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Abstract
An influential theory of mammalian vision, known as the efficient coding hypothesis, holds

that early stages in the visual cortex attempts to form an efficient coding of ecologically valid

stimuli. Although numerous authors have successfully modelled some aspects of early

vision mathematically, closer inspection has found substantial discrepancies between the

predictions of some of these models and observations of neurons in the visual cortex. In

particular analysis of linear-non-linear models of simple-cells using Independent Compo-

nent Analysis has found a strong bias towards features on the horoptor. In order to investi-

gate the link between the information content of binocular images, mathematical models of

complex cells and physiological recordings, we applied Independent Subspace Analysis to

binocular image patches in order to learn a set of complex-cell-like models. We found that

these complex-cell-like models exhibited a wide range of binocular disparity-discriminability,

although only a minority exhibited high binocular discrimination scores. However, in com-

mon with the linear-non-linear model case we found that feature detection was limited to the

horoptor suggesting that current mathematical models are limited in their ability to explain

the functionality of the visual cortex.

Introduction

Binocular disparity detection
Many animals view the world through two eyes. Although two views of the world confer
advantages such as a wider field of view, greater visual acuity in areas of overlapping fields of
view and a perception of depth from binocular disparities, calculation of a single cyclopean
view from two inputs is non-trivial. In order to create a single fused percept, and to estimate
binocular disparity, corresponding features in both views must be matched. These features can
vary in orientation, shape, and size, as well as their locations in the two eyes. The standard
model of this process proposes that disparity is determined by cross-correlation of the visual
signals from the left and right views [1, 2]. This idea of calculating a local cross-correlation has
been linked to the activity of simple and complex cells in the primary visual cortex through the
binocular energy model [3, 4].
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Properties of an ideal disparity detector. Ohzawa et al. [4] argued that an ideal disparity
detector should have the following three properties. Firstly, its disparity tuning should be nar-
rower than the size of the neuron’s receptive field. Secondly, the preferred disparity should be
constant for all stimulus positions within the receptive field. Thirdly, incorrect contrast polarity
matches (in which a feature is brighter than the background in one eye, but darker than the
background in the other) should be ineffective at producing a response for stimuli at the detec-
tor’s preferred disparity. This latter property would allow the neuron to implement the similar-
ity constraint (that only similar features, in this case those having the same contrast polarity,
should be matched [5,6]).

These properties of an ideal disparity detector are summarised in Fig 1, showing how the
response of a neuron to a simple bar stimulus or a sine grating might be affected by the position
(or phase) of the stimulus in each eye. Fig 1 (far left) shows the ideal response of a neuron
tuned to zero disparity, with the position of the stimulus in the left- and right-eyes’ images on
the horizontal and vertical axes, respectively. This idealised neuron responds strongly when the
stimulus is presented at the same location in each eye, regardless of the actual location. This
creates a strong response along the diagonal. Fig 1C also shows an idealised neuron tuned to a
non-zero disparity. Again, strong responses occur along a diagonal line, but in this case it is
shifted rightwards, indicating that the neuron responds most strongly for a specific offset of the
stimulus between the two eye’s images.

Fig 1. Properties of different models of binocular integration. The top row shows examples of bar and sine-grating stimuli (B). Subplot C, an ideal
disparity detector responds strongly to a particular disparity and weakly elsewhere. Lines of equal disparity lie on the diagonal with zero disparity (shown as
the thick-line) on the main diagonal. D&E, responses of the standard binocular energy model (21) to bar (D) and sine-grating (E) type stimuli. As before, zero
disparities lie on the main diagonal. The strongest responses lie on the diagonal where disparities are zero, however strong responses also appear on
sidebands at disparities of ±π. F&G, responses of simple-cell models to bar (F) and sine-grating (G) stimuli. Energy is concentrated in locations
corresponding to specific combinations of positions in the receptive fields. Disparity in simple-cells is confounded with local spatial position.

doi:10.1371/journal.pone.0150117.g001

Independent Subspaces of Binocular Natural Images Form Ideal Disparity Detectors

PLOS ONE | DOI:10.1371/journal.pone.0150117 March 16, 2016 2 / 22



Binocular cells in the visual cortex
The responses of many cells in V1 are affected by stimuli presented to both eyes. Some cells
have a clearly defined receptive field for each eye, such that an appropriate stimulus presented
to either the left or the right eye will produce a response. To a first approximation, the overall
response of the cell is then the sum of the responses to the left- and right-eyes’ stimuli. Other
cells can be considered monocular in that an appropriate stimulus must be presented to a par-
ticular eye in order to evoke a response, and no response is evoked if a stimulus is only pre-
sented to the other eye. Even in this case, however, there can be clear binocular interactions, in
that the response to a stimulus in one eye is modulated by the stimulus presented to the other
eye [7].

For cells with a receptive field in each eye, disparity tuning occurs through both position
shifts and phase shifts of the receptive fields. A position shift refers to the situation in which
the receptive fields are in different locations in the two eyes. A phase shift refers to the situation
in which the shapes of the receptive fields (the spatial arrangement of excitatory and inhibitory
lobes) are different. Typically, disparity-tuned neurons in V1 show a combination of position
and phase shifts [8, 9].

Disparity tuning of simple and complex cells in V1. Computational models of binocular
complex-cells have been derived from the standard energy model of Adelson and Bergen [10]
by Ohzawa et al.[4], Qian & Zhu[11] and Fleet[3]. The binocular energy model consists of a two
layer hierarchical network; the responses of a pair of binocular linear filters in quadrature
phase are squared and additively combined to produce the energy response.

The standard binocular energy model estimates disparity from the relative energies of fea-
tures in the two binocular views. This model[3] can be conceptualised as a complex-cell inte-
grating over the responses of simple linear-non-linear monocular subunits. The binocular
energy model is defined as:

bem ¼ ðRL þRRÞ2 þ ðIL þ IRÞ2 ð1Þ

Where the result of weighting the left input image by an even Gabor function is denoted as
RL and with an odd Gabor function as IL. We denote the responses from the right input image
similarly. In this equation each ofRLRR;IL;IR, is considered a subunit in analogy to the sub-
units observed in complex-cells in the visual cortex. Fleet et al [3] showed that the binocular
energy response can be expressed as:

bem ¼ R2

L þ I2
L þR2

R þ I2
R þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRL þ ILÞ2ðRR þ IRÞ2

q
cosðD�Þ ð2Þ

where Δϕ is the binocular phase difference. This can be rewritten as

cosðD�Þ ¼ ðRL þRRÞ2 þ ðIL þ IRÞ2 �R2

L �R2

R � I2
L � I2

R

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRL þ ILÞ2 þ ðRR þ IRÞ2

q ð3Þ

The local binocular phase difference Δϕ can thus be calculated by combining the binocular
energy response with monocular energy responses. Fleet et al. [3] showed that the binocular
energy responses are related to a point-wise cross-correlation between of the filtered left and
right eyes’ images.

Efficient coding of visual information
Barlow suggested that an efficient coding of ecologically valid visual stimuli could explain the
receptive field patterns of neurons in the visual cortex[12]. Such a coding would need to
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balance a trade-off between the energy of responses evoked by a stimulus and the number of
neurons used in the coding. The highly peaked nature of frequency and orientation distribu-
tions in natural images has led to the hypothesis that an efficient coding of visual stimuli would
be sparse. By eliciting a few large amplitude responses to each stimulus such a coding would be
maximally energy efficient.

Sparse coding and ICA as a model of receptive field properties of V1. By imposing a
highly kurtotic prior on neural responses [13], or simply maximising the response kurtosis [14],
filters can be learned from natural images that resemble the Gabor-like patterns of receptive fields
of simple V1 cells. Similar results have been found for binocular natural images; maximising kur-
tosis [15] and information [16] have both been found to produce filters similar to binocular
receptive fields of simple-cells in V1. These methods all belong to the class of algorithms known
as Independent Component Analysis [17, 18]. However Ringach [19] observed important differ-
ences between the structure of receptive fields of simple-cells in macaque and the structure of lin-
ear components learned using ICA. In particular ICA components tended to be significantly
more narrowband frequency and orientation tuned than cells observed in the visual cortex[19].

Independent Component Analysis for binocular images. Independent Component
Analysis of binocular image patches has found binocular pairs of Gabor-like components [16,
20, 21]. These components exhibit a mix of both monocular (most component energy in one
view) and binocular responses. In general, the receptive fields of the binocular components had
a very similar orientation and spatial frequency in the left and right views. The components
exhibited a range of binocular phase [16, 20] and position disparities [21]. The distributions of
position disparities were dependent on the wavelength of the component’s carrier function and
phase disparities were biased towards correlated (TE) and anti-correlated (TI) components.
These phase and position disparities combined (in each component) results in total disparities
that lie on integer and half integer multiples of the wavelength of the component [21].

Correspondence between ICA results and the properties of cortical neurons. The accu-
racy with which Independent Component Analysis replicates the receptive fields of simple-cells
in V1 has been questioned. The components learned by ICA tend to have narrower spatial fre-
quency and orientation bandwidths than the receptive fields of V1 simple cells [19]. Also, the
proportion of anti-correlated components found using binocular ICA was higher than that
observed in macaque V1 [21]. Notably, although ICA components coded for a wide range of
both phase and position disparities when measured individually, when phase and position where
combined into a single overall disparity measure, disparities coded for by ICA components were
restricted to integer and half integer multiples of the component’s wavelength[21]. This bias
towards particular disparities has not been found in the visual cortex of mammals [8, 9, 22]. To
address some of these discrepancies, there has been some work to improve statistical models of
vision beyond ICA. For example, Olshausen proposed that imposing a sparsity inducing con-
straint based on the L1 norm (the sum of the absolute responses across the population) on the
learning process produced components with the broadband tunings observed in V1 [23, 24].

Beyond linear models. A number of authors have also extended the simple linear models
of natural image statistics to nonlinear, complex-cell models. The underlying principle of these
methods is to distinguish between two types of interactions between component responses. In
simple linear-nonlinear models, interactions are considered to be mostly inhibitory, resulting in a
sparse set of responses. However, the responses of the subunits of complex cells in the cortex are
not thought to interact in that way. Rather, most authors have considered the responses of com-
plex cell models to be decorrelated, and have modelled them using a Gaussian distribution (also
known as an L2 norm)[11, 15, 25–29]. Between complex-cells, the relationship between responses
is assumed to be sparse[15, 25]. Hyvärinen and Hoyer (2000) formulated an extension to ICA,
Independent Subspace Analysis, that learns a set of complex-cell-like components from natural
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image patches by fixing an orthogonal L2 norm (the square root of the sum of squared responses)
between the linear subunits of complex cells, while maximising response kurtosis between com-
plex cell components. Provided the distribution underlying the data is sparse, maximising
response kurtosis will produce a model that produces sparse responses[18].

This extension of ICA is important in providing the invariance to phase and position that is
a requirement of an ideal disparity detector [4]. The responses of the linear filters generated by
ICA depend on the relationship between the phase of the filter, and of the input image. This
phase dependence is similar to that of simple cells in the visual cortex, and to the first-stage fil-
ters in the binocular energy model. In the energy model, phase invariance is achieved by sum-
ming the squared responses of linear filters that are tuned to different phases[4]. Independent
Subspace Analysis, in which the subspace response is the sum of the squared responses of the
individual subunits, has the potential to learn phase invariance in a similar way. Indeed, using
their ISA model, Hyvärinen and Hoyer learned complex-cell-like models that exhibited phase
or position invariance, through a set of linear components with similar frequency and orienta-
tion, but shifted phase and position[15]. Thus, while the linear components learned through
ICA are not suitable candidates as ideal disparity detectors, the complex-cell-like models
learned by ISA have the potential to perform this role.

Burge and Geisler [30] developed a supervised learning model specifically designed to learn
to estimate disparity from binocular images. Rather than attempt to learn an encoding that
spanned the full range of observed stimuli, Burge and Geisler learned encodings optimised spe-
cifically for the task of estimating disparity. Burge and Geisler’s model summed over both lin-
ear and squared subunits and allowed for second-order interactions between subunits. By
taking into account complex linear and nonlinear interactions, Burge and Geisler’s model
allowed for a much narrower disparity tuning than the standard energy model[30].

The binocular energy model has been shown to be a highly effective model of complex bin-
ocular cells in the mammalian visual cortex[4,7,10,31–36]. Similarly, statistical models based
on the energy model have been shown to be capable of unsupervised learning of spatially
invariant complex-cell models of monocular images [15, 25] and supervised learning of neural
networks to estimate binocular disparity[30]. In this study we compared complex-cell models
learned from binocular natural images to the properties of an ideal disparity detector. We used
ISA in order to learn models that exhibit the phase-invariance that characterises the responses
of complex cells, and is a necessary component of ideal disparity detectors.

Methods and Materials
We performed Independent Subspace Analysis [15] on rectangular image patches cut from
binocular image pairs [37]. This analysis produced a set of non-linear models whose responses
to binocular image stimuli was explored using responses to sine-grating and bar stimuli. Finally
we used the Disparity Discrimination Index [9] to determine how much of the variance in
complex-cell model responses could be explained by the disparity of the stimuli.

Data-set
We performed our analysis on a set of binocular photographs of various scenes, designed to
approximate binocular vision. This data-set was previously described in [37], for clarity we
repeat the setup here. A set of binocular images was captured using a purpose built platform
housing two Nikon Coolpix 4500 digital cameras. The platform allowed the inter-camera sepa-
ration along the horizontal axis, and the cameras’ orientations around the vertical axis, to be
manipulated. This setup approximated the interocular distance between human eyes. Indepen-
dent rotation about the vertical axis afforded one degree of freedom of movement of each view,
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allowing simulation of vergence on a focal point within the scene. This setup assumes that dif-
ferences in elevation and cyclovergence in each eye is zero. In all scenes the cameras were sepa-
rated by 65mm. The cameras were oriented such that the same point in each scene was centred
in each camera image. This approximately mimics the expected fixation strategy a human
would adopt to focus on an object directly in front of them.

The scenes varied in both composition and range of disparities contained. A number of
indoor scenes consisting of a range of mixed fruit and vegetables were captured on a light-
table. A range of outdoor scenes were captured in the area in and around the town of St
Andrews in Scotland, these included a range of beach and woodland scenes. The full set of
images collected can be downloaded from www.github.com/DavidWilliamHunter/Bivis.

The captured images were calibrated to account for the lens and colour characteristics of the
camera. We used the Camera Calibration Toolbox for Matlab [38] to calibrate for the optics of
the camera’s lenses, and transformed the images such that they approximated an image taken
with a perfect ‘pinhole-camera’. A consequence of this transformation is that we can describe
pixels in terms of the visual angle they subtend. The images were captured at a resolution of
1600 x 1200 pixels prior to calibration and reduced and calibrated to 1201 x 1201 pixels, where
each pixel covered 1 arc minute of visual angle. The images were converted to CIE LAB values
[39] using colour patches captured from a Macbeth Colorchecker DC chart to establish the col-
our characteristics of the camera.

Learning the complex cell model
Pre-processing. We sampled 500,000 25 by 25 pixel patches from the binocular image set.

The images were prepossessed using the methods of [21], reprised here for clarity. Pre-processing
involves two steps that are necessary for calculation of ISA components [15] and have similarities
with early stages of visual processing in the retina and LGN. Retinal ganglion cells are known to
have centre-surround response profiles[40] that de-correlate visual input [41]. The retina also plays
a role in gain control[42]. For more details on the implications of the pre-processing see [21].

xi is the i
th vectorised image patch. xðlÞ

i is the ith image patch from left view and xðrÞ
i is the ith

image from the right view. As we are primarily interested in local structure rather than overall
luminance we centre and normalise image patches separately for each eye. We centred the
luminance of each image patch separately by subtracting the patch mean luminance.

�xðlÞ
i ¼ x

ðlÞ
i � hxðlÞ

i i ð4Þ
where hxi denotes the mean of x. The same method was applied to the right view patches. We
normalise the patches using,

_x i ¼
�xðlÞ
i

k�xðlÞ
i k

;
�xðrÞ
i

k�xðrÞ
i k

" #
ð5Þ

As it is a requirement of ISA that the samples are of unit length we normalise the whole vec-
tor again.

xi ¼
_x i

k _x ik
ð6Þ

The vectors xi are concatenated into a matrix X such that X is an N byMmatrix where N is
the number of image patches andM is the number of pixels per patch.

A requirement of the ISA algorithm we are using is that the data are whitened using Princi-
pal Component Analysis prior to processing[15].
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Independent Subspace Analysis
The Independent Subspace Analysis algorithm was developed by Hyvärinen and Hoyer[15], in
this section we briefly summarise the main features of their algorithm. The patch set X can be
expressed as a linear combination of feature components.

X ¼ AW ð7Þ
where the matrix A is the feature components andW the set of weights. If A is restricted to the
set of orthonormal basis functions then Eq 7 is invertible A = XW−1 asW is orthonormal, the
inverse is also the transposeW−1 =WT.

In standard Independent Component Analysis a set of basis vectors (W) is learned such that
(A) has a sparse leptokurtic distribution. This is achieved by maximising the non-Gaussianity
of A using a non-linear function.

gðAWÞ ð8Þ
where g is a non-linear function, in standard FastICA g is e.g. tanh x [18]. Subspace Compo-
nent Analysis divides the components into sets of two, the norms of these sets is expected to be
leptokurtic. In ISA the norm of a subspace is defined as:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1

hwj; xii2
vuut ð9Þ

That is, the square root of the sum of squared responses. This norm has similarities with the
L2 norm, due to the sum of squares term. Responses within the subspace have a Gaussian pro-
file, and the square root term gives the responses between the subspaces a sparse profile. ISA
components are solved using the method of maximum likelihood[16]. Examples of compo-
nents learned using ISA are shown in Fig 2.

Complex-cell Models
Complex neurons are modelled in the manner of the standard binocular energy model [3] by
combining the responses of two linear subunits by summation and applying a non-linear
squaring function. A diagram of the complex neuron model can be found in Fig 3.

We trained an ISA model on 500,000 binocular image patches sampled from all 139 binocu-
lar image pairs in the dataset. The model consisted of 200 subspaces, each containing two sub-
units, resulting in 400 binocular components in total. Complex neurons were derived from the

Fig 2. Example components learned using ISA. Each component is shown as a rectangular pair, the left half of each pair shows the receptive field (25 by
25 pixels square) in the left view, the right half of the rectangle shows the right view’s receptive field. Light areas of receptive field are excitatory and black
areas inhibitory, grey areas are neural.

doi:10.1371/journal.pone.0150117.g002
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components of the subspace using the methods described above (the two linear components in
each subspace are w1 and w2). Complex-cell models were modelled using the two linear sub-
units as

X2

i¼1

hx;wii2 ð10Þ

Results

Phase-phase plots: responses to sine-gratings
We used a phase-phase plot to examine the interaction between model responses and the
phase of the stimuli in each view. This plot shows the interaction of the neuron’s responses to
sine-gratings of different phases in each eye as a two-dimensional heatmap, each cell corre-
sponding to a particular combination of phases. The frequency and orientation of the phase-
phase plot are chosen such that the maximum response in the phase-phase range is maximised.
A phase-phase plot is useful for determining responses to phase disparity in a binocular image.
Example phase-phase plots of an ideal locally position invariant zero disparity detector can be
seen in Fig 1C. Features in the binocular view are at zero disparity when they appear in the
same location within the receptive fields in both views, thus zero disparities are found on the
main diagonal in each plot. Disparities other than zero are found on a line offset from the main
diagonal (as shown in Fig 1). The responses of the binocular energy model[21] to sine-gratings
are found in Fig 1E. As with the ideal detector the strongest responses are found on the main
diagonal indicating that the binocular energy model is strongly tuned to detect disparities of
zero. There are also side-bands shifted by π as energy responses to sine gratings shifted in
phase by π radians are indistinguishable from the original. Fig 1G far right, shows the response
of a simple linear-non-linear model to the same sine-grating stimuli. The linear-non-linear
model responds strongly only to particular combinations of phase in each view, thus disparity
is confounded with local position.

The frequencies and orientations of the simple-cell units were determined by fitting Gabor
functions to the individual ISA sub-components as described in detail elsewhere[15]. Sine-grat-
ings at the mean frequency and (angular) mean orientation of the sub-components were gener-
ated at varying phases. Binocular pairs of sine-gratings were presented to the complex-cell
models; the phases were varied separately in each of the left/right views in order to generate
phase disparity. The phases of the left right views were varied independently between −π and π
to produce a 2D response map of the complex cells. Examples of the response maps to complex

Fig 3. A two layer model of a complex neuron. The image (x) is filtered using a set of n basis functions (w1. . .n) and combined into a single response by the
non-linear function, f.

doi:10.1371/journal.pone.0150117.g003
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cells learned using ISA are shown in Fig 4. Locations in the response map of equal disparity lie
along the diagonal. Zero disparity sine-gratings lie on the main diagonal from [−π,−π] to [π,π].

Individual sub-components are tuned to detect a particular phase in each view (not neces-
sarily the same in each view) and thus produce blob-like structures. These components are
tuned to detect a particular phase disparity at a particular phase. Complex cell models combine
responses of individual sub-units. An ideal complex-cell model will have a uniform response to
a particular disparity irrespective of phase, This results in a response map with the peak lying
on a diagonal line on the sine-grating response plot. To illustrate these responses in detail,

Fig 4. Example responses to binocular sine-gratings for 25 individual complexmodels learned using ISA. The models consist of two linear subunits
combined in a sum of squares manner. The phase of the left view sine-grating is shown on the horizontal axis, the right view phase is shown on the horizontal
axis. The phases in both views vary between −π and π. 100 samples were taken within this range for each view resulting in a 100x100 response map.
Locations of equal disparity lie on diagonal lines, locations of zero-disparity are shown as a black line.

doi:10.1371/journal.pone.0150117.g004
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further examples of ISA complex model responses, together with their subunit responses, are
shown in Fig 5. Examples of three types of complex-cell models learned using ISA are shown.
Fig 5A and 5B show examples of complex-cell models strongly tuned to detect disparity, the
maximum excitatory responses (red bands) are found along diagonal lines of equal disparity,
although in both cases the bands are shifted from the main diagonal indicating a preference for
non-zero disparity in both models. Fig 5C shows a monocular cell, the strongest responses lie
in vertical bands indicating that the phase in right view (vertical axis) has little effect on the
response of the model. Fig 5D shows an example of a model tuned to detect particular phases
in each view, in this case the subunits are both monocular, the left subunit mostly responds to
stimuli in the left eye (relatively small modulation of responses due to phase in the right view),
the right subunit mostly responds to stimuli in the right eye.

Responses to bar stimuli
Sine-gratings are useful stimuli for isolating responses to a particular frequency over a range of
phases however they cover the entire field of view and so do not isolate the size of the receptive
field [4, 7, 31, 35, 43–46]. Bar stimuli presented to each eye can be localised within the receptive
field and thus can explore the bounds of the receptive fields. As with sine-gratings, we exposed
our model complex cells to binocular bar stimuli with bar width set to half the wavelength of
each complex cell model’s sub-units and infinite bar height, the orientation of the bar matched
the mean sub-unit orientation in each model. Bar stimuli were presented to each of the left/
right views at a range of shifts orthogonal to the bar orientation. These shifts simulate binocular
disparity, if the shift is identical in each view then the stimuli are at zero disparity, otherwise
the disparity is the difference between the shifts in each view. The stimuli presented to each

Fig 5. Extended examples of complex ISAmodels’ responses to sine-gratings. Four complex model responses are shown as combinations of two
linear subunits. The two left-hand sine-grating plots show the simple linear responses of individual subunits to sine-gratings varying between–π and π in
each view. The right gratings (after the >) show the complex model response (sum of squares of the subunits). The complex models are chosen to illustrate
different ‘types’ of complex cell model, A & B showmodels with high binocular disparity discrimination scores (see DDI section). In both models the sub-units
exhibit strong binocular tuning in phase, resulting in a strong response to particular left/right phase combinations and low responses elsewhere. Phase
separation of approximately π/2 between the two sub-units results in a quadrature pairing and consistently strong response to a particular disparity. C & D
showmodels with low DDI. In model C, both sub-units are monocular (responses modulated only one eye) resulting in a monocular complex cell. Model C is
not phase invariant however the DDI index is not sensitive to monocular phase invariance, other monocular phase invariant models may exist. Model D also
shows monocular sub-units, however in contrast to model C the sub-unit are differently monocular in each eye. Model D does not show any invariance in
phase and appears to be specialised to detect particular phase combinations.

doi:10.1371/journal.pone.0150117.g005
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model covered a range of -12.5 to 12.5 pixel shifts in both views. Response heatmaps are shown
in Fig 6, as before the line marking zero disparity shifts lies on the diagonal (bottom-left to top-
right).

As before, the pattern of responses reveals information about what the model is tuned to
detect. The size of the receptive field is clearly visible as the models only respond to a bar stimu-
lus when it lies within the receptive field. As before the complex-cell models can be categorised
into distinct subsets; monocular cells are modulated only by the location of the bar in one view,
binocular cells are modulated by the bar location in both views. In Fig 6 the monocular cell

Fig 6. Responses of complex cell models to and both bar and sine-grating stimuli. The responses of 15 models (chosen for having high DDI) to both
sine-grating (columns 1,3,5) and bar stimuli (columns 2,4,6) are shown. The model number is shown above the plot. Positions of zero disparity in both the
sine-grating and bar plot are shown as a black line. As with previous Figs in models with high DDI strong responses lie predominantly on lines of constant
disparity on the response to sine-gratings. Responses to bar stimuli are more localised as bar stimuli are sensitive to RF size. As with responses to sine-
grating strong responses of high DDI complex cells to bar stimuli lie predominantly on lines of equal disparity.

doi:10.1371/journal.pone.0150117.g006

Independent Subspaces of Binocular Natural Images Form Ideal Disparity Detectors

PLOS ONE | DOI:10.1371/journal.pone.0150117 March 16, 2016 11 / 22



type can be identified by response maps containing only horizontal and vertical stripes. Nota-
bly, these stripes are collocated or located adjacent to each other in the response-map; this
shows that the receptive fields of the sub-units are located in spatially similar areas. Binocular
complex cell models are modulated by the position of the bar in both left and right views result-
ing in a cross-like structure in the response-map. The peaks of the responses lie along diagonal
lines of equal disparity as would be expected of binocularly selective-cells.

Fig 6 shows the responses to both bar and sine-grating stimuli, for complex cell models that
were chosen as being strongly selective to the disparity of sine-grating stimuli. As with
responses to sine-gratings, these models generate strong responses to particular disparities.
Unlike for sine-gratings, these responses are localised to a small area of the plot; this is due to
the size of the receptive fields. The cells are tuned to detect a wide range of disparities, as
shown by the number of models with strong responses off the central zero-disparity diagonal.
The responses generated by bar stimuli resemble the responses of binocular tuned neurons in
the striate cortex in cats [35]. Models 1022 and 1140 in Fig 6 strikingly resemble cell recordings
(see [35] Fig 3). This model exhibits two features: strong responses for particular position dis-
parities and slightly weaker (but still clear) responses to monocular stimuli, as shown by the
vertical and horizontal bars in almost all response plots.

Disparity Discrimination Index
The heatmaps of the responses to both bar and sine-grating stimuli allow us to visualise the
pattern of the model neuron’s responses to visual stimuli. However visualisation alone does not
allow us to quantify the selectivity of the model neuron to disparity. In order to measure dis-
parity selectivity, we used the Disparity Discrimination Index of Prince et al. [8, 9]. The Dispar-
ity Discrimination Index (‘DDI’) estimates the proportion of variation in the response that is
explained by disparity. We computed the DDI for each complex model learned using ISA,
using the responses of the model to sine-grating stimuli. As before the frequency and orienta-
tion of the sine-gratings were selected separately for each model such that model responses
were maximised. A histogram of model DDIs are shown in Fig 7. The vast majority of com-
plex-cell models have low DDI and therefore are only weakly (at best) selective for disparity.
20% of the complex-cell models have middling to high disparity selectivity, a DDI of higher
than 0.47. The 95 percentile of the DDIs is 0.60. Although only a minority of the models are
strongly binocularly selective they show an extremely strong selectivity, the maximum is a DDI
0.95, almost all the variance in responses is explained by disparity selectivity.

Response function Symmetry
The symmetry of variations in responses of neurons to stimuli of varying disparity has been
used by a number of authors to classify these cells in terms of their binocular responses[47].
Tuned Excitatory (TE) neurons, which respond most strongly to stimuli on the horoptor (zero
disparity), will have an even symmetric disparity response function, neurons that are most
inhibited by stimuli on the horoptor are also even symmetric with a response function roughly
inverted in comparison to a TE cell, these are labelled Tuned Inhibitory. Odd symmetric dis-
parity response functions indicate a neuron tuned to detect stimuli that lie either in front of
(Near), or behind (Far), the horoptor. Most authors have found a strong bias towards even
symmetric (TE/TI) neurons compared to odd symmetric neurons (Near/Far)[8, 47, 48]. A rep-
resentative result from Prince et al. found 38% TE, 16%TI, 21% Near and 25% Far.[8].

We measured the response symmetry using the phase of a sine wave function fitted to the
responses of the complex-cell models to sine-grating stimuli (see S1 Appendix for details of the
fitting operation). Prince et al. used both the phase and position of a Gabor function fitted to
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complex-cell responses[8], the sine-grating stimulus used in this analysis is cyclical so a sine
wave alone is sufficient. The phase of the response function is based on a cosine so we added π
to the phase of the sine wave function. The results are shown in Fig 8. For strongly binocularly
selective complex-cell models (DDI> 0.6) we found only 0 and π phase responses correspond-
ing to Tuned Excitatory and Tuned Inhibitory model respectively. 62% (±13.9% 95% Confi-
dence Intervals) of complex-cell complements are Tuned Excitatory, 37% (±17.74% 95%
Confidence Intervals) were Tuned Inhibitory. Other phases, corresponding to Near and Far
cells were only found at low DDI i.e. in models that were not particularly tuned to detect
disparity.

Max pooling models
An alternative to the quadrature pair energy model is the max pooling model. This model is
heavily used in computer vision [49–51]. The max pooling model has been suggested as a pos-
sible alternative to the energy model in understanding complex cell responses [52, 53]. In our
implementation of the max pooling model, the sub-units are learned using ISA as before and
the responses of the linear model are combined by taking the maximum absolute response of
the two sub-units as the complex model response.

Fig 9 shows the responses of max pooling complex models to both sine-grating and bar sti-
muli. As the models are chosen for their high DDI most of the strong responses lie on points of
equal disparity. As with the energy model max-pooled models can exhibit a high degree of bin-
ocular sensitivity. However, the response functions of the max-pooled model are less smooth
compared to responses of the standard energy model (compare sine-grating responses of max-
pooled models (Fig 9) with responses of the sum of squared responses model (Fig 6)). This
indicates that the max pooling model is less phase invariant than the energy model. Fig 10

Fig 7. Bootstrapped distribution of Disparity Discrimination Index for complexmodels learned using ISA. The blue bars show the median of the
bootstrapped results for each bin, the error bars show the 95% Confidence Intervals for calculated using 100 bootstraps. The complex cells exhibit a wide
range of distributions from non-disparity selective models with low DDI to very high disparity selectivity with high DDI.

doi:10.1371/journal.pone.0150117.g007
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shows the distribution of DDI scores for the max-pooling model. The energy and max-pooling
models exhibit similarly wide ranges of binocular disparity sensitivities. However the highest DDI
score for the max pooling model was 0.87 compared to 0.95 (see Fig 7) for the energy model.

When the distributions of DDI for both max-pooled and energy model complex-cell compo-
nents are compared (Fig 11), the distributions are found to be remarkably similar below a DDI of
0.5. Above a DDI of 0.5 a significant separation occurs due to the energy model’s bias to values
around 0.55. In this area the energy model is under-performing compared to the max-pooling
model, as the energy model is biased towards lower DDI compared to the max-pooling model.

Discussion
Theoretical complex cell models such as the binocular energy model [3], and derivatives of this
model, calculate disparity by combining the squared responses of simple cell models with
Gabor-shaped receptive fields in quadrature phase. Quadrature pairs of Gabor functions are by
definition orthogonal (decorrelated), so the orthogonality constraint applied by ISA to the sub-
spaces makes sense in a binocular context. Assuming the signal (or part thereof) has the same
frequency and orientation as the carrier wave of the Gabor function, the well-known Fourier
shift theory holds that the result of convolving the signal with the Gabor function will be the
cosine of the phase difference between the signal and Gabor function. As a consequence, two
Gabor functions in quadrature phase are sufficient to calculate the local phase of a signal [10],
and two pairs of Gabor functions in quadrature phase in each eye are sufficient to calculate the
disparity between two signals of equal frequency and orientation in each eye [4]. This combina-
tion of components implies that the joint distribution of responses is polar and equal in all
directions. Such a distribution can be considered to lie on a space described by an L2 norm.

Fig 8. Bootstrapped histogram of the phase of the disparity response functions for each complexmodel with a DDI greater than 0.6. Phases of 0
and π radians show even-symmetric disparity functions and indicate TE (0) and TI (π). All complex cell model with a DDI greater than 0.6 show TI and TE cell
exclusively. Cells at lower DDI are not disparity tuned.

doi:10.1371/journal.pone.0150117.g008
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Assumptions about the interaction of complex cell sub-units underpin current analyses of
complex-cell physiology. Most studies have assumed a summative interaction, where the
responses of linear-non-linear sub-units are added (excitatory interaction) or subtracted
(inhibitory interaction) [45, 54]. A substantial amount of research into complex-cells in the
visual cortex suggest that they can be modelled as being built from simple-cell-like sub-units
[36, 43](or see [31, 32] for an overview). More recent research has been able to characterise
these sub-units based on the assumption that the sub-units are orthogonal and follow a Gauss-
ian distribution [27, 28, 55]. These sub-unit profiles resembled the well-known Gabor-like pro-
files of simple-cells. These are the same assumptions that underlie Independent Subspace

Fig 9. Responses of complex cell models using the max-pooling model to both sine-gratings and bar stimuli. Columns 1,3,5 show the responses of
the models to sine-gratings stimuli, columns 2,4,6 show responses of the models in the odd columns to bar-stimuli. The models are chosen for their high DDI.
As with the energy model (see Figs 4 and 6) the strongest responses lie on diagonals of equal disparity, however unlike the energy model the response
function are less smooth, with greater range of responses exhibited on the diagonals of both the sine-grating responses and the bar stimuli responses.

doi:10.1371/journal.pone.0150117.g009
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Fig 10. Distribution of DDI scores for max-pooled complex cell models. The distribution of DDI scores is bootstrapped 200 times to produce 95%
Confidence Intervals (vertical black lines) and median scores (blue boxes) for each cell in a histogram. The max-pooling model exhibits a wide range of
binocular disparities between 0 and 0.8743.

doi:10.1371/journal.pone.0150117.g010

Fig 11. Comparison of cumulative distributions of DDI for both max-pooled and energymodel complex cell models. The cumulative distribution for
the max-pooled model is shown in green and the cumulative distribution of the energy model DDI is shown in red. Confidence intervals are generated using
200 bootstrapped distributions, the median of the distributions is shown as a black line in both models, the 95% CI shown as a green (max-pooled) or red
(energy model) band. In the lower half for the distribution (DDI values below 0.5) no significant deviation is found between the two distributions. In the upper
half a marked bias emerges, with the energy model significantly higher than the max-pooled model.

doi:10.1371/journal.pone.0150117.g011
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Analysis, and component subspaces exhibiting phase invariant-like structures have been found
in analyses of monocular images [15] using ISA.

ISA formulates the problem of unsupervised learning of complex-cell like models as a sub-
space sparsity maximisation problem[16]. An alternative formulation often attributed to Klopf
[56] (as reported by [57]) is a slowness or stability criterion, where the aim is to minimise varia-
tion over time of the complex-cells’ responses [57–59]. Clearly as the slowness criteria applies
to the temporal domain it is not directly applicable to the analysis of static binocular images,
however the criterion is of interest to research into complex-cells. The slowness criterion has
been adapted for complex-cells by e.g. Kayser et al.[58] and Berkes andWiskott[59] Although
Wiskott’s slow feature analysis[60] has been shown to be an alternative form of second-order
ICA[61] it differs substantially from higher-order independent components analysis that
forms the basis for ISA[15, 62]. By emphasising sparseness ISA learns features with substan-
tially smaller receptive fields than the slowness criteria[62].

Independent Subspace Analysis combines a Gaussian distributed L2 norm on responses
with a subspace with a term that maximises super-Gaussianity of responses between subspaces.
If the underlying structure of the observed data can be described using sparse subspaces, this
model will produce sparse responses between subspaces. By training such a model on a set of
binocular image patches, we can produce a set of components that decompose the image
patches into a set of linear components. These components are grouped into subspaces.

Using the components within a subspace, we can build a complex-cell model. Each individ-
ual component is used to create a single linear-non-linear single-cell model, the responses of
which are combined to create the complex-cell. Using binocular sine-gratings varying in phase
across each left/right view we explored the range of responses of each complex-cell model to
varying disparity across phases.

We found that the complex-cell models learned using ISA exhibited a wide range of binocu-
lar responses. The models produced were biased towards low values of DDI, with only a minor-
ity exhibiting strong binocular disparity discrimination ability. In many respects this is
unsurprising; the ISA model is expected to approximately span all image features in the image
patches, binocular disparity is only one aspect of the image patches that the model needs to
cover. Other complex-cell models have been found that are specifically monocular in their
responses or tuned to detect high specific phase combinations in each eye. However, when
energy model components were examined, the majority of components were found to have
low DDI. This may be due to the measure used to define binocular disparity discriminability
being dependent on signal phase alone; this measure will fail to capture models where mixtures
of one or more of phase, receptive field position, frequency or orientation are combined to pro-
duce binocular disparity tuned models. Neurons that combine phase and position disparity are
prevalent in the visual cortices of cats and primates [8, 9, 63] and have been found to be preva-
lent in statistical analysis of binocular image pairs [21]. The proportion of models with high
disparity discrimination tunings may therefore be under-estimated using this metric.

The model produced a sub-set of complex-cell models that were strongly tuned to binocular
disparity and could therefore be utilised in the perception of stereoscopic depth. Complex-cells
not tuned to detect binocular disparity may be specialised towards detection of other features
in the binocular image set; e.g. purely monocular features, orientation or frequency invariance,
or significant non-invariant features. The discovery that a sub-set of complex-cell models are
highly tuned for disparity while the majority are not indicates a tendency towards specialisa-
tion in complex-cell models learned using the ISA model.

The symmetry of variations in responses of neurons to stimuli of varying disparity has been
used by a number of authors to classify these cells in terms of their binocular responses[47].
Most authors have found a strong bias towards even symmetric disparity response function
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(TE/TI) in neurons compared to odd symmetric disparity responses (Near/Far)[8, 47, 48]. A
representative result from Prince et al. found 38% TE, 16%TI, 21% Near and 25% Far[8]. In
our analysis we found no evidence of Near or Far tuning in complex cell models with high
DDI. Complex cell models tuned to detect disparity only exhibited 0 and π phase response
functions corresponding to the Tuned Excitatory and Tuned Inhibitory labels. We also found
no evidence for a bias towards either TE or TI type complex cell models. These models are
tuned to detect disparity exclusively along the horoptor. This is consistent with earlier results
of Hunter and Hibbard [21] who found that single cell binocular models learned using Inde-
pendent Component Analysis[18] were highly tuned to detect disparities at integer and half-
integer multiples of the wavelength of the simple-cell, that is Tuned Excitatory (integer multi-
ples) and Tuned Inhibitory (half-integer multiples) cells. The finding that ISA learns disparity
tuned complex cell models tuned exclusively to TE and TI types is inconsistent with physiol-
ogy, where TE and TI types together accounts for between 50% and 60% of cells recorded[8,
47, 48] and a clear bias towards TE cells exists. Similarly the ISA results do not match previous
statistical analysis of range data [64] and image analysis[37]. Although no Near or Far type
neurons were found, the ratio of TE and TI cells fell within range of values predicted by both
physiology[8, 47, 48], range data[64] and image statistics[37].

Why both ICA[21] and ISA fail to produce models with disparity distributions that match
either physiology or known disparity distributions is an open question. It is too early to suggest
that sparsity is the culprit as other sparse coding algorithms e.g. L1 [23] may better account for
observed disparity distributions. ISA attempts to provide an efficient coding of the binocular
image patches, the number of components that can be learned is limited and ISA prioritises
components that maximally explain the data. Both ISA and ICA require that components are
orthogonal. While this makes computation easier, it imposes an unrealistic restriction on the
shape of the components. Simple zero-disparity components arranged in quadrature phase
form an orthogonal basis but does not fully span the space of disparities, a non-orthogonal
model may have the freedom to fully cover the range of possible disparities.

Although the energy model is capable of producing a more refined output than the max-
pooling model we found that the max-pooling model was also capable of producing complex
cells that closely matched the expectation of a neuron tuned to detect disparity in a phase
invariance manner. The distribution of DDI was extremely similar for both models, with the
energy model being slightly biased toward lower DDIs at the upper end of the scale. This is sur-
prising as the standard energy model is capable of providing significantly higher DDI than
max-pooling due to the smoothness of the response function across phase. In our results near
perfect quadrature pairs, although rare, were found (see Fig 5) and the maximum DDI found
for the energy model was significantly high than for max-pooling.

At low DDI, the complex cell models are not tuned for binocular disparity, and so the choice
of a combination function may not be so important. At higher DDI, max-pooling actually out-
performs the energy model; only at the very highest DDI values do the advantages of the energy
model become apparent. Although the max-pooling model is not capable of the refined results
of the energy model this may not be necessary for providing a reasonable generative approxi-
mation of the image patch set. Max-pooling may be an effective ‘poor-man’s’ alternative to the
energy model in scenarios where the energy is costly to compute.

Limitations of Our Analysis
The model of simple linear-non-linear models used here has a substantial limitation in that it
does not allow for half-wave rectification. Half-wave rectification of sub-unit responses has
been found to play a substantial role in binocular visual processing. For example, Read and
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Cumming [65] found evidence for both inhibitory and excitatory combinations of binocular
stimuli post-filtering and rectification.

In the interests of presenting an easily understood model we have, in common with other
authors, presented simple-cells versus complex cells as a simple dichotomy. It is well known in
the complex cell literature that cells in V1 in fact exhibit a wide range of ‘complexity’. Movshon
et al. found that the elongation of receptive fields lay on a continuum[45]. Using spike triggered
covariance, numerous authors have shown that even so called simple-cells have non-linear
receptive fields [33, 55]. Again using STC authors have found that the number of relative
weights of both excitatory and inhibitory sub-units varies considerably in any population of
neurons[33, 55, 66].

Our model fixed the number of sub-units to two. This is a somewhat arbitrary number cho-
sen mainly due to the similarity with the standard energy model. The number of sub-units of
complex cells has been found to be highly variable in both physiological recordings [33, 55]
and in statistical models of natural images [67].

Relationship to Other Models of Physiology
Previous work has applied ICA to natural binocular images [20, 21]. This has resulted in com-
ponents bearing a number of similarities to binocular simple cells in the visual cortex. Binocu-
lar independent components tend to be Gabor-like, with very similar orientation and
frequency tuning for the two eyes, and a range of position and phase disparity tunings. How-
ever, there were also a number of differences. In particular, the distribution of phase-disparity
tunings did not match that found in the visual cortex. While phase disparities are strongly
peaked around zero in cortical cells, independent components also showed a marked peak for
anti-phase components [21]. This distribution was also found with ISA.

ICA is limited to modelling the first-stage of binocular encoding. A consequence of this is
that the responses of the resulting components are dependent on the monocular phases of the
input stimulus. This limitation, as a model of an ideal disparity detector, is shared by other
approaches to understanding binocular encoding, such as Li and Atick’s model of binocular
summation and differencing channels [68]. These models focus on the efficient encoding of
binocular images, rather than on the estimation of disparity.

This limitation is overcome in the binocular energy model by summing the squared
responses of filters with quadrature phase tuning. This specific phase relationship is not neces-
sary to achieve phase invariance, as the summation of responses across a population of filters
with differing phase tuning can be used to produce a phase-invariant response [3]. There is
thus a direct link between the phase-invariance achieved by ISA, and that required for an ideal
disparity detector. Burge et al showed that a model approximating optimal disparity estimation
can be created by summing the responses of linear filters, following static thresholding and
squaring non-linearities[30].

Concluding Remarks
Our work has shown that an ISA model applied to binocular natural images produces complex
cell models, a subset of which fit the criteria of an ideal disparity detector [4]. In particular, a
subset of the models generated by ISA displayed high levels of local position and phase invari-
ance, resulting in a response that was constant for all stimulus positions within the receptive
field. Responses of the model to anti-correlated stimuli are also zero or near to zero in complex
cell models with high DDI, as required by an ideal disparity detector.
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