.1 is also immediately satisfied. Thus for a cancellative semigroup
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we need only check the third condition.
Proposition 6.5.3. The semigroup Ny x Ng is not unary graph automatic.

Proof. Suppose that Ny x Ny is unary graph automatic. Note that Ny x Ny
is generated by the set {(0,1),(1,0),(0,0)} and consider the automaton .27 ¢).
Note also that (1,0) has infinite order in Ny x Ny. Now Ny x Ny is cancellative
and so the first two conditions of Proposition 6.5.1 are satisfied. We check the
third condition.

Consider some finite set F' = {(n1,m1), (n2,ma)...(n;,m;)} € Ny x Np.

Now consider the set

F((1,0))™* = {(n,m) € Ng x Ny : (n,m)(1,0)* N F # 0}

={(n,m) € Ng x Ng : (n+ k,m) € F for some k € N}.

Then if (n,m) € F((1,0))~! we must have that m € {m,ma,...,m;} and
n < max{ni,na,...,n;}. Thus there are only finitely many choices for n and
m, and so F((1,0))7! is finite.

Hence by Proposition 6.5.1 we can write Ny x Ng = A(1,0)* for some finite
set A. Let A = {(n1,m1), (n2,ma),..., (ng, mg)}. But if (n,m) € A(1,0)* we
must have m € {mq, ma,...,mg}. Thus A(1,0)* cannot contain every element

of Ny x Ny, and so Ny x Ny is not unary graph automatic. O]

In fact, we may easily generalise this proof to show that Ny x Ny x - -+ x Ny
is not unary graph automatic for any finite number of copies of Ng. We may
show that if Ny x Ny X - -+ x Ny was unary graph automatic then we could write
it as A(1,0,...,0)* for some finite set A, which will restrict us to finitely many
entries in all but the first component, giving a contradiction in the same way as
in Proposition 6.5.3.

We next consider free semigroups, and see that they are not generally unary

graph automatic.

Proposition 6.5.4. The free semigroup Fs generated by the set S is unary
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graph automatic if and only if |S| = 1.

Proof. Let Fs be the free semigroup generated by S. If S = {s} then Fs is unary
graph automatic as Fg is isomorphic to N, which is unary graph automatic as
we have seen in Example 6.1.5.

Now suppose that |S| > 2 and that Fs is unary graph automatic. Then
we consider some element s € S. This will have infinite order, and as free
semigroups are cancellative we have that the first two conditions of Proposition
6.5.1 are satisfied. We now consider some finite set Y C Fg. Each element of
Fs has a length, and as Y is finite there is a maximum length of an element in
Y. Now each time we multiply any element of Fs by s we increase the length,
and so the set

Y(s)7'={te Fs:ts*NY # 0}

must be finite.
Hence by Proposition 6.5.1 we can write Fig = As* for some element s € S
and some finite set A C Fg. This means that all elements of Fs must end in s,

a contradiction. Thus Fs is not unary graph automatic if |S| > 1. O

A similar method will also show that the free monoid on S is unary graph
automatic if and only if |S]| = 1.

Note that not all unary graph automatic semigroups can be written as Az*.
In particular, groups cannot be written in this way. As all groups are cancella-
tive, this means that all the acceptor automata for a group are of type 2. If we
take a group G with an element of infinite order z, then cancellativity means
that the condition gz? # g for any element g € G and any i € N will also be
satisfied. However, an infinite group will not be able to satisfy the final condi-
tion of Proposition 6.5.1. For example, we have seen in Example 6.1.6 that Z is
unary graph automatic, but clearly we cannot write Z = Az™* for any finite set
A and element z. However, we do have that Z can be written as A(z* U (z71)*),
where A = {1}. We now consider whether any unary graph automatic group

can be written in such a form.
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Note that if we can write a group G as G = A(g* U (g~ 1)*, this means that
G contains (g,g~') as a subgroup of finite index. The index of a subgroup H
in a group G, denoted [G : H], is the number of cosets of H in G. A left coset
of H in G is a set of the form gH = {gh : h € H}, for some element g € G. A
right coset of H in G is a set of the form Hg = {hg : h € H}, for some g € G.
Note that the number of left and right cosets of a subgroup is equal, and that
cosets partition the group. If [G : H] < oo we say that H is a subgroup of finite
index in G. A group is virtually cyclic if it has a cyclic subgroup of finite index.

In [6], the author shows that a group is unary graph automatic if and only if it
is virtually cyclic. We provide an alternative proof that unary graph automatic
groups contain a cyclic subgroup of finite index, using a similar method to

Proposition 6.5.1 based on the forms of the acceptor automata.

Proposition 6.5.5. Let G be an infinite unary graph automatic group. Then
for any element of infinite order g € G we have that G = A(g* U (g~1)*) for

some finite set A C G.

Proof. Let G be an infinite unary graph automatic group with unary graph
automatic structure (X, a,a*,v). By Theorem 6.4.2, we know that we must
have an element g € G of infinite order. Consider «7;, which must be of type
2 by Proposition 6.5.2, and use this to partition ¢* into a finite set F', plus
finitely many arithmetic progressions P, ..., Pg, as in Proposition 6.5.1. Each
arithmetic progression has a natural ordering based on the length of the words,
and we may follow a path through the different sets in our partition by looking
at the effect of multiplication by g. Let p; € P; be the point in each of the
sets P; such that from p; onwards no word is mapped by g to a word in F,
and let p; be the first time that we return to P; on following the path from p;.
As @ is a group it is cancellative, so we cannot have any closed paths meaning
that p; # p.. However, as the set F(g)~! will be infinite, we cannot ensure
that multiplying by g will give us an increasing path through these arithmetic

progressions to allow us to reach all the elements of G. Thus we cannot ensure
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that we have p} > p;.

However, we may use the automata /,-1 to get arithmetic progressions
Q1,...,Qk, and note that if multiplying by g gives us a decreasing path through

I must give us a corresponding in-

the progressions P; then multiplying by ¢~
creasing path through the progressions @;. Thus, we get the corresponding
words ¢; and ¢} based on the path through our progressions resulting from mul-
1

tiplying by ¢~', where ¢; < ¢; if and only if p; > p} for each 1 <i < k.

Hence, similarly to Proposition 6.5.1, there is a finite set
A’:FUU{Q”EH:LL" §p§}UU{a”€Qi:a" <q}
i i

such that if we start in this set we may find an infinite increasing path allowing
us to reach any element by multiplying by either g or g=!. Thus if v(A') = A,
we have that G = A(g* U (g~ 1)*). O

We also provide an alternative proof to the converse statement, showing
directly that a virtually cyclic group is unary graph automatic by explicitly

constructing a unary graph automatic structure.

Proposition 6.5.6. Any group containing a cyclic subgroup of finite index is

unary graph automatic.

Proof. Let G be a group and let H = (g) be a subgroup of G, such that [G :

H] =g < co. If H is finite then G is also finite, thus is unary graph automatic.

Now suppose that G is infinite. We can write any element of G as g™y for
some n € Z and y € Y, where Y is a finite set Y = {yo,%1,...,Y4—1}. Note
that this means that G is finitely generated by Y U {g,g~'}. We will show that

there is a unary graph automatic structure for G. We define v : G — a* by

n
T2Yp, n even
V(aanrr) —
n+1

r~ 2 y,., nodd.
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This is a bijection, and so

R_ = (a,a)"

is regular. We now consider R, for some generator z € Y U {g,g~'}. We have

that

where

K, ={(a',d’) € R, : v(d') € Hy,},

as the cosets of H partition the group and so give a corresponding partition of
R. So each K, is the contribution to R, by the coset Hy, for some 0 < r < g—1.

We will show that R, is regular by showing that each of the K, are regular.

Consider the effect of multiplying an element of Hy, by . We must have
that g,z = gFy, for some y, € Y and some k € Z. Suppose that k > 0. Then if

n is even we have that
V(a1 = g y,x = g2y, = y(qn2RIatt)

and so (™17, a("+2K)att) ¢ R and if n is odd and n > 2k we have that

V(a"q"”")x _ g_n;l gt = g_%(n+1—2k)yt — V(a(n—2k)q+t)

and so (a("t2k)atr gratt) ¢ R, Finally we have a finite set F}. of words recog-
nising multiplication of elements represented by words a™?™" where n is odd

and n < 2k. Thus the contribution to R, by H, is
K, = (a2qa a2q)*{(ar’ aquth)v (a(1+2k)q+r, aq+t)} U F,

and so, if £ is positive, the contribution to R, of Hy, is regular.

We now consider the case where k < 0. In a similar way to the previous case

we have that if n is even and n > —2k we have that (a(*~2k)9t7 gratt) ¢ R |
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and if n is odd then we have that (a™9", a("=2k)att) ¢ R,. Finally we have
a finite set F,. of words recognising multiplication of elements represented by

words a™T" where n is even and n < —2k. Thus our contribution to R, is
29 2 —2k t 1-2k)q+t
K, = (a®9,a*)* {(a= 2k o), (a®", a1 72RO U R

so when k is negative the contribution of Hy, to R, is also regular.

Now as the index of H in G is finite, there are only finitely many choices for

r. So we have that

R.,= |J K,

0<r<qg—-1
is a finite union of regular languages, thus R, is regular.

Hence we have a unary graph automatic structure (Y U{g,g~'},a,a*,v) for

G, thus G is unary graph automatic. O

6.6 Disjoint unions of the free monogenic semi-
group

Disjoint unions of the free monogenic semigroup were studied in [1]. In this pa-
per the authors show that disjoint unions of the free monogenic semigroup are
always finitely presented and residually finite. In order to do this, the authors
first introduce several results regarding how the elements from the different
copies of the free monogenic semigroup must interact. Using these results, we
show that all such semigroups are examples of unary graph automatic semi-

groups.
Let

§= thaXA&

be a semigroup which is a disjoint union of finitely many free monogenic semi-

groups, with each N, a copy of N generated by « € X for a finite set X. As in
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[1], we define the sets

T(x,s,y) ={t € Ny :ts € Ny},

the set of elements in /N, that are sent to N, upon right multiplication by s.
Lemma 2.6 of [1] tells us that if such a set is infinite, it consists of an arithmetic

progression plus finitely many other elements.

Lemma 6.6.1 (Lemma 2.6 of [1]). If T = T(x,s,y) is infinite then there exist

sets F = F(x,s,y) and P = P(x,s,y) such that the following hold:
1. T = FuP,

2. P = {aPt9 : ¢ € No} for some p = p(z,s,y),q = q(z,5,y) € N and
2P~1¢ T, and

3. F C{x,...,2P~1} is a finite set.

We also require a further pair of lemmas which tells us about how our arith-
metic progressions behave when multiplied by a generator. The first states that

larger powers of one generator will be mapped to larger powers of another.

Lemma 6.6.2 (Lemma 2.3 of [1]). Ifz,y € X and s € S are such that

2Ps =y and zPt9s = y¥

for some p,q,u,v € N then u < v.

The second shows that arithmetic progressions of one generator are mapped

to arithmetic progressions of another generator.

Lemma 6.6.3 (Lemma 2.4 of [1]). If

2Ps =y% and zPT9s = y¥T?
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for some x,y € X,s € S;p,q,u € N and v € Ny, then

prrth — qurvt

for allt € Ny.
We now use this to prove that S is unary graph automatic.

Theorem 6.6.4. FEvery semigroup which is a disjoint union of finitely many

copies of the free monogenic semigroup is unary graph automatic.

Proof. Let S = N, for X = {z¢,...,2y,—1}. Let R = a* and define

zeX
v:a*— S by

v(a* ) = 2k,

This is a bijection, so R— is regular. Let s € X and consider R,. For each
x; € X, we consider what happens when powers of x; are multiplied by s.

We consider T'(z;,s,z;) for «;,x; € X. This set is either finite, or stabilises
into an arithmetic progression. If T'(z;, s,x;) is finite, then the corresponding
contribution to R, is finite, thus regular. Now if T'(z;,s, ;) is infinite then
T = FUP, for a finite set F' and arithmetic progression P. We have a finite
(hence regular) contribution from F', and so we need only consider the arithmetic
progression P(xz;,s,x;). Let (o, 8) € R, such that v(a) = 2 is the smallest
power p such that 2} € P(z;,s,2;). Let v(8) = x¥. Then we also have (o, §') €
R, with v(a/) = 2P and v(3) = 2§, with ¢ € N and v € Ny by Lemma

6.6.2. Thus by Lemma 6.6.3 we have

¢
xf+q 5= x}”’“t

for all t € Ng. Now 2P 79" = p(q"P+nat+i) and 2§ = p(a™ ) and so this

%

arithmetic progression is represented by the language

(anp-i-i’ anu—i—j) (anq7 anv)*.
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As n,p,i,u and j are all fixed, ||a"P*?| — |a™“*7|| is finite, and so this language

is regular by 1.1.1.

Now we repeat this process for each pair of generators from X, getting a
regular contribution from each such pair. In this way we construct the whole of
Rs. As X is finite, we have that Ry is a finite union of regular languages, thus

is itself regular. Hence S is unary graph automatic. O

Note that not all unary graph automatic semigroups are of this form. We
have already seen an example of such a semigroup, namely the free product of
two trivial semigroups, in Example 6.1.7. However, this example is the disjoint
union of two free monogenic semigroups (generated by st and ts), together with
finitely many elements, namely s and ¢. Thus we ask if all unary graph automatic
semigroups are the disjoint union of finitely many copies of the free monogenic
semigroup with the addition of finitely many elements. The following example

shows that this is not the case.

Example 6.6.5. Let S be the semigroup given by the presentation

(z,y | 2* = y* 2y = yz).

So S = {2%,y, 2%y : i € N}. Define v : a* — S by

This is a bijection, and so R— is regular. Then

R, = {(ak,al) : V(ak)x = Z/(al)}

= {(a®*71,a®* 1) ke NY U {(a®*,a®*2) 1 k € Ny}



124 6. UNARY GRAPH AUTOMATIC SEMIGROUPS

and

Ry = {(a",a") : v(a")y = v(a')}

= {(a®*71,a?*) . k e N} U {(a®*,a®**3) : k € Ny}

are both regular. Hence S is unary graph automatic. We now show that S is

not a disjoint union of finitely many free monogenic semigroups.

Suppose that S is a disjoint union of free monogenic semigroups, possibly
with finitely many elements adjoined. We first show that S is not isomorphic
to the free monogenic semigroup, nor is S the free monogenic semigroup with

finitely many elements adjoined.

Suppose that S is isomorphic to the free monogenic semigroup. Then S
is generated by a single element. We consider each of the possible generators.
Note that any power of y can be rewritten as either a power of = or a power
of z multiplied by y, thus when considering generators we need only consider
those of the form 2 and x'y. Our generator cannot be of the form z?, as this
will never give us an element of the form z’y. If our generator has the form
o'y, then (z'y)?F = x2¥+2F and (2iy)?F+1 = £CR+D+2ky for any k € N. Thus

2ki+2k+1 in particular meaning we

we can never get an element of the form x
can never get an odd power of z, and so our generator cannot be of this form,
meaning our semigroup is not isomorphic to the free monogenic semigroup.
Additionally, each of these possibilities misses infinitely many elements, and

so S is not isomorphic to the free monogenic semigroup with infinitely many

elements adjoined.

Thus we must have at least two copies of the free monogenic semigroup. We

consider the possible combinations of generators for the disjoint components.

If we have two copies generated by different powers of z, namely 2* and
z!, then we have that (z*)! = (2!)*, and so our monogenic semigroups are not
disjoint. If we have a power of z, say z*, together with y as our generators,

then (2¥)2 = y?! and so our monogenic semigroups are not disjoint. If we
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have an element z*y, for some k € N, together with y as our generators, then
(xFy)? = y2++1) and so our monogenic semigroups are not disjoint. Finally, if
we have 2*y and 2!y, for some k,l € N as generators then (z¥y)!*1 = (zly)*+1,
and again our monogenic semigroups are not disjoint. Note that we need not

consider the case where y*

Thus there is no possible combination of generators for which the mono-
genic semigroups produced are disjoint. Hence S is not a disjoint union of
finitely many monogenic semigroups, nor is S a disjoint union of finitely many

monogenic semigroups with finitely many elements adjoined.

So Theorem 6.6.4 and Example 6.6.5 together show that the class of unary
graph automatic semigroups contains, but is not equal to, the class of semi-
groups which are disjoint unions of finitely many copies of the free monogenic

semigroup.

This leads us to ask whether the properties exhibited in [1] for disjoint unions
of finitely many copies of the free monogenic semigroup also hold for unary graph
automatic semigroups in general. The authors show that such semigroups are

always finitely presented, and so we ask:

Question 6.6.6. Are unary graph automatic semigroups always finitely pre-

sented?

A semigroup is residually finite if for any two distinct elements s,t € S there
exists a homomorphism ¢ from S into a finite semigroup such that ¢(s) # (¢).
In [1] the authors show that disjoint unions of finitely many copies of the free
monogenic semigroups are residually finite, and so we ask whether this is also

the case for unary graph automatic semigroups.

Question 6.6.7. Are unary graph automatic semigroups residually finite?



126 6. UNARY GRAPH AUTOMATIC SEMIGROUPS

6.7 Monogenic Subsemigroups

In this section we use the structure of our acceptor automata to show that any
monogenic subsemigroup must be represented by a regular language. Note that
this is not necessarily the case for general graph automatic semigroups, as shown

in Example 3.1.3

Theorem 6.7.1. Monogenic subsemigroups of unary graph automatic semi-

groups are reqular.

Proof. If S is a finite semigroup then any subsemigroup of S is also finite, thus is
a regular subsemigroup. In particular this means that monogenic subsemigroups
of finite semigroups are regular.

Now let S be an infinite unary graph automatic semigroup with structure
(X, a,a*,v) with uniqueness. Let T' = (z) be a monogenic subsemigroup of S.
If T is finite then »~!T is also finite and so T is regular. We now consider the
case where T is infinite. Consider R, and the corresponding automaton .7,.
If this does not contain an (a, a)-circuit then then there are only finitely many
solutions z to sz = z for s € S. This cannot be the case, as T is infinite and
so we must have that 2’z is distinct for each 4 € N. In particular, all elements
of T are represented by different words, only finitely many of which will not be
in the first component of a word accepted by a state which is an offshoot of the
(a, a)-circuit.

We consider paths through the automaton, starting with some word a; € a*
as the input on the first tape of .o7,. There is a unique word a;41 such that
(aiyait1) € .

Let v be the length of the path from the start state to the point where we
enter the (a, a) circuit. We can find some power x € T such that for any k > j
we have that |ag| > v, thus the word representing z7, and all subsequent powers
of x will always be in the first component of a word accepted by a state which

is an offshoot of the (a,a)-circuit. Now successive multiplication by z gives us



6.8. NORMAL FORMS 127

an infinite sequence of words aj,aj41,a;542,... representing successive powers
of z, beginning with z7. Let p be the length of the (a,a)-circuit, and let a;j
for some k # 0 be the first word in this sequence such that |a;| = |a;1%| mod p.
Now as |a;j| = |aj4+&| mod p, both (a;,a;+1) and (aj4+x, aj+x+1) are accepted by
the same state. This gives us that |a;41| = |a;4k+1| mod p, and continuing in
this way we get that |a; 4| = |aj4x4+i| mod p for 0 < ! < k. In this way we
generate k arithmetic progressions, a;y;a®™ for 0 < I < k, d = |aj1x| — |a;|
and n € Ny which cover our subsemigroup T' from the point 2/ onwards. Thus
our subsemigroup is represented by a subset of a* consisting of a finite set plus
finitely many arithmetic progressions. This is a regular subset of a*, and so our

semigroup 7' is a regular subsemigroup. O

Thus, unlike the general graph automatic case, we may always find a regular
language representing a monogenic subsemigroup. We ask whether this result

extends to subsemigroups in general.

Question 6.7.2. Are subsemigroups of unary graph automatic semigroups al-

ways regular?

6.8 Normal Forms

We have seen that certain types of unary graph automatic semigroups can be
written as either Az* or A(z* U (z71)*) for a finite set A and an element z in
Section 6.5. We have also seen that all disjoint unions of finitely many copies of
the free monogenic semigroup are unary graph automatic, and it is clear that
such semigroups can be written as 7 Uz5U---Ux). Thus we ask whether there
is a set of uniform normal forms for the elements of any unary graph automatic
semigroup.

We use our automata to find normal forms for the elements of a unary graph

automatic semigroup.
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Theorem 6.8.1. Let S be a unary graph automatic semigroup. Then

S=FuU (LnJ sicfti> s

i=1
where F is a finite set, c; € S, and s;,t; € S' .

Proof. If S is a finite semigroup then it is clear that we can write the elements
of S in this form. In particular, take some s € S and let F = S\ s*. Then
S=FUs*

Now let S be an infinite unary graph automatic semigroup with structure
(X, a,a*,v) with uniqueness. Asin Theorem 6.4.2 we consider our words modulo
A, where X\ is the lowest common multiple of the lengths of the circuits in the
automata for our generators, <7, for x € X. We let F' be all elements which
are accepted by either a finite path on some automaton, together with words
a’ such that words of the form (a*, a?) are accepted by one of the (a, $)-circuits
of some «7,. The rest of our elements can be partitioned into A\ sets, based
on the remainder modulo A of the word representing the element. We call
these partitions P;, Ps, ..., Py, and note that there is a natural ordering on the
elements in each set based on the length of their representative word from a*.

We consider the infinite collection of elements zv? for d € Ny, as constructed
in Theorem 6.4.2. Let v = x1x2...2;. Then we have that each family of
elements

Z(.%‘lxg e l‘k)d

zxy(2zg. .. :z:kzl)d

d
221Tg .. Tp—1(TET1T - . . T—1)

for d € N is represented by words whose length is a different remainder modulo
A. Thus in this way we reach elements in k of our partitions with elements of

the form s;c} for 1 <i < k.
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Now suppose that a partition P; is only partially covered in this way, in
particular let a’*,a?, ... be the representatives of our family of elements. Then
as we follow the same path through our automata each time we go from a’*
to a’*+! we must increase the length of our representative by the same amount
each time. Thus the elements must have been covered at regular intervals, so
we have reached the elements represented by a*?4+ for all d € N and some fixed
1 < g < b, where b is the maximum possible increase by a single automaton.
Then if z = z, is represented by some element a™ we take z; = v(a™*?),
2o = v(a™+?), and so on, up to z,_1 = v(a”t(@=D) and use these elements
in place of z to reach all elements in P; by repeating the process above. This

gives us additional representatives of the form s;c} for k < i < gk.

Note that if P; is mapped to P; then it must be mapped rigidly, that is
v(a)z = v(a?) if and only if v(a™ )z = v(a/T*), and so this method will cover
all of Pp,...,P,. All our elements are expressed in a unique way, as at each

stage we only cover new elements.

Now if k # X\ we consider the sets Px1, ..., Py which we could not reach by
starting with one of the z;. If there is a sequence of generators yi, ...,y which
takes us from an element v € P; to w € Pj forsome 1 <¢ < kand j <k <A
then the entire set is mapped rigidly and so we can reach the whole of P; from

P; by taking sy; ...y for each s € P;.

We may now repeat this process until we have covered every set that it is
possible to reach in this way, using any of P, to Py as our starting point, and
getting representatives of the form s;cit; for at most g\ values of i. If this
process reaches all the sets P; then we have our normal forms. Otherwise, the
sets P; to P, that we have covered plus F' must form an ideal, as there is no
way of moving from these to the remaining sets P41 to Py. We call this ideal
I and consider the remaining elements, S\ I. Now as this is an infinite set and

S is finitely generated we must be able to find a sequence of generators
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and a corresponding sequence of words

aplyapz’_._’apn

such that z{ x5 ...z}, is represented by aP* and (aP?, aPi+') is accepted by some
o, for x € X, as in Theorem 6.4.2. We must be able to do this in such a way
that we can construct an arbitrarily long sequence which avoids words from I,
else S\ I, and hence S, cannot be finitely generated. Now we may proceed as
in Theorem 6.4.2 to find a repeat modulo A in the lengths of our representative
words, and so find an infinite word of the form 2'v’.

We now return to the beginning of this process, and use z’v’ to begin covering
our remaining sets P41, ..., P\. If we cannot reach all of these in this way, then
we get another ideal, and so can construct another infinite word. As we have
at most A sets to cover and each set can be covered with at most b different
starting words, we need at most A\b starting elements to cover all the sets P;,
and so this process will eventually have covered all such words.

Note that at each stage of this process we ensure that our representatives
are unique as we only cover those elements which we have not yet reached, and

so this gives us a set of normal forms for S. O



Chapter 7

Constructions for Unary
Graph Automatic

Semigroups

In this chapter we will revisit several semigroup constructions in the context of
unary graph automaticity. We will see that some constructions preserve unary
graph automaticity as well as graph automaticity in general, whereas other
constructions behave differently to the general case.

We first note that some of the results for general graph automatic semigroups
immediately carry over into the unary case. In particular, we have that unary

graph automaticity is preserved by regular subsemigroups.

Proposition 7.0.1. A regular subsemigroup of a unary graph automatic semi-

group is unary graph automatic.

Proof. This immediately follows from Theorem 3.1.2, as the graph automatic
structure of a regular subsemigroup uses the same alphabet as the graph auto-
matic structure for the original semigroup. Thus if we have a regular subsemi-

group of a unary graph automatic semigroup, this subsemigroup is also unary

131
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graph automatic. O

Thus any of our results in the general graph automatic case which were
obtained by demonstrating that a subsemigroup is regular will immediately

also hold for unary graph automatic semigroups.

7.1 Zero Unions

We begin by considering one of the simplest semigroup constructions, zero
unions. In Proposition 5.1.1, it was shown that the zero union of two graph
automatic semigroups is graph automatic if and only if both semigroups are

also graph automatic. We have the analogous result for the unary case.

Theorem 7.1.1. The zero union of two semigroups is unary graph automatic

if and only if the two semigroups themselves are unary graph automatic.

Proof. Let S and T be unary graph automatic semigroups. If both S and T are

finite then S Uy T is finite and thus is unary graph automatic.

We next consider the case where S is finite and T is infinite. If S =

{s1,82,...,s,} and T has structure (X, a, L = a*,v), then we define p : ¢* —
SUp T by
0, n=>0
p(c”) =< s,, 1<n<k

which is injective, so (¢*)= is regular. We also define a homomorphism ¢ :

a* x a* — c* xc* by

Now S Ug T is generated by S U X U {0} and we have that

(o =" x {e},
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which is regular. Then for s € S we have

(s ={(c",):1<i,j<kands;is=s;}U({c":i>k}x{e})U{(ee)}.

The first set is finite, thus regular, and the second set is clearly regular. Hence

(c*)s is a regular language. Finally for € X we have that

() = {(c', ) : (@'~ FFD @ =Dy € LY U ({0 <i <k} x {e})

= (" (L) U ({0 <i <k} x {e}).

This is regular, as homomorphisms of regular languages are regular, and so
S U T is unary graph automatic. Similarly, if S is infinite and T is finite then

S Ug T can be shown to be unary graph automatic in the same way.

Finally we consider the case where S and T are both infinite, with structures
(X,a,L =a*,vy) and (Y, b, K = b*, 115) respectively. We define homomorphisms

w1 :a" — ¢ and g : b* — c* by

Spl(an) _ C2n

and

@2(bn) _ CQn.

Then

¢ = cp1(a*) Ucipy(b*) Uk,
and we define v : ¢* — S Uy T by
0, n=>0

v(c") = Vl(a("fl)/Q), n odd

vo(b"=2/2) n even and n > 0

and this is a bijective map. Let ¢* = R. By injectivity, R— is regular. Now
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S Up T is generated by X UY U {0} and we have that

ROZRX {6},

which is regular. We now extend our homomorphisms to our two-tape languages,

defining @1 : a* X a* — ¢* x ¢* and @y : b* X b* — ¢* X ¢* by

and

Then for x € X we have that

Ry = (¢,¢)1(La) U ((R\ ¢1(L)) x {€}})

and for y € Y we have that

Ry = (c%,¢*)@a(Ky) U (R \ g2(K)) x {e}).

Now, as homomorphisms of regular languages are regular, I, and R, are regular
and S Up T is unary graph automatic.

Conversely, suppose that S Ug T is unary graph automatic. Then, in the
same way as in Proposition 5.1.1, we have that S and T are both regular sub-
semigroups of S Uy T, and so S and T are both unary graph automatic by

Proposition 7.0.1. O

7.2 Ordinal Sums

We now consider ordinal sums. In Proposition 5.2.1 we saw that ordinal sums
preserve graph automaticity. We now show that the analogous result holds in

the unary case.
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Proposition 7.2.1. The ordinal sum of two semigroups is unary graph auto-

matic if and only if the two semigroups themselves are unary graph automatic.

Proof. Let S and T be unary graph automatic semigroups. Consider their
ordinal sum U, with ordering S > T. If both S and T are finite, then so is their
ordinal sum, hence U is unary graph automatic.

We now consider the case where we have one finite and one infinite semi-
group. First suppose that S is infinite with injective graph automatic structure

(X,a,L =a*,v),and T = {t1,ta,...,t;} is finite. Define 1 : ¢* — U by

st 0<n<k-1

which is injective, thus (¢*)= is regular. Define a homomorphism ¢ : a* x a* —

c* x c* by

Then for x € X we have

(e ={(c, ) (@* ad*) e Ly U{(,¢):0<i<k-—1}

= (", Mp(L) U{(c', ) :0<i<k—1}

and for t,, € T we have

(e, =({c i >k} x {™ T Hu{(c,d):0<i<k—1and tiy1ty, =tj1}.

These are both regular, thus U is unary graph automatic.
Now suppose that S = {s1,s2,...,s;} is finite, and T is graph automatic
with injective graph automatic structure (Y,b, K = b*, ). Define v : ¢* — U

by
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which is injective, thus (¢*)= is regular. Define a homomorphism ¢ : b* x b* —

c* x c* by

Then for s, € S we have

(c)s,, ={(c", ) :0<i<k—1and s;418, =541} U{(c",c") i >k}

and for y € Y such that v~!(y) = n we have

(@)y={c:0<i<k—1} x {nh)u{(c', ) (" 07F) € Ky}

=({¢":0<i <k =1} x {n}) U (", F)o(K,).

These are both regular languages, and so U is unary graph automatic.

Finally we consider the case where S and T are both infinite unary graph
automatic semigroups with injective structures (X, a, L = a*, 1) and (Y, b, K =
b*, v9) respectively. Let R = ¢* for some ¢. Then define homomorphisms ¢ :

L — R and ¢y : K — R by

and

Then

R=p1(a”) Ucpa(b7).

Now define v : R — U by

v(a?), r=0
v(c?IT) =

w(d?), r=1

This is injective, so R— is regular. We extend our homomorphisms to our two-

tape languages, defining @1 : a* x a* — ¢* x ¢* and @y : b* X b* — ¢* x c*
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by

and

@2(bm7bn) — (02m7c2n)_

Now for z € X we have that

and for y € Y we have that

Ry = (p1L x {n}) U (c,c)p2(Ky),

where 7 € R is the unique word such that v(n) = y. Both of these are regular,

thus we have a unary graph automatic structure (X UY, ¢, R = ¢*,v) for U.
Conversely, if S > T' is unary graph automatic then both S and 7" are regular

subsemigroups, in the same way as in Proposition 5.2.1. Thus they are both

unary graph automatic by Proposition 7.0.1. O

This allows us to show that unary graph automaticity is preserved by ad-

joining identities and zeros, as in the general case.

Proposition 7.2.2. A semigroup S is unary graph automatic if and only if S*

is unary graph automatic.

Proof. Suppose that S is unary graph automatic. Then S! is the ordinal sum
of {1} and S, with ordering {1} > S, so by Proposition 7.2.1 we have that S*
is unary graph automatic.

Conversely, suppose S! is unary graph automatic. Then S is a subsemigroup
of finite Rees index and as in the proof of Theorem 3.3.1 it was shown that
subsemigroups of finite Rees index of graph automatic semigroups are regular,

we have that S is unary graph automatic by Proposition 7.0.1. O
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Proposition 7.2.3. A semigroup S is unary graph automatic if and only if S°

s unary graph automatic.

Proof. Suppose that S is unary graph automatic. Then S° is the ordinal sum
of {0} and S with ordering S > {0}, so by Proposition 7.2.1 we have that S is
unary graph automatic.

Conversely, suppose that S° is unary graph automatic. Then S is a sub-
semigroup of finite Rees index and so we have that S is regular subsemigroup of
S0, as in the proof of Theorem 3.3.1 it was shown that subsemigroups of finite
Rees index of graph automatic semigroups are regular, and so S unary graph

automatic by Proposition 7.0.1. O

7.3 Semidirect and Direct Products

We have already seen from Proposition 6.5.3 that, unlike the general graph
automatic case, it is possible to take the direct product of two unary graph
automatic semigroups but have the product not be graph automatic. Hence,
as direct products are a special case of semidirect products, unary graph auto-
maticity is not preserved in general by semidirect products. As this example
involves two infinite semigroups, we consider whether semidirect products pre-
served unary graph automaticity when one of our semigroups is finite.

As in the general graph automatic case in Theorem 4.2.2, we see that in the
case where we have a left action and S is finite then unary graph automaticity

is also preserved by the semidirect product T' X S.

Theorem 7.3.1. Let S and T be unary graph automatic semigroups, where S
is finite. If the semidirect product T X, S is finitely generated then it is unary

graph automatic.

Proof. If S and T are both finite then T" xS is also finite, thus is unary graph
automatic.
We now consider the case where T is infinite. Let S = {s¢,...,8._1} be a

finite semigroup with structure (S,a, R = a*,v), where v(a) = 8; mod . Let T
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be an infinite unary graph automatic semigroup with structure (X, b, K = b*, u).
Suppose that T x, S is finitely generated by a set Y.

Let L = ¢* and define ¢ : L — T x, S by

Y(e") = (pO"),v(a")).

This is injective, so L_ is regular.
We also define homomorphisms ¢y : a* X a* — ¢* X ¢* and @3 : b* X b* —
c* x c* by

p1(a’,a?) = (', )

and

gog(bi,bj) = (c”, cjr).

Now let (¢,s) € Y. Then

L) ={(¢", ™) = g™ (@) = p(0l™/)) and v(a™)s = v(a™)}
={(c", ¢™) : (L) plm/r]y € K, ), and (a",a™) € R,}

= U ({(c', ) : 0 <i,j <r—1}pa(Kuy) Ny (Rs N (v Hu) x a¥))).
u€sS

Thus L) is regular, and so T' X, S is unary graph automatic with structure

(Y,c,c, ). O

Next we consider the case where we have a right action. In Theorem 4.2.3
we saw that graph automaticity was preserved by a semidirect product using a
right action as long as the relevant homomorphisms were automatic. However,
Proposition 6.5.3 shows that this cannot be the case for unary semidirect prod-
ucts in general, as the direct product is the semidirect product S x, T where
7 is trivial. Thus we consider whether a similar result holds when we restrict

ourselves to the case where one of our semigroups is finite.

Theorem 7.3.2. Let S and T be unary graph automatic semigroups. If
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e S x., T is finitely generated by a set'Y,
e at least one of S and T is finite, and

e 7(s) is automatic with respect to the graph automatic structure of T for

every s € S such that (s,t) €Y for somet €T,
then the semidirect product S X, T is unary graph automatic.

Proof. If S and T are both finite then S X T is also finite, thus is unary graph
automatic.

Now suppose that S = {sg, s1,...,8-—1} is a finite semigroup with structure
(S,a,R = a*,v), where v(a’) = 8imodr. Let T be an infinite unary graph
automatic semigroup with structure (X, b, K = b*, u). Suppose that S x,. T is
finitely generated by a set Y.

Let L = c¢* and define ¢ : L — S x, T by

P(e") = (v(a"), p(o" ).

This is injective, so L= is regular.

We define homomorphisms 1 : a* X a* — ¢* X ¢* and @3 : b* X b* — ¢* x ¢*

by
(pl(aiv a'j) = (ci’ CJ)
and
gog(bi7bj) = (c",cjr).
Then

Lisy ={(c",c™) 1 v(a")s = v(a™) and (bt = p(plm/rly
={(c", ™) : (a",a™) € Rs and there exists k € Ny such that
(b1 bFY € B, and (0%, 0l™/M)Y € K}
={(", )0 <1y <7 — 1} ({(B%,0) : (b, 0%) € E, and

(", V) € Ki}) N pr(Rs)
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where E, = {(b%,07) : u(b’)* = u(b/)} is the language recognising the endo-
morphism 7(s), which is regular by assumption. Thus L, is regular, and so

(Y, ¢,c*, 1) is a unary graph automatic structure for S x, T.

Finally we consider the case where T is finite. Let S be a unary graph
automatic semigroup with structure (Z,a, R = a*,v), and let T = {t¢,...t,—1}.
As T is finite it is unary graph automatic, with structure (7,0, K = b*, u),
where (1(b%) = t; mod - Suppose that S x, T is finitely generated by a set Y.
Let L = ¢* and define ¢ : L — S x T by

w(e") = (@), u(0m).

This is injective, so L— is regular. We also define homomorphisms 6, : a* xa* —

c* xc* and 0 : b* X b* — ¢* x c* by
91(ai,aj) = (c",cjr)

and

O (b, 7)) = (c*, ).

Then

Liwsy ={(e,e™) - (@l )s = v(al™™)) and (b)Yt = (™))
={(c", ™) : (al™"), al™/"]y € R, and there exists k € Ny such that
(b",b%) € E, and (b*,b™) € K;}
={(, )0 <y, ly <7 —1}0,({(b',07) : (b',0) € E, and

(b*, b)) € K;}) N 61 (R,)

where E, = {(b%,07) : u(b®)* = u(b/)} is the language recognising the endo-
morphism 7(s), which is regular. Thus L, ; is regular, and so (Y, ¢c,c*, ) is a

unary graph automatic structure for S x, T O
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This allows us to show that taking the direct product of a finite semigroup

with a unary graph automatic semigroup preserves unary graph automaticity.

Corollary 7.3.3. If the direct product of a unary graph automatic semigroup

and a finite semigroup is finitely generated then it is unary graph automatic.

Proof. Let S and T be unary graph automatic. The direct product S x T is the
semidirect product S x, T, where 7 is trivial. This means that all our actions
7(s) for s € S are the identity, and so are clearly automatic. Thus by Theorem

7.3.2, if one of S or T is finite the direct product is unary graph automatic. O

We have seen that this is not necessarily the case when both our semigroups
are infinite. In fact, we conjecture that the direct product of two infinite semi-

groups is never unary graph automatic.

Conjecture 7.3.4. The direct product of two unary graph automatic semi-

groups is unary graph automatic if and only if at least one semigroup is finite.
In the case of groups, we can show that this holds.

Theorem 7.3.5. The direct product of two unary graph automatic groups is

unary graph automatic if and only if at least one of the groups is finite.

Proof. Let G and H be unary graph automatic groups, and suppose that G
and H are both infinite. Let G x H be unary graph automatic. Then there
is some element of infinite order (g,h) € G x H and some finite set A =

{(g1,P1),---,(gn,hn)} C G x H such that

Gx H=A(g,h) U(g ", h 1)),

by Proposition 6.5.5.

As H is infinite, there exists an infinite collection of distinct elements

v1,V2,03, € H.
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Consider the infinite collection of elements (u,v;) € G x H for i > 1 and some

fixed u € G. Then each such element can be written as

(u,v;) = (gk; hie;) (g, h)P?

for some (gx,,hr,) € A. As A is finite, we must have some distinct v; and v;
for which (gw,,hr,) = (gr;,hr,;). Then, as the first components of (u,v;) =
(gk;» he;) (g, h)Pi and (u,v;) = (gk,, hx,)(g,h)P7 are equal, we must have that
u = gk, g"" = gr,; 9" and so p; = pj, as gk, = g, and G is infinite so g is an

element of infinte order. Thus we have that

v = hkihpi = hkjhpj = vy,

contradicting our assumption that v; # v;. Thus G and H cannot both be
infinite.

The converse follows from Corollary 7.3.3. O

Alternatively, we may prove the forward direction of this theorem using the

classification of unary graph automatic groups discussed in Section 6.5.

Proposition 7.3.6. The direct product of two infinite groups is mever unary

graph automatic.

Proof. Let G and H be unary graph automatic groups. Suppose that G x H
is unary graph automatic. Then, by Proposition 6.5.5, we have that G x H
contains a cyclic subgroup of finite index, S. Let S = ((g, h)), and note that (g)
must be a subgroup of finite index in G and (h) is a subgroup of finite index in

H. Then as [G x H : S| < co we must also have that

(G H)N ((g) x (R) : SN ({g) x ()] = [{g) x (h) : §] < o0.

Thus we have that the direct product of two infinite cyclic subgroups contains

an infinite cyclic subgroup of finite index, a contradiction. O
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In Section 6.5 we saw that certain graph automatic semigroups could be
written in the form S = Ax*, where A is a finite set and x is an element of
infinite order. We have already seen that not all semigroups can be written this
way, as groups do not have this form. We now use Corollary 7.3.3 to give a

non-group example which cannot be expressed in this form.

Example 7.3.7. Let Z = {z1,..., 2} be a right-zero semigroup. Consider
S = N x Z, where N is generated by x. Note that S is generated by the set
{(z,2;) : 1 <i<k}. Then as N is unary graph automatic and Z is finite we have
that S is unary graph automatic by Corollary 7.3.3. Consider (2", z;) for some
n € N and 1 < i < k, and suppose that we can write S as A(z", z;)* for some
finite set A. But for any (2™, z;) € A we have that (2™, z;) (2™, z;) = (™", z;)
and so A(z", z;)* will only ever have finitely many elements which do not have
z; in the second component. Therefore this is not equal to S for any choice of

Zj-

We have also seen that every disjoint union of finitely many free monogenic
semigroups is unary graph automatic, in Section 6.6. Every such semigroup S =
U.ex Nz can clearly be expressed as S = x7 U---Uxj, for some xq,...,2, € X.
We again use Corollary 7.3.3 to show that this is not the case for every unary

graph automatic semigroup.

Example 7.3.8. Let Oy = {y,y?} be the cyclic group of order two and consider
S = N x (Cy, where N is generated by x. We have that S is generated by
the set {(x,%), (z,y?)}. Then as N is unary graph automatic and C is finite
we have that S is unary graph automatic by Corollary 7.3.3. Suppose that
S = (x™,y™m ) U (a2, y™2)* U---U (™, y™*)* for some ny,na,...,n € Nand
mi,ma,...,mg € {1,2}. Then as (z"i,y™)? = ((z™)?,4?) for both m; = 1
and m; = 2, we can never get all of the elements of the form (a:QP"1 ,y) for p € N,

a contradiction. Thus S cannot be written as (z*,y™)* U (x"2,y™2)* U .- U

(l‘"k ; ymk)*.
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7.4 Free Products

We have already seen that free semigroups are generally not unary graph auto-
matic. We consider free products of unary graph automatic semigroups, and see
that they only preserve unary graph automaticity if we take the free product of

two trivial semigroups.

Theorem 7.4.1. The free product of two semigroups is unary graph automatic

if and only if both semigroups are trivial.

Proof. Example 6.1.7 shows that the free product of two trivial semigroups is
unary graph automatic.

To prove the converse, let S and T be finitely generated semigroups, gener-
ated by X and Y respectively. Suppose that S*T is unary graph automatic with
injective structure (X UY,a, L = a*,v). We now consider the subsemigroup U
consisting of all elements which end in an element of S. The preimage of U is

given by

Ls=J LY
rzeX

where Lg ) signifies the second component of L,, for w € S *T. This is regular,
and so we have a unary graph automatic structure (X, a, Lg, v|r) for U.
Consider ts € U, for some s € S and t € T. We will now show that the
conditions of Proposition 6.5.1 are satisfied, and so there is a finite set A such
that U = A(ts)*. First note that ¢s has infinite order in U. As every element of
U ends in an element of S we must have that uits = usts implies that u; = us,
for any uy,us € U. Thus ts is right-cancellative in U, so the automaton .o,
is of type 2 by Proposition 6.5.2, satisfying the first condition of Proposition
6.5.1. Every time we multiply an element of U by ts we increase the length of
our element. Thus we cannot have any u € U such that uts = u and the second

condition is satisfied. Finally, if we have a finite set F' C U then the set

F(ts) ™' ={uecU:u(st)*NF #0}
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is finite, as there is a bound on the length of the elements of F, and each
multiplication by ts increases the length of an element. Thus the third condition
is satisfied.

Hence by Proposition 6.5.1 we can write U = A(ts)* for some finite set A C
U. Similarly, we may define the subgroup V consisting of all elements ending
in an element of T" and find a unary graph automatic structure (Y, a, L1, v|1,.),
such that we can write V' = B(st)* for some finite set B C V.

Finally, as S« T = U UV we have that S« T = A(ts)* U B(st)*. Thus all
but finitely many elements of the semigroup end in either s or t. As the free
product of two semigroups must have infinitely many elements ending in every
element of S and every element of T', this is only the case if S and T are both

trivial. O]

7.5 Rees Matrix Semigroups

In Section 5.3 we saw that finitely generated Rees matrix semigroups over graph
automatic semigroups are also graph automatic. We show that the same result

holds when we consider unary graph automatic semigroups.

Theorem 7.5.1. Let S = M[T;1,J; P] be a Rees matriz semigroup, where T
is a unary graph automatic semigroup, and I and J are finite. If S is finitely

generated then it is unary graph automatic.

Proof. Let T be a unary graph automatic semigroup with structure (X,a, R =

a*,v). Let |I| = k;,|J| = ks and k = krk;y. Define p: b* =L — S by
w(0™) = (m mod kr, v(al™*)), | (m mod k)/k; ).

Then as we increase m, we first vary the first component, while keeping the
second and third components fixed. After reaching k; — 1, the first component
will then cycle again, but this time with the final component increased by 1.

This continues until we have cycled through all possible combinations in the
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first and third components while keeping the middle component fixed. Once all
such combinations have been achieved, the middle component will change and
the process begins again. Thus each element is represented by precisely one
word. Hence p is a bijection, and so L_ is regular. Let Y be a finite generating

set for S and let (i,y,7) € Y. Then

Ly ={(0™,0") : m mod kr = n mod ky, (alm/kJ , aL"/kJ) € Ry,,y,

and j = |(n mod k)/kr]},

where | = | (m mod k) /k;].

We define a homomorphism v : a* — b* by
v(a") = b
and so

L(z’,y,j) :(bv b)*{($a bk[)*a (bk[ ) $)*}

N JHO,69) 10 < p,g < k3 (Ry,,y) 0 ((0F){0FH7 20 < v <k} x bY))
leJ

N x ) {70 <r < kr}).

The first of these sets checks that n and m are equal modulo k;, the second
checks that (al™/* al"/kly € R, ., for each choice of | = |(m mod k)/k; |, and
the third checks that j = |(n mod k)/kr].

As T is unary graph automatic, R,,,, is regular, and so L;, ;) is regular.

Thus S is unary graph automatic with structure (Y, b, b*, u). O

Note that this is similar to the unary FA-presentable case, where unary FA-
presentability is preserved by taking finite-by-finite Rees matrix constructions
over a unary FA-presentable semigroup, and also by taking finite-by-countable
Rees matrix semigroups over a finite semigroup, as shown in [11]. Note that to

preserve graph automaticity we require both I and J to be finite in order for
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the Rees matrix semigroup to be finitely generated, by Proposition 5.3.1.

7.6 Semilattices of Semigroups

In Section 5.4, we saw that strong semilattices of graph automatic semigroups
are graph automatic if and only if each of the homomorphisms is automatic.
We now consider strong semilattices of unary graph automatic semigroups, and

show that this construction also preserves unary graph automaticity.

Theorem 7.6.1. Let S = Sy be a strong semilattice of semigroups over

ueyY
a finite semilattice Y. Then S is unary graph automatic if and only if each S,
is unary graph automatic and each homomorphism @y, ., : Sy, — S, is automatic

with respect to the graph automatic structures for S, and S,.

Proof. Let S = U Sy, be a strong semilattice of semigroups over the fi-

ueyY
nite semilattice Y = {0,1,...,n — 1}, such that each of the S, is graph au-
tomatic. Thus each S, has graph automatic structure (X,,a,,al,v,). Let
X =Uucy Xu- Then X is a generating set for S and is finite as each of the X,

is finite.

Let R = 0", and define v : b* — S by

Then

Re = {(bP" 7,07 vy (af)) = vo(af) }

= (ba b>*

as v, (al) = v,(a?) if and only if u = v and p = ¢, due to the uniqueness of the

original structures.
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We define a homomorphism ¥ : a} x a¥, — b* x b* by
W(ay, ay,) = (07, 6™).

Now let z, € X,. Note that if s,z, = ¢ in S for some s, € S, then t € S,,.

Thus

R, = U ({oPrre b1 ) € b* x b* vy (af) 2y = vy (ald) and w = uv}
ueyY

= U {( e pIT) € b X bT Puuo (Va(a]))Pu,un (To) = Vuw(ad,)}
u€Y

= [J 0", 0"y {(ah, aly) : (pus(ah), aly) € (ai)e}

ueyY

= J @ 0"){(al, al,) : (al,, a,) € (ah,): and (af,af,) € L}
ueyY

where t = ¢y, 4y (Ty) is fixed, and

L= {(aﬁ7a£¢v) : (PU,uv(VU(aZ)) = Vuv(aiw)}

is the language recognising ¢y 4, Then as L and (a,): are regular, R, is
regular, and so S is unary graph automatic.

Conversely, suppose that S is graph automatic. Then each S, is graph auto-
matic by Corollary 5.4.3, and in particular S,, is shown to be graph automatic
by showing that it is a regular subsemigroup. Hence by Proposition 7.0.1, we
have that S, is unary graph automatic for each S, in Y. In addition, we have
that each homomorphism ¢,, , is regular with respect to the graph automatic

structure of S, and S, as in Proposition 5.4.8. O

7.7 Bruck-Reilly Extensions

In Section 4.4 we saw that Bruck-Reilly extensions preserve graph automaticity

if we have certain conditions on the homomorphism. We now show that the same
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does not hold for Bruck-Reilly extensions of unary graph automatic monoids.

Proposition 7.7.1. The Bruck-Reilly extension of a monoid is never unary

graph automatic.

Proof. Consider the Bruck-Reilly extension T' = BR(M,#) of a monoid M.
Suppose that T is unary graph automatic. Then by Theorem 6.8.1, we have

that

i=1
where F is a finite set, u; € T, and s;,t; € T'. Now any element of T can also
be written as ¢!mb’ for some m € M, and i, j € Ny, where b and c are elements
not in M. Thus given an element of T in the form su*t for some s,t € T,
u € T and k € Ny we may replace each of s,¢ and u by an element of the form

c¢'mb?. Thus all but finitely many elements of T can be written as
(P mib) (2 mab’2)* (B msb’®) = ctimyb’t

for some m; € M. Now if i3 > jo then we can get arbitrarily large powers
of ¢ but our power of b will be fixed, and conversely if iy < jo we will get
arbitrarily large powers of b but will fix the power of c. Finally, if i3 = js then
our power of b and ¢ will remain fixed. Thus it is not possible to get every
possible combination of powers of b and ¢ by starting with only finitely many

elements. 0

In particular, this allows us to show that the bicyclic monoid is not unary

graph automatic.

Example 7.7.2. The bicyclic monoid is the Bruck-Reilly extension
B = BR({1},0)

of the trivial monoid {1} under the trivial homomorphism, thus is not unary

graph automatic, by Theorem 7.7.1.



Chapter 8

Conclusion and Overview of

Open Questions

In this thesis we have provided an introduction to the theory of graph automatic
semigroups. We now recap some of the open problems and questions that we
have encountered throughout this thesis, as an indication of the directions which

further work may take.

Throughout this thesis we have demonstrated that various constructions are
graph automatic. However, we do not have an effective way of determining
whether a given semigroup is not graph automatic. Currently, the only way of
saying that a semigroup is not graph automatic is if it is not finitely generated
or does not have decidable word problem. In Chapter 6, we found that unary
graph automatic semigroups must possess certain properties, enabling us to
show that some semigroups were not unary graph automatic. In order to do
this we considered the form of the acceptor automata for our semigroups. A
similar approach for general graph automatic semigroups would be much more
complicated, as the forms of the possible acceptor automata are much more
complex. Nevertheless, having an effective way of showing that a semigroup is

not graph automatic would be both interesting in its own right and also useful

151
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in helping to answer some of the other open problems regarding our semigroup

constructions. Thus we ask:

Question 8.0.1. How can we show that a semigroup is not graph automatic?

In Chapter 3, we saw that it is possible to have a non-regular subsemigroup
of a graph automatic semigroup, but that left ideals of graph automatic semi-
groups are always regular. We ask whether this is the case for right ideals also,
and whether a right ideal of a graph automatic semigroup is necessarily graph
automatic. Of course, if the answer to the first question is yes then the answer

to the second must be yes also.

Question 8.0.2. Are finitely generated right ideals of graph automatic semi-
groups always regular subsemigroups? Are finitely generated right ideals of

graph automatic semigroups necessarily graph automatic?

In fact we wish to go further, and ask whether all finitely generated subsemi-
groups of graph automatic semigroups are graph automatic. If the answer to
this question was yes then it would immediately allow us to answer some of the
open questions regarding constructions. If the answer was no, then this might
still provide insight into how to answer some of the open questions regarding
constructions, possibly by giving us examples which allow us to show that some

of the constructions do not preserve graph automaticity.

Question 8.0.3. Are finitely generated subsemigroups of graph automatic

semigroups necessarily graph automatic?

In Chapters 4 and 5, we considered whether various semigroup construc-
tions preserved graph automaticity. We now highlight some of the major open
problems regarding these constructions.

In Section 4.1, we saw that taking the free product of two graph automatic
semigroups gives a graph automatic semigroup. We ask whether the converse
holds. This is of particular interest when we consider it in comparison to au-

tomatic and FA-presentable semigroups. We have that a free product of two
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semigroups is automatic if and only if both semigroups are automatic, but a free
product is FA-presentable if and only if both semigroups are trivial. As these
results differ so much, it would be of interest to be able to fully compare them

to the graph automatic case.

Question 8.0.4. If a free product of two semigroups is graph automatic, are

both factors graph automatic?

Also of interest is the analogous question for direct products, that is if we
have a direct product of two semigroups which is graph automatic, are both
semigroups graph automatic? In Section 4.3 we saw that we could answer
this question positively when our graph automatic semigroup was the direct
product of a finite semigroup and a monoid. The next steps would perhaps
be to answer this question for the direct product of a finite semigroup with an
infinite semigroup, or for the direct product of two infinite monoids, with the

alm of answering the question in general.

Question 8.0.5. If a direct product of two monoids is graph automatic, are
both monoids graph automatic? If a direct product of a finite semigroup and an
infinite semigroup is graph automatic, are both semigroups graph automatic?
If a direct product of two arbitrary semigroups is graph automatic, are both

semigroups graph automatic?

In Section 5.3, we consider Rees matrix semigroups. We saw that finitely gen-
erated Rees matrix semigroups and finitely generated Rees matrix semigroups
with zero are both graph automatic if their base semigroup is graph automatic.
We ask whether the converse also holds. A first step might be to show that if a
Rees matrix semigroup over a group is graph automatic then the group is graph

automatic.

Question 8.0.6. If a Rees matrix semigroup over a group is graph automatic,
is the group graph automatic? If a Rees matrix semigroup over a semigroup is

graph automatic, is the semigroup graph automatic?
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In Chapters 6 and 7 we examined those semigroups which have a graph
automatic structure over a single letter alphabet. We now consider some of the
open problems for unary graph automatic semigroups.

In Section 6.6 we saw that the class of unary graph automatic semigroups
contains the class of semigroups which are disjoint unions of finitely many free
monogenic semigroups. In [1], the authors show that such semigroups are finitely
presented and residually finite. We ask whether all unary graph automatic
semigroups also possess these properties. In Section 6.8, we found a way of
expressing a unary graph automatic semigroup by a uniform set of normal forms.
It is possible that these normal forms may allow us to answer these questions,

similarly to how normal forms were used to demonstrate these properties in [1].

Question 8.0.7. Are unary graph automatic semigroups always finitely pre-

sented? Are they residually finite?

In Section 6.5 we saw that unary graph automatic groups are precisely those
groups with a cyclic subgroup of finite index. We ask whether we may, perhaps
in a similar way, find a necessary and sufficient condition for a semigroup to be

unary graph automatic.

Question 8.0.8. Can we classify all unary graph automatic semigroups?
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