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Abstract
Generational garbage collectors are among the most popular
garbage collectors used in programming language runtime systems.
Their performance is known to depend heavily on choosing the
appropriate size of the area where new objects are allocated (the
nursery). In imperative languages, it is usual to make the nursery
as large as possible, within the limits imposed by the heap size.
Functional languages, however, have quite different memory be-
haviour. In this paper, we study the effect that the nursery size
has on the performance of lazy functional programs, through the
interplay between cache locality and the frequency of collections.
We demonstrate that, in contrast with imperative programs, having
large nurseries is not always the best solution. Based on these re-
sults, we propose two novel algorithms for dynamic nursery resiz-
ing that aim to achieve a compromise between good cache locality
and the frequency of garbage collections. We present an implemen-
tation of these algorithms in the state-of-the-art GHC compiler for
the functional language Haskell, and evaluate them using an exten-
sive benchmark suite. In the best case, we demonstrate a reduction
in total execution times of up to 88.5%, or an 8.7 overall speedup,
compared to using the production GHC garbage collector. On aver-
age, our technique gives an improvement of 9.3% in overall perfor-
mance across a standard suite of 63 benchmarks for the production
GHC compiler.

Keywords Generational garbage collection, Cache locality, Allo-
cation area, Functional programming

1. Introduction
For languages with automatic memory management, garbage col-
lection (GC) performance is critical for achieving good overall ap-
plication performance. One of the most widely used GC algorithms
is generational garbage collection, in which new objects are ini-
tially allocated in a nursery area, and subsequently promoted to
older generations if they survive sufficiently long. The size of the
nursery is a crucial parameter for obtaining good performance since
this impacts both the frequency of GCs and potentially on the cache
behaviour. For imperative programs, a standard mechanism for re-
ducing GC time is to make the nursery as large as possible. The ra-
tionale is that a larger nursery causes less frequent collections, and
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so increases the chances that more data becomes garbage. Current
trends [2, 6, 14] focus on dynamically changing the nursery size
while the program is running. Decisions are usually made based on
the maximum heap size, as indicated by the user, and on various
statistics about previous GCs in the same program run, such as the
amount of live data.

Lazy functional languages, such as Haskell [8] are becoming
increasingly used. Compared with imperative programming, lazy
functional programming offers many benefits to programmers, such
as a very high level of abstraction, referential transparency, trans-
parent use of infinite data structures and implicit sharing of data.
However, lazy functional programs have quite different memory
behaviour to their imperative counterparts. Due to their reliance on
immutable data, they typically perform many more memory allo-
cations, requiring more frequent garbage collections and resulting
in larger memory footprints. GC can easily become the limiting
factor for achieving good performance. Despite the different al-
location patterns, many runtime systems for functional languages
use algorithms that have been tuned for imperative languages, ig-
noring, for example, the effects that these algorithms have on the
cache behaviour in functional programs. In this paper, we study the
effects that the nursery size has on the performance of functional
programs, focusing on the state-of-the-art GHC compiler and run-
time system for Haskell [8], which uses a generational, copying
GC. The specific research contributions of this paper are:

• we quantify the relation between nursery size and program
performance, expressed in terms of the effect of the nursery
size on the runtime behaviour (percentage of cache misses,
frequency of garbage collection, etc.) (Section 3);

• we propose the TAA+ algorithm, a simple modification to an
existing dynamic nursery resizing algorithm [2] that notably
improves its performance (Section 4);

• we propose SLR, a novel algorithm for dynamic nursery resiz-
ing that predicts changes in the program’s memory behaviour
and adapts to them (Section 4);

• we implement these algorithms in the GHC Haskell compiler;
and

• we evaluate the performance of these approaches on an exten-
sive Haskell benchmark suite, the nofib suite, demonstrating
a performance improvement of up to 50% for some programs
against the production GHC garbage collector, with almost no
programs adversely affected (Section 5).

The key novelty of our approach is that, in addition to garbage col-
lection time, we also take into account the effect of the nursery size
on the mutator time (i.e. the program execution without garbage
collections), since this is directly affected by cache locality.



2. Background
This paper focuses on GHC [12], the most widely used compiler
and runtime system for the purely functional programming lan-
guage Haskell. However, our algorithms are applicable to any sys-
tem that uses generational garbage collection. In this section, we
introduce concepts related to generational garbage collection, and
give a brief description of GHC, paying special attention to its
garbage collector.

2.1 Generational Garbage Collection
Generational garbage collection is based on the assumption that
most objects die young – this is called the generational hypothe-
sis [7]. The program heap is divided into hierarchical regions called
generations that hold objects of different ages. Each generation can
be collected independently, using any suitable algorithm (e.g. mark
and sweep or a copying approach). The most common configura-
tion is to have only two generations: the young generation and the
old generation. The young generation is usually divided into the
nursery (or allocation area) where new objects are allocated, and
the reserved or survivor area. After an object survives a number of
collections, it is promoted to the next generation.

When the nursery becomes full, a minor GC is triggered on the
young generation. Depending on the details of the generational col-
lector, live objects from the nursery are either copied directly into
the next generation, or are copied into the next space in the genera-
tion, in a process called ageing. Ageing is used to prevent the prob-
lem known as premature promotion, where recently allocated ob-
jects are promoted to older generations and become garbage shortly
thereafter. When the occupancy of the old generation surpasses a
given limit, a major GC is triggered, where the whole heap is col-
lected. A generational collector is designed to perform minor col-
lections (collecting the young generation) much more often than
major ones (collecting older generations). Experiments have shown
that the generational hypothesis generally holds for most programs
and, therefore, each minor collection will only have to perform a
small amount of work to collect live objects. By promoting them to
older generations, objects with longer lifetimes are only traversed
when major collections are triggered.

A generational garbage collector generally has better cache
behaviour than a non-generational one, but its performance might
be heavily dependent on the size of the nursery [16, 18]. Nurseries
smaller than the L2 cache favour data locality and reduce the cache
misses that are due to object allocation. However, increasing the
size of the nursery will reduce the number of GCs by increasing
the time spent in the mutator. This will allow more objects to
become dead before the next GC, reducing the overall GC time.
Most generational designs have considered variable-sized nurseries
where, after calculating the space that is needed to perform a
collection and the size of the old generation, the remainder of the
heap space is left to the nursery [3, 6, 14].

Such designs clearly place more importance on GC perfor-
mance than on cache locality. This is appropriate when dealing with
imperative/object-oriented language implementations, such as Java
or C++. There has been significantly less work on tuning nursery
sizes for functional programming languages. In [1], it is claimed
that lazy functional languages are a good match to current cache de-
signs. In [2, 9], it is suggested that small nursery sizes give the best
performance. Neither study provides a detailed analysis of how the
tension between the cache behaviour of the mutator and the overall
GC performance affects the overall performance of the program.

2.2 Garbage Collection in GHC
GHC currently uses a generational, copying, stop-the-world
garbage collector [10]. While there have been attempts to introduce
concurrent and per-core garbage collectors [5, 9], they have been

abandoned due to complexity. The collector used in GHC uses a
block-structured heap so that it does not have to be partitioned into
contiguous spaces. It splits the heap into two generations where
the young generation has a per-thread private nursery and a shared
ageing area, which stages objects prior to their promotion to the
old generation. Many of these features can be influenced by tun-
able runtime parameters. In this paper, we will just focus on the
nursery size, however. By default, the nursery has a fixed size of
500KB, set at the start of the execution. A different fixed value can
be provided for the nursery size, or the runtime system can be in-
structed to dynamically adapt the size to changes in memory usage
using an algorithm that was originally described by Appel [3]. Fol-
lowing each GC, the heap usage of the program is checked, and af-
ter subtracting the space that is needed for the next GC, a fraction
of the remaining heap is assigned to the nursery. To approximate
these values, it is assumed that currently live data will remain live
in the next GC. The new nursery size is calculated according to the
formula:

H −N

1 + p

where N is proportional to the size of the live data1, and p is the
percentage of copied data in the nursery. The value of p allows
the nursery to grow to over half of the calculated free space. For
example, if the live data in the nursery amounts to a third of its size
and we assume that this trend will continue, we would use 75% of
the free space for the nursery.

We have deliberately avoided mentioning the value H until this
point. H is calculated to be twice the amount of the globally live
data. However, this value is only calculated following a major col-
lection – only at this point can the complete memory usage be
accounted for. The reasoning behind this decision is to allow the
program to use the largest possible nursery without increasing its
current memory requirements. Between two major garbage collec-
tions, the amount of live data promoted from the young generation
will cause the value of N to increase while H will remain constant.
As a result, the nursery will decrease its size until the next major
GC. At this point, the new memory requirements of the program
will be calculated again, and the nursery will grow by the amount
of freed memory. Then, the cycle starts again. For programs with
huge memory requirements, this algorithm can take some time to
reach the peak memory usage, so GHC has the option of provid-
ing the initial value of H as a runtime parameter. There is also a
standalone tool, ghc-gc-tune [13] that can automatically profile
a Haskell program to discover the best static value for the nursery
and heap size (−A and −H runtime parameters). This, however,
involves running the program many times with different values for
nursery and heap sizes, which may be infeasible for large programs.
In the next section we explore the performance impact of the nurs-
ery sizing options that are available in GHC and offer some insights
that will be used to derive an improved generational GC algorithm.

3. Impact of Nursery Size on Program Execution
Time

As mentioned above, most nursery resizing policies try to make the
nursery as large as possible, within some given heap limit. This
has proved to be successful for imperative programs [4, 17], de-
spite ignoring some important factors, such as cache locality. The
question is whether this policy also works well for functional pro-
grams, which typically allocate much more data than their impera-
tive equivalents. In this section, we attempt to address this question
by investigating the impact that different nursery sizes have on the
execution time of a functional program.

1 All live data in the generations that are to be collected is counted twice.



Figure 1. Behaviour of the binary-trees benchmark.

3.1 The binary-trees Benchmark
As our test example, we have selected the binary-trees bench-
mark, a “simplistic adaptation of Hans Boehm’s GCBench”2. This
benchmark was designed to test the GC behaviour when allocated
objects have different lifetimes. Its intention is to simulate real pro-
grams with irregular memory behaviour in which some objects are
retained throughout the whole execution of the program, and other
objects (with varying lifetimes) are dynamically allocated and col-
lected. The benchmark creates and traverses a number of balanced
binary trees as shown in Figure 1. It first allocates and traverses an
initial large binary tree, in order to “stretch” the memory. It then
allocates a long-lived binary tree. Subsequently, over a number of
iterations, a sequence of trees are allocated, traversed and freed.
In each iteration, the sizes of the allocated trees are increased, and
their number decreased, so that the number of tree nodes that are
allocated remains constant, but the object lifetimes become increas-
ingly longer. Finally, the long-lived tree is traversed and freed. Full
source code is given in Appendix A.

3.2 Runtime Behaviour of binary-trees
Our measurements of the runtime behaviour of binary-trees
were conducted on a 2.4GHz Intel Core2 quad-core machine, with
separate 32KB, per-core L1 data and instruction caches, and a
shared 4MB L2 cache, using GHC 7.6.3. The total amount of RAM
available was 4GB. Figure 2 shows the amount of live data over
the execution time of the program. This was measured by forcing
the use of a single generation and counting the copied data at each
collection. The effect of allocating the first tree can be observed at
the beginning of the execution: 12MB of memory is allocated for
this data structure, and then immediately freed. In the remainder of
the execution, around 6MB are constantly used by the long-lived
tree. We can observe several spikes on the graph, which correspond
to peaks of memory usage when the lists of trees are allocated. The
spikes progressively increase in size, which indicates that there is
more live data when smaller lists of larger trees are allocated than
with larger lists of smaller trees. This is due to the fact that, in the
latter case, some of the trees are processed and collected before the
whole list is constructed. This gives a smaller memory footprint.

2 Taken from http://benchmarksgame.alioth.debian.org/u64/
performance.php?test=binarytrees.

0 5 10 15 20 25 30

0

5

10

Time (s)

L
iv

e
da

ta
(M

B
)

Figure 2. Memory usage of binary-trees.
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Figure 3. Runtime of binary-trees with different fixed-size
nurseries.

3.3 Nursery Size and Cache Behaviour
Nursery size and Mutator and Garbage Collection time. We first
want to verify whether the usual heuristics for nursery sizing are
equally beneficial for functional programs, and to understand the
effects that nursery size has on execution time. In order to do so,
we ran binary-trees a number of times, with various fixed-size
nurseries. Figure 3 plots the total runtime (on a logarithmic scale)
against the nursery size. The mutator and garbage collection times
are shown, respectively, as green and orange areas. We can observe
that the execution time for binary-trees is highly dependent on
the nursery size. In particular, increasing the nursery size can halve
the execution time. Another interesting point to observe is that,
beyond a specific size (around 128MB), the total execution time
starts to increase. The division of time between the mutator and the
collector gives a simple explanation for this: while increasing the
nursery size has the anticipated result of reducing the time that is
required for garbage collection, it also increases the mutator time.
This is due to a loss of locality, indicating that it is not enough to

http://benchmarksgame.alioth.debian.org/u64/performance.php?test=binarytrees
http://benchmarksgame.alioth.debian.org/u64/performance.php?test=binarytrees
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Figure 4. Relationship between mutator time and cache misses.

simply make the nursery as large as possible (as for an imperative
program) in order to obtain the best execution time.

We conducted the same measurements for the nofib benchmarks
that we will use in Section 5. We observed that the same pattern is
repeated in many of them: while garbage collection time is propor-
tional to the nursery size, as is already known from the literature,
we verified that the mutator time is inversely proportional to the
nursery size. Additionally, for many of these benchmarks, there is
a nursery size threshold that marks the point after which the reduc-
tion in garbage collection time cannot compensate for the increased
mutator time, and the overall execution time is therefore increased.
This behaviour occurs in programs which spend a moderate amount
of time doing GC. Additionally, we also observe that for programs
that spend very little time in garbage collection, it is not possible
to improve execution time by increasing the nursery size; in these
cases, the best time is obtained by using a small nursery. Moreover,
for programs that spend a significant time in garbage collection, but
which also have a large amount of live data, increasing the nursery
size has very little impact on the collection time. In this case, the
only way to improve the execution time is to use the largest possible
nursery size to counter the effect of the size of the live set.

In contrast to the experiences with imperative/object-oriented
languages, the measurements given here collectively indicate that
a larger nursery reduces garbage collection time (as expected), but
also increases mutator time, which is not expected.

Nursery Size and Cache Misses. The explanation for the increase
in mutator time with larger nurseries becomes clearer when we in-
vestigate the GHC garbage collection algorithm. GHC uses a copy-
ing algorithm where, after every collection, the live data is com-
pacted, and is consequently fresh in the cache if the nursery size
is small enough. When the nursery size gets close to or larger than
the cache size, more allocations will trigger cache misses, so mak-
ing the mutator slower. We tested precisely how this size relates
to cache locality by recording the cache misses for each nursery
size configuration. Figure 4 plots the percentage of cache misses
against the nursery size for different executions of binary-trees.
We also show the mutator time. We can conclude that the nurs-
ery size directly affects cache behaviour; the larger the nursery, the
more cache misses are detected. One further observation provides
strong reasons to conclude that cache locality is the main contribu-
tor to mutator performance: the best runtimes are obtained for nurs-
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Figure 5. Copying comparison with different nursery size.

ery sizes which are smaller than the cache size (4MB) and their
value is practically constant. Once the nursery is of a comparable
size to the cache, the mutator time is significantly increased, but it
subsequebtly only changes slightly with a further increases in the
nursery size. In summary, having a nursery size that is small enough
to fit in the cache is crucial for good mutator performance. The
exact size is, however, almost irrelevant. Similar behaviour occurs
if the nursery is too big, where the actual size of the nursery also
does not make a significant difference in the runtime. The collection
time, however, is inversely proportional to the nursery size. This is
intuitively obvious: as the time between successive collections in-
creases, it also becomes more likely that objects are no longer alive
and so less garbage needs to be collected.

3.4 Phase analysis of binary-trees
We next study the effect of various nursery sizes in the dif-
ferent execution phases of a memory-irregular program, such as
binary-trees. We have selected two executions which show rad-
ically different behaviour: one using a 1MB nursery size and an-
other using a 64MB nursery. As shown in Figure 3, for a 1MB nurs-
ery, the mutator time dominates the execution time, whereas with a
64MB nursery, the garbage collection time dominates. In order to
make it possible to compare two different executions with different
elapsed times, we used the amount of allocation as a measure of
execution progress, so that the same program state is maintained
between different executions at the same allocation value, regard-
less of the collector algorithm or the specific performance obtained.
We split the execution in the smallest common chunk (64MB) and
calculated the accumulated runtime for each chunk. For a nursery
size of 64MB, this runtime corresponds to the time between two
successive garbage collections. For the 1MB nursery, the runtime
value corresponds to the accumulated time the program expended
in 64 periods of mutator and GC execution.

We provide two figures to show the relationship between nurs-
ery size and total execution time. Figure 5 shows the amount of
copying against allocation for both nursery sizes in two overlapped
plots. To explain this figure, we need to recall how our example
binary-trees benchmark works. In the first part of the program,
a large number of small trees are allocated. Because of the size
of the individual trees, each tree quickly becomes garbage, and
each GC involves copying a small amount of data in both cases.
In the later phase of the execution, a smaller number of larger trees
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Figure 6. Runtime comparison of executions with different nurs-
ery size.

is allocated. The size of these trees is many times greater than a
nursery of 1MB, forcing the garbage collector to copy the same
objects multiple times. This is reflected on an increasing amount
of copying in the graph. When using a nursery size of 64MB, the
amount of copying is only slightly increased because no more than
one tree is copied at each GC. We can therefore observe that, for
binary-trees, there exist phases where it is beneficial to keep
the nursery small, but there also exist phases where the nursery size
should be larger in order to reduce the amount of data copying. This
reveals the need for different nursery sizes in different phases of
programs with irregular memory behaviour. Figure 6 shows the ex-
ecution time that corresponds to each allocation point. We can ob-
serve how the amount of copying affects the execution time of the
program. The graph has a very similar shape as the previous one,
suggesting that the execution time is proportional to the amount
of data that was copied in each GC. However, there is one further
thing to note: during the phase in which there is very little copying,
the execution time with a small nursery (1MB) is better than that
with a large nursery (64MB), while the reverse happens when the
amount of copying increases.

3.5 Preliminary Conclusions
To summarise, this section has shown several interesting points:

• the “proven” heuristic of increasing the nursery size to improve
performance only works for situations where the cache does not
have a major impact on the mutator time (Figure 3);

• furthermore, in programs with irregular memory behaviour
(Figure 2), the nursery size plays a crucial role in the overall
performance and the wrong choice of nursery size can signifi-
cantly increase execution time (Figure 3);

• having the same static nursery size for the whole duration of the
program may be suboptimal, as the program may have phases
where different nursery sizes may be beneficial (Figure 6);

• in phases where little data is copied, using a small nursery
size will be more efficient; this is because a small nursery size
yields better cache behaviour, which is especially important for
program phases where the mutator time dominates (Figure 5);

• in phases where a large amount of data needs to be copied, there
is no point in trying to optimise the cache behaviour to improve
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Figure 7. Nursery size with GHC’s -H setting.

the mutator time, because this will only have a minor impact on
the total execution time, and a larger nursery size can effectively
reduce GC time (Figures 5 and 6).

We will use these insights in the next section to develop better
algorithms for dynamically changing the nursery size.

4. Algorithms for Fine-tuning the Nursery Size
In this section, we first analyse the behaviour of the existing GHC
nursery resizing algorithm, and then propose two new algorithms
for nursery resizing: TAA+, a modest extension of the existing
algorithm proposed by Anderson [2]; and SLR, a novel algorithm
for dynamic nursery resizing. Finally, we compare the effects of
these algorithms on the binary-trees benchmark.

4.1 Nursery Resizing in GHC
As described in Section 2.2, GHC uses an implementation of Ap-
pel’s [3] algorithm for dynamic nursery resizing. The user can man-
ually provide hints about the total heap size, or it can be dynami-
cally adjusted by the runtime system at each major garbage collec-
tion. In the remainder of the paper, we will assume that the heap
size is dynamically adjusted. Figure 7 illustrates the use of this al-
gorithm for the binary-trees benchmark. It shows the nursery
sizes, as chosen at each garbage collection. We can observe that the
heap size is increased several times: once at the beginning of the
execution, when the first tree is allocated, and then several times
towards the end, once the sizes of the trees increase considerably.
We can also observe that the nursery size is increased each time
the heap size is recalculated, but that then it is reduced over time
if more objects are kept alive. The idea behind this is to give as
much memory as possible to the nursery, with the constraint that it
should not use more memory than is currently in use by live objects.
The drawback of this approach lies in using all the available space,
even if this results in a loss in performance, due to bad cache be-
haviour. On the other hand, the size of the nursery is limited by the
amount of live data, whereas in some cases increasing the nursery
size beyond this limit would give better results. In the case of the
binary-trees benchmark, we can observe the harmful effects of
this policy towards the end of the execution, where the nursery size
alternatively jumps from moderately large values to smaller ones
due to the increased amount of live data.



4.2 Time-based Algorithms (TAA and TAA+)
TAA. Dynamic nursery resizing for functional programs has pre-
viously been studied by T. A. Anderson et al. [2], who try to opti-
mise the execution of a program by selecting the nursery size that
results in the best performing mix of PN (private nursery) and non-
PN data in cache. They use the nursery garbage collection time
as a measure of the cache performance. To compare the GC per-
formance for different nursery sizes, they define a time-per-byte
metric (TPBMn). This metric measures the time taken by the nth

garbage collection divided by the size of the nursery for that col-
lection (Sn)3. This metric, therefore, accounts both for time it takes
to do garbage collection and for frequency of collections. For ex-
ample, if for two nursery sizes it takes the same amount of time
to do garbage collection, TPBM will be smaller for larger nurs-
ery size, accounting for the fact that garbage collections with it are
less frequent. The target of the algorithm is to reduce the TPBM
as much as possible by either increasing or decreasing the nurs-
ery size. The algorithm works like a local search. It has two steps:
first, it tries to adjust the nursery size quickly by either halving
or doubling its value following each garbage collection. Next, a
binary-search-like fine-grained adjustment between the last choices
of nursery size is used to find its optimal value. The pseudocode of
these two functions is shown in Figure 8. The first mode, outlined
in fast update(), starts with an initial nursery size S1 already
set. Then, following a number of garbage collections, TPBM1 is
calculated and a new nursery size S2 is chosen by halving S1. Af-
ter the same number of GCs, TPBM2 is calculated and compared
to TPBM1. If TPBM2 is less than TPBM1, the nursery size is
halved again. This process is repeated until a nursery size Sn with
a worse TPBMn than Sn−1 is found. At that point, the optimum
nursery size must be between Sn−2 and Sn−1 or between Sn−1

and Sn. To calculate the optimum value, slow update() is called
using the last three nursery sizes. This function calculates two new
nursery sizes: Sx between the first two values and Sy between the
last two. If TPBMx < TPBMn−1 then the search continues re-
cursively with the values Sn−2, Sx and Sn−1 as if they were the
last three sizes. Alternatively, if Sy improves the results of Sn−1,
the search continues recursively with the values Sn−1, Sy and Sn. If
both values give worse results than Sn−1, then the search continues
recursively with Sx, Sn−1 and Sy . The algorithm terminates when
Sn−2 and Sn are too close to give substantially different results,
and Sn−1 is then selected as the optimal nursery size. Additionally,
new TPBMs are collected as the program runs so that a change in
performance initiates the algorithm again. In the remainder of the
paper, we will denote this algorithm by TAA.

TAA+. A key assumption for the TAA algorithm is that the collec-
tion time is a good measure of cache locality. We propose a simple
modification to this algorithm, based on the conclusions of Sec-
tion 3: instead of taking just the garbage collection time, we also
add the mutator execution time immediately preceding that GC.
We will denote this modified version as TAA+. We evaluate both
TAA and TAA+ in Section 5.

4.3 Copying-based Algorithm (SLR)
One disadvantage of TAA/TAA+ is that it reacts to changes in the
program behaviour by guessing whether to increase or decrease the
nursery, and then correcting the adjustment if the guess failed, or
else continuing with it if it was right. This heuristic could work
well for simple programs with regular memory behaviour. Our
evaluation of the algorithm on several benchmarks reveals that this
is not usually the case, however, and it needs to recalculate the

3 In fact, the metric is measured over a number of collections. We will retain
the notation to ease the presentation of the algorithm.

fun fast update()
Sn−2 = Sn−1

Sn−1 = Sn

TPBMn = GCTimen/Sn

if TPBMn < TPBMn−1 then
Sn = Sn/2

else
Sn = slow update(Sn−2, Sn−1, Sn)

end
return Sn

end

fun slow update(Sn−2, Sn−1, Sn)
if abs(Sn- Sn−2) < threshold then

return Sn−1

end
Sx = (Sn−1 + Sn−2)/2
[. . . execution with nursery size Sx . . . ]
TPBMx = GCTimex/Sx

if TPBMx < TPBMn−1 then
return slow update(Sn−2, Sx, Sn−1)

else
Sy = (Sn + Sn−1)/2
[. . . execution with nursery size Sy . . . ]
TPBMy = GCTimey/Sy

if TPBMy < TPBMn−1 then
return slow update(Sn−1, Sy , Sn)

else
return slow update(Sx, Sn−1, Sy)

end
end

end

Figure 8. Pseudocode for T. A. Anderson’s dynamic nursery
resizing algorithm.

nursery size many times during the execution. In fact, we had to
modify slow update() to be able to abort its operation if a phase
change was detected. This problem can be reduced to the fact that
TAA/TAA+ reacts to phase changes in the program by measuring
TPBM only after the program behaviour has changed.

As shown earlier, we know that ratio of copying to nursery
size can serve as an estimator to the execution performance of the
program, because of the impact on cache locality of object liveness.
Using this information, it follows that the best way to optimise the
nursery size is not to find its “optimum” value, which changes very
often, but to find the optimum value of the nursery size/live set ratio
(SLR) and then to use this to calculate the nursery size. Given this
target, we can use the same metric, TPBM, as a measure of the
performance of a given SLR. We have, however, decided not to use
the same search procedure because of the need for multiple special
cases to handle phase changes and to restart its execution. Instead,
we use a single step search that proceeds with increasingly smaller
updates to the SLR until the delta change is below some threshold.
The pseudocode for this new algorithm, SLR, is shown in Figure 9.
The algorithm is seeded with an initial SLR1 and update factor0,
the value used to update the SLR. The update direction is calculated
in the first two iterations as previously described for TAA/TAA+.

Compared to TAA/TAA+, the SLR algorithm shares some of the
same problems: the SLR has to be either increased or decreased
and there can be an initial slowdown if the direction is wrong. Ad-
ditionally, the amount of copying is measured after each garbage
collection and cannot be obtained beforehand. However, this algo-



fun resize()
TPBMn−1 = TPBMn

TPBMn = (MUTTimen + GCTimen)/Sn

if abs(TPBMn- TPBMn−1) < threshold then
update factor = update factor0 // reset value

SLRn = SLRn−1

else
// if performance is worse, reverse

update direction

if TPBMn−1 > TPBMn then
update factor = −0.9× update factor

end
SLRn = SLRn−1 × (1 + update factor)

end
return SLRn × copiedn

end

Figure 9. Pseudocode for the new copying-based dynamic
nursery resizing algorithm.

GC configuration Speedup Execution Time

default 1.00 7.70s
-A2m 1.44 5.34s
-A8m 1.69 4.55s
-A64m 1.78 4.32s
-H 1.38 5.78s
TAA 1.72 4.47s
TAA+ 1.79 4.30s
SLR 1.96 3.92s

Table 1. Speedups of different nursery size settings/algorithms
against the default fixed size of 500KB.

rithm should adapt better to changes in memory usage because,
between each period in which a new TPBM is calculated, the
nursery size is updated to maintain its relation to the amount of
copying constant, rather than keeping a fixed value. Table 1 sum-
marises the speedups that we obtain for binary-trees, using the
default setting of 500KB nursery size as a baseline. We compare
the original TAA algorithm, our modified TAA+ algorithm, and the
new copying-based SLR algorithm against three static configura-
tions with differing constant nursery sizes (-A2m, -A8m, -A64m)
and one builtin dynamic sizing algorithm (-H), where the garbage
collector takes the size of the heap at the previous GC to be the
new nursery size. It is clear that all three new dynamic algorithms
give significant performance benefits over the default configura-
tion or the builtin dynamic algorithm (-H). Similar performance to
TAA/TAA+ can only be achieved using large static nursery sizes (-
A8m, -A64M). Even then, SLR gives the best overall performance,
reducing the total execution time by almost half its original value.

5. Evaluation
We have implemented TAA, TAA+ and SLR dynamic nursery re-
sizing algorithms in the GHC compiler, and evaluated them against
the default GHC garbage collection mechanism (described in Sec-
tion 2.2) on the nofib benchmark suite [11]. nofib is the stan-
dard Haskell benchmark suite and is included in the GHC repos-
itory. It comprises over 60 benchmarks, ranging from synthetic
microbenchmarks to real programs. We have modified the con-
figuration of most benchmarks in order to increase their execu-

Performance TAA TAA+ SLR

unaffected 36 (58.0%) 32 (51.6%) 38 (61.3%)
positive 12 (19.4%) 19 (30.6%) 21 (33.9%)
negative 14 (22.6%) 11 (17.7%) 3 (4.8%)
mean diff -2.04% -6.08% -9.30%

Table 2. Proportion of affected benchmarks and mean difference
in execution time over all benchmarks compared with the default
GHC mechanism for each nursery resizing algorithm. “Positive”
(“negative”) denotes the number and percentage of benchmarks
whose total execution time is reduced (increased) by more than 5%
when using the specified algorithm.

Benchmark Time (s) TAA TAA+ SLR
gcd 7.6 -0.5% +0.2% +0.3%
hpg 7.0 -0.3% +0.6% +1.3%
k-nucleotide 7.7 -0.8% -0.6% -0.2%
linear 7.1 -0.1% +2.2% +1.9%
multiplier 6.7 -53.7% -40.6% -51.2%
queens 18.6 -0.1% +0.0% +0.0%
solid 9.5 -12.5% -11.9% -0.2%
wang 7.5 -32.5% -16.9% -7.3%

Table 3. Benchmarks for which the TAA algorithm gives the best
execution time. The TAA, TAA+ and SLR columns record the
percentage change in execution time for each of the algorithms
compared to the GHC default (column 2).

tion time, so that more substantial measurements could be ob-
tained. Our modified version of the benchmark suite can be found at
http://github.com/hferreiro/nofib. For each benchmark,
we compiled the code using -O2, ran each nursery-resizing algo-
rithm five times, and recorded the mean total execution times (i.e.
including the costs of both GC and mutation). This avoids biasing
our results towards algorithms that improve GC time at the expense
of normal execution time, or vice-versa. Table 2 summarises our
results, classifying them, for each algorithm, into positive (where
the mean execution time is better with a given algorithm than with
the default GHC mechanism), negative (where the mean execution
time is worse than with the default GHC mechanism) and unaf-
fected benchmarks (where the mean execution time under a given
algorithm is within 5% of the default GHC mechanism). In the ma-
jority of cases (> 50%), all the resizing algorithms give similar
results to the default algorithm. We can clearly see, however, that
TAA+ and SLR have a positive impact in many more cases than
TAA (30.6% and 33.9%, respectively versus 19.4%), and that SLR
is as good as or better than the default GHC mechanism in 95.2%
cases. On balance, we can conclude that SLR is a better default
than the current standard GHC mechanism. It is clear that the un-
modified TAA should be used with caution, however: it has a neg-
ative impact on more cases than those for which it gives a positive
impact. Figure 10 tabulates the results with the greatest deviations
from the default scheme. We now analyse the performance of the
individual algorithms.

5.1 Performance of TAA
Table 3 shows the benchmarks for which the TAA algorithm gives
the best total execution time. For most of these benchmarks, all
four algorithms have similar performance. This is because only
a small amount of data is copied during the garbage collection,
which means that improving the garbage collection time does not

http://github.com/hferreiro/nofib
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Figure 10. Results from nofib showing greatest deviations.

Benchmark Time (s) TAA TAA+ SLR
atom 7.6 -54.1% -56.7% -52.1%
boyer 6.9 -21.7% -31.5% +0.2%
calendar 6.9 +28.4% -3.1% +0.4%
circsim 6.3 -23.7% -35.6% -11.5%
clausify 6.7 -26.3% -30.9% -1.0%
cryptarithm2 9.4 +25.4% -13.8% +0.2%
fft2 7.2 -12.7% -18.5% -12.8%
gamteb 7.0 -0.2% -2.9% -2.0%
gc bench 6.9 -30.2% -35.5% -22.7%
mandel2 6.4 -0.2% -0.3% +0.8%
parstof 7.7 +0.7% -0.7% +0.1%
primes 7.1 -22.4% -28.2% -25.3%
sorting 7.4 -3.4% -5.3% -3.8%
transform 7.4 +1.9% -25.2% -6.0%

Table 4. Benchmarks for which the TAA+ algorithm gives the
best execution time. The TAA, TAA+ and SLR columns record
the percentage change in execution time for each of the algorithms
compared to the GHC default (column 2).

have a significant impact on the total execution time. In such cases,
it makes sense to keep the nursery small (which is also what
ghc-gc-tune suggests), since increasing the nursery size will have
a negative effect on the mutator time. Fortunately, all of the dy-
namic nursery-resizing algorithms that we consider are able to de-
tect this situation and maintain small nursery sizes. For the solid
benchmark, TAA and TAA+ show almost identical performance.
Similarly, for the multiplier benchmark, the overall performance
is almost the same for TAA and SLR. There is only one benchmark,
wang, for which the TAA algorithm performs significantly better.
This indicates that TAA is probably not worth using as a default
mechanism.

5.2 Performance of TAA+

Table 4 shows the benchmarks for which the TAA+ algorithm gives
the best execution time. Disregarding those cases where the total
execution times are similar for all the algorithms, the reason why
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Figure 11. SLR behaviour for clausify.

TAA+ outperforms the SLR algorithm involves the effect of an ex-
tremely small live set and its interplay with generational garbage
collection. We will focus on the clausify benchmark, which has
a very specific behaviour. For this benchmark, the live set ranges
from 30KB to 100KB. In a generational collector, minor collec-
tions will copy an increasing amount of data, and major collections
will reset the copied data to the live set every few collections. Be-
cause of its small size and the fact that it remains stable, if we man-
ually select a nursery value that is 2MB or greater, we reduce the
amount of copied data considerably and thus obtain a 30% reduc-
tion in the execution time. This behaviour is easily discovered by
TAA+ because it optimizes the nursery size directly. With SLR, the
algorithm starts increasing the nursery size through the size/copied
data ratio, but following every few minor collections, either a ma-
jor collection is triggered or we enter a phase with an especially
small amount of copying. Even if the difference in copied memory
is small, since clausify has a very small live set, the reduction can
be an order of magnitude in scale. At this point, SLR will select a
very small nursery size, so obtaining worse results and forcing the
algorithm to reverse its direction. A new cycle then commences
where these events are repeated. After less than a third of the ex-
ecution, the nursery size will constantly be kept at the minimum
value of 500KB. Figure 11 shows the selected nursery size and the
amount of copying that leads to that choice at the very beginning
of the execution.

5.3 Performance of SLR
Figure 5 shows the benchmarks for which the SLR algorithm gives
the best execution time. As before, most of these benchmarks share
some characteristics. In particular, the only option to obtain similar
results to SLR when using a fixed-size nursery is to use very large
initial nursery sizes. Two of these programs, hash and mutstore1
appear to be affected by the time at which GC occurs, since their
memory usage varies upwards and downwards as we increase the
nursery size. In this case, it would be very difficult for TAA/TAA+

to be able to escape a local maximum in nursery size. We also note
that some of the best improvements in execution time compared to
the default GHC mechanism are obtained when using SLR (88.5%
for mutstore2 and 50.5% for binary trees).



Benchmark Time (s) TAA TAA+ SLR
anna 7.9 +4.0% +1.2% -0.2%
binary-trees 7.7 -47.0% -45.6% -50.5%
comp lab zift 7.7 -1.1% +1.0% -2.8%
constraints 18.3 +0.7% -0.2% -0.9%
event 7.0 +1.3% +1.0% -0.9%
fibheaps 7.0 +13.2% +15.6 -5.4%
fulsom 6.1 -0.6% -5.3% -7.0%
gen regexps 7.1 +10.8% +8.4% -17.6%
genfft 6.4 +37.6% +5.3% -0.1%
hash 10.2 +1.6% -10.7% -49.1%
lcss 7.3 -0.3% -0.3% -14.8%
mutstore1 6.4 +12.6% +4.3% -20.3%
mutstore2 7.6 -64.9% -63.5% -88.5%
paraffins 8.1 +8.8% -9.1% -25.1%
pic 7.3 +1.6% -1.5% -9.1%
power 7.4 -7.9% -13.0% -25.5%
reverse-complement 8.7 +10.0% +6.4% -3.8%
rewrite 7.3 +0.1% +0.1% -2.4%
scs 7.0 +8.2% +5.3% -3.9%
simple 7.4 +4.7% +5.9% -5.6%
wave4main 7.0 +0.4% -0.1% -5.8%
wheel-sieve1 7.9 -1.3% +0.5% -3.0%
x2n1 7.3 +4.6% +0.2% -14.9%

Table 5. Benchmarks for which the SLR algorithm gives the best
execution time. The TAA, TAA+ and SLR columns record the
percentage change in execution time for each of the algorithms
compared to the GHC default (column 2).

Benchmark Time (s) TAA TAA+ SLR
bernouilli 6.0 +1.7% +2.0% +1.5%
fasta (check r4) 8.7 +4.1% +2.3% +3.7%
fft 12.2 +17.5% +18.6% +4.2%
ida 7.3 +1.4% +1.4% +3.0%
integer 7.0 +12.8% +0.1% +3.4%
integrate 8.0 +5.0% +7.5% +12.7%
kahan 7.6 +2.6% +0.1% +1.4%
knights 7.5 +1.8% +0.3% +2.3%
mandel 8.4 +7.4% +1.5% +0.3%
n-body 7.3 +0.0% +1.1% +1.2%
pidigits 6.9 +12.4% +28.2% +0.8%
sphere 7.5 +2.3% +13.3% +19.5%
tak 7.7 +0.0% +0.0% +0.0%
wheel-sieve2 5.6 +52.0% +13.9% +44.5%

Table 6. Benchmarks for which all the nursery-resizing algorithms
are worse than the default GHC mechanism. The TAA, TAA+ and
SLR columns record the percentage change in execution time for
each of the algorithms compared to the GHC default (column 2).

5.4 Benchmarks with worse performance with TAA, TAA+

and SLR
Finally, Table 6 shows the benchmarks for which all three advanced
nursery-resizing algorithms yield worse total execution times than
the default GHC mechanism. In most cases (29 out of 42, or 69%),
the difference in execution times is within 5% of the execution
time with the default GHC mechanism. However, there are five
benchmarks where at least one of the algorithms is at least 10%
worse than the default (fft, integer, integrate, pidigits, and
sphere) , and one (wheel-sieve2) for which all three algorithms
perform quite badly (between 13.9% and 52% worse than the
default). These benchmarks can be classified into two sets: those
for which GC involves a lot of copying and those with very little
live data. While there no possibility of any improvement for the
second set, the problem with the first set is that the live set is very
large, so that increasing the nursery size has very little effect on
the collection time. However, increasing the nursery size causes a
significant increase in mutator time. This also means that manually
setting the nursery size will incur similar penalties to the automatic
sizing algorithms.

5.5 Summary of the Experiments
Although there are cases where the dynamic sizing algorithms do
not give any improvement in execution time, our evaluation has
shown that there are many examples where they significantly re-
duce the execution time. The SLR algorithm seems to be the best
default option for GHC: 60 out of 63 benchmarks in the nofib suite
have performance that is similar to or better than the default GHC
algorithm, and only 3 have notably worse execution times (> 5%).
Some results were significantly better, yielding performance im-
provements of up to 88.5% or up to 8.7× faster than the original
program. Significantly, these are improvements to the total execu-
tion time, including the mutator time, and not merely improvements
in the GC time. Furthermore, SLR generally gives better execution
time than TAA+, except in a few cases that eaily can be charac-
terised by common behaviour, and that can therefore be recognised
by a slight modification of the SLR algorithm. This agrees with our
predictions from the analysis in Section 4.3. As shown in Table 2,
the mean improvement in execution time for all our benchmarks
is higher with SLR (9.30%) than with TAA (2.04%) and TAA+

(6.08%). Also, while there are cases where automatically discvo-
erd optimal static nusery size (using the ghc-gc-tune tool) gives
better execution times than any of the algorithms we have consid-
ered, this is not generally a practical option. As described above,
deriving the best nursery size can be very time consuming (espe-
cially for large programs), since it involves running the program
many times with different parameters. In contrast, SLR is a fully
automatic algorithm, that does not rely on any profiling. Finally,
the SLR algorithm is relatively simple and easy to implement as
part of a runtime system. For these reasons, we consider SLR to
be a good conservative improvement over the current default set-
ting for GHC, and also to be a good algorithm for nursery-resizing
in runtime systems for functional languages that undertake a large
number of memory allocations.

6. Related Work
Most generational garbage collectors use two generations: a nurs-
ery space and a mature space. Appel’s garbage collector [3] dy-
namically tunes the size of the nursery space to be the size of the
free space in the heap. It divides the nursery space into an alloca-
tion area and a reserved area. Until the nursery becomes larger than
some predetermined value, only nursery GCs are performed. At this
point, a GC is performed on the whole heap. Velasco et al. [14] aim
to improve this strategy by allocating more of the nursery space



to the allocation area than to the reserved area. After each collec-
tion, they use one of their two strategies to decide on the proportion
of nursery space to give to the allocation area: average, where the
average ratio between the data copied and the allocation area size
over the last few collections is given to the allocation area; and
worst, where the worst ratio is given to the allocation area. This
technique may seem similar to ours. However, because they work
with fixed-size generations, the proportions are only used to make
it possible to assign more than half of the nursery to the allocation
area, without running out of memory when copying live data to the
remaining mature space.

The most closely related approach to our TAA+ and SLR algo-
rithm is, of course, Anderson et al.’s TAA algorithm [2]. We have
shown that our new algorithms consistently outperform TAA, and
also that they benefit more cases than TAA. In the best cases, we
obtain significant performance improvements (> 50%). Guan et
al. [6] consider three different policies for dynamic nursery resiz-
ing in a HotSpot generational garbage collector: a GC Ergonomic
Policy (measuring the GC pause time and throughput in each col-
lection and adjusting the nursery size accordingly), a Fixed Ratio
Policy (maintaining the same ratio between the nursery and the ma-
ture space) and a Heap Availability Policy (similar to Velasco’s ap-
proach). They conclude that in most of the cases, the Heap Avail-
ability Policy yields the best results. Finally, White et al. [15] pro-
pose a strategy for adaptive resizing of the whole heap based on
control theory. They show that heap sizing can be formulated as
a control problem and that a standard controller program can be
applied, yielding good improvements for some benchmarks.

7. Conclusions and Future Work
In this paper, we have shown that the performance of the garbage
collector, and in particular the way in which the size of the nursery
area where new objects are allocated is chosen, can have a signif-
icant impact on the performance of functional programs. We have
studied the problem of choosing the appropriate nursery size dur-
ing the execution of such programs, focusing on the GHC compiler
for the purely functional language Haskell, and on programs with
irregular memory behaviour (i.e. where there is a high variation in
the amount of live data during the program’s lifetime). We have es-
tablished a relation between the nursery size and the execution time
of the program as the interplay of cache locality and the amount of
data copied during garbage collection. Subsequently, we have pre-
sented two novel algorithms for dynamic nursery resizing which
try to achieve a balance between cache locality on one hand and
the frequency and time costs of garbage collections on the other
hand. We have evaluated the proposed algorithms on an extensive
test suite and provided details about their performance in relation
to their runtime behaviour. We have demonstrated that, with our al-
gorithms, we can achieve up to 88.5% performance improvement
or up to 8.7× speedup for some benchmarks than by using GHC’s
default settings or its own nursery resizing algorithm, and that in
all but a few cases, our algorithm is at least as good as, or bet-
ter than, the current default settings. We were also able to identify
what characteristics of a program make it unsuitable for our dy-
namic resizing algorithms. On average, we were able to achieve
a speedup of 9.3% in total performance over a suite of over 60
benchmarks compared with the highly-optimising production GHC
Haskell compiler. Given the relative simplicity of our technique,
and the fact that GHC is already highly tuned, this is a remarkably
good result.

As future work, we aim to quantify the memory irregularity
of programs, by defining a metric that describes precisely how
irregular the memory behaviour is, and then to relate that to the
improvements that we obtain with our algorithms. We also aim
to study additional factors that can influence the nursery size and

garbage collection, such as the amount of data that is actually
accessed (rather than just alive) at different points in the program
execution. In the longer term, we aim to study garbage collection
for parallel programs, since the performance of these programs is
very often limited solely by the performance of garbage collection.
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A. Binary Trees source code
import System.Environment
import Data.Bits
import Text.Printf

--
-- an artificially strict tree.
--
-- normally you would ensure the branches are lazy,
-- but this benchmark requires strict allocation.
--
data Tree = Nil | Node !Int !Tree !Tree

minN = 4

io s n t = printf "%s of depth %d\t check: %d\n" s n t

main = do
n <- getArgs >>= readIO . head
let maxN = max (minN + 2) n

stretchN = maxN + 1

-- stretch memory tree
let c = check (make 0 stretchN)
io "stretch tree" stretchN c

-- allocate a long lived tree
let !long = make 0 maxN

-- allocate, walk, and deallocate many binary trees
let vs = depth minN maxN
mapM_ (\((m,d,i)) -> io (show m ++ "\t trees") d i) vs

-- confirm the the long-lived binary tree still exists
io "long lived tree" maxN (check long)

-- generate many trees
depth :: Int -> Int -> [(Int,Int,Int)]
depth d m

| d <= m = (2*n,d,sumT d n 0) : depth (d+2) m
| otherwise = []

where n = 1 ‘shiftL‘ (m - d + minN)

-- allocate and check lots of trees
sumT :: Int -> Int -> Int -> Int
sumT d 0 t = t
sumT d i t = sumT d (i-1) (t + a + b)
where a = check (make i d)

b = check (make (-i) d)

-- traverse the tree, counting up the nodes
check :: Tree -> Int
check Nil = 0
check (Node i l r) = i + check l - check r

-- build a tree
make :: Int -> Int -> Tree
make i 0 = Node i Nil Nil
make i d = Node i (make (i2-1) d2) (make i2 d2)
where i2 = 2*i; d2 = d-1

http://doi.acm.org/10.1145/2464157.2466481
http://doi.acm.org/10.1145/141471.141500
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