1	
2	
3	
4	Bonobos (Pan paniscus) vocally protest against violations of social expectations
5	
6	Zanna Clay ^{1*} , Lucie Ravaux ² , Frans de Waal ³ , Klaus Zuberbühler ^{1, 4}
7	
8	¹ Department of Comparative Cognition, University of Neuchatel, Neuchatel
9	(Switzerland); ² Institut Jean Nicod, Ecole Normale Supérieure, Paris (France); ³ Living
10	Links, Yerkes National Primate Research Center, Atlanta (USA), ⁴ School of
11	Psychology & Neurosciences, University of St Andrews (UK)
12	• Zanna Clay: <u>susanna.clay@unine.ch</u>
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

24	Abstract
25	Research has shown that great apes possess certain expectations about social
26	regularities and both perceive and act according to social rules within their group.
27	During natural and experimentally induced contexts, such as the inequitable
28	distribution of resources, individuals also show protesting behaviours when their
29	expectations about a social situation are violated. Despite broad interest in this
30	topic, systematic research examining the nature of these expectations and the
31	communicative signals individuals use to express their protests to violated
32	expectations remains scant. Here, we addressed this by exploring whether
33	bonobos (Pan paniscus) respond to violations of social expectations in naturally
34	occurring social interactions, focussing on the vocal behaviour of victims
35	following socially expected and unexpected aggression. Expected aggression
36	included conflicts over a contested resource and conflicts that were provoked by
37	the victim, while unexpected aggression was any spontaneous, unprovoked
38	hostility towards the victim. For each conflict, we also determined its severity and
39	the composition of the nearby audience. We found that the acoustic and temporal
40	structure of victim screams was individually distinct and varied significantly
41	depending on whether or not aggression could be socially predicted. Certain
42	acoustic parameters also varied as a function of conflict severity, but unlike social
43	expectation, conflict severity did not discriminate scream acoustic structure
44	overall .We found no effect of audience composition. We concluded that, beyond
45	the physical nature of a conflict, bonobos possess certain social expectations

46	about how they should be treated and will publicly protest with acoustically
47	distinctive vocal signals if these expectations are violated.
48	Keywords: violation of expectancy; social norm; social conflict; audience effect; protest;
49	scream
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	

69	Author footnotes
70	Z. Clay is also affiliated with: ³ Living Links, Yerkes National Primate Research Center,
71	Atlanta (USA)
72	
73	Corresponding Author: Zanna Clay, Institute of Biologie, University of Neuchatel, Rue
74	Emile-Argand 11, Neuchatel, 2000, Switzerland; +41 032 718 30 64
75	susanna.clay@unine.ch
76	
77	Acknowledgements: This work was financially supported by the Living Links Center
78	(Yerkes National Primate Research Center), Emory University's College of Arts and
79	Sciences as well as the European Union's Seventh Framework Programme for research,
80	technological development and demonstration (grant no. 283871). We thank Pitshou
81	Nsele Kayanga for assistance in data collection. We are grateful to Claudine André,
82	Fanny Mehl, Dominique Morel, Valery Dhanani and Pierrot Mbonzo for their
83	collaboration and to the Ministry of Research and the Ministry of Environment in the
84	Democratic Republic of Congo for supporting our research (research permit:
85	MIN.RS/SG/004/ 2009). We thank all the staff of Lola ya Bonobo for their support,
86	particularly to Stany Mokando and Jean-Claude Nzumbi. We thank Brian Hare for his
87	ongoing support.
88	
89	
90	
91	

92	Introduction
93	The notion that animals may possess personal expectations about social
94	regularities or what is permissible within social encounters has been a topic of
95	considerable interdisciplinary interest, including those interested in the evolution of
96	morality, justice and fairness (e.g., Bekoff, 2001, 2004; Brosnan & de Waal, 2012, 2014;
97	de Waal, 2014; de Waal & Tyak, 2003). One hypothesis is that animals possess a sense of
98	'social regularity', i.e., a set of expectations about how they and others should be treated
99	and how resources should be divided (de Waal, 1996).
100	Experimental research using food rewards has shown that a range of non-human
101	primates (see Price & Brosnan, 2012; Brosnan & de Waal 2014, for reviews), as well as
102	corvids (Wascher & Bugnyar, 2013) and dogs (Range, Horn, Viranyi, & Huber, 2009),
103	possess certain expectations about resource distribution and will protest against
104	distributional inequities of rewards in which they are disadvantaged. For example,
105	capuchins (Cebus apella) and chimpanzees (Pan troglodytes) will protest by becoming
106	unwilling to trade for low-value food rewards after observing their partner receiving a
107	higher-value reward for no extra effort (Brosnan & de Waal, 2003; Brosnan, Schiff, & de
108	Waal, 2005). More active behavioural protests have also been observed. For example,
109	during the 'Ultimatum Game', an economic game considered to be the hallmark test for a
110	human sense of fairness, chimpanzees protested towards selfish offers proposed by their
111	partner by spitting water and hitting the cage-bars, while human children in the same task
112	made verbalised protests (e.g., "you got more than me") (Proctor, Williamson, Brosnan,
113	& de Waal, 2013). Another study showed that chimpanzees were prepared to 'punish'
114	individuals that stole their food by pulling a rope to cause their reward to fall out of reach

115	(Jensen, Call, & Tomasello, 2007). So far, most studies showing protest to distributional
116	inequities have been based on paradigms in which subjects are required to perform an
117	effortful trading task to obtain food rewards (Price & Brosnan, 2012). Whether or not
118	these forms of protests to distributional inequities relate to a broader sensitivity to
119	violations of expectation in other social contexts, however, remains less understood.
120	Beyond experiments with food rewards, research into whether animals are
121	sensitive to inequities and violations of expectations during social encounters has mostly
122	focussed on social play (Bekoff & Pierce, 2009; Pierce & Bekoff, 2012; van Leeuwen,
123	Zimmermann, & Davila-Ross, 2011). In one study, juvenile chimpanzees 163were shown
124	to follow distinct social rules during play, which they used to guide their rates of play
125	signalling and levels of play intensity (Flack, Jeannotte, & de Waal, 2004). For example,
126	juveniles increased their play signalling in the presence of mothers of younger partners,
127	especially as the intensity of play bouts increased, suggesting that they were sensitive to
128	the influence that social pressures and third-parties (i.e. maternal interventions) may have
129	on their interactions and increased play signalling in order to prevent termination of the
130	play bouts.
131	In the context of aggressive interactions, studies of chimpanzees and rhesus
132	macaques (Macaca mulatta) have suggested that, beyond personal expectations involving
133	the actor, individuals may also be sensitive to violations of social rules involving third-
134	parties and are even willing to break up conflicts impartially or sometimes on behalf of
135	the victim (Boehm 1994; de Waal 1984; Flack, Girvan, de Waal, & Krakauer, 2006;
136	Goodall 1986; von Rohr, Burkart, & van Schaik, 2011). For example, Townsend,
137	Slocombe, Emery-Thompson, & Zuberbühler (2007) described a case of a wild adult

138	male chimpanzee interfering against an infanticide attempt by several adult females on a
139	newly immigrated female's newborn infant. Nevertheless, the cognitive mechanisms
140	underlying these kinds of intervention behaviours are not well understood, and there still
141	remains a clear distinction between responses towards violated personal expectations
142	involving the actor itself as opposed to possessing expectations about how third-parties
143	should be treated. Beyond bystander interventions, for example, it is not well understood
144	whether the victim receiving the aggression possesses expectations about how they
145	should be treated, or whether agonistic interactions are guided by social rules.
146	While the above mentioned studies are valuable in suggesting that animals are
147	sensitive to social inequities and, in some cases, social rules, most of the available
148	evidence only indirectly addresses whether animals possess expectations about how they
149	should be treated in social situations. Moreover, aside from observations of protesting
150	behaviours occurring in response to inequitable outcomes (e.g., chimpanzees spitting
151	water at their partner during inequity experiments, Proctor et al. 2013), evidence on how
152	animals communicatively express their protests to violated expectations remain mostly
153	anecdotal.
154	To explore whether animals communicatively protest against violated personal
155	expectations, we carried out a systematic study in which we focussed on naturally
156	occurring aggressive interactions among bonobos (Pan paniscus), a species of great ape
157	closely related to humans (Pruefer et al., 2012). Specifically, we examined the vocal
158	behaviour of victims following socially expected and unexpected aggression. By their
159	nature, aggressive interactions involve conflicts of interests, but they can vary
160	substantially in how much social expectations are violated, especially if the victim is the

161	target of spontaneous aggression and without prior provocation. To address this, we
162	compared the acoustic structure of victim screams produced in response to expected and
163	unexpected aggression, taken from our assessment of the victim's perspective. Expected
164	aggression was defined as any conflict arising over a contested resource, cases in which
165	the victim provoked the conflict, or if the conflict could be anticipated in advance.
166	Unexpected aggression included any spontaneous, unprovoked aggression towards the
167	subject, initiated by another individual.
168	Like most other primates, bonobos vocalise if they become the target of
169	conspecific aggression. In chimpanzees, the acoustic structure of victim screams conveys
170	something about the severity of the attack, but call structure is also affected by audience
171	composition, with screams indicating more severe aggression in the presence of high-
172	compared to low-ranking audiences, regardless of the physical nature of the attack
173	(Slocombe & Zuberbühler, 2007). This indicates that chimpanzees and probably many
174	other primates (e.g., Gouzoules, Gouzoules, & Marler, 1984) vocalise, not only to
175	influence the attacker, but also to elicit support from bystanders during or after the fight,
176	such as interventions and policing (Flack et al., 2006; von Rohr et al., 2012) as well as
177	consolation, a form of affiliative behaviour offered by bystanders (de Waal & van
178	Roosmalen, 1979), which helps to reduce distress in the victim (Fraser, Stahl, & Aureli,
179	2008; Clay & de Waal, 2013).
180	In our study, we were particularly interested in whether protests to perceived
101	violations of social expectations were accustically conveyed by bonche victim screems

181 violations of social expectations were acoustically conveyed by bonobo victim screams.

- 182 We also examined whether victim screams could be statistically discriminated based on
- 183 caller identity, as for these signals to function in an evolutionary sense, they need to be

184	individually distinctive. In addition, we explored whether victim screams varied as a
185	function of conflict severity, as shown for chimpanzees (Slocombe & Zuberbühler, 2007)
186	and rhesus macaques (Gouzoules et al., 1984), and the composition of the nearby
187	audience, as shown for chimpanzees (Slocombe & Zuberbühler, 2007). In chimpanzees,
188	victims appear to exaggerate their screams in the presence of audience members of equal
189	or higher rank than their aggressor (Slocombe & Zuberbühler, 2007), presumably to
190	recruit their alliance support against the aggressor. As bonobo females are socially
191	dominant in most contexts and regularly intervene in conflicts as allies (e.g., Furuichi,
192	2011; Vervaecke, de Vries, & van Elsacker, 2000), we examined whether victim screams
193	varied as a function of the presence of females of equal or higher rank than the aggressor.
194	
195	Methods
195 196	Methods
	Methods Behavioural Observations
196	
196 197	Behavioural Observations
196 197 198	Behavioural Observations Observations of bonobos were conducted at the 'Lola ya Bonobo' sanctuary, Kinshasa,
196 197 198 199	Behavioural Observations Observations of bonobos were conducted at the 'Lola ya Bonobo' sanctuary, Kinshasa, DR Congo <mark>. All data collected complied with APA ethical standards in the treatment of</mark>
196 197 198 199 200	Behavioural Observations Observations of bonobos were conducted at the 'Lola ya Bonobo' sanctuary, Kinshasa, DR Congo. All data collected complied with APA ethical standards in the treatment of animal samples, and the study received full ethical clearance from the Lola Ya Bonobo
196 197 198 199 200 201	Behavioural Observations Observations of bonobos were conducted at the 'Lola ya Bonobo' sanctuary, Kinshasa, DR Congo. All data collected complied with APA ethical standards in the treatment of animal samples, and the study received full ethical clearance from the Lola Ya Bonobo Research and Ethics Coordinator. Most individuals arrived at the sanctuary as wild-
196 197 198 199 200 201 202	Behavioural Observations Observations of bonobos were conducted at the 'Lola ya Bonobo' sanctuary, Kinshasa, DR Congo. All data collected complied with APA ethical standards in the treatment of animal samples, and the study received full ethical clearance from the Lola Ya Bonobo Research and Ethics Coordinator. Most individuals arrived at the sanctuary as wild- caught juvenile or infant orphans as a result of the bush-meat and pet trades. Following
196 197 198 199 200 201 202 203	Behavioural Observations Observations of bonobos were conducted at the 'Lola ya Bonobo' sanctuary, Kinshasa, DR Congo. All data collected complied with APA ethical standards in the treatment of animal samples, and the study received full ethical clearance from the Lola Ya Bonobo Research and Ethics Coordinator. Most individuals arrived at the sanctuary as wild- caught juvenile or infant orphans as a result of the bush-meat and pet trades. Following several years of rehabilitation with a nursery 'cohort', where each individual was

207	and open grass areas. At night, individuals slept together inside dormitories (approx. 75
208	m^2). The bonobos were provisioned 3–4 times per day by caregivers with a variety of
209	fruits and vegetables as well as a daily soymilk supplement. Their daily routines
210	remained the same throughout observation periods.
211	We collected data during two observation phases (May-August 2011; May-
212	August 2012) and pooled the data to maximise sample size. In both periods, we
213	conducted observations at enclosure 1 (Group 1) and enclosure 2 (Group 2). In 2011,
214	Group 1 comprised of 25 individuals and Group 2 comprised of 17 individuals. In 2012,
215	Group 1 comprised of 22 individuals and Group 2 comprised of 20 individuals (Table 1).
216	Observations of agonistic interactions were conducted by Z.C. and an assistant
217	throughout the day (Observation hours: 2011: Group $1 = 301h$, Group $2 = 152h$; 2012:
218	Group $1 = 205h$, Group $2 = 187h$). Social interactions were recorded from a distance of
219	3-20m with a Panasonic HD digital camcorder (HDC-SD900) equipped with a directional
220	microphone (Sennheiser MKH 816T).
221	For each interaction, we recorded the identities of the initial recipient of the
222	aggression, which we will call the 'victim', and the initiator of the conflict, the
223	'aggressor'. We determined the identities of all visible bystanders within 5 m, the
224	'audience'. We also recorded the conflict severity as 'mild' or 'severe'. Mild aggression
225	included threats (hand shake, bipedal swagger, threat bark, lunge), directed displays or
226	charges without physical contact, chase pursuits or quick pokes or shoves, and single
227	grabs without biting. Severe aggression included multiple or severe grabs, hits ands bites
228	and any sort of injurious physical attack.

229	We also determined the social context of the conflict as (1) 'unprovoked
230	aggression': victim is attacked spontaneously and without any obvious prior provocation
231	during feeding, resting or travelling; (2) 'resource competition' in the form of (i) 'contest
232	possession': opponents physically compete aggressively for the same food/object without
233	either having prior possession; (ii) 'lose possession by forced, aggressive removal':
234	individual previously holding/in possession of food/object has it taken away from them
235	by another individual by physical force; (iii) 'win possession': individual forcefully takes
236	food or object from another individual, which results in an aggressive conflict; (3)
237	'display aggression': victim is attacked by aggressor as part of a male display in the form
238	of (i) 'contest hoot charge display': approaching aggressor produces display
239	vocalisations, known as 'contest hoots' (de Waal, 1988; Genty, Clay, Hobaiter, &
240	Zuberbühler, 2014), before physically contacting the victim; (ii) 'silent display':
241	aggressor does a silent charge out of direct sight from the victim (i.e. from behind) before
242	physically aggressing them; (4) 'play-related aggression': aggressive interventions by
243	mothers following the production of distress vocalisations of her infant during rough play
244	between her infant and the victim, or aggressive attacks received from a play partner
245	following an escalation of rough or aggressive play instigated by the victim; (5)
246	'redirected aggression': victim is attacked as part of redirected aggression from another
247	agonistic event with which the victim was uninvolved; (6) 'Other': any cases in which the
248	observation conditions of the victim before and during the attack were not clear enough
249	to assess the nature of the conflict.

- 250 For each conflict, we also determined whether it could be considered 'expected'
- 251 or 'unexpected' as taken from our assessment of the victim's perspective, which was

252	informed from existing literature. Unexpected aggression included all cases in which the
253	victim was attacked spontaneously, without prior provocation or warning. This included.
254	(1) 'unprovoked/spontaneous aggression'; (2ii) losing possession by forced, aggressive
255	removal; (3ii) silent display charges/aggression; (5) 'redirected aggression'. We
256	considered 'losing possession by aggressive, forced removal' as a form of 'unexpected
257	aggression' following evidence that across a broad number of primate species,
258	individuals possess a sense of property or possession, behaving as if food or objects
259	belong to the individual in possession of them, even if low-ranking (e.g., Brosnan, 2012;
260	Kummer & Cords, 1990; Sigg & Fallet, 1985). Bonobo males at Lola typically include
261	'contest hoots' in their directed displays towards specific targets (de Waal, 1988; Genty
262	et al., 2014), therefore as "silent display charges' were rare, we considered them to be
263	unexpected as they occurred without clear behavioural cueing. Redirected aggression was
264	considered to be 'unexpected aggression' based on the finding that rates of redirected
265	aggression in bonobos are generally low (Clay & de Waal, 2013) and in some cases,
266	virtually absent (Palagi & Norscia, 2013). Expected aggression included all cases in
267	which conflict was predictable, provoked by the victim or expected in some way, i.e. (2i)
268	'contest competition'; (2iii) 'win possession'; (3i) 'vocal charge display'; or (4) 'play-
269	related aggression'. We coded 'play-related' aggression as 'Expected' as during these
270	contexts, the victim was the individual who escalated the play to a more aggressive,
271	rougher play level with an infant or play partner, resulting in the production of distress
272	signals by their play partner and the consequential maternal interventions. While it is
273	possible that previous, unobserved, behaviours of the victim may have resulted in their
274	opponent behaving aggressively towards them in the current encounter (i.e. renewed

275	aggression), we tried to avoid this possibility by restricting our coding of unexpected
276	aggression to those cases in which no prior aggression had occurred between the
277	opponents for 1 hour or more.
278	We used the Matman analysis programme (Noldus, version 1.1) to calculate
279	dominance relationships, and investigated whether the dominance hierarchy was linear by
280	calculating the adjusted linearity index h', which takes into account the number of
281	unknown relationships (Stevens, Vervaecke, de Vries, & van Elsacker, 2006; de Vries,
282	Stevens, & Vervaecke, 2006). These calculations were made of the basis of matrices of
283	agonistic interactions (see Genty et al., 2014) using fleeing from aggression as a marker
284	for dominance (Stevens et al., 2006)
285	
286	Vocal behaviour.
287	Bonobos often vocalise during conflicts by producing acoustically complex and
288	often noisy signals, typically a series of screams (see Fig.1). Screams usually consist not
289	only of tonal but also non-tonal sections, caused by non-linear behaviour of the vocal
290	folds during sound production.
291	Following Riede, Owren, & Arcadi (2004), we used the term 'non-linear
292	phenomena' (NLP) to refer to the presence of subharmonics, biphonation, and
293	deterministic chaos visible on the spectrogram. Biphonation refers to the presence of two
294	simultaneous but independent fundamental frequencies visible in a spectrogram as two
295	distinct and autonomous frequency contours that interact in a non-linear fashion (Riede et
296	al., 2004, see also Brown, Alipour, Berry, & Montequin, 2003; Tokuda, Riede, Neubauer,
297	Owren, & Herzel, 2002; Volodin & Volodin 2003). Subharmonics are spectral

298	components additional to the fundamental frequency $\frac{F0}{F0}$ that appear as sidebands of
299	acoustic energy at evenly spaced intervals below the F0 and its associated harmonics.
300	Deterministic chaos refers to periods of non-random noise visible in the spectrogram
301	caused by irregular oscillations in the vocal folds (see Figure 1).
302	We carried out quantitative acoustic analyses using PRAAT 5.2.21
303	(www.fon.hum.uva.nl/praat/; settings: pitch range: 1,500-4,500 Hz, optimised for voice
304	analysis; spectrogram settings: analysis window length: 0.03s, dynamic range: 70dB,
305	spectrogram view range: 0-10kHz). We performed pitch analysis using a script written by
306	Michael Owren (pers. comm.). We conducted analyses on a total of 12 temporal and
307	spectral parameters. To standardise the varying number of calls per calling episode, we
308	calculated mean scores for the first analysable three calls within the episode. Calls were
309	examined for the presence of non-linear phenomena through visual inspection of
310	spectrograms.
311	To describe the overall structure of the screaming episode, we measured the (1)
312	episode duration (s): duration of total vocal episode (i.e. a vocal episode could contain
313	one or more calls) separated from other bouts by at least 30s of silence; (2) N calls within
314	a call episode; (3) inter-call interval (s): duration between call end to the start of the next
315	call; (4) duration of call (s): duration of a single call taken from onset to offset; (5)
316	presence of inter-scream pause: pause of minimum 3sec between scream phases within
317	same episode.
010	same episode.
318	Due to the non-linear nature of bonobo screams, it was not possible to measure

320 Zuberbühler, 2009, 2011). Taking this into account, we used spectral analyses to identify

the presence of several forms of NLP within the call, that is: (6) the percentage of the call
containing NLP, as well as the presence of three specific forms of NLP that were visually
identifiable within the spectrogram: (7) mean duration (s) of sub-harmonic segments; (8)
mean duration (s) of biphonation (s) segments; (9) mean duration (s) of chaotic segments
(s). See Figure 1.
For calls containing at least one segment with a visible fundamental frequency
band, we also measured: (10) mean fundamental frequency (F0): the mean value of the
fundamental frequency across the first tonal section of the call (Hz); (11) peak frequency
at the start of the call (Hz): location in the frequency domain where maximum acoustic
energy occurred in the F0 at the onset of the call and (12) peak frequency at the end of the

call (Hz): location in the frequency domain where maximum acoustic energy occurred in
the F0 at the offset.

333

321

322

323

324

325

326

327

328

329

330

334 Statistical Analyses

We conducted statistical analyses using SPSS version 22.0 (SPSS Inc., Chicago,
IL, USA) and R version 3.1.0 (R Development Core Team 2008), using the software
packages 'MASS', 'Ime4' and 'ImerTest'. Tests were 2-tailed and significance levels
were set to a = 0.05. For small sample sizes, we calculated exact p-values (Mundry &
Fischer, 1998).
We screened the data for outliers by producing standardized z-scores (Tabachnik
& Fidell, 2001). Next, we regressed all parameters to check for multi-colinearity and

- 342 singularity among the acoustic variables, removing any parameters with a variance
- 343 inflation factor >10 (Belsley, Kuh, & Welsch, 1980). Subsequently, we conducted cross-

344	validated Discriminant Function Analyses (DFAs) using the leave-one-out procedure to
345	investigate whether the acoustic variables, when combined together, could generate
346	discriminant functions that correctly discriminated the following factors: Caller Identity;
347	Fight Severity; Audience and Social Expectancy. To test whether the degree of
348	classification was greater than chance, we used two-tailed binomial tests with a corrected
349	level of chance that corresponded to the number of discriminated categories (Mundry &
350	Sommer, 2007). We set the DFA prior probabilities to assume equal group size in order
351	for the model to generate a randomly selected selection of cases to equally represent
352	across individuals.
353	As the data were two-factorial and contained repeated contributions per
354	individual, conventional DFA methods are considered inadequate to allow valid
355	estimation of the significance of discriminability (Mundry & Sommer, 2007). Therefore,
356	to estimate the significance of the number of correctly classified calls (cross-validated),
357	while controlling for repeated contributions, we conducted a permutated DFA (pDFA; R.
358	Mundry, pers. comm.), entering Caller Identity as a random factor. Following diagnostic
359	nests and tests for multi-collinearity between test factors (using Variance Inflation
360	Factors), we then conducted Linear Mixed Models on each of the non-correlated acoustic
361	parameters to investigate which varied statistically with the factors under scrutiny; Social
362	Expectation, Conflict Severity and Audience presence (Caller Identity entered as a
363	random factor).
364	Analyses were conducted on victim screams produced by 9 individuals (2 adult
365	males, 1 adult female, 1 adolescent male, 2 juvenile males and 3 juvenile females; Table
366	1). Samples from other individuals were excluded owing to inadequate sample size of

367	recordings available that were of sufficiently high quality for acoustic analyses. As
368	pDFAs are vulnerable to the erroneous effects of small sample size, we set an inclusion
369	cut-off as a minimum of four call episodes per category per individual. Collecting clean,
370	high-quality recordings is problematic for victim screams because multiple individuals
371	typically vocalise during an agonistic encounter, rendering it difficult to isolate calls.
372	
373	Results
374	Caller Identity: Analyses based on a total of 156 calling episodes, produced by 9
375	individuals (mean $N = 16$ events per individual, range: 9-26) showed that screams could
376	be reliably discriminated based on the identity of the caller (cross-validated DFA: Wilks
377	lambda = .06, χ^2 (80, N callers = 9) = 410.69, $p < .001$, see Figure 2 and Table 2). Calls
378	could be reliably classified according to caller identity at a rate significantly greater than
379	chance (correct classification 55.1% (86/156 calls), cross-validated: Binomial test (0.11
380	chance level): $p < .001$)
381	
382	Figure 2
383	
384	<i>Fight Severity:</i> We compared $N = 87$ screams produced in response to severe
385	agonistic events and $N = 69$ screams produced during mild agonistic events, with each
386	individual ($N = 9$) contributing a minimum of 4 calls per category. A pDFA, which
387	controlled for caller identity, showed that only 58/156 calls were correctly classified

388 according to conflict severity, which was not significantly greater than chance (cross-

389 validated pDFA; p = .11).

391	Social Expectation: We conducted a DFA analysis to compare screams in response to $N =$
392	59 socially expected and $N = 97$ unexpected aggression interactions (minimum $N = 4$
393	calling events per individual per category; N events analysed per combination of factors
394	'Social expectation' and 'Conflict severity': Expected-Severe = 34, Unexpected-Severe =
395	53, Expected-Mild = 25, Unexpected- Mild = 44). 67.9% of calls could be correctly
396	classified based on whether the conflict was expected or not (Wilks' lambda = 0.76, χ^2
397	(10) = 40.28, p < .001), which was significantly greater than chance (106/156 calls;
398	binomial (0.5); $p < .001$). A subsequent pDFA revealed that calls could be correctly
399	classified on the basic of social expectation when caller identity was controlled (pDFA
400	cross-validated: 53 calls; $p = .02$).
401	Audience: the structure of victim screams did not differ significantly between
402	events when a female of equal or higher rank than the aggressor was present within 5m
403	(N = 59) compared to when this was not the case (N = 97; DFA: Wilks' lambda = 0.91, χ^2
404	(10) =13.99, $p = .24$; cross-validated classification: 51.3% of calls: Binomial test (0.5) p
405	> 0.05). We were unable to analyse the audience effects of alpha female presence alone,
406	due to insufficient sample size.
407	We used Linear Mixed Models (LMMs) to identify which of the acoustic
408	variables might be driving the original classification. In this analysis, we included all
409	three variables of interest (social expectation, conflict severity, audience presence) as a
410	fixed factors, as while only social expectation provided significant discrimination at the
411	overall scream structure level, the other two factors have been previously demonstrated to

413	al., 1984; Slocombe & Zuberbühler, 2005, 2007). Before commencing, we ran diagnostic
414	tests and examined the Variance Inflation Factors, which revealed no collinearity
415	between the three factors for any of the parameters (all VIFs \leq 2). LMMs (caller identity
416	as a random factor) showed that both social expectation and fight severity but not
417	audience presence explained a significant amount of the variance in a number of different
418	acoustic parameters, as explained below(see Figure 3 and in Table 3). However,
419	likelihood ratio tests revealed that there were no significant interactions between the two
420	factors themselves (all $p > 0.05$). As shown in Table 3 and Figure 3, screams produced in
421	response to unexpected aggression were significantly longer in overall calling episode
422	duration, contained significantly more calls per episode, were significantly longer in call
423	duration, contained a significantly higher percentage of non-linear phenomena within a
424	call, possessed a significantly higher peak frequency at the end of the call, contained
425	significantly more biphonation within the call and the vocalising subject was significantly
426	more likely to recommence screaming after a phase break. Compared to mild aggression,
427	victim screams produced in response to severe attacks were also significantly longer in
428	duration, the overall calling episodes were longer, they contained a greater number of
429	calls, a greater percentage of non-linear phenomena and a higher peak frequency. For the
430	variable of mean duration of biphonation segments, likelihood ration tests revealed a
431	significant interaction between conflict severity and audience presence. Examination of
432	the interaction plot revealed that there was more biphonation in screams produced in
433	association with severe, but not mild conflicts in the absence of a dominant female in
434	5m. The remaining acoustic variables were non-significant for any of the factors.
435	

436	Figure 3
437	
438	
439	Discussion
440	Bonobos, as with other social animals, live in sophisticated societies,
441	characterised by a rich set of fluctuating social dynamics (Kano, 1992). In order to
442	navigate their complex social landscapes, individuals need sufficient levels of social
443	awareness and social skills to establish, maintain and restore their social relationships. An
444	underlying component of these social skills appears to be a set of personal expectations
445	that an individual uses to predict how they should be treated by others. Aside from some
446	studies of social play (e.g., Bekoff, 2001 2004), most evidence for social expectations in
447	primates is still indirect, coming from experimental studies of resource competition that
448	have shown that animals are averse to inequitable distribution of resources and will
449	protest in cases where their perceived expectations are violated (Brosnan & de Waal,
450	2003, 2014; Price & Brosnan, 2012; Proctor et al., 2013; Range et al., 2009, Wascher &
451	Bugnyar, 2013). Results from the current study contribute novel data by showing that
452	violations of social expectations can be distinguished vocally in an ape species in the
453	biologically relevant context of aggressive conflicts. The results suggest that bonobos are
454	both sensitive to perceived violations of self-oriented social expectation in the context of
455	aggressive conflicts and moreover, will publically broadcast their protest through the use
456	of individually distinctive victim screams. Being spontaneously aggressed, without any
457	prior warning, appears to violate certain, self-oriented social expectations relating to how
458	agonistic interactions manifest themselves. The apparent perception of these violations is

- 459 consequently expressed in the acoustic structure of their screams. This suggests that 460 bonobos possess specific personal expectations about how they should be treated by 461 others (de Waal, 1996; von Rohr et al., 2011); the fact that they vocally signalled this to 462 others suggests that their conspecific audience may be sensitive to it as well. 463 Evidence that bonobos are sensitive to a form of self-oriented violation of social 464 expectation reflects the rich literature on inequity aversion in primates, which has shown that individuals are typically only sensitive to inequitable resource distributions in cases 465 466 where they are themselves disadvantaged. This self-orientated inequity aversion differs from more complex forms of other-oriented, 'fairness' behaviours, which extend to a 467 468 more generalised set of social norms about how others should be treated (Brosnan & de 469 Waal, 2012, 2014; von Rohr et al., 2011). Nevertheless, it has been suggested that some species may be able to extend their 470 social expectations towards the treatment of third parties in some cases. Evidence that 471 472 animals take a normative approach to their social relationships has been suggested by a 473 number of social behaviours that function to reduce social conflict among group 474 members, such as impartial third-party policing interactions in agonistic conflicts, reconciliation, preventative conflict resolution and consolation (de Waal, 2014; Flack et 475 476 al., 2006; von Rohr et al., 2011, 2012). 477 The possession of social expectations is thought to relate to a capacity to both
- 478 perceive and act according to social rules, which individuals use to guide their social
- 479 interactions with others (de Waal, 2014; Flack et al. 2004). This has been demonstrated
- 480 during social play encounters, which appear to be guided by specific social rules and
- 481 expectations, and provide an important opportunity to develop normative behaviours and

100		. 1 1	1 . 11		1 1 1
187	to build truct Hor instance	ctudiac of n	lav cianal	ling in ange an	d contde hove
402	to build trust. For instance,	Studies of D	iav signan	inig in abus an	u camus nave
-				0	

- 483 demonstrated that individuals adjust their rates of play signalling according to the play
- 484 partner and surrounding audience, in order to prevent the play from escalating into
- 485 aggression or terminating due to a third-party intervention (Bekoff, 2001; Cordoni &

486 Palagi, 2011; Flack et al., 2004; Pellis, Pellis, Reinhart & Thierry, 2011).

- 487 If screams function to communicate perceived violations of social
- 488 expectation to others, they must therefore be individually distinct so that recipients can
- 489 make inferences about the identity of the caller. As predicted, our acoustic analyses also
- 490 revealed that bonobo victim screams could be reliably discriminated on the basis of caller

491 identity, in contrast to what has been reported from rhesus monkeys (Rendall et al.,

492 1998). Non-linear phenomena were common in our sample, probably proximately

493 explained by the high arousal states triggered by being a target of an agonistic attack. The

494 presence of non-linear phenomena may have increased the level of individual

495 discrimination in these screams (Fitch et al., 2002). Functionally speaking, this is relevant

496 because other acoustic properties of primate screams have been said to be ill suited for

497 providing identity cues (Owren & Rendall, 2001).

498 In contrast to chimpanzees (Slocombe & Zuberbühler, 2007), we found no

499 evidence that victims exaggerated their screams in the presence of females of equal or

- 500 higher rank than the aggressor. It is possible that results would have been different with
- 501 free-ranging bonobos, as the visibility in the forest is much lower than in the sanctuary
- 502 environment of this study, where most social conflicts were broadly visible to other group
- 503 members.

504	In terms of conflict severity, we replicated previous findings in chimpanzees
505	(Slocombe & Zuberbühler, 2007), by showing that a number of acoustic variables varied
506	significantly as a function of conflict severity if we controlled for caller identity. While
507	conflict severity appeared to be a biologically relevant variable in explaining some
508	aspects of scream structure, it was nevertheless unable to statistically discriminate scream
509	structure overall, unlike the more psychological variable of social expectation. The
510	relationship between scream structure and conflict severity was weaker than expected,
511	suggesting that the manner in which conflict severity was categorised in this study may
512	not have adequately reflected how it is perceived by bonobos. Alternatively, a weaker
513	relationship between conflict severity and scream structure may have reflected the fact
514	that bonobo aggressiveness is considered as generally reduced and less severe compared
515	to that of chimpanzees (Hare, Wobber, & Wrangham, 2012), and so may be less likely to
516	trigger extreme differences in vocal responses.
517	Our main finding was that our assessment of interactions involving violations of
518	expectations (that appeared to also be perceived as such by the bonobos) had the
519	strongest explanatory power regarding overall scream acoustic structure, suggesting that
520	the underlying cause of a conflict, and its adherence to social rules, may have been
521	psychologically important to bonobos beyond simply the physical experience alone.
522	However, while there were no interactions between the two factors, there was
523	nevertheless considerable overlap in the acoustic variables discriminating social
524	expectation and conflict severity, suggesting that both factors play an important role in

525 shaping call acoustic structure. Future research using playback experiments will need to

526 determine whether receivers attend more strongly to the perceived social rules governing527 the fight or its severity.

Overall, by showing that great apes can be sensitive to and communicate about 528 529 the underlying cause of an aggressive interaction, beyond its physical nature alone, we 530 have revealed something about the underlying social motivation in naturally occurring 531 aggressive conflicts. Further research should investigate the phylogenetic distribution of 532 such capacities, especially in species that have already demonstrated inequity aversion 533 during feeding competition. Moreover, further research is needed to investigate the nature 534 of the underlying social expectations demonstrated here, for instance whether individuals 535 possess expectations about treatment by specific individuals in their group, such as close 536 affiliative partners, as compared to treatment by those they do not share close social ties. 537 The fact that bonobos vocally broadcasted their assessments in the form of individually 538 distinctive screams opens up new research avenues to determine whether receivers can 539 distinguish such screams and, if so, what adaptive benefits victims might attain. In some 540 primates, some individuals play a policing role of others' social interactions within their 541 group, thus it is possible that screams signalling perceived unfairness may facilitate such 542 interventions (Flack et al., 2006; von Rohr et al., 2012). Similarly, bonobos have been 543 demonstrated to offer consolation to distressed parties in order to reduce their distress 544 (Clay & de Waal, 2013; Palagi, Paoli, & Tarli, 2004) and so communicating this distress 545 via victim screams may facilitate the offering of third-party affiliation. 546

547

549	References
550	
551	Bekoff, M. (2001). Social Play Behaviour: Cooperation, Fairness, Trust, and the
552	Evolution of Morality. Journal of Consciousness Studies, 8, 81-90.
553	Bekoff, M. (2004). Wild justice and fair play: cooperation, forgiveness, and morality in
554	animals. Biology and Philosophy, 19, 489–520.
555	Bekoff, M., & Pierce, J. (2009). Wild justice: The moral lives of animals. Chicago:
556	Chicago University Press.
557	Belsley, D. A., Kuh, E. & Welsch, R. E. (1980). Regression Diagnostics: Identifying
558	Influential Data and Sources of Collinearity. New York: J. Wiley,
559	Boehm, C. (1994). Pacifying interactions at Arnhem Zoo and Gombe. In R.W.
560	Wrangham, R., W. C., McGrew, F. B. M., de Waal, P. G., Heltne, (Eds.)
561	Chimpanzee Cultures (pp. 211–226). Cambridge, Mass: Harvard University Press.
562	Brosnan, S. F. (2011). Property in Nonhuman Primates. In H. Ross & O. Friedman
563	(Eds.), Origins of ownership of property. New Directions for Child and Adolescent
564	Development, 132, 9-22.
565	Brosnan, S. F., & de Waal, F. B. M. (2003). Monkeys reject unequal pay. Nature, 425,
566	297–299.
567	Brosnan, S. F., & de Waal, F. B. M. (2012). Fairness in animals: where to from here?
568	Social Justice Research, 25, 336–351
569	Brosnan, S. F. & de Waal, F. B. M. (2014). Evolution of responses to (un)fairness.

570 *Science*, *346*, 6207.

Brosnan, S. F., Schiff, H. C., & de Waal, F. B. M. (2005). Tolerance for inequity may
increase with social closeness in chimpanzees. Proceedings of The Royal Society B:
Biological Sciences 272, 253–258.

- 574 Brown, C., Alipour, F., Berry, D.A., & Montequin, D. 2003. Laryngeal biomechanics and
- 575 vocal communication in the squirrel monkey (Saimiri boliviensis). Journal
- 576 Acoustical Society America, 113, 2114–2126.

572

573

577 Clay, Z., & de Waal, F. B. M. (2013). Bonobos Respond to Distress in Others:

578 Consolation across the Age Spectrum. *PLoS ONE*, *8*, e55206.

- 579 Clay, Z. & Zuberbühler, K. (2009). Food-associated calling sequences in bonobos.
- 580 *Animal Behaviour*, 77, 1387–1396.
- 581 Clay, Z. & Zuberbühler, K. (2011). The Structure of Bonobo Copulation Calls During
 582 Reproductive and Non-Reproductive Sex. *Ethology*, *117*, 1158-1169.
- 583 Cordoni, G., & Palagi, E. (2011). Ontogenetic trajectories of chimpanzee social play:
- 584 Similarities with humans. *PLoS ONE*, *6*, 27344.
- 585 de Vries, H., Stevens, JMG., & Vervaecke, H. (2006). Measuring and testing the
- 586 steepness of dominance hierarchies. *Animal Behaviour*, 71, 585-592.
- de Waal, F. B. M. (1984). Sex differences in the formation of coalitions among
 chimpanzees. *Ethology and Sociobiology*, *5*, 239-255.
- de Waal, F. B. M. (1988). The communicative repertoire of captive bonobos (Pan
- paniscus) compared to that of chimpanzees. *Behaviour*, *106*, 183-251.
- de Waal, F. B. M. (2014). Natural normativity: The "is" and "ought" of animal
- 592 behavior. *Behaviour*, 151, 185–204.

- de Waal, F.B.M. (1996). *Good Natured: The Origins of Right and Wrong in Humans and*
- 594 *Other Animals*. Cambridge, Mass.: Harvard University Press.
- 595 de Waal, F. B. M. & Tyack, P. L. (2003). Animal Social Complexity: Intelligence,
- 596 *Culture, and Individualized Societies.* Cambridge, Mass: Harvard University Press.
- de Waal, F. B. M., & van Roosmalen, A. (1979). Reconciliation and consolation among
 chimpanzees. *Behavioral Ecology and Sociobiology*, 5, 55–66.
- 599 Fitch, T. W., Neubauer, J., Herzel, H. (2002). Calls out of chaos: the adaptive
- 600 significance of nonlinear phenomena in mammalian vocal production. *Animal*601 *Behaviour*, 63, 407–418.
- 602 Flack, J. C., Girvan, M., de Waal, F. B. M. & Krakauer, D. C. (2006). Policing stabilizes

603 construction of social niches in primates. *Nature, 439*, 426-429.

- Flack, J. C., Jeannotte, L. A., & de Waal, F. B. M. (2004). Play signalling and the
- perception of social rules by juvenile chimpanzees (*Pan troglodytes*). Journal of *Comparative Psychology*, 118, 149–159.
- Fraser, O., Stahl, D. Aureli, F. (2008). Stress reduction through consolation in
- chimpanzees. Proceedings of the National Academy of Sciences USA, 105, 85578567.
- 610 Furuichi, T. (2011). Female contributions to the peaceful nature of bonobo society.
- 611 *Evolutionary Anthropology*, 20, 131–142.
- 612 Genty, E., Clay, Z., Hobaiter, C., & Zuberbühler, K. (2014). Multi-Modal use of a
- 613 socially directed call in bonobos. *PloS One*, *9*, e84738.
- 614 Goodall, J. (1986). The Chimpanzees of Gombe:Patterns of behaviour. Cambridge, Mass:
- 615 Belknapp Press of Harvard University.

616 Gouzoules, S., Gouzoules, H., & Marler, P. (1984). Rhesus monkey (*Macaca mulatta*)
617 screams: Representational signalling in the recruitment of agonistic aid. *Animal*

618 *Behav*iour, *32*, 182-193.

- Hare, B., Wobber, V., & Wrangam, R. (2012). The self-domestication hypothesis:
- evolution of bonobo psychology is due to selection against aggression. *Animal Behaviour*, 83, 573-585.
- 622 Jensen, K., Call, J., & Tomasello, M. (2007). Chimpanzees are vengeful but not spiteful.
- 623 Proceedings of the National Academy of Sciences USA, 104, 13046–13050.
- 624 Kano, T. (1992). The Last Ape: Pygmy chimpanzee behaviour and ecology. Stanford:
- 625 Stanford University Press.
- Kummer, H. & Cords, M. (1990). Cues of ownership in long-tailed macaques, Macaca
 fascicularis. *Animal Behaviour*, *42*, 529-549.
- 628 Mundry, R. & Fischer, J. (1998) Use of statistical programs for nonparametric tests of
- 629 small samples often leads to incorrect P values: examples from Animal Behaviour.
 630 *Animal Behav*iour, *56*, 256.
- 631 Mundry, R., & Sommer, C. (2007). Discriminant function analysis with nonindependent
- data: consequences and an alternative. *Animal Behav*iour, 74, 965-976.
- 633 Owren M. J., Rendall, D. (2001). Sound on the rebound: bringing form and function
- back to the forefront in understanding nonhuman primate vocalization.
- 635 *Evolutionary Anthropology, 10, 58–71.*
- Palagi, E. & Norscia, I. (2013). Bonobos protect and console kin. *PLoS One, 8*, e79290.
- 637 Palagi, E., Paoli, T., & Tarli, S. B. (2004). Reconciliation and Consolation in Captive
- 638 Bonobos (*Pan paniscus*). *American Journal of Primatology*, 62, 15–30.

639	Pellis, S. M., Pellis, V. C., Reinhart, C. J., & Thierry, B. (2011). The use of the bared-
640	teeth display during play fighting in Tonkean macaques (Macaca tonkeana):
641	Sometimes it is all about oneself. Journal of Comparative Psychology, 125, 393-
642	403.
643	Pierce, J., & Bekoff, M. (2012). Wild Justice Redux: What We Know About Social
644	Justice in Animals and Why It Matters. Social Justice Research, 25, 122–139.
645	Price, SA. & Brosnan, S. F. (2012). To Each According to his Need? Variability in the

- Responses to Inequity in Non-Human Primates. *Social Justice Research*, *25*, 140169.
- Proctor, D., Williamson, R. A., Brosnan, S. F., & de Waal, F. B. M. (2013). Chimpanzees
 play the Ultimatum Game. *Proceedings for the National Academy of Sciences USA*,
 6, 2070-2075.
- 651 Prüfer, K., Munch, K., Hellmann, I., Akagi, K., Miller, J. R., Walenz, B., ... Pääbo, S.
- 652 (2012). The bonobo genome compared with the chimpanzee and human genomes.
 653 *Nature*, 486, 527-531.
- Range, F., Horn, L., Viranyi, Z., & Huber, L. (2009). The absence of reward induces
 inequity aversion in dogs. *Proceedings for the National Academy of Sciences USA*,
- 656 106, 340–345.
- 657 Rendall, D., Owren, M. J. & Rodman, P. S. (1998). The role of vocal tract filtering in
- identity cueing in rhesus monkey vocalizations. *Journal of the Acoustical. Society*of America, 103, 602–614.
- 660 Riede, T., Owren, M. J., & Arcadi, A. C. (2004). Nonlinear Acoustics in Pant Hoots of
- 661 Common Chimpanzees (*Pan troglodytes*): Frequency Jumps, Subharmonics,

- Biphonation, and Deterministic Chaos. *American Journal of Primatology*, *64*, 277291.
- 664 Sigg, H. & Falett, J. (1985). Experiments on the respect of possession and property in
 665 hamvdrvas baboons (*Papio hamvdrvas*). *Animal Behaviour*, *33*, 978-984.
- 666 Slocombe, K.E. & Zuberbühler, K. (2007). Chimpanzees modify recruitment screams as
- a function of audience composition. *Proceedings for the National Academy of Sciences USA*, 104, 17228-17233.
- 669 Stevens, J. M. G., Vervaecke, H., de Vries, H., & van Elsacker, L. (2006). Social
- 670 structures in Pan paniscus: Testing the female bonding hypothesis. *Primates*,
 671 47, 210-217.
- Tabachnick, B. G. & Fidell, L. S. (2001). Using Multivariate Analysis. London: Allyn
 Bacon.
- Tokuda, I., Riede, T., Neubauer, J., Owren, MJ., & Herzel, H. (2002). Nonlinear analysis
- of irregular animal vocalizations. *Journal of the Acoustical. Society of Am*erica, *111*, 2908–2919.
- Townsend, S. W., Slocombe, K. E., Emery Thompson, M., & Zuberbühler, K. (2007).
- 678 Female-led infanticide in wild chimpanzees. *Current Biology*, 17, R355-356.
- 679 Van Leeuwen, E., Zimmermann, E., & Davila-Ross, M. (2011). Responding to inequities:
- 680 Gorillas try to maintain their competitive advantage during play fights. *Biology*
- 681 *Letters*, 7, 39–42.
- Vervaecke, H., Vries, H., & Elsacker, L. (2000). Function and distribution of coalitions in
 captive bonobos (Pan paniscus). *Primates*, *41*, *249-265*.
- Volodin, I.A., & Volodin, E.V. (2003). Biphonation as a prominent feature of the Dhole

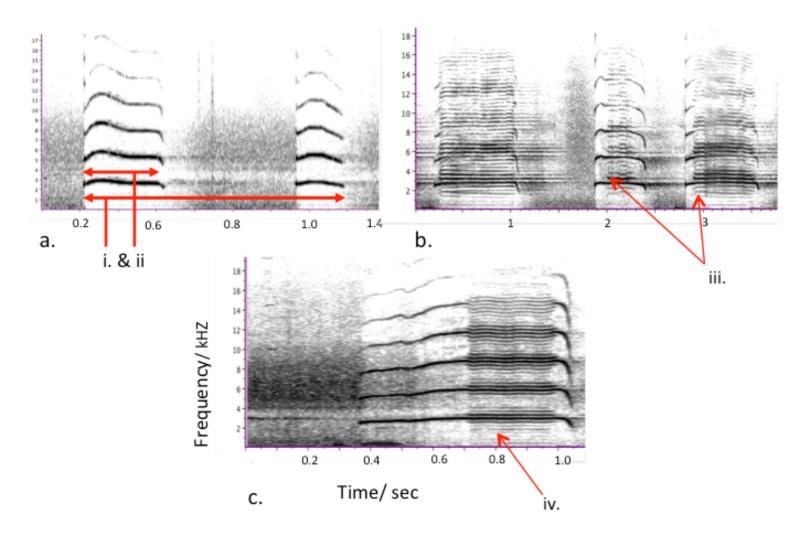
685	Cuos alpinus sounds. Bioacoustics 13, 105-120.
686	von Rohr, C.R., Burkart, J.M., van Schaik, C.P. (2011). Evolutionary precursors of social
687	norms in chimpanzees: a new approach. Biology & Philosophy, 26, 1-30.
688	von Rohr, C.R., Koski, S.E., Burkart, J.M., Caws, C., Fraser, O. N,. Ziltener, A., van
689	Schaik, C. P. (2012). Impartial Third-Party Interventions in Captive Chimpanzees:
690	A Reflection of Community Concern. PLoS One, 7, e32494.
691	Wascher, C. A., & Bugnyar, T. (2013). Behavioral responses to inequity in reward
692	distribution and working effort in crows and ravens. PloS One, 8, e56885.
693	
694	
695	
696	
697	
698	
699	
700	
701	
702	
703	
704	
705	
706	
707	
708	

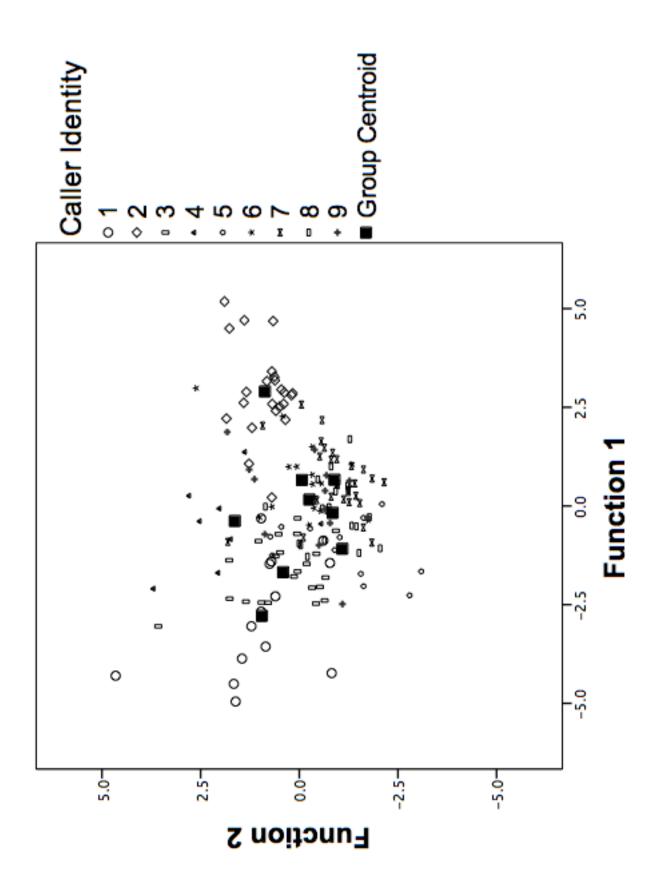
Tables

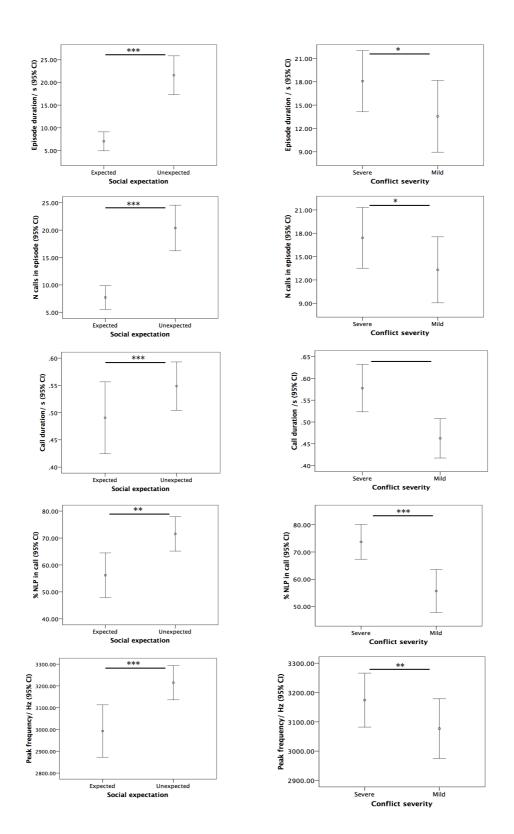
Table 1 Study Grou	ир сотро	osition at Lola ya Bonobo	o Sanctuary	v in 2011-	-2012	
ID code	Age 2012	Group membership 2011-2012	ID Code	e Age 201		Group membership 2011-2012
		F	emales			
OP ^(PO)	17	1-1	MY ^{+ (BS}	⁵⁾ 19	2-2	
SW ^{+ (EK)}	15	1-1	KL ^{+ (ML}	.) 14	1-2	
BD ^(WO)	15	1-1	KS^+	13	1-2	
SL (KM)	14	1-1	LI^+	11	2-2	
LS^+	11	1-1	MU	8	x- 2	
*KT	8	1-1	*SK	7	2-2	
EK	7	1-1	ML	5	1-2	
*WK	6	1-1	MS	6	1-2	
КМ	3	1-1				
]	Males			
MN	18	1-1	KZ	20+	2-2	
KW	14	1-1	MX	26	2-2	
FZ	13	1-1	MD	10	2-2	
*LM	13	2-1	BL	11	2-2	
*AP	12	x-1	IB	10	2-2	
MA	12	1-1	*YL	8	2-2	
DL	11	1-1	BS	7	2-2	
*KG	10	1-1	EL	7	2-2	
MB	9	1-1				
*PO	7	1-1				
WO	4	1-1				

714 Bold asterisks indicate the individuals included in the acoustic analyses. "+" symbol

715 indicates the presence of a dependent infant and ID codes in superscript indicate the


716	identity of independent offspring. Group membership is represented as a two number
717	code, the first being Group in 2011 (i.e. $1 = \text{Group 1}$) and the second being group in
718	2012. X indicates cases when the bonobo was not housed in either enclosure.
719	
720	As exact birth dates for orphaned apes are generally unknown, we used age estimates
721	made by sanctuary veterinarians upon arrival, based on measurements of weight and
722	patterns of dental emergence according to known patterns of ape development (Wobber
723	& Rosati, Pers. Comm). This was validated by the known exact ages of individuals born
724	at the sanctuaries, which we also used.
725	
726	
727	
728	
729	
730	
731	
732	
733	
734	
735	
736	
737	
738	
739	
740	


Percentage correct classification (cross-validated) per individual caller in the DFA analysis of bonobo victim screams


	Caller Identity	% correct classification (cross validated)
	1	64.3
	2	87.0
	3	47.8
	4	55.6
	5	75.0
	6	18.8
	7	61.5
	8	36.8
	9	42.9
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		

	Results from LMMs of the significant effects of three fac Social expectation					Conflict severity			Dominant female Audience				
	Es		SE	t	р	Est.	SE	t	р	Est.	SE	t	р
Episo		.75	2.87	5.15	< .001	-6.49	2.86	-2.27	0.02	-0.52	2.82	-0.19	.85
durat													
N of		.90	2.76	4.67	< .001	-5.83	2.76	-2.11	.04	2.78	2.72	1.02	.31
	duration .24		.07	3.26	.001	13	.07	-1.74	.08	.04	.07	.53	.6(
% NI		.62	4.75	3.08	.003	-17.74	4.77	-3.71	<.001	6.36	4.64	1.37	.17
	e break .24		0.07	3.26	.001	13	.07	-1.74	.08	.03	.07	.53	.6(
Peak	onation .12		0.04	3.37	< .001	*.18	.07	2.48	.01	7675	560	1.25	1 (
frequ		9.99	58.43	3.59	< .001	-158.26	59.0	-2.68	.008	76.75	56.9	1.35	.18
	ame indivi	dual	in respo	onse to (
	ame indivi ggression.		-		(a) social	lly expecte	ed and	(b + c) s	ocially	unexpect	ted		
61 a		Red	lines an	d arrov	(a) social vs indica	lly expecte te some of	d and (f the ac	(b + c) s oustic r	ocially neasure	unexpect s analyse	ted ed,		
61 a 62 a	ggression.	Red	lines and	d arrov e differ	(a) social vs indica ent form	lly expecte te some of is of non-l	ed and (f the ac inear p	(b + c) s oustic r henome	socially neasure ena. (i)	unexpect s analyse duration	t ed e d , of		
61 a 62 a 63 tl	ggression. nd the pre	Red is sence	lines an e of som s), (ii) is	d arrov e differ the dur	(a) social vs indica ent form ation of a	lly expecte te some of is of non-l a call, (iii)	ed and (f the ac inear p points t	(b + c) s coustic r henomo o two so	neasure neasure ena. (i) ections o	unexpect s analyse duration f biphona	t ed e d , of		
51 a 52 a 53 tl 54 (a	ggression. Ind the pre	Red a sence ode (so by a	lines and e of som s), (ii) is frequence	d arrov e differ the dur cy band	(a) social vs indica ent form ation of a that does	Ily expected te some of as of non-le a call, (iii) (a not related	ed and (f the ac inear p points t	(b + c) s coustic r henomo o two so	neasure neasure ena. (i) ections o	unexpect s analyse duration f biphona	t ed e d , of		
51 a 52 a 53 th 54 (a 55 s	ggression. Ind the pre he call episo as depicted	Red a sence ode (so by a	lines and e of som s), (ii) is frequence	d arrov e differ the dur cy band	(a) social vs indica ent form ation of a that does	Ily expected te some of as of non-le a call, (iii) (a not related	ed and (f the ac inear p points t	(b + c) s coustic r henomo o two so	neasure neasure ena. (i) ections o	unexpect s analyse duration f biphona	t ed e d , of		
51 a 52 a 53 th 54 (a 55 s ⁻ 56	ggression. Ind the pre he call episo as depicted	Red asence ode (so by a cs (sic	lines and e of som s), (ii) is frequence de-bands	d arrov e differ the dur cy band s relatin	(a) social vs indica ent form ation of a that does g to the F	lly expecte te some of as of non-l a call, (iii) a not relate	ed and (f the ac inear p points t to the]	(b + c) s coustic r henome o two se F0); and	ena. (i) ections o (iv) poi	unexpect s analyse duration f biphona nts to	ted ed, of ation		
61 a 62 a 63 tl 64 (a 65 s 66 67 F	ggression. Ind the pre he call episo as depicted ubharmonic	Red Sence ode (s by a cs (sic istrib	lines and e of som s), (ii) is frequence de-bands	d arrov e differ the dur cy band s relatin	(a) social vs indica ent form ation of a that does g to the F ninant so	lly expecte te some of as of non-l a call, (iii) ; s not relate F0). cores for v	ed and (f the ac inear p points t to the l victim s	(b + c) s oustic r henome o two se F0); and screams	neasure ena. (i) ections o (iv) poi	unexpect s analyse duration f biphona nts to ed by n =	ted ed, of ation		

770	identities overlay the discriminant function scores and black squares indicate the group
771	centroids per individual caller.
772	
773	Figure 3. Mean and SE for five acoustic parameters for victim screams produced in
774	response agonistic conflicts that varied significantly according to social expectation
775	(left side) and/or physical severity (right side). Asterisks indicate p values in LMMs
776	(*** = p < .001, ** = p < .01, * = p < .05)
777	
778	
779	
780	
781	
782	

