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ABSTRACT

The formation of magnetic order in solids is a complex and subtle issue. There are

a wide range of different types of magnetisation, all of which may be favoured under

different circumstances. In this thesis we consider a novel combination of ideas where

the formation of spatially modulated magnetisation is linked to a metamagnetic tran-

sition. In this we are inspired by a general principle of modulated phases intervening

as intermediate states in phase transitions. In particular we draw analogies with the

Fulde-Ferrell-Larkin-Ovchinnikov state of spatially modulated superconductivity.

We study a mean-field theory for itinerant magnetism where the crystal lattice

drives the formation of a rich phase diagram. A peak in the electronic density of

states due to a van Hove singularity creates ferromagnetism and a metamagnetic

transition. Furthermore we find that a modulated magnetic phase - a spin-spiral,

becomes favoured along the metamagnetic transition line. The appearance of this

phase causes the metamagnetic transition to bifurcate to enclose the modulated

region.

The topology of this reconstructed phase diagram shows remarkable similarity

to that observed in experiments on Sr3Ru2O7. This material shows a metamagnetic

transition which can be tuned by field angle towards zero temperature. Before this

point is reached a new phase with high and anisotropic resistivity appears.

We believe that this anomalous phase can be explained by the formation of a

phase of modulated magnetisation caused by a peak in the electronic density of

states. This mechanism may also apply in a range of other materials as it is driven

by rather generic features of the bandstructure.
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Part I

INTRODUCTION TO MAGNETISM AND THE

REASONS FOR CURRENT INTEREST



1. INTRODUCTION

1.1 Strong correlation

There is a popular conception that ‘fundamental physics’ means only the study of

ever more elementary components of matter. That our progress in physics relies on

smashing apart particles at higher and higher energies. Theorists write equations

to eventually discover a ‘theory of everything’ which unifies all that we know under

one banner.

Yet some of the most difficult and long-standing problems of physics come not

from probing the behaviour of more fundamental particles, but in the behaviour of

more particles. When we take particles which we understand perfectly well on their

own and allow them to interact with each other we suddenly find our traditional

methods and intuitions failing. The physics of collective behaviour is just as chal-

lenging and fundamental as that found in high energy colliders, and perhaps more

relevant.

We in fact already have an effective ‘theory of everything’ for everyday objects.

The Schrödinger equation describes perfectly well the electrons and ions in solids,

liquids and gases. In principle we only have to solve one equation: Ĥψ = ih̄∂tψ. Here

of course the ‘hat’ hides a multitude of sins. To completely describe the system the

Hamiltonian must describe not only each particle, but their interactions. Including

only the dominant interactions the Hamiltonian then takes the form:

Ĥ = −
Ne
∑

j=1

h̄2

2mj

∇2
j +

∑

j<k

Vee (rj − rk)

−
Ni
∑

α=1

h̄2

2mα

∇2
α +

∑

α<β

Vii (rα − rβ)

+
∑

i,α

Vei (ri − rα) , (1.1)

where mn is the mass of the nth particle, Vee, Vii and Vei are the electron-electron,

ion-ion interaction and electron-ion interactions respectively, rn is the position of the
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nth particle. Roman subscripts label the electrons and Greek subscripts the ions.

The problem is that it becomes impossible to solve this equation, even numerically,

for more than a few particles, and in a typical macroscopic object there are ∼ 1023

particles. It is impossible to predict the properties of many-body systems from the

fundamental equations.

We see however, that nature obeys beautiful organisational principles on all scales

that we choose to examine it. Although these principles cannot be deduced from

the microscopic description of their constituents they are nevertheless powerful and

fundamental. Often these principles are blind to the underlying microscopics and are

universal across many different systems. Such behaviour is said to be emergent. The

study of these emergent principles is often more fruitful than that of reductionist

principles.

Given the impossibility of solving the Schrödinger equation for a large number

of particles, how are we to proceed to understand the properties of real systems? It

is a remarkable and fortunate fact that the properties of most systems of interacting

particles actually behave almost exactly like those of non-interacting particles, but

with alterations to basic properties like the mass and charge of the particles. This

principle is embodied in Landau’s Fermi liquid theory [1–3]. This is the cornerstone

of our understanding of metals and is one of the great triumphs of physics. The

underlying principle is that of adiabatic continuity. If we took a non-interacting gas

of particles and then slowly turned on the interactions then the eigenfunctions of

the system would evolve continuously. The elementary excitations would no longer

be single electrons, they would be quasiparticles, but they will be electron-like in

that they will be characterised by the same quantum numbers with a one-to one

correspondence between the original electrons and the new quasiparticles. In this

way the system behaves qualitatively the same as a non-interacting system, but

with renormalized coefficients. For example the mass of the quasiparticles is greater

than the bare electrons, often by many times. An extreme example of this are

the so called heavy fermion materials where complex many-body effects conspire to

increase the mass of the quasiparticles to hundreds of times higher than the bare

electron mass [4].

Because the Fermi liquid description is so successful the situations where it fails

are especially interesting. In some materials the quasiparticle picture breaks down

and the behaviour becomes qualitatively new, such situations are referred to as

strongly correlated. One of the most exciting areas in which non-Fermi liquids
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have been observed is quantum criticality. A quantum critical point occurs when a

second-order phase transition is driven by a non-thermal control parameter at zero

temperature. Near such points quantum and thermal fluctuations become entwined

and dominate the properties of the system over a wide range of phase space. These

quantum critical properties are universal, depending only on the dimensionality of

the system and the type of ordering present, and not on the microscopic details.

The system has new and unusual dependencies of its properties on external param-

eters, as well as the possibility of novel phases being stabilized by the quantum

fluctuations. Such quantum critical points occur in a wide range of materials, be-

ing important in heavy fermion materials [5] and possibly in the high temperature

superconductors [6].

Less exotic states, where the Fermi liquid paradigm is still valid, are also inter-

esting. One of the most important and common collective phenomena is magnetism.

Despite having a long history of research and being of great technological and fun-

damental importance, there are still many unanswered questions due to the subtlety

of the various competing effects and orders. Theories of magnetism range from rel-

atively simple mean-field models to complex field-theoretic approaches. Whilst it

is quite straightforward to obtain the gross results, the details are very complex

correlated effects which prove elusive. To understand the status of the theory of

magnetism and to put this work in context I will now briefly discuss the history of

the study of magnetism and how it has led to some of the areas just mentioned.

1.2 Magnetism

1.2.1 The historical study of magnetism

Magnetism is one of the oldest known physical phenomena. The fact that certain

stones attract iron was known in ancient Greece, and almost certainly before. Yet

thousands of years after its discovery magnetism is still an object of intense study.

Despite the easy observation and reproduction of magnetic phenomena, and their

great importance for navigation and our understanding of the natural world, we

have yet to fully understand magnetism in solids. Indeed, until the beginning of

the twentieth century we had no chance of understanding the origin of magnets, for

the phenomena is an intrinsically quantum mechanical one. We now believe that

we understand the fundamental interactions that produce magnetism in materials,

but the calculation of the exact properties of magnetic systems is subtle and still
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Fig. 1.1: Lodestone and early compass: Leftpanel: Lodestone showing strong ferro-
magnetism. This phenomena of a chain of metal objects being attracted to the lodestone
had been noted in Roman times [7]. Image from [8]. Right panel: an early Chinese
compass, though the historical accuracy of this is disputed. Image from [9].

controversial.

Ferromagnetism was known to the Greeks at least as long ago as 800 BC. They

wrote of the properties of lodestone, which is powerfully magnetic even in its natural

state. Indeed the word ‘magnet’ most probably derives from the Magnesia province

where lodestone was mined [7].

We now know that lodestone is the iron ore Fe3O4, known as magnetite. Mag-

netite is an extremely common material, but lodestone is comparably rare. It has

recently been suggested that the magnetisation of lodestone occurs when magnetite

is struck by lightning, briefly exposing it to large magnetic fields [10].

To the ancient Greeks these facts were of course completely unknown and they

linked the properties of lodestone to divine origin, even believing that lodestone itself

had a soul. Slightly more recognizable to us is the subsequent idea that magnetism

is due to effluvia, emanations that flowed from lodestone and displaced air, causing

metal to be drawn into the empty space [7]. Regardless of the obvious shortcomings

of such a theory it is remarkable to note that already there was the very loose idea

of a ‘field’ being emitted by the magnet.

One of the first truly ‘scientific’ texts on magnetism, indeed on any subject1, was

written by William Gilbert of Colchester in 1600 [11]. In his remarkable book De

Magnete Gilbert systematically investigates many of the properties of the magnet,

debunking many long held superstitions, such as the assertion that garlic or dia-

1 Gilbert was a contemporary of Galileo, who published several books on mechanics just prior
to 1600.
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monds weakened magnets. One of the important experiments that Gilbert carried

out was the construction of a magnetic sphere, called a ‘terrella’ or ‘little earth’

and placing a compass at various points on its surface. Based on this he concluded

that the earth itself was magnetic. As well as his studies of magnetism Gilbert

was an early proponent of the ‘scientific method’, strongly attacking those who sim-

ply repeated the fallacies of ancient thinkers rather than conducting even simple

experiments themselves. In De Magnete he says:

There are many modern authors who have written and copied from

others about amber and jet attracting chaff... but they treat the subject

in words alone, without finding any reasons or proofs from experiments,

their very statements obscuring the thing in a greater fog, forsooth in

a cryptic, marvellous, abstruse, secret, occult way. Wherefore also such

philosophy produces no fruit, because very many philosophers, making

no investigation themselves, unsupported by any practical experience,

idle and inert, make no progress by their records, and do not see what

light they can bring to their theories; but their philosophy rests simply

on the use of certain Greek words, or uncommon ones; after the manner

of our gossips and barbers nowadays, who make show of certain Latin

words to an ignorant populace as the insignia of their craft, and snatch

at the popular favour. [11]

Based on the empirical investigations which followed Gilbert a mathematical

understanding of magnetism was founded in the work of Poisson, who introduced the

concepts of magnetic potential and the equations which describe the contributions

to magnetism from a body. Whilst being an elegant mathematical description of

the phenomena, and of great practical use, this perspective completely ignores the

physical origin of magnetism. Nowhere in this work is it necessary, or even desirable,

to state the source of the magnetism.

Ideas for the nature of the magnetic sources in solids had to wait for the study of

‘magnetism’ to change into the study of ‘electromagnetism’. In 1820 Oersted realized

that a current passing through a wire would deflect a nearby magnetic needle. The

same year it was suggested by Ampère and Arago that magnetism was caused by

electrical current loops inside magnets. Fresnel suggested that such currents should

be molecular, rather than macroscopic, citing reasons such as the lack of Joule

heating. A picture emerged in which microscopic circulating currents cause each

molecule of a magnetic substance to act like a tiny bar magnet. In unmagnetised
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samples these are randomly arranged, but magnetising causes them all to line up

together. Such ideas lead ultimately to experiments such as those performed by

Ewing, who arranged geometric arrays of small magnets which were free to pivot.

The magnetic forces between these magnets cause them to rotate into the most

favourable orientation. If this is a good model of the origin of magnetism in solids,

then the behaviour of the array should provide information on ferromagnetism.

This picture fails in the respect that the interactions between our microscopic

magnets are not classical dipole-dipole interactions, but are of a fundamentally

quantum-mechanical nature. The failure of this model became manifest in two

ways. Firstly it turns out that the magnetic interactions are far too weak. In 1907

Weiss proposed a theory of magnetism which, ignoring the microscopic origin of

the forces between magnetic moments, described their interactions empirically via a

‘molecular field’ acting like an external magnetic field. However, the experimentally

determined values of this field are some 104 times higher than can be explained by

the magnetic dipole interactions. We now understand that the size of this constant

is due to the quantum nature of the forces and the fact that it is electrostatic, rather

than magnetic in origin.

The second aspect in which the classical theory fails is more dramatic. According

to classical theory there can not actually be any magnetism at all. This result is

known as the Bohr-van Leeuwen theorem [12, 13] and it shows that the thermal

average of the internal magnetic field is zero at any temperature and for any external

field. There can therefore be no magnetic response to any stimulus. The solution to

this problem can only be found in quantum mechanics.

What are the fundamental, quantum, magnetic elements? The discovery of the

electron and the structure of atoms gave us the necessary information. Compton,

Goudsmit and Uhlenbeck [14,15] showed empirically that as well as orbital angular

momentum the electron possessed an intrinsic spin and a magnetic moment. In a

beautiful example of different ‘fields’ of physics meshing together Dirac showed that

this spin arises naturally from relativistic quantum mechanics [16].

With electrons (and nucleons) established as the sources of the magnetic fields

we must consider how they interact. The most fundamental and far-reaching aspect

of this lies in their statistics. One of the most important principles in condensed

matter physics is the Pauli exclusion principle, which states that no two fermions

may occupy the same quantum state. Since the electrons cannot all pile into the

lowest energy state they are forced to occupy higher and higher energy states. Thus
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Fig. 1.2: Exchange: The quantum-mechanical origin of exchange energy. The symmetry
of the spin wavefunction determines the symmetry of the spatial wavefunction. This
determines the kinetic and Coulomb energies of the arrangement, thereby favouring ferro-
or antiferro-magnetism.

the concept of the Fermi surface, a line dividing the full and empty momentum

states is born. This completely changes the nature of the system. The energetics

are now determined only by states at the Fermi surface. To excite the lower energy

states requires a large energy, they are therefore considered inert.

Another consequence of the exclusion principle is the nature of the interaction

between electrons, this turns out to depend on the electrostatic force between elec-

trons which is far larger than the magnetic dipole-dipole interactions. When two

electrons are brought together there are two possible alignments - the spins can be

parallel or antiparallel. The two arrangements have a different energy, the difference

being known as the exchange energy. The heart of Fermi-Dirac statistics is that elec-

trons must have an antisymmetric wavefunction. The wavefunction consists of a spin

part, and a spatial part. If the two spins are antiparallel then the spatial part of the

wavefunction has to be symmetric. Should the spins be parallel then the spatial part

of the wavefunction must be antisymmetric. This has two energetic consequences.

Firstly the kinetic energy is higher in the antisymmetric case. But there is now less

electronic density in the region where the Coulomb repulsion is highest. Exchange

therefore captures the energetic competition at the heart of magnetism, the balance

between interaction and kinetic energy. If the exchange constant is positive then

the parallel spin alignment has a lower energy and a state where all electron spins

align, the ferromagnetic state, is favourable.

1.2.2 The modern study of magnetism

We now believe that we understand the fundamental constituents and mechanisms

of magnetism, yet predicting the details of realistic systems is a formidable task.
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a) b)

c) d)

Fig. 1.3: Types of magnetic order: a) Ferromagnetism, the majority of magnetic
moments are aligned in the same direction with a uniform distribution. b) Antiferromag-
netism, the sign of the moment varies from site to site. c) Ferrimagnetism, the magnitude
of the moment varies. d) Helimagnetism, the direction of the moment rotates about an
axis.

Being unable to solve the full problem we must develop simplified models which

illuminate particular aspects of magnetic behaviour and are valid within particular

regimes.

The first division to be made is between insulating and metallic behaviour, be-

tween the cases where the magnetic moments are localised onto particular sites and

and the case when they are delocalised over the sample. Real materials of course lie

somewhere in-between and our choice is made based on the dominant character of

the electrons involved. In complex cases both regimes may be involved, the inter-

action of localised magnetic moments with a conduction electron sea is the heart of

the Kondo effect [17] and heavy fermion materials [4].

Until the 1930s only two types magnetic states were known - non-magnetic states

(para- and dia-magnetism) and a uniformly magnetised state, ferromagnetism. How-

ever it was predicted by Néel in 1936 that there could be other types of magnetic
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order [18]. In work that would later be awarded the Nobel prize he proposed that

a form of magnetism in which the magnetic moments align anti-parallel with their

neighbours could occur, a state called antiferromagnetism. This is illustrated in

Fig.1.3b). It took thirteen years for this proposal to be confirmed [19].

Having realised that more complex forms of magnetic order can occur it is not

hard to think of more examples. Another state predicted by Néel was ferrimag-

netism, where the magnetic moment changes magnitude from site to site [20]. In-

deed magnetite, long thought to be ferromagnetic, turns out to be a ferrimagnet.

A further possibility is that rather than aligning along a single axis the magnetisa-

tion precesses about an axis as a function of position. This is called helimagnetism

and a form of this order will be the subject of this thesis. It is generally caused

by spin-orbit coupling in systems without inversion symmetry - where the singling

out of one direction in the lattice is allowed by symmetry [21], but can also appear

spontaneously in symmetric systems. These types of order are shown in Fig.1.3 c)

and d).

The pictures presented for these forms of order have been in a localised model. In

itinerant systems the modulation of the magnetisation is continuous in space. Such

variations of the magnetisation are variations in the spin density, and are therefore

called spin density waves. Linear spin density waves can be antiferromagnetic when

their period matches the crystalline periodicity, but can also be incommensurate

with the lattice.

The Stoner treatment of itinerant ferromagnetism was developed to study the

fully delocalised electron case. It treats the magnetism of the system as an average

field which all of the electrons feel equally. In this way it reduces the many-body

problem of electron interaction to an effective single-particle picture. Here the elec-

tron moves in a field derived from the average interaction with all of the other

electrons - a mean-field.

The mean-field approach of the Stoner treatment does not correctly reproduce

all of the behaviour of metals, although it is a good starting point. We need to

use models that go beyond the effective single-particle picture and treat correlations

between the particles. The prime model for this task is the Hubbard model [22].

Ĥ = −
∑

ijσ

tij ĉ
†
iσ ĉjσ + g

∑

i

n̂i↑n̂i↓, (1.2)

where ĉ†iσ/ĉiσ are the creation/annihilation operators for electrons on site i with spin



1. Introduction 11

σ =↑ / ↓, tij are the hopping matrix elements, g is an interaction energy and ni↑/↓ is

the number operator for site i and spin up/down. The first term is the tight-binding

description of single electrons moving on a discrete lattice. The second term reduces

the interactions between electrons to an onsite interaction with strength g. This is

an approximation which is somewhat justified by the existence of screening, where

the long-range nature of the Coulomb interaction is masked in an electronic fluid.

Despite that vast simplification between the full Hamiltonian Eq.1.1 and the

Hubbard Hamiltonian Eq.1.2 we are far from having a complete solution for the

problem. One of the problems is the immense range of possible states that are ad-

mitted. Various magnetic and charge orderings, superconductivity, quantum Hall

states, the possibilities are endless. With no way of extracting the groundstate di-

rectly from the Hamiltonian we are forced to postulate the state which is realised

and then justify its stability. This task is extremely difficult given the subtlety of the

problem. It is therefore not surprising that experiment generally leads theory in this

field. Aside from antiferromagnetism there have only been a few states which were

predicted theoretically before their observation. Relevant to the work in this thesis

is the electron nematic state [23]. This is postulated to occur between the electronic

liquid and crystal, breaking rotational but not translational symmetry. It has been

proposed that it is present in the high-temperature superconductors [24], two dimen-

sional electron systems [25] and more recently in the compound Sr3Ru2O7 [26], but

has not been unambiguously observed. The spatially modulated superconducting

Fulde-Ferrell-Larkin-Ovchinnikov state [27, 28], with which we will draw analogies,

was predicted in 1964 but has still to be conclusively observed.

1.2.3 Recent developments

On the timescales over which mankind has been aware of magnetism our growing

awareness of the vast panopticon of magnetic order in the mid twentieth century

may seem shockingly recent. There are however related topics of even more recent

excitement. Many of these are centered around the realisation of non-Fermi liquid

states.

Fermi liquid theory has been so successful that there is tremendous excitement

over materials which do not follow the paradigm. These systems do not have

electron-like quasiparticles and their properties can depart completely from the basic

behaviour that we have come to expect. Signals of this non-Fermi liquid behaviour

can be found in unexpected power-law dependencies of quantities like specific heat,
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b)a)

Fig. 1.4: Non-Fermi liquid behaviour: a) Non-Fermi liquid behaviour in MnSi. Phase

diagram showing non-Fermi liquid regime and resistivity curves showing T
3
2 behaviour.

Figures from [29, 30]. b) Non-Fermi liquid behaviour in YbRh2Si2. Resistivity exponent
ρ ∝ Tα, as derived from the logarithmic derivative of resistivity with respect to temper-
ature. α = 2 is the standard Fermi liquid prediction. A large region of α = 1 shows
non-Fermi liquid behaviour. Figure from [5].

susceptibility and resistivity. Fermi liquid theory predicts certain temperature de-

pendencies. For example, specific heat goes as T and resistivity as T 2. These are

generic properties depending only on the presence of electron-like quasiparticles and

a Fermi surface. Finding deviations from these relations is a common indicator of

non-Fermi liquid behaviour, as seen for example in MnSi (Fig.1.4a)).

The situation in which non-Fermi liquid behaviour is observed that bears most

directly on this thesis is quantum criticality. Quantum critical points occur when a

continuous phase transition takes place at zero temperature, driven by some non-

thermal control parameter. At this point it is the quantum, and not thermal fluc-

tuations that cause the phase transition. Although the quantum critical point is

a single point at the inaccessible zero of temperature these quantum fluctuations

affect a large region of the phase diagram, with a quantum critical ‘cone’ extending

from the quantum critical point. In this region quantum and thermal properties

become inextricably mixed. This region can be seen in Fig.1.4.

One of the interesting features of quantum criticality is that theoretically the

quantum critical properties of the system are completely independent of microscopic

details. They fall into universality classes which depend only on the dimensionality

of the system and the type of ordered phase that is present. Quantum criticality

therefore provides a unifying principle for understanding the behaviour of a wide set

of systems.

The fact that quantum critical behaviour extends over a range of temperature

and tuning parameter means that the presence of a putative quantum critical point

can be detected even if the point itself is obscured. In many systems it seems that
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the quantum critical point is avoided. Either the phase transition turns first-order

as the temperature is lowered or a new phase appears to mask the quantum critical

point. The search for new quantum phases is therefore often guided by the search

for avoided quantum criticality.

Indeed, it may be the case that it is theoretically impossible to have a quantum

critical point in itinerant ferromagnets due to interaction effects which have so far

been neglected. It was recently (re-)discovered 2 that the standard Hertz-Millis

theory of quantum criticality [37,38] breaks down near to the critical point [39,40].

This breakdown manifests itself as non-analytic terms in the action, which cause

a reconstruction of the phase diagram. These corrections cause the continuous

transition to turn first-order, and stabilize the formation of modulated magnetic

phases. These corrections are currently the subject of much research [32,39,40].

In this thesis we will discuss the formation of spatially modulated magnetisation,

but driven by the crystal lattice, not quantum criticality.

2 The fact that the susceptibility is non-analytic was discovered by Geldart and Rasolt in
1977 [31]. The non-analyticities in Hertz-Millis theory have recently [32] been shown to be con-
nected to second-order perturbation theory results [33–36].



2. ITINERANT MAGNETISM - IMPORTANT DEVELOPMENTS

AND RECENT INTEREST

2.1 Itinerant magnetism

2.1.1 Magnetic phases

Phase transitions come in a number of forms, some very familiar, some more esoteric.

Most commonly known are transitions between the solid, liquid and gaseous phases

of matter. For example, water may be ice, liquid water or water vapour depending

on temperature and pressure, as shown in Fig.2.1. The boundaries between these

phases are phase transitions.

These are extreme examples of structural transitions where the microscopic struc-

ture of the material changes. These can occur within the solid phase, with different

arrangements of the nuclei favourable under different conditions. For example there

are over a dozen solid phases of water [41].

Other sorts of phases are possible, such as electronic transitions between insu-

lating, conducting and superconducting phases. There may also be more subtle

types of electronic order such as charge density waves, nematic phases [23,42,43] or

Pomeranchuk distortions [44] where it is the geometry of the Fermi surface which

changes.

The transitions which we will be concerned with are between different mag-

netic states such as paramagnetism, ferromagnetism and antiferromagnetism. We

will consider situations where the magnetic moment is due to electrons which are

best described as being fully itinerant. This includes elemental metals as well as

many complex compounds such as the one we will focus on, Sr3Ru2O7 [45]. The

favourability of different phases and the ability to tune through them by varying

external parameters is due to the competition between the ordering tendencies of

the electron-electron interactions and the disordering effect of temperature. For

example, pressure slightly alters the interatomic spacing, effectively tuning the in-

teractions between electrons. The role of the conjugate field to the order is also
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Fig. 2.1: Phase diagram of water: Sketch of the phase diagram of water. The triple
point is the point at which solid, liquid and gaseous phases can co-exist. The critical point
is the point at which the discontinuous change between liquid and gas stops. By moving
around this point we may pass from liquid to gaseous without any non-analyticities in
the free energy. There is no critical point on the solid-liquid transition line. We note
that there are many different solid phases and this region of the phase diagram may be
subdivided by transitions between them [41].

important. In this thesis we will be concerned with how applying a magnetic field

alters the ferromagnetic phase diagram.

Phase transitions are characterised by introducing a quantity known as the order

parameter. This is chosen separately for each system to be zero in the disordered

phase and non-zero in the ordered phase. In the case of a ferromagnet the order

parameter is the uniform magnetisation, in the case of the antiferromagnet it is the

sublattice magnetisation.

Phase transitions can be split into categories depending on the behaviour of the

order parameter as the transition is crossed. The phase transition is a non-analyticity

in the free energy. The Ehrenfest classification scheme categorises transitions de-

pending on the order of the derivative of the free energy which is discontinuous, a

discontinuity in the first derivative is called a first-order transition, in the second

derivative a second-order transition. Normally transitions of second-order and higher

are called continuous transitions because of the behaviour of the order parameter.

In a first-order transition the order parameter jumps suddenly, in a second-order

transition it appears continuously from zero. The two types of transition are usu-

ally associated with different thermodynamic signatures - the first-order transition

with a latent heat and the second-order with a diverging susceptibility.

The theory of phase transitions can proceed on two levels, one based on the
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microscopic physics of the system, and one a phenomenological approach. In deal-

ing with itinerant electronic systems most microscopic approaches are based on the

Hubbard model or one of its descendants. The Hubbard model captures the basic

competition between kinetic and Coulomb energies which is the driving force be-

hind magnetic transitions. This work will use the Stoner model, this pre-dates the

Hubbard model, but can be considered a mean-field version of it.

The phenomenological approach to phase transitions is the Ginzburg-Landau

expansion [46]. This does not depend on microscopic details of the system, only the

existence of an order parameter and the fact that it is small near to a continuous

transition. Close to the transition we may therefore expand the free energy in powers

of the order parameter. The form of this expansion is determined by symmetry and

can be used to derive generic properties of the phase transition. As a transition

becomes more strongly first-order this description becomes less accurate, but it is

still applicable close to a tricritical point.

In this thesis both approaches will be used, microscopics based on the Stoner

model and Ginzburg-Landau theory based on the phenomenology of the metamag-

netic system. The two approaches can be linked, as the coefficients of the Ginzburg-

Landau expansion may be determined explicitly from the microscopics, allowing

the mapping of general properties onto a specific system. In this way we may use

whichever approach is more suitable for a given task.

2.1.2 Metamagnetism

Metamagnetism describes a superlinear rise in magnetisation as a magnetic field is

applied. In a paramagnetic material the magnetisation rises linearly with the field

but in a metamagnet the magnetisation rises much more sharply at a certain critical

field. We will define metamagnetism as a discontinuous jump in the magnetisation

as a function of the applied field. This is not a symmetry breaking phase transition

as the field has already broken the symmetry. The size of this jump decreases as

temperature is increased until the magnetisation becomes continuous at a critical

endpoint. Above this endpoint is a cross-over, not a true transition as there are no

non-analyticities in the free energy. As we can move around this point without going

through a phase transition the metamagnetism cannot occur between phases with

different symmetries, since we cannot continuously break a symmetry. Returning

to the example of the phases of water, metamagnetism is similar to the liquid-gas

transition which ends at a critical point. In the water case the order parameter
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Fig. 2.2: Metamagnetic transition: Sketch of the metamagnetic transition in the
magnetic field and temperature plane with critical endpoint shown in red. Green shading
represent the value of magnetisation, light low and dark high. Also shown are sketches of
magnetisation against field for three temperatures around the critical endpoint, the zero
of magnetisation is offset for clarity.

is defined as the difference in density between the phases, this goes to zero at the

critical point and varies continuously above the point.

2.1.3 The generic phase diagram of itinerant magnets

Itinerant magnets share a common form of phase diagram as a function of some

tuning parameter, usually pressure, magnetic field and temperature. At zero field

and low temperature the system is in its ordered phase, which could be any of the

discussed magentic phases. As temperature is increased the system goes through

a continuous phase transition to the disordered phase. The critical temperature of

this transition can be tuned by varying some external parameter. The critical tem-

perature decreases, but before it reaches zero temperature the transition becomes

first order. As the conjugate field is applied the first order transition extends as a

metamagnetic ‘wing’, the critical endpoint of which can be tuned to lower temper-

ature by the control parameter. This critical endpoint may be able to be depressed

completely to zero temperature, in which case it becomes a quantum critical end-

point.

Such a phase diagram is realised in many systems such as MnSi [29] (where the

ordered phase is a helimagnet), ZrZn2 [47], NbFe2 [48], UGe2 [49], CoS2 [50], and

the material of most interest to this work, Sr3Ru2O7 which at ambient pressure only

has the metamagnetic wing [51].

The form of this phase diagram is captured by a very simple theory. The Landau
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Fig. 2.3: Generic itinerant electron phase diagram: a) Sketch of the generic itinerant
electron phase diagram as a function of temperature, field and another tuning parameter.
b) The phase diagram for the Landau theory of the ferromagnet. The topology of the two
diagrams is the same, one may be mapped onto the other by finding the expressions for
r, u, v as a function of h, T and p. This can be compared with the experimental phase
diagram for ZrZn2, shown in c). ZrZn2 shows two metamagnetic transitions, labelled
MMT1 and MMT2 in the bottom panel. These transitions are between paramagnetic
(PM) and ferromagnetic (FM1) and then into a second ferromagnetic phase (FM2). At
zero field only FM1 is present and the critical temperature of the continuous transition
from PM to FM1 is shown in the top panel, this transition becomes first order at high
pressure. This first-order transition extends at finite field as the metamagnetic transition
MMT2. MMT1 occurs at far higher field and is present even at zero pressure. The
transitions between paramagnet and M1 can be seen to have the same form as the generic
phase diagram. Figure from [47].

theory for the ferromagnet is an expansion up to sixth order in the magnetisation.

Since the energy cannot depend on the sign of the magnetisation due to time reversal

symmetry only even terms are allowed in the expansion. The free energy therefore

has the form

F =
r

2
φ2 +

u

4
φ4 +

v

6
φ6 − hφ, (2.1)

where φ is the order parameter, here magnetisation. This captures both the con-

tinuous and first-order transitions, reproducing the topology of the generic phase

diagram. The expansion is valid around the continuous transition and at the tri-

critical point, but its accuracy decreases as the first order transition gets stronger.

This theory will be discussed in more detail in section 4.1.3. We will also show

how a particular microscopic theory can be used to map this phase diagram onto

the microscopic parameters of the system, reproducing the generic phase diagram

Fig.2.3a).
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2.1.4 Quantum criticality

Quantum criticality occurs when a second-order phase transition takes place at zero

temperature, driven by some non-thermal control parameter. The transition is not

then due to thermal fluctuations as in the classical transition, but may be said to

be due to ‘quantum fluctuations’. So called due to the analogy between quantum

superposition and fluctuations in time, these quantum fluctuations actually mea-

sure how far the true quantum state of the system is from the classical groundstate

which we expand about in calculations. At a finite-temperature critical point these

quantum effects are overwhelmed by thermal effects, but as we approach zero tem-

perature the quantum mechanics become increasingly important. Order parameter

fluctuations have a characteristic frequency ωc, when h̄ωc ≫ kBT the system behaves

quantum mechanically. At the classical critical point the correlation time diverges,

so the characteristic frequency goes to zero and the only temperature at which quan-

tum mechanics is important is zero temperature. However near a quantum critical

point, the only non-zero energy scale is provided by temperature so that ωc ∼ T

(all other energy scales renormalise to zero). Near the quantum critical point then

both quantum and classical effects have equal footing, statics and dynamics become

intertwined and the properties of the system are radically altered. This region of

novel behaviour extends over a surprisingly wide range of parameters and temper-

atures, as illustrated in figures 1.4 and 2.4. The identification of non-Fermi liquid

behaviour in such regions has become the signature of quantum criticality.

The search for quantum critical points in itinerant systems has revealed that new

phases are stabilized in their vicinity. This could be due to an existing instability

being favoured as the energy scales of the system tend to zero at the quantum critical

point, or quantum fluctuations mediating an entirely new phase. Superconductivity

is commonly discovered around the quantum critical points of heavy fermion mate-

rials [5] and a new phase appears around the putative quantum critical endpoint of

Sr3Ru2O7 [52]. This thesis is concerned with the phase which appears in Sr3Ru2O7.

We do not invoke the quantum properties of the critical point, instead the reduction

of energy scales allows the formation of a new phase of the normal Fermi liquid.

The question of how quantum criticality relates to the formation of phases is

complicated. Bare itinerant ferromagnetic quantum critical points are never ob-

served, there always seems to be a new phase intervening to mask the quantum

critical point, or the continuous transition becomes first-order before reaching zero

temperature. Recent developments to the theory of itinerant quantum criticality are
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Fig. 2.4: Dome of superconductivity over quantum critical point: Dome of super-
conductivity over quantum critical point in CePd2Si2 (left) and CeCu2(Si1−xGex) (right).
For the Néel temperature Tn the open circles (squares) of the right panel correspond to
x = 0.1 (x = 0.25). For the superconducting transition temperature Tc the thin solid line
(full circles) of the right panel corresponds to x = 0 (x = 0.1). Figures from [5].

putting this on firmer theoretical ground. The standard theory of itinerant quantum

critical points, known as Hertz-Millis theory [37,38], has recently been shown to be

incomplete [39, 40]. The theory breaks down close to the quantum critical point

that it was intended to describe. Extra terms have been shown to appear in the

Hertz-Millis action which drive the continuous transition first-order and stabilize the

presence of modulated phases [32,39,40].

Hertz-Millis theory is the standard description of itinerant quantum critical

points. The Hertz-Millis action is typically studied in a Renormalisation Group anal-

ysis [53], as is classical criticality, or in a self-consistent renormalisation scheme [54].

It leads to the prediction of scaling laws relating the various parameters of the sys-

tem in the critical region. These laws give critical exponents different from their

classical counterparts, and depend on the dimension and nature of the ordering, not

on the microscopic details of the system (see for example [55]).

Hertz-Millis theory is an extension of Ginzburg-Landau theory to include quan-

tum dynamics. Underlying this is the assumption that the action can be expanded

in powers of the order parameter and its gradients. This assumption turns out to

be incorrect. Analysis of higher-order correction terms to the electron self-energy

reveal that non-analytic terms in q and T enter the action. These can alter the

low-temperature phase diagram. By renormalising the quadratic and quartic coeffi-

cients of the free energy these can induce the transition to become first-order or for

a modulated phase to appear as an intermediate phase in the transition.

We will not consider quantum fluctuations in the work that follows, adopting a
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purely mean-field approach. The effects which we predict, although similar to those

which may occur due to quantum fluctuations, are entirely due to the effect of the

lattice. We will discuss the possible connection between these effects and those due

to band effects which are considered in this thesis in section 8.2.1.

2.2 A simple approach: the Stoner model

The study of magnetism is complex. After a century of research employing advanced

techniques and models we are left with many open questions. The problem of

itinerant metamagnetism can however be addressed with some success in a simple

approach. We will study a mean-field Stoner model that captures the metamagnetic

phase diagram well when coupled with basic electronic band effects.

2.2.1 Mean-field theory

The simplest way to treat electron-electron interactions is to imagine that each

electron moves in a field which is produced by the combined effect of all the other

electrons. Thus the many-body problem is reduced to that of a single particle moving

in a field, this field being the average effect of all the other electrons. This is known

as mean-field theory and can be described by a Hamiltonian of the form

H =
∑

k,σ

ǫknk,σ − gm2 − hm

=
∑

k,σ

(ǫk − σ(h+ gm))nk,σ, (2.2)

where ǫk is the electronic dispersion, σ = ±1 labels the different spins, nk,σ is the

number of electrons with momentum k and spin σ, g is the interaction energy, m the

magnetisation and h the magnetic field. The first term of the first line is the non-

interacting single-particle energy, the second term is the mean-field interaction and

the final term is the Zeeman coupling. In the second line this has been re-written to

emphasise how this interaction appears as an additional field. We have assumed the

interaction energy is proportional to the magnetisation, which we will later justify.

The magnetism in this theory arises from the balance of the single particle kinetic

energy with the interaction energy. It can be shown that this balance causes the

system to magnetise when the electronic density of states is high enough. The

condition for spontaneous magnetisation is known as the Stoner criterion and is

gρF = 1 where ρF is the density of states at the Fermi surface. The system therefore
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magnetises if the density of states at the Fermi surface is high enough. If the Fermi

energy can be tuned by some external parameter such that it moves through the

peak in the density of states then the system will show a ferromagnetic phase when

the Fermi surface is near to the peak.

2.2.2 Metamagnetism due to peaks in the density of states

Peaks in the density of states may give magnetism, but is there a generic reason for

there being any peaks at all? The density of states is given by the integral over the

Fermi surface of the inverse gradient of the dispersion.

ρ(ǫk) ∝
∫

S
dS

1

|∇ǫk|
(2.3)

Therefore if the gradient is zero then there will be a singularity in the integrand.

The feature that this produces in the density of states depends on the nature of the

stationary point and the dimensionality of the system [56]. In one dimension maxima

and minima in the dispersion produce an ǫ−
1
2 divergence. In two dimensions a saddle-

point in the dispersion leads to a logarithmic divergence of the density of states. In

three dimensions saddle points produce a cusp rather than a divergence. We will

consider the two dimensional case and note that all two dimensional dispersions

must have saddle points due to the requirement that they be periodic 1.

We now consider how the presence of these peaks can cause metamagnetism and

not just ferromagnetism. If the Fermi surface begins slightly away from the peak,

such that the Stoner criterion is not satisfied, then the system will be paramagnetic.

If a magnetic field is applied then the spin-up and spin-down Fermi surfaces will be

split, one of these being brought closer to the peak. It can be shown that there is

a generalized form of the Stoner criterion for when the spin-species are split which

is given by 1 = g(ρ↑ + ρ↓) where ρ↑(↓) is the density of states at the Fermi surface

for up (down) spins. When one of the spin-species’ Fermi surface gets close enough

to the peak it is favourable for the system to increase its magnetisation. In other

words, applying a field gives a metamagnetic transition.

The Stoner criterion predicts a second-order transition between the paramagnetic

and ferromagnetic phase. If the peak in the density of states is sharp enough then

it becomes energetically favourable for the Fermi surface to jump over the peak

1 We can also have the situation where there is a maximum in the dispersion along one direction
and a constant in the other - in this case the stationary point is quasi-1D and has the ǫ−

1

2 form.
This is the case when two quasi-1D dispersions are hybridised.
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Fig. 2.5: Spin texture: Representation of a spin-spiral and a more complex spin-texture
made by superimposing four such spirals.

discontinuously. This produces a first-order transition in the magnetisation. The

condition for this to occur was derived by Wohlfarth and Rhodes [57] and is given

by ρFρ
′′
F > 3 (ρ′F)2, where ρ′F(ρ′′F) is the first (second) energy derivative of the density

of states at the Fermi surface. This gives a first-order transition at low temperature.

This extends as a metamagnetic wing when a magnetic field is applied.

The position of the Fermi surface, or equivalently the electron density, is the

tuning parameter in this scheme. This reproduces the generic itinerant ferromagnet

phase diagram (Fig.2.3a)). There is a region of ferromagnetism at zero field where

the Fermi surface lies close to the peak in the density of states. Outside of this

region there are metamagnetic transitions where the field tunes one Fermi surface

to the peak. The phase diagram for this model will be calculated in chapter 4.

2.2.3 Spatially modulated magnetisation

It is not necessary for magnetisation to be spatially homogeneous. Both the mag-

nitude and direction of the magnetic moment can vary in space. The formation of

continuous modulations of the magnetism, so called spin-density waves, was first

considered by Overhauser [58]. The simplest form of distortion is a spiral, but more

complex forms may be made by superimposing several spirals. Adding two spirals

travelling in opposite directions is a natural thing to do as in centrosymmetric sys-

tems both directions are degenerate. In this arrangement one component of the

magnetisation cancels out and the spin-density wave becomes linear - a modula-

tion of the magnitude, but not direction of the magnetisation. Superimposing more

spirals leads to a ‘spin crystal’ as shown in Fig.2.5.

The spiral magnetic state is made by hybridising spin-up and -down electrons
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with different momenta. This hybridisation is reflected in the Fermi surface of the

spiral state which is distorted in a way which depends on the wavevector q. The

spin-up and -down Fermi surfaces are displaced by q relative to each other and then

hybridised to prevent crossings of the Fermi surfaces. This results in new quasiparti-

cle dispersions in the spiral state. These dispersions will be examined in more detail

in section 4.2.1. This anticrossing lowers the energy of states near the Fermi surface,

or equivalently, produces a peak in the density of states below the Fermi surface.

This peak favours magnetism in the same way as for homogeneous magnetisation by

reducing the kinetic energy cost for a given magnetisation. Following the formation

of the modulation the symmetry of the Fermi surface can be reduced. Should the

modulation wavevector occur along one possible direction in the crystal lattice then

the resulting Fermi surface will break the crystalline symmetry.

It was noticed that the geometry of the Fermi surface is important for the for-

mation of modulation. If the Fermi surface after shifting by q overlaps with the

original Fermi surface then the distortion is more favourable. Fermi surfaces which

have straight parallel sections are therefore highly susceptible to forming spin density

waves. They are referred to as being ‘nested’.

A particular example of this is the nearest-neighbour tight-binding model. At

half filling the Fermi surface is a square. By forming a modulation with q = (π, π)

this becomes perfectly nested, the entire Fermi surface overlaps with itself. The

whole Fermi surface is therefore gapped away and the system becomes a spin-density

wave insulator.

One of the early successes of the Fermi surface nesting picture was the explana-

tion of the properties of chromium [59]. The Fermi surface of chromium has electron

and hole pockets which can overlap to form a nearly antiferromagnetic spin-density

wave as shown in Fig.2.7.

2.3 Analogy with superconductivity

2.3.1 Analogy with homogeneous BCS superconductivity

There is an analogy to be drawn between magnetism and superconductivity. Because

it is instructive to see the links between subjects, and because superconductivity is

so well studied, this analogy will be elaborated here.

BCS superconductivity arises when electrons at the Fermi surface with oppo-

site spin and momentum (↑,kF and ↓,−kF) form Cooper pairs with zero total
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Fig. 2.6: Perfect nesting of the tight-binding model: a) At half filling the nearest-
neighbour tight binding model has a square Fermi surface, shown here in blue. Shifting
this by q = (π, π), shown in red, overlaps the original Fermi surface perfectly and fills the
Brillouin zone. b) The distortion opens a gap at the Fermi surface. This is energetically
favourable as the energy of states near the Fermi surface is lowered.

a) b)

Fig. 2.7: Fermi surface nesting in chromium: a) A cut through the Fermi surface of
chromium. There are similarly shaped electron and hole pockets at Γ and H which can nest
to form a spin density wave. b) Fermi surface nesting forming almost antiferromagnetic
spin density wave. Figures from [59].
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Fig. 2.8: Pairing analogy between superconductivity and magnetism: a) BCS
superconductivity is the pairing of electrons across the Fermi surface. b) Stoner mag-
netism is the pairing of electrons and holes. c) FFLO superconductivity is the pairing of
electrons with non-zero total momentum between spin-split Fermi surfaces. d) Modulated
magnetism occurs when the up and down Fermi surfaces are displaced by q.

momentum(Fig.2.8a)). These Cooper pairs then condense. In doing this they take

advantage of a condensation energy. This is revealed in the superconducting gap -

the energy required to take electrons out of this condensed state. When magnetic

field is applied the Zeeman energy favours splitting the Fermi surface so that the

spin-up and -down electrons have different Fermi momenta. It is no longer possible

to pair electrons with ±kF. When the Zeeman energy gained by splitting matches

the condensation energy which is lost then the pairing is destroyed and the system

enters a magnetised normal state.

Cooper pairs form by pairing electrons with ↑,kF and ↓,−kF to form a boson with

zero total momentum. In the BCS mean-field theory this corresponds to the particle-

particle correlator 〈c†kF,↑
c†−kF,↓

〉 acquiring a non-zero value. Itinerant magnetism

can be thought of as pairing between electrons with kF and holes with the same

momentum and spin - by promoting an electron from the Fermi surface and flipping

its spin. This is encoded in the correlator which acquires non-zero value in the

magnetic state, 〈c†k,↑ck,↑〉 − 〈c†k,↓ck,↓〉.
This is nothing but the magnetisation - the order parameter in the ferromagnet.
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a) b)

Fig. 2.9: Phase diagram of the FFLO state: a) Theoretical. Figure from [60]. b)
Possible experimental realization in CeCoIn5. Figure from [61].

This is defined as the difference between the number of up-spin and down-spin

electrons.

m =
∑

σ,k

σnF(ǫk − µσ) =
∑

σ,k

σnF(ǫk − σ (h+ gm) − µ), (2.4)

where nF(ǫ−µ) is the Fermi-Dirac distribution, µσ is the effective chemical potential

for the two spin species and σ = ±1, h is the magnetic field and µ is the chemical

potential in the absence of magnetism or field. This equation has been written in

two different ways, to emphasise the idea of each spin-species having a different

effective chemical potential, and the fact that this is a self-consistent equation for

m, since the magnetisation determines the mean-field.

Likewise there is a self-consistency equation for the superconducting order pa-

rameter ∆. It is called the gap equation and has the form

∆k =
∑

k′

(1 − 2fk′)
∆k′

2Ek′

Vk′k, (2.5)

where Vk′k is the interaction and Ek′ is the energy of particles in the superconductor.

Thus magnetism can be thought of as the analogue of superconductivity in the

particle-hole rather than particle-particle channel.

2.3.2 Analogy with modulated FFLO superconductivity

Just as Stoner magnetism is analogous to BCS superconductivity, so the spin-density

wave is analogous to spatially modulated superconductivity. In 1964 Fulde and

Ferrell [27], and independently Larkin and Ovchinnikov [28], considered a case where

modulated superconductivity appears due to the application of a magnetic field.
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Fulde, Ferrell, Larkin and Ovchinnikov realised that in a window of magnetic field

before the condensate is destroyed by Zeeman splitting it is energetically favourable

to form a spatially modulated superconductivity. Electrons from the spin-split Fermi

surfaces can be paired resulting in an object with non-zero total momentum, taking

advantage both of Zeeman energy and some condensation energy. This is illustrated

in figure 2.8, with the phase diagram for the FFLO state shown in Fig. 2.9. The

transition from superconducting to normal state is split, with the system entering a

spatially modulated superconducting phase as an intermediate state. The supercon-

ducting gap becomes spatially varying, ∆(r) =
∑

n ∆ne
iqn·r, the simplest analysis is

to assume a single wavevector ∆(r) = ∆eiq·r, which is the approach of Fulde and

Ferrell. We will follow in this spirit by considering a magnetisation with a single

wavevector - a spin spiral m(r) =
(

m⊥ cosq · r,m⊥ sinq · r,m‖

)

.

Although it has yet to be unambiguously observed, the FFLO state has been the

focus of much interest, both in the superconductors where it was postulated and in

other situations such as cold atomic gases [62] and colour superconductivity in quark

physics [60]. The most likely evidence for the existence of FFLO is in CeCoIn5 [63],

although this is still disputed.



3. A TOPICAL EXAMPLE: Sr3Ru2O7

There has been a great deal of recent interest in the material Sr3Ru2O7. A large

number of experiments [26, 45, 51, 52, 64–68] have revealed extremely interesting

physical phenomena. These have in turn motivated a wide range of theoretical in-

vestigations [69–73]. Research into the material was originally focussed on quantum

criticality, but studies into ultra-pure samples revealed a new and unusual phase

where the electronic liquid breaks the symmetry of the lattice [26,52]. Recent stud-

ies have concentrated on this phase and a number of proposals have been made for

its nature [42,52,72,73]. In this thesis it is proposed that the anomalous phase is a

spatially modulated magnetic phase and we extend a Stoner description of metam-

agnetism to include this phase. We will briefly discuss the alternative proposals in

chapter 7.

In this chapter the experimental results which are relevant to this proposal are

presented. Since our approach is to address broad issues before focussing on details

we will begin by describing the discussion of the phase diagram and properties of

the anomalous phase. We will then go on to discuss the crystal structure and Fermi

surface details.

3.1 Main experimental results: magnetic phase diagram

The magnetic phase diagram of Sr3Ru2O7 is dominated by a metamagnetic tran-

sition (Fig.3.1). A peak in the imaginary part of the susceptibility shows that the

transition is first order below a critical point. The critical field and temperature of

the transition can be tuned by varying the angle of the applied field with respect to

the crystalline axes (the material is layered with planes labelled ab and the perpen-

dicular axis c, details of the crystal structure will be considered shortly). With the

field in the ab plane the critical field of this transition is at 5.1T 1 with a critical

1 The critical field also depends on the angle within the ab plane, it is 5.1T with the field along
[100] and 5.4T with the field along [110] [74]. These details are not fully explored but will be briefly
considered in section 6.4.1.
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Fig. 3.1: Phase diagram of Sr3Ru2O7 with quantum critical endpoint: Initial
studies of Sr3Ru2O7 revealed a metamagnetic transition, the critical endpoint of which
could be tuned by varying the angle of the applied magnetic field with respect to the
crystalline c-axis. This could be suppressed to a quantum critical endpoint with the field
along the c-axis. Figure from [66]. The inset shows magnetisation curves approaching the
metamagnetic transition. In blue we have superimposed schematically the ideal metam-
agnetic transition. Figure from [65]. Also shown is the generic itinerant electron phase
diagram. The phase diagram of Sr3Ru2O7 is considered to be section from this, indicated
by the shaded region.

temperature of 1.25K. With the field rotated into the c direction the critical field is

7.8T and the critical temperature is reduced below the experimental limit of 50mK.

This metamagnetic wing can be considered to be a segment of the generic itinerant

electron phase diagram shown in Fig.2.3, where the tricritical point lies outside of

the region accessible at ambient pressure.

In early samples the critical endpoint can be suppressed all the way to zero

temperature. Since the critical endpoint is a second order phase transition then

this forms a quantum critical endpoint. This was the first example of such a critical

point and an example of an apparently ‘bare’ quantum critical point. The resistivity

in the region of the phase diagram above the quantum critical endpoint shows the

non-Fermi liquid behaviour expected from quantum criticality. This is shown in

Fig.3.2 where the resistivity goes as T rather than the T 2 over much of the phase

diagram.
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Fig. 3.2: Resistivity exponent: The exponent α from the expression for resistivity
ρ = ρres + ATα, as derived from the logarithmic derivative of resistivity with respect to
temperature. Blue indicates the quadratic dependence expected from Fermi liquid theory.
Magnetic field along c-axis. Figure from [51].

The development of ultra-pure samples revealed that there was even more com-

plexity in the physics of Sr3Ru2O7. In these samples it was discovered that the

system never actually reaches the quantum critical endpoint. Instead, upon ap-

proaching the c-axis the metamagnetic transition bifurcates to enclose an unusual

phase as shown in Fig.3.3. The critical temperature of the transition begins to in-

crease again as the field is aligned with the c-axis. In addition a second, smaller

wing appears above the critical field of the main transition. As the field angle is

tuned away from c-axis this wing approaches the main transition and disappears.

In between these metamagnetic transitions there is a region which appears to be

a new phase. The majority of theories proposed for this phase do not involve the

properties of the quantum critical endpoint and this work will not consider the effect

of quantum fluctuations.

A cut through the phase diagram with the field along the c-axis is shown in

Fig.3.3. The first order transitions form ‘horns’ which curve away from each other

slightly. Each corresponds to a jump in magnetisation. These transitions end at

critical endpoints. Connecting the two critical endpoints is a ‘roof’ which is seen

in a variety of experimental probes, though its exact nature is hard to identify.

This is consistent with there being a distinct thermodynamic phase between the

first-order horns with a second-order phase transition, the roof, bounding it for high

temperatures (∼1K).

The distinguishing feature of this phase is the resistivity. This is unusually

high - a factor of two greater than outside the phase, and more remarkably, it is

anisotropic. The value of the resistivity is different when measured along the axis

most nearly parallel or perpendicular to the in-plane field component. Furthermore,
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Fig. 3.3: Magnetic phase diagram of ultra-pure Sr3Ru2O7: The phase diagram of
ultra-pure Sr3Ru2O7 shows a bifurcation of the metamagnetic transition with the wings
corralling an anomalous phase. On the left is the phase diagam as a function of field
strength, field angle and temperature. The metamagnetic transitions are shown in green
while the anomalous phase is in blue. This phase diagram is extracted from resistivity and
susceptibility data. Figure from [72]. On the right is a cut through the phase diagram at
c-axis derived from a variety of experimental probes as indicated. The arrows indicate the
critical endpoints of the two metamagnetic transitions. The region enclosed by these two
transitions and the curved ‘roof’ is the anomalous phase. The inset shows magnetization
as a function of temperature at 7.9T. Figures from [52].

the temperature dependence of the resistivity in this phase is anomalous. The

properties of this phase will be discussed in more detail in the following section.

There is a second region in the phase diagram which shows the same anomalous

properties. This appears when the field is aligned with the ab-plane at ∼ 6T . This

can be seen in Fig.3.3. It is associated with a second metamagnetic transition which

is not shown in the figure. This phase will probably be explained by the same

mechanism as the first transition and phase, but we will not consider it explicitly.

3.2 Properties of the anomalous phase

3.2.1 Resistivity

The primary indicator of the anomalous phase is the magnetoresistivity. With the

field along c the resistivity in the phase is approximately twice that outside the

phase. In this orientation the resistivity components along the a and b axis are

the same. As soon as the field is tilted away from the c-axis the two components

become inequivalent. One of these axes becomes ‘easy’ and the resistivity quickly
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a)

b) c)

Fig. 3.4: Resistivity anisotropy in the anomalous phase of Sr3Ru2O7: a) The
magnetoresistivity of Sr3Ru2O7 as a function of field strength and angle at a temperature
of 100mK. On the left is ρaa and on the right ρbb, the components of resistivity along the
in-plane crystal axes. b) The difference between the resistivity components with the field
parallel to the c-axis and at 13◦ from c (black line ρaa, red line ρbb). c) The temperature
dependence of the resistivity and the anisotropy. Figures from [26].

drops to the surrounding level with angle, the other component continues to be

anomalously large. The choice of which axis remains the ‘hard’ axis is determined

by the in-plane orientation of the field. The axis that is most nearly parallel to

the field becomes hard and the one most nearly perpendicular becomes easy. This

anisotropy is confined to the anomalous phase, transport outside of this region is

the same along each in-plane crystal axis. This is shown in Fig.3.4

As well as being anisotropic the temperature dependence of resistivity in the

phase is anomalous. Along the easy direction it shows standard metallic behaviour

but along the hard direction it is non-metallic. Plotting the size of the anisotropy

shows that it behaves like the order parameter in a second-order transition, going
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continuously to zero at the roof of the phase.

Neutron scattering reveals that there is no distortion of the crystal lattice inside

the phase, within an accuracy of 4x10−5Å [26]. This means that the anisotropy is

not caused by a structural transition.

Experimental evidence therefore points to a phase in which the electronic fluid

spontaneously breaks the symmetry of the lattice, resulting in the bifurcation of the

metamagnetic transition.

3.2.2 Quantum oscillations in the anomalous phase

Having considered the magnetic phase diagram of Sr3Ru2O7 and the striking trans-

port properties of its anomalous phase we turn to recent experimental studies which

attempt to reveal the nature of the phase.

An extensive dHvA study of Sr3Ru2O7 has been performed [75], yielding impor-

tant information about the metamagnetism and anomalous phase. dHvA oscillations

have been observed in the anomalous phase [68]. These follow the standard Lifshitz-

Kosevich temperature dependence. This strongly suggests that at least a component

of the anomalous phase is a normal Fermi liquid, though additional non-Fermi liquid

degrees of freedom cannot be ruled out. The frequency of the dHvA oscillations seen

in the anomalous phase can be related to that of some of the sheets observed out-

side of the phase. This shows that at least some of the normal state Fermi surface

remains inside the anomalous phase.

One of the possible phenomena in the anomalous phase is the formation of do-

mains of some sort. Since dHvA is dependent on real-space cyclotron orbits, scat-

tering from impurities or domain walls reduces the amplitude of the signal. Analysis

of the oscillations in the anomalous phase indicates an estimated average domain

size of order 500nm.

3.2.3 Thermodynamics

Magnetocaloric measurements [74] reveal that the entropy inside the phase is higher

than that outside, Fig.3.5. This is consistent with the first-order boundaries of the

phase, which curve outwards. The Clausius-Clapeyron relation links the curvature

of the transition in the H, T plane with the change in entropy and magnetisation

across the transition

µ0
dHc

dT
= − ∆S

∆M
. (3.1)
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Thus since the low field transition has dHc

dT
< 0 and ∆M > 0 then the entropy change

must be positive. At the high field transition the sign of curvature is reversed and

the magnetisation once again increases, so the entropy drops upon leaving the phase.

This result is counter-intuitive as the expectation from an ordered phase would be

a lower entropy. This is one of the major experimental facts which theories of the

anomalous phase have yet to successfully address.

Measurements within the phase show that the specific heat has a −T 2 correction

to Fermi liquid behaviour at low temperatures. In addition signatures of the ‘roof’

in the phase diagram at c-axis show that it is consistent with a second order phase

transition. There is no latent heat associated with this transition, but there is a

change in the field derivative of the entropy, indicating that there is a non-analyticity

in the second derivative of the free energy.

3.3 Crystal structure

Having examined the magnetic phase diagram of Sr3Ru2O7 and the evidence regard-

ing the nature of its anomalous phase we will consider the crystal structure of the

material.

Sr3Ru2O7 is a member of the Ruddlesden-Popper series of layered perovskite

ruthenates. These have the chemical formula Srn+1RunO3n+1 and are distinguished

by the systematic addition of ruthenium oxide layers. Each layer consists of oxygen

octahedra arranged around ruthenium sites. These groups of layers are separated

by strontium. This structure is shown in Fig.3.6.

Sr3Ru2O7 is the bilayer member of the family. It is quasi-two dimensional,

with electron hopping between the layers much less than within the layers. This

can be seen in transport measurements where the out of plane resistivity is ∼300

times greater than the in-plane resistivity at 0.3K [45]. This two dimensionality is

supported by the distinctive angular dependence of dHvA measurements in both

Sr2RuO4 and Sr3Ru2O7 [75,76] 2. This quasi-two dimensional nature will be impor-

tant for the theoretical analysis presented here, as we will conduct all calculations

with 2D band structures and associated density of states features.

The structure of Sr3Ru2O7 is further complicated by a structural distortion in

the planes. The ruthenium oxide octahedra are found to rotate by ∼ 7◦ as shown

2 In Sr3Ru2O7 the angular dependence of dHvA only reflects two dimensionality on the low-field
side of the metamagnetic transition. On the high-field side of the transition the angular dependence
is complex and not fully understood [75].
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Fig. 3.5: Experimental measurements of entropy and specific heat of Sr3Ru2O7:

Experimental measurements of the entropy and specific heat for a cut through the phase
diagram with field along the c-axis. This shows the anomalous phase and surrounding
normal phase. In chapter 6 we will compare this to calculations of the thermodynamic
properties of the Stoner model with a peak in the density of states. Figure from [74].

in Fig.3.6 [64]. This doubles the size of the unit cell, resulting in a reconstruction

of the Brillouin zone which has profound consequences on the band structure. This

rotation means that the crystal structure no longer strictly has fourfold rotational

symmetry. The a and b parameters remain approximately, but not exactly, equal

after this rotation [77]. Strictly the two in-plane axes are inequivalent. However,

properties in the normal phase do not distinguish between the axes, and the ability

to pin the anisotropy of the phase by field, rather than it being locked along one

particular axis, means that the anomalous phase can not simply be explained by this

distortion. From now on we will assume that the electronic structure of Sr3Ru2O7

has fourfold rotational symmetry which is a reasonable simplification in this case.
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Fig. 3.6: Crystal structure: The left hand figure shows the rotation of ruthenium oxide
octahedra in the ab plane. Neighbouring octahedra counter-rotate by ∼ 7◦ resulting in a
rotation of the unit cell with a side

√
2 larger than the original, as shown by the dark blue

squares (the rotation is exaggerated for clarity in the diagram). On the right the three
dimensional structure is shown before and after rotation. Figure adapted from [75].

3.4 Fermi surface

Understanding the properties of Sr3Ru2O7 depends on a knowledge of the Fermi

surface. The Fermi surface of Sr3Ru2O7 may be obtained by simple arguments based

on the crystal structure. Such arguments become important when trying to devise a

simple, but still realistic band-structure for calculations. Here these arguments will

be explained and the results compared with density functional theory (DFT) and

angle-resolved photoemission spectroscopy (ARPES) results.

3.4.1 Construction of Fermi surface from simple arguments

The Fermi surface of Sr3Ru2O7 may be built up by considering the structure one

layer of complexity at a time. First the single RuO layer is considered. The effects of

bringing two of these layers together into a bilayer is then incorporated. Finally the
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Fig. 3.7: Orbitals in a single RuO layer: Ruthenium dzx (dyz) orbitals, shown in
red (blue), form bonds via the oxygen pz orbitals shown in grey. This strongly directional
hybridization forms quasi one-dimensional bands, shown in red (blue) in the lower panel.
The ruthenium dxy orbitals (green) hybridise equally in both directions via the oxygen px
and py orbitals (grey) to form a quasi two-dimensional band, shown in green. Light blue
shading indicates the RuO octahedra. The resulting Fermi surface is shown.

effect of the rotation of octahedra is taken into account by backfolding the Fermi

surface. By these hand-waving arguments an understanding of the structure and

orbital nature of this complex Fermi surface is built up.

The electronic states at the Fermi surface are made up from ruthenium d-orbitals.

Considering a single layer the dzx orbitals hybridize strongly via the oxygen p orbitals

along the x direction, and only weakly in y. The dyz orbitals do the same along the

opposite directions. This results in two quasi one-dimensional bands running along

the two axes of the Brillouin zone. The dxy orbitals hybridize in all directions equally,

resulting in a quasi two-dimensional band giving an almost circular Fermi surface

as shown in Fig.3.7 and Fig.3.8a).

These one-dimensional bands then hybridise with each other. The anticrossing

where the bands are degenerate causes the Fermi surface to reconstruct. The re-

sulting Fermi surface is that of the monolayer member of the family, Sr2RuO4. It

consists of three bands, labelled α, β and γ as shown in Fig.3.8 b). Next the ef-

fects of the bilayer are taken into account. Interactions between the layers break

their degeneracy resulting in bilayer splitting of the Fermi surface seen in panel c)

of 3.8. Finally the rotation of the RuO octahedra is accounted for. This causes the
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Brillouin zone to halve and rotate by 45◦, the bands are then ‘backfolded’ into the

reduced zone as shown in panel e) of Fig.3.8. The Fermi surface for this bilayer with

rotation is obtained by anticrossing these bands. In this complex arrangement there

are many possible outcomes and it is not a priori clear which will occur. Based upon

the experimental evidence discussed in the next section the reconnection which oc-

curs is shown in panel f). This argument, though by no means rigorous, gives good

agreement with ARPES and DFT results. It will form the basis of later attempts

to produce a realistic band structure for calculations in section 6.4.1.

3.4.2 Measured Fermi surface

Angle resolved photoemission spectroscopy (ARPES) allows the direct measurement

of the zero-field Fermi surface through measurement of the momentum of photoelec-

trons emitted from the surface [67]. ARPES measurements of Sr3Ru2O7 identified

six bands as shown in Fig.3.9, these are named, based on their origin in the Fermi

surface of Sr2RuO4, α1, α2, β, γ1, γ2 and δ. Within the resolution of ARPES it

is impossible to tell if the γ2 band crosses Fermi surface or not. Comparison with

magnetocaloric measurements [74] and comparison of the measured total specific

heat with that derived from dHvA quasiparticle masses [67, 75] suggest that this

band does cross the Fermi surface. Density functional theory calculations including

spin-orbit coupling give a reasonable match to the ARPES results. The δ pocket

does not appear in our previous discussion of the Fermi surface. DFT indicates

that this originates from the ruthenium dx2−y2 orbitals which are unoccupied in the

single-layer case.

3.4.3 Correspondence of quantum oscillation results

Quantum oscillation experiments provide a measurement of the Fermi surface in the

bulk of the material. De Haas-van Alphen has confirmed the quasi two-dimensional

nature of the Fermi surface and can identify the area of the Fermi surface pockets

and the effective masses of the electrons at the Fermi surface [67,68,75]. These are

generally in good agreement with the ARPES results though dHvA has difficulty

seeing the γ2 pocket due to its extremely small area. Quantum oscillations are

however visible in other physical quantities, and magnetothermal oscillations have

been observed [74]. The sensitivity of this technique is complementary to dHvA and

in fact best identifies the small pockets. The γ2 pocket was definitely observed in

these magnetothermal measurements [74].
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Fig. 3.8: Construction of the Fermi surface via basic arguments: The Fermi
surface of Sr3Ru2O7 is shown to be built up from the Fermi surface of the single-layer
compound Sr2RuO4. a) Unhybridised bands from the single-layer compound. b) Hy-
bridised single-layer bands form the Fermi surface of Sr2RuO4. c) Bilayer splitting of the
single-layer bands. d) Hybridization of bilayer bands. This would be the Fermi surface of
Sr3Ru2O7 if there were no rotation of the RuO octahedra. e) Backfolding the bilayer Fermi
surface into the reduced zone, to account for the rotation. The dashed line represents the
reduced Brillouin zone. f) The Fermi surface of Sr3Ru2O7 with anticrossings chosen to
reproduce the experimentally determined Fermi surface. Figure from [75].
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Fig. 3.9: Fermi surface from ARPES: a) Experimental data. b) Fermi surface contours
extracted from data shown in a). c) Fermi surface from DFT calculation. Figure from [67].
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Fig. 3.10: Density of States: a) Histogram of states near the Fermi surface from ARPES
measurements. In blue is the γ2 band which shows two peaks. Also shown is the γ1 band
which has no such features. The vertical line represents the Fermi surface with an error
bar representing the uncertainty in its position. Quantum oscillation experiments show
that the γ2 band must in fact cross the Fermi surface. Figure from [67]. b) Dispersion
of the γ2 band showing the saddle point and band top. Figure from [67]. c) Red dots
indicate the location of the saddle points in the band structure. Figure adapted from [75]

3.4.4 Reconciling the phase diagram and the Fermi surface

In an itinerant system the simplest mechanism which produces metamagnetism is

a peak in the electronic density of states. As previously discussed in section 2.2.2

this makes it favourable for a magnetic transition to occur when the Fermi surface

is Zeeman split such that one spin-species’ Fermi surface approaches the peak. This

model gives a qualitative fit to the phase diagram of Sr3Ru2O7. The natural cause

of a peak in the density of states is a saddle-point in the electronic dispersion [56].

ARPES measurements do indeed show a peak in the density of states just below

the Fermi surface, shown in Fig.3.10. The γ2 band shows two peaks in its density

of states. A large peak corresponding to a saddle point and a smaller peak corre-

sponding to the top of the band. This large peak is ∼3meV below the Fermi surface.
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This puts it slightly far from the Fermi surface to correspond to the metamagnetic

transition at 8T, but we must bear in mind the uncertainty in the position of the

Fermi surface in ARPES and uncertainty in the relation of field to energy in such

a complex material where the coupling of the field to the Fermi surface depends on

microscopic details which are not fully understood.

None of the bands visible in dHvA can be seen to have an enhancement of the

quasiparticle mass near to the metamagnetic transition compared to the zero field

value [75]. This indicates that the metamagnetism is due to the γ2 band in which

the mass enhancement is irresolvable. This supports a picture where one band goes

through a metamagnetic transition as a result of a peak in the density of states and

suggests that a single-band approach will be sufficient to explain the main features

of Sr3Ru2O7 despite its complex band structure.

Specific heat measurements have been made as a function of field strength and

temperature with field aligned along the c-axis [74]. These show the onset of a

divergence of the specific heat as the critical field is approached, which is cut off by

the appearance of the anomalous phase. How closely this matches the prediction

for a single peak in the electronic density of states will be discussed in section 5.

Here we note that as the Fermi liquid prediction for the low temperature electronic

specific heat goes like the density of states at the Fermi surface a divergence would

be expected at a van Hove singularity.

3.5 Summary

Having discussed in some detail the experimental situation regarding Sr3Ru2O7 we

now summarize the results most relevant to the work presented here. Sr3Ru2O7

shows a metamagnetic transition the critical field and temperature of which can be

tuned by the angle of applied magnetic field relative to the crystalline c-axis. With

the field along c-axis the transition is split into two. Between the two transitions

is an anomalous phase with a high, anisotropic resistivity which can be oriented by

the component of the field in the ab-plane. This phase is enclosed by first-order

transitions at low temperature and a second-order roof at higher temperatures. The

metamagnetic transition appears to be driven by a peak in the density of states

of one electronic band. The other bands appear inert throughout the transition.

The anomalous phase has some Fermi liquid characteristics, although it has unusual

temperature dependences of the resistivity and specific heat.
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3.6 Our model and motivation

We will now introduce the model that we propose to explain these features of

Sr3Ru2O7 and the motivations that drive us to take this approach.

The feature which dominates the phase diagram of Sr3Ru2O7 is the metamagnetic

transition. This occurs in both the ultra-pure samples and the less pure samples,

unlike the anomalous phase which is more fragile. Furthermore, the metamagnetic

transition exists for all angles whereas the anomalous phase is restricted to certain

regions. We therefore reason that the metamagnetic transition has a higher energy

scale than the other effects and any theory should first explain its properties before

turning to the anomalous phase. The obvious place to start in describing this tran-

sition is the simple model of a peak in the density of states driving the transition

via a Stoner-type mean-field interaction.

Rather than become mired in details at an early stage, and also to retain gener-

ality, we will not begin by studying the Fermi surface of Sr3Ru2O7, but will choose

the simplest example which reproduces the key feature - the peak in the density

of states. We will therefore study a model using the next-nearest-neighbour tight-

binding dispersion, which possesses both the peak and the observed symmetry of

the normal phase.

We are interested in a reconstruction of the metamagnetic transition to form the

anomalous phase. We will therefore construct a Ginzburg-Landau expansion about

the metamagnetic transition and study its consequences.

Our proposal for the nature of the anomalous phase is based on the general idea

of modulated phases acting as intermediate states between two phases. By forming

a spatially modulated state the system can take advantage of ordering locally whilst

retaining an average zero order parameter.

Spatially modulated superconductivity is the most commonly studied case. Here

the modulated phase is called the Fulde-Ferrell-Larkin-Ovchinnikov [27, 28] phase

and it appears in a narrow range of magnetic fields in between the normal and

superconducting states. We postulate that a similar phase of spatially modulated

magnetization may occur as an intermediate state in a metamagnetic transition.

Motivated by this we will study the favourability of the spatially modulated phase

in a Ginzburg-Landau expansion. We will find that in certain circumstances it is a

favourable state and that it causes the bifurcation of a metamagnetic transition in

a way which reproduces the topology of the phase diagram of Sr3Ru2O7.

We will calculate the phase diagram for the inhomogeneous phase based on both
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microscopic and phenomenological arguments. Starting from the Stoner Hamilto-

nian we perform an expansion to obtain the Ginzburg-Landau theory in terms of the

microscopic parameters of the theory. This will also be derived from general phe-

nomenological principles. Using this Ginzburg-Landau expansion we will calculate

the phase diagram. The thermodynamic properties of the metamagnetic transition

will be calculated to obtain the specific heat and entropy as we tune with field

through the transition.



Part II

CALCULATION OF PHASE DIAGRAMS AND

PROPERTIES, AND COMPARISON WITH

EXPERIMENT



4. CALCULATION OF PHASE DIAGRAM

This chapter is concerned with calculating the phase diagram for an itinerant meta-

magnetic system with spiral magnetic order. Following our top-down approach we

begin by considering the homogeneous case and then calculate how this phase dia-

gram reconstructs when modulated magnetisation is allowed. We consider both mi-

croscopic and phenomenological approaches to the problem. We will find a complex

phase diagram which reproduces the topology of the experimental phase diagram of

Sr3Ru2O7.

We will begin with a cartoon picture of why peaks in the density of states favour

metamagnetism. We then consider how the mean-field phase diagram for this model

may be calculated. Next the framework of the Ginzburg-Landau expansion will be

introduced and we will show how it can be adapted to an expansion about the line

of metamagnetic critical endpoints. We will consider this phenomenologically before

performing an explicit microscopic expansion. We then examine how inhomogeneous

phases appear. We motivate this study by considering how modulated magnetisation

may become energetically favourable. A gradient expansion of the Stoner action is

then performed to show that modulation becomes favourable on the line of critical

endpoints. Finally we construct the phase diagram including modulation from a

Ginzburg-Landau theory. This theory is rather complicated, therefore to elucidate

the role of the various terms in the expansion we conduct a term-by-term study of

the phase diagram.

4.1 Homogeneous phase diagram

To begin the phase diagram for the case of purely homogeneous magnetisation will

be calculated. We will consider the physical arguments as to why metamagnetism

should occur when there is a peak in the density of states. We will then calculate the

phase diagram of the Stoner model with a peak in the density of states. A Landau

expansion will be developed for this case from an expansion of the Hamiltonian and

the phenomenology of the situation will be investigated.
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4.1.1 Cartoon for homogeneous phase diagram

We present a cartoon explaining the energetic reasons for the metamagnetic tran-

sition occurring, giving a simple physical picture for the transition. We begin from

the idea that the full phase diagram, including the anomalous phase, is found by

restructuring this metamagnetic transition. Based on this idea we study the sim-

plest model which reproduces the metamagnetic transition, the Stoner model with

a peak in the electronic density of states. This gives the correct topology for the

metamagnetic transition with a generic 2D electronic band dispersion [69].

The Stoner model includes electron-electron interactions in a mean-field manner.

The Hamiltonian ĤS is therefore easy to understand:

ĤS =
∑

k,σ=↑,↓

ǫkn̂k,σ + gn̂↑n̂↓ − h (n̂↑ − n̂↓) , (4.1)

where ǫk is the electronic dispersion, n̂k,σ is the number operator for electrons with

momentum k and spin σ and n̂σ is the total number operator for spin σ, g is the

Coulomb interaction strength and h is the applied magnetic field. The first term

is the single-particle energy, the second term is the interaction energy and the final

term is the Zeeman energy. The interaction term can be rewritten as n↑n↓ = (n −
m)(n+m) = n2−m2, so we see that magnetisation leads to a lowering of the energy.

However, magnetising also raises the single particle energy. The balance between

these terms will determine the magnetic properties of the system. Information

about the system enters through magnitude of g and the electronic dispersion. We

are interested in systems with a peak in the density of states and so will choose

simple dispersions or model densities of states which show this feature. Van Hove

showed that in 2D saddle points in the dispersion produce logarithmically divergent

peaks in the density of states [56]. The simplest dispersion which reproduces this

is the nearest-neighbour tight-binding model on a square lattice. This dispersion is

however perfectly nested at half-filling and so is unstable to forming a spin-density

wave, as discussed in section 2.2.3. We are interested in systems which are uniform

ferromagnets at zero field and so remove the perfect nesting by adding a next-

nearest-neighbour contribution to give the dispersion

ǫk = −(cos kx + cos ky) + t cos kx cos ky. (4.2)

Here t measures the next-nearest-neighbour contribution. This has saddle points at
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Fig. 4.1: Electronic dispersion and density of states: a) The next-nearest-neighbour
tight-binding dispersion. This has saddle-points at k = (0,±π) and k = (±π, 0), indicated
by dots. b) The density of states corresponding to this dispersion. There is a peak at the
energy of the saddle-point.

k = (0,±π) and k = (±π, 0). These points are degenerate and so the density of

states has a single peak at ǫ = −t. This dispersion and its density of states are

shown in Fig.4.1.

A simple picture of when magnetisation becomes favourable is as follows. Con-

sider what happens when an itinerant system spontaneously magnetises. The Fermi

surfaces of the two spin-species split to create a population imbalance. This is effec-

tively taking some electrons from below the Fermi surface and flipping their spins,

due to the Pauli exclusion principle these electrons must then be added to the other

spin band above the Fermi-surface. This results in an energy cost to splitting the

Fermi-surface as encoded in the first term of Eq.4.1. However, the magnetic field

which results from this imbalance lowers the energy of the majority spin-species.

This gives an energetic advantage to magnetizing due to interactions which is the

second term in Eq.4.1. The final term is the Zeeman coupling to the external field.

The single particle energy cost is proportional to the energetic difference between

the spin-species’ Fermi surfaces, whereas the interaction energy is proportional to

the magnetisation squared. The number of electrons whose energy is changed by

applying a field is approximately ρFδE as shown in Fig.4.2b). We therefore see that

the magnetic gain is proportional to ρ2
FδE

2, whereas the kinetic cost is proportional

to ρFδE
2. The magnetic term is favoured by a high density of states. When the

Fermi surface is close to a peak in the density of states it will be energetically

favourable for the system to become ferromagnetic.

This cartoon explains why the system should be ferromagnetic if the Fermi sur-
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Fig. 4.2: Cartoon for the formation of metamagnetism: a) At the metamagnetic
transition the majority band increases its filling through the van Hove singularity. b) The
presence of this singularity leads to a reduced cost in single-particle energy allowing the
gain in interaction energy to win out. The single particle energy is proportional to ρFδE2

whereas the magnetisation energy is proportional to (ρFδE)2. In a region of high density
of states it becomes energetically favourable to magnetise. c) The picture of two Fermi
surfaces is equivalent to a single Fermi surface with different densities of states for the
spin-species.

face lies close enough to the peak in the density of states. It also results in meta-

magnetism as we now explain. If the zero-field Fermi surface lies far enough away

from the peak then the system is paramagnetic. By applying a magnetic field the

Fermi surfaces are split, if one of them approaches the peak in the density of states

then the above arguments come into play and it is favourable for the Fermi surface

to split further, resulting in a jump in the magnetisation.

This discussion has been presented in terms of there being two different Fermi

surfaces for the spin-species. It is more physical to think of a single Fermi energy

and the densities of states of the two species being shifted relative to each other. The

two pictures are however equivalent. Throughout this thesis both will be employed

depending upon the situation.

The phase diagram for the Stoner model can be calculated exactly from the free

energy. We first consider this method and then go on to develop a Ginzburg-Landau

expansion for the model.

4.1.2 Calculation from mean-field free energy

Based on the Hamiltonian 4.1 the free energy of the Stoner model can be written

F =
∑

σ

[

−kBT
∫

dǫρ(ǫ) log
(

1 + e−β(ǫ−µσ)
)

+ µσnσ

]

+ g(n2 −m2),

(4.3)
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where n is the total number of electrons, m is the magnetisation, h is the magnetic

field and T is the temperature. The term in square brackets is the single-particle

contribution, the final term is the interaction energy. Here we choose to work in

the canonical ensemble where electron number is conserved (note that the first term

in Eq.4.3 is the Grand Potential). The Free Energy is therefore a function of n, m

and T . µσ are the effective chemical potentials for the spin-up and -down electrons.

These are determined implicitly by the equations for electron number

nσ =
n

2
+ σm =

∫

dǫ ρ(ǫ)nF (ǫ− µσ) , (4.4)

where nF(ǫ−µσ) is the Fermi-Dirac distribution
(

1 + eβ(ǫ−µσ)
)−1

and σ = ±1. With

this definition for nσ we have n = n↑ +n↓ and m = n↑−n↓, as used in the rewriting

of the interaction energy.

Writing the free energy in terms of the density of states rather than the dispersion

is convenient but requires an explicit form for the density of states, which is in general

hard to obtain. It is known that saddle points in the dispersion produce logarithmic

divergences in the density of states in two dimensions [56]. Investigation into the

form of the phase diagram with a density of states

ρ(ǫ) = log
∣

∣

∣ǫ−1
∣

∣

∣ (4.5)

which diverges at ǫ = 0, has been carried out by Binz and Sigrist [69], the results

are shown in Fig.4.3.

From the free energy an equation for the magnetic field as a function of n, m

and T is obtained by minimizing the Gibb’s free energy G = F − hm.

h = ∂mF =
∑

σ

σµσ − 2Um. (4.6)

This may be numerically inverted to find m for any n, h and T . The resulting

magnetisation is shown in Fig.4.3. There are some complications involving phase

separation which we will address in section 4.1.6.

The second derivative of the free energy with respect to magnetisation gives the

inverse of the magnetic susceptibility. The susceptibility diverges at a second order

transition, giving a condition for a continuous transition, ∂2
mF = 0.

∂2
mF =

1

χ
=
∑

σ

1
∫

dǫρ(1)(ǫ) nF(ǫ− µσ)
− 2U, (4.7)
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where ρ(n)(ǫ) = ∂nǫ ρ(ǫ). Note that in the paramagnetic phase at zero field µ↑ = µ↓

and this condition reduces to 1 = U
∫

dǫ ρ(1)(ǫ) nF(ǫ − µσ). This is the finite-

temperature version of the Stoner criterion as can be seen by integrating by parts

−U ∫ dǫ ρ(ǫ) n(1)
F (ǫ − µσ) = 1. At zero temperature the Fermi-Dirac distribution

becomes a step function and its derivative is the negative of a delta function at the

Fermi surface 1 = U
∫

dǫ ρ(ǫ) δ(ǫ− ǫF) = Uρ(ǫF).

The line of metamagnetic critical endpoints is determined by the third derivative

of the free energy being zero:

∂3
mF =

∑

σ

−σ ∫ dǫ ρ(2)(ǫ)nF(ǫ− µσ)

(
∫

dǫ ρ(1)(ǫ)nF(ǫ− µσ))
3 . (4.8)

By symmetry this derivative must be zero when there is no field. The position of

the tricritical point in the zero field plane is determined by the fourth derivative

vanishing. These derivatives are the coefficients of a Landau expansion of the free

energy, which we will derive shortly. These conditions may be solved numerically

to give the transition lines as a function of n, h and T . With the logarithmic form

of the density of states Eq.4.5 these conditions give the phase diagram shown in

Fig.4.3.

The phase diagram resulting from this model displays a dome-shaped region of

ferromagnetism at zero field around the divergence in the density of states. This is

bounded by continuous transitions at high temperature. These transitions become

first order at a tricritical point as temperature is decreased. A line of metamagnetic

critical endpoints emerges from the tricritical point and extends to higher filling as

field is increased. This line bounds a sheet of discontinuous jumps in the magneti-

sation. Above the critical temperature this transition becomes a smooth cross-over.

Fig.4.3 shows this phase diagram for greater than half filling, but for a density of

states with a symmetric peak the phase diagram is also symmetric about the peak.

In Sr3Ru2O7 the angle of the applied field tunes through the metamagnetic wing

(Fig.3.3), effectively taking the role of filling in Fig.4.3. The reasons for this rela-

tionship are not fully understood, but it is likely to be due to orbital effects which

we will discuss in section 6.4.1.

The parent tricritical point does not appear in the phase diagram of Sr3Ru2O7 as

a function of the angle of applied field. However the application of moderate uniaxial

pressure can drive the material ferromagnetic [78] suggesting that the tricritical point

is not far away. Sr3Ru2O7 can therefore be thought of as having a segment of this
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Fig. 4.3: The phase diagram for the Stoner model: The phase diagram of the
Stoner model, calculated by Binz and Sigrist, as a function of filling x, magnetic field h
and temperature T for a logarithmically divergent density of states. The line of second
order transitions is given by ∂2

mF = 0, the line of metamagnetic critical endpoints by
∂3
mF = ∂2

mF = 0 and the tricritical point by ∂4
mF = ∂2

mF = 0. The inset shows the
projection of the phase diagram onto the x, T plane. On the right are the magnetisation
curves passing through the metamagnetic wing. Magnetisation is plotted as a function
of field for a variety of temperatures. The first-order jump at low temperature is shown,
this becomes a smooth cross-over at high temperature. The three panels are for different
values of the filling x, a) is closest in filling to the zero-field first-order transition and
shows the largest metamagnetic jump. c) is furthest from the zero-field transition and
shows continuous behaviour setting in at lower temperature than panels a) or b). Figure
from [69].

phase diagram. The phase diagrams of the neighbouring members of the ruthenate

family can be thought of as covering different areas of the phase diagram, Sr2RuO4

being a paramagnet and Sr4Ru3O10 being a ferromagnet. The full phase diagram is

reproduced in a variety of itinerant magnets such as MnSi [29] and ZrZn2 [47].

4.1.3 Landau expansions

In preparation for the development of a Ginzburg-Landau description of inhomo-

geneous phases we consider the Landau approach to the ferro- and meta-magnetic

transitions.



4. Calculation of phase diagram 53

The concept of a Landau expansion [46] gives an informative and tractable ap-

proach to phase transitions, incorporating both phenomenological and microscopic

viewpoints. It also provides an easy-to-understand visual representation of phase

transitions. The central idea of a Landau expansion is that near to a continuous

phase transition the order parameter is small. The free energy may therefore be

Taylor expanded in this order parameter. Truncating this expansion at sixth order

is sufficient to capture both first- and second-order transitions, including metamag-

netism. Certain terms in the expansion will automatically be zero due to symmetry.

For example, in the case of a ferromagnet in zero external field all orientations of

the magnetisation must be energetically equivalent. The Landau expansion cannot

depend on the sign of the magnetisation and must contain only even powers of mag-

netisation. The external field then couples linearly to the magnetisation, breaking

the symmetry. The Landau description of a ferromagnet therefore has the form

F =
r

2
m2 +

u

4
m4 +

v

6
m6 − hm (4.9)

where m is the magnitude of the magnetisation and h is the external magnetic field.

r, u and v are coefficients which are varied to produce the phenomenology of different

phases, or which can be calculated from microscopics.

The order parameter takes the value which minimises the Landau free energy. In

order for the free energy function to be bounded from below asm→ ∞ it is necessary

for the highest order coefficient, v, to be positive. In this case the value of magneti-

sation m̄ which minimises the free energy is given by m̄2 =
(

−u±
√
u2 − 4rv

)

/2v.

At this point we note that although the Landau free energy is by definition an

analytic function it can still describe the non-analytic point of a phase transition.

This is because the Landau free energy is not actually the free energy of the system

- the minimum of the Landau free energy is the physical free energy of the system.

The co-ordinates of the minimum of a function can be discontinuous even though

the function is perfectly smooth, as indicated in Fig.4.4. The expansion in terms

of the order parameter can be thought of as introducing an additional variable in

order to transform a non-analytic function into an analytic one.

Within the Landau scheme phase transitions occur when the global minimum

of the free energy changes between different values of the order parameter. This

can occur in two ways which are illustrated in Fig.4.5. The m = 0 minima of the

free energy can move smoothly to non-zero m as the quadratic Landau coefficient

r becomes negative - a continuous transition. The second way is for a separate
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Fig. 4.4: The order parameter is the minimum of the Landau free energy:

Shown are the Landau free energy curves as a function of order parameter and an external
parameter (here represented by T , as this parameter is often temperature) which changes
the values of the Landau coefficients. The value of the order parameter which the system
adopts is the one which minimizes the Landau free energy, shown by the red line. This
may have discontinuities and kinks despite the smoothness of the free energy function.
Illustrated are, left, a continuous transition and right, a first-order transition.
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Fig. 4.5: Free energy curves for the Landau expansion: In black is the Landau
free energy when r, u and v are positive. In red are Landau free energy functions showing
a second-order phase transition when r = 0. In blue is the free energy for a first-order

transition, which occurs when u = −
√

16
3 rv. In green is the free energy for the metam-

agnetic transition, the field acts to ‘tilt’ the free energy so that it is asymmetric. On the
bottom line are plots of the magnetisation for a second-order transition (red), first-order
transition (blue) and metamagnetic transitions (green) as functions of u and h.
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Fig. 4.6: Generic Landau phase diagram: Phase diagram for the Landau expansion
F = r

2m2 + u
4m4 + v

6m6. The blue line is the continuous transition, the red point is the
tricritical point and the green sheets are first-order transitions. This generic diagram can
be mapped onto any theory which can be described by a Landau expansion. The inset
shows the generic form of this diagram for the case of itinerant magnets, where r and u
are functions of temperature T and some tuning parameter p.

local minimum to form and then cross the original minimum to become the global

minimum. This results in a jump of the order parameter between the two minima -

a first-order transition. This is caused by the quartic term u becoming sufficiently

negative while r remains positive. It is simple to calculate the conditions for these

different transitions. The second order transition occurs when

∂mF |m=0 = r = 0, (4.10)

the first order transition when F (m̄) = F (m), leading to

u = −
√

16

3
rv. (4.11)

The metamagnetic transitions are first-order transitions between two minima, both

at non-zero magnetisation because of the applied field. They occur along lines given

by

h = ±6u2

25

√

3 |u|
10v3

, r =
9u2

20v
. (4.12)

As calculated from the conditions for the degeneracy of two minima with a non-zero

field h [70].
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These equations define a phase diagram for the Landau expansion Eq.4.9 as a

function of the coefficients of the expansion. This is shown in Fig.4.6. It consists of

a sheet of first-order transitions for u > 0, r < 0, h = 0 with a continuous transition

along the line u > 0, r = 0, h = 0. This transition terminates in a tricritical point at

r = u = h = 0 where it becomes a first-order transition for u < 0, r = 3u2

16v
, the sheet

of first order transitions continuing below this first-order line. Two metamagnetic

wings extend from the tricritical point for h 6= 0, the critical endpoints determined

by the equations 4.12.

This is the standard description of the ferromagnet, where the terms in the ex-

pansion reflect the inversion symmetry of the system. The effects which we will

consider do not occur on this zero-field phase transition but on the metamagnetic

wing. The metamagnetic critical endpoint is a continuous phase transition, and

therefore we may construct a Landau expansion about this line in the same way

as about the zero-field continuous transition. Instead of expanding in the magneti-

sation we expand in the deviation of the magnetisation from its value on the line

of critical endpoints. We will consider this issue in detail in later sections. Here

we note that since the expansion is about a symmetry-broken state the expansion

Eq.4.9 should contain odd terms in m, now representing the deviation from the

magnetisation on the line of critical endpoints. This situation was considered by

Green et al. [70]. They found that the tricritical point becomes ‘dislocated’ in the

presence of asymmetric terms as shown in Fig.4.7. This result is in agreement with

the topology of the metamagnetic transitions in Sr3Ru2O7. When we consider the

effect of inhomogeneity we will find a similar phase diagram with some important

differences.

4.1.4 Landau phenomenology

We wish to investigate the potential for inhomogeneous order leading to a recon-

struction of the metamagnetic wings. To this end, we develop a Landau expansion

about the magnetisation along the line of metamagnetic critical end-points, rather

than about zero magnetisation. The presence of the field singles out a particular

direction in space and components of the magnetisation parallel and perpendicular

to this direction may have different properties. We therefore expand in the two

components separately. We will label the longitudinal magnetisation M ê‖ where ê‖

is a unit vector in the direction of the applied field, and the perpendicular magneti-

sation M⊥ê⊥, where ê⊥ is a unit vector perpendicular to the applied field, so that
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Fig. 4.7: Phase diagram showing dislocated tricritical point: Left, the phase
diagram with only symmetric terms, right, the phase diagram with asymmetric terms. In
the presence of symmetry-breaking terms the tricritical point becomes dislocated. This is
similar to the bifurcation observed in ultra-pure Sr3Ru2O7. Figure from [70].

M = M ê‖ +M⊥ê⊥.

We denote the longitudinal magnetisation in the vicinity of the line of metamag-

netic critical end-points by M = m+ M̄ , where M̄ is the magnetisation on the line

and m is the deviation from it. By making this shift we study small deviations of the

magnetisation from the value on the line of critical endpoints, just as the standard

Landau description of the ferromagnet studies deviations from zero magnetisation.

Substituting this shift of order parameter into the Landau free energy

F = rM2 + uM4 + vM6 − h · M (4.13)

results in a theory with terms up to sixth order in m, M̄ and M⊥. This unwieldy

number of terms is reduced considerably by explicitly constraining our expansion to

be about the line of critical end-points. The conditions that M̄ be the magnetisation

along the line of critical end-points are that the first three derivatives of the Landau

free energy Eq.4.13 with respect to M are zero. This gives

∂MF = 0 = 2rM + 4uM3 + 6vM5 − h,

∂2
MF = 0 = 2r + 12uM2 + 30vM4,
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∂3
MF = 0 = 24uM + 120vM3, (4.14)

which imply the relationships r = 15vM̄4, u = −5vM̄2 and h = 16vM̄5 when on

the line of critical endpoints.

A further simplification is afforded by normalizing the deviations in longitudinal

and transverse magnetisations to the longitudinal magnetisation along the line of

metamagnetic critical end points. Defining φ = m/M̄ and φ⊥ = M⊥/M̄ and sub-

stituting into Eq.4.13 with the coefficients of the expansion constrained to lie along

the line of critical end points by equations 4.14, we find

F = F
(

M̄
)

+ hM̄ [Rφ2 + Sφ3 + Uφ4 + Tφ5 + V φ6 −Hφ

+R⊥φ
2
⊥ + U⊥φ

4
⊥ + V⊥φ

6
⊥

+S1φφ
2
⊥ + U1φ

2φ2
⊥ + T1φ

3φ2
⊥

+V1φ
4φ2

⊥ + T2φφ
4
⊥ + V2φ

2φ4
⊥], (4.15)

where

S = 0, U = 5/8, T = 3/8, V = 1/16,

R⊥ = 1/2, U⊥ = −1/8, V⊥ = 1/16,

S1 = −1/2, U1 = 1/2, T1 = 3/4,

V1 = 3/16, T2 = 3/8, V2 = 3/16.

(4.16)

The condition that the point we expand about lies on the line of metamagnetic crit-

ical endpoints is sufficient to constrain the free energy. The coefficients are reduced

to constants, the majority of which will be confirmed by microscopic analysis. These

are therefore universal properties of the metamagnetic transition and do not depend

on the microscopic details.

Exactly on the line of critical end points, R = 0 and H = 0. We allow non-

zero values in order to parametrize deviations from the line of critical end points.

The Landau theory of Eq.4.15 leads to a line of first order transitions at R < 0

terminating at a second order end point at H = 0, R = 0 as shown in Fig.4.8,

corresponding to a cut through the metamagnetic wing of Fig.4.6.

These phase diagrams are generic, describing the topology of the phase diagram

for any system in which the Landau expansion is valid. Mapping this phase diagram

onto a particular case involves finding explicit expressions for the Landau coefficients

in terms of the parameters of the system, such as temperature, pressure, or in the
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R

H

Fig. 4.8: Phase diagram for homogeneous magnetisation: The green line is the
metamagnetic transition, the red point is the tricritical point. Green shading represents
the magnitude of magnetisation, dark green is low magnetisation, light green is high
magnetisation. Note the sharp jump at the first order transition and the gradual change
above the tricritical point.

case of Sr3Ru2O7 the angle of the applied field. We will now develop such a mapping

for the Stoner model.

4.1.5 Explicit Landau expansion of Stoner Hamiltonian

We now turn to detailed calculation to obtain the Ginzburg-Landau expansion from

the Stoner Hamiltonian. This will give us expressions for the coefficients of the

Ginzburg-Landau expansion in terms of the microscopic parameters of the theory,

allowing the mapping of the generic phase diagram Fig.4.6 onto the specific case

considered. This process follows several standard steps (see for example [79]). The

partition function is written as a path integral and the interaction terms decoupled.

The action is then expanded in powers of M to obtain the terms of the Landau

expansion. Details of this process are contained in appendix A and B. We are no

longer working in a number-conserving scheme, but instead fix the chemical potential

µ.

We begin from the Hamiltonian

Ĥ − µN̂ =
∑

k

ψ†
k (ǫk − µ)ψk − g

4

∫

dx
(

ψ†
xσ̄ψx

)2 − h
∫

dxψ†
xσzψx, (4.17)

where ψ†
k/x =

(

c†k/x,↑, c
†
k/x,↓

)

represents the electron creation operators in the mo-

mentum and position representations respectively, σ̄ = (σx, σy, σz) is the vector of
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Pauli matrices, g is the Coulomb interaction strength and h is the applied magnetic

field. Here we have explicitly expressed the interaction in terms of the magnetisa-

tion. Note that the field couples only to the longitudinal magnetisation component

whereas the interaction term includes both components.

The partition function is written as a path integral over Grassman fields,

Z =
∫

D
(

ψ†, ψ
)

e−
∫ β

0
dτ[ψ†∂τψ+Ĥ−µN̂ ]. (4.18)

The interaction terms are decoupled by a Hubbard-Stratonovich transformation with

coupling M(x)·
(

ψ†
xσψx

)

. Integrating over the fermionic fields the partition function

can be expressed as a field integral, Z =
∫ DM e−S[M] where the Euclidean time

action takes the form

S[M] =
g

4

∫

dx M2 − tr ln
[

Ĝ−1
0 +

g

2
σ · M

]

=
g

4

∫

dx M2 − tr ln
[

Ĝ−1
0

]

+
∞
∑

n=1

(−1)n

n

(

g

2

)n

tr
[

Ĝ0 σ · M
]n
,

(4.19)

where
∫

dx ≡ ∫ β
0 dτ

∫

ddr. Here Ĝ−1
0 = −∂τ − ξp̂ + hσz, denotes the inverse Green’s

function of the non-interacting electron, where ξp̂ = ǫp̂ − µ. In the second line of

this expression we have introduced the expansion of the action in powers of M.

The Landau theory is developed as an expansion around the saddle point of this

action along the line of critical end-points. Varying the action with respect to M

and applying the ansatz M = M̄ ê‖ constant, where M̄ is a shifted magnetisation

which includes the external field M̄ 7→ M̄ ′ = M̄ + 2
g
h, gives the equation for the

uniform saddle-point:

M̄ − 2

g
h =

1

βLd
∑

kσ

σGσ(k) =
1

Ld
∑

kσ

σ nF

[

ǫk − gM̄σ/2
]

, (4.20)

where Gσ(k) = (iωn − ξk + g
2
M̄σ)−1 and nF(ǫ) = (eβ(ǫ−µ) + 1)−1 denotes the Fermi

distribution function. For a given interaction g, this gives the value of the saddle-

point magnetisation M̄ as a function of chemical potential µ, magnetic field h and

temperature T . As previously we must address the issue of phase separation, which

is considered in section 4.1.6

The coordinates of the metamagnetic critical endpoint are found by the require-

ment that the second and third derivatives of the free energy with respect to mag-
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netisation are zero. This gives the conditions

2

g
= − 1

Ld
∑

kσ

n
(1)
F

[

ǫk − (gM̄/2 + h)σ
]

,

0 =
1

Ld
∑

kσ

σn
(2)
F

[

ǫk − (gM̄/2 + h)σ
]

, (4.21)

where n
(n)
F (ǫ) = ∂nǫ nF(ǫ). These equations will be used to simplify the expressions

for the coefficients of the Landau expansion.

The Ginzburg-Landau expansion is constructed by evaluation of the terms in the

expansion of the action (4.19). As the expansion is centered on the line of critical

endpoints we expand about the saddle-point value M̄ and not zero. We set M =

(M̄+m)ê‖+m⊥ where ê‖ is a unit vector in the direction of the applied field, with the

deviation from the saddle-point solution M̄ presumed small. Discarding the constant

contribution to the action, the saddle-point solution ensures that most of the terms

at first order in M must vanish, leaving only the field-dependent contribution,

S(1) = −
∫

dx hm. (4.22)

At second order the action can be split into longitudinal and transverse components,

S(2) =
g

4

∫

dx m2 +
(

g

2

)2

tr
[

Ĝ↑m⊥ · Ĝ↓m⊥ +
1

2

(

(Ĝ↑m)2 + (Ĝ↓m)2
)

]

.

(4.23)

Defining the longitudinal and transverse susceptibilities

Π||σ(q) =
1

βLd
∑

k

Gσ(k)Gσ(k + q),

Π⊥(q) =
1

βLd
∑

k

G↑(k)G↓(k + q), (4.24)

we have

S(2) = S(2)
|| + S(2)

⊥ ,

S(2)
|| =

g

4

∫

dx m2 +
g2

8
β
∑

qσ

Π||σ(q)mqm−q,

S(2)
⊥ =

g

4

∫

dx m2
⊥ +

g2

4
β
∑

q

Π⊥(q)m⊥qm⊥−q. (4.25)
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Expanding in powers of q will lead to the gradient terms in the expansion. These

terms will indicate the favourability of inhomogeneity and will be considered shortly.

Initially we will consider the q = 0 homogeneous case. Evaluating the susceptibilities

we find

S(2)
|| = β

∫

ddr rm2,

S(2)
⊥ = β

∫

ddr r⊥m2
⊥, (4.26)

where

r =
g

4
+
g2

8

1

Ld
∑

kσ

n
(1)
F (ǫk − gM̄σ/2),

r⊥ =
g

4
− g2

4

1

gM̄

1

Ld
∑

k,σ

σnF(ǫk − gM̄σ/2). (4.27)

In the case of zero field, M̄ → 0. Then r⊥ tends to a constant and r tends to
g
4

(

1 + g
Ld

∑

k n
(1)
F (ǫk)

)

. r = 0 corresponds to a second-order transition, this is the

standard Stoner criterion, 1 = gρ(ǫF) at zero temperature as 1 + g
Ld

∑

k n
(1)
F

∣

∣

∣

T=0
=

1 + g
∫

dǫ ρ(ǫ)n
(1)
F

∣

∣

∣

T=0
= 1 − gρ(ǫF). If the Fermi level is tuned such that it moves

to a region of high density of states then the system will undergo a second order

transition to a ferromagnet.

At third order, the longitudinal and transverse magnetisations become coupled.

It is this coupling which allows inhomogeneity in the transverse component to affect

the phase diagram of the longitudinal magnetisation as we will later find.

S(3) = −g
3

24
tr
[

(Ĝ↑m)3 − (Ĝ↓m)3
]

− g3

8
tr
[

Ĝ2
↑Ĝ↓mm2

⊥ − Ĝ↑Ĝ
2
↓mm2

⊥

]

= β
∫

ddr
[

sm3 + s1mm2
⊥

]

, (4.28)

where

s = −g
3

48

1

Ld
∑

kσ

σn
(2)
F (ǫk − gM̄σ/2),

s1 = − 2

(gM̄)2

1

Ld
∑

kσ

[

σnF(ǫk − gM̄σ/2) +
gM̄

2
n

(1)
F (ǫk − gM̄σ/2)

]

.

(4.29)

s vanishes in the absence of an external field, as expected from symmetry. r = s = 0
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is the condition for the line of critical endpoints. There is no term in m3
⊥ as the

external field does not couple to this component, so the m⊥ → −m⊥ symmetry is

retained.

This process can be repeated at each order to obtain the coefficients of the

Landau expansion. There is little to be gained by a detailed description of this

process and we simply present the results here, more details can be found in appendix

B. On the line of critical endpoints many simplifications occur. Applying the

conditions Eq.4.21 to the expressions for the coefficients and adopting dimensionless

magnetisations φ = m/M̄ and φ2
⊥ = (M⊥ · M⊥) /M̄2, we find a Landau expansion

of the form

FL = hM̄ [Rφ2 + Sφ3 + Uφ4 + Tφ5 + V φ6 −Hφ

+R⊥φ
2
⊥ + U⊥φ

4
⊥ + V⊥φ

6
⊥

+S1φφ
2
⊥ + U1φ

2φ2
⊥ + T1φ

3φ2
⊥

+V1φ
4φ2

⊥ + T2φφ
4
⊥ + V2φ

2φ4
⊥] (4.30)

where

R = 0, S = 0,

U =
1

4!

(

M̄3

h

)

(

g

2

)4 1

Ld
∑

kσ

n
(3)
F (ǫk − gM̄σ/2),

T =
1

5!

(

M̄4

h

)

(

g

2

)5 1

Ld
∑

kσ

σn
(4)
F (ǫk − gM̄σ/2),

V =
1

6!

(

M̄5

h

)

(

g

2

)6 1

Ld
∑

kσ

n
(5)
F (ǫk − gM̄σ/2),

R⊥ =
1

2
, U⊥ = −1

8
, V⊥ =

1

16
,

S1 = −1

2
, U1 = −4U⊥ =

1

2
,

T1 = −1

2
+ 2U, T2 =

3

8
,

V1 = 1 − 2U − 5

2
T, V2 = −3

4
+

3

2
U. (4.31)

The conditions for the line of critical end-points are sufficient to reduce many of

the coefficients of the expansion to constants. This independence of the coefficients

from the details of the dispersion and filling shows that we are able to deduce them

from general principles as done in the previous section. The values for the transverse
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Fig. 4.9: Phase diagram for homogeneous magnetisation: Phase diagram for the
Stoner model with a next-nearest-neighbour tight-binding dispersion, as determined by the
coefficients Eq.4.27 and Eq.4.29. The dark green plane at h = 0 is the ferromagnetic region
close to the van Hove singularity. The lines of metamagnetic critical endpoints emerge
from the tricritical point and bound a first order transition, indicated schematically.

coefficients, and some of the coupling coefficients, are identical to that found from

the phenomenological analysis Eq.4.16. The longitudinal coefficients depend on the

microscopics and vary along the line of critical endpoints, so would not be expected

to be reproduced by the phenomenological analysis. The same applies to those

coupling coefficients which depend on the values of the longitudinal coefficients. If

the values for the longitudinal coefficients from Eq.4.16 are substituted into Eq.4.31

then the values are consistent.

These coefficients are sufficient to determine the phase diagram for homoge-

neous magnetisation. Taking a next-nearest-neighbour tight-binding dispersion ǫk =

−(cos kx + cos ky) + t cos kx cos ky we obtain the phase diagram shown in Fig.4.9.

There is a metamagnetic transition in the longitudinal magnetisation for fillings

just outside of the ferromagnetic region around the van Hove singularity. The criti-

cal endpoint of this transition moves to higher field and lower temperature as filling

gets further from the van Hove singularity. It is not favourable to form transverse

magnetisation in the homogeneous case as it is always favourable to align with the

external field.
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Fig. 4.10: Phase separation and Maxwell construction: a) Self-consistent determi-
nation of m. The intercept with the axis is a solution for m. The three curves correspond
to different values of µ. We see that for some values there are multiple solutions. b) m as
a function of µ. This is multivalued in the region of the transition. c) The Maxwell con-
struction restores the single-valuedness of m by bridging the curve such that the shaded
areas are equal.

4.1.6 Phase separation

It has been noted that there is a region of phase separation around the metamagnetic

transition [80]. Here the system breaks up into regions of different electron densities.

We note that this phenomena also appears in the magnetisation.

Previously we have assumed that Eq.4.20 defines the magnetisation uniquely.

This is not actually the case. If we plot M(m) −m, where M(m) =
∑

k,σ σnF(ǫ +

σ
(

gm
2

+ h
)

against m then the intercept with zero is the self-consistent value of

m. This is shown in Fig.4.10a), we see that there is a range of µ where there are

multiple solutions. If we plot these solutions as a function of µ then we obtain

Fig.4.10b) where the magnetisation has an ‘S’ shape. The first order transition is a

jump between the upper and lower branches of this function. To determine exactly

where it occurs we use the Maxwell construction, which states that the transition

occurs such that the two shaded areas in Fig.4.10c) are equal.

The first order transition being a jump in the magnetisation means that as a

function of n the transition becomes a region of phase separation where regions

of both high and low m co-exist. The volume of these regions changes so that

the average magnetisation interpolates between the high and low values. This also

occurs when considering the phase diagram as a function of m rather than h. The

effects considered here are related to the first-order transition and disappear when

the transition becomes continuous. Thus the line of critical endpoints, which we are

primarily concerned with, is unaffected.
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4.2 Inhomogeneous phase diagram

Having discussed how features in the density of states can lead to metamagnetism,

we show that they can also lead to spatial modulation of the magnetism. We be-

gin with a discussion of the transverse susceptibility and the energetic reasons for

forming modulation. We then discuss the explicit gradient expansion of the Stoner

action. Motivated by this we construct a phase diagram from the Ginzburg-Landau

phenomenology.

4.2.1 Cartoon for inhomogeneous phase formation

In order to get a physical picture of why inhomogeneous magnetisation is favourable

we will consider the way in which the energy dispersions are altered by inhomogene-

ity and how this appears in terms of peaks in the density of states. The formation of

a spiral magnetisation state involves hybridizing spin-up and -down electrons. The

dispersion of the hybridised state is given by

2E±
k,q =

(

ǫk+q/2 + ǫk−q/2

)

±
√

(

ǫk+q/2 − ǫk−q/2 + gm|| + h
)2

+ (gm⊥)2,

(4.32)

where m|| and m⊥ are the components of magnetisation parallel and perpendicular

to the applied field h and q is the wavevector of the modulation. The prescription

for constructing the hybridised Fermi surfaces can be seen from this form. The spin-

split Fermi surfaces of the homogeneous state are displaced by ±q/2. The transverse

magnetisation then acts as an interaction hybridising the two bands Fig.4.11a) shows

the Fermi surfaces of the homogeneous state. Fig.4.11b) shows the undistorted Fermi

surfaces shifted by ±q. The development of transverse magnetisation then hybridises

the bands, leading to the dispersion shown in Fig.4.11c).

The anti-crossing where the undistorted bands are degenerate results in the ap-

pearance of additional saddle-points in the dispersion, as is illustrated in Fig.4.12.

These saddle points produce additional peaks in the density of states, shown in

Fig.4.13. We see that while the original Fermi surface lies just below a peak in the

density of states, the Fermi surface in the new dispersion lies between the old and

new peaks. By occupying the states under this new peak the formation of spiral

magnetisation reduces the energy cost in forming the transverse magnetisation, the

same mechanism as in the homogeneous Stoner magnetism.
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Fig. 4.11: Fermi surface reconstruction due to formation of spiral magnetism:

a) Spin-up and -down Fermi surfaces for homogeneous magnetisation. b) Displacement of
Fermi surface by ±q/2 illustrating nesting. c) Fermi surfaces after hybridisation. Contours
of the energy dispersion are also shown.

The tendency of the system to form order at any wavevector is encoded in the q-

dependent susceptibility. We consider modulation in the component of the magneti-

sation transverse to the applied field. The susceptibility for transverse magnetisation

is

Π⊥(q) =
1

βLd
∑

k

G↑(k)G↓(k + q)

=
∑

k

nF

(

ǫk+q − µ− gM̄
2

)

− nF

(

ǫk − µ+ gM̄
2

)

ǫk − ǫk+q + gM̄

(4.33)

from Eq.4.24 including the full q-dependence, where nF (ǫ− µ) =
(

1 + eβ(ǫ−µ)
)−1

is

the Fermi-Dirac distribution, q is the wavevector of modulation and M̄ is a shifted

magnetisation which includes the external field M̄ 7→ M̄ ′ = M̄ + 2
g
h. This may be

evaluated for all q at any point (µ, M̄ , T ) in the phase diagram [81]. Within this
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Fig. 4.12: Anticrossing of bands: a) Energy dispersions for the spin-up (red) and spin-
down (blue) Fermi surfaces shifted by ±q/2. b) Energy dispersions including a transverse
magnetisation. This hybridises the bands, causing anticrossing and the formation of new
saddle points.
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Fig. 4.13: Density of states for the spiral state: Density of states for original (left)
and hybridised (right) dispersions. The formation of the spiral state produces a new peak
in the density of states. The Fermi surface lies between this and the original peak.
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model we find plenty of scope for the formation of modulated states at a variety

of different wavevectors. Fig.4.14 shows the transverse susceptibility evaluated for

several points on the metamagnetic transition. This plot shows that the suscepti-

bility has peaks both at high and low wavevector. These peaks are related to the

partial nesting wavevectors of the Fermi surface. We see from 4.33 that when a

displacement of the Fermi surface by q overlaps significantly with the original Fermi

surface then the denominator is minimised and the distortion is favoured. Nesting

vectors corresponding to the peaks in the susceptibility and the Fermi surfaces after

hybridisation are shown in Fig.4.14.

We note that the wavevector of the distortion in this picture may be a substan-

tial fraction of the Brillouin zone. These cartoons also allow us to deduce how the

wavevector of the modulation depends on the position within the phase diagram.

Wavevectors such as q1 and q3 in Fig.4.14 correspond to nesting the same side of

the Fermi surface on each spin species. This wavevector increases as the magne-

tization, and therefore the splitting of the Fermi surfaces, increases. The further

from van Hove filling the larger the magnetization required to reach the metamag-

netic transition and therefore the larger the wavevector at the transition. Vectors

corresponding to nesting opposite sides of the Fermi surfaces will not change with

magnetization, as while one Fermi surface expands, the other contracts, leaving a

constant distance between opposite edges. Vectors such as q4 correspond to the

distance from one Fermi surface to the van Hove singularity. These are linked to the

size of the metamagnetic transition, which is related to how far the Fermi surface

has to move to jump over the peak in the density of states.

The nesting vectors of course depend on the Fermi surface shape and those

considered in this simple picture may not correspond to those found in a real material

like Sr3Ru2O7. Nevertheless this shows that such tendencies to modulation exist,

even in simple models 1.

1 The simplest model - the half-filled nearest-neighbour tight-binding dispersion - is in fact
perfectly nested. Its Fermi surface overlaps itself perfectly at half filling and is completely gapped
away when hybridisation occurs. This model is therefore unstable to being an antiferromagnetic
band insulator. The addition of next-nearest-neighbour interactions suppresses this tendency.
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Fig. 4.14: Transverse susceptibility and nesting vectors: The transverse suscep-
tibility evaluated for a) t = 0.8, µ = −0.6, M̄ = 0.235 and b) t = 0.2, µ = −0.45,
M̄ = 0.294. This shows peaks at large and small q. Note that the jagged ridges in a) are
an artifact of the numerical calculation. Also shown are the nesting vectors which these
peaks correspond to in the Fermi surface and the Fermi surface of the modulated state
which is produced.
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4.2.2 Free energy with inhomogeneity

It should be possible to calculate the phase diagram for the mean-field free energy

in a similar way as for the homogeneous case. Taking the Grand Potential

Ω =
∫

dǫ ln
(

1 + e−β(ǫ−µ)
)

, (4.34)

we substitute in the energy for the spiral state (Eq.4.32) to obtain Ω(q,m,m⊥). We

should then be able to calculate self-consistency equations for m, m⊥ and q.

m = ∂hΩ,

m⊥ = ∂h⊥Ω, (4.35)

where we have artificially introduced a conjugate field to the transverse magneti-

sation, h⊥, which we take to zero. The calculation for q may be simplified by

expanding the free energy in q and finding the minimum of this expansion, before

substituting back in to the free energy.

Ω(m,m⊥, q) ≈ Ω(0) +
1

2
∂2
qΩ(m,m⊥, 0)q2 +

1

4!
∂4
qΩ(m,m⊥, 0)q4

q̄2 = −6
∂2
qΩ(m,m⊥, 0)

∂4
qΩ(m,m⊥, 0)

(4.36)

Calculating the phase diagram this way is however complex and numerically hard.

We will proceed to analyze the favourability of spiral magnetisation in a Ginzburg-

Landau expansion.

4.2.3 Gradient expansion

Having found the phase diagram for homogeneous magnetisation and motivated

the possibility of inhomogeneous states, we calculate the phase diagram including

such phases. We wish to consider whether inhomogeneous magnetic states are more

favourable over any region of the phase diagram than the homogeneous ferromagnetic

or paramagnetic states. Such inhomogeneous states will produce extra contributions

to the free energy dependent on the magnetisation gradient which we now calculate.

We consider a situation where the transverse component of magnetisation is inho-

mogeneous. Whilst spatial modulation of the longitudinal magnetisation is possible,

it does not lead to the type of phase reconstruction studied here. We will neglect

terms in the free energy corresponding to gradients of the longitudinal magnetisation
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for simplicity. We further restrict our study to systems with inversion symmetry. In

this case, terms linear in the gradient are forbidden by symmetry— inhomogeneity

in this model is not the result of a Dzyaloshinskii-Moriya interaction [21,82,83].

Transforming to the momentum representation spatial gradients become wavevec-

tors q. Continuing in the spirit of a Ginzburg-Landau theory we may expand the

coefficients of the Landau expansion in powers of these wavevectors. This approach

is valid when considering small wavevector features. As we will later argue it is not

necessary for the structure of the phase diagram that the inhomogeneity is at small

q. However, we will restrict our explicit analysis to cases where this expansion is

valid and carry our conclusions across to the more general case with appropriate

modifications.

In order to simplify our analysis, we study a simple form of inhomogeneity,

namely a spiral φ⊥(r) = φ⊥(cosq · r, sinq · r), where q is the wavevector of the

spiral. This is the magnetic analogue of the Fulde-Ferrell ansatz [27] where only

one wavevector is considered. As in the superconducting LOFF state the most

stable inhomogeneous phase may consist of spirals with several different q-vectors

superposed, creating a ‘crystalline’ structure [60,84]. The competition between such

states is complex and will not be considered here. With this simplifying ansatz, the

free energy has the form

F = hM̄
[(

Rφ2 + Uφ4 + Tφ5 + V φ6 −Hφ
)

+
(

U⊥ +K⊥q2 + L⊥q4 + {S1 +K1q
2}φ

+{U1 +K2q
2}φ2 + T1φ

3 + V1φ
4
)

φ2
⊥

+
(

K3q
2 + U⊥ + T2φ+ V2φ

2
)

φ4
⊥ + V⊥φ

6
⊥

]

, (4.37)

where the terms L⊥, K1, K2 and K3 are required to bound the free energy for the

case of non-zero q. In order to calculate the expressions for the gradient terms, we

return to the transverse susceptibility equation (4.24) and allow for the previously

neglected momentum dependence. Expanding the Green’s function gives

Gσ(k + q) = Gσ(k) + [Gσ(k)]2∂ki
ǫkqi

+
(

[Gσ(k)]3∂ki
ǫk∂kj

ǫk +
1

2
[Gσ(k)]2∂2

ki,kj
ǫk

)

qiqj +O(q3).

(4.38)

The first term in this expansion gives the homogeneous term already considered.
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Terms of first order in q cannot contribute to the action due to the symmetry of

the electronic dispersion. In other words, the energy cannot depend on the sign

of the gradient. Otherwise one particular direction, and not just axis, would be

picked out. In a system with inversion symmetry this is impossible, though in non-

centrosymmetric systems such terms exist. Mathematically, odd derivatives of the

dispersion are antisymmetric in k and so give zero on integration.

Expanding the second order term of the Stoner action 4.25 to second order in q

we find

S(2)
⊥ = β

∫

ddr
[

r⊥m2
⊥ +K⊥q2

]

, (4.39)

where r⊥ is as before and

K⊥ = − 1

4gM̄3

1

Ld
∑

kσ

[

σnF(ǫk − gM̄σ/2) +
gM̄

2
n

(1)
F (ǫk − gM̄σ/2)

]

(∂kǫk)
2.

(4.40)

Although the coefficient K⊥ is independent of the direction of q this is not true

for all coefficients. Higher order terms such as L⊥ (which is 4th order in q) are

anisotropic and pin the wavevectors to specific directions in the lattice. In the square

lattice, the isotropic component, (∂2φ⊥)2, is augmented by a term proportional to

(∂2
xφ⊥) · (∂2

yφ⊥). Since we are considering a lattice with square symmetry, there

will be at least four degenerate directions along which q-vectors could lie. The K1,

K2 and K3 terms may also be calculated by gradient expansions of the appropriate

terms, although for simplicity we will not consider their explicit forms.

K⊥ is the leading order tendency to formation of spiral magnetisation. We may

numerically evaluate this coefficient at every point along the line of metamagnetic

critical endpoints. We find that it varies smoothly as we move along the transition

and in fact becomes negative as we move to µ further from the van Hove singularity,

as shown in Fig.4.15. This shows an instability to the formation of spatially mod-

ulated magnetisation along the metamagnetic transition. We will use this fact to

build a phase diagram for the formation of inhomogeneous magnetisation along the

metamagnetic transition.
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Fig. 4.15: Evaluation of K⊥: a) The line of metamagnetic critical endpoints in the µ,
T plane. Shown are the tricritical point and the point at which K⊥ turns negative. b)
K⊥ evaluated along the line of critical endpoints. This varies smoothly and turns negative
at a certain distance from the tricritical point. Calculations performed for the dispersion
ǫk = − (cos kx + cos ky) + t cos kx cos ky, parameters t = 0.2, g = 1.7.

4.2.4 Relation to FFLO

We now consider how this relates to the analysis in the LOFF case. We consider

an isotropic dispersion and linearise about the Fermi surface, assuming that all

contributions to the integrals come from the Fermi surface, where derivatives of the

Fermi-Dirac distribution are non-zero. In this case the expansion of the longitudinal

magnetisation to quadratic order in q gives a coefficient K ∝ U . In the case of zero

external field we have

U =
1

4!

(

g

2

)4 1

Ld
∑

kσ

n
(3)
F (ǫ),

K = − 1

4!

(

g

2

)2 1

Ld
∑

kσ

n
(3)
F (ǫk) (∂kǫk)

2

≈ − 1

4!

(

g

2

)2 1

Ld
∑

kσ

n
(3)
F (ǫk)v

2
F

=

(

2

g

)2

v2
FU, (4.41)

where vF is the Fermi velocity. Since U becomes negative at the tricritical point

this indicates that modulated states become favourable at the tricritical point and

rather than simply turning first-order the transition occurs via an inhomogeneous

phase as shown in Fig.4.16. There is in fact a series of relationships between the

higher-order coefficients, which is necessary for the exact calculation of the phase

diagram.

In the zero magnetisation limit the equations for spatially modulated magneti-
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Fig. 4.16: Zero field phase diagram for a free electron dispersion: The first-order
transition to the homogeneous ferromagnet is pre-empted by a transition to a modulated
magnetic state because K ∝ u, this then undergoes a transition into the homogeneous
state. Blue lines are transitions into and out-of the inhomogeneous phase, the order of
these transitions depends on the details of the Ginzburg-Landau theory, which we will
not consider for this case. The green line shows where the first-order transition into the
homogeneous magnetic state would occur if inhomogeneity did not intervene. On the
right is this phase diagram mapped onto temperature and tuning parameter. We do not
consider how the metamagnetic wing of Fig.4.6 would reconstruct. This situation is not
realised in the realistic dispersion which we use and is included to make the comparison
with LOFF (see for example [60]).

sation and superconductivity become equivalent [60, 85]. The Ginzburg-Landau

expansion for the LOFF state shows the same relationships between Landau coeffi-

cients as just discussed. The appearance of the spatially modulated superconducting

state is associated with the tricritical point, as shown in Fig.2.9. This form of rela-

tionship also arises in the study of quantum fluctuation corrections, leading to the

formation of modulated states around the putative quantum critical point [32].

In the case which we are presently considering the metamagnetic transition is

caused by proximity to van Hove singularities. In this situation the dispersion

cannot be linearised about the Fermi surface and the full form must be used instead.

In this case there is no simple relation as in LOFF. We will go on to show how

modulated states appear around the metamagnetic transition in the case with the

lattice dispersion.

4.2.5 Ginzburg-Landau phenomenology

We now consider the phenomenology of the inhomogeneous phase. We begin by

including the necessary gradient terms in the free energy.

First order gradient terms cannot contribute by symmetry, so the first term that
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must be added to the free energy density is K⊥ (∇φ⊥(r))2. Should the transverse

magnetisation stiffness, K⊥, become negative then there is an energetic gain in form-

ing an inhomogeneous state. When K⊥ < 0 additional, higher order gradient terms

are required in the free energy density: L(∇2φ⊥)2, K2φ
2 (∇φ⊥)2 and K3 (∇φ⊥)2 φ⊥.

Such a Ginzburg-Landau free energy is used, mutatis mutandis, to describe super-

conductors, where the LOFF state is signalled by a vanishing stiffness. We may,

therefore, anticipate that a similar effect occurs in magnetisation, where the transi-

tion between low and high magnetisation states on the metamagnetic wing is split

by the formation of an inhomogeneous magnetic phase.

In order to simplify our analysis, we study the simplest form of inhomogeneity,

namely a spiral φ⊥(r) = φ⊥(cosq · r, sinq · r), where q is the wavevector of the

spiral. With this simplifying ansatz, the free energy 4.15 including the effects of

spatial modulation reduces to

F = hM̄
[(

Rφ2 +
5

8
φ4 +

3

8
φ5 +

1

16
φ6 −Hφ

)

+
(

1

2
+K⊥q2 + L⊥q4 + {K1q

2 − 1

2
}φ

+{K2q
2 +

1

2
}φ2 +

3

4
φ3 +

3

16
φ4
)

φ2
⊥

+
(

K3q
2 − 1

8
+

3

8
φ+

3

16
φ2
)

φ4
⊥ +

1

16
φ6
⊥

]

. (4.42)

As we have shown from our microscopic calculation of K⊥ (equation 4.40 and fig-

ure 4.15) this coefficient varies smoothly along the line of metamagnetic critical

endpoints and eventually turns negative. We will therefore use K⊥ as a parameter

which represents movement along the metamagnetic wing. When this parameter

turns negative it will be energetically favourable to form inhomogeneous transverse

magnetisation. The formation of this inhomogeneity will reconstruct the metam-

agnetic transition, as we will shortly show. We will determine the phase diagram

of the Ginzburg-Landau free energy (4.42) as a function of R, H and K⊥. These

coefficients parametrize directions within the metamagnetic wing, perpendicular to

it and along the line of critical end points, respectively.

Finally, we note that such a model has a fundamental anisotropy due to the

influence of the lattice and, strictly, this is reflected in the higher order gradient

terms in Eq.(4.42). This anisotropy will determine the direction of q, but does not

affect the topology of the phase diagram and we do not treat it explicitly. We will

now calculate the phase diagram for this free energy.
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Fig. 4.17: Free energy for finite q state: An example free energy curve. The black
line is the homogeneous free energy, the red line is the free energy for the inhomogeneous
state, the solid section is the physically realised region, the dotted sections are unphysical.
Also shown are the optimum wavevector (blue) and the square of the transverse mag-
netisation (green). The point where the transverse magnetisation becomes imaginary is
one of the boundaries of the physical homogeneous region. All quantities are obtained by
minimisation of the free energy Eq.4.42 for an illustrative choice of R, H, K⊥, L⊥, K1,
K2 and K3.

4.2.6 Full phase diagram from Ginzburg-Landau phenomenology

Determining the phase diagram for Eq.4.42 involves locating the minima of the free

energy as a function of φ, φ⊥ and q. The broad scheme is as follows: Minimizing

the free energy with respect to q gives the optimum wavevector q̄(φ, φ⊥). Focusing

on this wavevector, minimization of the free energy with respect to φ⊥ gives the

optimum inhomogeneous transverse magnetisation φ̄⊥(φ). There is no real solution

for φ̄⊥(φ) over much of the phase diagram. This leads to a restricted region where

inhomogeneity is allowed. This corresponds to the region in which the inhomoge-

neous terms of the free energy lower the total free energy, rather than raise it, as

shown in Fig.4.17. The value of φ which minimizes the free energy therefore deter-

mines the longitudinal and transverse magnetisation, as well as the wavevector of

the inhomogeneous magnetisation.

In general care must be taken with such a multi-component minimisation scheme.

If the free energy has multiple minima as a function of one of the components then
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Fig. 4.18: Phase diagram for the Ginzburg-Landau theory: Green sheets rep-
resent first-order transitions in φ. Blue sheets represent continuous transitions into the
inhomogeneous phase. A cut through the phase diagram at constant K⊥ is shown and the
variation of φ and φ⊥ is plotted along a path through this cut, showing both first-order
and continuous transitions.

the global minimum of the free energy may not be found if the wrong minimum

is chosen early on. In the present case we are confident that we locate the global

minima by this method.

There are many terms in the free energy and it is hard at first glance to under-

stand the role of the various terms and how the phase diagram comes about. To

clarify this we have performed an extensive study of the role of the various terms

which we present in the next section.

Carrying out the minimization analysis results in the phase diagram indicated

in Fig.4.18. In this figure, the line R = H = 0 is the parent line of metamagnetic

critical end points. Upon moving along this line away from the tricritical point K⊥

reduces from a positive value, eventually becoming negative. When it becomes suf-

ficiently negative, the metamagnetic sheet bifurcates into two wings. This structure

is symmetry broken, or dislocated, in that the smaller first-order wing at higher

fields does not emerge from the metamagnetic sheet at the same point as the larger

wing. This phase diagram is very similar to the dislocated tricritical point of Green
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Fig. 4.19: Phase diagram in the context of the parent metamagnetic transition:

Sketch showing how the phase diagram of Fig.4.18 fits into the phase diagram for the
metamagnetic system. This consists of a rotated version of Fig.4.18 placed on the meta-
magnetic wing of Fig.4.6. The light blue region is the inhomogeneous magnetic phase,
the dark green sheet is the h = 0 transition, the lighter green sheet is the metamagnetic
transition.

et al. [70]. In the present case the bifurcation is caused by the appearance of the in-

homogeneous phase which provides a ‘roof’ to the anomalous phase which is missing

in the previous theory. This region of inhomogeneous magnetisation lies between

the metamagnetic wings. Transitions into this inhomogeneous region occur in two

different ways: In the first case, indicated by the green wings in Fig.4.18, the transi-

tion is first order in both the longitudinal and transverse magnetisation with a step

change in the former and the latter appearing discontinuously from zero (and at

finite q). The second type of transition into the inhomogeneous region is indicated

by the blue sheet in Fig.4.18. On this sheet the transverse magnetisation under-

goes a second order transition, appearing continuously from zero. The longitudinal

magnetisation undergoes a continuous transition with a step change in its gradient

upon moving through this sheet. This kink is the ‘ghost’ of the transition in the

transverse magnetisation.

Recalling that this phase diagram is constructed from an expansion about the line

of critical endpoints the full phase diagram for the metamagnetic system is obtained

by placing the bifurcated structure back into the context of the metamagnetic wing.

The inhomogeneous phase then appears as shown in Fig.4.19.
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4.2.7 Building up the Ginzburg-Landau expansion

The complexity of the Ginzburg-landau theory 4.42 makes it hard to identify the

role of each term. In order to clarify this we break down the expansion and study

the effect of each term one at a time. As well as having explanatory value this

analysis will make explicit the process of calculating the phase diagram and reveal

the fact that the smallness of q is not necessary for the phase reconstruction which

we find. We first consider a theory with no cross-terms between the magnetisation

components. We then introduce the cross-terms until the theory has all of the

symmetric terms. We then see how the remaining asymmetric terms alter the phase

diagram.

No cross-terms

Initially we consider a theory without cross terms between φ and φ⊥, and q-dependence

in only the φ2
⊥ term:

β

hM̄
F (φ, φ⊥, q) = Rφ2 + Uφ4 + V φ6

+
(

R⊥ +K⊥q
2 + L⊥q

4
)

φ2
⊥

+U⊥φ
4
⊥ + V⊥φ

6
⊥. (4.43)

The longitudinal and transverse magnetisations are independent in this simple model.

The combined phase diagram for both longitudinal and transverse magnetisation is

shown in Fig.4.20. The main features are as follows: The longitudinal magnetisation

displays a first order metamagnetic transition for R < 0 and H = 0 indicated by

the dark green sheet in Fig.4.20. The line R = 0, H = 0 corresponds to the critical

endpoint of this metamagnetic transition. Inhomogeneous transverse magnetisation

appears beyond a certain negative value of K⊥. The inhomogeneous phase extends

over all R and H below this value of K⊥.

Next, we apply the general procedure for determining the phase diagram, opti-

mizing the free energy over q and φ⊥, and substituting these optimum values back

into the free energy at each stage. Although the application of this procedure is

straightforward in this simple case, it is useful to go through the analysis explicitly

to orient us for the more complicated cases to come later. The optimum wavevector

is q̄ =
√

−K⊥/2L⊥ (found by solving ∂qF = 0). Since there are no cross terms

in the simplified free energy 4.43, the optimum wavevector is independent of φ.
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Fig. 4.20: Phase diagram for reduced theory: a) Phase diagram for a theory with
no cross terms. b) free energy with homogeneous terms only (black) and inhomogeneous
terms (red). L⊥ is taken as 0.1.

Substituting q̄ into Eq.4.43 we get an effective free energy

β

hM̄
Feff(φ, φ⊥) = Rφ2 + Uφ4 + V φ6 +

(

R⊥ − K2
⊥

4L⊥

)

φ2
⊥

+U⊥φ
4
⊥ + V⊥φ

6
⊥. (4.44)

Optimizing over φ⊥
2 gives

φ̄2
⊥ =

−2U⊥ +
√

4U2
⊥ − 12V⊥R′

⊥

6V⊥
(4.45)

where R′
⊥ = R⊥ − K2

⊥/(4L⊥). A real, non-zero solution of this equation for φ̄⊥

can only be obtained for R′
⊥ < 0. When φ̄2

⊥ is real and non-zero, the inhomoge-

neous terms contribute a negative constant to the free energy. Therefore, as soon

as K⊥ becomes sufficiently negative, inhomogeneous terms will lower the free en-

ergy for all φ as shown in Fig.4.20. Using the values for the coefficients from the

phenomenological analysis Eq.4.16 the critical value is K⊥ = −
√

5L⊥/3.
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Fig. 4.21: Phase diagram for reduced theory: a) Phase diagram for a theory with a
U1φ

2φ⊥
2 cross-term. b) A cut through the phase diagram at K⊥ = −0.5 with example free

energy curves. Note the first order transition in panel 3 where there are two degenerate
minima. [We take L⊥ = 0.1]

Cross-terms: adding the U1φ
2φ2

⊥ term

Next, we include symmetric cross-terms that couple φ and φ⊥. Including a term

U1φ
2φ2

⊥, the free energy becomes,

β

hM̄
F (φ, φ⊥, q) = Rφ2 + Uφ4 + V φ6

+
(

R⊥ +K⊥q
2 + L⊥q

4 + U1φ
2
)

φ2
⊥

+U⊥φ
4
⊥ + V⊥φ

6
⊥. (4.46)

The phase diagram corresponding to this free energy is shown in Fig.4.21. The

addition of cross terms between longitudinal and transverse magnetisation leads

to interdependence between the components and additional structure in the phase

diagram. Before turning to the derivation of the phase diagram, we discuss its main

features. For small K⊥ the longitudinal magnetisation has a single metamagnetic

transition. At sufficiently negative K⊥, the formation of inhomogeneous transverse

magnetisation becomes favourable. The metamagnetic wing splits into a Y shape,

as shown in the cut through the phase diagram in Fig.4.21. The arms and leg of the

Y are first order transitions in both φ and φ⊥ and extend to infinity. Between the

arms of this Y the transverse magnetisation is inhomogeneous.

Now let us discuss how this phase diagram follows from the free energy given in

Eq.4.46. The result of introducing cross terms between longitudinal and transverse
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magnetisation is that real, non-zero solutions for the transverse magnetisation ex-

ist in a restricted range of longitudinal magnetisation and hence H. Our analysis

proceeds as before by finding the optimum wavevector q̄ and optimum transverse

magnetisation φ̄⊥ and substituting them back into the free energy to obtain an effec-

tive free energy Feff(φ). We will then present a graphical analysis of this free energy

to give a feel for the main structure of the phase diagram and end by showing ana-

lytically why all of the phase transitions between homogeneous and inhomogeneous

phases are first order in this simplified theory.

The optimum wavevector, q̄ =
√

−K⊥/2L⊥, remains the same as before. Sub-

stituting into Eq.4.46 gives

β

hM̄
Feff(φ, φ⊥) = Rφ2 + Uφ4 + V φ6 +

(

R⊥ − K2
⊥

4L⊥
+ U1φ

2

)

φ2
⊥

+U⊥φ
4
⊥ + V⊥φ

6
⊥. (4.47)

The optimum transverse magnetisation calculated from this free energy is given by

φ̄2
⊥ =

−2U⊥ +
√

4U2
⊥ − 12V⊥ (R′

⊥ + U1φ2)

6V⊥
, (4.48)

where R′
⊥ = R⊥ −K2

⊥/(4L⊥).

The effective free energy as a function of φ, Feff(φ), is obtained by substituting

φ̄2
⊥ from Eq.4.48 into Feff(φ, φ⊥) (4.47). There are two subtleties in making this

substitution. Firstly, in order that the free energy Feff(φ) be an expansion in powers

of φ, we Taylor expand Eq.4.48 for φ̄2
⊥ before substitution. Secondly, we must allow

for the fact that φ̄2
⊥ is only real and non-zero in certain regions. We account for this

by introducing step functions that restrict the inhomogeneous contributions to the

free energy to regions where φ̄2
⊥ is real and positive. Substituting φ̄2

⊥ into Feff(φ)

accounting for these considerations results in an effective free energy

β

hM̄
Feff(φ) = Rφ2 + Uφ4 + V φ6 −Hφ

+
(

α+ βφ2 + γφ4 + δφ6
)

Θ(θ)Θ(φ̄2
⊥) (4.49)

where

α =
2U3

⊥ − 9R′
⊥U⊥V⊥ − 2U2

⊥A+ 6R′
⊥V⊥A

27V 2
⊥
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β =
U1(U

2
⊥ − 3R′

⊥V⊥ − U⊥A)

3V⊥A

γ = −U
2
1

4A

δ = −U
3
1V⊥
8A3

A =
√

U2
⊥ − 3R′

⊥V⊥

θ = 4U2
⊥ − 12V⊥R

′
⊥ (4.50)

We now turn to a more detailed look at the transitions into and out of the in-

homogeneous phase. In the first instance, rather than delve into the complicated

analytical details of the free energy, we present a graphical discussion. Fig.4.21b)

shows the free energy plotted at various points on the phase diagram. The black

curve is the free energy with no contribution from inhomogeneity in the transverse

magnetisation. The red curve shows the free energy with the effect of inhomogeneity

in the transverse magnetisation; i.e in the region where the step functions in Eq.4.49

are 1. We see that for low and high H the global minimum of the free energy lies

on the homogeneous (black) curve. The free energy is minimised by a value of φ

which corresponds to φ̄⊥ = 0 and the system is in the homogeneous state. For low

H we see that the global minimum lies on the inhomogeneous (red) curve. The

inhomogeneous terms in the free energy have created an additional minimum of the

free energy at low φ. For values of H for which this is the absolute minimum of the

free energy the system is in the inhomogeneous state.

The nature of the transitions from one phase to the other depend on the magneti-

sations corresponding to the minima of the free energy when they are degenerate.

Plotting the free energy at the transition point we see that there are two distinct

local minima. The global minimum jumps discontinuously between the minimum

in the homogeneous region and the minimum in the inhomogeneous region as H

is varied. This results in a discontinuity in the optimum value of φ and a sudden

jump to a non-zero value of φ⊥. This is a first order transition in both longitudinal

and transverse magnetisation. In fact, we may construct a rigorous argument why

transitions between the homogeneous and inhomogeneous phases are first order in φ

and φ⊥ in the present simplified theory. For a transition between the homogeneous

and inhomogeneous phases to be second order φ̄2
⊥ must be zero at the transitions.

From 4.48 we see that there is no real solution for φ when φ̄2
⊥ = 0 and, therefore,

that the transitions into the inhomogeneous phase are always first order.
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Fig. 4.22: Phase diagram for reduced theory: Phase diagram for a theory with
U1φ

2φ2
⊥ and V2φ

2φ4
⊥ cross-terms. Cuts show a) K⊥ = −0.5, all transitions first order. b)

K⊥ = −0.6, transitions change from first to second order at a critical point. c) K⊥ = −0.8,
all transitions second order. [We take L⊥ = 0.1]

Cross-terms: adding the V2φ
2φ4

⊥ term

Adding a further cross-term V2φ
2φ4

⊥ the free energy becomes

β

hM̄
F (φ, φ⊥, q) = Rφ2 + Uφ4 + V φ6

+
(

R⊥ +K⊥q
2 + L⊥q

4 + U1φ
2
)

φ2
⊥

+
(

U⊥ + V2φ
2
)

φ4
⊥ + V⊥φ

6
⊥. (4.51)

The phase diagram now takes the form shown in Fig.4.22. Many of the features

of this phase diagram are the same as found in the preceding case. For a positive

and weakly negative K⊥ there is a conventional metamagnetic transition. When K⊥

becomes sufficiently negative, this transition opens into a Y shape, the arms and

leg of which extend to infinity. The region between the arms of the Y consists of a

phase of inhomogeneous transverse magnetisation.

The main difference between the phase diagram obtained from Eq.4.51 (Fig.4.22)

and that obtained from Eq.4.46 (Fig.4.21) is the order of the transitions between

the homogeneous and inhomogeneous regions. In the case of Eq.4.46 these transi-

tions were always first order in both longitudinal and transverse magnetisation. In

the phase diagram of Eq.4.51 the transition may be either first order or continuous.
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When the Y first appears the transition between homogeneous and inhomogeneous

order is first order in both longitudinal and transverse magnetisation. At more nega-

tive values of K⊥, the transition becomes continuous above a critical value of R — as

indicated by the change from green to blue lines in Fig.4.22. Along these blue lines,

the transition is second order in φ⊥, with inhomogeneous transverse magnetisation

appearing continuously from zero amplitude. The corresponding transition in lon-

gitudinal magnetisation is also continuous but with a discontinuity in its gradient;

i.e. there is kink in the longitudinal magnetisation.

The structure of this phase diagram can be understood as before by optimising

the free energy over φ⊥ and q2 and substituting back their optimum values to obtain

an effective free energy for the longitudinal magnetisation φ. After substituting the

optimum wavevector (q̄2 = −K2
⊥/2L⊥ as before) into Eq.4.51, the effective free

energy is given by

β

hM̄
Feff(φ, φ⊥) = Rφ2 + Uφ4 + V φ6

+

(

R⊥ − K2
⊥

4L⊥
+ U1φ

2

)

φ2
⊥

+
(

U⊥ + V2φ
2
)

φ4
⊥ + V⊥φ

6
⊥. (4.52)

The optimum value of φ⊥
2 is

φ̄2
⊥ =

−2 (U⊥ + V2φ
2)

6V⊥
+

√

4 (U⊥ + V2φ2)2 − 12V⊥ (R′
⊥ + U1φ2)

6V⊥
.

(4.53)

The effective free energy Feff(φ) may be obtained by substituting this expression

into Eq.4.52, making the appropriate allowance for the region in which φ̄2
⊥ is real

and positive. The details of this final step are straightforward and not particularly

illuminating.

Analysis of the expression for φ̄2
⊥ allows us to deduce the order of transitions

between the homogeneous and inhomogeneous regions of the phase diagram. This

is determined by the value of R′
⊥ = R⊥ −K2

⊥/(4L⊥). At a second order transition

φ̄⊥ must be zero. This occurs when the U⊥ + V2φ
2 term and the square root term

of Eq.(4.53) are zero. These conditions are satisfied for real φ only when R′
⊥ < −1

3
.

For R′
⊥ > −1

3
all transitions must be first order. For R′

⊥ < −1
3

transitions can be

second order. This free energy gives first order transitions near to the point where
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Fig. 4.23: Phase diagram for reduced theory: a) Phase diagram for the symmetric
theory with particular choices for K2 and K3. Inset shows the tricritical point structure
of a conventional Landau theory. b) A cut through the phase diagram taken at K⊥ = −1
showing first order transitions below R = 0.2 and second order transitions above. Plots of
the effective free energy show 1) a first order transition, and 2) a second order transition.
The top free energy curve shows how this occurs for the inhomogeneous theory and the
bottom for a conventional theory. Black curves are homogeneous terms only and red
curves include inhomogeneous terms. Also shown are magnetisation plots as a function of
H showing both longitudinal (black) and transverse (red) magnetisation. The magnitude
of the jump in φ at the first order transition ∆φ is related to the spacing of minima in the
free energy. [We take L⊥ = 0.1, K2 = 0.3 and K3 = 0.2].

the inhomogeneous phase first appears, which become second order as we move to

more negative K⊥.

All symmetric terms

We now include the remaining symmetric terms from the free energy 4.37; V1φ
4φ2

⊥,

K2q
2φ2φ2

⊥ and K3q
2φ4

⊥. The free energy with these additional terms is given by

β

hM̄
F (φ, φ⊥, q) = Rφ2 + Uφ4 + V φ6 −Hφ

+
(

R⊥ +K⊥q
2 +K2q

2φ2 + L⊥q
4 + U1φ

2 + V1φ
4
)

φ⊥
2

+
(

U⊥ +K3q
2 + V2φ

2
)

φ⊥
4 + V⊥φ⊥

6,

(4.54)
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and the resulting phase diagram is shown in Fig.4.23. The phase diagram shares

much the same structure as the preceding two cases shown in Figs. 4.21 and 4.22.

The major modification is the location of the line of critical points where the tran-

sition between homogeneous and inhomogeneous order becomes first order. These

lines now converge upon the parent line of metamagnetic critical end-points to form

a tricritical point structure —although this is of a slightly unusual type due to the

presence of inhomogeneity. As we will see in more detail below, the most important

of the additional terms in driving this restructuring of the phase diagram is the q2φ4
⊥

term.

As in the preceding analysis, the phase diagram is obtained by considering an

effective free energy for the longitudinal magnetisation, βFeff(φ). The first step in

deriving this effective free energy is to optimize over q. Because of the additional,

wavevector-dependent cross terms between φ and φ⊥, q̄ is not constant, but depends

upon φ and φ⊥;

q̄2 = −K⊥ +K2φ
2 +K3φ

2
⊥

2L⊥
. (4.55)

Substituting this into Eq.(4.54) gives

β

hM̄
Feff(φ, φ⊥) = Rφ2 + Uφ4 + V φ6 −Hφ

+
(

R′
⊥ + U ′

1φ
2
)

φ⊥
2 +

(

U ′
⊥ + V ′

2φ
2
)

φ⊥
4

+V ′
⊥φ⊥

6, (4.56)

where

R′
⊥ = R⊥ − K2

⊥

4L⊥
,

U ′
⊥ = U⊥ − K3K⊥

2L⊥
,

V ′
⊥ = V⊥ − K2

3

4L⊥
,

U ′
1 = U1 −

K2K⊥

2L⊥
,

V ′
1 = V1 −

K2
2

4L⊥
,

V ′
2 = V2 −

K2K3

2L⊥
. (4.57)
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The optimum value of φ⊥
2 is given by

φ̄2
⊥ =

1

6 (V ′
⊥)

(

−2
(

U ′
⊥ + V ′

2φ
2
)

+

√

4 (U ′
⊥ + V ′

2φ
2)2 − 12V ′

⊥ (R′
⊥ + U ′

1φ
2 + V ′

1φ
4)
)

.

(4.58)

The effective free energy as a function of φ, Feff(φ) is found by substituting φ̄2
⊥ from

Eq.4.58 into Eq.4.56. As before, we Taylor expand the expression for φ̄2
⊥ to obtain a

power series in φ and include step functions to restrict inhomogeneous contributions

to the free energy to regions where φ̄2
⊥ is real and positive. After doing this, we

obtain,

β

hM̄
Feff(φ) = Rφ2 + Uφ4 + V φ6 −Hφ+

(

α+ βφ2 + γφ4 + δφ6
)

Θ(θ)Θ(φ̄2
⊥).

(4.59)

This has exactly the same form as Eq.4.49, the only difference being the dependence

of the parameters α, β and γ upon the control parameters K⊥, H and R;

α =
2U ′3

⊥ − 9R′
⊥U

′
⊥V

′
⊥ − 2U ′2

⊥A+ 6R′
⊥V

′
⊥A

27V ′2
⊥

β =
−2U ′3

⊥V
′
2 − 3R′

⊥V
′
⊥ (3B + V ′

2A) + U ′2
⊥ (3B + 2V ′

2A) + U ′
⊥ (6R′

⊥V
′
2V

′
⊥ − 3BA)

9V ′2
⊥ A

γ =
−8U ′2

⊥V
′2
2 + 4U ′

⊥V2 (3B + 2V ′
2A) − 3V ′

⊥ (−4R′
⊥V

′2
2 + U ′

1 (3B + 4V ′
2A))

36V ′2
⊥ A

δ =
−16U ′3

⊥V
′3
2 + 16U ′2

⊥V
′3
2 A+ 18U ′

⊥V
′
2V

′
⊥ (4R′

⊥V
′2
2 + 3U ′

1B) − 3V ′
⊥ (9B + 4V ′

2A)

216V ′2
⊥ A

3

A =
√

U ′2
⊥ − 3R′

⊥V
′
⊥

B = U ′
1V

′
⊥

θ = 4
(

U ′
⊥ − V ′

2φ
2
)2 − 12V ′

⊥

(

R′
⊥ + U ′

1φ
2 + V ′

1φ
4
)

(4.60)

The phase diagram shown in Fig.4.23a) shows a marked similarity to that of a

conventional tricritical point (inset to Fig.4.23a)). Indeed, the topology of the first

order transitions in the phase diagrams — indicated by the green surfaces in Fig.4.23

— is identical. There are, however, important differences due to the phase of in-

homogeneous transverse magnetisation which has produced the bifurcation. These

similarities and differences are emphasized in the following discussion.
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A cut through the phase diagram at negative K⊥, as shown in Fig.4.23b), con-

sists of a Y shape with arms and leg that extend to infinity. The arms begin by

describing a first order transition in both longitudinal and transverse magnetisation

— indicated in green. At a critical value of R, the order of the transition described

by these arms changes — in a conventional tricritical point, the arm would stop here

at a critical end point. Along the blue lines in Fig.4.23b) and over the entire blue

surface in Fig.4.23a) a second order transition from zero to finite transverse inhomo-

geneous magnetisation is accompanied by a kink in the longitudinal magnetisation.

This latter feature has no analogue near the conventional tricritical point. Tracking

back towards positive K⊥, the point at which the transition becomes continuous gets

closer and closer to the junction of the Y until it coincides with it at the tricritical

point.

These similarities and differences carry over to a comparison of the free energy

curves. Such a comparison is made for typical points along the metamagnetic wing

in Fig.4.23b). A first order transition occurs when local minima of the free energy

at two different φ have the same free energy. As H is varied the global minimum

jumps between these two minima. For the present theory one of the minima is in

the inhomogeneous phase (shown in red) and the other in the homogeneous phase

(shown in black). This leads to a jump in longitudinal magnetisation, ∆φ, and also

a jump to non-zero inhomogeneous transverse magnetisation. For the conventional

case there is no inhomogeneous phase, but the transition remains a jump between

two homogeneous minima as shown in Fig.4.23b). As we move along the transition

line in the direction of increasing R the size of the jump in magnetisation decreases.

Along the blue line, the minimum of the free energy swaps continuously between

the homogeneous (black) and inhomogeneous (red) curves. Near the conventional

tricritical point there is no signature in the free energy along this line.

This structure of the bifurcated metamagnetic wings and the crucial role of the

K3q
2φ4

⊥ term in leading to it can be appreciated from an analysis of Eq.4.58. This is

simplified by restricting the analysis to the vicinity of the tricritical point so that φ-

and φ⊥-dependent terms can be neglected in equations 4.55 and 4.58. In this limit,

the renormalized φ4
⊥ coefficient is given by U ′

⊥ = U⊥ +K3q̄
2 in accord with Eq.4.57.

In fact, the optimum wavevector is only weakly dependent upon φ and this is the

dominant effect of the K3q
2φ4

⊥ term throughout the inhomogeneous regime. How

does this affect the structure of the metamagnetic bifurcation? The change from

first order to continuous transitions on the metamagnetic bifurcated wings follows
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from the condition that at a second order transition, φ̄⊥ must be zero. Near to the

tricritical point this leads to the condition

−2U ′
⊥ +

√

4U ′2
⊥ − 12V⊥R′

⊥ = 0. (4.61)

If U ′
⊥ is negative (recall that U⊥ = −1/8) then this cannot be satisfied. If the

renormalisation of U⊥ due to the the K3q
2φ4

⊥ term is large enough then U ′
⊥ becomes

positive. The condition for a continuous transition becomes R′
⊥ < 0, which is by

definition satisfied in the inhomogeneous region, thus implying that the transition

into the inhomogeneous region is continuous at the tricritical point.

Adding antisymmetric terms

When we add antisymmetric terms (such as φ3 and φφ2
⊥), the tricritical point be-

comes symmetry broken or dislocated. A conventional Landau theory of a dislocated

tricritical point was previously proposed by Green et al [70] to explain experimental

data obtained from Sr3Ru2O7. Whilst the latter theory did a good job of captur-

ing the phase diagram obtained from longitudinal magnetic susceptibility, it could

not accommodate the ‘roof’ over the region of anomalous transport found experi-

mentally [52] (see Fig.3.3). The blue surface in Fig.4.24a) correctly reproduces the

features of the roof. We may reorient the phase diagram to represent the depen-

dence of the Landau coefficients on the experimental parameters. This is shown in

Fig.4.24b). The sheet of continuous transitions becomes a roof after this transfor-

mation is made.

Finally, we comment upon the wavevector of the inhomogeneous order. So far

we have assumed that this is small and performed a standard Ginzburg-Landau

expansion in powers of q. In fact, it is not necessary that q̄ be small in order to obtain

the phase reconstruction discussed here. As indicated in our discussion of the role

of the K3q
2φ4

⊥ term above, the optimum wavevector stays largely constant through

the inhomogeneous phase. Its role is mainly to renormalise various homogeneous

coefficients in the free energy. It is not necessary that q̄ be small in order to fulfil

this role. The only requirement is that the inhomogeneous order become favourable

at some point along the line of metamagnetic critical end-points upon moving away

from the parent tricritical point. As we saw in the microscopic analysis, it is plausible

that inhomogeneity occurs at either small or large wave-vectors depending upon the

details of the electronic dispersion.
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Fig. 4.24: Phase diagram for full theory: Phase diagram for the Ginzburg-Landau
theory. Green sheets represent first-order transitions in φ. The vertical sheet is the
metamagnetic sheet and the two ‘wings’ form the walls of the inhomogeneous phase.
Blue sheets represent transitions into the inhomogeneous phase which are continuous in
φ. K⊥ represents movement along the metamagnetic wing. H moves in a direction
perpendicular to the wing. a) shows a vertical cut at some K⊥. Solid blue lines indicate
continuous transitions into the inhomogeneous phase and solid green lines indicate first
order transitions. The inhomogeneous region extends to R = ∞. b) Taking a cut at an
angle to the R-axis shows how the inhomogeneous region becomes finite.
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4.3 Summary

We will now summarise what we have achieved in this chapter. We studied the

Stoner model where magnetism is driven by a peak in the electronic density of

states. We have shown that there is a metamagnetic transition which bifurcates to

include a region of spatially modulated magnetisation. The topology of this phase

diagram closely matches the experimental results on Sr3Ru2O7 as we shall discuss

in chapter 6.

Beginning from the homogeneous case we showed how a Ginzburg-Landau ex-

pansion could be constructed on the line of critical endpoints both microscopically

and phenomenologically. We then showed that the favourability of modulated states

increased as we moved along the line of critical endpoints through an expansion of

the transverse susceptibility. The appearance of modulation reconstructs the phase

diagram as calculated through the Ginzburg-Landau expansion. The parent meta-

magnetic transition bifurcates at a dislocated tricritical point. Between the wings of

this transition is a region of inhomogeneous magnetisation. This is bounded by first

order transitions near to the metamagnetic sheet and continuous transitions away

from the parent transition.

We will now calculate the thermodynamic signatures of the peak in the density

of states. We will then compare the predictions of our model to the experimental

data on Sr3Ru2O7.



5. THERMODYNAMICS

In the previous chapter we have shown that both the metamagnetic transition and

the modulated phase can be caused by a sharp peak in the electronic density of

states. This results in a number of interesting effects in the properties of the system.

Here we study the thermodynamic aspects of the metamagnetic transition. We will

see that the peak in the density of states alters some naive expectations about the

system.

We present a calculation of the specific heat and entropy from the Stoner model

for a general density of states. These results must be evaluated numerically. However

the form of the results can be obtained by basic reasoning based on the density of

states and the presence of metamagnetism. We examine this reasoning and predict

the specific heat and entropy curves passing through the metamagnetic transition.

We then present the numerical evaluation of the calculations for a cut through the

metamagnetic wing of the phase diagram. These agree well with our predictions.

We will study the generic case of the logarithmic singularity in the density of

states, which we have shown induces a metamagnetic transition. These results will

be compared with experiment in the next chapter.

5.1 Derivation of expressions for entropy and specific heat

We calculate the entropy and specific heat from the free energy of the Stoner model.

Number conservation is enforced by requiring nσ = n + σm where σ = ±1, and

n = n↑ + n↓ constant, and determining the chemical potential µσ from the number

nσ
1.

We begin from the free energy in the Stoner model

F =
∑

σ

[

−T
∫

dǫ ρ (ǫ) ln
(

1 + e−
ǫ−µσ

T

)

+ µσnσ

]

+ gn↑n↓ − hm, (5.1)

1 For calculational convenience we will return to working in a scheme where the Fermi surfaces
are split, rather than the physically more realistic picture of the density of states for each spin-
species changing.
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where we have set kB = 1. σ = {↑, ↓} labels spin and µσ is the effective chemical

potential for the spin species. This chemical potential is defined through the equa-

tion nσ =
∫

dǫρ(ǫ)nF(ǫ − µσ), where nF(ǫ − µσ) is the Fermi-Dirac distribution. In

section 4.1.2 it was shown that this free energy gives a self-consistant equation for

the magnetisation:

h = µ↑(n,m) − µ↓(n,m) − 2gm. (5.2)

The entropy is defined by S = − ∂TF |n,h and the specific heat as C = −T ∂2
TF |n,h.

These are evaluated with the conditions that total number is conserved. This con-

dition is encoded in the behaviour of the chemical potentials through the condition

that n = n↑ + n↓ is constant. This results in a non-trivial form for ∂Tµσ. The

evaluation of these derivatives is lengthy and is presented in appendix C. Here we

give the results of these calculations:

S =
∑

σ

[∫

dǫ ρ (ǫ) ln
(

1 + e−
ǫ−µσ

T

)

+ T
∫

dǫ ρ (ǫ) ∂T ln
(

1 + e−
ǫ−µσ

T

)

− ∂Tµσnσ

]

,

C =
∑

σ

[∫

dǫ ǫρ (ǫ) ∂TnF (ǫ− µσ)
]

− (2gm+ h) ∂Tn↑. (5.3)

The temperature derivatives of the chemical potential are given by

∂Tµσ =
−T

∫

dǫ

(

Ξ↓
ǫ−µ↓

T2 +Ξ↑
ǫ−µ↑

T2

)

∫

dǫ Ξ(−σ)
+ 2g

∫

dǫ Ξσ
ǫ−µσ

T 2

1 − 2g
T

∫

dǫ Ξσ +
∫

dǫ Ξ(−σ)
∫

dǫ Ξσ

, (5.4)

where

Ξσ = ρ(ǫ)
e

(ǫ−µσ)
T

(

1 + e
(ǫ−µσ)

T

)2 . (5.5)

The specific heat and entropy may be calculated for any n, h and T from equa-

tions 5.3 and 5.4. These expressions produce the magnetic transitions of the Stoner

model, although they do not include the effects of phase separation which we dis-

cussed previously. We will evaluate these expressions numerically for a particular

density of states in section 5.2.2.
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Fig. 5.1: Effect of spin-splitting on the entropy: a) A field H splits the spin-up
and spin-down Fermi surfaces. If the entropy was proportional to the density of states
at a single Fermi surface which field tuned through the peak then then S/T would be
proportional to 2ρ↑. Because the Fermi surface is split S/T is proportional to ρ↑ + ρ↓,
which is smaller as the down-spin Fermi surface is moved to lower energy. b) ‘Entropy’
curves constructed from the sum of the density of states at each Fermi surface. Blue: If
field tuned a single Fermi surface through the density of states. In this case the entropy
would mirror the density of states. Purple: Taking into account spin-splitting. The peak
is compressed due to one spin species sampling a lower density of states. The point labels
the field at which panel a) was plotted.

5.2 Density of states with peak

With these results it is possible to evaluate the magnetization, entropy and specific

heat as a function of filling, magnetic field and temperature, for any given density of

states and interaction strength. We will choose to look at a logarithmically divergent

density of states, as produced by saddle points in the electronic dispersion. This

model density of states is given by

ρ (ǫ) =
1

W
ln
∣

∣

∣

∣

W

ǫ− ǫc

∣

∣

∣

∣

(5.6)

where the density of states is defined over ǫ = −W to ǫ = W . The density of

states diverges at ǫ = ǫc. In the following we will take the interaction strength to

be g = 0.3W . We choose to look at a filling which is below the van Hove point

and use field to tune the system through the metamagnetic wing. Before examining

the results of Eq.5.3 let us consider what we might expect to see based on general

arguments.
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5.2.1 Factors contributing to the entropy and specific heat

The shape of the entropy and specific heat curves may be deduced from some ba-

sic principles. Entropy is a measure of the number of available states. It would

therefore be expected to have the same shape as the density of states as a function

of the Fermi energy at low temperatures. There are three effects which alter this

dependence - spin-splitting due to the external field, interaction induced magnetism

and temperature. The first two effects are further modified by requiring number

conservation.

We will consider each of these in turn. We begin with spin-splitting, then number

conservation, interaction effects and temperature. After the entropy we will examine

the specific heat. We will see that the peak in the density of states produces a double

peaked structure in the specific heat. This is then modified by the same effects of

spin-splitting, number conservation and interactions as the entropy.

First we consider the entropy, S. S/T is proportional to the density of states

at the Fermi surface. Upon application of a magnetic field the spin-species’ Fermi

surfaces become split. S/T is then given by the sum of the density of states at two

different energies. Since one Fermi surface is moved to a lower density of states this

has the effect of compressing the peak in entropy around the van Hove singularity

as shown in Fig.5.1.

We now consider one of the consequences of enforcing number conservation on

a system with a peak in the density of states. Applying a magnetic field splits the

spin-species’ Fermi surfaces by H. However, by moving a fixed energy interval the

Fermi surface closest to the peak expands to include more electrons than the Fermi

surface further from the peak loses by contracting (assuming the Fermi surfaces lie

below the peak). This means that the overall number of electrons has increased.

In order to conserve number the average, or ‘zero-field’ Fermi surface must move to

lower filling with field so that the majority Fermi surface moves more slowly than

the minority Fermi surface. This results in a slower approach to the peak than would

naively be expected. This is shown in Fig.5.2.
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Fig. 5.2: Dependence of chemical potential on magnetic field: When splitting
the spin-species’ Fermi surfaces with a magnetic field, number conservation forces a non-
linear dependence of the chemical potential on field. a) The density of states on the left
shows the zero-field filling (black line) and the Fermi surfaces split by 2H. The green area
represents the magnetisation, note that the green area above the zero-field Fermi surface
is larger than below, the number of electrons has therefore changed. On the right is the
situation where number conservation has been enforced. The Fermi surfaces are still split
by 2H but have both moved to lower energy so that there are the same number of electrons
as before the splitting. For comparison the dotted lines show the Fermi surfaces without
number conservation. As the splitting gets larger the amount by which the Fermi surfaces
must move increases. b) The plot boxed in red shows how the chemical potentials for the
up- and down-spin electrons and their average varies with field near the peak. We see that
the Fermi surfaces move with field at different speeds and are slowed in their approach to
the peak compared to the non-number conserving case. Boxed in purple are plots showing
the splitting and total number with no number conservation in force. c) The sum of the
spin-up and -down Fermi surfaces if (blue) only one was tuned through the singularity,
(purple) the Fermi surfaces are split with no number conservation, and (red) the Fermi
surfaces are split with number conservation. Note that in the last case it takes a higher
field to tune through the singularity due to the number conservation requirement.



5. Thermodynamics 99

m

m

h

h h

h

T T

T T

S/T

S/T

Fig. 5.3: Effect of first order transition: On the top row the magnetisation and
entropy in the absence of the metamagnetic transition. The values which will be removed
by the transition are shaded. On the bottom row the first order transition removes a
‘wedge’ of magnetization values, this removes a section from the entropy curve.

As well as the splitting due to the external field there is an additional splitting of

the Fermi surfaces due to the metamagnetism. The effects of this magnetisation are

shown in Fig.5.3. When the transition is continuous this has the effect of compressing

the field scale around the transition. When the transition is discontinuous a range

of magnetisation values are ‘jumped over’ by the transition. This removes a slice

of the putative entropy curve beginning at the critical endpoint and getting wider

as temperature is decreased and the transition gets stronger. The entropy therefore

becomes discontinuous at the metamagnetic transition. Since the region removed

is around the peak, it is possible for the highest value of S/T to occur at non-zero

temperature, where the jump is smaller.

These effects mean that a straightforward comparison of field and temperature

scales cannot be made, the interactions in the system alter the rate at which field
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Fig. 5.4: Effect of temperature on the entropy and specific heat: Temperature
broadening of S/T with spin-splitting present. Blue, low temperature, red, high temper-
ature.

tunes into the peak in the density of states relative to temperature.

In a multi-band system the change in chemical potential, due to this effect or

a metamagnetic transition, will affect all bands. Electrons are transferred between

bands as some donate electrons to compensate the band with the peak. In this way

all electronic bands are linked so that signals of approaching a peak in the density of

states should be visible in all of them, though the effect may be small. This effect has

been suggested as an explanation for features in the dHvA signals of the α1 and α2

bands of Sr3Ru2O7 [75]. Upon approaching the metamagnetic transition these bands

show peaks in their dHvA frequencies which can be explained through a non-linear

spin splitting due to a peak in the density of states of a different band. Features

above the metamagnetic transition in these data can not however be explained by

this simple model. The high-field side of the transition remains poorly understood.

Finally we consider the effect of temperature. This broadens the Fermi-Dirac

distribution, allowing the thermal ocupation of states under the peak in the den-

sity of states as temperature is increased. The peak in entropy therefore becomes

broadened. This is shown in Fig.5.4.

The low temperature specific heat of non-interacting fermions normally follows

the density of states,

cel =
π2

3
k2

BTρ(ǫF). (5.7)

This result relies on using the Sommerfeld expansion of the Fermi-Dirac distribution.

This result is normally a good approximation, however in the present case we have

a peak in the density of states near to the Fermi level and this approximation fails.
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We will consider the effect of temperature, magnetic field, and the inclusion of

interactions on this result.

Raising temperature has the effect of broadening the Fermi-Dirac distribution,

the range of states occupied around the chemical potential is therefore increased.

Starting with the chemical potential on either side of the density of states peak and

raising the temperature will allow thermal occupation of the states under the peak.

As shown in Fig.5.4 this increase is most rapid on either side of the peak. Specific

heat is the temperature derivative of the entropy and will therefore be largest in these

regions. We therefore expect a structure which is logarithmic at zero temperature

with a peak which bifurcates and broadens as temperature increases.

The magnetic field and interactions have the same effect as discussed for the

entropy - a compression along the field axis and the removal of a ‘wedge’ of field

values due to the first order transition.

5.2.2 Results

Figure 5.5 gives the results of numerically evaluating Eq.5.2 for magnetization and

Eq.5.3 for entropy and specific heat, for a cut through the metamagnetic wing in

the h, T plane with the logarithmic density of states Eq.5.6. These plots are in

good agreement with the anticipated results. Magnetization has the familiar first-

order transition at low temperature which becomes continuous at a critical endpoint.

The entropy has the temperature-broadened peak of the density of states with the

position and symmetry of the peak shifting due to the effect of the metamagnetism

and number conservation. Specific heat shows the expected double-peak structure as

well as the other signatures of the metamagnetic transition in the field dependence.

In section 6 we will compare these results to experimental data.

A striking feature of the results is that the temperature and field scales of the

system are different. The effects of interactions and number conservation mean that

spin-splitting by field detects the peak in the density of states at a different energy

to temperature broadening of the Fermi surface. The ratio of these energies can be

altered by varying the interaction strength. This means that care is needed when

identifying zero field features as a function of temperature with low temperature

features at a certain field.
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Fig. 5.5: Magnetisation, entropy and specific heat at a metamagnetic transi-

tion: From top to bottom the magnetisation, entropy and specific heat as we cross a
metamagnetic transition in the Stoner model with a logarithmic peak in the density of
states. g = 0.3W , filling fraction is 0.4. The results are shown both as 3D plots and
gradient plots for clarity. The unevenness and jagged peaks in some of the plots are due
to numerical error.
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5.3 Specific heat and entropy for inhomogeneous phase

A full evaluation of the entropy and specific heat for the phase diagram with the

modulated phase would require analysis of the free energy F (q,m,m⊥, T ) and the

temperature dependence of the modulation wavevector and transverse magnetiza-

tion. As previously noted this study is numerically intractable and has not yet been

completed. However, based on the arguments just presented and our previous cal-

culation of the density of states for the spiral case we can deduce what form the

entropy may take.

In the homogeneous region of the phase diagram the entropy will be the sum

of the density of states at the Fermi surface for the two spin-species as before. In

the region which was previously compressed or ‘chopped out’ by the metamagnetic

transition there will now be the inhomogeneous phase. The entropy here will be

the sum of the density of states at the Fermi surface for the spiral quasiparticle

dispersions. An exact calculation of this sum would involve the full free energy

calculation. An example density of states is shown in Fig.5.6, we have reverted

to the scheme of a single chemical potential and two densities of states, as the

spiral state has different densities of states for each species. We see that the Fermi

surface jumps to a point between two peaks in the density of states. Field will then

tune through this spiral density of states before jumping back to the homogeneous

case. Possible plots of entropy as a function of field for the inhomogeneous case are

sketched in Fig.5.7.

In this case the density of states in the spiral phase is lower than in the ho-

mogeneous phase, though it is not certain that this is always the case. This leads

to a lower entropy in the anomalous phase than outside. This contradicts the ex-

perimental evidence, which shows a higher entropy in the phase. The full details

of the thermodynamic calculations still remain to be performed. When these are

completed it may turn out that the entropy in the phase may be higher than out-

side. We note that one possible explanation for a higher entropy is the presence of a

Goldstone mode due to the breaking of translational symmetry by the modulation,

an effect which remains to be explored along with the role of fluctuations in the

wavevector of modulation at finite temperature.
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Fig. 5.6: Density of states in spiral phase: On the left is the density of states in the
homogeneous phase close to the metamagnetic transition. On the right is the density of
states for the spiral phase, calculated from the dispersion Eq.4.32. The Fermi surface now
lies between two peaks.
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Fig. 5.7: Entropy including inhomogeneous phase: Outside the inhomogeneous
phase the system has the same entropy as in the completely homogeneous case. Inside of
the phase the entropy is determined by the spiral density of states. There is a first-order
phase transition into the inhomogeneous phase, and one out of the phase. When the tran-
sitions are continuous this would result in a flattening of the peak in the entropy. Shown
in pale is the curve if the inhomogeneous phase has a higher entropy to the homogeneous
phase. We can not yet say which of these cases is realised in our model.



6. COMPARISON WITH EXPERIMENTS ON Sr3Ru2O7

Having calculated the phase diagram for the inhomogeneous phase and the thermo-

dynamic signatures of the metamagnetic transition, we will now compare them with

experimental results on Sr3Ru2O7. Our model readily accommodates the behaviour

of Sr3Ru2O7. We will consider how the topology of the phase diagram is reproduced

by our theory and how the properties of the anomalous phase may be reproduced by

the modulated magnetic state. The main aspect currently missing from the model

is the dependence on field angle. We will consider three proposals for how this may

be included.

6.1 Summary of experimental results

We first give a brief reiteration of the experimental results on Sr3Ru2O7 before dis-

cussing the signatures of our proposed inhomogeneous state and how they compare.

A more detailed discussion of the experimental data is found in section 3.

The bilayered ruthenate Sr3Ru2O7 shows a sequence of metamagnetic transi-

tions [66]. Early studies focussed on a line of metamagnetic critical end-points that

could be tuned to a quantum critical point by adjusting the magnetic field strength

and orientation [51]. Subsequently, ultra-pure samples showed a bifurcation of this

metamagnetic line upon approaching the putative quantum critical point [52, 70]

with a second line of critical end-points emerging from the zero-temperature plane

(see Fig.6.1). This bifurcation is accompanied by a striking peak in resistivity [52]

with curious, anisotropic dependence on the relative orientation of current, lattice

and in-plane magnetic field [26]. When current flows in the crystallographic di-

rection most nearly perpendicular to the in-plane field, the resistivity peak rapidly

decreases as the field is moved away from the c-axis. When it is nearly parallel to

the in-plane field, the peak persists.

The bifurcating metamagnetic transitions are shown by green surfaces in Fig.(6.1)

with the region of resistive anisotropy further delimited by the roof shown in blue.

Similar features occur elsewhere in the phase diagram [26], with further bifurcations
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Fig. 6.1: Comparison of experimental and theoretical phase diagrams: a) The
experimental phase diagram as inferred from in-plane transport properties. Green planes
correspond to abrupt changes in resistivity as a function of field. Blue shading indicates
regions where the in-plane resistivity is anomalously high, becomes highly anisotropic
with respect to the in-plane component of the field [26] and shows an anomalous tem-
perature dependence: for currents in the direction of maximum resistivity, the resistivity
decreases with increasing temperature. The phase diagram obtained from magnetic sus-
ceptibility [70] shows the same first order transitions as indicated here in green, but lacks
the roof shown in blue. b) Theoretical phase diagram made by a linear mapping of the
landau parameters R, H and K⊥ onto field, field angle and temperature. This results in
a distortion of the phase diagram of Fig.4.24

apparent upon approaching the ab-plane. These show a smaller resistance anomaly,

but have the same characteristic anisotropy (the blue dome-shaped region in the

foreground of Fig.6.1).

6.2 Topology of phase diagram

We have previously obtained the phase diagram for our model of modulated mag-

netisation in terms of the Landau parameters R, H and K⊥. The experimental

phase diagram, Fig.6.1a), is obtained— in the spirit of Ginzburg-Landau theory—

by interpreting R, H and K⊥ as functions of the experimental parameters T , θ and

h. Near to the dislocated tricritical point these functions will be approximately

linear. Although in principle these functions can be calculated, as was done in chap-

ter 4, it becomes impractical as the number of terms increases. Since we wish to

compare with the experimental results on Sr3Ru2O7 we would also have to perform

the calculations with the correct dispersion. As can be seen from the discussion of

the Fermi surface in section 3.4 this dispersion is extremely complicated. We there-
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fore take a possible linear mapping of the parameters which, in the spirit of our

phenomenology, maps the Landau-Ginzburg theory onto the experimental results.

Fig.6.1 b) shows the result of such a transformation.

The parent metamagnetic transition of the Stoner model is present. The critical

temperature of this transition falls as we move away from van Hove filling, as we

know is the case from microscopics. At a certain point a second first-order transition

appears - the bifurcation of the transition. This is asymmetric, with the new wing

being much smaller than the first and emerging at a different point in the zero-

temperature plane. Between these two transitions is the inhomogeneous phase.

The sheet of continuous transitions into the inhomogeneous phase becomes a

‘roof’ stretching between the first-order transitions. This roof encloses the anoma-

lous phase and has been detected in several experimental probes [52]. This roof is

signaled by a qualitative change in the temperature dependence of resistivity and by

a noticeable kink in the magnetization. We associate it with the continuous transi-

tion into the inhomogeneous phase found in the present theory. This roof previously

presented a real puzzle as there is no obvious way to obtain it from a simple Lan-

dau theory for magnetization, but is nevertheless required to enclose the postulated

broken symmetry phase in the bifurcated region.

6.3 Properties of the phase

The experimental signature of the anomalous phase is a high and anisotropic re-

sistivity. We believe that our proposal will capture this property. Spatially inho-

mogeneous magnetic structures lead inevitably to enhanced scattering in certain

directions, leading to a resistive anisotropy. In order to fully explain the anisotropy,

there must be a mechanism for an in-plane magnetic field to align the magnetic inho-

mogeneity. Our simple model does not contain such a mechanism. We suggest that

its origin lies in the in-plane magnetic field and the orbital effects to which this leads.

This modifies the dispersion, breaking the symmetry between different orientations

of the underlying helices. We will show how this can come about in section 6.4.1.

When the sample is in the anomalous phase, there is significant magnetic inhomo-

geneity leading to enhanced resistivity. With a magnetic field in the c-direction, the

inhomogeneity does not break the crystal symmetry (at least macroscopically) and

resistivity is isotropic. As the field is rotated into the plane, the magnetic inhomo-

geneity no longer preserves the lattice symmetry— either through the formation of

an anisotropic spin crystal or by a preponderance of domains of spin density waves
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of one orientation. This anisotropy will be reflected in resistivity.

As the anomalous behaviour only appears in the cleanest samples, any mech-

anism that explains it must be sensitive to disorder. Our mechanism shows this

sensitivity, since disorder smooths out features in the density of states and the

sharpness of these features is required for the effects which we predict.

This theory relies on a peak in the density of states near to the Fermi surface.

Experimental evidence seems to support these facts with ARPES showing a peak

in the density of states below the Fermi surface [67]. Obviously our model uses a

much simplified model of the band structure of Sr3Ru2O7, although ongoing work is

moving to a more realistic dispersion, as explained below. The higher-field features

of the phase diagram may be explained by similar reasoning based on further features

in the density of states.

6.3.1 Thermodynamic signatures of the transition

In Fig.6.2 we show the experimentally measured entropy and specific heat of Sr3Ru2O7

with the field aligned along the c-axis [74]. This shows the anomalous phase, which

we have not yet calculated the thermodynamic signatures of. Aside from the anoma-

lous phase region these results resemble the theoretical predictions for a metamag-

netic transition driven by a peak in the density of states. Extracting a power law

dependence of specific heat on the low field side however does not give the cor-

rect dependence for approach to a logarithmic singularity. Several effects may be

responsible for this, the single band logarithmic density of states is still a vast simpli-

fication, a more realistic model may produce slightly different results. The specific

heat may have contributions from elsewhere - for example, quantum critical fluctu-

ations. As well as qualitative agreement on either side of the anomalous phase the

specific heat at high temperature shows the double peak structure which we predict.

This is consistent with the normal phase of the material seeing only a peak in the

density of states as would occur in our model outside of the modulated phase.

6.4 Outstanding issues

6.4.1 Tuning the phase diagram with field angle

The natural parameters of our microscopic theory are field, temperature and band

filling. An additional mechanism is required to translate from filling to angle. This

mechanism is currently absent from the theory, although we have investigated several



6. Comparison with experiments on Sr3Ru2O7 109

5 6 7 8 9 10 110

0.5

1.0

1.5

0.1

0.2

Te
m
p
e
ra
tu
r
e
[K
]

5 6 7 8 9 10 110

0.5

1.0

1.5

0.1

0.2

Magnetic Field [T]

Te
m
p
e
ra
tu
r
e
[K
]

S/T [J / Ru-mol K
2
]

c/T [J / Ru-mol K
2
]

0.1 0

0.1 5

0.2

0.2 5

[J / Ru-mol K ]
2

Magnetic Field [T]

Fig. 6.2: Experimental measurements of entropy and specific heat of Sr3Ru2O7:

Experimental measurements of the entropy and specific heat for a cut through the phase
diagram with field along the c-axis. This shows the anomalous phase and surrounding
normal phase. The broadening and bifurcation of the peak in C/T are consistent with our
analysis of a peak in the density of states (see Fig.5.5). Figure from [74].

possibilities. Of these, in-plane orbital effects are the best explanation. The three

possibilities which we will now discuss are:

• An angle-dependent Zeeman coupling [75]. This may be caused by spin-orbit

interactions.

• Inter-plane orbital effects. The bilayer structure allows the orientation of the

field to alter the bandstructure via magnetic flux between the layers.

• In-plane orbital effects. Orbital Zeeman and spin-orbit coupling lead to an

angle-dependent bandstructure [73].
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Fig. 6.3: Experimental phase diagram of Sr3Ru2O7: The phase diagam of Sr3Ru2O7

shown in Fig.3.3 replotted as a function of parallel and perpendicular fields. The critical
field of the metamagnetic transition is anisotropic, being larger with the field along c-axis
than in the ab-plane.

We will now discuss the arguments in favour and against these proposals. We

conclude that the effects of orbital Zeeman and spin-orbit coupling are likely to

provide the explanation to the angular dependence. These may be straightforwardly

included in our model.

Angle-dependent Zeeman splitting

We will first consider the effects of an angle-dependent Zeeman coupling. Spin-orbit

coupling can lead to an anisotropic Zeeman coupling. This reproduces the angular

dependence of the metamagnetic critical field but does not explain the appearance

of the anomalous phase.

The field splits the Fermi surfaces so that the position of the spin-up or -down

Fermi surface is given by µ↑/↓ = µ0±gµB
√

B2
⊥ +B2

‖ . There is a metamagnetic tran-

sition when one of the Fermi surfaces gets close enough to the van Hove singularity.

For simplicity we will take the transition to occur at the singularity itself. The

Fermi surface lies on the van Hove singularity when µ0±gµB
√

B2
⊥ +B2

‖ = ǫvH . The

transition occurs on a circle in the B⊥, B‖ plane, defined by B2
⊥ +B2

‖ = ( ǫvH±µ0

gµB
)2.

Now let us consider that g may be a function of angle g(θ) where θ is defined

as θ = tan−1

(

B⊥

B||

)

. Assuming a form g(θ) =
√

g2
|| cos2 θ + g2

⊥ sin2 θ we find that the

metamagnetic transition now forms an ellipse in the B⊥, B‖ plane.
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Fig. 6.4: Metamagnetic transitions with an anisotropic g factor: Shown in blue
is the condition for one of the spin-split Fermi surfaces to reach the van Hove singularity
assuming a constant µ0 and an isotropic g. In red is the condition for an anisotropic g.

This provides an explanation for the differing critical fields with the field aligned

along different axes, but does not seem to offer an explanation as to why the anoma-

lous phase should form as a function of angle, or why the critical temperature of the

transition should change.

Orbital effects between layers

We now consider how the spatial separation of the layers in the bilayer of Sr3Ru2O7

allows coupling to the angle of the magnetic field. Flux between the layers of the

bilayer affect the electrons which circulate from layer to layer, leading to a modified

dispersion. This gives the possibility for a rich angle-dependent phase diagram.

However, the fields required to observe the effects are far too large to be physically

realistic.

We consider a model consisting of two layers, each with a simple tight-binding

dispersion, with some inter-layer interaction. The effect of in-plane field is taken

into account by minimal substitution of the vector potential into the electron mo-

mentum. Since the layers are separated each sees a slightly different potential. The

difference in the vector potential between layers changes with angle. The interaction

between layers allows the system’s properties to depend on the field angle through

this difference.

We use the following Hamiltonian to describe the bilayer system (neglecting
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Fig. 6.5: Geometry of the bilayer scheme: The two ruthenium oxide layers are seper-
ated by a distnce δ. The magnetic field is applied at an angle to the c-axis. The vector
potential at the two layers is different and varies with the angle θ.

spin-up and -down for the present):

Ĥ =
(

ψ†
1, ψ

†
2

)





ǫ1(k) ∆

∆ ǫ2(k)









ψ1

ψ2



 , (6.1)

where 1 and 2 label the layers, ǫ(k) is the dispersion and ∆ is the inter-layer interac-

tion. For simplicity we take ∆ to be a constant. This Hamiltonian has eigenvalues

2ǫ± = [ǫ1(k) + ǫ2(k)] ±
√

[ǫ1(k) − ǫ2(k)]2 + 4∆2. (6.2)

We now include a magnetic field parallel to the layers (see figure 6.5). Working

in the Landau gauge this has the vector potential A =
(

0, B‖z, 0
)

. The minimal

substitution scheme involves the replacement p → p − eA. In the presence of the

field there is a difference in the magnitude of A between the layers of ∆A = δ B‖

where δ is the interlayer spacing. The energies of the layers therefore become

2ǫ± =

[

ǫ

(

k − eδB‖

h̄

)

+ ǫ (k)

]

±
√

√

√

√

[

ǫ

(

k − eδB‖

h̄

)

− ǫ (k)

]2

+ 4∆2. (6.3)

Graphically this has the effect of shifting one dispersion relative to the other

and then anticrossing the two, as shown in Fig.6.6. This process can shift pre-

existing saddle points, and create new ones. These saddle points will each produce

a peak in the density of states and possibly a metamagnetic transition. In addition

to this effect the field produces a Zeeman splitting of the Fermi surface. As this is

proportional to the magnitude of the applied field and not the angle (in the isotropic

g-factor case we are considering here), the field component perpendicular to the
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Fig. 6.6: Anticrossing of bilayer dispersion with parallel field: In the absence
of a parallel field component the dispersions of the two layers are identical but split by
an energy ∆. Upon applying a field the dispersions are shifted relative to each other
before applying this splitting - this causes anticrossing of the dispersions and forms new
stationary points in the dispersion. Some of these stationary points will be saddle points
and cause peaks in the density of states.
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Fig. 6.7: Tracking peaks in the density of states: The lines represent the parallel
and perpendicular field values which put one of the spin species’ fermi surface at a peak
in the density of states. Note that the upper two lines do not appear for B‖ = 0 and the
splitting of the lower lines also occurs at non-zero B‖. The lines are numbered to identify
the saddle point which they relate to, shown in the right-hand figure. The exact position
of these lines depends on the chemical potential and bilayer splitting.

planes will contribute to the Zeeman splitting but not the anticrossing phenomena.

We find that the position of the van Hove singularities moves as a function of
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in-plane field B‖. Some singularities split and others appear as the field is applied.

Tracking the coincidences of one of the Fermi surfaces with these peaks gives a

rough zero-temperature phase diagram, shown in Fig.6.7. This phase diagram is

potentially very complex, including anisotropic critical fields and transitions which

bifurcate.

The size of field required to produce these effects is however excessively large.

We find an order of magnitude expression for the required size of magnetic field.

The shift in layer dispersions needs to be comparable to the size of the Brillouin

zone in order to see this effect. The spacing between bilayers is of the order of a

lattice spacing and so the required field is.

B‖ =
h̄

eδa
=

h̄

ea2
≈ 10−15

10−1910−20

eV s

em2
= 1024T (6.4)

Obviously 1024 tesla is rather a lot - especially since the transition in Sr3Ru2O7

occurs at about 10T. B‖ = 10T gives a k shift of ∼ 10−33m−1. Approximating the

dispersion to be that of a free electron ǫ = h̄2k2

2m
gives anticrossing of two previously

degenerate dispersions at an energy of ∼ 10−140meV - well below that of any bilayer

splitting. Therefore the effects of reasonable field sizes are completely negligible.

Such effects have been considered in the theory of a nematic state [71], but run into

the same problems of field scales.

In-plane orbital effects

Another way of including angular dependence is to include orbital effects in the

system. This requires stepping back from our simple 2D models and considering

the orbital make-up of the band structure, as discussed in section 3.4. Each set of

orbitals produces its own band. The role of spin-orbit coupling is to hybridise these

bands in a way which depends on the magnitude and angle of the applied field.

In addition we need to consider the coupling of the magnetic field to the orbital

angular momentum of the electrons. This scheme was considered in the case of

nematic ordering [73] (see section 7) but can be carried across straightforwardly to

our analysis. Here we will follow the scheme of [73] to investigate how the Fermi

surface is affected by the field angle.

Spin-orbit coupling enters the Hamiltonian as L · S. The Hamiltonian for our

model without electron-electron interaction can then be written as the sum of an
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orbital or band part HO and a spin-orbit part HSO:

Ĥ = ĤO + ĤSO,

ĤO =
∑

〈ij〉,σ,α

c†i,σ,αT̂i,j,αcj,σ,α =
∑

k,σ,α

ǫk,σ,αn̂k,σ,α,

ĤSO = λSO

∑

i,σ,α

c†i,σ,α (L · S) ci,σ,α, (6.5)

where α labels the orbitals, i and j label the sites, σ labels the spin and T̂i,j,λ is

an operator which allows hopping from one site to another. The orbital part of

the Hamiltonian can be recast as the standard single-particle band term where the

dispersion ǫk,σ,α is obtained by considering the geometry of the orbitals. The spin-

orbit term produces interactions between these various bands. S is the vector of

Pauli matrices S = (σx, σy, σz). The components of L can be written

lx =











0 0 0

0 0 −1

0 −1 0











, ly =











0 0 −1

0 0 0

−1 0 0











, lz =











0 i 0

−i 0 0

0 0 0











, (6.6)

giving

L · S =





lz lx − ily

lx + ily −lz



 . (6.7)

Fig.6.8 shows the bands before and after including spin-orbit coupling. Spin-orbit

coupling hybridises the bands, the quasi-one-dimensional bands become quasi-two-

dimensional and the anticrossing produces new peaks in the density of states. The

spin-orbit term is angle dependent as the angular momentum operators are defined

relative to the crystalline axis but the spin quantization axis is aligned with the

field. S is therefore modified as

S(θ) = exp
(

−iσ · n
2

θ
)

S exp
(

i
σ · n

2
θ
)

, (6.8)

where θ is the angle with the c-axis. The band structure therefore becomes angle-

dependent.

An additional dependence of the band structure on field strength and angle lies

in the Zeeman term. The orbital angular momentum is not completely quenched,

so as well as coupling to the spin moment the field couples to the orbital moment.
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Fig. 6.8: Effect of spin-orbit coupling on the Fermi Surface: Electronic bands
based on the Ru d-orbitals of Sr3Ru2O7 before and after spin-orbit coupling.

The standard Zeeman term is replaced by

ĤZ = −H ·
∑

i,σ,α

c†i,σ,α (L + S) ci,σ,α. (6.9)

Neglecting for the moment the standard spin Zeeman coupling we have the orbital

Zeeman term

ĤOZ = −
∑

i,σ,α

c†i,σ,α [Hxlx +Hyly +Hzlz] ci,σ,α (6.10)

where lx, ly, lz are as in Eq.6.6, ψi,σ is the vector (ci,σ,zx, ci,σ,yz, ci,σ,xy) and

Hx = H sin θ cosφ, Hy = H sin θ sinφ, Hz = H cos θ, (6.11)

with θ the angle from c-axis and φ the angle from a in the ab-plane and H is the

magnitude of the field.

This term is obviously zero in the absence of any field and so the spin-orbit term

is necessary to hybridise the bands. However, in the presence of a field we expect the

orbital Zeeman term to dominate over the spin-orbit term. The effect of changing

field angle on the Fermi surface due to this term is shown in Fig.6.9. We see that

anisotropy is produced and aligned by an in-plane field component.

Having established that orbital effects lead to an angle-dependent band structure

we ask how this will affect the properties of Sr3Ru2O7 and our model for inhomo-

geneous phase formation. In principle we can take the dispersions obtained by

diagonalising the above Hamiltonians and calculate the magnetic phase diagram in

exactly the same way as previously, except fixing the chemical potential or filling
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Fig. 6.9: Effect of orbital Zeeman coupling on the Fermi Surface: The top row
shows the effect of rotating the field from c-axis into the ab-plane. θ is the angle from
c-axis and φ is the angle within the ab-plane. a) θ = 0, φ = 0, b) θ = π

4 , φ = 0, c) θ = π
2 ,

φ = 0. The bottom row shows rotation of the field in the ab-plane. a) θ = π
2 , φ = 0, b)

θ = π
2 , φ = π

4 , c) θ = π
2 , φ = π

2 . The arrow indicates the direction of the field. Effects are
exagerrated for clarity.

and varying the field angle. Varying the angle will move or broaden the peaks in the

density of states which come from anticrossing of the bands. The critical field and

temperature of the metamagnetic transition will therefore be tuned by field angle,

as the transition is caused by the peak. These calculations are numerically more

difficult than for the simple tight-binding models and the calculation of the phase

diagram is currently in progress. Once a line of metamagnetic critical endpoints is

established the spin-stiffness K⊥ can be calculated along the line in same way as we

have done for the next-nearest-neighbour tight-binding model.

As well as tuning the metamagnetic transition and phase boundaries the angle

of the applied field alters the properties of the anomalous phase. The degree of

anisotropy is determined by the angle of the field with the c-axis. The direction of

anisotropy is pinned to a crystal axis determined by the angle of field in the ab-plane.

There is currently no mechanism for this dependence in our model. The orbital
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Fig. 6.10: Comparison of full Fermi surface and orbital model: a) The basic
model we have used to illustrate orbital effects. b) The full 12 bands required to make up
the experimentally determined Fermi surface of Sr3Ru2O7, the regions which will become
the γ2 pockets have been indicated. c) The experimentally determined Fermi surface of
Sr3Ru2O7 with γ2 indicated.

effects presented here however give a clear mechanism. An in-plane field component

breaks the symmetry of the dispersion in a way which depends on the in-plane

angle as shown in Fig.6.9. The wavevector of the spiral modulation is determined

by the direction of this weak underlying anisotropy, whereupon the modulation

produces the larger, observed, anisotropy. With the field along the c-axis there is no

symmetry breaking and the modulation is made either by an equal superposition of

spirals in different directions resulting in a spin-crystal, or by domains of alternative

orientations, giving no overall anisotropy.

The Fermi surface of Sr3Ru2O7 is extremely complex, as described in section 3

and illustrated again in Fig.6.10. Constructing a model including all of the bands

plus spin-orbit and orbital Zeeman couplings is a formiddable task. If, as we pos-

tulate, the phenomena obseved in Sr3Ru2O7 are single-band effects then we do not

require this full model, only an effective dispersion for the band in question. Based

on experimental evidence (section 3) this would seem to be the γ2 band which pro-

duces the small pockets in the corner of the reduced Brillouin zone. The next step

would therefore be the construction of a minimal model which describes this pocket,

and the calculation of it’s properties.

6.4.2 The possibility of observation by neutron scattering

The modulated magnetic phase which we predict should be directly detectable in

elastic neutron scattering. Unfortunately such data in the anomalous phase do not

exist. Experiments done outside of the phase show fluctuations at q = 0.25 of the
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tetragonal Brillouin zone (the zone before the reconstruction due to rotation of the

ruthenium oxide octahedra). The strength of these fluctuations increases as the

phase is approached [86, 87]. It is tempting to interpret this as the ‘freezing in’ of

modulated order, although the static phase has not been observed.

The wavevector of this fluctuation corresponds to a nesting vector between the

γ2 pockets. In a fermi surface of this complexity it is not surprising that a particular

nesting vector can be found, but it is suggestive that it connects the pockets which

are thought to be involved in the metamagnetism.

The modulation may be hard to observe, if it is a small modulation on top of

a homogeneous background, as well as due to uncertainty in the wavevector which

should be examined. There is also the possibility that a spiral phase may be ‘melted’

and therefore form a nematic phase which breaks rotational but not translational

symmetry, these will be considered in chapter 7. Elastic scattering in the phase will

hopefully determine whether or not modulation exists.

6.5 Summary

The modulated magnetic phase is a good candidate for matching the properties

of the anomalous phase of Sr3Ru2O7. Our model reproduces the topology of the

experimental phase diagram, giving the bifurcation of the metamagnetic transition

and a second-order transition enclosing the phase as a ‘roof’. We expect that the

modulated phase will reproduce the transport anisotropy of the anomalous phase,

although we have not yet performed calculations of this. Our proposal is based on a

peak in the density of states, which has been shown to exist in ARPES studies [67].

Calculations of the thermodynamic signatures associated with this peak match well

with experiment, giving a specific heat which rises as we approach the phase and a

double peak structure above it. It remains to calculate the thermodynamic prop-

erties of the modulated phase itself, but it is possible that these will match the

experimental observation of a higher entropy in the anomalous phase than outside.

The experimental phase diagram is tuned by field angle, whereas our model is tuned

by band filling. The angle dependence is most likely due to orbital effects which may

be included in our model. Our proposal is for a state with a spatially modulated

magnetisation, which should be visible in neutron scattering experiments. These

will ultimately determine if the anomalous phase has static modulated magnetic

order.
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RELATED THEORIES, FUTURE DIRECTIONS AND

CONCLUSIONS



7. ELECTRON NEMATICS

7.1 Electron nematics

In chapter 4 we showed that the crystal lattice can drive spatial modulation of

magnetic order. We will now consider a proposal for a type of phase which is related

to the modulated state, but where only the rotational and not the translational

symmetry of the system is broken. These are known as ‘nematic’ phases [23]. They

are an alternative proposal for the anomalous phase of Sr3Ru2O7 [52, 71,73,88].

We will discuss the different realisations of the nematic state which have been

proposed. We will show that the energetic drive for these phases is very similar to

the modulated state which we study and consider how the two states are connected.

7.1.1 Liquid-crystal analogy

The name ‘nematic’ is borrowed from the terminology of liquid crystals. In these

systems it is easy to construct orderings which are intermediate between liquid

and crystalline order. Imagine a system of anisotropic particles, each one a rod

for example. In the liquid phase they are arranged completely randomly, with

full rotational and translational symmetry on large scales (Fig.7.1). On the other

extreme, in the crystalline phase the particles are arranged in a rigid array, with

their axes aligned with one another. This arrangement breaks both translational and

rotational symmetries. There are two states which restore some of these symmetries.

If the position of the particles is random, but they are aligned along a particular

direction, then the system has translational symmetry, but the rotational symmetry

is broken. This is called the nematic phase. Alternatively, as well as aligning, the

particles can order positionally in one dimension, forming layers, each of which has

liquid-like positioning within it. These are known as smectics.

It has been postulated that similar symmetry breaking states may exist in elec-

tronic systems [23]. In between the isotropic Fermi liquid and the Wigner crystal [89]

there may be phases which break some, but not all, of the symmetries [90]. The

spiral state which we have considered may be considered a smectic phase - it breaks
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Isotropic Nematic Smectic Crystalline

Fig. 7.1: Liquid crystal orderings: In the isotropic case the particles are arranged with
random position and orientation. In the nematic case the positioning is still random, but
the orientation is uniform. In the smectic case the particles are also ordered in position
along one axis. In the crystalline case the particles are ordered in position and direction.

rotational symmetry, and translational symmetry along one axis. When we speak of

an electron nematic state in a lattice we must bear in mind that the symmetries of

free space have already been broken by the lattice. In this case the nematic breaks

the symmetry of the lattice, reducing, for example, a system with fourfold rotational

symmetry to twofold.

Nematics may form in several ways. A state which does break translational

symmetry, such as a spin-density wave like we have considered, a charge-density wave

or stripe order [91], may be ‘melted’ [90,92]. By breaking up the pattern over large

distance scales the translational symmetry is restored at long range. Alternatively

distortions may be made in the k-space order which break rotational symmetry, but

not the real-space translational symmetry. Such distortions are called Pomeranchuk

distortions [44] and may come in various forms.

7.1.2 Pomeranchuk instability

Pomeranchuk considered how interactions may drive a distortion of the Fermi surface

even in the absence of a lattice [44]. Some of these distortions are illustrated in

Fig.7.2.

Such distortions will result in transport anisotropy and were suggested as a

candidate for the anomalous phase of Sr3Ru2O7 [52]. Microscopic interactions which

produce such distortions have been studied theoretically in the isotropic [93] and

lattice cases [94, 95]. When a lattice is present the Fermi surface is not initially

isotropic, and the distortion will also be shaped by the symmetry of the lattice.
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Fig. 7.2: Pomeranchuk distortions: Pomeranchuk distortions of the Fermi surface.
The s-wave distortion (green) corresponds to a uniform magnetization.

7.1.3 d-wave distortions

When there is a lattice present distortions of the Fermi surface will reflect this

symmetry. There has been much interest in so-called d-wave distortions in a two

dimensional square lattice [42,43,71,88,94,95]. This has the tight-binding dispersion

Eq. 4.2 and the associated van Hove singularities. In this distortion the Fermi sur-

face elongates along one axis of the lattice, jumping over two of the van Hove points.

There is some numerical renormalisation group evidence for an increased forward

scattering near to the van Hove points in the Hubbard [94] and t-J models [95],

although this effect is delicate [80]. The majority of calculations assume that this

form of distortion occurs and calculate the mean-field phase diagram [42,43,71,88].

A Hamiltonian of the following form is assumed:

H =
∑

k

ǫknk +
∑

k,k′

(g − udkdk′)nkn′
k
, (7.1)

Here dk is a function with dx2−y2 symmetry, such as cos kx − cos ky.

At the mean-field level this theory is identical to Stoner magnetism. The prox-

imity to van Hove singularities favours the splitting of Fermi surfaces, except that

since the interaction is now anisotropic the Fermi surface distorts in one direction

preferentially. As in the Stoner case this can be first-order or second-order. The

magnetic field splits the Fermi surfaces so that one approaches the van Hove sin-

gularity. It becomes favourable for the Fermi surface distortion to occur and the

system breaks the fourfold symmetry. As the field increases there is a second jump

as the Fermi surface returns to the lattice symmetry. In this respect the predictions

are similar to the case which we consider, except that the distortion exists all along

the van Hove lines rather than appearing only away from the van Hove filling. We

also note that the first-order transitions in this model are associated with phase
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Fig. 7.3: The d-wave Fermi surface distortion: a) The Fermi surface at zero field,
in the nematic region and on the high-field side of the nematic region. Black dots are
the position of van Hove singularities in the dispersion. The Fermi surface distortion
jumps over two of these before the others, breaking the symmetry of the lattice. b) The
magnetization (dashed line) and nematic order parameter (solid line) as a function of
field. Figure from [96]. c) The nematic region in the µ, T plane. Figure from [43]. d) The
nematic region of the h, µ plane, the van Hove singularity is at µ = 0, the dotted lines
represent where one Fermi surface touches the van Hove singularity. Figure from [88].

separation in the same way as those in our model.

While the distortion of the Fermi surface will result in transport properties that

break the symmetry of the lattice it must be noted that most of the change is

around the van Hove points. Here the Fermi velocity is already extremely small and

so the distortion will have little effect on the bulk properties. In order to explain

the magnitude of the effects seen in Sr3Ru2O7 it is necessary to invoke further

effects, such as the formation of domains of different nematic orientations. Here the

enhanced resistivity is due to scattering off domain walls.

An alternative perspective on these distortions is to step back and consider the

orbital basis of the electronic bands making up the Fermi surface.
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Fig. 7.4: Orbital ordering: a) Fermi surface before and after nematic ordering. b)
Density of states in the nematic state (solid line) and normal state (dotted line). c) Cut
through phase diagram in the H, T plane. d) Angular dependence of the nematic region.
Figures b) c) and d) from [73].

7.1.4 Orbital ordering

The real band structure of Sr3Ru2O7 is made up from the Ru d-orbitals as discussed

in section 3. Recent work has investigated a model consisting of the orbitals forming

the three basic bands of the ruthenium oxide layer [73, 97]. These quasi-1D bands

have sharp van Hove singularities and so show the Stoner instability. By introducing

an inter-orbital interaction it is possible to form a ‘magnetic’ interaction where

instead of electron transfer between spin-up and spin-down bands the occupation

of different orbitals becomes uneven. This orbital ordering is reflected in the Fermi

surface as a distortion similar to the d-wave picture, this is shown in Fig.7.4.

This model captures some of the angular dependence observed in Sr3Ru2O7

through the inclusion of orbital Zeeman and spin-orbit coupling terms. The effect

of these terms on the Fermi surface was considered in section 6.4.1. This reproduces

the angular dependence of the metamagnetic transition, but not the restriction of
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the anomalous phase to a small range of angles, as can be seen in figure 7.4.

7.1.5 Melted stripe order

The environment in which electronic nematic behaviour has been most clearly seen is

the two dimensional electron gas [25]. Here the nematic state is due to a ‘melting’ of

charge modulated order. In semiconductor heterojunctions a two dimensional layer

of conduction electrons is formed. These have extremely low electron densities and

allow the study of physics associated with Landau levels, such as the quantum Hall

effect. In high Landau levels it is predicted that electrons form charge modulated, or

‘stripe’ phases [98,99]. This is a smectic phase consisting of a modulation of the filling

fraction in one direction. If dislocations are introduced into this ordering such that

the translational symmetry is restored then the phase would become nematic [92].

This situation seems to have been realized in a number of experiments, leading to

highly anisotropic transport [25]. This anisotropy can be aligned by the in-plane

field. Stripe phases, and possibly nematicity, have also been been observed in the

cuprates [24, 91]. This provides an example of how modulated and nematic order

are related which may be pursued in the case of our spiral state.

7.2 The link between nematic and spiral order

The spiral magnetic order which we have proposed is in many ways related to ne-

matic order. The Fermi surface distortions related to forming the states are similar,

possibly identical. The main difference is that this k-space distortion is associated

with a real space modulation in the case of the spin-spiral. As we have noted this

may be ‘melted’ by introducing phase-slips and dislocations to restore translational

symmetry and create a nematic state.

These similarities can be seen in the energetic favourability of the states which

is due both in the spiral and d-wave distortions to occupying peaks in the density

of states caused by the lattice. It is possible that this similarity will carry across

to the case where spiral order is stabilised by quantum fluctuations [32,40], so that

nematic order may also be stabilised near to quantum critical points.



8. FUTURE RESEARCH DIRECTIONS

There are many opportunities for future study opened up by the research reported

in this thesis. Some of these are straightforward extensions of the work presented.

Others move into new areas which are nevertheless connected to the ideas discussed

here, such as nematic states and quantum criticality.

8.1 Extensions of current research

8.1.1 How does field angle tune the phase diagram?

The major element missing between our theory and the experimental situation of

Sr3Ru2O7 is the dependence of the transitions and anomalous phase on the angle

of the applied magnetic field with respect to the crystalline axes. We have assumed

that this angle effectively tuned the filling of the relevant bands relative to a peak

in the density of states.

It seems that this angular dependence can be incorporated through spin-orbit

and orbital Zeeman couplings, as discussed in section 6.4.1. These have the effect of

slightly changing the bandstructure with field angle, moving or widening the relevant

peaks. Incorporating these effects into the dispersion used for calculations will allow

an inclusion of the angle into our theory.

8.1.2 More realistic dispersions

Associated with including orbital effects is moving towards a realistic bandstructure

for Sr3Ru2O7 in the calculations. While it seems unlikely that the full bandstructure

of Sr3Ru2O7 will be tractable, or necessary, in calculations, an effective model of the

relevant Fermi surface pockets could be made.

With the relevant bands identified an accurate prediction for the magnitude and

direction of the modulation wavevector q could be made. Determining this would

greatly assist in neutron scattering experiments to confirm the presence of magnetic

modulation.
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8.1.3 Multiple wavevectors

Modulation need not occur at a single wavevector. Indeed, considering the degen-

eracy of different directions in the lattice, it seems likely that a superposition of

several wavevectors would occur. Two spirals running in opposite directions will

give a linear spin-density wave, four arranged in a square will give a spin-crystal,

and so on. Such a situation is found in FFLO, where the optimum combination

of wavevectors is determined by external parameters and the crystal lattice. These

different arrangements lead to different transitions to the homogeneous state. Cal-

culating the phase diagram including all these possibilities has proved a complex

and delicate task, nonetheless, a full picture of magnetic modulation must include

these possibilities. The various spin-textures may also have different signals in the

thermodynamics and the transport properties of the phase, since now translational

symmetry is broken in all directions.

8.1.4 Transport

The property which identifies the anomalous phase of Sr3Ru2O7is the anisotropic

transport. The magnetoresistance of Sr3Ru2O7 is anomalously high in the phase and

is different parallel or perpendicular to an axis which is picked out by the applied

field. The variation in magnetism along the modulation wavevector would produce

enhanced scattering, thereby causing this anisotropic transport. We have not yet

calculated this explicitly however and such calculations would provide compelling

evidence for our proposal as well as an additional way to distinguish the smectic

and nematic proposals.

8.1.5 Entropy

One of the surprising experimental features of the anomalous phase is that it has

a higher entropy than its surroundings. This fact has yet to be replicated by any

theory of the phase. Careful calculation of the density of states in the spiral phase

will reveal whether this is also the case in our proposal. We must then consider

how the Goldstone mode and fluctuations about the mean-field minimum of the free

energy affect the properties of the phase.
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8.2 New directions

8.2.1 Interplay of lattice and fluctuation effects

Quantum fluctuations have been shown to cause the same sort of effects which have

been studied here as a consequence of the lattice. Both metamagnetism and spin-

spiral states have been predicted around itinerant quantum critical points [32,39,40].

Currently these calculations are carried out in the absence of a lattice. This opens

up the question of how fluctuation-induced and lattice-induced effects interact. In

a system close to a peak in the density of states do the effects reinforce each other,

creating a higher-temperature tricritical point and larger region of inhomogeneity?

Do they cancel to reinstate the continuous transition? Or does one simply dominate

the phase diagram?

As well as the zero-field phase diagram the metamagnetic quantum critical end-

point must be considered. The effect of quantum fluctuations on this point, and

their interplay with the modulated phase which we predict, should be calculated.

8.2.2 Electron nematics

The various forms of nematic order are intriguing new phases. Their relation to the

melting of modulated order and presence in the phase diagram along with this order

should be clarified, as well as a possible connection with quantum critical points

worked out.

These are possible research directions which link the effects considered in this

thesis with other topics of current interest. By combining these subjects a more

complete picture of itinerant magnetism will be built up.



9. CONCLUSION

We set out to study a model for a modulated magnetic state acting as an inter-

mediate phase in a metamagnetic transition. We were inspired in this idea by

experimental results on the material Sr3Ru2O7 and by a general principle of mod-

ulated phases appearing as intermediate states in phase transitions. This is most

clearly seen in the superconducting Fulde-Ferrell-Larkin-Ovchinnikov phase, which

is analogous to the magnetic system we consider. Such phases are also found in

cold-atomic gases [62], excitonic insulators [100], color superconductivity in quark

matter [60] and neutron stars, where they have been invoked to explain glitches in

pulsar rotation [60].

We showed that generic features in the band-structure could drive not only meta-

magnetism, but magnetic spiral states. These states appear as an intermediate phase

in the metamagnetic transition, causing the bifurcation of the parent transition to

enclose the phase. We expect the same reasoning to carry across to more complex

spin-textures made from superpositions of spirals. Having calculated the phase di-

agram for such an intermediate phase we see that it matches closely the topology

of the experimentally determined phase diagram of Sr3Ru2O7. In addition we have

shown that the thermodynamic consequences of our proposal are in agreement with

experiment. This suggests that the anomalous phase of Sr3Ru2O7 may be just such

a modulated phase. The same effects may occur in other systems, such as NbFe2

and ZrZn2 which show metamagnetism associated with resistive anomalies [47, 48].

Our analysis is not specific to one material, being based on rather generic features

of the bandstructure.

Our calculation of the phase diagram proceeds from a consideration of the over-

all experimental phase diagram of Sr3Ru2O7. This is dominated by a metamagnetic

transition. We therefore take the simplest theory which explains this transition -

a Stoner model with a peak in the electronic density of states. We calculate the

phase diagram via a Ginzburg-Landau expansion based both on phenomenological

arguments and an expansion of the microscopic Hamiltonian. We then show that

modulated states arise naturally in this model and calculate that modulated or-
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der becomes more favourable as we tune along the metamagnetic transition away

from the van Hove singularity. Using the Ginzburg-Landau expansion we calculate

how the parent metamagnetic transition reconstructs to accomodate this modu-

lated magnetisation. The transition bifurcates at a dislocated tricritical point, with

the modulated phase lying between the two transitions. The phase is bounded from

above by a sheet of continuous transitions that form a roof which encloses the phase.

This phase diagram matches the topology of the experimentally determined phase

diagram for Sr3Ru2O7 [52]. This material shows a metamagnetic transition, the

critical endpoint of which can be tuned until the transition bifurcates. Between the

wings is a phase with an anomalously high and anisotropic resistivity. We believe

that this phase is the modulated magnetic order which we propose.

Following on from this we examined the thermodynamic properties of the par-

ent metamagnetic transition, calculating how the specific heat and entropy evolve

with applied field and temperature. We found subtlety even in this basic feature

of the phase diagram, with the specific heat having a double-peak as a function of

field and a non-trivial relationship of field and temperature scales. These results

are a good match for the experimentally determined thermodynamic behaviour of

Sr3Ru2O7 [74] and inform the interpretation of this data. The next step is a calcu-

lation of the thermodynamic properties of the spiral phase. These calculations have

not yet been completed but we note that our modulated phase provides possibilities

for reconciling with experimental data on Sr3Ru2O7 which should be examined.

As well as thermodynamic data the phase is characterised by its transport prop-

erties [26]. The formation of a modulated state would produce enhanced scattering

of electrons and the wavevector dependence would result in anisotropy. We therefore

believe that our proposed phase would produce the high and anisotropic resistivity

of Sr3Ru2O7. This is another subject for future calculation.

There are several extensions of our model that will allow even closer connection

to the experimental data on Sr3Ru2O7. These are the inclusion of the effect of the

magnetic field angle and a more realistic picture of the electron dispersion. It seems

likely that this angle dependence can be accounted for by introducing an orbital

Zeeman coupling which modifies the band structure as the field angle is changed.

Associated with this will be the choice of a minimal model of the band structure

which will accurately reflect Sr3Ru2O7 while remaining amenable to calculation.

These effects should be straightforward to introduce into our framework.

The study of phase transitions at low temperatures is closely linked to quantum
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criticality. Although we have not included the effect of quantum fluctuations in

our model there are several possible areas of connection. The initial interest in

Sr3Ru2O7 lay in the presence of a quantum critical endpoint. Although models of

the anomalous phase do not include its effects quantum critical points are known to

stabilize new phases and so may be important. Indeed recent work on non-analytic

corrections to Hertz-Millis theory shows that itinerant quantum critical points are

unstable to the formation of first-order transitions and spin-spiral states [32,39,40]

- exactly the phenomena studied here in a lattice-driven context. The interplay of

the two will be important to the behaviour of real systems.

As well as the modulated states which we consider there are intriguing proposals

for nematic states which retain the orientational but not translational orientation

of the modulated state [23]. These may be made by melting modulated states and

have very similar energetics. The connection between these two types of order is

another interesting extension of the ideas contained here.

It is clear that there is much subtlety in the phases of itinerant magnets. The

crystal lattice can drive a number of ordering tendencies, like the ferromagnetism

and the spiral magnetism considered here. We have shown how a complex magnetic

phase diagram may come about by combining several simple ideas. These ideas

present a compelling explanation for the anomalous phase of Sr3Ru2O7. The ideas

may be extended further, continuing to explore the rich phenomenology of strongly

correlated systems.



APPENDIX



A. PARTITION FUNCTIONS AND THE IMAGINARY-TIME

COHERENT-STATE PATH INTEGRAL

A.1 Coherent State Path Integrals and the Partition Function

The formulation of many-body finite-temperature physics is based on an observation

that the Boltzmann weight looks like a time-evolution operator in imaginary time:

ei
Ĥτ
h̄ → ei

Ĥ(−it)
h̄ → eβĤt. (A.1)

So finite temperature many body physics can be neatly reformulated by using evo-

lution in imaginary time. In this formulation the partition function Z becomes a

path integral in imaginary time.

In order to take account of the many-body nature of the problem we will use

a coherent state path integral. Coherent states are eigenstates of the annihilation

operator and formulation of the coherent state path integral proceeds as for the

normal path integral. As we are dealing with fermions we must remember that

our eigenvalues are now anti-commuting Grassman numbers and use the following

relations:

1 =
∫

dηdη̄e−η̄η|η〉〈η| (A.2)

〈η|ν〉 = eη̄ν (A.3)

We proceed by writing the partition function,

Z = Tre−β(Ĥ−µN̂) =
∑

n

〈n| e−β(Ĥ−µN̂) |n〉 , (A.4)

and inserting a resolution of the identity,

Z =
∫

dψ̄dψe−ψ̄.ψ
∑

n

〈n|ψ〉〈ψ|e−β(Ĥ−µN̂) |n〉
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=
∫

dψ̄dψe−ψ̄.ψ
∑

n

(−1)〈ψ|e−β(Ĥ−µN̂) |n〉 〈n|ψ〉

=
∫

dψ̄dψe−ψ̄.ψ(−1)〈ψ|e−β(Ĥ−µN̂)|ψ〉. (A.5)

We now divide the imaginary time interval 0 → β into N slices and insert resolutions

of the identity between the slices

Z =
∫

(−1)
∏

n

dψ̄dψe−ψ̄.ψ〈ψ| . . .)n+1|ψn〉〈ψn|
(

e−β(Ĥ−µN̂)
)

n
|ψ

n−1
〉〈ψ

n−1
|(. . . (A.6)

We now allow the operators to act on the states ψ̄, ψ turning them into numbers and

allowing us to remove the exponential and combine the states using the previous

relationship.

Z =
∫

(−1)
∏

n

dψ̄dψe
− β

N [H(ψ̄n,ψn−1)−µN(ψ̄n,ψn−1)]−ψ̄
n
.ψ

n
+ψ̄

n
.ψ

n−1

=
∫

(−1)
∏

n

dψ̄dψe
− β

N [H(ψ̄n,ψn−1)−µN(ψ̄n,ψn−1)]+ψ̄
n
.

(

ψ
n
−ψ̄

n−1

)

. (A.7)

In the continuum limit this becomes

Z =
∫

Dψ̄Dψe−
∫ βh̄

0
dτ[ψ̄∂τψ+Ĥ(ψ̄,ψ)−µN̂(ψ̄,ψ)]

=
∫

D(ψ̄, ψ)e−S[ψ̄,ψ]. (A.8)

Inserting our Hamiltonian we have a partition function for the Stoner model

S
[

ψ̄, ψ
]

=
∫ β

0
dτ
∫

ddr
∫

ddr′
[

ψ̄ [σ0 (∂τ + ǫ(k)) − σzh]ψ − g
(

ψ̄σ̄ψ
)2
]

. (A.9)

We will now remove the quartic term by using a Hubbard-Stratonovich transforma-

tion.

A.2 Hubbard-Stratonovich Transformation

A Hubbard-Stratonovich transformation [101, 102] is little more than Gaussian in-

tegration and completing the square. Given a quartic term y4 we may introduce a

new variable x which we integrate out. By completing the square and shifting this

new x variable we can reduce the quartic term to a squared term. Consider the



A. Partition functions and the imaginary-time coherent-state path integral 136

following:

A = Aeαy
4

=
∫

D(x)e−αx
2

eαy
4

, (A.10)

we may shift the x variable such that

A =
∫

D(x)e−α(x−y2)2eαy
4

=
∫

D(x)e−αx
2−αy4+2αxy2+αy4 =

∫

D(x)e−αx
2+2αxy2 ,

(A.11)

we therefore have a prescription for decoupling a fourth order term.

In our case g
(

ψ̄σψ
)2 −→ −ψ̄ g

2
σ.mψ − g

4
m2 giving for our action

S
[

m, ψ̄, ψ
]

=
∫ β

0
dτ
∫

ddr
[

ψ̄
[

σ0 (∂τ + ǫ(k)) − σzh− g

2
σ.m

]

ψ − g

4
m2

]

. (A.12)

Here we have exchanged the quartic interaction for an additional field. Although

exact, there is some choice in the Hubbard-Stratonovich transformation to be used.

We choose the decoupling most suited to our problem.

A.3 Gaussian Integral

We may now perform the Gaussian integral over the Grassman variable ψ, ψ̄ to get

Z =
∫

D(m)e−Sm det
[

σ0(∂τ + ǫ(k)) − σzh− g

2
σ.m

]

, (A.13)

where we have defined

Sm = −g
4

∫ β

0
dτ
∫

ddrm2. (A.14)

Using the identity ln det Â = tr ln Â, we get

Z =
∫

D(m)e−Sm+tr ln [σ0(∂τ+ǫ(k))−σzh−
g

2
σ.m]. (A.15)

We may transform into the frequency representation where imaginary time deriva-

tives become frequencies ωn, known as Matsubara frequencies. We note that this

can be written

Z =
∫

D(m)e−Sm+tr ln [G−1
0 +V ] =

∫

D(m)etr ln [G−1], (A.16)

where G0 is the free-electron Green’s function.
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A.4 Landau Expansion

Since F = −kT lnZ, Z = e−βF , the exponent of our expression is the Free Energy,

to find the Landau coefficients we can therefore expand it in powers of m.

We now expand the tr ln [G−1] in powers of the order parameter m (Note V ∝ m).

G−1 =





−(iωn − ǫk) +mz m⊥

−m⊥ −(iωn − ǫk) −mz



 . (A.17)

and

G−1
0 =





−(iωn − ǫk) 0

0 −(iωn − ǫk)



 , V =





mz m⊥

−m⊥ −mz



 . (A.18)

then

tr ln
[

G−1
]

= tr ln
[

−G−1
0

]

+ tr ln [1 +G0V ] . (A.19)

Taylor expanding the ln we get:

tr ln
[

G−1
]

= tr ln
[

−G−1
0

]

−
∞
∑

n=1

1

n
tr [(G0V )n] . (A.20)

A.5 Matsubara Frequencies

We require to evaluate sums of the form
∑

ωn
(iωn − ǫk)

−n, these are known as Mat-

subara frequency sums and are evaluated as follows.

We note that the fermi function nF(z) has simple poles at z = iωn, so for a

general function f(z) we may write

kBT
∑

ωn

f(iωn) = −
∫

C

dz

2πi
f(z)nF(z), (A.21)

by contour integration. We may distort this contour to include the poles of f(z) so

that in the case of f(z) = (z − ǫk)
−1 we have

kBT
∑

ωn

1

(iωn − ǫk)
= −

∫

C′

dz

2πi

1

(z − ǫk)
nF(z) = nF(ǫk). (A.22)

In the case of multiple poles we must integrate by parts, recalling that for a closed



A. Partition functions and the imaginary-time coherent-state path integral 138

contour the boundary terms are zero.

kBT
∑

ωn

1

(iωn − ǫk)p
= −

∫

C′

dz

2πi

1

(z − ǫk)p
nF(z)

= −
∫

C′

dz

2πi

−1

p− 1

1

(z − ǫk)p−1
∂znF(z)

= −
∫

C′

dz

2πi

(−1)p−1

(p− 1)!

1

(z − ǫk)
∂p−1
z nF(z)

=
(−1)p

(p− 1)!
np−1

F (ǫk). (A.23)

We will also use the relation

I(u↑, u↓) =
1

β

∑

k

1

iωn − ǫk + u↑

1

iωn − ǫk − u↓

=
∑

k

1

u↑ + u↓
[nF(ǫk + u↓) − nF(ǫk − u↓)]

= − 1

u↑ + u↓

∑

kσ

σnF(ǫk − σuσ) (A.24)

And finally the remaining terms may be calculated by manipulations following

the form

−
(

∂u↑ + ∂u↓
)

I(u↑, u↓) =
1

β

∑

k

1

(iωn − ǫk + u↑)
2

1

(iωn − ǫk − u↓)

− 1

β

∑

k

1

(iωn − ǫk + u↑)

1

(iωn − ǫk − u↓)
2

= − 2

(u↑ + u↓)
2

∑

kσ

σnF(ǫk − σuσ)

− 1

(u↑ + u↓)

∑

kσ

n
(1)
F (ǫk − σuσ) (A.25)



B. TERMS IN THE EXPANSION OF THE STONER ACTION

Here we consider in more detail the procedure and results of the expansion of the

Stoner action 4.19.

B.1 Action and critical endpoint conditions

The action is

S[m] =
g

4

∫

dx m2 − tr ln
[

Ĝ−1
0

]

+
∞
∑

n=1

(−1)n

n

(

g

2

)n

tr
[

Ĝ σ̄ · m
]n
,

(B.1)

where
∫

dx ≡ ∫ β
0 dτ

∫

ddr and m =
(

m̄+ M̄
)

ê‖ + m⊥. Here

G =





G↑ 0

0 G↓



 (B.2)

Ĝ−1
σ = −∂τ − ξkσ − µ, where ξkσ = ǫk − σgM̄/2. σ̄ is the vector of Pauli matrices

σ̄ = (σx, σy, σz)

σx =





0 1

1 0



 , σy =





0 −i
i 0



 , σz =





1 0

0 −1



 . (B.3)

On the line of critical endpoints we have the following conditions

M̄ − 2

g
h =

1

Ld
∑

kσ

σ nF,

2

g
= − 1

Ld
∑

kσ

n
(1)
F ,

0 =
1

Ld
∑

kσ

σn
(2)
F (B.4)

where nF = nF

(

ǫk − gM̄σ/2
)

is the Fermi-Dirac distribution and n
(n)
F = ∂nǫ nF

(

ǫk − gM̄σ/2
)

.
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B.2 Landau expansion

We now examine the terms in the expansion of the action up to sixth order, dis-

carding the constant contribution, tr ln
[

Ĝ−1
0

]

.

1st order:

S(1) = −
(

g

2

)

1

Ld
∑

k,ωn

(

Ĝ↑ − Ĝ↓

)

m̄

=
β

Ld
∑

kσ

σnFm̄. (B.5)

Applying B.4 gives

S(1) = −β
∫

ddr hm̄ (B.6)

on the line of critical endpoints.

2nd order:

S(2) =
g

4

∫

dx m2

+
1

2

(

g

2

)2 1

Ld
∑

q

∑

k,ωn

[(

(Ĝ↑m̄q)
2 + (Ĝ↓m̄−q)

2
)

+ 2Ĝ↑m⊥,q · Ĝ↓m⊥,−q

]

.

= β
∫

ddr
(

rm̄2 + r⊥m2
⊥

)

, (B.7)

where

r =
g

4
+

1

2

(

g

2

)2 1

βLd
∑

k,ωn

(

Ĝ2
↑ + Ĝ2

↓

)

=
g

4
+

1

2

(

g

2

)2 1

Ld
∑

k,σ

σn
(1)
F ,

r⊥ =
g

4
m2

⊥ +
(

g

2

)2 1

βLd
∑

k,ωn

Ĝ↑Ĝ↓

=
g

4
m2

⊥ +
(

g

2

)2 1

Ld
1

gM̄

∑

k,σ

σnF (B.8)
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Applying B.4 we get on the line of critical endpoints

r =
g

4
− 1

2

(

g

2

)2 2

g
= 0,

r⊥ =
g

4
+
(

g

2

)2 1

gM̄

(

M̄ − 2

g
h

)

=
h

M̄
. (B.9)

3rd order:

S(3) = −1

3

(

g

2

)3 1

Ld
∑

k,ωn

[

(Ĝ3
↑ − Ĝ3

↓)m̄
3 + 3

(

Ĝ2
↑Ĝ↓ − Ĝ↑Ĝ

2
↓

)

m̄m2
⊥

]

= β
∫

ddr
[

sm̄3 + s1m̄m2
⊥

]

, (B.10)

where

s = −1

3

(

g

2

)3 1

βLd
∑

k

(Ĝ3
↑ − Ĝ3

↓)

=
1

6

(

g

2

)3
∑

kσ

σn
(2)
F

s1 = −
(

g

2

)3 1

βLd
∑

k

(

Ĝ2
↑Ĝ↓ − Ĝ↑Ĝ

2
↓

)

=
(

g

2

)3
∑

kσ







2
(

gM̄
)2σnF +

1

gM̄
n

(1)
F







(B.11)

Applying B.4 on the line of critical endpoints gives

s = 0

s1 =
(

g

2

)3







2
(

gM̄
)2

(

M̄ − 2

g
h

)

− 1

gM̄

2

g





 = − h

2M̄2
(B.12)

4th order:

S(4) =
1

4

(

g

2

)4

tr
[

(Ĝ↑m)4 + (Ĝ↓m)4
]

+
1

2

(

g

2

)4

tr
[

Ĝ2
↑Ĝ

2
↓m

4
⊥

]
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+
(

g

2

)4

tr
[(

Ĝ3
↑Ĝ↓ + Ĝ2

↑Ĝ
2
↓ + Ĝ↑Ĝ

3
↓

)

m̄2m2
⊥

]

= β
∫

ddr
[

um̄4 + u⊥m4
⊥ + u1m̄

2m2
⊥

]

, (B.13)

u =
1

4

(

g

2

)4 1

βLd
∑

k,ωn

[

Ĝ4
↑ + Ĝ4

↓

]

=
1

4!

(

g

2

)4 1

Ld
∑

k

n
(3)
F

u⊥ =
1

2

(

g

2

)4 1

βLd
∑

k

Ĝ2
↑Ĝ

2
↓

=
1

2

(

g

2

)4 1

Ld
∑

k,σ







2
(

gM̄
)3σnF +

1
(

gM̄
)2n

(1)
F







u1 =
(

g

2

)4 1

βLd
∑

k

[(

Ĝ3
↑Ĝ↓ − Ĝ2

↑Ĝ
2
↓ + Ĝ↑Ĝ

3
↓

)]

=
(

g

2

)4 1

Ld
∑

k,σ







−4
(

gM̄
)3σnF − 2

(

gM̄
)2n

(1)
F +

1

gM̄
σn

(2)
F





 (B.14)

u⊥ =
1

2

(

g

2

)4







2
(

gM̄
)3

(

M̄ − 2

g
h

)

+
1

(

gM̄
)2

−2

g







= −1

8

h

M̄3

u1 = −
(

g

2

)4







−4
(

gM̄
)3

(

M̄ − 2

g
h

)

− 2
(

gM̄
)2

−2

g
+

1

gM̄
0







= − h

2M̄3
(B.15)

5th order:

S(5) = −1

5

(

g

2

)5

tr
[

(Ĝ↑m)5 − (Ĝ↓m)5
]

−
(

g

2

)5

tr
[(

Ĝ4
↑Ĝ↓ − Ĝ3

↑Ĝ
2
↓ + Ĝ2

↑Ĝ
3
↓ − Ĝ↑Ĝ

4
↓

)

m̄3m2
⊥

]
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−
(

g

2

)5

tr
[(

Ĝ3
↑Ĝ

2
↓ − Ĝ2

↑Ĝ
3
↓

)

m̄m4
⊥

]

= β
∫

ddr
[

tm̄5 + t1m̄
3m2

⊥ + t2m̄m4
⊥

]

, (B.16)

t =
1

5!

(

g

2

)5 1

Ld
∑

k,σ

σn
(4)
F

t1 = −
(

g

2

)5 1

Ld
∑

k,σ





− 8
(

gM̄
)4σnF − 4

(

gM̄
)3n

(1)
F − 3

2

1
(

gM̄
)2σn

(2)
F − 1

6

1
(

gM̄
)n

(3)
F







t2 =
(

g

2

)5 1

Ld
∑

k,σ







6
(

gM̄
)4σnF +

3
(

gM̄
)3n

(1)
F +

1
(

gM̄
)2σn

(2)
F





 (B.17)

t1 =
(

g

2

)5







−8
(

gM̄
)4

(

M̄ − 2

g
h

)

− 4
(

gM̄
)3

−2

g





+
2

M̄
u

= −1

2

h

M̄4
+

2

M̄
u

t2 =
(

g

2

)5







6
(

gM̄
)4

(

M̄ − 2

g
h

)

+
3

(

gM̄
)3

−2

g







=
3

8

h

M̄
(B.18)

6th order:

S(6) =
1

6

(

g

2

)6

tr
[

(Ĝ↑m)6 + (Ĝ↓m)6
]

+
1

6

(

g

2

)6

tr
[

2Ĝ3
↑Ĝ

3
↓m

6
⊥

]

+
(

g

2

)6

tr
[(

Ĝ5
↑Ĝ↓ − Ĝ4

↑Ĝ
2
↓ + Ĝ3

↑Ĝ
3
↓ − Ĝ2

↑Ĝ
4
↓ + Ĝ↑Ĝ

5
↓

)

m̄4m2
⊥

]

+
1

6

(

g

2

)6

tr
[(

9Ĝ4
↑Ĝ

2
↓ + 12Ĝ3

↑Ĝ
3
↓ + 9Ĝ2

↑Ĝ
4
↓

)

m̄2m4
⊥

]

= β
∫

ddr
[

vm̄6 + v⊥m6
⊥ + v1m

4m2
⊥ + v2m

2m4
⊥

]

(B.19)

v =
1

6!

(

g

2

)6
∑

k,σ

nF

v⊥ =
1

6

(

g

2

)6 1

Ld
∑

k,σ







−12
(

gM̄
)5σnF − 6

(

gM̄
)4n

(1)
F − 1

(

gM̄
)3σn

(2)
F






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v1 =
(

g

2

)6 1

Ld
∑

k,σ





− 16
(

gM̄
)5σnF − 8

(

gM̄
)4n

(1)
F − 3

2

1
(

gM̄
)3σn

(2)
F − 1

3

1
(

gM̄
)2n

(3)
F

− 1

24

1
(

gM̄
)σn

(4)
F





v2 =
1

6

(

g

2

)6 1

Ld
∑

k,σ






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(

gM̄
)5σnF +
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(

gM̄
)4n

(1)
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(
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)3σn

(2)
F

+
9

6

1
(
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)2n

(3)
F





 (B.20)

v⊥ =
1

6

(
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2
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




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(

gM̄
)5
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h
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(
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
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
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h
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)6


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(

gM̄
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(
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)


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(
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t
(
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)

=
h
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− 2u
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v2 =
1

6

(

g

2

)6







144
(

gM̄
)5

(

M̄ − 2

g
h

)

+
72

(

gM̄
)4

(

−2

g

)





+
9

6

u

M̄2

= −3

4

h

M̄5
+

3

2

u

M̄2
(B.21)

B.3 Gradient expansion

We now discuss how the wavevector-dependent terms of the action are obtained. A

gradient expansion of the Green’s function is given by

G(k + q) = G(k) + [G(k)]2 ∂ki
ǫkqi

+
[

[G(k)]3 ∂ki
ǫk∂kj

ǫk + [G(k)]2 ∂2
ki,kj

ǫk
]

qiqj +O(q3). (B.22)

The longitudinal susceptibility is then

Πσ(q) =
1

βLd
∑

k

Gσ(k)Gσ(k + q)



B. Terms in the expansion of the Stoner action 145

=
1

βLd
∑

k

Gσ(k)Gσ(k)

+
1

βLd
∑

k

Gσ(k)
[

[G(k)]3 ∂ki
ǫk∂kj

ǫk + [G(k)]2 ∂2
ki,kj

ǫk
]

qiqj

+O(q3) (B.23)

where we have discarded the term first order in q as it makes no contribution to the

action.

1

βLd
∑

k

Gσ(k)
[

[G(k)]3 ∂ki
ǫk∂kj

ǫk + [G(k)]2 ∂2
ki,kj

ǫk
]

=
2

βLd
∑

k

Gσ(k) [G(k)]3 ∂ki
ǫk∂kj

ǫk

= − 1

Ld
1

6

∑

k

n
(3)
F (ǫk − σ

gM̄

2
)∂ki

ǫk∂kj
ǫk (B.24)

Therefore

K = − 1

Ld
1

12

(

U

2

)2
∑

k,σ

n
(3)
F (ǫk − σ

gM̄

2
) (∂kǫk)

2 . (B.25)

Likewise the transverse component

Π⊥(q) =
1

βLd
∑

k

G↑(k)G↓(k + q)

=
1

βLd
∑

k

G↑(k)G↓(k)

+
1

βLd
∑

k

G↑(k)
[

[G↓(k)]3 ∂ki
ǫk∂kj

ǫk + [G↓(k)]2 ∂2
ki,kj

ǫk
]

qiqj

+O(q3) (B.26)

where we have discarded the term first order in q as it makes no contribution to the

action.

1

βLd
∑

k

G↑(k)
[

[G↓(k)]3 ∂ki
ǫk∂kj

ǫk + [G↓(k)]2 ∂2
ki,kj

ǫk
]

= − 1

Ld
1

(

gM̄
)3

∑

k,σ

[

σnF(ǫk +
gM̄

2
) +

gM̄

2
n

(1)
F (ǫk − σ

gM̄

2
)

]

∂ki
ǫk∂kj

ǫk (B.27)
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K⊥ = − 1

4gM̄3

1

Ld
∑

k,σ

[

σnF(ǫk +
gM̄

2
) +

gM̄

2
n

(1)
F (ǫk − σ

gM̄

2
)

]

∂ki
ǫk∂kj

ǫk.

(B.28)

Had we retained higher order terms in the gradient expansion of the Green function

then we could continue to calculate terms in the action proportional to q4m2, or even

higher orders. Should we substitute the expansion into the higher order terms in

m then we could obtain terms such as q2m4. Such terms rapidly become extremely

complex.

B.4 Calculating the phase diagram

The phase diagram is found by numerically solving the equation r = 0 for the second

order transitions. The sheet of solutions is shown in blue in figure B.1. The line of

metamagnetic critical endpoints is found by the intersection of this with the sheet

defined by s = 0. This is shown in green in figure B.1. The tricritical point would

be determined by u = 0.

The dome of second order transitions is not actually realised. Figure B.1 is

calculated in terms of M̄ , this is the shifted magnetisation M̄ = m̄+ 2
g
h. The first-

order transition therefore compresses all the values of M̄ under the blue dome into

one first-order transition line.

We note that the shape of the second order transition sheet is the same as the

nematic region discussed in chapter 7. This reflects the similarity of the mean-field

theories when magnetisation is replaced by the nematic order.
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Fig. B.1: Calculation of phase diagram: a) Blue: the sheet defined by r = 0. Green:
the sheet defined by s = 0. b) Cuts through the sheet of continuous transitions. Top:
a cut at M̄ = 0.04 showing a cross-section of the ‘leg’ of the sheet. Bottom: a cut at
T = 0.005.



C. THERMODYNAMIC DERIVATIONS

C.1 Free energy and self-consistency

The Free Energy for the Stoner model in the Canonical Potential is:

F =
∑

σ

[

−T
∫

dǫ ρ (ǫ) ln
(

1 + e−
ǫ−µσ

T

)

+ µσnσ

]

+ Un↑n↓ − hm, (C.1)

where σ =↑, ↓ and µσ is the effective chemical potential for the spin species, kB has

been set to 1.

Minimizing this Free Energy with respect to magnetization allows us to find the

magnetisation as a function of field, or the field as a function of magnetization:

h = µ↑ − µ↓ − 2Um. (C.2)

We use the definitions

n = n↑ + n↓,

m =
n↑ − n↓

2
,

nσ =
∫

dǫ ρ (ǫ) fσ, (C.3)

where fσ = f(ǫ − µσ) =
(

1 + eβ(ǫ−µσ)
)−1

. Working with fixed n, h and T , leads to

the following relations:

∂Tn = ∂Tn↑ + ∂Tn↓ = 0

⇒ ∂Tn↑ = −∂Tn↓,

∂Tm =
1

2
(∂Tn↑ − ∂Tn↓)

= ∂Tn↑ = −∂Tn↓,

∂Th = ∂Tµ↑ − ∂Tµ↓ − 2U∂Tm
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= ∂Tµ↑ − ∂Tµ↓ − 2U∂Tn↑ = 0

⇒ ∂Tµ↑ = ∂Tµ↓ + 2U∂Tn↑. (C.4)

∂2
Tn = ∂2

Tn↑ + ∂2
Tn↓ = 0

⇒ ∂2
Tn↑ = −∂2

Tn↓,

∂2
Tm =

1

2

(

∂2
Tn↑ − ∂2

Tn↓

)

= ∂2
Tn↑ = −∂2

Tn↓,

∂2
Th = ∂2

Tµ↑ − ∂2
Tµ↓ − 2U∂2

Tm

= ∂2
Tµ↑ − ∂2

Tµ↓ − 2U∂2
Tn↑ = 0

⇒ ∂2
Tµ↑ = ∂2

Tµ↓ + 2U∂2
Tn↑. (C.5)

C.2 Useful derivatives

We now evaluate some derivatives which will prove to be useful.

∂Tfσ = ∂T
1

1 + e
(ǫ−µσ)

T

=
e

(ǫ−µσ)
T

(1 + e
(ǫ−µσ)

T )2

[

ǫ− µσ
T 2

+
∂Tµσ
T

]

,

∂T ln
(

1 + e−
ǫ−µσ

T

)

=
1

1 + e
ǫ−µσ

T

[

ǫ− µσ
T 2

+
∂Tµσ
T

]

= fσ

[

ǫ− µσ
T 2

+
∂Tµσ
T

]

,

∂2
T ln

(

1 + e−
ǫ−µσ

T

)

=
1

1 + e
ǫ−µσ

T

[

−2
ǫ− µσ
T 3

− 2
∂Tµσ
T 2

+
∂2
Tµσ
T

]

+
e

ǫ−µσ
T

(

1 + e
ǫ−µσ

T

)2

[

ǫ− µσ
T 2

+
∂Tµσ
T

]2

= fσ

[

−2
ǫ− µσ
T 3

− 2
∂Tµσ
T 2

+
∂2
Tµσ
T

]

+ ∂Tfσ

[

ǫ− µσ
T 2

+
∂Tµσ
T

]

.

(C.6)
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C.3 Entropy

Entropy is the first derivative of the Free energy with respect to temperature, S =

−∂TF .

∂TF =
∑

σ

[

−
∫

dǫ ρ (ǫ) ln
(

1 + e−
ǫ−µσ

T

)

− T
∫

dǫ ρ (ǫ) ∂T ln
(

1 + e−
ǫ−µσ

T

)

+ ∂Tµσnσ + µσ∂Tnσ]

+U (∂Tn↑n↓ + n↑∂Tn↓) − h∂Tm (C.7)

Using Eq.(C.4) and Eq.(C.2)

µ↑∂Tn↑ + µ↓∂Tn↓ + U (∂Tn↑n↓ + n↑∂Tn↓) − h∂Tm = (n↑ − n↓ + 2Um− h) ∂Tn↑

= 0, (C.8)

and so

∂TF =
∑

σ

[

−
∫

dǫ ρ (ǫ) ln
(

1 + e−
ǫ−µσ

T

)

− T
∫

dǫ ρ (ǫ) ∂T ln
(

1 + e−
ǫ−µσ

T

)

+∂Tµσnσ] ,

S =
∑

σ

[∫

dǫ ρ (ǫ) ln
(

1 + e−
ǫ−µσ

T

)

+ T
∫

dǫ ρ (ǫ) ∂T ln
(

1 + e−
ǫ−µσ

T

)

−∂Tµσnσ] .
(C.9)

C.4 Specific Heat

C = − ∂2F
∂T 2

∣

∣

∣

n,h
= −T ∂U

∂T

∣

∣

∣

n,h

U =
∑

σ

[∫

dǫ (ǫ− σh)ρ (ǫ) fσ

]

+ Un↑n↓

=
∑

σ

[∫

dǫ ǫρ (ǫ) fσ

]

+ Un↑n↓ − hm. (C.10)

C = ∂TU =
∑

σ

[∫

dǫ ǫρ (ǫ) ∂Tfσ

]

+ U (∂Tn↑n↓ + n↑∂Tn↓) − h∂Tm



C. Thermodynamic derivations 151

=
∑

σ

[∫

dǫ ǫρ (ǫ) ∂Tfσ

]

− (2Um+ h) ∂Tn↑. (C.11)

C.5 Derivatives of the chemical potential

Before we can evaluate the Specific Heat or Entropy we need to calculate expressions

for the temperature derivatives of the chemical potentials. The expression for the

number of electrons of each spin species is

nσ =
∫

dǫ ρ (ǫ) fσ, (C.12)

and so

∂Tnσ =
∫

dǫ ρ (ǫ) ∂Tfσ

=
∫

dǫ ρ (ǫ)
e

(ǫ−µσ)
T

(1 + e
(ǫ−µσ)

T )2

[

ǫ− µσ
T 2

+
∂Tµσ
T

]

. (C.13)

From Eq.(C.4) we have

∂Tn↑ = −∂Tn↓
∫

dǫ ρ (ǫ) Ξ↑

[

ǫ− µ↑

T 2
+
∂Tµ↑

T

]

= −
∫

dǫ ρ (ǫ) Ξ↓

[

ǫ− µ↓

T 2
+
∂Tµ↓

T

]

,

∂Tµ↓ = −T
∫

dǫ ρ (ǫ)
(

Ξ↓
ǫ−µ↓
T 2 + Ξ↑

ǫ−µ↑
T 2

)

∫

dǫ ρ (ǫ) Ξ↓
− ∂Tµ↑

∫

dǫ ρ (ǫ) Ξ↑
∫

dǫ ρ (ǫ) Ξ↓
, (C.14)

where Ξσ = e
(ǫ−µσ)

T
(

1+e
(ǫ−µσ)

T

)2 . Also

∂Tµ↑ = ∂Tµ↓ − 2U∂Tn↓

= ∂Tµ↓ − 2U
∫

dǫ ρ (ǫ) Ξ↓

[

ǫ− µ↓

T 2
+
∂Tµ↓

T

]

= ∂Tµ↓

(

1 − 2U

T

∫

dǫ ρ (ǫ) Ξ↓

)

− 2U
∫

dǫ ρ (ǫ) Ξ↓
ǫ− µ↓

T 2
, (C.15)
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resulting in

∂Tµ↓ =
−T

∫

dǫ ρ(ǫ)

(

Ξ↓
ǫ−µ↓

T2 +Ξ↑
ǫ−µ↑

T2

)

∫

dǫ ρ(ǫ)Ξ↑
+ 2U

∫

dǫ ρ (ǫ) Ξ↓
ǫ−µ↓
T 2

1 − 2U
T

∫

dǫ ρ (ǫ) Ξ↓ +
∫

dǫ ρ(ǫ)Ξ↓
∫

dǫ ρ(ǫ)Ξ↑

. (C.16)



BIBLIOGRAPHY

[1] L. Landau, Sov. Phys. JETP 3, 920 (1956).

[2] L. Landau, Sov. Phys. JETP 5, 101 (1957).

[3] L. Landau, Sov. Phys. JETP 8, 70 (1958).

[4] The Kondo Problem to Heavy Fermions, edited by A. C. Hewson (Cambridge

University Press, The Pitt Building, Trumpington Street, Cambridge CB2

1RP, 1993).

[5] P. Gegenwart, Q. Si, and F. Steglich, Nature Physics 4, 186 (2008).

[6] D. van der Marel, H. J. A. Molegraaf, J. Zaanen, Z. Nussinov, F. Carbone,

A. Damascelli, H. Eisaki, M. Greven, P. H. Kes, and M. Li, Nature 425, 271

(2003).

[7] Lucretius Carus, De Rerum Natura, 1st Century BC.

[8] Image from http://en.wikipedia.org/wiki/File:Magnetite Lodestone.jpg, li-

cenced under the Creative Commons Attribution ShareAlike 2.0 License.

[9] Image from http://en.wikipedia.org/wiki/File:Model Si Nan of Han Dynasty.jpg,

licenced under the GNU Free Documentation License.

[10] P. Wasilewski and G. Kletetscha, Geophys. Res. Lett. 26, 2275 (1999).

[11] W. Gilbert, De Magnete, 1600, trans., Gilbert Club, London, 1900, rev. ed.,

Basic Books, New York, 1958.

[12] N. Bohr, Ph.D. thesis, 1911.

[13] H. J. van Leeuwen, Journal de Physique et le Radium 2, 361 (1921).

[14] A. K. Compton, Jour. Frankl. Inst. 145 (1921).



Bibliography 154

[15] S. A. Goudsmit and G. E. Uhlenbeck, Naturwissenschaften 13, 953 (1925).

[16] P. A. M. Dirac, Proc. R. Soc. A117, 610 (1928).

[17] J. Kondo, Progress of Theoretical Physics 32, (1964).
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