Spirocyclic, macrocyclic and ladder complexes of coinage metals and mercury with dichalcogeno $\mathrm{P}_{2} \mathbf{N}_{2}-$ supported anions

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012,
Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

Andreas Nordheider, ${ }^{a, b}$ Katharina Hüll, ${ }^{a}$ Kasun S. Athukorala Arachchige, ${ }^{a}$ Alexandra M. Z. Slawin ${ }^{a}$, J. Derek Woollins, ${ }^{a}$ Ramalingam Thirumoorthi ${ }^{b}$ and Tristram Chivers ${ }^{b} *$

In memory of Professor Kenneth Wade

Metathetical reactions of alkali-metal derivatives of the dianion [t $\mathrm{BuN}(\mathrm{Se}) \mathrm{P}(\mu-$ $\left.\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}(\mathrm{Se}) \mathrm{N}^{t} \mathrm{Bu}^{2-}\left(\mathbf{2} \mathbf{S e}^{2-}\right)$ with $\mathrm{Ag}(\mathrm{NHC}) \mathrm{Cl}, \mathrm{Ag}\left[\mathrm{BF}_{4}\right], \mathrm{AuCl}(\mathrm{THT})$ and HgCl_{2}, as well as the reaction of $\mathbf{2 S}{ }^{2-}$ with $\mathrm{AuCl}(\mathrm{THT})$ were investigated. The observed products all incorporate the monoprotonated ligands $\mathbf{2 S e H}$ - or $\mathbf{2} \mathrm{SH}^{-}$in a variety structural arrangements around the metal centres, including tetrameric and trimeric macrocycles [Ag and $\mathrm{Au}(\mathrm{E}=\mathrm{Se})$], a ladder $(\mathrm{Au}, \mathrm{E}=$ $\mathrm{S})$ and a spirocycle (Hg); the ladder contains both the dianion $\mathbf{2 S}{ }^{2-}$ and the monoanion $\mathbf{2 S H}$ as ligands linking three Au_{2} units. All complexes have been characterised in the solid state by single crystal X-ray analyses and in solution by multinuclear (${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and $\left.{ }^{77} \mathrm{Se}\right)$ NMR spectra.
www.rsc.org/

Introduction

Four-membered rings of the type $[\mathrm{XP}(\mu-\mathrm{NR})]_{2}$ (known as cyclodiphosph(III)azanes) occupy a prominent position in the long and venerable history of inorganic ring systems. ${ }^{1,2}$ The incorporation of $\mathrm{P}_{2} \mathrm{~N}_{2}$ rings as building blocks in macrocycles has been a significant feature of recent investigations of these heterocycles. For example, Wright et al. have generated cyclic oligomers with bridging amido groups that are able to encapsulate halide ions suggesting applications in host-guest chemistry. ${ }^{3}$ The same group has also characterised $\mathrm{P}_{2} \mathrm{~N}_{2}$ macrocycles with bridging chalcogen (E) atoms, including a tetramer $(\mathrm{E}=\mathrm{O})^{4}$ and a hexamer $(\mathrm{E}=\mathrm{Se}) ;{ }^{5}$ the P atoms in the latter are in different formal oxidation states (III and V). More recently, Balakrishna et al. have reported intriguing $\mathrm{Cu}_{4} \mathrm{X}_{4}(\mathrm{X}=$ $\mathrm{Br}, \mathrm{I})$ clusters with cyclo $-\mathrm{P}_{2} \mathrm{~N}_{2}$ linkers that resemble a sodalite framework. ${ }^{6}$ Balakrishna has also described functionalised $\mathrm{P}_{2} \mathrm{~N}_{2}$ macrocycles with gold-bridges that incorporate a $\mathrm{ClO}_{4}{ }^{-}$ion. ${ }^{7}$

The $\mathrm{P}(\mathrm{III}) / \mathrm{P}(\mathrm{III})$ systems with terminal alkylamido groups are readily oxidised by selenium or sulfur to give the corresponding $\mathrm{P}(\mathrm{V}) / \mathrm{P}(\mathrm{V})$ heterocycles, e.g. $\left[{ }^{t} \mathrm{BuNH}(\mathrm{E}) \mathrm{P}(\mu-\right.$ $\left.\left.\mathrm{N}^{t} \mathrm{Bu}\right)\right]_{2}(\mathbf{1 S e}$ and $\mathbf{1 S}) .{ }^{8}$ In 2000 we showed that deprotonation of the neutral precursors $1 \mathbf{S e}$ and 1 S produces the corresponding
dianions $\mathbf{2} \mathbf{S e}^{2-}$ and $\mathbf{2 S} \mathbf{2}^{2-}$ as alkali-metal reagents, e.g. the disodium derivatives $\mathbf{3 S e}$ and 3S. ${ }^{9}$

The coordination chemistry of the multidentate dianions $\mathbf{2 S} \mathbf{e}^{2-}$ and $\mathbf{2} \mathbf{S}^{2-}$ is potentially versatile owing to the presence of two hard (N) and two soft (S) donor sites. ${ }^{8}$ In preliminary studies we showed that $\mathrm{Pt}(\mathrm{II})$ engages in S, S^{\prime}-coordination to $\mathbf{2 S}{ }^{2-}$ in the complex 4. ${ }^{\text {9b }}$ Those investigations also revealed that metathesis of the monoprotonated monoanion $2 \mathrm{SH}^{-}$with $\mathrm{Cu}(\mathrm{I})$, $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ reagents produces the N, S-bonded complexes 5-8 with a spirocyclic metal centre in the case group of 10 metals (7 and 8). ${ }^{9 b}$

$\mathrm{M}=\mathrm{Ni}$ (tetrahedral) $(\mathbf{7})$
$\mathrm{M}=\mathrm{Pd}($ square planar)
$\mathrm{M}=\mathrm{Pd}$ (square planar) (8)

In more recent work we demonstrated that two-electron oxidation of the dianions $\mathbf{2 S} \mathbf{e}^{2-}$ and $\mathbf{2 S}{ }^{2-}$ with I_{2} generates trimeric macrocycles with a planar $\mathrm{P}_{6} \mathrm{E}_{6}$ framework 9Se and 9S, respectively. ${ }^{10}$ Although the cavity of the ring in $\mathbf{9 S e}$ and $\mathbf{9 S}$ is too small to accommodate metal ions, we were inspired by the reports of Krossing et al. on the stabilisation of selenium homocycles, cyclo- $\mathrm{Se}_{6},-\mathrm{Se}_{12}$ and $-\mathrm{Se}_{19}$, in $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Ag}(\mathrm{I})$ complexes ${ }^{11}$ to investigate the coordination behaviour of 9 Se in the presence of coinage metals, including possible ring transformations. However, the treatment of 9Se with silver(I) triflate $\mathrm{Ag}\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]$ produced the ionic compound $\left[\mathrm{Ag}(\mathbf{1 S e})_{2}\right]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right](\mathbf{1 0})$ in which the cation is a complex of Ag^{+}with two neutral ligands $1 \mathrm{Se} .{ }^{12}$ In the light of this result we decided to take a different approach to the synthesis of macrocycles incorporating $\mathrm{P}_{2} \mathrm{~N}_{2} \mathrm{E}_{2}$ building blocks and coinage metals, namely metathetical reactions of 3Se and 3S with various $\mathrm{M}(\mathrm{I})$ reagents $(\mathrm{M}=\mathrm{Ag}, \mathrm{Au})$. In this contribution the geometrical influence of the coinage metal is evaluated through reactions of 3 Se with $\mathrm{Ag}(\mathrm{NHC}) \mathrm{Cl}, \mathrm{Ag}\left[\mathrm{BF}_{4}\right]$ and $\mathrm{AuCl}(\mathrm{THT})$. In view of the additional information available from NMR spectra of selenium-containing compounds (${ }^{77} \mathrm{Se}, \mathrm{I}=1 / 2,7.6 \%$), the emphasis of these studies has been on reactions of 3Se. However, the consequence of changing the chalcogen was also assessed via an examination of the reaction of $\mathbf{3 S}$ with $\mathrm{AuCl}(\mathrm{THT})$. Finally, the outcome of the reaction of 3Se with HgCl_{2}, as an example of a divalent metal that favours linear geometry, was also explored.

$\mathrm{E}=\mathrm{Se}(9 \mathrm{Se}), \mathrm{S}(9 \mathrm{~S})$
10

Results and discussion

Synthesis, X-ray structures and NMR spectra of silver complexes of $2 \mathbf{S e H}^{-}$

The reaction of 3Se with the N-heterocyclic carbene (NHC) complex $\mathrm{Ag}(\mathrm{NHC}) \mathrm{Cl}$ produces the metallocycle $\left[{ }^{t} \mathrm{BuNP}\left(\mu^{-}\right.\right.$ $\left.\left.\left.\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{PN}(\mathrm{H})^{t} \mathrm{Bu}\right)(\mu-\mathrm{Se} \mathrm{Ag}(\mathrm{NHC}) \mathrm{Se})\right]$ (11) in 12% yield (Scheme 1), accompanied by the diprotonated derivative 1Se as a by-product. ${ }^{9,13}$

3 Se
11
Scheme 1 Synthesis of the $\operatorname{Ag}(\mathrm{I})$ complex 11.
A crystal structure of $\mathbf{1 1}$ was obtained after recrystallisation from n-hexane at $-40^{\circ} \mathrm{C}$. As illustrated in Fig. 1, the complex is comprised of the monoanionic ligand $2 \mathbf{S e H}^{-}$, which is $S e, S e^{\prime}-$ coordinated to the $[(\mathrm{NHC}) \mathrm{Ag}]^{+}$cation.

Fig. 1 Molecular structure of $\mathbf{1 1}$ shown from perpendicular views. Hydrogen atoms bonded to C atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: Ag1-Se1 2.6067(17), Ag1-Se2 2.6356(17), Ag1-C21 2.129(11), Se1-P1 2.166(3), Se2-P2 2.131(3), P1-N1 1.565(9), P1-N3 1.699(7), P1-N4 1.687(8), P2-N2 1.596(8), P2-N3 1.690(8), P2-N4 1.681(8), Se1-Ag1-Se2 116.81(4), Se1-Ag1-C21 122.6(4), Se2-Ag1-C21 120.6(4), Ag1-Se1-P1 95.28(8), Ag1-Se2-P2 94.27(9).

The $\mathrm{P}-\mathrm{Se}-\mathrm{Ag}-\mathrm{Se}-\mathrm{P}$ ring in $\mathbf{1 1}$ is almost planar with the $\mathrm{P}_{2} \mathrm{~N}_{2}$ ring perpendicular to this plane. The $\mathrm{Ag}-\mathrm{Se}$ bond lengths (range 2.607(2)-2.635(2) \AA) are comparable to the shorter bonds in the related complex $\left[\mathrm{Ag}\left(\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NHP}(\mathrm{Se}) \mathrm{Ph}_{2}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ (2.634(2)-2.713(3) $\AA) .{ }^{14}$ The $\mathrm{P}-\mathrm{Se}$ bond lengths of 2.131(3) \AA and 2.166(3) \AA (cf. 2.078(1)-2.070(1) \AA for the diprotonated ligand 1Se ${ }^{15}$ indicate significant double bond character. As expected, the $\mathrm{P}-\mathrm{N}_{\text {exo }}$ bond distance of 1.601 (8) \AA involving the protonated nitrogen atom N 2 is significantly longer than the value of 1.562(9) \AA found for P1-N1 [cf. 1.501(7)-1.507(8) \AA for the exocyclic $\mathrm{P}=\mathrm{N}$ bonds in 9 Se). The geometry around Ag 1 is slightly distorted from trigonal planar $\left(\Sigma<\mathrm{Ag} 1=360^{\circ}\right.$, range 116.8-122.8 ${ }^{\circ}$).

The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{1 1}$ at $25^{\circ} \mathrm{C}$ exhibits two wellseparated resonances at $13.8 \mathrm{ppm}\left({ }^{1} J(\mathrm{P}, \mathrm{Se}) \approx 714 \mathrm{~Hz}\right)$ and
$-34.1 \mathrm{ppm} \quad\left({ }^{1} J(\mathrm{P}, \mathrm{Se}) \approx 650 \mathrm{~Hz}\right)$, suggesting that the crystallographic inequivalence of P1 and P2 observed in the solid state is maintained in solution These signals are tentatively assigned to P 1 and P 2 , respectively, from a consideration of the relative ${ }^{1} J(\mathrm{P}, \mathrm{Se})$ and $d(\mathrm{P}-\mathrm{Se})$ values (the shorter bond should give the larger coupling constant). However, these resonances are broad, presumably reflecting the existence of rapid exchange equilibria. ${ }^{16}$ The ${ }^{77} \mathrm{Se}$ NMR spectrum of $\mathbf{1 1}$ exhibits two doublets at $65.5 \mathrm{ppm}\left({ }^{1} J(\mathrm{Se}, \mathrm{P}) \approx\right.$ $647 \mathrm{~Hz})$ and $-62.8 \mathrm{ppm}\left({ }^{1} J(\mathrm{Se}, \mathrm{P}) \approx 722 \mathrm{~Hz}\right)$, respectively.

By contrast to the outcome of the reaction of SSe with $\mathrm{Ag}(\mathrm{NHC}) \mathrm{Cl}$, the treatment of the silver (I) salt $\mathrm{Ag}\left[\mathrm{BF}_{4}\right]$ with SSe in toluene at $-78{ }^{\circ} \mathrm{C}$ gave rise to an eight-membered ring with alternating Ag and Se atoms (12) in which the monoanionic ligands $2 \mathrm{SeH}^{-}$balance the charge of Ag^{+}ions to give a neutral complex (Scheme 2).

Scheme 2 Synthesis of the eight-membered $\mathrm{Ag}_{4} \mathrm{Se}_{4}$ ring 12.

Crystals of the tetramer $\left\{\mathrm{Ag}\left[{ }^{t} \mathrm{Bu}(\mathrm{H}) \mathrm{N}(\mathrm{Se}) \mathrm{P}(\mu-\right.\right.$ $\left.\left.\left.\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}(\mathrm{Se}) \mathrm{N}^{t} \mathrm{Bu}\right]\right\}_{4}(\mathbf{1 2})$ were isolated after recrystallisation of the compound in n-hexane at $-40^{\circ} \mathrm{C}$. The molecular structure is illustrated in Fig. 2 together with selected geometrical parameters.

Fig. 2 Molecular structure of 12. Hydrogen atoms omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$) (data shown are limited to those involving Ag 1 as representative of the four
crystallographically inequivalent Ag atoms): $\mathrm{Ag} 1-\mathrm{Se} 1$ 2.6197(17), Ag1-Se2 2.6450(16), Ag1-Se8 2.5692(16), Se1-P1 2.154(4), SeP2 2.229(3), P1-N1 1.629(11), P2-N2 1.515(12),; Se1-Ag1-Se2 116.76(5), Se 1-Ag1-Se8 134.39(6), Se2-Ag1-Se8 108.59(5).

In the polycyclic complex $\mathbf{1 2}$ the ligands $2 \mathrm{SeH}^{-}$fulfil a bridging role via the three-coordinate selenium atoms, which form the central $\mathrm{Ag}_{4} \mathrm{Se}_{4}$ ring; the selenium atoms outside this ring are two-coordinate. In this respect the structure is comparable to those of the oligomeric silver (I) complexes $\left\{\mathrm{Ag}\left[\mathrm{N}\left({ }^{i} \mathrm{Pr}_{2} \mathrm{PTe}\right)_{2}\right]\right\}_{6}$ and $\left\{\mathrm{Ag}\left[\mathrm{N}\left(\mathrm{Ph}_{2} \mathrm{PTe}\right)_{2}\right]\right\}_{4}$ which incorporate $\mathrm{Ag}_{6} \mathrm{Te}_{6}$ and $\mathrm{Ag}_{4} \mathrm{Te}_{4}$ rings, respectively, and bridging, acyclic monoanionic ligands $\left[\left(\mathrm{TePR}_{2}\right)_{2} \mathrm{~N}\right]^{-} .{ }^{17}$ The silver centres in all three compounds are each bound to two-coordinate chalcogen centres from one ligand and one bridging, three-coordinate chalcogen from an adjacent ligand. As illustrated in Fig. 3, the eight-membered ring in $\mathbf{1 2}$ exhibits a C-shaped zigzag arrangement.

Fig. 3 Two views of the $\mathrm{Ag}_{4} \mathrm{Se}_{4}$ ring in 12 (C and H atoms omitted for clarity).

The $\mathrm{Ag}-\mathrm{Se}$ bond lengths in $\mathbf{1 2}$ are in the range 2.561(2)2.647(2) \AA, but there is no correlation between these values and the coordination number (2 or 3) of the Se atoms. The values do, however, indicate stronger coordination of the monoanionic ligands $2 \mathrm{SeH}^{-}$to Ag^{+}compared to that in $11(d(\mathrm{Ag}-\mathrm{Se})=$ $2.714(2)-2.741(2) \AA$). In contrast, the expected correlation of bond length with coordination number does pertain for the values of $d(\mathrm{P}-\mathrm{Se})$. For the three-coordinate Se atoms (Se2,4,6,8) the $\mathrm{P}-\mathrm{Se}$ distances range from $2.222(3)$ to 2.229(3) \AA, (cf. 2.253(2)-2.262(2) \AA for the trimetric macrocyle 9Se), whereas the two-coordinate centres $\mathrm{Se} 1,3,5,7$ show significantly shorter $\mathrm{P}-\mathrm{Se}$ distances of 2.146(4)-2.154(4) \AA, closer to formal double-bond values (cf. $d(\mathrm{P}=\mathrm{Se})=2.070(1)-$ $2.078(1) \AA$ for $\mathbf{1 S e}) .{ }^{15}$ Compared to the mononomeric structure of 11, the incorporation of Ag in an eight-membered ring effects a substantial distortion from trigonal geometry in $\mathbf{1 2}$ $\left(\Sigma<\mathrm{Ag} 1=359.8^{\circ}\right.$, range $\left.108.6-134.4^{\circ}\right)$.

The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{1 2}$ in toluene exhibits two wellseparated broad singlets at 13.9 and -55.4 ppm for the two phosphorus environments of the $2 \mathbf{S e H}^{-}$ligands. However, the ${ }^{1} J(\mathrm{Se}, \mathrm{P})$ values could not be discerned owing to the broadness of the resonances, which may be the result of a rapid (proton) exchange process. ${ }^{16}$ Unfortunately, low temperature could not be acquired owing to the poor solubility of $\mathbf{1 1}$ and $\mathbf{1 2}$.

Synthesis, X-ray structures and NMR spectra of a trimetric gold(I) macrocycle

We next turned our attention to the reactions of the dianionic reagents 3 Se with $\mathrm{AuCl}(\mathrm{THT})$ in order to evaluate the influence
of the coinage metal on the structural arrangement in the resulting complexes. Interestingly, the treatment of 3Se with one equivalent of $\mathrm{AuCl}(\mathrm{THT})$ produced a bright red compound identified as the trimeric metallocycle $\left[\left({ }^{t} \operatorname{BuNP}(\mu\right.\right.$ $\left.\left.\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}^{t} \mathrm{BuN}\right)(\mu \text {-SeAuSe) }]_{3}(\mathbf{1 3})$ (Scheme 3).

Scheme 3 Synthesis of the trimeric $\mathrm{Au}(\mathrm{I})$ macrocycle 13.

The crystal structure of $\mathbf{1 3}$ was elucidated after recrystallisation of the compound in n-hexane at $-40^{\circ} \mathrm{C}$, which yielded pink prism-shaped crystals (Fig. 4). As was the case for 11 and 12, the monoprotonated ligands $2 \mathrm{SeH}^{-}$in 13 balance the charge of the Au^{+}centres giving an overall neutral macrocycle.

Fig. 4 Molecular structure of the trimeric $\mathrm{Au}(\mathrm{I})$ complex 13. Hydrogen atoms bonded to C atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: Au1-Se1 2.396(2), Au1-Se2 2.4189(17), Se1-P1 2.221(3), Se2-P2 2.173(5), P1-N1 1.519(15), P2-N2 1.616(9); Se1-Au1-Se2 178.30(5), Au1-Se1-P1 103.81(12), Au1-Se2-P2 105.77(9).

The gold-containing macrocycle $\mathbf{1 3}$ is closely related to the previously reported trimer 9Se by the formal insertion of Au atoms into the three $\mathrm{Se}-\mathrm{Se}$ bonds of the latter, except that none of the exocyclic nitrogen centres are protonated in the "goldfree" ring. The different structure-directing influence of the coinage metals in $\mathbf{1 2}$ and $\mathbf{1 3}$ is noteworthy. In contrast to the trigonal coordination exhibited by the Ag^{+}ions in $\mathbf{1 2}$, the $\mathrm{Se}-$ $\mathrm{Au}-\mathrm{Se}$ units in $\mathbf{1 3}$ are essentially linear $(\angle(\mathrm{Se}-\mathrm{Au}-\mathrm{Se})=$ $\left.178.30(5)^{\circ}\right)$ with almost equal $\mathrm{Au}-\mathrm{Se}$ bond lengths of 2.396(2) and $2.419(2) \AA$. The $\mathrm{Au}_{3} \mathrm{Se}_{6} \mathrm{P}_{6}$ framework in $\mathbf{1 3}$ is planar with
the $\mathrm{P}_{2} \mathrm{~N}_{2}$ rings perpendicular to this plane, as observed for 9Se. ${ }^{10}$ The markedly different $\mathrm{P}-\mathrm{N}$ bond lengths for the exocyclic nitrogen atoms in 13, $(d(\mathrm{P}-\mathrm{N})=1.616(9) \AA)$ and $1.519(15) \AA$), clearly reflect the protonation of one of these centres.

Examples of trinuclear gold(I) metallatriangles are widespread and they invariably exhibit intramolecular $\mathrm{Au} \cdots \mathrm{Au}$ interactions of ca. 3.0-3.2 $\AA .{ }^{18} \mathrm{An}$ intriguing recent representative, the trimeric dithiophosphate complex $\left[\mathrm{Au}_{2} \mathrm{~S}_{2} \mathrm{P}\right.$ -$\left.1,4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OEt}\right)_{2}\left(\right.$ trans $\left.\left.-1,2-\mathrm{O}, \mathrm{O}^{\prime}-\mathrm{C}_{6} \mathrm{H}_{10}\right)\right]_{3}$ embodies distances of 3.28-3.31 \AA within the Au_{3} triangle and luminesces in the solid state at room temperature. ${ }^{19}$ By contrast, the $\mathrm{Au} \cdots \mathrm{Au}$ distances in $\mathbf{1 3}$ are $5.752 \AA$, cf. sum of van der Waals radii for $\mathrm{Au}=$ $3.80 \AA \AA^{20}$

Although complexes with linear $\mathrm{Se}-\mathrm{Au}-\mathrm{Se}$ scaffolds are not unusual, ${ }^{21}$ five-atom $\mathrm{P}-\mathrm{Se}-\mathrm{Au}-\mathrm{Se}-\mathrm{P}$ arrangements are scarce, e.g. the $\mathrm{Au}(\mathrm{I})$ complex $\left[\left(\mathrm{Ph}_{3} \mathrm{PSe}\right)_{2} \mathrm{Au}\right]\left[\mathrm{SbF}_{6}\right]$ which exhibits a $\mathrm{Se}-\mathrm{Au}-\mathrm{Se}$ angle of $172.6(1)^{\circ} .{ }^{22}$ The $\mathrm{Au}-\mathrm{Se}$ bond lengths of 2.396(2)-2.419(2) \AA in $\mathbf{1 3}$ are comparable to the corresponding values of $2.390(1)-2.395(1) \AA$) observed for the latter complex. ${ }^{22}$ The $\mathrm{P}-$ Se distances of $2.173(5) \AA$ and $2.221(3) \AA$ are similar to those reported for 9Se (2.253(2)-2.262(2) Å) ${ }^{10}$ and $\left[\left(\mathrm{Ph}_{3} \mathrm{PSe}\right)_{2} \mathrm{Au}\right]\left[\mathrm{SbF}_{6}\right](2.173(1)-2.174(1) \AA) .{ }^{22}$

The ${ }^{31} \mathrm{P}$ NMR spectrum of 13 in toluene exhibits two doublets at $4.9 \mathrm{ppm}\left({ }^{2} J(\mathrm{P}, \mathrm{P})=16.4 \mathrm{~Hz} ;{ }^{1} J(\mathrm{P}, \mathrm{Se}) \approx 657 \mathrm{~Hz}\right)$ and $-57.6 \mathrm{ppm}\left({ }^{2} J(\mathrm{P}, \mathrm{P})=16.4 \mathrm{~Hz} ;{ }^{1} J(\mathrm{P}, \mathrm{Se}) \approx 627 \mathrm{~Hz}\right)$. By contrast, only one resonance was observed in the ${ }^{31} \mathrm{P}$ NMR spectrum of the "gold-free" trimer 9Se in solution (however, two signals were evident in the solid-state spectrum, consistent with the crystallographic inequivalence of the P atoms of the $\mathrm{P}_{2} \mathrm{~N}_{2}$ rings in 9Se). ${ }^{10}$ This observation indicates that, in contrast to $9 \mathbf{S e}$, the gold complex 13 does not undergo fluxional behaviour leading to equivalence of the different phosphorus environments on the NMR time scale in solution. Consistently, the ${ }^{77} \mathrm{Se}$ NMR spectrum of $\mathbf{1 3}$ in toluene reveals two well-separated resonances at $132.4 \mathrm{ppm}\left({ }^{1} J(\mathrm{P}, \mathrm{Se}) \approx 621 \mathrm{~Hz}\right)$ and 209.0 ppm $\left({ }^{1} J(\mathrm{P}, \mathrm{Se}) \approx 644 \mathrm{~Hz}\right)$.

The space-filling model of $\mathbf{1 3}$ (Fig. 5) shows only a small cavity in the centre of the macromolecule; the transannular Se $1 \cdots$ Se1' distance is $3.545 \AA$ in 13, cf. $3.315 \AA$ in 9Se. ${ }^{10}$ For comparison, the folded conformation of the tetrameric silver(I) metallocycle 12 (Fig. 3) exhibits a range of transannular Se \cdots Se distances (3.686, 4.184 and $4.778 \AA$), the shortest of which provides inadequate room for the entrapment of small anions (Fig. 5).

Fig. 5 Space-filling models of 12 and $\mathbf{1 3} ; \mathrm{H}$ and C atoms are omitted.

Synthesis, X-ray structure and NMR spectra of a ladder with three Au_{2} units

In order to determine the effect of changing the chalcogen on the nature of the gold complex formed, the reaction of the sulfur reagent $\mathbf{3 S}$ with $\mathrm{AuCl}(\mathrm{THT})$ was investigated. A colourless product, which was shown to have a unique twisted ladder-like structure ($\mathbf{1 4}$, Scheme 4) was isolated in 49% yield; the diprotonated precursor $\mathbf{1 S}$ was identified as a minor byproduct in the ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture. ${ }^{23}$

Scheme 4 Synthesis of the ladder complex 14 incorporating three Au_{2} units.

Colourless crystals suitable for a single crystal X-ray analysis were isolated after recrystallisation of 14 from n hexane at $-40^{\circ} \mathrm{C}$. The molecular structure is illustrated in Fig. 6a, which also gives selected geometrical parameters.
a)

b)

Fig. 6 (a) Molecular structure of the gold complex 14. Hydrogen atoms omitted for clarity, but the N6 atoms are protonated (b) two views of the ladder arrangement of Au_{2} units in 14. Selected bond lengths (\AA) and bond angles $\left(^{\circ}\right.$): Au1Au1' 2.8737(7), Au2-Au3 3.002, Au1-S1 2.291(2), Au1-S2 2.289(2), Au2-N1 2.047(6), Au2-N5 2.073(6), Au3-S3 2.288(2), Au3-N2 2.082(6), S1-P1 2.036(3), S2-P2 2.040(3),

S3-P3 2.036(3), S4-P4 1.929(3), P3-N5 1.596(7), P4-N6 $1.642(7) ;<\mathrm{S} 1-\mathrm{Au} 1-\mathrm{S} 2=167.4(1), \mathrm{N} 1-\mathrm{Au} 2-\mathrm{N} 5=171.1(2)$, S3-Au3-N2 $=172.0(2)$.

Complex 14 adopts a centrosymmetric structure comprised of three dinuclear Au_{2} units (total formal charge +6), two dianionic bridging ligands $\mathbf{2} \mathbf{S}^{\mathbf{2 -}}$, and two monoanionic ligands $\mathbf{2} \mathbf{S H}^{-}$in terminal positions in a ladder-like arrangement to give a neutral complex. As depicted in Fig. 6 b (left-hand side), the central Au_{2} unit is highly twisted (by ca. 90°) with respect to the other two Au_{2} units. The $\mathrm{Au} 2 \cdots \mathrm{Au} 3$ distance of $3.002 \AA$ in 14 is in the middle of the range for $\mathrm{Au}(\mathrm{I}) \cdots \mathrm{Au}(\mathrm{I})$ aurophilic interactions, which are typically $2.50-3.50 \AA,{ }^{20}$ e.g. $3.043(1) \AA$ in $\left[\mathrm{AuS}_{2} \mathrm{P}\left(4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)(\mathrm{O} \text {-menthyl })\right]_{2}{ }^{24}$ and $3.018(1) \AA$) in $\left[\mathrm{Au}_{3}\left(2,6-\mathrm{Me}_{2} \text {-form }\right)_{2}(\mathrm{THT}) \mathrm{Cl}\right] \quad$ (form $=$ formamidinate). ${ }^{25 \mathrm{a}}$ However, the central Au1 $\cdots \mathrm{Au} 1^{\prime}$ distance of $2.874(1) \AA$ is among the shortest observed for such systems ${ }^{20,24, \text { Error! Bookmark }}$ not defined. (cf. $2.89 \AA$ in cubic close-packed gold metal). ${ }^{20}$ The tighter Au1 $\cdots \mathrm{Au} 1^{\prime}$ interaction is reflected in a larger deviation from planarity for the inner gold atoms compared to the other two-coordinate gold centres: $\left\langle\mathrm{S} 1-\mathrm{Au} 1-\mathrm{S} 2=167.4(1)^{\circ}\right.$ vs. $\mathrm{N} 1-$ $\mathrm{Au} 2-\mathrm{N} 5=171.1(2)^{\circ}$ and $\mathrm{S} 3-\mathrm{Au} 3-\mathrm{N} 2=172.0(2)^{\circ}$.

The coordination modes of the ligands in 14 involve S, S^{\prime}, $S^{\prime \prime}, S^{\prime \prime \prime}$-bonding of two dianions $\mathbf{2 S} \mathbf{2}^{2-}$ to the central Au_{2} unit, while the terminal Au_{2} units are N, N^{\prime}-chelated to a bridging dianion $\mathbf{2} \mathbf{S}^{2-}$ and N, S-ligated to the terminal monoanionic ligands $\mathbf{2 S H}{ }^{-}$. The $\mathrm{Au}-\mathrm{S}$ bond lengths of 2.297(6)-2.303(6) \AA in the $S, S^{\prime}, S^{\prime \prime}, S^{\prime \prime \prime}$-chelated complex $\left[\mathrm{AuS}_{2} \mathrm{P}\left(4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)(\mathrm{O}-\right.$ menthyl) $]_{2}^{24}$ are similar to those in 14 (2.288(2)-2.291(2) $\left.\AA\right)$. The $\mathrm{Au}-\mathrm{N}$ bond lengths of 2.047(6)-2.082(6) \AA are also comparable to those found in $\left[\mathrm{Au}_{3}\left(2,6-\mathrm{Me}_{2} \text {-form }\right)_{2}(\mathrm{THT}) \mathrm{Cl}\right]$ $(2.044(16) \AA) .{ }^{25 \mathrm{a}}$ As expected, the terminal $\mathrm{P}=\mathrm{S}$ bond distance of $1.939(3) \AA$ in $\mathbf{1 4}$ is significantly shorter (by ca. $0.11 \AA$) than the mean value for the three other $\mathrm{P}-\mathrm{S}$ bonds, which are all engaged in a bridging function.

The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{1 4}$ exhibits three distinct resonances: (a) a singlet at 19.2 ppm attributed to the four phosphorus atoms in the centre of the complex on the basis of relative intensity and (b) mutually coupled doublets at 38.1 and 32.9 ppm with a ${ }^{1} J(\mathrm{P}, \mathrm{P})$ value of 23.4 Hz . The former resonance is tentatively assigned to the P 4 atoms by comparison with the value of 38.7 ppm reported for the $\mathrm{P}=\mathrm{S}$ groups in 1S. ${ }^{23}$

Synthesis, X-ray structure and NMR spectra of a spirocyclic mercury complex

In view of the structure-directing effect of the coinage metal centre in the formation of the products of the reactions of 3Se with $\operatorname{Ag}(\mathrm{I})$ and $\mathrm{Au}(\mathrm{I})$ reagents, we decided to investigate the metathesis of this reagent with a halide of a divalent metal that favours linear geometry. The reaction of HgCl_{2} with 3 Se in toluene at $-78^{\circ} \mathrm{C}$ yielded a variety of products of which the major component (based on the ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture), was isolated in 9% yield and identified as
the homoleptic $\mathrm{Hg}(\mathrm{II})$ complex $\left[\left\{{ }^{t} \mathrm{BuN}(\mathrm{Se}) \mathrm{P}(\mu-\right.\right.$ $\left.\left.\left.\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}(\mathrm{Se}) \mathrm{N}(\mathrm{H})^{t} \mathrm{Bu}\right)\right\}_{2}(\mu$-Hg)] (15) (Scheme 5).

Scheme 5 Synthesis of the spirocyclic mercury complex 15.

The crystal structure of $\mathbf{1 5}$ was elucidated after recrystallisation from n-hexane at $-40^{\circ} \mathrm{C}$. The molecular structure is depicted in Fig. 7 together with selected geometrical parameters.

Fig. 7 Two views of the X-ray crystal structure of 15. Hydrogen atoms bonded to C atoms are omitted for clarity. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right): \mathrm{Hg} 1-\mathrm{Se} 12.5969(11), \mathrm{Hg} 1-\mathrm{Se} 2$ 2.7347(11), Hg1-Se3 2.6021(11), Hg1-Se4 2.7373(11), Se1-P1 2.217(3), Se2-P2 2.148(3), Se3-P3 2.212(3), Se4-P4 2.148(3), P1N1 1.505(9), P2-N2 1.619(8), P3-N5 1.516(9), P4-N6 1.630(8); $\mathrm{Se} 1-\mathrm{Hg} 1-\mathrm{Se} 2$ 113.70(3), $\mathrm{Se} 1-\mathrm{Hg} 1-\mathrm{Se} 3$ 127.23(4), $\mathrm{Se} 1-\mathrm{Hg} 1-\mathrm{Se} 4$ 99.99(3), Se2-Hg1-Se3 96.54(3), Se2-Hg1-Se4 104.43(3), Se3-Hg1-Se4 113.50(3), Hg1-Se1-P1 98.61(7), Hg1-Se2-P2 91.73(7), Hg1-Se3-P3 98.76(8), Hg1-Se4-P4 92.18(7).

Complex 15 is comprised of a spirocyclic Hg^{2+} centre which is $\mathrm{Se}, S e^{\prime}$-chelated by two monoanionic $2 \mathrm{SeH}^{-}$ligands to give a neutral complex. The distorted tetrahedral geometry around the Hg atom is reflected in the wide range of $\mathrm{Se}-\mathrm{Hg}-\mathrm{Se}$ bond angles (96.54(3)-127.23(4) ${ }^{\circ}$). Furthermore, the homoleptic complex 15 exhibits two distinct $\mathrm{Hg}-\mathrm{Se}$ bond distances with mean values of 2.599(1) and 2.736(1) \AA, which are associated with the longer and shorter mean $\mathrm{P}-$ Se distances of 2.215(3) and 2.148(3) A, respectively. As observed for the previously discussed complexes of the monoanion $2 \mathrm{SeH}^{-}$, there is a difference of $c a .0 .11 \AA$ in the exocyclic $\mathrm{P}-\mathrm{N}$ bond lengths that can be attributed to the protonation of the N1 and N4 centres. Examples of complexes that exhibit a distorted tetrahedral $S e, S e^{\prime}, S e^{\prime \prime}, S e^{\prime \prime \prime}$-coordination around a $\mathrm{Hg}(\mathrm{II})$ centre include $\mathrm{Hg}\left[\mathrm{HC}\left(\mathrm{PPh}_{2} \mathrm{Se}\right)_{2}\right]_{2}{ }^{26}$ and $\mathrm{Hg}\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{PSe}\right)_{2} \mathrm{~N}\right]_{2} .{ }^{27}$ The bond lengths in the former complex $[d(\mathrm{Hg}-\mathrm{Se})=2.615(1)$ -
$2.679(1) \AA, d(\mathrm{P}-\mathrm{Se})=2.161(3)-2.197(3) \AA)]$ are comparable to those found for $15 .{ }^{26}$

The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{1 5}$ in toluene at room temperature exhibits two mutually coupled doublets at 4.6 ppm (P2) and $-59.2 \mathrm{ppm}(\mathrm{P} 1)$ with a ${ }^{2} J(\mathrm{P}, \mathrm{P})$ value of 16.3 Hz indicating that there is no proton exchange between nitrogen sites.

Conclusions

The attempted metathetical reactions of the dianion $2 \mathbf{S e}^{2-}$ with coinage metal and mercury reagents generated novel macrocyclic and spirocyclic complexes of the corresponding monoprotonated anion $2 \mathrm{SeH}^{-} .{ }^{13}$ Although the isolated yields of 12, 13 and $\mathbf{1 5}$ are low, now that these novel complexes have been structurally identified, the use of the known reagent $\left[\mathrm{Li}(\mathrm{THF})_{2}\right][2 \mathrm{SeH}]^{30}$ in metathesis with the appropriate metal halide can be expected to enhance the yields substantially.

An interesting structure-directing effect was noted in the outcome of the reactions of $\mathbf{3 S e}$ with $\mathrm{Ag}(\mathrm{I})$ and $\mathrm{Au}(1)$ reagents. Whereas the trigonal geometry favoured by $\mathrm{Ag}(\mathrm{I})$ generates a tetrameric macrocycle with partially bridging ligands (threecoordinate selenium centres), the linear arrangement preferred for $\mathrm{Au}(\mathrm{I})$ imposes a trimeric arrangement with only twocoordinate selenium atoms. The latter complex is related to the previously reported trimeric macrocycle 9Se through the formal insertion of Au atoms into the $\mathrm{Se}-\mathrm{Se}$ bonds except that none of the exocyclic nitrogen atoms are protonated in the "gold-free" ring.

Complex $\mathbf{1 4}$ is the first example containing both $\mathbf{2 S}{ }^{2-}$ and $\mathbf{2} \mathrm{SH}^{-}$ligands and the arrangement of three Au_{2} units is unique. Theoretical studies to elucidate the nature of the $\mathrm{Au} \cdots \mathrm{Au}$ interaction are warranted. ${ }^{28}$ In addition, future experimental investigations should address the photophysical properties of $\mathbf{1 4}$ in view of the potential applications of d^{10} gold(I) complexes emanating from their unique photochemical properties. ${ }^{29}$

Experimental Section

Reagents and general procedures

All synthetic manipulations were performed under an atmosphere of dry argon using standard Schlenk-line techniques and/or a Saffron glove box running with argon unless otherwise stated. All glass apparatus was stored in a drying oven ($120^{\circ} \mathrm{C}$) and flame-dried in vacuo ($10^{-3} \mathrm{mbar}$) before use. Dry solvents were collected from an MBraun solvent system under a nitrogen atmosphere and stored in Schlenk flasks over $4 \AA$ molecular sieves or were dried and purified using common procedures. ${ }^{31}$ All chemicals were purchased from Sigma Aldrich and used without further purification.

Instrumentation

NMR spectra were recorded using a JEOL DELTA EX 270 or a BRUKER Avance II 400 spectrometer, a BRUKER Avance 500 or a BRUKER Avance III 500 spectrometer. TMS was used as
an internal standard for ${ }^{1} \mathrm{H}$ NMR. $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ was used as an external standard for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and $\mathrm{Me}_{2} \mathrm{Se}$ for ${ }^{77} \operatorname{Se}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. Chemical shifts (δ) are given in parts per million (ppm) relative to the solvent peaks. ${ }^{32}$ Coupling constants (J) are given in Hertz (Hz). Mass spectrometry was performed on a Finnigan MAT 95 XP, an Agilent 5975C Inert XL GC/MSD or a Thermofisher LTQ Orbitrap XL at the EPSRC UK National MS Facility in Swansea. Elemental analysis was performed at the Elemental Analysis Service of the London Metropolitan University (by Mr. S. Boyer).

Preparation of 11

To a suspension of $\mathbf{3 S e}(200 \mathrm{mg}, 0.24 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ a cold $\left(-78^{\circ} \mathrm{C}\right)$ toluene solution (15 mL) of $\mathrm{AgCl}(\mathrm{NHC})$ ($108 \mathrm{mg}, 0.24 \mathrm{mmol}$) was added dropwise over 15 min by cannula. The reaction mixture was stirred at that temperature for 2 h and then warmed to room temperature, where it was stirred for an additional 20 h . The solvent was removed in vacuo and the precipitate was dissolved in n-hexane (40 mL), filtered, concentrated and the solution was stored at $-40{ }^{\circ} \mathrm{C}$ overnight. The crystals that formed were removed by filtration and dried in vacuo. The filtrate was concentrated and stored at $-40^{\circ} \mathrm{C}$ for another batch of crystals (yield: 12%). ${ }^{31} \mathrm{P}$ NMR ($109.37 \mathrm{MHz},\left[\mathrm{D}_{8}\right]$ toluene $): \delta[\mathrm{ppm}]=13.8$ (br, $\left.{ }^{1} J(\mathrm{P}, \mathrm{Se}) \approx 714 \mathrm{~Hz}\right),-34.1\left(\mathrm{br},{ }^{1} J(\mathrm{P}, \mathrm{Se}) \approx 650 \mathrm{~Hz}\right)$. The centres of the broad satellites were taken for the calculation of approximate coupling constants. ${ }^{77} \mathrm{Se}$ NMR $(51.52 \mathrm{MHz}$, $\left[\mathrm{D}_{8}\right]$ toluene $): \delta[\mathrm{ppm}]=65.5\left(\mathrm{~d},{ }^{1} J(\mathrm{Se}, \mathrm{P})=647 \mathrm{~Hz}\right),-62.8(\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{Se}, \mathrm{P})=722 \mathrm{~Hz}\right)$. HR-MS $\left(\mathrm{ESI}^{+}, m / z\right), 919.1887$ [$\left.M^{+}\right]$ (calculated for $\mathrm{C}_{37} \mathrm{H}_{62} \mathrm{P}_{2} \mathrm{Se}_{2} \mathrm{~N}_{6} \mathrm{Ag}$: 919.1899 [$\left.M^{+}\right]$). Elemental analysis (\%) calcd for $\mathrm{C}_{37} \mathrm{H}_{63} \mathrm{P}_{2} \mathrm{~N}_{6} \mathrm{AgSe}_{2}$: C 48.32 H 6.90 N 9.14; found: C 48.22 H 7.02 N 9.07.

Preparation of 12

Procedures were similar to those described for $\mathbf{1 1}$ using 3Se ($500 \mathrm{mg}, 0.60 \mathrm{mmol}$) and $\mathrm{Ag}\left[\mathrm{BF}_{4}\right](117 \mathrm{mg}, 0.60 \mathrm{mmol})$. Yield $=22 \%$. ${ }^{1} \mathrm{H}$ NMR ($400.30 \mathrm{MHz},\left[\mathrm{D}_{8}\right]$ toluene $): \delta[\mathrm{ppm}]=3.30$ $(4 \mathrm{H}, \mathrm{N} H), 1.89\left(\mathrm{br}, 72 \mathrm{H}, 2 \mathrm{x}^{t} \mathrm{Bu}\right), 1.78\left(\mathrm{br}, 36 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.23(\mathrm{br}$, $\left.36 \mathrm{H},{ }^{t} \mathrm{Bu}\right) .{ }^{31} \mathrm{P}$ NMR ($109.37 \mathrm{MHz},\left[\mathrm{D}_{8}\right]$ toluene $): \delta[\mathrm{ppm}]=$ 13.9 (br) and -55.4 (br). ${ }^{1} J(\mathrm{P}, \mathrm{Se})$ could not be determined due to broad signals. HR-MS $\left(\mathrm{ESI}^{+}, m / z\right), 614.9943\left[M^{+}+\mathrm{H}\right]$ (calculated for a monomer unit $\mathrm{C}_{16} \mathrm{H}_{38} \mathrm{P}_{2} \mathrm{~N}_{4} \mathrm{Se}_{2} \mathrm{Ag}$: 614.9953 $\left.\left[M^{+}+\mathrm{H}\right]\right)$. Elemental analysis (\%) calcd for $\mathrm{C}_{64} \mathrm{H}_{148} \mathrm{P}_{8} \mathrm{~N}_{16} \mathrm{Ag}_{4} \mathrm{Se}_{8}$: C 31.34 H 6.08 N 9.14 found: C 31.26 H 6.00 N 9.03 .

Preparation of 13

Procedures were similar to those described for 11 using 3Se ($500 \mathrm{mg}, 0.60 \mathrm{mmol}$) and $\mathrm{AuCl}(\mathrm{THT})(192 \mathrm{mg}, 0.60 \mathrm{mmol})$. Total yield of red crystals $=14 \%$). The ${ }^{31} \mathrm{P}$ NMR spectrum of the filtrate revealed additional amounts of $\mathbf{1 3}$ that could not be separated from the by-product 1Se. ${ }^{1} \mathrm{H}$ NMR (400.30 MHz ,
$\left[\mathrm{D}_{8}\right]$ toluene $): \delta[\mathrm{ppm}]=3.85(3 \mathrm{NH}), 1.93\left(54 \mathrm{H}, 2 \mathrm{x}^{t} \mathrm{Bu}\right), 1.52$ ($27 \mathrm{H}, \quad{ }^{t} \mathrm{Bu}$) $1.22 \quad\left(27 \mathrm{H}, \quad{ }^{t} \mathrm{Bu}\right) .{ }^{31} \mathrm{P}$ NMR $\quad(109.37 \mathrm{MHz}$, $\left[\mathrm{D}_{8}\right]$ toluene $): \delta[\mathrm{ppm}]=4.9\left(\mathrm{~d},{ }^{1} J(\mathrm{P}, \mathrm{Se})=657 \mathrm{~Hz},{ }^{2} J(\mathrm{P}, \mathrm{P})=\right.$ $16.4 \mathrm{~Hz}),-57.6\left(\mathrm{~d},{ }^{1} J(\mathrm{P}, \mathrm{Se})=627 \mathrm{~Hz},{ }^{2} J(\mathrm{P}, \mathrm{P})=16.4 \mathrm{~Hz}\right)$. ${ }^{77} \mathrm{Se} \operatorname{NMR}\left(51.52 \mathrm{MHz},\left[\mathrm{D}_{8}\right]\right.$ toluene $): \delta[\mathrm{ppm}]=132.4(\mathrm{~d}$, $\left.{ }^{1} J(\mathrm{P}, \mathrm{Se})=621 \mathrm{~Hz}\right), 209.0\left(\mathrm{~d},{ }^{1} J(\mathrm{P}, \mathrm{Se})=644 \mathrm{~Hz}\right) . \mathrm{MS}\left(\mathrm{EI}^{+}\right.$, m / z), $648.9\left[\frac{1}{3} M^{+}\right]$(calcd: $649.0\left[{ }^{1} /{ }_{3} M^{+}=\mathrm{C}_{16} \mathrm{H}_{38} \mathrm{Au}_{1} \mathrm{P}_{2} \mathrm{Se}_{2}\right]$). Accurate elemental analyses could not be obtained owing to a minor contamination of the product with $\mathrm{AuCl}(\mathrm{THT})$.

Preparation of 14

Procedures were similar to those described for 11 using 3S ($500 \mathrm{mg}, 0.68 \mathrm{mmol}$) and $\mathrm{AuCl}(\mathrm{THT})$ ($216 \mathrm{mg}, 0.68 \mathrm{mmol}$). Yield of colourless crystals $=49 \%$). ${ }^{1} \mathrm{H}$ NMR $(400.30 \mathrm{MHz}$, $\left[\mathrm{D}_{8}\right]$ toluene) : $\delta[\mathrm{ppm}]=$ (signals for NH could not be reliably identified) $1.87\left(36 \mathrm{H}, 4 \mathrm{x}^{t} \mathrm{Bu}\right), 1.83\left(36 \mathrm{H}, 4 \mathrm{x}^{t} \mathrm{Bu}\right), 1.67(18 \mathrm{H}$, $\left.2 \mathrm{x}^{t} \mathrm{Bu}\right), 1.51\left(36 \mathrm{H}, 4 \mathrm{x}^{t} \mathrm{Bu}\right), 1.36\left(18 \mathrm{H}, 2 \mathrm{x}{ }^{t} \mathrm{Bu}\right) .{ }^{31} \mathrm{P}$ NMR $\left(109.37 \mathrm{MHz}, \quad\left[\mathrm{D}_{8}\right]\right.$ toluene $): \delta[\mathrm{ppm}]=38.1\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{P})=\right.$ $23.4 \mathrm{~Hz}), 32.9\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{P})=23.4 \mathrm{~Hz}\right), 19.2$ (s). Elemental analysis (\%) calcd for $\mathrm{C}_{64} \mathrm{H}_{146} \mathrm{P}_{8} \mathrm{~N}_{16} \mathrm{Au}_{6} \mathrm{~S}_{8}$: C 27.20 H 5.21 N 7.93 found: C 27.46 H 5.02 N 7.73 .

Preparation of 15

Procedures were similar to those used for 11 using 3Se ($500 \mathrm{mg}, 0.60 \mathrm{mmol}$) and HgCl_{2} ($163 \mathrm{mg}, 0.60 \mathrm{mmol}$). Total yield of colourless crystals: $9 \% .{ }^{1} \mathrm{H}$ NMR $(400.30 \mathrm{MHz}$, $\left[\mathrm{D}_{8}\right]$ toluene $): \delta[\mathrm{ppm}]=$ (signals for NH could not be reliably identified) $1.94\left({ }^{t} \mathrm{Bu}\right), 1.75\left({ }^{t} \mathrm{Bu}\right), 1.62\left({ }^{t} \mathrm{Bu}\right), 1.58\left({ }^{t} \mathrm{Bu}\right)$. ${ }^{31} \mathrm{P}$ NMR ($109.37 \mathrm{MHz},\left[\mathrm{D}_{8}\right]$ toluene $): \delta[\mathrm{ppm}]=4.6\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{P})\right.$ $=16.3 \mathrm{~Hz}),-59.2\left(\mathrm{~d},{ }^{2} J(\mathrm{P}, \mathrm{P})=16.3 \mathrm{~Hz}\right) .{ }^{1} J(\mathrm{P}, \mathrm{Se})$ could not be determined due to the weak intensity of the resonances. HR-MS ($\mathrm{ESI}^{+}, \quad m / z$), $1213.1454 \quad\left[M^{+}+\mathrm{H}\right] \quad$ (calculated for $\mathrm{C}_{32} \mathrm{H}_{75} \mathrm{P}_{4} \mathrm{Se}_{4} \mathrm{~N}_{8} \mathrm{Hg}$: $\left.1213.1448\left[M^{+}+\mathrm{H}\right]\right)$. Elemental analysis (\%) calcd for $\mathrm{C}_{32} \mathrm{H}_{74} \mathrm{P}_{4} \mathrm{~N}_{8} \mathrm{HgSe}_{4}$: C 31.73 H 6.16 N 9.25 found: C 31.44 H 6.28 N 9.15.

Crystal structure determinations

X-ray analysis for $\mathbf{1 1 - 1 5}$ were performed using a Rigaku FRX (dual port) rotating anode/confocal optic high brilliance generator with Dectris P200 detectors, and Oxford Cryostream Cobra accessory at $-180(1){ }^{\circ} \mathrm{C}$. All data were collected with Mo-K α radiation $(\lambda=0.71073 \AA$) and corrected for Lorentz and polarisation effects. The data for all of the compounds were collected and processed using CrystalClear (Rigaku). ${ }^{33}$ The crystal structures were solved using direct methods ${ }^{34}$ or heavyatom Patterson methods ${ }^{35}$ and expanded using Fourier techniques. ${ }^{36}$ The non-hydrogen atoms were refined anisotropically, hydrogen atoms were refined using the riding model. All calculations were performed using CrystalStructure ${ }^{37}$ crystallographic software package and SHELXL-97. ${ }^{38}$

Table 1 X-ray crystallographic data for compounds 11-15.

Empirical formula	$\mathrm{C}_{37} \mathrm{H}_{61} \mathrm{AgN}_{6} \mathrm{P}_{2} \mathrm{Se}_{2}$	$\begin{aligned} & \mathrm{C}_{66} \mathrm{H}_{152} \mathrm{Ag}_{4} \mathrm{~N}_{16} \mathrm{O}_{0} \\ & { }_{.5} \mathrm{P}_{8} \mathrm{Se}_{8} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{48} \mathrm{H}_{111} \mathrm{Au}_{3} \mathrm{~N}_{12} \mathrm{P}_{6} \mathrm{~S} \\ & \mathrm{e}_{6} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{64} \mathrm{H}_{146} \mathrm{Au}_{6} \mathrm{~N}_{16} \mathrm{P}_{8} \mathrm{~S} \\ & 8 \end{aligned}$	$\mathrm{C}_{32} \mathrm{H}_{74} \mathrm{HgN}_{8} \mathrm{P}_{4} \mathrm{Se}_{4}$
Formula weight	917.66	2488.98	2106.99	2826.03	1211.32
Temperature (${ }^{\circ} \mathrm{C}$)	93	93	93	93	93
Crystal colour, habit	colourless platelet	colourless prism	pink prism	colourless prism	colourless prism
Crystal dimensions (mm^{3})	$0.20 \times 0.10 \times 0.03$	$\begin{aligned} & 0.20 \times 0.20 \mathrm{x} \\ & 0.18 \end{aligned}$	$0.12 \times 0.03 \times 0.03$	$0.20 \times 0.10 \times 0.10$	$0.10 \times 0.10 \times 0.10$
Crystal system	monoclinic	monoclinic	hexagonal	orthorhombic	tetragonal
$a(\mathrm{~A})$	16.921(6)	14.449(3)	20.606(2)	31.316(4)	28.096(3)
$b(\AA)$	14.566(5)	27.568(6)	20.606(2)	18.931(2)	28.096(3)
$c(\AA)$	17.507(6)	25.838(6)	10.6403(11)	17.846(2)	16.694(2)
$\alpha\left({ }^{\circ}\right)$	90.0000	90.0000	90.0000	90.0000	90.0000
$\beta\left({ }^{\circ}\right)$	94.846(10)	94.091(5)	90.0000	90.0000	90.0000
$\gamma\left({ }^{\circ}\right)$	90.0000	90.0000	120.0000	90.0000	90.0000
Volume (\AA^{3})	4300(3)	10266(4)	3912.5(7)	10580(2)	13178(3)
Space group	$P 2{ }_{1} / n$	$P 2{ }_{1} / n$	P63/m	Pbcn	$P 4 / n$
Z value	4	4	2	4	8
$D_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.417	1.610	1.788	1.774	1.221
F_{000}	1880.00	4976.00	2028.00	5456.00	4784.00
$\mu\left(\mathrm{Mo}-K_{\alpha}\right)\left(\mathrm{cm}^{-1}\right)$	2.267	3.754	8.581	8.637	4.672
No. of reflections measured	54874	124373	53212	134200	134164
$R_{\text {int }}$	0.1066	0.1067	0.0455	0.0461	0.1243
Min. and max. transmissions	0.569, 0.934	0.326, 0.509	0.488, 0.773	0.275, 0.422	0.404, 0.627
Reflection/parameter ratio	7654 (451)	18691 (994)	2519 (137)	9658 (484)	12081 (466)
Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0874	0.0753	0.0571	0.0339	0.0575
Residuals: $w R_{2}$ (all reflections)	0.2517	0.2208	0.1676	0.1105	0.2089
Goodness of fit indicator	1.034	1.141	1.080	1.045	1.038
Maximum peak in final diff. map $\left(\mathrm{e}^{-} / \AA^{3}\right)$	1.48	2.21	2.63	3.81	3.68
Minimum peak in final diff. $\operatorname{map}\left(\mathrm{e}^{-} / \AA^{3}\right)$	-1.30	-0.83	-3.49	-1.73	-1.19
CCDC number	1042701	1042702	1042703	1042704	1042700

Acknowledgements

Financial support from the EPSRC and NSERC (Canada) is gratefully acknowledged.

Notes and references

${ }^{a}$ School of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland.
${ }^{b}$ Department of Chemistry, University of Calgary, Calgary, AB, Canada T2N 1N4.
\dagger Electronic Supplementary Information (ESI) available: X-ray structure of 10 and packing diagrams for 12, 13 and 14. Crystallographic details CCDC 1042700-1042704 for 11, 12, 13, 14 and 15. See DOI: 10.1039/c000000x/

[^0]3 For a recent review, see S. G. Calera and D. S. Wright, Dalton Trans., 2010, 39, 5055, and references cited therein.
4 S. G. Calera, D. J. Eisler, J. M. Goodman, M. McPartlin, S. Singh and D. S. Wright, Dalton Trans., 2009, 1293.
5 S. G. Calera, D. J. Eisler, J. V. Morey, M. McPartlin, S. Singh and D. S. Wright, Angew. Chem., Int. Ed., 2008, 47, 1111.
6 M. M. Siddiqui, S. M. Mobin, I. Senkovska, S. Kaskel and M. S. Balakrishna, Chem. Commun., 2014, 50, 12273.

7 M. S. Balakrishna, J. Organomet. Chem., 2010, 695, 925, and references cited therein.
8 (a) G. G. Briand, T. Chivers and M. Krahn, Coord. Chem. Rev., 2002, 233-234, 237; (b) T. Chivers, M. Krahn and M. Parvez, Chem. Commun., 2000, 463.
9 T. Chivers, C. Fedorchuk, M. Krahn, M. Parvez and G. Schatte, Inorg. Chem., 2001, 40, 1936.
10 A. Nordheider, T. Chivers, R. Thirumoorthi, I. Vargas-Baca and J. D. Woollins, Chem. Commun., 2012, 48, 6346.

11 (a) D. Aris, J. Beck, A. Decken, I. Dionne, J. Schmedt auf der Günne, W. Hoffbauer. T. Köchner, I. Krossing, J. Passmore, E. Rivard, F. Steden and X. Wang, Dalton Trans., 2011, 40, 5865 (b) T. Köchner, N. Trapp, T. A. Engesser, A. J. Lehner, C. Röhr, S. Riedel, C. Knapp, H. Scherer and I. Krossing, Angew. Chem., Int. Ed., 2011, 50, 11253; (c) J. Schaeffer, A. Steffani,
D. A. Plattner and I. Krossing, Angew. Chem., Int. Ed., 2012, 51, 6009.
12 A. Nordheider, PhD thesis, University of St Andrews, 2014. For details of the X-ray structure of $\left[\mathrm{Ag}(\mathbf{1 S e})_{2}\right]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right](\mathbf{1 0})$ see ESI, CCDC 1042705.
13 In earlier investigations the formation of the diprotonated precursors 1Se $\left[\delta\left({ }^{31} \mathrm{P}\right)=26.7 \mathrm{ppm},{ }^{1} J(\mathrm{P}, \mathrm{Se})=880 \mathrm{~Hz}\right)$ and $\mathbf{1 S}$ $\left(\delta\left({ }^{31} \mathrm{P}\right)=40.0 \mathrm{ppm}\right]$ was proposed to be the result of a radical process. Semi-empirical MO calculations of the model system $\left[\mathrm{Me}(\mathrm{H}) \mathrm{N}(\mathrm{S}) \mathrm{P}(\mu-\mathrm{NMe})_{2} \mathrm{P}(\mathrm{S}) \mathrm{NMe}\right]^{\cdot}$ indicate a nitrogen-based SOMO (spin population at nitrogen $=0.957$) instead of the formation of a sulfur-based radical which would dimerise to form a $\mathrm{S}-\mathrm{S}$ bond. Thus, in addition to metathesis, reactions of $\mathbf{2 S} \mathbf{e}^{2-}$ and $\mathbf{2} \mathbf{S}^{2-}$ may involve partial oxidation to produce nitrogen-based radicals that rapidly abstract hydrogen atoms from the solvent (THF or toluene) to form 1Se and 1S. This suggestion was confirmed by EPR studies and the formation of $\mathbf{1 S}$ in the reaction of Li 3 SH with TeCl_{4}. G. G. Briand, T. Chivers and G. Schatte, Inorg. Chem., 2002, 41, 1958.
14 H. Liu, N. A. G. Bandeira, M. J. Calhorda, M. G. B. Drew, V. Felix, J. Novosad, F. F. de Biani and P. Zanello, J. Organomet. Chem., 2004, 689, 2808.
15 T. Chivers, M. Krahn and G. Schatte, Inorg. Chem., 2002, 41, 4348.

16 A. Cingolani, Effendy, M. Pellei, C. Pettinari, C. Santini, B. W. Skelton and A. H. White, Inorg. Chem., 2002, 41, 6633.
17 M. C. Copsey, A. Panneerselvam, M. Afzaal, T. Chivers and P. O'Brien, Dalton Trans., 2007, 1528.
18 A. Burini, A. A. Mohamed and J. P. Fackler, Jr., Comments Inorg. Chem., 2003, 24, 253.
19 M. N. Pillay, B. Omondi, R. J. Staples and W. E. van Zyl, CrystEngChem., 2013, 15, 4417.
20 H. Schmidbaur and A. Schier, Chem. Soc. Rev., 2012, 41, 370.
21 The Cambridge Structural Database: a quarter of a million crystal structures and rising, F. H. Allen, Acta Crystallogr., 2002, B58, 380.
22 P. G. Jones and C. Thöne, Inorg. Chim. Acta, 1991, 181, 291.
23 T. G. Hill, R. C. Haltiwanger, M. L. Thompson, S. A. Katz and A. D. Norman, Inorg. Chem., 1994, 33, 1770.

24 W. E. van Zyl, J.M. López-de-Luzuriaga, A. A. Mohamed, R. J. Staples and J. P. Fackler, Jr., Inorg. Chem., 2002, 41, 4579.

25 (a) H. E. Abdou, A. A. Mohamed and J. P. Fackler, Jr., Inorg. Chem., 2005, 44, 166; (b) A. Maspero, I. Kani, A. A. Mohamed, M. A. Omary, R. J. Staples and J. P. Fackler, Jr., Inorg. Chem., 2003, 42, 5311.
26 J. Konu, H. M. Tuononen and T. Chivers, Inorg. Chem., 2009, 48, 11788.
27 D. J. Crouch, P. M. Hatton, M. Helliwell, P. O'Brien and J. Raftery, Dalton Trans., 2003, 2761.
28 P. Pyykkö, Chem Soc. Rev., 2008, 37, 1967, and references therein.
29 (a) V. W-W. Yam and E. C-C. Cheng, Chem. Soc. Rev., 2008, 37, 1806; (b) S. Bestgen, M. T. Gamer, S. Lebedkin, M. M. Kappes and P. W. Roesky, Chem. Eur. J., DOI: 10.1002/chem. 201404985 and references cited therein.

30 T. Chivers, M. Krahn, M. Parvez and G.Schatte, Inorg. Chem., 2001, 40, 2547.
31 D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals, Oxford, Butterworth-Heinemann, $6^{\text {th }}$ edn., 2009.
32 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman and B. M. Stoltz, Organometallics, 2010, 29, 2176.
33 (a) CrystalClear 1.6: Rigaku Corporation, 1999; (b) CrystalClear Software User's Guide, Molecular Structure Corporation ${ }^{\ominus}$, 2000; (c) J. W. Pflugrath, Acta Crystallogr., 1999, D55, 1718.
34 SIR97: A. Altomare, M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. Moliterni, G. Polidori and R. Spagna, J. Appl. Crystallogr., 1999, 32, 115.
35 PATTY: P. T. Beurskens, G. Admiraal, H. Behm, G. Beurskens, J. M. M. Smits and C. Smykalla, Z. Kristallogr., 1991, Suppl. 4, 99.

36 DIRDIF99: P. T. Beuerskens, G. Admiraal, G. Beuerskens, W. P. Bosman, R. de Gelder, R. Israel and J. M. M. Smits, The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1999.
37 (a) CrystalStructure 3.8.1: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC (2000-2006). 9009 New Trails Dr. The Woodlands, TX 77381 USA; (b) CrystalStructure 4.0: Crystal Structure Analysis Package, Rigaku Corporation (20002010). Tokyo 196-8666, Japan.

38 G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.

ARTICLE

TOC entry

Reactions of the dianions $\left[{ }^{t} \mathrm{BuN}(\mathrm{E}) \mathrm{P}\left(\mu-\mathrm{N}^{t} \mathrm{Bu}\right)\right]_{2}{ }^{2-}(\mathrm{E}=\mathrm{Se}, \mathrm{S})$ with $\mathrm{M}(\mathrm{I})$ reagents ($\left.\mathrm{M}=\mathrm{Ag}, \mathrm{Au}\right)$ or HgCl_{2} produce complexes that incorporate the corresponding monoanions $\left[{ }^{t} \mathrm{Bu}(\mathrm{H}) \mathrm{N}(\mathrm{E}) \mathrm{P}\left(\mu-\mathrm{N}^{t} \mathrm{Bu}\right)_{2} \mathrm{P}(\mathrm{E}) \mathrm{N}^{t} \mathrm{Bu}\right]^{-}$in spirocyclic, macrocyclic or ladder structures.

[^0]: 1 T. Chivers and I. Manners, Inorganic Rings and Polymers of the p-Block Elements: From Fundamentals to Applications, Royal Society of Cambridge, 2009.
 2 For reviews, see (a) M. S. Balakrishna, D. J. Eisler and T. Chivers, Chem. Soc. Rev., 2007, 36, 650; (b) L. Stahl, Coord. Chem. Rev., 2000, 210, 203; (c) M. S. Balakrishna, V. S. Reddy, S. S. Krishnamurthy, J. F. Nixon and J. C. T. R. St. Laurent, Coord. Chem. Rev., 1994, 129, 1; (d) R. Keat, Top. Curr. Chem., 1982, 102, 89.

