WILD ATTRACTORS AND THERMODYNAMIC FORMALISM.

HENK BRUIN AND MIKE TODD

ABSTRACT. Fibonacci unimodal maps can have a wild Cantor attractor, and hence
be Lebesgue dissipative, depending on the order of the critical point. We present
a one-parameter family f) of countably piecewise linear unimodal Fibonacci maps
in order to study the thermodynamic formalism of dynamics where dissipativity of
Lebesgue (and conformal) measure is responsible for phase transitions. We show that
for the potential ¢, = —tlog|fs|, there is a unique phase transition at some t; < 1,
and the pressure P(¢:) is analytic (with unique equilibrium state) elsewhere. The
pressure is majorised by a non-analytic C*° curve (with all derivatives equal to 0 at
t1 < 1) at the emergence of a wild attractor, whereas the phase transition at t; = 1
can be of any finite order for those A for which fy is Lebesgue conservative. We also
obtain results on the existence of conformal measures and equilibrium states, as well
as the hyperbolic dimension and the dimension of the basin of w(c).

1. INTRODUCTION

The aim of this paper is to understand thermodynamic formalism of unimodal interval
maps f : I — I on the boundary between conservative and dissipative behaviour. For
a ‘geometric’ potential ¢ = —tlog |f’|, the pressure function is defined by

P((ﬁt):sup{h#—i-/(bt d,u,:,ue./\/l,/ét du>—oo}, (1)

where the supremum is taken over the set M of f-invariant probability measures i, and
h,, denotes the entropy of the measure. A measure j; € M that assumes this supremum
is called an equilibrium state. Pressure is a convex and non-increasing function in ¢ and
P(¢o) = hiop(f) is the topological entropy of f. At most parameters ¢, the pressure
function t — P(¢;) is analytic, and there is a unique equilibrium state which depends
continuously on t. If the pressure function fails to be analytic at some ¢, then we speak
of a phase transition at t, which hints at a qualitative (and discontinuous), rather than
quantitative, change in equilibrium states. Refining this further, if the pressure function
is C"~1 at t, but not C", we say that there is an n-th order phase transition at t.
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Given a unimodal map f with critical point ¢, we say that the critical point is non-flat
if there exists a diffeomorphism ¢ : R — R with ¢(0) = 0 and 1 < ¢ < oo such that
for z close to ¢, f(z) = f(c) % |¢(x — c)|*. The value of £ = £, is known as the critical
order of c. The metric behaviour of a unimodal map is essentially determined by its
topological /combinatorial properties plus its critical order. We give a brief summary
of what is known for C? unimodal maps with non-flat critical point. A first result is
due to Ledrappier [29] who proved that a measure p € M of positive entropy is an
equilibrium state for ¢ = 1 if and only if u is absolutely continuous w.r.t. Lebesgue
(abbreviate acip). This also shows that ¢ = 1 is the expected first zero of the pressure
function. For simplicity, we assume in the classification below that f is topologically
transitive on its dynamical core [f?(c), f(c)], i.e., there exists a point xg such that

Uns0f™(w0) = [f%(c), f(c)]), except in cases (1) and (5).

(1) If the critical point ¢ of f is attracted to an attracting periodic orbit, then
the non-wandering set is hyperbolic on which Bowen’s theory [7] applies in its
entirety. In particular, no phase transitions occur.

(2) If f satisfies the Collet-Eckmann condition, i.e., derivatives along the critical
orbit grow exponentially fast, then the pressure is analytic in a neighbourhood of
t =1, [11]; and C* for all t < 1 except when the critical point is preperiodic, [27].
An example of the preperiodic critical point case is the Chebyshev polynomial
x + 4z(1 — x) which, as in the much more general work of Makarov & Smirnov
[35], has a phase transition at ¢ = —1. The pressure function is affine for ¢t # —1
in this case.

(3) If f is non-Collet-Eckmann but possesses an acip fiq¢, then there is a first order
phase transition at t = 1 (i.e., t +— P(¢) is continuous but not C'). More
precisely, P(¢¢) = 0 if and only if ¢ > 1 and the left derivative limgy; %P(gbs) =
—A(ftac) < 0, where A(pqe) = [log|f’| dpac denotes the Lyapunov ezponent of
Hac, see [27), Proposition 1.2].

(4) If f is non-Collet-Eckmann but has an absolutely continuous conservative in-
finite o-finite measure, then there is still a phase transition at ¢ = 1, but
P(¢¢) is C1. In fact, P(¢;) = 0 if and only if ¢ > 1 and the left derivative
lim g %P(gbs) = 0. This follows from the proof of [27, Lemma 9.2].

(5) If f is infinitely renormalisable, then the critical omega-limit set w(c) is a
Lyapunov stable attractor, and its basin Bas = {z : w(z) C w(c)} is a sec-
ond Baire category set of full Lebesgue measure. The best known example
is the Feigenbaum-Coullet-Tresser map friy, for which the topological entropy
hiop( freig) = 0, and so P(¢¢) = 0 for all t > 0. More complicated renormalisation
patterns can lead to a more interesting thermodynamic behaviour, see Avila &
Lyubich [I], Moreira & Smania [36] and Dobbs [19]. However, this thermody-
namic behaviour is primarily a topological, rather than a metric, phenomenon,
so should be seen as complementary to the results given in this paper.

(6) If f has a wild attractor, then w(c) is not Lyapunov stable and attracts a set
of full Lebesgue measure, whereas a second Baire category set of points has a
dense orbit in [f2(c), f(c)]. In [I, Theorem 10.5] it is asserted that there exists

LCollet-Eckmann maps with “low-temperature phase transitions” were found in [I7], after our paper
was first submitted, but which we can include in this revision.
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some t1 < 1 such that P(¢;) =0 for ¢t > t;. In this paper we study this fact, as
well as further thermodynamic properties of wild attractors, in detail.

A wild attractor occurs for a unimodal map f if it has very large critical order ¢ as
well as Fibonacci combinatorics, 4.e., the cutting times are the Fibonacci numbers.
(The cutting times (Sk)r>0 are the sequence of iterates n at which the image of the
central branch of f™ contains the critical point. They satisfy the recursive formula
Sk — Sk—1 = Sq(x) for the so-called kneading map Q : N — Ny; so Fibonacci maps have
kneading map Q(k) = max{k — 2,0}, see Section [2| for more precise details.)

Let us parametrise Fibonacci maps by critical order, say
Fiby: [0,1] = [0,1], x> a(f)(1 — |2z —1]%),
where a(¢) € [0, 1] is chosen such that Fib, has Fibonacci combinatorics. The picture
is then as follows:
<2 Fib, has an acip which is super-polynomially mixing, [33] [13],

2 < ¢ <2+4¢ Fiby has an acip which is polynomially mixing with exponent
tending to infinity as ¢ — 2, |26, 41],

o < b <ty Fib, has a conservative o-finite acim,
<t Fiby has a wild attractor [12], with dissipative o-finite
acim, [34].

For the logistic family (i.e., critical order is 2), Lyubich proved there cannot be a
wild attractor, so in particular Fib, has no wild attractor. In [26] it was shown that
{ = 2 + ¢ still does not allow for a wild attractor for Fib,. Wild attractors were shown
to exist [12] for very large ¢. The value of ¢; beyond which the existence of a wild
attractor is rigorously proven in [12] is extremely larg(ﬂ but unpublished numerical
simulations by Sutherland et al. suggest that ¢; = 8 suffices. The region ¢ € (¢y, 1) is
somewhat hypothetical. It can be shown [§] that Fib, has an absolutely continuous o-
finite measure for ¢ > ¢y, and it stands to reason that this happens before Fib, becomes
Lebesgue dissipative, but we have no proof that indeed £y < ¢1, nor that this behaviour
occurs on exactly a single interval. The existence of a dissipative o-finite acim when
there is a wild attractor was shown by Martens [34], see also [L0, Theorem 3.1].

Within interval dynamics, inducing schemes have become a standard tool to study
thermodynamic formalism, [14], 15 39) 43| [4]. One constructs a full-branched Gibbs-
Markov induced system (Y, F') whose thermodynamic properties can be understood in
terms of a full shift on a countable alphabet. However, precisely in the setting of wild
attractors, the set

Y ={yeY:F"(y) is well-defined for all n > 0}

is dense in Y but of zero Lebesgue measure m. For this reason, we prefer to work
with a different induced system, called (Y, F') again, that has branches of arbitrarily
short length, but for which Y*° is co-countable. By viewing the dynamics under F

2For less restrictive Fibonacci-like combinatorics (basically if k — Q(k) is bounded) the existence of
wild attractors was proved in [9].
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as a random walk, we can show that transienceﬂ of this random walk (w.r.t. Lebesgue
measure) implies the existence of a Cantor attractor.

Proving transience of (Y, F, m) is very technical due to the severe non-linearity of F' for
smooth unimodal maps f with large critical order. For this reason, we introduce count-
ably piecewise linear unimodal maps for which induced systems with linear branches can
be constructed. This idea is definitely not new, cf. the maps of Gaspard & Wang [20]
and Liiroth [32] [I8] as countably piecewise linear versions of the Farey and Gauss map,
respectivelyE] The explicit construction for unimodal maps is new, however. Although
we are mostly interested in Fibonacci maps, the method works in far more generality;
it definitely suffices if the kneading map Q(k) — oo and a technical condition @ is
satisfied. Note that the inducing scheme we will use is somewhat different from that in
[12] which was based on preimages of the fixed point. Instead, we will use an inducing
scheme based on precritical points, used before in [§], and we arrive at a two-to-one
cover of a countably piecewise interval map T} : (0,1] — (0, 1] defined in Stratmann &
Vogt [45] as follows: For n > 1, let V,, := (A", A" 1] and define

@ = if x € V7, @
T\(x) := 2
YEESY ifxeeV, n>2

Vs VaVa Vo 14 20 21222324 € Z4%3 Z2 21 %o

FIGURE 1. The maps T) : [0,1] — [0,1] and F) : [20, 20] — [20, 20]

In Section [2] we will contruct a family f of countably piecewise linear unimodal maps,
for which F) (see Figure [1]) are appropriate induced maps. Both fy and the induced
map F) are linear on intervals Wy = [zx_1, 2;] and Wi = [2k, 2k—1] of length %)\k.
Here z = 1 — z is the symmetric image of a point or set, and z; < ¢ < Zi are the points
in f~%(c) that are closest to c. We define Fy(z) = f51 if 2 € W;, UW},. The induced

3We discuss transience and (null and positive) recurrence in detail in Section @
“In fact, considering —tlog | f’| for the Gaspard & Wang map is exactly equivalent to the Hofbauer
potential [23] for the full shift on two symbols.
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map [ satisfies

A Py A
20, 20] —— [20, Z0] 1-2z 1
2(1—20) if z < 3
TI'J( J{n LA S . (3)
o .
Ty 2(1-20) ifz >3

[Oa 1] — [07 1]
Note that 7= 1(V;) = W; U W;.

The one-parameter system (Y, F) is of interest both for its own sake, see [16] 45], and
for the sake of studying (thermodynamic properties of) f itself. Theorem [A| replaces
the somewhat hypothetical picture of smooth Fibonacci maps with precise values of
critical orders ¢ = ¢(\), where each of the different behaviours occurs. In this non-
differentiable setting, the critical order £ is defined by the property that %’CL‘ —f <

|f(z) — f(c)] < Clx —c|* for some C > 0 and all z € [0, 1].

Theorem A. The above countably piecewise linear unimodal map fy (i.e., with |Wy| =
[Wi| = %)\k and X € (0,1)) satisfies the following properties:

(a) The critical order £ = 3 + %

(b) If A € (%, 1), i.e., £ > 5, then fy has a wild attractor.

(c) If X\ € [343\/5’ %}, ie., 4 < £ <5, then f\ has no wild attractor, but an infinite
o-finite acim.

(d) If X € (0, 3437\/5)’ ie., € (3,4), then f\ has an acip.

As above, let ¢, = —tlog|f}| and ®; = —tlog|F}| be the geometric potentials for the
unimodal map f and its induced version F), respectively. (Note that ®; = Z]T.;é oo fg\
for inducing time 7 = 7(z), justifying the name induced potential.)

In [16], the precise form of the pressure function for ((0, 1], T\, —tlog |T%|) and therefore
also for the system (Y, F\, —tlog|F}|), is given. However, this is of lesser concern to us
here, because given ([0, 1], fy) with potential —tlog|f}|, for most results on the induced
system (Y, Fy) to transfer to back to the original system, the correct induced potential
on Y is —log|F}| — p7, where the shift pr is determined by a constant p (usually the
pressure of —tlog |f3|) and the inducing time 7 where 7(x) = Si—; whenever z € Wj, U
Wy. The fact that the shift by pr depends on the interval k increases the complexity
of this problem significantly. Results from [I6] which apply directly are contained in
the following theorem.

Theorem B. Let Basy = {x € I : f{(xz) = w(c) as n — oo} be the basin of w(c), and
let the hyperbolic dimension be the supremum of Hausdorff dimensions of hyperbolic
sets A, i.e., A is fy-invariant, compact but bounded away from c. Then

dimpy,(fr) = dimg (Basi—x) = t1

where

1 if A€ (0,1/2], o
t = {tQ iFAe1/2.1), where tg := —log4/log[A(1 — \)]. (4)
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For the properties of pressure presented in Theorem [D]| and the related results in Sec-
tion [7] it is advantageous to use a different approach to pressure, called conformal
pressure Poong(¢¢), which is the smallest potential shift allowing the existence of a con-
formal measure for the potential. We refer Sections [5] and [7] for the precise definitions,
but in Theorem |C|we will show that conformal pressure coincides with the (variational)
pressure defined in (I). In [16], it is shown that ¢; from is the smallest value at
which the pressure P(®;) of the induced system (Y, F), ®;) becomes zero. This gives
the background information for our third main theorem.

Theorem C. The countably piecewise linear Fibonacci map fx, A € (0,1), with poten-
tial ¢y has the following thermodynamical properties.

(a) The conformal and variation pressure coincide: Poont(Pr) = P(dr);

(b) Fort < ty, there exists a unique equilibrium state vy for (I, fx, ¢¢); this is absolutely
continuous w.r.t. the appropriate conformal measure ny. For t > t1, the unique
equilibrium state for (I, fx, ¢¢) is vy, the measure supported on the critical omega-
limit set w(c). Fort =t1, v, is an equilibrium state, and if X € (0, 5 \[) then so

s the acip, denoted vy, ;
(¢) The map t — P(¢pt) is real analytic on (—oo,t1). Furthermore P(¢) > 0 fort <ty
and P(¢) =0 fort > t1, so there is a phase transition at t = t;.

Let v := 1(14+/5) be the golden ratio and I := %. More precise information
oz A\ (1—

on the shape of the pressure function is the subject of our fourth main result.

Theorem D. The pressure function P(¢:) of the countably piecewise linear Fibonacci
map fx, A € (0,1), with potential ¢; has the following shape:

a) On a left neighbourhood of t1, there exist 7o = 19(\), 7) = 74(X) > 0 such that

I
B
To€ 1t ift <t <1and\>1i;
P((z)t) > log v f b ~ 2
7-0(]. - t)lOgR

1
3+\f\)‘<7’

(14y/T-axe (a)

where R = NN and lim;_,1 log R ~ 2(1 — 2\) for A\ ~ %
b) On a left neighbourhood of t1, there exist 71 = 11(\), 71 = 71(A) > 0 such that

5 T
6

Tie SvVa— ift <t <1and\>1;
P(¢r) < ! A log / b 2

—

(1 —1)20-20 4t <1 and 3+f <A< 3.

c) If X € (0,?2\/5) then limgy, 4 P(¢s) < 0; otherwise (ie., if A € [%\/5,1)),

limgps, P(¢s) = 0.

To put these results in context, let us discuss the results of Lopes [31, Theorem 3]
on the thermodynamic behaviour of the Manneville-Pomeau map ¢ :  — z + '
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(mod 1). The pressure function for this family is

AMptae)(1 =) + Bl —t)Y/* 4+ hot. ift<1and a€ (3,1);
P(—tlogg) = ¢ C(1 —t)* + h.o.t. ift<1and a>1,;
0 ife>1,

where B, C > 0 are constants, and A(pqc) is the Lyapunov exponent of the non-Dirac
equilibrium state (i.e., the acip). Hence the left derivative of the pressure at t = 1 when
a € (1/2,1) is —A(iac). Recall that in the acip case, due to Ledrappier’s result [29],
Pye. = A(ptac). Note that the transition case a = 1 corresponds to the transition from a
finite acip (for @ < 1) to an infinite acim (for a > 1)E| In the Manneville-Pomeau case
there is no transition of Lebesgue measure changing from conservative to dissipative.
The phase transition at t = 1 is said to be of first type if there are two equilibrium
states (here an acip and the Dirac measure dy); if there is only one equilibrium state,
then the phase transition is of second type. The exponent 1/« is called the critical
exponent of transition.

For Fibonacci maps, instead of a Dirac measure, there is a unique measure v,, supported
on the critical w-limit set; it has zero entropy and Lyapunov exponent. Theorem
paints a similar picture to Lopes’ result for Manneville-Pomeau maps. In detail, we
have

e a phase transition of first type for A € (0, g,fi\/g) the pressure is not C! at t =
t1. This is precisely the region from Theorem [A] where fy has an acip figc, in
accordance with the results from [27]. According to Ledrappier [29], h, = A(tac)
is the Lyapunov exponent, so limg d%P(qﬁs) = —A(tqc). Lebesgue measure is
conservative here.

e a phase transition of second type (with unique equilibrium state v,, supported on

w(c)) for X € (3+2\/5, 1): there is some minimal n € N such that the n-th left

derivative limyqy, C‘I%P(qﬁt) < 0. Thus the pressure function is C"~!, but not C™,
at t = t; and so there is an n-th order phase transition. Consequently, the critical
exponent of transition tends to infinity as A  1/2. Lebesgue is still conservative
here, and also for A = 1/2.

e a phase transition of second type for A € [1/2,1): the pressure is C* with %P(qﬁt) =

0 at t = t1. By convexity, also %P(qﬁt) = 0 at t = t1. It is unlikely, but we cannot a

priori rule out, that the higher derivatives oscillate rapidly, preventing the pressure
function from being C*° at t = ;. Lebesgue is dissipative for A € (1/2,1).

This paper is organised as follows. In Section [2] we introduce the countably piecewise
linear unimodal maps and give conditions under which they produce an induced Markov
map that is linear on each of its branches. In Section [3| this is applied to Fibonacci

5The asymptotics of P(t) in [3I, Theorem 3] don’t hold for o = 1 (personal communication with
A.O. Lopes), but since there is no acip, P(t) is differentiable at ¢ = 1 with derivative P’(t) = 0 as in
[27]. We don’t know the higher order terms in this case. Asymptotics of related systems are obtained
in [40 2], namely for the Farey map = — 2= if x € [0, 1] and = — =% if x € [5,1]. It is expected
that their asymptotics also hold for the Manneville-Pomeau map with o = 1. In [3], a Manneville-
Pomeau-like map with two neutral fixed points, both with o« = 1, is considered, using a Hofbauer-like

potential.
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maps, and, using a random walk argument, the existence of an attractor and hence
Theorem [A] is proved. Rather as an intermezzo, Section [4] shows that for countably
piecewise linear unimodal maps with infinite critical order, wild attractors do exist
beyond the Fibonacci-like combinatorics. In Section [5| we explain how conformal and
invariant measures of the induced system relate to conformal and invariant measures
of the original system. In Section [6] we discuss the technicalities that the 2-to-1 factor
map from poses for invariant and conformal measures; we also prove Theorem
The properties of the conformal pressure functions (existence, upper/lower bounds and
nature of phase transitions) are studied in Section |7} this section contains the proof the
main part of Theorem[D] In Section [§]we prove the existence and properties of invariant
measures that are absolutely continuous w.r.t. the relevant conformal measures. In the
final section we present some general theory on countable Markov shifts due to Sarig.
This leads up to the proof of Theorem [C] and also gives the final ingredient of the proof
of Theorem

2. THE COUNTABLY PIECEWISE LINEAR MODEL

Let N={1,2,3,4,...} and Ny = NU{0}. Throughout f : I — I stands for a symmetric
unimodal map with unit interval I = [0, 1], critical point ¢ = 1, and f(0) = f(1) = 0.
For x € [0,1], let £ = 1 — z be the point with the same f-image as . We use the same
notation for sets.

Let us start by some combinatorial notation. For n > 1, the central branch of f™ is the
restriction of f™ to any of the two largest one-sided neighbourhoods of ¢ on which f™
is monotone. Due to the symmetry, the image of the left and right central branch is
the same, and if it contains the critical point, then we say that n is a cutting time. We
enumerate cutting times as 1 = Sy < S7 < S < ... If f has no periodic attractors,
Sk is well-defined for all k, and we will denote the point in the left (resp. right) central
branch of f that maps to ¢ by z (resp. 2;). These points are called the closest
precritical points and it is easy to see that the domains of the left (resp. right) central
branch of f% are [z;_1,c] (vesp. [c, Zx_1]).

The difference of two consecutive cutting times is again a cutting time. Hence (see [23])
we can define the kneading map Q) : N — Ny by

Sk — Skfl = SQ(k).

A kneading map @ corresponds to a sequence of cutting times of a unimodal map if
and only if it satisfies

{Q(k + ) }iz1 = {QQ*(K) + 1) }jz1, (5)

for all k£ > 1, where > indicates lexicographical order (see [24]). Note that holds
automatically if the kneading map is non-decreasing.

The construction of our unimodal map f proceeds along the following steps:
(I) First fix a kneading map @ such that
Q(k+1) > Q(Q*(k) +1) (6)
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for every k > 2. This is obviously stronger than , but provides a considerable
simplification of the proof.

(IT) By convention, set z_1 = 0 and 2_; = 1. For j > 0, choose a strictly increasing
sequences of points z; ¢ = % and 2; =1 — z; N\, c. (The points z; will play the
role of the closest precritical points, cf. (IH;) in the proof of Proposition ) Set

W, = (ijl,zj), Wj = (éj,ijfl) and €5 = |VVJ‘ = |VVJ‘ > 0.
Therefore, ;- o¢; = 3.
(III) Define
1 2q() — ¢l
5= = S oe= 7|2-QE)2- g (7)
7 i>QG)+1 774t
for j > 1; these numbers will turn out to be the absolute values of the slopes of
F |Wj for the induced map F', see below.
(IV) For j > 0, we define numbers «; > 0 that will represent the slope of f[w,. Let

1

RQ ‘= 2750 (8)
(This will give that f(z0) = Ko - (20 — 2-1) = 3 = ¢.) Next, set
1 1—2¢g
5= &= . 9
K1 51 o ;51 %, (9)

(Since inducing time Sy = 1 on W, it makes sense that the slopes of f and F' on
Wi are the same. In fact, we will have Fly, = f%|y, = flw,.) For j = 2, we set

inductively
ﬁ Kj—1 . s —_
(B, e o
Sj-1"8Q(i—1)"5Q2(j—1)+1 ! J= ’

(V) Let f be the unique continuous unimodal map such that

flz=1) = f(o1) = 211
Dflw; = =Dfly, = rj,

so that |f(W;)| = kie; and each interval f(W;) is adjacent to f(W;i1).

Thus f is completely determined by the choice of () and points z;. In Section ELon

Fibonacci combinatorics, we let z; * ¢ in a geometric manner, or precisely, €; = 1%)\]

so that f depends solely on a the single parameter A € (0,1). In this section, we will
continue with the more general set-up.

The induced ma[ﬁ is defined as:
F:(20,20) = (20,%0)s  Fly o, = F7 o, for j > 1. (11)
Since the z; will play the role of the closest precritical points, we will have f%i-1(z;) =
F571(%) € {2q(j). 20(j)}> and therefore
F(W;) = F(W)) = Uisq(Wi or Uisqq) Wi
In Proposition (1}, we will prove that F|y, and F

W, are also linear.

61n later sections, the interval on which the induced map is defined will be called Y.
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We pose two other conditions on the sequence (¢;);cn, which will be checked later on
for specific examples, in particular the Fibonacci map. Let o/ = f (x) for any point x.
For all j > 2:

5
ﬁ—]_\cf Z Kigi < €Q(j)s (12)
J i=j+1
and
(e}
i|cf — z]f| = S—] Z Kigi < “@UH yhenever Q) > 0. (13)
K Rj 5Q()

Proposition 1. Let f be the map constructed above, i.e., assume that @- hold.
Then @ is the kneading map of f, and the induced map F is linear on each set W; and

Wj, having slope %s;.

Proof. We argue by induction, using the induction hypothesis, for j > 2,

foi-1— 1\ is linear, with slope z—J
J

F (- ) ) (TH;)
F91(e) € WQm or Wog)-
From the first statement, it follows immediately that

ijfl\W. is linear, with slope s;, for j > 1. (14)

From this and the fact that f%i-1(z;_1) = ¢, it follows that

£ (zg) = f5 (zjm1) £ sjgj = ¢+ Z £i = 2Q(j) OF £Q(j)- (15)
i>QU)+

Let us prove (IH;) for j = 2. It is easily checked that f(z9) = f(20) = ¢ = 1, and hence

fle) e Wo. f(z1) = t+rier=143—¢50=2%. So fsl(zl) = ¢ and because ¢/ € Wy,

fSl_l\(cf ) = fl(es z0) 18 also linear, with slope rg = #2. Next we check the position
21

of f91(c). By the above formula, and the additional assumptlon ,
o) = ) - 15 ((e f,z§>>|
Z 2Q(2) ~ €Q(2) = ZQ(2)-1-
Hence f51(c) € W)
Next assume that (IH;) holds for i < j. Using and (IHg(;_9)) subsequently, we get
£ (zjo1) = f5U-D 0 f5i72(25_1) = foRG-1 (2g(;_1)) = c.

Because (c/, ]f ) c(d, zf_Q), (IH;_1) yields that

ij—2—1|(Cf o is linear with slope —
-1 /’ijfl
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By and (IH;_1), its image is the interval (zg(j_1),cs;_,) C Wg(j—1) or WQ(j_l).
Now if Q(j — 1) =0, then

-1
/i] 1

By the first part of the definition of ;, this slope is equal to . Q(j —1) >0 then

fo 1\cf 1= = fo fii-2- 1\ of ol )1shnearvv1thslope /<;0

Sj1—1 f f QQ(]l)o SQG-1-1 o 5121
; _f / i

’ J 1 sz 1)'
1 Al Al
& Zj ijl
foi-2
Y
2Q(j—-1)-1 CSj—2 2Q(j-1)
fSQ(jfl)fl
Y
1 ~ 1 1 1 ~ 1
€ 2Q2(j—1)+1 CSj—1-Sg2(; 1) Q2(j-1)
F502G-1)
Y
1 1 1 1 1
CSQQ(J;U ZQ(j)fl Cijl ZQ(.]) ¢

FIGURE 2. Position of various precritical points and their images.

Bym fSQ<1*1>*1|WQ(. is linear with slope sg(;_1). Hence fo@G-D-10 fSi-2~ 1
. By ., its image is the interval

(cf, z] 1)

is linear with slope sq(;— 1)
(202(j-1)» CSJ‘*2+SQ(J'—1)—1) = (2@2(j-1); CSj—l*Sngfn)'

By (13| ., the length of this interval is |¢f — z _1l5qG-1) < €Q2(j—1)+15 SO
(2Q2(j-1), €8j-1-5g2(;_)) © WQ2(j—1>+1 or WQ?(j—1)+1~

By , fSQQ(J'*l)]WQ%FDH is also linear, with slope sg2(;_1)41. It follows that
-. The

SH2. . R © e . _
f7Q%6-1 o fYQu-1-1 o fi-2 1|(Cf,ng—1) is linear with slope sg2(;_1)115Q(j-1) Z;_
second part of gives that f5i-171(cf, 2! ) is linear with slope Z—;, as asserted. By
(T2), the length of the image is ¢/ — f| = < gg(y)- Formula yields f%i-1(z;) =

2Q(j)- Hence we obtain

2qG) > I771(0) 2 2q4) — qu)
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or
Zqa) < FP71(e) < Zqu) + 2qu)-

In other words, f5i-1(c) € Wg(j) or WQ(j). This concludes the induction. (Notice that

les;_1—2Q()] 1osif _
= = Ll —zi 4] U
lzou)-1=2em | Q) Nj' i1l

3. THE FIBONACCI CASE

In this section we prove Theorem [Al Let ¢, (x) = j if F™(z) € W; UW;. With respect
to the existence of wild attractors and the random walk generated by F, we are in
particular interested in the conditional expectation (also called drift)

> (i—Fk)ei D im0kl i€
Bl — k| o1 = k) = SREDE_ SEAON k(1)
Zi>Q(k)+1 & Zi}Q(k)Jrl &

Drift in the setting of Fibonacci maps seems to be used first in [26]. Note that here
that the expectation is with respect to Lebesgue measure.

Proof of Theorem[A] We attempt to solve the problem for e; = |W;| = |WJ| = %)\j,
80 ) i50€j = % By formula (7)),

(Note that the slopes s; > 4, with the minimum assumed at A = 3.) Using (10)), we
obtain for the slope k; = f'(z), z € Wj.

1 . .
1—)\ J = 07 17
3 j=2
Kj = (L2) J=3 (17)

—

1-2)3 j =4

A 9
227 (1—7)2
NO(T—A)5

J =5

Let us first check and . For simplicity, write ¢; = C1 N and Kj = Cyw’ where
w = A%(1 — \)2. Then

5 o0 () . 1 1 L,
;j Z Ki€i < €Q()) =4 Z 0102()\(,«)) 7)\(1 — /\) 702&}]. < 01)\j
i=7+1 =741
WL ,i+ 1 iso

- <
1—2dw A1 —=Nwi A
& M1 =N <1T-X(1 - N2
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This is true for every A € (0,1). Checking for Q(j) > 0, we get

€Q2(j)+1 N1 s
- <M1= A
5Q(j) < 1w A1 — N)w? ( )

5

) Ki€i <
Kj i=j+1
e M<1-2301 -2~
Again, this is true for all A € (0,1).
Let us compute the order ¢ of the critical point. Indeed, |Df(z)| = O(A\%(1 — \)%)
and |z — c| = O(M) if € W;. On the other hand |Df(z)| = O(|z — c[*~1). Therefore
logw 3 2log(1 —A)

(=1 =
+ log A log A
Consider again. For k > 2, the drift is
Y isk_1 i€ A 2A—1
Dr(\) :=E(pp, —k|popn1=k)==—— k= — — 1= — .
Zz;k—l i (1-X) 1—A
Hence E(¢p, —k | pn—1 =k) > 0if A > 1— A, i.e., A > 3. The second moment
N U A D o A
Zi>Q(k)+1 &€ (1—X)2 1—=2A

is uniformly bounded, and therefore also the variance. So as in the proof of [16, Theorem
1], for A > %, i.e., a critical order larger than 5, the Fibonacci map f exhibits a wild
attractor.

Now we will calculate for what values of A, f has an infinite o-finite measure. First take
A< % Then F' (considered as a Markov process) is recurrent, and therefore has an
invariant probability measure p. Let (4; ;)i ; be the transition matrix corresponding to
F, and let (v;); be the invariant probability vector, i.e., left eigenvector with eigenvalue
1. As F'is a Markov map, and F' is linear on each state Wy, we obtain u(Wy) = vg. So
let us calculate this.

o]0 i <QU),
B9 (1 = ONRUHD i s (),
or in matrix form
1 A A2 2 )\
1A A2 23 )\
0 1 X A2 X A\
(Aij)ig=1=X]0 0 1 XA X2 X ... |. (18)

0 1 X A
As in [16, Theorem 1], this matrix has a unique normalised eigenvector:

1—22 /7 A \° 1
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According to [0 Theorem 2.6], f has a finite measure if and only if

ZSk_m(Wk) < o0. (20)
k

If fails, then f has an absolutely continuous o-finite measure. This follows because

f is conservative, and w(c) is a Cantor set [25]. In the Fibonacci case Sy_1 ~ v¥71,

where v = # is the golden mean. Since u(W}) = B;p® for B; = ), as we saw above,
. 1 e 145 A . 2 :

we obtain p > 5 if and only if =525 > 1, d.e., A > TRV This corresponds to the

critical order £ = 4. Therefore there exists a o-finite measure for all 3+2 NG <AL %,
. 2

and a finite measure for 0 < A < YL O

Remark 1. Since cg, € Wj_1 U Wi_1 for every k > 1, we obtain ]DfSQ(k+1>(CSk)| =
\Dfsk—l(csk)\ = ’Dfsk—l\wk’ . |Dfsk—3|wk72’ = [A1 = N)]"2. Therefore |Df% (c;| ~
ki A1 =N)]% = X191 —X) 75, which is uniformly bounded in j. Therefore the Nowicki-
van Strien summability condition (see [38]) fails for all X € (0,1).

Remark 2. As proved in [16, Theorem B|, F\ (or equivalently Ty ) is null recurrent
w.r.t. Lebesque when A =

N[ =

4. AN EXAMPLE OF A WILD ATTRACTOR FOR k — (k) UNBOUNDED

In [9] it was shown that smooth unimodal maps for which k—Q(k) is unbounded cannot
have any wild attractors, for any large but finite value of the critical order. There
are very few results known for unimodal maps with flat critical points (i.e., £ = 00),
although we mention [5,[46] and [30], which deal with Lebesgue conservative Misiurewicz
maps and infinitely renormalisable dynamics respectively. The next example serves as
a model for a unimodal map with infinite critical order, suggesting that [9, Theorem
8.1] doesn’t hold anymore: There exists countably piecewise linear maps with kneading
map Q(k) = [rk], r € (0,1) that have a wild attractor.

Example 1: Consider maps with kneading map

Q(k) = [rk]

for some r € (0,1) and k large. Here |z] indicates the integer part of x. Since @ is
non-decreasing, holds and unimodal maps with this kneading map indeed exist.

Let a be such that ail + logr > 0. Take ¢ = Ck™%, where C is the appropriate
normalising constant: C' =~ « — 1. This suffices to compute the expectation from ,
at least for large values of k. But instead of ¢,, we prefer to look at log ,,. It is clear
that log ¢, (z) — oo if and only if ¢, (z) — co. So it will have the same consequences.

The advantage is that in this way we can keep the second moment bounded.

We will calculate the expectation for large values of k. Therefore we will write rk for
Q(k)+i = |rk] +i and 72k for Q*(k) +1i = |rk] + i, where i € {—1,0,1,2}. We will
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also pass to integrals to simplify the calculations.

; g;logi
E(logon, —logk | on—1 =k) = 2i2Qu+1 51 —logk
Zi>Q(k)+1 &
_ Jop 7 logtdt
o, —logk
frk taedt
1
= ——+logr.
a—1

This is positive by the choice of «. For the second moment we get

> i>Qk)+1og i —log k)2e;
2iQUry+2 S

E((log @5, — logk)? | op—1 = k) =

N [ t™*(log t — log k)?dt
Jop tedt

=log?r + logr +

a—1 (a—1)2%

which is uniformly bounded in k. Therefore, the induced map has drift to ¢, and thus
is Lebesgue dissipative.
For the slopes of the induced map, and the original map we get the following:

o] 11—«

1 r
55 = — Z 51-%‘7"“/‘ t_adt:ja_l,
T

o
T i2Q()+1 J

whence
2
Kj—1 8 (a—1)%1 =2
L e
T siaspyyspyy 0 T g
for B = (1?‘5:%212. Next we check conditions and . Because % < €g(j), 1t
suffices to check . For j sufficiently large,

o0 1—a (;1)\2 j+1 J+2
5; T (4" B . _ B . _
=L ;N : C )™+ —C 2)7 %4 -
nj,z A v Y ((j+1)!2 U+ GgrtU+2 "+
T,lfoz
a—1
€02(5
< C(a _ 1),',,—04—2]'—04—1 ~ Q (.])+1
SQ(j)
Hence, asymptotically there are no restrictions to build a piecewise linear map for this
kneading map.

< CB(j+1)*"".r?2

The critical order of this map is infinite. Indeed, the slope on (z;_1,2;) is k; = %
lc—zj1|=> 72 i~ (a—1) fjoo t=dt = j17%. So the critical order £ must satisfy

i=j
BI
i {(1—a)(£—1) -0 <> ]
/ (42

This is impossible for finite £.
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5. PROJECTING THERMODYNAMIC FORMALISM TO THE ORIGINAL SYSTEM

In order to understand the thermodynamic properties of our systems (I, fy) and (Y, F))
more deeply, we need the definition of conformal measure. Since we want to use this
notion for both of these systems, we define it for general dynamical systems and po-
tentials which preserve the Borel structure (so we implicitly assume our phase space is
a topological space).

Definition 1. Suppose that g : X — X is a dynamical system and ¢ : X — [—o0, 0]
s a potential, both preserving the Borel structure. Then a measure m on X is called
¢-conformal if for any measurable set A C X on which g : A — g(A) is a bijection,

mlg(a) = [ = dm.

A

For the geometric potential ¢, = —tlog |D f,| of the original system (I, fy), we want to
determine for which potential shift there is a (¢ —p)-conformal measure, and potentially
an invariant measure equivalent to it. For a general potential ¢ for (I, fy), the induced
potential is defined as

7(x)—1

(x)= Y ¢ofilz),
j=0

and hence it contains the inducing time in a fundamental way. Even if ¢ is constant (or
shifted by a constant amount p), the induced potential is no longer constant (and shifted
by 7p). More concretely, for potential ¢ — p, the induced potential is —¢log |F}| — 7p,
where 7p is the shift by the scaled inducing time 7; = S;_1 on W; U WZ In Lemma
below we prove the connection between a (¢; — p)-conformal measure for (I, f)) and a
(®; — p7)-conformal measure for (Y, F)).

For n > 1 we define the set of n-cylinders for F) to be the collection of maximal
intervals on which FY{’ is a homeomorphism. It is natural to denote such an n-cylinder
by Cig...in_1, if for each 0 < k <n—1, FF(Cyy..i,y) C Wi, or F¥(Ciy. i 1) C Wi, The
sequence ig - - - i,—1 is called the address of the n-cylinder. Observe that for each such
address there are two n-cylinders: we denote the one to the left of ¢ by Cj,...;, , and

that on the right by Cj,...;, ,, and let (CUC);,..,_, be the union of these. Only certain
sequences 1g - - - in—1 can be realised as addresses, specifically we require i < 51 + 1
for 1 < k < n —1; we call such addresses admissible. Notice that for any x € Cj,. 4, ,,
™(z) = Siy +---+ 5, ,. Clearly cylinder sets can be defined analogously (without
the ambiguity in address) for the map T).

As usual, the original system (I, f) can be connected to the induced system (Y, F') via
an intermediate tower construction, say (A, fa), defined as follows: The space is the
disjoint union

Ti—1

A= ] A
=0

)
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where A;; are copies of W; and Wi, and the inducing time 7; = T\WUW = S;_1. Points
in A;; are of the form (x,l) where x € W; U W;. The map fa : A — A is defined at
(x,1) € Ay as

f ( l)_ ($,l+1)EAi7l+1 lfl<7‘z—1,
A= (F(2),0) = (0, 51 (2) € WA ifl=7—1.

The projection 7 : A — I, defined by n(x,1) = f!(x) for (z,1) € A;;, semiconjugates
this map to the original system: 7o fao = f onw. Furthermore, the induced map (Y, F')
is isomorphic to the first return map to the base Ag = L; A o.

Lemma 1. Let ®; be the induced potential of ¢¢, and p be a potential shift.

(a) A (b, p)-conformal measure ng for (I, f) yields a (P, Tp)-conformal measure my
for (Y, F) by restricting and normalising:
1 .
mi(A) = ——n(A)  for every A CY 1= U1 (W; UW;).
n:(Y)
(b) A (P4, Tp)-conformal measure my for (Y, F') projects to a (¢, p)-conformal measure
ne for (I, f): for every i,l and A C W; or A C W,

-1

n(m(A, 1)) = AZ/AeXp Ip+ qut o 7| dmy,

=0
see Figure[3, with normalising constant
M: =1+ epZ/ e P dmy + GQPZ/ e~ Pl =Pt dm, > 1
ix2 /Wi i=3 7 Wi

is (¢, p)-conformal.

F2(Uiz3(W5) m¢([zo,20])=1 FUiz2(W3))
—_— -

T T T T T

Co 20 C 20 C1

FIGURE 3. Distribution of the conformal mass n; on [cg, ¢1]

In the case that ¢y = —tlog|f’|, then the formula for the normalising constant
simplifies to M = 1+ €l Y, o wikl 4+ Y s wiklkl which is finite for all X €
(0,1), t >0 and p € R.

(c) The invariant measure p; for (Y, F, ®;) projects to an invariant measure vy provided
> T (Wi U Wl) < oo (where in fact 7, = S;—1), using the formula

i

Ti—1
Vtzjl\zzofﬂﬂt fOTA:ZTth(WiUWi)-
J= A



18 HENK BRUIN AND MIKE TODD

Moreover,

A A

for any measurable potential g on I and its induced version G on Y.

h(v) = Plpie) and /g dv, = S G dp

Remark 3. Note that the last part of this lemma is just an application of the Abramov
formula, see for example [39, Theorem 2.3] and [47, Theorem 5.1].

Proof. (a) If n; is (¢¢, p)-conformal for (I, f), it means, as stated in Definition |1}, that
ny(f(A)) = [, e %" Pdn, whenever f : A — f(A) is one-to-one. Taking A C W; (or

C W;), and applying the above 7; = S;_1 times gives that n,(F(A)) = [, e~ ®*Pdn,,
so the normalised restriction m; = nt(ly) ny is indeed (®y, 7p)-conformal.

(b) For the second statement, it is straightforward from the definition that if A C W;
or AC W;and 0 <! < 7; — 1, then for B = w(A4,1),

ni(f(B)) = mi(m(A,1+1))

= M/exp (l+1 Z@of] dmy

= M/ ¢t°f+pexp Ip — qutof] dmy

7=0
— / e*¢t+pdnt'
B

Similarly, if [ = 7, — 1, then

n(f(B)) = i/exp Tip — @) dmy

(=¢¢o [ +p) | dmy

-1

vl rexp [Ip— Y gro f7 | dmy
7=0

/ *
vl

— / €_¢t+pdnt
B

This proves the (¢, p)-conformality. The tricky part is to show that n; is actually
well-defined. Assume that B = 7w(A,l) = n(A’,l’) for two different sets A C W; and
A" C Wy. So we must show that the procedure above gives ny(m(A,1)) = ny(w(A',1')).
Assume also that 7; — [ < 77 — I’; then we might as well take B maximal with this
property: B = 7(W;,l').

Now B’ := fTil(B) C F(W;) = (29, ¢) or (¢, 2g(;)- 1t is important to note that the
induced map F' is not a first return map to a certain region, but F' |W1-UW¢ = fSi—1 |W¢UWZ-
is the first return map to (2g(), 2g()). Since f7#~7 maps B’ to F(Wy) = (2¢, c) or
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(¢, 2g(ir)), the iterate f7#~7|%; can be decomposed into an integer number, say k > 0
of applications of F, and B’ is in fact a k-cylinder for the induced map. Since m; is
(®y, Tp)-conformal,

k-1

my(B') = / exp Z(Cbt —71p)o F~ | dmy.
FR(BY) =

Taking an extra 7; — [ steps backward, we get

Ti—l

1 y PR—
n(B) = i . exp Z(¢t —p)o f]—(n 1) dms
j=1

1 k—1 ) Ti—l ' .

= — exp ((I)t — Tp) o F77 | exp Z(¢t _ p) o f]f(nfl)oF* dms
M Fk(B’) =0 =
1 T =1

= — exp _ (¢t ) fj T/ l dmt,

so computing n¢(B) using 7; — [ or 7 — I’ both give the same answer.

Now for the normalising constant, since our method of projecting conformal measure
only takes the measure of one of the preimages of m in A of any set A C I, we do not
sum over all levels of the tower, but just enough so that the image by 7 covers I, up
to a zero measure set. However, modulo a countable set, the core [ca, 1] is disjointly

covered by (J;»,(W; U W)U Uisa f(Wi) U U f2(Ws). This gives

M = th W, UW;) +Z/ e~ ¢tdmt+2/ 2P b=9eof gy
1>1 i>2 i>3
1Y e / “Odmy + ey / e=0=6%1 g,
1>2 >3

for an arbitrary potential. Using the formulas for the slope x; = f/|W; from and
the expressing for Jw; = my(W;) from (1)), we obtain for ¢, = —tlog|f’|:

e2p
M = 1+ sznl—i— Zwmﬁfﬁé

=2 123

eP(1— N A3t (1 — )2t
= 1+(2 )<1+( — NN+ (1 - 3t>\2t+ZAm1_) )

i>5

(1 - \') tyt A)BEAZ N )2“
* 2(1 =)t (L= AP+ (1= A)7A +Z)\11t

_ eP(1— ') tyt 3ty 2t A (1 _)‘)5t
— 1+2<1+(1—)\))\ + (1 =A)7A I )

(1 — AN
2

)\St(l _ )\)415
T A1 — a3t ) =

<1 + (1= NN+



20 HENK BRUIN AND MIKE TODD

(c) The third statement is an Abramov formula, see Remark O

6. THE CONFORMAL MEASURE AND EQUILIBRIUM STATE FOR (Y, F, ®;)

In this section we adapt the results for the map T studied in [16] to the map F. This
also allows us to prove Theorem

Proposition 2. For each A € (0,1), t > 0 and p = P(®;), the map Fy has a (P —p)-
conformal measure my with

~ o 1—7)\15)\15(]6—1) Zf A < 1’
me(W;) = my(W;) = { [(2 1) At - %)] (%)k—f—l A S z (21)

If in addition \' < %, then F)\ preserves a probability measure iy < my with

T—2X A\ . 1—2X /At \/
) = S () e w0 —a-a S (1) @)

for some (; € (0,1). Moreover, fi; is an equilibrium state for potential ®y.

Proof. Recall from and that T om = wo F)\ for the two-to-one factor map 7 with
7= 1(V;) = W; UW;. In [16, Theorem 2] it is shown that Ty has a (®; — p)-conformal

measure such that for ¢(t) := (tizt,
(1 — AH)AHE=D) if p = logt(t) and X' < L,
mip (Vi) = —t ENT (Ve ip o t ts 1
[(k=1)+ X1 -5] () ifp=logdA(1— )] and X > 1.
. . . t 1 . 1—2)\¢t At k .
and an invariant measure (provided A < 35) with py (Vi) = 55+ (W) . To obtain

my and fiy we lift these measures by , distributing the mass to W, and Wj appro-
priately. Since F\(W;) = F\(W;) = Ugsj—1Wj, or Ug>j—1 W}, we can distribute the
conformal mass evenly. This gives (21)).

To obtain , first define

1t )\t )\Qt )\3t
1t )\t )\Qt )\3t
0 1t )\t )\Qt )\St
At=(1-XN 0 0 1t A % : (23)

0 1t )\t )\Qt

That is, the matrix A in with all entries raised to the power ¢, then ¢~ (t) A is a

mt,p(VimT;l(Vj)) _

probability matrix and e = 1(t) A; -
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J
Now set vj» = 1_)\72,5)& (%) (so for t = 1, this reduces to the value of v; in (19))) and
define
=1
Csj_1<C

e., the proportion of the invariant mass that maps under F) to the left of c. Next
define py on cylinders Cj by

0 in1

/J,t(szn 1 Ctv qub 1A?Lk 1%k
and similarly ,Ut(éio---infl) = é% 2;11 P(t)~ 1A$k 10k

Since v(t) "1 A? is a probability matrix with Ai:io =0if k > ip + 1, we get for every
cylinder set

i(F5  (Cigin 1)) = Y (CUC)kigai,
k<ig+1
cSk71<C
= G Y vyt mOHw AL,
k<’[0+1

= Ct/U H w lAgk 174k lat(cio‘“in—l)

and similarly for F° 1(CA’60“,en_l). This proves Fy-invariance of ji;.

The T)-invariant measure above is the unique equilibrium state for —tlog |T5| provided
< % Since the factor map 7 does not affect entropy, and because for any F)-invariant
measure 7 we have [log|F{|dv = [log|T}|d(# o 7~ 1), it follows that fi; is indeed the
unique equilibrium state for (Y, Fy, —tlog|F}|). O

Proof of Theorem[B. Let x € [z0, 20] \ Un>0f""(c) be arbitrary. Since zj is a closest
precritical point, f7(Wj U Wy) N [z, 2k] = 0 if 0 < j < Si. Therefore, if ¢ € w(x)
then F(z) — 0 along a subsequence. From this we see that hyperbolic sets for F
coincide with intersections of hyperbolic sets for f with [zg, Zo], implying that hyperbolic
dimension are the same for F' and f.

Now for the escaping set, first observe that the intervals f’([zx,c]) = f7([c, 2]) for
0 < j < S have f7(c) as boundary point and lengths tending to 0 as k — oo. Therefore
F'(z) — ¢ implies that f"(x) — w(c) which implies that w(x) = w(c). We next show
that F(z) — c if and only if w(x) = w(c).

Denote by U, the largest neighbourhood of  on which f™ is monotone, and let Ry be
the largest distance between f"(z) and 0f™(U,). If there is k such that F'(z) ¢ [z, 2]
infinitely often, then by the Markov property of F, f™*(U,) D [z, c] or [c, 2] along a
subsequence. This means R,, /4 0. By [9], this implies that w(z) Z w(c).
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Therefore w(z) = w(c) if and only if F?(x) — ¢, and hence the escaping set {2 coincides
with Basy N [z0, 20]. Theorem [B| therefore follows from [16, Theorem C]. O

7. CONFORMAL PRESSURE FOR (I, f, ¢¢)

In this section we prove the main part of Theorem with the components about
existence of conformal measure and upper and lower bounds on conformal pressure in
various lemmas. We start by giving the definition of conformal pressure, presented for
general dynamical systems.

Definition 2. For a dynamical system g : X — X and a potential ¢ : X — [—00,00],
the conformal pressure for (X, g, ¢) is

Peoont(¢) = inf {p € R : there exists a (¢ — p)-conformal measure} .

The results on the pressure in this section are obtained using Poone(¢); in Section |§|
we show that the conformal pressure Pcous(¢¢) coincides with the (variational) pressure
P(¢y) from . Thus our statements in Theorem @ should be read as applying to
‘both’ quantities. For Poone(®P¢), we start by quoting the conclusion of Theorems 2 and
B of [16]: Pcont(®:) and P(P;) coincide, and

log ¥ (t) if X<
log[4A!(1 — N\)Y] if At >

PConf((I)t) - 7

1
2
1
5-
Recall from () that t, = —log 4/ log[A(1—\)] is the value of ¢ such that [A(1—\)]’ = 1.
Hence to = t1 if A > % and to < t; = 1 otherwise. We can interpret ¢ as the smallest ¢
such that the pressure of the induced system Pgone(P:) = 0.

Any (®; — p7)-conformal measure m; must observe the relations (for d;tk =m(Wy) =
my(Wi))

W = (1-\)fe P

@y = MN(1=N)fe P

wh = A(1—A)leP%2(1 — @) (24)
@ = M-\ [1- Y g

k<j—2

Recurrence relations of a similar form were used in [16] to prove [16, Theorem 2], but
our situation here is more complicated since in that setting in the place of each e
term was simply the constant term t(¢). The idea now is to find a solution p = p(t)
of such that also H(p,t) := 3_; W} is equal to 1 (this is equivalent to finding a
solution set {w%};). Note that in Lemma 3| and Proposition 4| below, we give necessary
lower and upper bounds on p(t), without assuming the existence of a solution. Along
the way, we will also need to check that u?,tC > (0 for all £ > 1.
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Write
B:=tlogA(1—X)] and B = (t—t2)log[A(1—N\)],
so that e? = i for t =ty and € = ieﬁl > i for t < to.

7.1. Lower bounds on Pc,,¢(¢¢). Let us now compute the asymptotics of ﬁ)i to show
that in this case p(t) has to be positive for ¢t < ;.

Lemma 2. Fizing p = 0, there is a unique solution to , denoted by (w})ken. It
satisfies

wi, >0 and Y, wh =1 if t >ty
there exists ko such that ﬁ)}t% <0 ift <t
Moreover, for ry = (1 +v/1 — 4eP),

r+(r+—)\t

:{ G A>erl if ta<t<ti=1 (ie, A€ (0,3))

~ 202 ift St <ti=1 for xe(0,3],
kozj% ift St < 1f0r>\€[ 1).

Proof. Subtracting two successive equations in (24)), we find that the @}, satisfy recursive
relation

_ _ _k
W1 = W — ePwi_y.
The roots of the corresponding generating equation 72 —r+e” = 0 are r4 = 1EV1zde? ”;Ma.
It is straightforward to check that
(i) r— <A1 =M<y ift > 1;
(1) re € {\,1 = A} ift =1;
(i) Xt <r_ <ry <1-—M\ if ty <t <1and A\t < 3;
(i) 1 =X <r_ <rp <A ift; <t<1land Al >3
. t=t; <1 for\t>1
1 27
V)T =14 =35 if
() T2 {t:tg for Xt <1
. . . t<t1 <1 for/\t>%,
(vi) r+ are complex conjugate  if .
. t<ta<t;=1 for A <§

(1)-(iv) In the first four cases, i.e., 4 are real and distinct, the recursion combined with
the initial values w} = (1 — )\)t and w5 = \(1 — \)!, give the solution

o @=)

o= =5 [(xf e T xf)r'fl] . (25)



24 HENK BRUIN AND MIKE TODD

If ¢ > 1, then the coefficients are non-negative, and also if t; < t < 1. Iftg <t < t; =1,
then the coefficient \* —r_ < 0, so there is kg such that @} < 0 for all k > ko, namely

k
ﬁr"r—)\t > (7’_~_> ’ > &r“l‘_)\t (26)

r2r_ — X7 \r_ r_r_ — A\’
1 7‘_‘_(7‘+7)\t)
. . 0g r_(r_ 7At)
which results in kg = T TE + 1.
og E

(v) If t =1 < 1, or when t = t9, then r_ =74 = %, and the general solution is

1N
ok

If X > 1 (ie., t =t < 1), then the coefficient 4(1 — A*) + 2k(2A" — 1) > 0 and hence

wf > 0 for all k. If \' < 1, then the coefficient 4(1 — A!) + 2k(2A" — 1) < 0 for all

k>ko=[2(1-A)/(1—2)\Y)] + 1.

(4(1 = ') + 2k(2X" = 1)) .

wh, =

(vi) Finally, if ¢ < ¢; < 1, or in general when ¢ < t3, then the roots are complex.
Together with the initial values @} = (1 —\)! and @} = A'(1 — \)*, we find the solution

o = (1-N" [<4COS\/F_4At>COS<ﬁk)+

2k 2 2
. Bk
t VB 7 S o
<4)\ COS( 5 ) 2008(\/5)) <sin‘/f7>]
2
o201 =N . . 9 sin 0k
= 2’€|:(2C089—2)\)C089k+(2)\ cos § — 2 cos 9+1)m . (27)

for @ = 3/B = 3/(t —t2)log[A(L — A)]. This is an oscillatory function in k, with an

exponential decreasing coefficient 27%. Recall that w4 = Aw! > 0. First assume that

A > %, whence At > % Therefore

2\ cos ) — cos? 0 + 1
sin 0

0<2cosfh — 2\t <«

)

so the expression in the square brackets becomes negative when kg ~ %

Now set A < %, and \! < % and moreover assume t — to is small. Then 2\’ cosf —

2cos? 0 + 1 < 0, so approximating sin 0k/sinf = k for small values of 6, we find the

. . . —9)\t
expression in the square brackets becomes negative when kg > 2005320_519_22; 7 ~
2(1-A%)
1—2xt -

Note also that in all cases w} — 0, and therefore gives that 1 — Zk<j—1 w), — 0
as j — co. This shows that ), w} = 1. O

We can now use Lemma [2| to address directly the problem set up in (24)): finding a
solution p = p(t) to H(p,t) = 1 with all summands non-negative.
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Lemma 3. If A > % and t < t1 < 1 is close to ty, or if A < % and X' is sufficiently
close to 3, then there is 7o = 1o(A) > 0 such that p(t) > ST—:O

Proof. Let w} be the solution of for p = 0 as computed in Lemma [2, while we
write dz}; = ﬁ)ltc (p) for the case p > 0. We start by showing that, under the assumptions
of the lemma, @}, | /o, ~ 3 for 1 <k < ko — 10.

e Case 1: A > % and t < t; < 1 is close to t;. In this case, 2\!cosf — 2cos? 6 + 1 =
(2 — 1) cos O + (1 +2cos0)(1 —cosf) > 0 for 0 < 0 = /B < 7/2. With @}, as given
by and using standard trigonometric formulas, we derive that

W), 4 1 _ (2cos0 — 2\!) sin Ok — 22 cos 9;1129'3082 %1 cos Ok
—t = 5 cos ) — sin 6§ t 2)t cos 0—2cos? O0+1 _:
Wy, (2cos @ — 2Xt) cos Ok + i sin 0k

~ 1(c0s9+sme> as 0 — 0.
2 a

If 10 < k < kg — 10, this reduces to

11 @y 1 sin 6 9
> - 0 — > 2 f 116.
20”7 wl 2\ tangk)” 20 O °°

e Case 2: A\ < % and \! is sufficiently close to % In this case fLT),tC is given by , SO

T O ek X
BT e (A
reAL (r_\F re AL (r_\FO [y R0k
) () )
= rg- — = .

+ 7.1
ry— r_ ry— r_ T4
1 (=) 1 (=) A
A—r_ \ry A—r_ \ry r_

Using , we obtain

-t

. w

1 we obtain that k41
27 w

Since ry,r_ — % as A\l — ~ % uniformly in & in this case.

The difference between w} and @}, is e = ex(p) = wi(p) — wi. We claim that if
p < 1/Sk,, then there is K such that

[k — wk| = |ex| < K1o(1 — e PS-1)@t  for all k < ko — 10. (28)

Since w! (e — 1) = g1 < —pSow} and wh(e 2 — 1) = g9 < —pS1wh, this claim holds
for k =1,2.
Subtracting two successive equations in gives the recursive relations

Wh oy = e POkl — PPt (29)
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_ e :
so for p = 0 this is wy_ | = w}, — e”wy_,. For & we obtain

— ot —t
Ck+l = Wgy1 — Wrp
= e P2gy —ePePOhg | 4P (1 — e PSRl — (1 — e PR-2)a).

Write e = ug(1 — e PSh=1)wt, so ug = up = —1 and uz € (—1,0). Then we can rewrite
the above as

_ 1—ePSh1 gt o 1—ePSk2wl
Upyr = € PSk_2 < —tk Uk — B e PSk < _f 1
L —e Pk Wy L—e P2k wy

Uk—1

= aup —bup_1 +c.

Tt
The numbers a, b, ¢ depend on k, but since % ~ wt— [0.45,0.55] for all 10 <
k k—1

k < ko — 10, and e? ~ %, we have ¢ € [0.1,0.5] and 0 < a — b < 0.99. Therefore
the orbit (ug)r>1 is bounded, say |ux| < K for all k, and in fact positive from the
moment that two consecutive terms are positive. In particular, —1 < ug < K for all
k, and |ex| < K(1 — e P9-1)w! for all k < ko — 10, proving Claim (28§). If we now
take p < 79/Sk,, then |ex| < KTO'y Wt for k = ko — 10. Propagating this tiny error
(provided 7y is small) for another eleven iterates, i.e., eleven recursive steps wf, 41 =
e PSk=2qpf — ePPSkqpf |, we find that @],  ; < 0. This shows that p(t) > 70/Sk,. O

Recall that v = %(1_,_\/5) and T = %.
“log|M1—

Proposition 3. There are 79 = 10(\) and C = C()\) > 0 such that

(1) > 70 S Toe_”F/th_t ift <ty <1 close toty and A > %;
p ~ log(y)
Sko 70C(1 —t) Tog 1 ift <1 closetol and A < 3,

where log R = 21log(1 + /1 — 4\{(1 — \)t) — log[4A'(1 — N)!] ~ 2(1 — 2)) ast — 1 and
A= 3.

Proof. Lemma gives p(t) > STTO For the second inequality, first assume that A > % and
0

t < t1 < 1. Using the estimate of kg from Lemma and ' = \/—log[A(1 — N)](t; — t),
we find
_ _ =l
p(t) > 70 Toeiko logy > 06 Vit
Sko

Now for the case A < % and ¢t < 1, recall from that

log(~) _ _log(v)

—ki > T
T0 > TJ,_ Olog(%) > 712’, T'+ — At log(%)
5 =~ |z i :
Sko r_ reoor— — A
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We work out the asymptotics for fixed A < % and first order Taylor expansions for

t~1.
4¢P = 4X1—X) (1 +1log[A(1 = N)](t - 1)) + h.o.t.

VI-4ef = (1- 2)\)\/1 C A=A = A= 1) + hot.

(1-2))2
2A(1— \)
= 1—-2 1———21 1— —1 h.o.t.
( A)( A o1 - ) >)+ ot
/1 — 408)2
o=t = UEVIZAT o0 o)) fhot.
r_ 4¢P
rp—A = 1-2\+ho.t.

1—-2X
This gives exponent log(7)/log(R) (which is ~ log(y)/(2(1 —2))) as A — 1) and

ro— A = (M log[A(1 — A)] — 2\ log )\> (t—1)+h.o.t.

1-2)\
2o A (14 4(1 —2X) (_/\(1—>\) Tog[N(1—N)] 2N (12N log>\> b

.0.t.
r2 r_ — X\t 1—t ©

log v
Hence the estimate holds for 0 < C' ~ (7)‘(17’\)(lloﬂg_zi(ll_;))\\))];(rfi(zgz)\) log/\)%g(l_m as
A— L O
Lemma 4. Ifp > 0, then 71),’; — 0 super-exponentially:

-t ePFmpSiritarif St =1,
w; =
K eB—PSk-1tan otherwise,

where (ax)k>1 s a convergent sequence depending on p and t.

Proof. First note that if Y, @} # 1, then the factor e P91 is the only factor in
that tends to zero. Hence the final statement of the lemma is immediate. So assume
now that Y, wl =1, and w}, decreases faster than Pk,

Taking a linear combination of two consecutive equations in (24)), we obtain
ePIk-1qpt — e”sku?,’;ﬂ = Pul . (31)
By setting @}, = ePE=PSkriter for some ay, € R, we rewrite ([B1)) as
1 — B PSk—1takp1—0k — k1=
Abbreviating ¢, = ap — ai_1, we have
1 — P PSk-1—kt1 — ok

This means that € — 0 exponentially and hence oy converges to some limit ao =
Qoo (P, t), exponentially fast in k. Therefore, W}, — 0 super-exponentially in k, whenever
p > 0. [l
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7.2. Upper bounds on Pgou (). We define upper bounds on p(t) using a non-
autonomous dynamical system. The following lemma will be applied to this.

Lemma 5. The mapn:r+—1— 457 has

one fixzed point % if £ =1,

two fized points O = %(1 +v1-¢) if € <1;

no fired points if € > 1.
If £ < 1, then the largest fixed point %(1 + V1 —=¢) is attracting; if £ < 0, then the
interval [1,00) is invariant. If € > 1, and 6 = 3?523) then it takes an orbit at least

352?_%) iterates to pass through the interval

[ 6,4 + 4.

Proof. The first statements follow from straightforward calculus. For the last state-

ment, observe that 7/'(r) = 1 for r = § and the vertical distance r — n(r) = € — 1.
Furthermore (r +46) —n(r+6) < (V€—1) + %52. and (r—0)—n(r—290) < (VE-1)+

%62 +0(8%). Hence for ¢ sufficiently close to 1, we have z —n(z) < (v/€—1)+(3/2)%5?

for all x € [§ — 9, § + 6], so it takes an orbit at least 26 /[(v/€ — 1) + (35/2)?] iterates
to pass through this interval. This quantity is maximised for

5 = 2(\/2 B 1) — 2(5 B 1) (32)

3 3(VE+1)
in which case (r+0) —n(r+96) < (1 + ﬁ)(ﬁ —1). In this case, it takes at least

3;2?_%) iterates to pass through the interval. O
Lemma 6. Let (uy) be given by
. B’ —PSk—2
U = A and Ugr1 = Mg (ug) :=1— T

There exist constants 71 = 11(N\), 71 = 71(\) (with precise values given in the proof)
such that if

5T

N : > 1 _ 2logy
T1€ if A>3, t <ty closetot;, T WAy

p > Alog v

(1 —)20=28  f A< 3, t <1 close to 1,

then uy > % for all k and up, — 1 exponentially.

Proof. Let &, = %' ~PS—2_ The dynamics of the map ny, : 7 — r— % depend crucially on
whether & > 1 or £ < 1. These cases are roughly parallel to A > %, t < t1 close to t;
and A < %, t < 1 close to 1. However, if pSj_o is sufficiently large, the factor e PSk-2
turns the first case into the second.

By Lemma 5] if §; < 1, then 7, has an attracting fixed point, tending to 1 as § — 0.
Therefore, once 8 — pSi_s < 0, and assuming that u, > 0, where 0 < % is the
repelling fixed point of 7y, the orbit of u; will tend to the attracting fixed point which
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itself moves to 1 at an exponential rate as k — oo. However, if & > 1, i.e., & is
“before” the saddle node bifurcation that produces the fixed point %, then up will
decrease and eventually become negative. The crux of the proof is therefore to show
that the “tunnel” between the graph of 1, and the diagonal closes up before the orbit
(ug)k>0 has moved through this tunnel.

We fix € = ¢ and § as in , and we will choose p so that the repelling fixed point
O is to the left of the tunnel (of width 2§ and centred around the point z = \/£/2 at
which 7/ (x) = 1), i.e.,

On =5 (1~ VI—€em2) < oVE—d= 1 (VE-GVET),

2

8

where we abbreviated G = SVETD)

< g. Assuming that equality holds, and solving

for e PSk—2 we obtain

1 — e P52 = (\/E 1) (\/5 —1-2GVE— 1+ (VE+ 1)G2> ,
which can be reduced to pSi_s = 2(1 + G?)(VE€ — 1) + o(/€ — 1).

Lemma [b| states that the passage through the tunnel takes at least

o 3(vVE+1) 2 5 2

26—-1) GVE—T 6 V/—1ogM1 = N)](ta — t)

iterates. Note that 2(1 + G?) = 14/3 < 5. Choose 11 = 57?(Vel — 1) = 592(\/€ — 1)
5T

and p > Tie 2= Then

5T 2 _
p>me VR > ekl — 502\ /e —1)yF > 2(1+C;k)(;/g :

Hence pSi_2 > (1 + G?)(v/€ — 1) + o(v/€ — 1) and we conclude that the tunnel closes
with fixed point to the left of the tunnel, before u; passes through it. At (or before)
this iterate, u; starts to increase again, and eventually converge to 1 at an exponential
rate.

Now let us assume that £ < 1, so there is a (left) fixed point ©_ = (1 —+/T — &) which
for t = 1 coincides with u; = A'. For t < 1, we have u; < ©_, say O1 —u; = ¢ = &(t),
and Taylor expansion shows that

() =5 (1- 2 —V1—4e7) =01 1) +O((1 ~ 1))

for C = AlogA — A(1 — )\)M. Assume that j is the first iterate such that

T—2)
u — /e = uj. Let K =n/(u1 —/€) < ﬁ ~ Z—i = (1;?){ By taking a line with
1

slope K through the point (©_,0_) to approximate the graph of 7); (and this line lies

below the graph of 7y on the interval [u; — /€, ©_]), we can estimate u; > u; — K77 te,
so KI=t >1/,/e.
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Alog
Due to the inequality log K < tlog (%) <t (%), and taking 71 = (log 5)02“1—%21),
Alo
the condition p > 7{(1 —t) (1-29 implies

lo o log 4 logd log4

p>logs- (C(1—1)T0K > (log 4)(Va) ikt > —o8 - 080 088

KUV ¥t Sia
Let ©; be the left fixed point of n;. Thus, given that p > (log4)/S;_1, we find that
0; = %(1 — /1 —¢e#7PS-1) > A'/4 for t close to 1. Therefore ©; < uj, and u; will
converge to the attracting fixed point ©, which itself converges exponentially to 1. [

Proposition 4. For the constants T, 7] from Lemma @ we have the following upper
bounds for the pressure:

_5_T
< Jne Vit if A > %, t < t1 close to ty;
p(t) ~ Alog'y . 1
(1 —=1)20=20  if A< 5, t <1 close to 1.

~t
Proof. Let ug = %e”sk—% S0 up = AteP(5-1150=51) — \t > % (where we set S_1 =1
by default). From we have

66/7psk72
g1 =1 — T (33)
5 Alog

For p > 7ie vtl forp > m(l—t)2na-24 2 as given in Lemma@ the iterates uy are
bounded away from zero and u, — 1 exponentially. Therefore

B —pSj—1
(&4 J
Uoo ::Huj = ul-H<1—4')
=1 =2 i1
Seﬂl_psj—l
= ro- l1———— | >0
j=3

because } -, 3ef'~P%i-1/8 < o0 and all terms e ~P5i-1 /8 are uniformly bounded away
from 1. Since

wlt<;+1 — e~ p(Sk—2+Sk—1++5S-1 Hu],

it follows that all @} are positive, and as W} = e#~P%i-1 (1 = k1 W ) also

Hk; lpa . Z

j<k—1
for all k.

_5 r Alog~y
To prove that Hi(p) < 1 for p > mie *Va~t or p > (1 — t)20-20 | we will show
that 8H’“(p ) < 0 for these values of p. Observe that OH (p,t)/0p satisfy the recursive
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relation:
Hi=(1-\)te? Gh — —(1-Nfe? <o,
Hy = (1—\te P 4 efe? Ok — —(1-NteP—2eF" 7 < G0

6H]- _ 8Hj_1 _ e:prijl 8Hj_2
op —  Op Jp
_ j_leﬁ—ij_l(l _ Hj_Q).

Hj = Hj—l + 6’871057"1(1 — Hj_g)

Writing U; := BB—% and gj41 == Uj_l/Uj_Q, we find g4 = 1+ 2¢8=20 > 1 and

. B'—pSj—2 1— H. B'—pSj—2
—1 € ji—3 (&

=niqj)) =1— —— 1+S'_2>>1—
y 77]( ]) Aq; < Jj Uj_s Ag; s

J
where the final inequality relies on U;_3 being negative. This follows from induction,
combined with Lemma |§|7 which implies that ¢, > % and g — 1 exponentially fast, so
[liz4@ > 0. It follows that

=

gj+1 =

-

OH J
il T U 1 ,
oy ~ U =V Jim [l <o
/L:
and hence H(p,t) < 1. O

Remark 4. The techniques in this proof give no explicit formula for %—g and %—? as

t " t1, so they don’t answer the question whether fl—lt” —0ast "t.

7.3. Existence and uniqueness of Pg,ue(¢;).

Lemma 7. For allt < ty there exists py, = pe = 0 such that H(py,t) = 1 and wi(pg) =0
for all i, and H(p,t) <1 for all p = py.

We will show later in this section that in fact p, = py for t close to ¢1; and then in
Section [ that this is actually true for all ¢.

Proof. For any p > 0, since w!(p) < e#~PSk—1 we have H(p,t) < oo. This fact also
implies that H(p,t) < 1 for all large p, thus proving the existence of p,,.

For each (p,t), define the partial sums H; = H;(p,t) := >, ; wi(p). Recall from
Lemma [2| that there is some minimal ky € N such that 11)}20 (0) = 71)20 < 0. By the
recurrence relations defining ! (0), this means that Hy,_2(0,t) > 1. Now we prove the

existence of a solution to the equation H(p,t) = 1 with all d/; (p) = 0 by continuity.
For k € N, let

pr:=inf {p>0: H;(p',t) <1 for each j < k and p' > p}.
We collect some facts:

e sup;, pi € (0,00). Since Hy,_2(0,t) > 1 for some kg € N as shown before, combined
with the fact that (pg)r>1 is a non-decreasing (which follows immediately from the
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definition of p;) gives that sup,pr > 0. The finiteness follows from the bound
wi(p) < e POk

o If pr > 0 then Hy(pg,t) = 1. This follows since each map p — Hy(p,t) is continuous
in p, so by the definition of p; as an infimum, there must exist a minimal j < k
such that H;(px,t) = 1. But our recurrence relation implies that Hj41(pg,t) =
Hj(pg,t) + eP~Pe56 (1 — Hj 1 (py,t)) > Hj(pg,t) = 1. This must also hold for all p
sufficiently close to pg, so if 7 < k then this contradicts the definition of py.

. 1I)§- (p') = 0 for all j < k and p’ > pg. If this fails, take the minimum such k& and

note that implies that H;_»(p’,t) > 1, a contradiction.

Now define po := supy pr. It follows immediately from this definition that for any
JEN, Hj(poo,t) <150 H(pso,t) < 1. Note that this also implies that w;f-(poo) > 0 for
all j e N.

To show that H(peo,t) = 1, notice that for p > 0 and any j € N,

H(p, ) p7 +Zwk pv —6526 pSk

k>j k>3
So defining jo € N such that pj, > 0, let s(j) := ef ij e PioSk, Then for Dj = Djo>

H(pj,t) = Hj(pj,t) — 5(j) = 1= 5())-

So since s(j) — 0 as j — oo, we have H(pj,t) — 1 as j — oo. Therefore, the
continuity of p — H(p,t) on the domain where the sums are bounded implies that
H(poo,t) = 1. O

Proposition 5. There is at most one solution p = p(t) to H(p,t) = 1 with all W} > 0.
Moreover, 92 < 0, 2 at < 0, and the map t — p(t) is analytic with dp <0 on (t;—e,t1).

Proof. The proof uses many of the ideas of the proof of Proposition [d The previous
proof shows that positivity of all @! is equivalent to positivity of the numbers uy =

=t
wg—;:epsk—l from . Therefore, if p = p(t) is a solution to the problem w} > 0 and

H(p,t) = 1, then the corresponding sequence (ug)y is positive. Positivity of %ﬁ’t) is
equivalent to positivity of an orbit (vg)x for a slightly different but larger map, and
with an initial value v4 > 1 > wy. Therefore, as (ug); is positive, so is (vk)g, and
0 < [Ips1ur < [Ij V24 = voo, whence %}’;’t) = Voo aHé,i;p’t) < 0. This shows that

there can be at most one solution to H(p,t) = 1.
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We can use the same technique to estimate %f’t) for t < ty:
Hi = (1—\)te? O —log(1—A\)(1—N)fe™ < 0.
Hy = (1 —\te P 4 efe2p 9 —Jog(1 — A)(1 — A)le?

- OH
+ log[A(1 — \)]ef =2 < 9.

Hj=Hj o+ P P51 (1— Hy ) G = 2=t — efpSima O
+ log[A(1 — \)]e®~PSi-1(1 — H;_s).
log[A(1—\)]ef—P

If we now write U; = % and gj1 = Uj—1/Uj_2, we find ¢4 = 1 + Tog(1=N) (1=N) >

and

Uj—1 ' =pSi-2 < 1-— Hj—3> B —pSj—2
. = =1——|(1— 10 )\ 1-— )\ — 2 1-— )
qj+1 Ujf2 46]]’ g[ ( )] Uj73 4(]]'72

where the final inequality relies on U;_3 being negative. The same argument shows
that %—? < 0 as well. Furthermore, since H (p,t) is analytic in both p and ¢, the Implicit
Function Theorem implies that ¢ — p(t) is analytic on (t; — €, 1) and % < 0. O

8. INVARIANT MEASURES

Now we look at the invariant measure jis, << my, for t < ti.

Theorem 1. Suppose t < t; and p > 0 satisfies H(p,t) = 1 with all summands non-
negative. Then we have the following:

(a) There is an Fy-invariant measure iy = fip << My p;
b) The Radon-Nikodym derivative i s bounded and bounded away from zero;
dm
c) e projects to an fy-invariant probability measure vy < ng.
1

Proof. The solution @’ to and H(p,t) = 1 gives rise to a probability transition
matrix

~t ~t ~t ~t

wy Wy w3 Wy

~1 ~t ~1 ~t
0 5 -t 5 -t i 13
Gt _ Dizo Wi Dz W Dlino W

o 0 0 wh o
Yiss W Xina W)

0 0 0 '

The left eigenvector 2 = (94,95, ...) for eigenvalue 1 represents the invariant measure:
potp (Wi U Wk) = o). To find it, we start with v = (1,0,0,...) and iterate v(™ =
v~ DGt Since G* is a stochastic matrix (i.e., nonnegative and with row-sums are 1),
each v(™ is non-negative and has ||v(™||; = 1 as well. We prove by induction in n that
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v](-n) decreases super-exponentially in j. We will show that there is K € N such that for
all n >0,
UNJt
ol < AL forall k > K. (34)
Wi—2

Since wf = eﬁk_72ps’€+1+o‘k decre~ase super-exponentially in k as described in we

can find K such that ~t < 2Z > K. Clearly . ) holds for v, For the
—1

inductive step, assume . ) holds for n — 1. Then for k > K arbitrary,

. L,k D
o=k (T (35)
=3 izj—1 "%
k (n—1) N
+ | -1 (n—1) Y (n—1) izt Wi
- wk Ul + U2 + = + ’Uk 1 - ~
= Disj—1W; i sk W
< (Vo oY) oY
-1
Wy W} Wy
o ~1 < ~1 )
Wg—1  Wp1  Wpo
where in the last line we used that [[v"~D| = 1 as well the choice of K. This shows

that although the unit ball in {! is not compact, the sequence (v(”))n;o is tight, and
hence must have a convergent subsequence. Since G? is clearly an irreducible aperiodic
matrix, (v(™),> converges; let #¢ be the limit. Then %' is positive and ||7t]|; = 1.

The measure u; defined by the piecewise constant Radon-Nikodym derivative hy :=

T ~t
h’WkuWk = % = % is now easily seen to be invariant. By taking the limit
t k k k

n—)ooin,weﬁnd

k+1 t ~

~t ~ _ wk ~t W, ~t

0y, = wy, U1+”2+Z =t U1t ~tvk+17
— z>] 1“’ Wg_1q Zi>j 1

and dividing this by ’UNJZ shows that (hy)ken is increasing, and hence bounded away
from 0. Now for the upper bound, taking the limit n — oo in shows that 17}; —0
super-exponentially fast. Take K € N such that

E>K k—1
Then by (35):
” K~ k=1 ¢ _ t
v B ~ U, w v
hk:fﬁgvi—l—vé—i-z .,tj + ,,tj hj+ ,,tk hk"‘ I:flhk
Wy, = Wimr ik Wit k—1 Yk
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This gives
C+ (supjp hy) - Sy o
SUPj<k 1 j=K+1 u};__l
hi, < o : (36)
]- - l’[}tk ﬁ‘t”
k—1 k

ot . . .
If ’;};{1 < i, then so long as k is sufficiently large, yields hy < 2C + %supjdc h;.
Since hy, is an increasing sequence, we conclude that h, < 4C and moreover, h; < 4C
for all j < k. The fact that 17}2, — 0 super-exponentially implies that there are infinitely

~t
many k satisfying U’%:{l < %, so h; < 4C for all j € N, concluding the upper bound.

Since py(W; U WZ) = 0} decreases super-exponentially, A := Zj Si—1pe(W; U W]) < 00
for t < t1, so by Lemma [1} y; pulls back to an fy-invariant probability measure vy <
Te. ]

9. THERMODYNAMIC FORMALISM FOR COUNTABLE MARKOV SHIFTS

9.1. Countable Markov shifts. In previous sections we have computed quantities
such as pressure rather directly, which gives a fuller understanding of the underlying
properties of our class of dynamical systems. In this section we use the theory of count-
able Markov shifts, as developed by Sarig, to prove stronger results more indirectly. In
particular, we can obtain information about the pressure and equilibrium states for ¢;
for all t € R.

Let 0 : ¥ — ¥ be a one-sided Markov shift with a countable alphabet N. That is, there
exists a matrix (;;)nxn of zeros and ones (with no row and no column made entirely
of zeros) such that

Y={reNV:¢ . =1foreveryic Ny},
and the shift map is defined by o(zoz1---) = (z122---). We say that (3,0) is a
countable Markov shift. We equip X with the topology generated by the cylinder sets

leo--en1]={xeX:z;=¢jfor 0<j<n}

Given a function ¢: ¥ — R, for each n > 1 we define the variation on n-cylinders

V(o) = sup{[¢(z) — ¢(y)| : z,y € B, 2; = y; for 0 < i <n}.

We say that ¢ has summable variations if Y 2 , Vi, (¢) < o0; clearly summability implies
continuity of ¢. In what follows we assume (3, 0) to be topologically mixing (see [43],
Section 2] for a precise definition).

Based on work of Gurevich [2I], 22], Sarig [43] introduced a notion of pressure for
countable Markov shifts which does not depend upon the metric of the space and
which satisfies a Variational Principle. Let (3, 0) be a topologically mixing countable
Markov shift, fix a symbol eg in the alphabet N and let ¢: ¥ — R be a potential of
summable variations. We let the local partition function at [eg] be

Zo(dleo) = 3 ey (@)

r:ohr=x
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and
Zn (9, [eo]) = > O (@),
w:ak$¢z[;3(:)?zf§rzb<k<n
where X, is the characteristic function of the 1-cylinder [eg] C 3, and S,¢(z) is ¢(x)+

<+ ¢ oo™ 1(x). The so-called Gurevich pressure of ¢ is defined by the exponential
growth rate

Pa() := Tim log 7,(6, [eo]).

Since o is topologically mixing, one can show that Pg(¢) does not depend on ey. If
(3,0) is the full-shift on a countable alphabet then the Gurevich pressure coincides
with the notion of pressure introduced by Mauldin & Urbanski [37].

The following can be shown using the proof of [43, Theorem 3].
Proposition 6 (Variational Principle). If (X,0) is topologically mizing, ¢ : ¥ — R

has summable variations and ¢ < oo, then
Pa(¢) = P(¢).
Definition 3. The potential ¢ is said to be recurrent if E|

Z e*"PG(d’)Zn(d)) = 00.

Otherwise ¢ is transient. Moreover, ¢ is called positive recurrent if it is recurrent and

Zne*"PG(‘b)Z;(gb) < 00.

If ¢ is recurrent but not positive recurrent, then it is called null recurrent.

We use the standard transfer operator (Lyv)(x) = 3 ,,—, e?Wy(y), with dual operator
L;. Notice that a measure m is ¢-conformal if and only if L;‘Sm =m.

The following theorem is [42, Theorem 1]. Note that the next two theorems were
originally proved under stronger regularity conditions (i.e., weak Holderness) on the
potential, but subsequently it was found that these could be relaxed, see for example
[44] Chapters 3 and 4.

Theorem 2. Suppose that (X,0) is topologically mizing, ¢ : ¥ — R has summable
variations and Pg(¢) < oo. Then ¢ is recurrent if and only if there exists A > 0
and a conservative sigma-finite measure mg finite and positive on cylinders, and a
positive continuous function hg such that L2m¢ = Amyg and Lyhy = Ahg. In this case

A = ePe(@) | Moreover,
(1) if ¢ is positive recurrent then [ hg dmg < co;
(2) if ¢ is null recurrent then [ hy dmg = oco.
Moreover the next theorem follows by [43], Corollary 2]:

"The convergence of this series is independent of the cylinder set [eg], so we suppress it in the
notation.
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Theorem 3. Suppose that (X, 0) is topologically mizing and ¢ : ¥ — R has summa-
ble variations and is positive recurrent. Then for the measure dp = hgdmg given by
Theorem@ if — [ ¢ du < oo, then p is the unique equilibrium state for ¢.

We are now ready to apply this theory to our class of dynamical systems. The following
proposition contains the main ideas for the proof of Theorem [C] but we state and prove
it separately to highlight the connection with the results in Section [7]

Proposition 7. For each A € (0,1) and any t < t1,

(a) there is a unique p such that H(p,t) = 1 with all summands non-negative;
(b) this p is the unique value such that there is a (P — p)-conformal measure.

Proof. We first prove the proposition for the case t < t1, in which case, any p satisfying
H(p,t) = 1 with all summands non-negative, must be strictly positive. The existence of
such a p follows by Lemmam By Theorems and for p asin (a) of the proposition, the
potential &, — 7p is (positive) recurrent. Theorems also implies that Pg(®y—7p) = 0.
Since 7 > 1, for ¢ > 0 we always have Pg(®; — 7(p — €)) > Pg(®: — 7p) + &: this
means that any such p is unique. To summarise, there is one and only one p such that
H(p,t) = 1 with all non-negative summands and for this p, we have Pg(®; — 7p) = 0.
It is easy to see that such a p yields a (®; — 7p)-conformal measure.

For the case t = t1, by [16, Theorem B], Pg(®;) = 0. Theorem B of that paper
guarantees that p = 0 is a solution to H(p,t) = 1 with all summands positive. The
above argument also shows in this case that if there is a solution p > 0 to H(p,t) = 1
with all summands non-negative, then Pg(®; — 7p) = 0 and again this can only occur
if p = 0. To show that there is no negative solution, observe

w§ —=ePePSi-1 |1 = Z w}t€ > eﬁe_psﬂ'*le.
k<j—1
Therefore we must have p = 0 as the only solution to H(p,t) = 1 with all summands
positive. O

9.2. Proof of Theorem

Proof of Theorem[(. We prove parts (a) and (b) simultaneously. First suppose that
t < t;. As in the proof of Proposition |7} ®; — 7Pcont(¢¢) is positive recurrent. By
Theorem 3| p; from Theorem [1] is an equilibrium state for ®; — 7 Poone(¢¢) and hence
satisfies

h(pe) + /(‘I’t — TPoont(¢1))dpe = 0.

Thus the Abramov formula implies that the projected measure v4 has h(vy)+ [ ¢ dvy =
PConf(¢t), SO P(qbt) > Pconf(¢t). If P(¢t) > PConf(¢t) then there exists a measure v
(with positive entropy) for which h(v)+ [ ¢t — Pcoont(¢¢) dv > 0. Since any such measure
must lift to (Y, Fy), the Abramov formula and Proposition |§| lead to a contradiction.
Hence P(¢¢) = Pcont(¢¢). This also implies that 14 is the unique equilibrium state for

bt
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For the case t = t1, Proposition |7| implies that Pcons(¢r) = 0. This is clearly the same
as P(¢y), as follows continuity of the pressure. The existence/absence of an equilibrium
state here follows as in Theorem [Al

Now let ¢t > t;. For each A € (0,1), [16, Theorem A] implies that the ®;-conformal
measure my, if it exists, is dissipative. Hence no finite u; < my exists. However, just
as for smooth Fibonacci maps, w(c) supports a unique probability measure v,,, which
has zero entropy. For each = € w(c) not eventually mapping to ¢, D f{!(z) exists for all
n. Moreover, F¥(z) — ¢ so that if ny € N is such that Ff(z) = f™ (), then k/nj — 0.
The Lyapunov exponent of  under F) is —log[A(1 — A)], hence by part ¢) of Lemmall]
the Lyapunov exponent of x under f) is limg_, o, —nﬁk log[A(1 —A)] = 0. Therefore v, is

an equilibrium state in this case (and in fact also for ¢ = ¢1). This concludes the proof
of (a) and (b).

Now for part c¢), Lemma [2 implies that Poone(¢) > 0 for t < ¢t;. Now if ¢ > ¢1, then
p = 0 still gives a conformal measure, see . This is the smallest (and only) value
of p to do so, because if p < 0, then H(p,t) no longer converges. Indeed, by taking the
linear combinations in , we get

~1 _ . —pS; (=t pSj—1 Bt
Wi =e€ J(wje Tt —etw; ).

If p < 0, we can no longer assert that u~)§- is decreasing in j, but if H(p,t) converges,
then there must be (infinitely many) js such that 7])?- < 7])?_1. If also j is so large that
e P%-1 > [A\(1 — A)]7%, then the equation gives that ﬁ)j-ﬂ < 0, which is not allowed.
(The only other way of creating a conformal measure for f, is by putting Dirac masses
on the critical point and its backward orbit. Since f’(c¢) = 0, this enforces no mass on

the forward critical orbit. But f’ is not defined at f~'(c) = {20, 20}, so this gives no
solution.) Therefore Poone(¢pr) = 0 for t > t5.

Now we turn to analyticity. As in for example [27], the existence of a unique equilibrium
state of positive entropy implies that p(t) : t — P(¢;) is C'. (We can also use the fact

that p/(¢t) = — [log|Dfx| dvy, which is easily shown to be continuous in ¢.) It is easy
to see that Dp(t) < 0 for ¢t < t;. Therefore we have, as in Proposition [5| that p(t) is
real analytic on (—oo,t). O

9.3. Proof of Theorem [D] The following proposition, which should be compared to
[27, Proposition 1.2], will tell us the shape of the pressure function at ¢;. This also
gives part (d) of Theorem

Proposition 8. The following are equivalent.

(a) The left derivative D_p(t1) < 0;
(b) There exists K > 0, 0 > 0 so that for all t € (t; — 6,t1) there is an equilibrium
state vy for —tlog |Df| and for the induced version ju,

/T dpy = ZSkqut(Wk) < K.
A

Indeed, when the above holds, there is an equilibrium state vy, for ¢y, and [ 7 dpy, < K.
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Proof of Proposition[§ First assume that K < oo as in item (b) exists. Since p/(t) =
— [log|f}] dvt, the Abramov formula implies

log |F¥| dpu log A
log |f4] d _J A > —
/Og‘f)\’ Vi de,ut K ?

uniformly in ¢, i.e., D_p(t;) < lo[g(/\ <0.

Now let us suppose that D_p(t;) < 0. As in [27, Lemma 4.2], there exists 7 > 0 such
that any measure v € M with h(v) — tA(v) sufficiently close to p(t) has h(v) > n.
Suppose that (v,), is a sequence of measures such that h(v,) —tA(v,,) — p(t). For each
n, we denote the induced version of v, by u,. Now applying the Abramov formula and
since hiop(F)) = log 4, we obtain for all large n,

h(pin) log 4
< h n) — < 5
n < h(vn) S7dp, = [T dpn

so [T dun < (log4)/n.

Since [ 7 du, < (log4)/n for all large n, for any 1 > 0, there must be some N € N
such that g, (UY_;Wj) > 1 — 17/ for all large n. Notice that the choice of (vy),, the
Abramov formula and the uniform bound on the integral of inducing times implies that

h(pn) — /(Cbt —7p(t)) duy, — 0 as n — oo.

The proof now concludes by a tightness argument. Let 1o be a vague limit of (i, )y, see
for example [6l, Section 28]. This measure is non-zero since (UéVZIWk) > 1—1 for all
n € N. We may assume that it is a probability measure. The Monotone Convergence
Theorem implies that [7 dus < (log4)/n. Moreover, the continuity of ®; and the
upper semi-continuity of —7 implies that u is an equilibrium state for ®; —7p(t). The
fact that the integral of the inducing time is finite implies that we can project pso to
an equilibrium state v; for ¢, as required. ]

Proof of Theorem D The lower and upper bounds for the pressure on a left neighbour-
hood of 1 stated in (a) and (b) follow from Proposition (with in one case 7oC renamed
to 7() and Proposition {4 respectively. Finally, part (c) follows from Proposition O

9.4. Recurrence and transience. We finish the paper with a brief discussion of
recurrence/transience in the context of our examples using the definitions given above.
Since we can view (Y, F)) as a countable Markov shift, by Theorem [2| Proposition
and Theorem 1| we have the following results for the system (Y, F)\, ®; — 7p): note that
the precise behaviour at ¢ = t; is governed by the case p = 0 which is discussed in
Section [4| see also [16]:

o If A € (1/2,1) then (Y, F)\,®; — 7p) is recurrent iff t < t; < 1 and p = Poonr(Pr).
Whenever the system is recurrent, it is positive recurrent .

o If A € (0,1/2) then (Y, Fy, ®; — 7p) is recurrent iff ¢ < ¢; = 1 and p = Poont(¢1).
Whenever the system is recurrent, it is positive recurrent.

o If A =1/2 then (Y, Fy,®, — 7p) is recurrent iff ¢ < ¢; = 1 and p = Poone(r). It is
null recurrent for t = 1 and positive recurrent if ¢ < 1.
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For the original system, the Markov shift model is less easy to handle, so we prefer
an alternative definition of recurrence. In [28] a system (X, f, ¢) was called recurrent
whenever there was a conservative ¢-conformal measure mg and transient otherwise.
A recurrent system was defined as being positive recurrent if there was an f-invariant
probability measure pg4 < mg, and null-recurrent otherwise. With this in mind, the
results of this paper allow use to state:

o If A € (1/2,1) then (I, fn,¢r — p) is recurrent iff ¢ < t; < 1 and p = Poonr(Pt).
Whenever the system is recurrent, it is positive recurrent.
e If A\ € (0,1/2] then (I, fy, ¢¢—p) is recurrent iff t < ¢t; = 1 and p = Peone(¢r). When

the system is recurrent and p = Pgoont(¢¢), it is positive recurrent iff A € (0

[1

[2

3

[4

[5

=

N

(10]
(11]
(12]
(13]
(14]
(15]
(16]
(17]
18]
(19]

[20]

L)
? 34577

REFERENCES

Avila, A., Lyubich, M.: Hausdorff dimension and conformal measures of Feigenbaum Julia
sets, J. Amer. Math. Soc. 21, 305-363 (2008)

Bandtlow, O., Fiala, J., Kleban, P., Prellberg, T.: Asymptotics of the Farey fraction spin
chain free energy at the critical point, Journ. Stat. Phys. 138, 447-464 (2010)

Baraviera, A., Leplaideur, R., Lopes, A.: The potential point of view for renormalization,
Stoch. Dyn. 12, 243-260 (2012)

Barreira, L., lommi, G.: Multifractal analysis and phase transitions for hyperbolic and para-
bolic horseshoes, Israel J. Math. 181, 347-379 (2011)

Benedicks, M., Misiurewicz, M.: Absolutely continuous invariant measures for maps with flat
tops, Inst. Hautes Etudes Sci. Publ. Math. 69, 203-213 (1989)

Billingsley, P.: Probability and measure, Third edition, Wiley (1995)

Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer
Lect. Notes in Math. 470, (1975)

Bruin, H.: Invariant measures of interval maps, Ph.D. thesis, Delft. (1994)

Bruin, H.: Topological conditions for the existence of absorbing Cantor sets, Trans. Amer.
Math. Soc. 350, 229-2263 (1998).

Bruin, H., Hawkins, J.: Exactness and maximal automorphic factors of unimodal interval
maps, Ergodic Theory Dynam. Systems 21, 1009-1034 (2001).

Bruin, H., Keller, G.: Equilibrium states for S—unimodal maps, Ergodic Theory Dynam.
Systems 18, 765-789 (1998).

Bruin, H., Keller, G., Nowicki, T., van Strien, S.: Wild Cantor attractors exist, Ann. of Math.
143, 97-130 (1996)

Bruin, H., Luzzatto, S., van Strien, S.: Decay of correlations in one-dimensional dynamics,
Ann. Sci. Ec. Norm. Sup. 36, 621-646 (2003)

Bruin, H., Todd, M.: Equilibrium states for interval maps: the potential —tlog|Df|, Ann.
Sci. BEe. Norm. Sup. 42, 559-600 (2009)

Bruin, H., Todd, M.: Equilibrium states for interval maps: potentials with sup¢ — inf ¢ <
htop(f), Commun. Math. Phys. 283, 579-611 (2008)

Bruin, H., Todd, M.: Transience and thermodynamic formalism for infinitely branched interval
maps, J. London Math. Soc. 86, 171-194 (2012)

Coronel, D., Rivera-Letelier, J.: Low-temperature phase transitions in the quadratic family,
Adv. Math. 248, 453-494 (2013)

Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers, Carus Math. Monogr., 29, Mathe-
matical Association of America, (2002)

Dobbs, N.: Renormalisation-induced phase transitions for unimodal maps, Commun. Math.
Phys. 286, 377-387 (2009)

Gaspard, P., Wang, X. J.: Sporadicity: between periodic and chaotic dynamical behaviours,
Proc. Nat. Acad. Sci. USA 85, 4591-4595 (1988)



(21]
(22]
23]
24]
25]
[26]
27]
(28]
29]
(30]
(31]
32]

(33]
34]

(35]
(36]
37]
(38]
(39]
(40]

(41]

42]
(43]
[44]

[45]
[46]

(47]

WILD ATTRACTORS AND THERMODYNAMIC FORMALISM 41

Gurevic, B. M.: Topological entropy for denumerable Markov chains, Dokl. Akad. Nauk SSSR
10, 911-915 (1969)

Gurevi¢, B. M.: Shift entropy and Markov measures in the path space of a denumerable graph,
Dokl. Akad. Nauk SSSR 11, 744-747 (1970)

Hofbauer, F.: On intrinsic ergodicity of piecewise monotonic transformations with positive
entropy, Israel J. Math. 34, 213-237 (1979)

Hofbauer, F.: The topological entropy of the transformation z — az(1 — x), Monatsh. Math.
90, 117-141 (1980)

Hofbauer, F., Keller, G.: Some remarks about recent results about S-unimodal maps, Ann.
Inst. Henri Poincaré, Physique Théorique 53, 413-425 (1990)

Keller, G., Nowicki, T.: Fibonacci maps re(af)visited, Ergodic Theory Dynam. Systems 15,
99-120 (1995)

Tommi, G., Todd, M.: Natural equilibrium states for multimodal maps, Commun. Math. Phys.
300, 65-94 (2010)

Tommi, G., Todd, M.: Transience in dynamical systems, Ergodic Theory Dynam. Systems 33,
1450-1476 (2013)

Ledrappier, F.: Some properties of absolutely continuous invariant measures on an interval,
Ergodic Theory Dynam. Systems 1, 77-93 (1981)

Levin, G. éwi@tek, G.: Dynamics and universality of unimodal mappings with infinite criti-
cality, Commun. Math. Phys. 258, 103-133 (2005)

Lopes, A. O.: The zeta function, nondifferentiability of pressure, and the critical exponent of
transition, Adv. Math. 101, (1993) 133-165.

Liiroth, J.: Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe, Math.
Ann. 21 411-423 (1883)

Lyubich, M., Milnor, J.: The unimodal Fibonacci map, J. Amer. Math. Soc. 6, 425-457 (1993)
Martens, M.: The existence of o-finite measures, applications to real one-dimensional dynam-
ics, Stony Brook Preprint 1, (1992)

Makarov, N., Smirnov, S.: On thermodynamics of rational maps, II. Non-recurrent maps, J.
London Math. Soc. 67, 417-432 (2003)

Moreira, C. G., Smania, D.: Metric stability for random walks (with applications in renormal-
ization theory), Preprint 2005 (updated 2009).

Mauldin, R., Urbanski, M.: Dimensions and measures in infinite iterated function systems,
Proc. London Math. Soc. 73, 105-154 (1996)

Nowicki, T., van Strien, S.: Invariant measures exist under a summability condition for uni-
modal maps, Invent. Math. 105, 123-136 (1991)

Pesin, Y., Senti, S.: Equilibrium measures for maps with inducing schemes, J. Mod. Dyn. 2,
1-31 (2008)

Prellberg, T., Fiala, J., Kleban, P.: Cluster approximations for the Farey fraction spin chain,
Journ. Stat. Phys. 123, 455-471 (2006)

Rivera-Letelier, J., Shen, W.: Personal communications and Statistical properties of one-
dimensional maps under weak hyperbolicity assumptions, Preprint 2011 and revised version
2014 (arXiv:1004.0230).

Sarig, O.: Thermodynamic formalism for null recurrent potentials, Israel J. Math. 121, 285-
311 (2001)

Sarig, O.: Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam.
Systems 19, 1565-1593 (1999)

Sarig, O.: Lecture Notes on Thermodynamic Formalism for Topological Markov Shifts, http:
//www.wisdom.weizmann.ac.il/~sarigo/TDFnotes.pdf| (2009)

Stratmann, B., Vogt, R.: Fractal dimension of dissipative sets, Nonlinearity 10, 565-577 (1997)
Zweimiiller, R.: S-unimodal Misiurewicz maps with flat critical points, Fund. Math. 181, 1-25
(2004)

Zweimiiller, R.: Invariant measures for general(ized) induced transformations, Proc. Amer.
Math. Soc. 133, 2283-2295 (2005)


http://www.wisdom.weizmann.ac.il/~sarigo/TDFnotes.pdf
http://www.wisdom.weizmann.ac.il/~sarigo/TDFnotes.pdf

42 HENK BRUIN AND MIKE TODD

FacuLry OF MATHEMATICS, UNIVERSITY OF VIENNA, OSKAR MORGENSTERNPLATZ 1, 1090 VIENNA,
AUSTRIA

FE-mail address: henk.bruin@univie.ac.at

URL: http://wuw.mat.univie.ac.at/~bruin

MATHEMATICAL INSTITUTE, UNIVERSITY OF ST ANDREWS, NORTH HAUGH, ST ANDREWS, FIFE,
KY16 9SS, SCOTLAND

FE-mail address: m.todd@st-andrews.ac.uk

URL: http://wuw.mcs.st-and.ac.uk/~miket/index.html


http://www.mat.univie.ac.at/~bruin
http://www.mcs.st-and.ac.uk/~miket/index.html

