
INVESTIGATING THE ANTIVIRAL ACTIVITY OF THE
INTERFERON-INDUCIBLE GTPASE MXA AGAINST

INFLUENZA VIRUSES

Lee Sherry

A Thesis Submitted for the Degree of PhD
at the

University of St Andrews

2015

Full metadata for this item is available in
Research@StAndrews:FullText

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/8072

This item is protected by original copyright

This item is licensed under a
Creative Commons Licence

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/8072


 
 
 
 

Investigating the antiviral activity of the interferon-
inducible GTPase MxA against influenza viruses 

 
Lee Sherry 

 

 
 

 
This thesis is submitted in partial fulfilment for the degree of PhD  

at the  
University of St Andrews 

 
 

 
September 2015 

  



! ""!

DECLARATIONS 

I, Lee Sherry, hereby certify that this thesis (which is approximately 52,000 words) 

has been written by me, that it is the record of work carried out by me, and that it has 

not been submitted in any previous application for a higher degree. 

 

Date ……....................       Signature of candidate ……….................................... 

 

I was admitted as a research student in September 2011 as a candidate for the degree 

of Doctor of Philosophy (PhD) in Molecular Virology; the higher study for which 

this is a record and was carried out at the University of St. Andrews between 2012 

and 2015. 

 

Date ……....................                Signature of candidate ……….................................... 

 

We hereby certify that the candidate has fulfilled the conditions of the Resolution and 

Regulations appropriate for the degree of Doctor of Philosophy at the University of 

St. Andrews, and that the candidate is qualified to submit this thesis in application for 

that degree. 

 

Date ……....................              Signature of supervisor ……….................................... 

Dr. David Jackson 

 
  



! """!

In submitting this thesis to the University of St Andrews I understand that I am giving 

permission for it to be made available for use in accordance with the regulations of 

the University Library for the time being in force, subject to any copyright vested in 

the work not being affected thereby.  I also understand that the title and the abstract 

will be published, and that a copy of the work may be made and supplied to any bona 

fide library or research worker, that my thesis will be electronically accessible for 

personal or research use unless exempt by award of an embargo as requested below, 

and that the library has the right to migrate my thesis into new electronic forms as 

required to ensure continued access to the thesis.  

 

The following is an agreed request by candidate and the supervisors regarding the 

electronic publication of this thesis: 

 

Access to printed copy and electronic publication of thesis through the University of 

St Andrews. 

 

Date ……....................                Signature of candidate ……….................................... 

 

 

Date ……....................               Signature of supervisor ……….................................... 

Dr. David Jackson 

  



! "#!

Acknowledgements 
 
Firstly I would like to thank everybody who has helped and supported me throughout 

my time in St Andrews. To anyone was has offered advice or reagents, it has been 

greatly appreciated.  

 

I owe a huge amount of thanks to my supervisor, Dave, who not only took me on as a 

PhD student but allowed me to develop my own ideas whilst reigning me in when 

they got slightly too crazy. I appreciate all of the support I received throughout my 

PhD, particularly towards the end when I may have seemed slightly laid back. I would 

also like to thank Dave for not only understanding but also sharing in the importance 

of football-related chat in the lab as a welcome distraction from conflicting 

experimental results. 

 

I would also like to thank Matt for the time we spent in the lab together, helping me 

with technical support and to develop my ideas, as well as creating the unique lab 

atmosphere that was the Jackson lab. I also want to say thank you to my friends from 

level 2, my PhD experience was made so much better by getting to experience it with 

you, even if I did take the mick out of each of you on a daily basis! 

 

I also want to say a big thank you to Ola, who has been a big support to me 

throughout, even if I am a ‘workaholic’ and you ‘hate my time courses with a 

passion’.  

 

Finally I would like to say thank you to my Mum as well as my brother and sister, for 

their continued support throughout my academic career. 



! #!

Abstract  

The interferon (IFN) system forms an essential part of the innate immune response, 

up-regulating hundreds of IFN-stimulated genes (ISGs) in response to viral infection. 

A key protein in this response is the human myxovirus resistance protein MxA, an 

IFN-induced GTPase with broad-spectrum antiviral activity, capable of inhibiting 

many RNA and DNA viruses. One of the most studied antiviral effects of MxA is the 

inhibition of influenza A virus replication, yet the molecular mechanism of antiviral 

activity is still unknown. Influenza A viruses are inhibited by MxA at two distinct 

stages of viral replication; during viral entry and following primary transcription of 

viral mRNAs. The antiviral effects of MxA during viral entry are highly dependent on 

IFN, however activity exerted after primary transcription can occur in the absence of 

IFN. This study provides evidence that MxA exerts its antiviral activity at these two 

stages of viral replication through distinct mechanisms, and outlines a potential model 

of MxA antiviral activity following primary transcription. A potential third antiviral 

mechanism of MxA is proposed based on the findings that MxA is able to regulate 

cellular lipid metabolism, thereby potentially affecting virion composition. Mutational 

analysis of MxA highlights the significance of GTPase activity to the antiviral effects 

of MxA, while also demonstrating that natural single nucleotide polymorphisms in 

MxA have the potential to severely impair or prevent antiviral activity. Finally, this 

thesis shows for the first time that MxA exhibits antiviral activity against influenza B 

viruses. Overall this thesis provides new information illustrating how MxA provides 

potent antiviral activity against influenza viruses. Such information is vitally 

important as understanding the molecular basis of how proteins such as MxA function 

against many human pathogens is fundamentally important in our efforts to create 

better long-term treatment options for all viral diseases. 
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Chapter 1 - Introduction 

1.1 Introduction to Interferon 

Viruses are incapable of self-replication without infecting a host organism. However, 

this is often not a symbiotic relationship as viral hijacking of host energy sources and 

metabolism can lead to cellular destruction, leading to tissue damage and even the 

death of the host organism. To combat this, the animal kingdom has evolved two 

specific mechanisms in the innate and adaptive immune systems.  

 

The adaptive immune system is extremely specific and displays memory upon 

encountering a pathogen. This system has a large amount of ‘cross-talk’ with the 

innate immune system, which is capable of recruiting a large variety of adaptive 

immune cells through the production of cytokines and the presentation of antigens. 

However, this process requires additional time to become active when compared to 

the innate immune system and consequently can be seen as a secondary defence 

against viral infection. The primary defence is the innate immune system, which 

produces a non-specific but immediate response upon infection. Innate immunity 

consists of several different mechanisms including the complement system, the 

cellular response; particularly Natural Killer cells during viral infection, and the 

intracellular response; such as the interferon (IFN) response (Gerlier and Lyles 2011). 

 

IFNs are secretory cytokines which are classified into 3 distinct groups; type I, II and 

III which each elicit their own antiviral effect (Randall and Goodbourn 2008). Type I 

IFNs were discovered in 1957 (Isaacs & Lindenmann, 1957) and consist of a large 

range of molecules with 13 distinct IFN-! genes in man and one IFN-" gene which 

are both induced directly as a reaction to viral infection. Other type I IFNs include –&, 
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-%, -' and –(, though the functions of these IFNs is less clear as they play other roles 

not related to the antiviral response, such as the regulation of maternal factors during 

pregnancy (Randall and Goodbourn 2008). Type III IFNs; -)1, -)2 and –)3 are also 

induced in response to viral infection and appear to activate the same signaling 

pathways that are activated by IFN !/" genes (Uzé and Monneron 2007). Type II IFN 

refers only to IFN-$ which is induced by activated T cells or NK cells which have 

recognised an infected host cell (Goodbourn, Didcock, and Randall 2000). Type II 

IFN bears no structural resemblance to Type I IFN; however, they do have similar 

functions as they stimulate a number of the same genes (Goodbourn, Didcock, and 

Randall 2000).  

 

1.1.2 IFN signaling 

The IFN-!/" signaling cascade is activated through the hetero-dimeric IFN-!/" 

receptor, which appears to be expressed ubiquitously. Upon binding IFN-!/" the 

receptor transduces its signal through tyrosine kinases Tyk2 and Jak1. This leads to 

the activation of a multitude of downstream proteins culminating in the transcription 

of a large number of genes that lead to the overall antiviral state of the cell. This 

signaling cascade is described in more detail in Fig. 1.1 (Also comprehensively 

reviewed by S. Goodbourn et al. 2000.).  

 

These genes are referred to as being IFN-stimulated genes (ISGs), however a subset 

of these can be induced in the absence of IFN, but by the presence of virus possibly 

offering some protection to primary infected cells. Although, it would appear that this 

non-IFN based response is far less effective, as IFN-!/" receptor knockout mice are  
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Figure 1.1 IFN !/" signaling. IFN !/" signaling is induced by IFN binding to the heterodimeric 
type I IFN receptor. IFN binding activates JAK1 and Tyk2, receptor associated Tyrosine kinases, 
which phosphorylate STAT1 and STAT2 that heterodimerise through SH2 domains. Following 
dimerization the STAT-1-STAT-2 complex translocates to the nucleus where it interacts with 
transcription factor IRF-9. This heterotrimer is known as ISGF3 that binds to the IFN-stimulated 
response element (ISRE) and initiates transcription of interferon stimulated genes (ISGs) such as 
protein kinase R (PKR), myxovirus resistance protein (Mx) and oligoadenylate synthetase (OAS). 
(Adapted from Randall & Goodbourn, 2008). 
!
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incredibly susceptible to virus infection, this could be two-pronged effect as IFN-!/" 

have crucial roles in the activation of adaptive immune responses therefore reducing 

the overall efficiency of the immune response. Type III IFNs bind to the hetero-

dimeric receptor IL-28 which leads to a similar signal transduction and gene up-

regulation seen in IFN-!/" but instead of ubiquitous expression appears to have 

limited tissue distribution (Meager et al. 2005; Zhou et al. 2007). The role of Type III 

IFN is still under investigation; however, early indications suggest that is not essential 

in the response against infection (Randall and Goodbourn 2008).  

 

1.1.3 IFN Stimulated Genes 

IFN signaling leads to the translation of a number of ISGs. Two such examples of 

these are Protein Kinase R (PKR) and 2’-5’-oligoadenylate synthetase (OAS). PKR is 

translated as an inactive monomer but dimerises into its active form upon binding 

viral double stranded RNA (dsRNA). Another activator of PKR is PACT (PKR 

activating protein) which is activated in turn by cellular stress (Ito, Yang, and May 

1999; Patel et al. 2000). The activation of PKR can reduce the amount of viral protein 

produced through the phosphorylation of eIF2!. Phosphorylation of eIF2! can 

prevents eIF2! from being recycled, therefore stopping the initiation event in 

translation. Phosphorylated eIF2! can also lead to autophagy and has been implicated 

in the induction of apoptosis as well as cell cycle arrest; each having a negative effect 

on viral replication (Tallóczy et al. 2002). 

 

OAS, like PKR, is also produced as an inactive monomer that requires dsRNA as a 

co-factor. Once activated OAS oligomerises ATP through 2’-5’ phosphodiester 

linkages, these adenylate oligomers activate RNase L, an endonuclease which 
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degrades cellular and viral RNAs which generates 3’-monophosphates. Interestingly, 

OAS/RNase L has been shown to amplify the IFN response which is believed to be 

through interactions of the 3’-monophosphates with IFN signaling factors RIG-I and 

MDA-5 as removal of these limits the activation of IFN (Malathi et al. 2007). 

 

1.2 Viral Induction of IFN 

Viruses are capable of inducing the IFN response through several different 

mechanisms, as the host uses a variety of Pattern Recognition Receptor (PRR) 

proteins to recognise virus-specific nucleic acid sequences known as Pathogen 

Associated Molecular Patterns (PAMPs). Viruses induce IFN through a number of 

different mechanisms which can be divided into two different modes of activation; 

Toll-like Receptor (TLR)/Endosome dependent and TLR independent activation of 

IFN. 

 

1.2.1 TLR dependent IFN activation 

Viruses can induce TLR-dependent pathways in several different ways. Firstly, TLRs 

either on the cell surface or internalisesd through endocytosis are capable of 

recognising dsRNA whether it is present in the extracellular medium or within an 

endosome leading to the induction of a robust IFN response. This had been clear since 

the 1960’s, however in 2001 it was discovered that TLR-3 was the receptor which 

recognises dsRNA (Alexopoulou et al. 2001). TLR-3 has been shown to be important 

to the antiviral response in TLR-3 knockout mice which succumb to infection by 

Murine Cytomegalovirus (MCMV), yet show resistance to other viruses such as 

vesicular stomatitis virus (VSV) and reovirus, showing that although TLR-3 is 
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important to the IFN response it is not essential (Tabeta et al. 2004; Edelmann et al. 

2004). TLR-3 signaling is described in Fig 1.2; 

 

Viral single stranded RNA (ssRNA) is also capable of inducing IFN through the 

activation of endosomal TLR-7. TLR-7 is only expressed by a few cell types and most 

importantly in plasmacytoid Dendritic Cells, where it is exclusively expressed in the 

endosome, which can produce up to 50% of circulating IFN during a viral infection 

(Cao and Liu 2007). TLR-7 appears to have no sequence preference for ssRNA just 

several uridines in close proximity (Diebold et al. 2006). TLR-7 has been shown to 

recognise ssRNA from several different viruses such as HIV, Influenza and VSV 

(Diebold et al. 2004; Heil et al. 2004; Lund et al. 2004). TLR-7 signaling is described 

in Fig 1.3. 

 

TLR-9 is the host factor responsible for the recognition of endosomal ‘foreign’ DNA 

which is distinguishable from host DNA as it is not methylated like host DNA. 

Similarly to TLR-3, TLR-9 is important to the innate immune response as TLR-9 

deficient mice were again susceptible to MCMV due to the reduction in IFN 

production (Tabeta et al. 2004).  

 

1.2.2 TLR Independent IFN activation 

The cell is also capable of recognising viral PAMPs through TLR-independent 

mechanisms. One key mechanism is the recognition of intracellular viral RNA by 

RNA helicases. Three RNA helicases, RIG-I, MDA-5 and LGP2 have been shown to 

be important cytoplasmic proteins in the antiviral response. 
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Figure 1.2. TLR-3 signaling in response to dsRNA. Double Stranded RNA (dsRNA) can be 
recognised either on the outside of the cell or inside endosomes through the uncoating of virus 
particles and presented to TLR-3. Once activated TLR-3 recruits scaffold adaptor protein TRIF, 
which recruits the components required for activation for either IRF-3 or NF-#B. IRF-3 activation 
is achieved through the recruitment of TRAF3, which can then bind TANK that can activate 
either IKK$ or TBK-1. IKK$ and TBK-1 are both capable of phosphorylating and activating IRF-
3, which then translocates to the nucleus and assemble on the IFN-" promoter to stimulate 
transcription. NF-#B activation requires TRIF to recruit TRAF6 and RIP1 that in turn recruit the 
IKK complex and TAK1. TAK1 activates IKK" through phosphorylation, which then 
phosphorylates I#B that then releases NF-#B to migrate to the nucleus to stimulate transcription 
of IFN-" mRNA (Adapted from Randall and Goodbourn, 2008). 
!
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RIG‐I has been shown to recognise 5’- triphosphorylated dsRNA which are short in 

length as well as single stranded RNA which exhibits a 5’-triphosphate and base-

paired ends such as defective interfering RNA and viral hairpins.  This diversity of 

ligand demonstrates the wide variety of RNA viruses that are sensitive to detection by 

RIG-I.  Mice deficient in RIG-I display increased susceptibility to a number of 

negative sense RNA viruses such as Newcastle disease virus (NDV), vesicular 

stomatitis virus (VSV) and sendai virus (Rodriguez, Bruns, and Horvath 2014).  

 

Although MDA5 shares structural homology with RIG-I it has proved a lot more 

difficult to identify activating ligands for MDA5, which may be due to MDA5’s 

relatively poor RNA binding activity when compared to RIG-I or LGP2 (Rodriguez, 

Bruns, and Horvath 2014). However, recently a number of studies have revealed 

potential RNA features and specific viral RNA regions that are recognised by MDA5. 

MDA5 activation was shown to be triggered by RNA that was longer than 2 kbp from 

sheared RNA populations or following enzymatic digestion (Kato et al. 2008). Also, 

MDA5-mediated signaling was shown to be preferentially activated by high-

molecular-weight RNAs extracted from virus-infected cells (Pichlmair et al. 2009).  

 

Mice deficient in MDA5 showed a greater susceptibility to certain positive-sense 

single-stranded RNA viruses, for example, poliovirus and encephalomyocarditis virus 

(EMCV) and murine norovirus (Kato et al. 2006; Gitlin et al. 2006; McCartney et al. 

2008). However, a distinction between positive and negative-sense RNA virus 

recognition by MDA5 or RIG-I is oversimplified. For example, positive sense 

flaviviruses such as dengue virus and West Nile virus activate both RIG-I and MDA5 

(Fredericksen et al. 2008; Loo et al. 2006). Similarly, the negative sense RNA virus  
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Figure 1.3. TLR-7 and TLR-9 signaling. In plasmacytoid dentritic cells, ssRNA or CpG DNA is 
presented to TLR-7 or -9 in endosomes either through endocytosis of nucleic acids, uncoating of 
viruses or the degradation of engulfed cells. Once activated TLR-7 and TLR-9 recruit the adaptor 
protein MyD88 that recruits IRAK1 and IRAK4, which recruits the signaling components 
required to activate IRF-7 or NF-#B. NF-#B activation is described in Fig. 1.2. IRF-7 activation 
requires the polyubiquitination of TRAF6, which leads to the phosphorylation of IRF-7 by 
IRAK1. A complex of IRF-7, MyD88, TRAF6 and IRAK1 then moves to the nucleus where it can 
promote transcription of IFN-" mRNA (Adapted from Randall and Goodbourn, 2008).  
!
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Sendai is believed to be recognized by RIG-I during early infection, yet MDA5 

becomes more significant as the infection progresses in vivo (Gitlin et al. 2006; Yount 

et al. 2008). The activation of both RIG-I and MDA-5 form homodimers which can 

then allow for binding of adaptor protein CARDIF leading to downstream signal 

transduction, shown in Fig 1.4. 

 

A third RNA helicase, LGP2, shares sequence conservation with the other RLRs 

however is lacking a Caspase Recruitment Domain (CARD) region entirely. LGP2 is 

expressed endogenously at low levels but accumulates rapidly in response to IFN or 

viral infection (Komuro and Horvath 2006). The exact role of LGP2 in antiviral 

immunity remains to be fully elucidated. Three mouse models that were knockout for 

LGP2 mice were reported with contrasting results (Satoh et al. 2010; Suthar et al. 

2012; Venkataraman et al. 2007). This has lead to a recent model suggesting that 

LGP2 works as a biphasic switch where LGP2 acts as a concentration-dependent 

switch between the known MDA5-specific enhancement and a more universal RLR 

interference (Rodriguez, Bruns, and Horvath 2014). 

 

Recent research has also focused on a number of newly identified cytoplasmic DNA 

sensors that lead to two known pro-inflammatory responses including AIM2, IFI16, 

DDX41 and cGAS (Bhat and Fitzgerald 2014). One response is mediated through 

AIM2, which is responsible for the maturation of pro-inflammatory cytokines via the 

recruitment of adaptor protein ASC allowing for the formation of the inflammasome 

(Hornung et al. 2009). Although the inflammasome is a major part of the immune 

response the second response is essential for innate immunity and the initial control of 

infection through the up-regulation of IFN (Atianand and Fitzgerald 2013). A key 
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Figure 1.4: MDA-5 and RIG-I signaling. RNA helicases mda-5 and RIG-I are both 
activated by viral RNA, which is present in the cytoplasm through viral uncoating, 
transcription or replication. Both are activated by dsRNA, whereas ssRNA molecules with a 
5’ -triphosphate also activate RIG-I. Both contain an N-terminal CARD domain, which 
recruits the adaptor protein CARDIF. CARDIF acts as a scaffold for all the components 
necessary to activate either IRF-3 or NF-#B as described in Fig.1.2. This culminates in the 
transcription of IFN-" mRNA (Adapted from Randall and Goodbourn, 2008). 
!
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 DNA sensor in this second response is cGAS, an OAS-1-like nucleotidyl transferase, 

which upon binding viral DNA, produces cyclic GMP-AMP (cGAMP) a cellular 

secondary messenger, which then activates STING in the endoplasmic reticulum 

leading to the downstream activation of IRF3 and the transcription of type I IFN (P. 

Gao et al. 2013; Ablasser et al. 2013).  

 

However, cGAS does not only have antiviral activity against DNA viruses, as a recent 

study showed an underappreciated impact of cGAS on a wide range of RNA viruses, 

in particular showing the in vivo importance of cGAS against West Nile Virus (WNV) 

as cGAS knockout mice showed a significant increase in mortality when challenged 

with WNV compared with wild type mice (Schoggins et al. 2014) 

 

It is also possible for viruses to induce IFN through their proteins as well as nucleic 

acids. For example, HIV gp120 has been shown to induce IFN-!/" and Human 

Cytomegalovirus and HSV-1 have been shown to activate IRF-3 complex formation 

without the translation of new protein (Capobianchi et al. 1992; Mossman et al. 2001; 

Preston, Harman, and Nicholl 2001). Expression of Measles virus nucleocapsid has 

also been shown to activate IRF-3 and induce IFN (tenOever et al. 2002) however, it 

is difficult to generalise this phenomenon as nucleocapsid proteins bind RNA and 

could therefore be presenting the RNA to the IFN signalling machinery (Randall and 

Goodbourn 2008). 

 

1.2.3 Viral IFN antagonists 

Viruses have developed several different mechanisms to evade the IFN response 

which can be split into 5 modes of action: i) interfere with host gene 
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transcription/translation; ii) limit the production of viral PAMPs to limit IFN 

production or by blocking IFN induction; iii) blocking IFN signalling; iv) inhibition 

of IFN-induced enzymes with antiviral activity; v) have an IFN resistant replication 

strategy (Randall and Goodbourn 2008). 

 

One of the key mechanisms used by several viruses to circumvent IFN induction and 

signalling is the production of IFN antagonist proteins. For example, Hepatitis C 

Virus (HCV) produces the NS3/4a protein which targets and cleaves TRIF, an adaptor 

protein for TLR-3, and therefore blocksTLR-3 signalling and IFN induction (K. Li et 

al. 2005). Viruses can also inhibit the detection of PAMPs as shown by Parainfluenza 

Virus 5 (PIV-5) which produces the IFN antagonist protein V that inhibits MDA-5 

activity, thereby blocking MDA-5 induced IFN production (Andrejeva et al. 2004). 

Viruses can also produce proteins which target IFN signalling as this can block the 

production of key antiviral proteins such as PKR, OAS, Mx and ISG15; for example 

PIV-5 V protein targets STAT-1 for degradation which can remove the cell from its 

antiviral state allowing PIV-5 to replicate efficiently (Carlos, Fearns, and Randall 

2005) whereas Japanese Encephalitis Virus (JEV) NS5 protein appears to interfere 

directly with the IFN-!/" receptor by inhibiting Tyk2 activation, by activating protein 

tyrosine phosphatases (R.-J. Lin et al. 2004; R.-J. Lin et al. 2006). Fig 1.5 depicts the 

targets of some IFN antagonists. 

 

Many viruses have evolved more than one mechanism to evade the IFN response as 

IFN antagonism is rarely, if ever, 100% efficient. This makes evolutionary sense as a 

virus may produce an antagonist which targets part of the IFN signalling pathway, 

however without inhibiting the induction of IFN, surrounding uninfected cells can 
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antagonism are indicated within the signaling cascades. 
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induce an antiviral state which would stop the propagation of the virus and therefore 

decreasing replication effiency.  One of the best described examples of a 

multifunctional IFN antagonist is the influenza A virus NS1 protein, which is capable 

of circumventing IFN responses through numerous mechanisms including but not 

limited to i) preventing host gene translation by inhibiting mRNA export; ii) blocking 

RIG-I mediated induction of IFN; iii) binding to dsRNA to render host PRRs such as 

OAS inactive; and iv) interacting with PKR and blocking its activity (Hale et al. 

2008). However, it should be noted that many of the IFN antagonist multifunctional 

activities have been identified in vitro and require validating as biologically relevant 

in the context of a productive viral infection (Randall and Goodbourn 2008). 

 

1.3 Introduction to influenza viruses 

Influenza viruses are important human pathogens which annually result in 

approximiately 3-5 million severe infections requiring hospitilisation leading to 

250,00 - 500,000 deaths (van de Sandt, Kreijtz, and Rimmelzwaan 2012). However, 

influenza viruses are not only a threat to human health but they also have huge 

economic implications as well as threatening global food security through infection of 

important live stock such as poultry, swine and equine species.  Influenza viruses 

belong to the family Orthomyxoviridae, which are a group of viruses that have 

negative sense RNA genomes packaged in multiple single stranded segments. There 

are currently 6 defined genera within the Orthomyxoviridae: Influenzavirus A, 

Influenzavirus B, Influenzavirus C, Isavirus, Thogoto Virus and Quaranjavirus 

(“ICTV Virus Taxonomy 2014” 2015).  
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The 3 different types of influenza virus; A, B and C, differ in a number of ways. 

Firstly, while influenza A and B viruses possess 8 genome segments, influenza C 

viruses contain only 7. This is due to the fact that influenza C viruses only express a 

single surface glycoprotein capable of mediating both viral entry and release, whereas 

influenza A and B viruses express two separate proteins from two different genome 

segments, with each protein performing one of these functions. Another key 

distinction between the influenza viruses is their host specificity and pathogenicity. 

The natural host of influenza A viruses is wild aquatic birds but these viruses can also 

infect a wide range of different organisms including but not limited to livestock 

poultry, horses, pigs, cats, dogs, seals, ferrets and humans (Palese and Shaw, 2007).  

 

Influenza A viruses contains only 1 species but can be subdivided based on their 

surface glycoproteins heamagglutinin (HA) and neuraminidase (NA). Following the 

recent discovery of influenza-like viruses in bats, there are currently 18 known 

subtypes of HA and 11 known subtypes of NA (Tong et al. 2012). Influenza A viruses 

can be highly pathogenic, capable of causing yearly epidemics, particularly from 

seasonal influenza A viruses such as H1N1 and H3N2 subtypes, due to an 

evolutionary process known as antigenic drift. This phenomenon is due to the high 

infidelity of the viral RNA dependent RNA polymerase (RdRp) introducing random 

mutations into each gene segment. Some of these mutations can offer increased viral 

fitness such as mutations which occur within the globular head region of HA, 

allowing the virus to avoid recognition by neutralising antibodies and it is these 

changes that requires the influenza vaccine to be updated annually (Smith et al. 2004).  
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Influenza B viruses primarily infects humans although both seals and ferrets have 

been seen to be susceptible to the virus. However unlike influenza A viruses, 

influenza B viruses consist of a single serotype that mutates 2-3 times slower than 

influenza A viruses coupled with the limited host range. Influenza C viruses are 

capable of infecting humans, dogs and pigs which can sometimes cause local 

epidemics, however these viruses are less common than influenza A and B viruses 

and normally only cause mild illness in children (Palese and Shaw, 2007). 

 

1.3.1 Pandemic Potential of influenza A viruses 

Influenza A viruses also have pandemic potential through their ability to infect a 

diverse range of host species and reassort their gene segments into a configuration 

capable of causing widespread infection in an immunologically naïve human 

population. This phenomenon is known as antigenic shift, where a novel HA is 

introduced to a human population through a reassortment event of gene segments 

when another host, often avian or swine, are infected by 2 or more influenza strains, 

which has then been capable of infecting humans. However, recent research has 

shown that reassortment is not a necessity for a virus to undergo a zoonotic event; 

only a small number of mutations were capable of producing an avian influenza virus, 

H5N1, which could directly transmit from animal reservoirs to humans (Herfst et al. 

2012).  

 

In recent years we have seen an increase in zoonotic influenza infections in humans.  

It is known that some influenza viruses are excellent donors of some genome 

segments such as H9N2, which has donated its internal gene complex to both H7N9 

and H10N8 prior to human infection (Shanmuganatham et al. 2014). There have been 
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453 confirmed cases of H7N9 in humans since 2013, with a mortality rate of 38%, 

and represents one of a number of novel strains like H10N8 and H6N1 to cross the 

species barrier (Shi et al. 2013; T. Zhang et al. 2014). Examples of pandemic 

influenza outbreaks include the Asian flu of 1957 and the Hong Kong flu of 1968, 

which were caused by re-assorted H2N2 and H3N2 respectively. Also, the most 

infamous pandemic flu was the 1918 Spanish flu, a H1N1 that killed between 20 and 

50 million people having a particular effect on young adults, making it unlike any 

other flu known before that time (van de Sandt, Kreijtz, and Rimmelzwaan 2012).  

 

1.3.2 Virion structure 

Influenza virus particles can vary greatly in size due to their pleomorphic nature; 

spherical particles are more uniform in size and have a diameter ranging between 80-

100 nm whereas filamentous particles have been seen to stretch over 300 nm. The 

viral genome is enclosed within a lipid envelope as depicted in fig 1.6, which is taken 

from the host membrane punctuated with three transmembrane proteins; viral 

glycoproteins HA and NA along with the small integral membrane protein M2. Below 

the envelope is the matrix protein M1 encompassing the viral core made up of 

ribonucleoprotein (RNP) complexes consisting of each viral RNA segment 

encapsidated in nucleoprotein (NP) accompanied by the three proteins subunits of the 

RdRp (PB2, PB1 and PA), which are responsible for the transcription and replication 

of the viral genome (Palese and Shaw, 2007). Recent research by two groups using 

3D electron microscopy reconstruction has finally revealed the structure of the RNP 

complexes in their native state showing a double-helical hairpin structure. At ~20 A 

resolution it shows that each RNP contains a single copy of the viral polymerase 

complex, viral RNA and NP forming the double helical structure with 5 or 6 pairs of  
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Figure 1.6. Schematic and Electron micrograph of Influenza A virus. The schematic shows the 
outer membrane envelope punctuated with the surface glycoproteins HA and NA along with the M2 
ion channel protein. Inside the inner matrix layer each vRNA segment is encapsidated by NP, 
associated with one copy of the polymerase complex (consisting of three subunits; PB1, PB2, and PA) 
and folded in a double helical hairpin structure known as viral ribonucleoprotein complexes (vRNPs). 
NEP is also present within the virus particle but is not displayed in the schematic. The electron 
micrograph shows an influenza A/WSN/1933 (H1N1) virion at 40, 000x magnification, the spike-like 
projections are the surface glycoproteins and distinct RNA segments are clear inside the virion. 
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NP molecules per turn with an approximated 120-150 RNA nucleotides in each 

helical turn (Arranz et al. 2012; Moeller et al. 2012) 

 

1.3.3 Viral Encoded Proteins 

The influenza A virus genome is comprised of eight segments of negative sense RNA 

that together encode for 10 core proteins all of which are essential to all strains of 

influenza A virus for viral fitness (Palese and Shaw, 2007). 

 

1.3.3.1 Polymerase Proteins 

The influenza virus encodes its own RNA-dependent RNA polymerase that is a 

complex of three proteins: polymerase basic protein 1 (PB1), polymerase basic 

protein 2 (PB2) and polymerase acidic protein (PA). Protein interaction studies have 

shown that PB1 binds to both PA and PB2, through its N- and C-terminal domains 

respectively (González, Zürcher, and Ortín 1996; MacDonald et al. 2012). A direct 

interaction between PA and PB2 was not elucidated until a bimolecular fluorescence 

complementation assay was used to study their interaction (Hemerka et al. 2009). 

Recently, high resolution atomic structure of the influenza polymerase complex has 

been solved showing that there are several intricate interactions between each subunit 

and not limited to the N-to-C terminal interactions which had previously been 

described (Sugiyama et al. 2009; Reich et al. 2014; Pflug et al. 2014). 

 

 

PB1 

PB1 contains the conserved characteristics associated with RNA-dependent RNA 

polymerases (Biswas and Nayak 1994). PB1 catalyses the sequential addition of 
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nucleotides during RNA chain elongation (Braam, Ulmanen, and Krug 1983). The 

active site for the polymerase activity is an S-D-D motif found at positions 444-446 

(Biswas and Nayak 1994). PB1 is responsible for the initiation of transcription and 

replication through binding to the 5’ and 3’ terminal ends of both vRNA and cRNA 

respectively (González and Ortín 1999a; González and Ortín 1999b).  

 

PB2 

The PB2 protein plays an important role in the initiation of transcription by binding 

the cap on host pre-mRNA molecules (Ulmanen, Broni, and Krug 1981). The cap-

binding ability of PB2 has been attributed to several different regions of PB2, 

however structural analysis of the cap-binding domain complexed with m7GTP 

showed that like other cap-binding proteins such as vaccinia virus VP39 and eIF4E, 

PB2 sandwiched the methylated base between two aromatic residues, H357 and F404 

(Fechter et al. 2003). PB2 has also been shown to be involved in genome replication 

as some mutations within the N-terminal region of PB2 have been shown to affect 

replication but not transcription (Gastaminza et al. 2003). More recently PB2 has been 

shown to undergo a number of mutations which allows for host adaptation between 

avian and mammalian hosts (Neumann and Kawaoka 2015). Two of the most studied 

adaptation mutations are found at positions 627 and 701. It was shown that a glutamic 

acid at position 627, found in most avian lineages, restricted viral replication in 

mammalian hosts whereas a lysine at position 627 (encoded by most human influenza 

viruses), conferred efficient replication in the upper respiratory tract of mammals 

(Hatta et al. 2007). The PB2 D701N mutation is important for the ability of PB2 to 

bind to host nuclear import machinery, where an asparagine at position 701 increased 

the binding affinity of importin alpha in mammalian cells leading to an increase in 
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replicative machinery as well as promoting the nuclear import of incoming vRNPs in 

mammalian cells (Gabriel, Herwig, and Klenk 2008; Sediri et al. 2015). 

 

PA 

The PA protein also plays a critical role in the initiation of transcription; however, 

unlike PB2 it is required for cleaving capped pre-mRNAs rather than binding to them. 

Structural analysis has attributed the endonuclease activity required for cap-snatching 

to the N-terminal domain of PA, which is in agreement with previous mutational 

studies (Hara et al. 2006; Dias et al. 2009; Yuan et al. 2009). Not only does PA have a 

role in transcription but it has also been shown to be important for binding and 

regulating the synthesis of vRNA and cRNA (Hara et al. 2006; Huarte et al. 2003; 

Maier et al. 2008). Like PB2, PA has recently been shown to be important for host 

adaptation with a number of amino acids been shown to have an impact on the viruses 

ability to adapt to a mammalian host (Hu and Liu 2015). In fact, reassortment 

experiments that paired a human PA with an avian polymerase complex showed an 

increase in polymerase activity in vitro and a reduction in host restriction in 

mammalian cells (Mehle et al. 2012). The importance of PA to host adaptation was 

compounded further by in vivo experiments showing an increase in competent virus 

spread by avian H5N1 in guinea pigs when paired with a human PA segment (Y. 

Zhang et al. 2013). 

 

1.3.3.2 Nucleoprotein 

Influenza nucleoprotein (NP) is an RNA binding protein essential for the transcription 

and replication of viral RNA as well as forming an integral part of vRNP and cRNP 

structures through its high affinity for RNA. Despite NP’s affinity for RNA the 
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protein is indiscriminate about which RNA sequence it binds to (Yamanaka, 

Ishihama, and Nagata 1990). The crystal structure of NP has been solved for both 

H1N1 and H5N1 as a trimeric complex and showed that monomeric NP consisted of 

3 main domains, a head domain, a body domain and a tail loop (Ye, Krug, and Tao 

2006; Ng et al. 2008). NP is capable of undergoing homo-oligomerisation through the 

insertion of the tail loop into the middle domain of the adjacent NP monomer and 

recently this oligomerisation has been shown to be dependent on phosphorylation 

(W.-H. Chan et al. 2010; Mondal et al. 2015; Turrell et al. 2015) and to take place in a 

tail-loop first orientation independent of RNA binding (Turrell et al. 2013). 

Mutational analysis of both the RNA binding and oligomerisation domains of NP 

showed that both of these functions were required for the transcription of vRNA and 

that NP has an essential role as an elongation factor during viral transcription (W.-H. 

Chan et al. 2010; Turrell et al. 2013). 

 

1.3.3.3 Surface Glycoproteins 

There are currently 18 subtypes of HA and 11 subtypes of NA have been identified, 

all of which have been found in the natural host of these viruses, water fowl, apart 

from the recently discovered H17N10 and H18N11 which were isolated from bats 

(Fouchier et al. 2005; Tong et al. 2012; Tong et al. 2013). The zoonotic potential of 

influenza viruses is dependent on the ability of the surface glycoproteins to allow for 

cell entry and egress following successful replication. 

 

HA 

The first step during viral infection is viral entry, which requires attachment of the 

virus to the host cell, a process mediated by the viral HA protein. HA is the most 
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abundant surface glycoprotein and is a type I integral membrane protein which 

undergoes a number of post-translational modifications such as glycosylation and 

acetylation of the cytoplasmic tail (de Graaf and Fouchier 2014). HA is initially 

translated and incorporated into virus particles as a single polypeptide, HA0, which is 

then cleaved extracellularly after virus release by host proteases to form two subunits 

HA1, which contains the receptor-binding domain of HA, and HA2, which contains 

the fusion subdomain. For attachment to the host cell HA targets sialylated glycan 

receptors on the cell surface and in 1983 it was shown that human and animal 

influenza viruses exhibited different preferences in the receptor specificity of HA 

(Rogers and Paulson 1983). Avian influenza viruses have a binding preference for 

sialic acid bound to galactose via an alpha 2,3 linkage, whereas human influenza 

viruses have a preference for alpha 2,6 linked sialic acid. However, viruses can easily 

evolve to change their receptor-binding specificity as it was recently shown that as 

few as 4 amino acid changes in an avian H5N1 HA was capable of switch specificity 

from alpha 2,3 to alpha 2,6, thereby allowing for successful airborne transmission of 

an avian virus among ferrets (Herfst et al. 2012). 

 

The second major function of HA is low pH triggered fusion, which is required for 

the release of the viral genome. The low pH found in the endosome leads to a 

significant structural change in HA with the most prominent change in the position of 

the fusion peptide. Due to the hydrophobic characteristics of the fusion peptide the 

conformational change allows this peptide to bury itself in the endosomal membrane, 

thereby bringing the viral and endosomal membranes into close enough proximity for 

membrane fusion to occur. The presence of more than one HA trimer stimulates the 

production of a fusion pore, thereby connecting the viral interior with the host cell 
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cytoplasm and allowing the vRNP to exit the virus particle and enter the cytoplasm 

(Palese and Shaw 2007).  

 

HA is also recognized by the adaptive immune system, which leads to the production 

of neutralizing antibodies raised against the numerous antigenic sites found on the 

globular head region of the HA1 domain.  This helps to drive the evolution of the 

virus as due to the infidelity of the polymerase, a viral quasi-species is produced, with 

many of the mutant viruses containing mutations within the antigenic sites of HA1. 

Changes that allow the virus to go unnoticed by the immune system are termed 

‘escape mutants’ which over time become fixed changes defining the antigenic drift 

of the virus (Smith et al. 2004). 

 

NA 

The NA protein is the second most abundant surface glycoprotein on influenza A 

virions and is a type II integral membrane protein which forms tetramers on the 

surface of the virion and infected cells (Eichelberger and Wan 2015). The native 

tetramer is required for enzyme activity and each monomer has a distinctive 6-bladed 

beta propeller (Russell et al. 2006). There is less NA than HA on the virion surface, 

however this is virus dependent. For example, in most viruses the ratio is ~ 5:1 HA to 

NA but the 2009 H1N1 pandemic virus had a ratio nearer to 2:1 (Getie-Kebtie et al. 

2013).  

 

NA has a number of essential roles throughout the virus life cycle. )E!"*!-!*"-."5-*4!
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enables incoming virions to access respiratory tract epithelial cells by destroying 

decoy receptors present on mucins (Matrosovich et al. 2004). However, it is unlikely 

that this receptor-destroying activity prevents HA from binding and infecting 

epithelial cells due to the increased ratio of HA:NA and because also NA appears to 

be segregated from HA on the virus surface (Calder et al. 2010). NA is essential for 

the release of nascent virus particles as shown by experiments in which reduced 

enzymatic activity of NA led to a reduction in viral plaque size due to inefficient cell-

to-cell spread (Kilbourne et al. 1968). NA also removes sialic acids from its own 

glycoproteins, which is thought to prevent aggregation of nascent virions at the cell 

surface and may explain the relationship between NA activity and transmissibility as 

free, non-aggregated virions are more likely to have improved transmission in aerosol 

droplets that are inhaled into the lower respiratory tract (Lakdawala et al. 2011; Yen 

et al. 2011).  

 

1.3.3.4 Matrix Proteins 

M1 

Matrix protein 1 (M1) is the most abundant protein in the virion, oligomersing to form 

a protein layer just below the lipid bilayer, separating the inner core components from 

the membrane glycoproteins. M1 is believed to interact with the cytoplasmic tails of 

the surface glycoproteins and play a role in the organization of the outer membrane 

proteins. M1 is also known to play a number of important roles in the virus replication 

cycle. M1 is known to interact with both RNP and NEP/NS2 and is indispensible for 

the nuclear export of vRNPs (Sakaguchi et al. 2003). M1 has also been shown to be 

essential and sufficient to produce virus-like particles, as well as being shown to play 

an important role in the pleomorphic nature of influenza viruses thus providing 
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evidence for its critical role in viral egress (Latham and Galarza 2001; Gómez-Puertas 

et al. 2000; Martyna and Rossman 2014). 

 

M2 

The M2 protein of influenza A viruses is a type III integral membrane protein which 

forms a tetramer in its native state.  M2 consists of 3 protein domains a short ecto-

domain, a transmembrane domain and an endodomain with palmitate and phosphate 

modification (Shuck, Lamb, and Pinto 2000).  The M2 protein has been shown to 

possess ion channel activity and plays a major role in viral entry. M2 conducts 

protons from the acidified endosomes into the interior of the virus leading to the 

dissociation of vRNPs from the rest of the viral components, therefore completing the 

uncoating process (Takeda et al. 2002).   

 

This ion channel activity has also been suggested to play a role in the stabilization of 

HAs from premature low pH transitions in the trans-Golgi network. However, this 

secondary function is particularly important in the case of avian HA proteins H5 and 

H7, which have a multibasic cleavage site that can be cleaved by ubiquitous proteases 

and are consequently more susceptible to a premature low pH-induced conformational 

change (Ciampor et al. 1992).  Another function attributed to the M2 protein is an 

Impact on the ratio of filamentous to spherical particles as well as evidence 

suggesting that M2 has a role in virion assembly through an interaction with nascent 

vRNPs at the cell (Roberts, Lamb, and Compans 1998; Hughey et al. 1995; Schroeder 

et al. 2005).! K&! N-*! -.*=! Q44,! *N=Z,! 1=! ;.-J! -! A=.4! ",! #"A3*! ;-A1"<.4! A4.4-*4!
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1.3.3.5 Non-Structural proteins 

Non-Structural Protein 1 

The non-structural protein 1 (NS1) is the most abundantly expressed of any influenza 

virus protein, which at first was believed to not be present within the influenza virion 

(Krug and García-Sastre 2013). However, due to advances in technique sensitivity 

NS1 was found to be present in the virion, although the role played by NS1 in the 

virion is still to be elucidated (Edward C. Hutchinson et al. 2014). The NS1 protein 

varies in length between different virus strains but all NS1 proteins carry similar 

features. They consist of an N-terminal RNA Binding Domain (RBD) and a C-

terminal Effector Domain (ED) and are capable of producing homo-dimers through 

the RBD (Chien et al. 1997). NS1 is a multi-functional protein capable of a number of 

different effector functions. Influenza A NS1 protein is capable of inhibiting the 

interferon response at a number of different stages during the host response to viral 

infection (see section 1.6). NS1 has also been shown to regulate both viral RNA 

synthesis as well as protein expression and other pro-viral functions such as the 

control of the cellular apoptotic response (Ayllon and García-Sastre 2015).  

 

NS1 was initially thought to be a predominantly nuclear protein but it has since been 

shown that the cellular distribution of NS1 can change throughout infection 

suggesting a temporal regulation, potentially mediated through protein-protein 

interactions and post-translational modifications such as phosphorylation or coupling 
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with ubiquitin like proteins such as SUMO or ISG15 (C. Zhao et al. 2010; Hsiang, 

Zhou, and Krug 2012; Santos et al. 2013). 

 

Nuclear Export Protein 

In addition to NS1, vRNA segment 8 produces a second mRNA via a splicing 

reaction, which encodes for a 121 amino acid protein known as Nuclear Export 

Protein or Non-structural protein 2 (NS2) (Lamb and Lai 1980). The protein was 

initially designated as NS2 until it was shown to be present in virions at very low 

levels, suggesting a potential interaction with M1 (Richardson and Akkina 1991; 

Yasuda et al. 1993). Following the discovery of the function of NS2, where the 

protein was found to be responsible for exporting newly synthesized vRNPs out of the 

host cell nucleus ensuring their availability for packaging into nascent virions NS2 

was renamed NEP (O’Neill, Talon, and Palese 1998).  

 

Recently NEP has been suggested to have more than one function during the 

influenza virus replication cycle. It has been determined that NEP contributes to the 

viral budding process through interaction with a cellular ATPase, F1Fo ATPase, by 

recruiting F1Fo ATPase to the plasma membrane (Gorai et al. 2012). Additionally, 

NEP is capable of regulating the accumulation of viral RNA species, suggesting that 

NEP is able to promote the switch from viral transcription to replication for the 

production of genomic vRNPs (Robb et al. 2009; Mänz et al. 2012). Furthermore, 

there is substantial evidence that indicates mutations within NEP capable of 

increasing viral RNA replication offer a significant replicative benefit during 

mammalian adaptation of avian influenza virus (Mänz et al. 2012). 
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1.3.3.6 Accessory Proteins 

Influenza A virus was believed to express 10 proteins from the 8 viral genome 

segments, however since 2001 a number of accessory proteins have been identified or 

theorized to be expressed by influenza A viruses (Vasin et al. 2014). Owing to the 

small size of the influenza genome, influenza has evolved a number of mechanisms 

for the expression of multiple proteins from a single gene segment, including 

alternative splicing of viral mRNAs as seen in segment 7 and segment 8. Other non-

canonical mechanisms of translation employed by influenza A virus include non-

AUG initiation, re-initiation, leaky ribosomal scanning as well as ribosomal frame-

shifting (Firth and Brierley 2012; Yewdell and Ince 2012).  

 

The eleventh influenza A protein was found to be encoded on segment 2, with an 

alternative open reading frame leading to the expression of PB1-F2 (W. Chen et al. 

2001). Since this discovery, another 6 accessory proteins have been found to be 

expressed by influenza A virus as well as a hypothetical protein expressed from 

segment 8. These proteins and known functions are summarized in table 1.1. 

 

1.4 Virus replication cycle 

The viral replication cycle is a complex series of events, which can be divided into a 

number of different parts, each of which are integral for successful replication. The 

replication cycle of influenza A virus is summarized in fig 1.7. 

 

1.4.1 Attachment and Entry 

The first step in viral infection requires the attachment of HA to sialic acid present on 

the cell surface (Palese and Shaw, 2007). However a number of other host factors  
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Protein Segment Function Reference 
PB1-F2 2 Pro-apoptotic and pro-inflammatory 

effects 
Regulation of immune response 

(W. Chen et al. 
2001; Krumbholz 
et al. 2011; Dudek 

et al. 2011) 
PB1-N40 2 Regulates viral replication (Wise et al. 2009) 
PA-N155 3 Potential role in replication (Muramoto et al. 

2013) 
PA-N182 3 Potential role in replication (Muramoto et al. 

2013) 
PA-X 3 Modulates host response and viral 

virulence 
(Jagger et al. 2012) 

M42 7 Can functionally replace M2 (Wise et al. 2012) 
NS3 8 Potentially related to host adaptation 

in mice 
(Selman et al. 

2012) 
NS4 8 Hypothetical Translation from the 

negative sense ORF. Function 
Unknown 

(Clifford, Twigg, 
and Upton 2009) 

 
Table 1.1. Influenza Accessory proteins and known functions. 
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have been implicated in viral attachment such as Annexin V and in the case of 

macrophages and dendritic cells, C-type lectins, suggesting that additional co-

receptors may be required for viral attachment (R. T. Huang, Lichtenberg, and Rick 

1996; Londrigan et al. 2011).  

 

Early imaging studies showed that influenza A virus was taken up via receptor-

mediated endocytosis and that virus internalization could take place via clathrin-

dependent and clathrin-independent mechanisms (Matlin et al. 1981). Influenza A 

viruses are also capable of being internalized via caveolin-dependent pathways but 

viral entry has also been shown to take place independently of both clathrin and 

caveolin (Sieczkarski and Whittaker 2002). In 2011, a fourth mechanism of viral 

entry became apparent as influenza A viruses were shown to utilize macropinocytosis 

as an alternative pathway for internalization (de Vries et al. 2011). Further research 

has shown that the mechanism of uptake is likely to be cell-type dependent but can 

also be determined by the pleomorphic nature of the virus as filamentous particles 

have been shown to be more likely to be taken up by macropinocytosis (De Conto et 

al. 2011; Rossman, Leser, and Lamb 2012). Following internalization the virus 

particle undergoes endosomal trafficking from localizing to early endosomes before 

moving toward late endosomes in the perinuclear region where due to changes in 

endosomal pH the virus is able to undergo fusion for the release of the viral genome 

(Edinger, Pohl, and Stertz 2014). 

 

1.4.2 Fusion 

Following internalization, the viral and endosomal membranes fuse in order to allow 

the genome to be released into the cytoplasm. During endocytic trafficking the  
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Figure 1.7. Schematic of Influenza A virus Replication. The virus binds to the target cell through 
HA which leads to the virus being endocytosed by the host cell. During the late stage of endocytosis 
the low pH causes a conformational change in HA allowing the viral and endosomal membranes to 
fuse, leading to the opening of a pore and the release of the viral genome to the cytoplasm. The viral 
genome is then imported into the nucleus where primary transcription of mRNA occurs, which is then 
translated in the cytoplasm. NP is then shuttled back into the nucleus, which triggers the switch to 
what is called secondary transcription producing cRNA as a template for genome replication. Once 
enough protein and genome has been made RNP complexes form and are transported to the plasma 
membrane for virion assembly. Virions are then released by the enzymatic action of NA. (Red = 
vRNA, Blue = mRNA and Green = cRNA) 



! $%!',1A=53<1"=,!

! /7!

endosomes undergo a step-wise acidification process as protons are pumped into the 

endosomal lumen (Pérez and Carrasco 1994). For Fusion to occur HA first needs to 

be cleaved from from HA0, which assemble as trimers, into HA1 and HA2 by a 

trypsin-like serine endoprotease. After cleavage, the two disulfide-bonded protein 

domains produce the mature form of the protein subunits as a prerequisite for the 

conformational change necessary for fusion (Taubenberger 1998). The acidic 

environment leads to the final conformational change which inserts the fusion peptide 

into the endosomal membrane where the concerted structural changes of several HA 

molecules fuses the membranes and creates the fusion pore, allowing for the release 

of vRNPs (Palese and Shaw, 2007).  

 

1.4.3 Uncoating and nuclear import 

Uncoating is the process through which vRNPs are released into the cytoplasm and is 

dependent on both M2 and M1 (Edinger, Pohl, and Stertz 2014). M1 has been 

demonstrated to interact with vRNPs through its middle domain interacting with NP 

(Noton et al. 2007). This interaction as well as the interaction of M1 with the viral 

membrane needs to be released. This is mediated through the action of M2 which 

pumps protons from the surrounding endosome into the virion, lowering the pH 

causing the detachment of vRNPs from M1 and allowing for the genome to be 

released into the cytoplasm (Zhirnov 1990). Although, which host factors were 

required for uncoating to take place in unknown, a recent publication shows that an 

E3 ubiquitin ligase, Itch, is necessary for efficient uncoating (Su et al. 2013). 

 

Once vRNPs are dissociated from M1 and released into the cytoplasm the vRNPs are 

then dependent on host factors for their transport into the nucleus for transcription and 
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replication. The vRNPs are translocated to the nucleus using the classical importin-

alpha-importin-beta1 (IMP!-IMP"1) dependent nuclear import pathway (Eisfeld, 

Neumann, and Kawaoka 2015). Nuclear import of vRNPs is determined by the 

presence of nuclear localization signals (NLS) present in NP which following the 

recently solved structures has been shown to be surface exposed making it available 

for interaction (Arranz et al. 2012; Moeller et al. 2012). This non-canonical NLS 

sequence at the beginning of NP binds to IMP! isoforms 1 and 5 and has been shown 

to be essential for the nuclear import of vRNPs (Cros, García-Sastre, and Palese 

2005). NP has also been shown to bind to IMP!3 and IMP!7 although these are yet to 

be fully characterised (Gabriel et al. 2011). Additional studies have also shown that 

vRNPs only associate with the nuclear pore complex in the presence of IMP! and 

IMP" and that transport into the nucleus also required RAN-GTPase (O’Neill et al. 

1995). More recently an inhibitor of the IMP"-RAN GTPase interaction was shown to 

inhibit the translocation of vRNPs into the nucleus (Chou et al. 2013), therefore 

providing more evidence that vRNP transport is dependent on this host process.  

 

 

1.4.4 Transcription  

Once the genome has translocated to the nucleus its primary role is to produce viral 

mRNA for the synthesis of new viral proteins (Mark et al. 1979). This process is 

termed primary transcription and uses m7G capped pre-mRNAs as a primer for 

mRNA synthesis, which are ‘cap-snatched’ by the viral polymerase proteins (Plotch, 

Bouloy, and Krug 1979). Transcription of influenza mRNA is initiated using a prime 

and realign mechanism which produces a methylated cap structure which is followed 

by a 10-13 nt host-derived sequence prior to viral specific sequence. This causes the 
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viral mRNAs to be longer than the full-length genomes at the 5’ end (Deng, Vreede, 

and Brownlee 2006). The polymerase then uses the vRNA as a template producing a 

poly-A tail by reiterative stuttering at the poly-U sequence of 5-7 U residues 

conserved at the 5’ end of vRNA which causes the viral mRNAs to be shorter in 

length than the viral genome (Poon et al. 1999). Following the production of the viral 

mRNA, it is then exported from the nucleus for translation by cellular ribosomes 

where newly synthesized PB1, PB2, PA and NP are all transported back to the 

nucleus for the synthesis of de novo vRNPs (Eisfeld, Neumann, and Kawaoka 2015). 

A number of host factors are involved in primary transcription including the RNA 

polymerase II (Pol II) complex and SFPQ. It is assumed that the viral polymerase 

complex interacts with actively transcribing Pol II to obtain cellular mRNA caps via 

cap-snatching (Engelhardt, Smith, and Fodor 2005). Although, Pol II degradation is 

promoted by PB2 and PA proteins, which has been associated with increased 

pathogenicity in mice (Llompart, Nieto, and Rodriguez-Frandsen 2014). Another host 

factor involved in primary transcription is a multifunctional splicing factor, SFPQ, 

which associates with several vRNP components promoting the polyadenylation of 

viral mRNA transcripts (Landeras-Bueno et al. 2011). Viral mRNA synthesis peaks 

between 2-6 hours post infection, followed by a sharp decline, thought to be due to a 

limited number of host caps available due to host shut-off or the degradation of Pol II 

induced by infection (Vreede et al. 2010).  

 

1.4.5 Genome Replication 

The replication of the viral RNA genome occurs in two different stages. During the 

first stage genomic vRNA is used as a template to produce complimentary RNA 

(cRNA). This is followed by the second stage where the cRNA is replicated into 
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vRNA. The mechanisms of initiation and termination of cRNA synthesis is different 

to those used for the production of mRNA as cRNA is a full-length copy of the vRNA 

and therefore does not have a 5' cap structure or a 3' poly(A) tail. The production of 

genomic RNA does not require a RNA primer due to the 5’ triphosphates at 5’ ends of 

both vRNA and cRNA (Fodor 2013; Vreede, Gifford, and Brownlee 2008).  

 

Nascent NP and Polymerase proteins are required to protect genomic RNA from 

degradation. The recent observation that NP acts as an elongation factor during 

replication suggests that it is likely that the core reason that viral protein synthesis is 

required prior to genome replication is to provide newly synthesized trans-acting 

RNA polymerase. This can then be used to produce the cRNA and newly synthesized 

NP to stabilize elongation of full-length genome replication products whilst 

encapsidating de novo RNA (Fodor 2013; Turrell et al. 2013). It has also been 

proposed that NEP is involved in the regulation of viral RNA synthesis. NEP has been 

shown to regulate the balance been transcription and replication in vivo, increasing 

the amount of vRNA whilst reducing the levels of mRNA (Robb et al. 2009). 

 

1.4.6 vRNP export 

Newly synthesized vRNPs need to be transported from the nucleus to the cytoplasm 

for incorporation into nascent virions. Influenza viruses use the CRM-1-dependent 

Nuclear Export pathway to transport the viral genome into the cytoplasm (Eisfeld, 

Neumann, and Kawaoka 2015). NP is the only known part of the vRNP that has a 

Nuclear Export Signal (NES), however, without the presence of M1 or NEP vRNPs 

remain in the nucleus, showing that these two proteins are essential for vRNP export 

(Martin and Helenius 1991; Bui et al. 2000). M1 and vRNPs have been shown to 
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interact and this interaction is required to promote the export of vRNPs but M1 has 

not been shown to interact directly with CRM-1 and is therefore more likely to be an 

intermediary protein between vRNPs and the CRM-1 interacting partner (Sakaguchi 

et al. 2003).  

 

NEP has been shown to interact directly with CRM-1 through two NES sequences, 

which when mutated through reverse genetics can have a severe impact on viral 

fitness and growth kinetics through its effect on nuclear export of vRNPs (Neumann, 

Hughes, and Kawaoka 2000; S. Huang et al. 2013). Although NEP has never been 

shown to directly interact with vRNPs, it can interact directly with M1 suggesting a 

model for vRNP nuclear export whereby vRNPs are bound to M1 which in turn bind 

to NEP in complex with CRM-1 allowing for nuclear export (Akarsu et al. 2003; 

Shimizu et al. 2011).   

 

1.4.7 Trafficking to the Plasma Membrane 

Following export from the nucleus, the vRNPs need to be transported through the 

cytoplasm to the plasma membrane for the assembly of nascent virions. After nuclear 

export vRNPs are found to localise to the microtubule organization centre (MTOC) 

(Momose et al. 2007; Amorim et al. 2011) and live cell imaging has shown that 

fluorescently tagged vRNPs move along microtubules towards the plasma membrane 

(Momose et al. 2011). This was supported by evidence that cells treated with 

microtubule depolymerisation compounds were found to produce less virus and have 

a different localization pattern for trafficking vRNPs (Momose et al. 2007). 

Membrane bound vesicles are a common microtubule cargo in mammalian cells and 

both vRNA and vRNPs have been seen to co-localise with Rab11-positive recycling 
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endosomes (Chou et al. 2013; Amorim et al. 2011; Momose et al. 2011). Following 

transport to the plasma membrane it appears that the vRNPs transfer from Rab11-

positive endosomes to the plasma membrane suggesting a specific mechanism for this 

transfer, as suggested by the lack of Rab11 found in influenza A virions (Eisfeld et al. 

2011; Shaw et al. 2008).  

 

1.4.8 Packaging 

The exact mechanism of vRNP packaging is also not fully understood, but two 

different models were suggested, random packaging and selective packaging (Palese 

and Shaw, 2007). However, with an increasing amount of evidence for selective 

packaging, it is now generally accepted that selective packaging is the mechanism 

through which influenza A viruses package their RNA genomes (Gerber et al. 2014). 

All vRNA segments have been shown to have segment specific packaging signals 

located at the 5’ and 3’ coding regions (Eisfeld, Neumann, and Kawaoka 2015). 

However, recent research has shown that internal vRNA sequences appear to be 

important for the efficient packaging of all 8 influenza genome segments through the 

production of vRNA-vRNA interactions, yet these sequences appear to be strain 

specific (Essere et al. 2013; Gavazzi et al. 2013).  

 

Recent research into vRNP trafficking has provided an insight into the potential 

mechanism of sequence-specific selective packaging. Chou et al, recently showed that 

different vRNPs travel together toward the plasma membrane on Rab11-positive 

vesicles, suggesting a platform through which selective packaging of vRNA segments 

can take place (Chou et al. 2013). This hypothesis has garnered some support as a 

recent publication has showed, using a four-color FISH assay to visualize all eight 
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vRNA segments, that although vRNAs are not exported all together, they are also not 

exported individually. This suggests that viral RNA subcomplexes can further 

assemble whilst trafficking to plasma membrane via dynamic colocalization events 

using Rab11a-containing recycling endosomes as a platform (Lakdawala et al. 2014). 

 

1.4.9 Virus Assembly 

As the infection progresses, the plasma membrane becomes enriched with viral 

proteins, which leads to the budding of nascent virions around vRNPs. The viral 

glycoproteins HA and NA are concentrated to lipid raft microdomains. Although, the 

M2 protein also localizes to the plasma membrane it instead accumulates on the 

boundaries of lipid rafts. It has been suggested that M2 is required for the recruitment 

of vRNPs at the budding site via a direct interaction with M1 via its cytoplasmic tail 

(McCown and Pekosz 2005; B. J. Chen et al. 2008).  

 

Although the precise mechanism of virus budding is unknown it has been suggested 

that vRNPs may facilitate budding via interactions with M1. Upon binding vRNPs 

M1 may undergo a conformational change that drives polymerization and therefore 

capsid formation. An alternative hypothesis suggests that binding to vRNPs reduces 

the extent to which M1 can alter membrane curvature, therefore allowing capsid 

formation to be initiated by HA and NA. However, evidence to support these models 

is currently lacking (Rossman and Lamb 2011). M2 N-*!Q44,!*N=Z,!1=!;.-J!-!A=.4!

",! #"A3*! ;-A1"<.4! A4.4-*4! 1NA=3+N! -! <J1=;.-*2"<! 1-".! ZN"<N! N-*! Q44,! *N=Z,! 1=!

245"-14! -! <N=.4*14A=.M54;4,54,1! -.14A-1"=,! ",! 242QA-,4! <3A#-13A4! 245"-1",+!

1N4! C",-.! *14;*! =C! ",C.34,D-! #"A3*4*! A4.4-*4! X:=**2-,! 41! -.%! &I$IY%! (=..=Z",+!

#"A"=,! C=A2-1"=,!1N4!#"A"=,!2-J!*1"..!Q4!Q=3,5!1=! 1N4!;.-*2-!242QA-,4!534!1=!
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1N4!]E!Q",5",+! 1=! *"-."<!-<"5!=,! 1N4!<4..M*3AC-<4%!)E! "*! 1N4,!-Q.4! 1=!;.-J!-! C",-.!

A=.4!",!#"A3*!A4.4-*4!QJ!<.4-#",+!*"-."<!-<"5!=CC!1N4!<4..!*3AC-<4\!;A4#4,1",+!1N4!]EM

A4<4;1=A! ",14A-<1"=,! X:=**2-,! -,5! 9-2Q! &I$$Y%! ',14A4*1",+.J\! A4<4,1! <AJ=M

4.4<1A=,! 1=2=+A-;NJ! 4L;4A"24,1*! N-#4! *N=Z,! )E! 1=! Q4! <=,<4,1A-145! -1! =,4!

.=<-1"=,!=,!,-*<4,1!#"A"=,*\!ZN"<N!*3++4*1!1N4!A=.4!=C!)E!",!C-<"."1-1",+!1N4!C",-.!

A4.4-*4!=C!,-*<4,1!#"A"=,*!XT-.54A!41!-.%!&I$IY% 

 

In addition to viral factors, a number of different host factors have been shown to be 

essential for budding include G-protein and kinase activity, as well as ATP, F1Fo-

ATPase activity and actin filaments (Gorai et al. 2012). An interaction between M1 

and an adaptor protein involved in recycling endosome trafficking, RACK1, has also 

been shown to be required for viral budding (Demirov et al. 2012). 

 

1.5 Influenza and IFN 

Influenza virus primarily targets the epithelial cells of the respiratory tract and can 

elicit the IFN response by PAMP activation of three main PRRs: TLRs, RIG-I and 

nucleotide oligomerization domain (NOD)-like receptor family pyrin domain 

containing 3 (NLRP3). TLRs are first to respond to influenza infection as TLR7 

recognises ssRNA released by degraded RNPs from acidified endosomes whereas 

TLR3 will recognise dsRNA, likely to be in the form of pan-handle structures from 

incoming vRNPs (Diebold et al. 2004). TLR2 and TLR4 are also believed to detect 

influenza infection as these are localised to the cell surface allowing them to bind to 

the viral HA and NA proteins (Takeuchi and Akira 2009; Imai et al. 2008). NLRP3 is 

found in the NLRP3 inflammasome, which is also activated by dsRNA and leads to 

the activation of Caspase I allowing for the proteolytic maturation of IL-1" and IL-18 
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(Kanneganti et al. 2006). RIG-I can be activated by either dsRNA or 5’-triphosphate 

RNA and has been shown to induce IFN after binding newly synthesised, uncapped, 

viral RNA in the cytoplasm later on during infection (Hornung et al. 2006).  

 

The activation of these PRRs leads the activation of the IFN-" promoter, which in 

turn leads to the production of IFN-" which then activates the IFN-signaling cascade 

through wither paracrine or autocrine signaling culminating in the transcription of 

over 300 ISGs allowing the host cells to establish an antiviral state (Randall and 

Goodbourn 2008). Some of these genes encode for antiviral proteins which are 

particularly important for the IFN response such as PKR, OAS and MxA but also 

ISG15, Viperin, Tetherin and IFITMs which have all been shown to play an important 

role in the IFN response to Influenza (van de Sandt, Kreijtz, and Rimmelzwaan 2012). 

 

ISG15 has 2 domains, which exhibit structural homology similar to ubiquitin 

connected via a proline-containing linker. ISG15 has 2 main functions, it can be 

excreted from the cell and act as a cytokine or like ubiquitin can be conjugated to over 

150 protein targets through an IFN inducible conjugation cascade including known 

antiviral proteins MxA and RIG-I (C. Zhao et al. 2005a; Lenschow et al. 2007). Mice 

which lack ISG15 have been shown to be more susceptible to infection by influenza 

A and B when compared to wildtype (wt) mice, and ISG15 has been shown to interact 

with the NS1 protein of A/Udorn/72 [H3N2] virus with two groups showing that 

ISGylation of NS1 impairs viral replication (Lenschow et al. 2007; C. Zhao et al. 

2005a; Tang et al. 2010). 
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Viperin (Virus Inhibitory protein, endoplasmic reticulum-associated, IFN-inducible) 

is another ISG which can be induced by types I, II and III IFNs and has been 

implicated in the IFN response against influenza virus infection (Fitzgerald 2011). 

The expression of Viperin has been shown to alter plasma membrane fluidity by 

negatively affecting the formation of the lipid-raft micro-domains used by influenza 

for viral budding. Viperin has been shown to interact with and decrease the enzymatic 

activity of farnesyl di-phosphate synthase, which is integral to lipid raft formation, 

leading to inhibition of influenza virus release (Wang, Hinson, and Cresswell 2007). 

 

Tetherin is a type II integral membrane protein localised to lipid rafts, which has been 

shown to restrict the release of some enveloped viruses such as HIV-1 (Watanabe, 

Leser, and Lamb 2011; Neil, Zang, and Bieniasz 2008). Although tetherin expression 

was shown not to reduce the infectious titre of released influenza viruses, it prevented 

the release of influenza virus-like particles (VLPs) into the media (Watanabe et al., 

2011). Palese and colleagues, who looked at VLPs formed through NA expression 

from plasmid DNA, also observed this. They saw that VLP production could be 

inhibited by Tetherin but some NA subtypes were unaffected suggesting that NA may 

have a mechanism to combat the antiviral restriction factor Tetherin (Yondola et al. 

2011). 

 

IFITM (Interferon inducible Transmembrane protein) proteins were identified as 

being able to restrict early steps in the infection process of influenza A viruses and the 

flaviviruses, Dengue virus and West Nile virus (Brass et al. 2009). Humans have 5 

IFITM genes, IFITM-1, -2, -3, -5 and -10 however, only IFITM-1,-2 and -3 are 

induced by IFN therefore suggesting an important role in antiviral activity (R. Jia et 
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al. 2012). IFITM proteins restrict viral infection by interfering with virus entry. When 

influenza A entry was monitored in IFITM-3 expressing cells by fluorescent 

microscopy, virion accumulation in IFITM3 positive membrane compartments was 

observed and indicated a failure to complete genome entry into the cytoplasm (Feeley 

et al. 2011). Following on from these in vitro studies, Everitt et al., (2011) used a 

knock out mouse model and found that IFITM-3 was essential for defending against 

influenza A infection with mice showing viral pneumonia when challenged with a 

low pathogenicity strain of influenza. These findings have also been shown to be 

relevant to human infection as a statistically significant number of patients 

hospitalized by H1N1/09 influenza were shown to have a single nucleotide 

polymorphism (SNP) that altered the splice acceptor site of the IFITM3 gene resulting 

in a protein that lacked the first 21 amino acids of the N-terminal region. This 

truncated version of IFITM3 was shown to have reduced influenza virus restriction 

and resulted in the relocalisation of IFITM3 from the endosomal compartment to the 

cell periphery. Therefore IFITM3, and in particular the N-terminal region, appears to 

have a crucial role in host defence against influenza infection by restricting virus 

entry (Everitt et al. 2012; R. Jia et al. 2012). 

 

1.6 Influenza IFN evasion 

With all these responses instigated by the host in response to infection influenza 

viruses have had to adopt several different ways to evade the IFN response in order to 

replicate and propagate infection. The biggest weapon influenza viruses have at their 

disposal is the NS1 protein, which is an antiviral antagonist protein capable of 

limiting IFN production. This has been shown through infections with modified 

viruses containing non-functional NS1 where the infected cells exhibit a much 
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stronger IFN response when compared to wild-type virus. The impact of NS1 is not 

limited to in vitro studies as defective NS1 viruses has been shown to have less 

virulence during mouse and swine studies (Falcón et al. 2005; García-Sastre et al. 

1998). NS1 is capable of inhibiting RIG-I receptor signaling in several ways. Firstly 

NS1 limits the availability of its own PAMPs for RIG-I detection by forming a 

complex with RIG-I and what is thought to be a viral PAMP in dsRNA (Pichlmair et 

al. 2006; Mibayashi et al. 2007). Secondly NS1 prevents the oligomerization of 

TRIM25 by binding to the coiled-coil domain and therefore blocking TRIM25 –

mediated ubquitination of RIG-I, which is essential for downstream signaling. Finally, 

another way in which NS1 is capable of blocking RIG-I signaling is by preventing the 

translocation of IFR-3, NF-%B and c-Jun/ATF2 transcription factors into the nucleus, 

therefore by inhibiting enhanceosome complex formation influenza NS1 is capable of 

blocking RIG-I mediated IFN-" gene transcription (Hale et al. 2008). 

 

NS1 has also been reported to regulate host cell gene expression (Nemeroff et al. 

1998). This is mainly through NS1 binding to the cleavage and polyadenylation 

specificity factor (CPSF30) complex and preventing it from processing the 3’ends of 

cellular pre-mRNAs into mature polyadenylated mRNAs.  Without maturation these 

mRNAs are not exported out of the nucleus, which thereby halts subsequent cellular 

protein synthesis. As a subset of these mRNAs would encode IFNs, binding of NS1 to 

CPSF30 essentially prevents the synthesis of IFNs by preventing nuclear export of 

IFN-encoding genes. NS1 is also able to block the export of mRNA from the nucleus, 

possibly through binding components of the mRNA transport machinery (Satterly et 

al. 2007). This function may allow influenza to limit non-IFN related pathways which 

could prove beneficial to viral replication (Hale, Albrecht, and García-Sastre 2010). 
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NS1 is also known to directly block the function of both PKR and OAS. OAS binds to 

dsRNA and data suggests that the NS1 RNA binding domain out-competes OAS to 

bind to dsRNA thus blocking this antiviral strategy (Min and Krug 2006). The 

mechanism that NS1 uses to block PKR activation was initially thought to be similar 

to that of OAS, however, experiments using an RNA-binding defective NS1 was still 

capable of limiting PKR activation (S. Li et al. 2006). NS1 had also been shown to 

bind to PKR in a dsRNA dependent manner through residues 123-127 (S. Li et al. 

2006; Min et al. 2007). Therefore, based on mapping studies it is hypothesised that 

NS1 binds to a linker region in PKR and prevents the conformational change from the 

auto-inhibition to the active conformation (S. Li et al. 2006; Hale et al. 2008). 

 

However, NS1 is not the only protein that influenza utilizes to combat the IFN 

response. Both PB2 and PB1-F2 have been seen to limit IFN production through 

associating with MAVS, a protein found in the IFN induction cascade (Graef et al. 

2010; Varga et al. 2011). Furthermore the viral polymerase complex of PB2, PB1 and 

PA have been shown to be involved in cap-snatching from host mRNAs and therefore 

can camouflage viral mRNAs as host mRNAs stopping host recognition whilst also 

reducing host cell gene expression including IFN (Sugiyama et al. 2009; Dias et al. 

2009). Influenza viruses are also capable of inhibiting PKR in an NS1-independent 

fashion as influenza NP binds to the p58IPK-hsp40 complex, thereby releasing p58IPK, 

which inhibits PKR activity, therefore NP indirectly inhibits PKR (K. Sharma et al. 

2011). The influenza virus NP protein encapsidates viral RNA which reduces the 

formation of dsRNA species and protects the RNA from recognition by cytoplasmic 

PRRs (van de Sandt, Kreijtz, and Rimmelzwaan 2012). Also, not only does influenza 

limit IFN production but it is also capable of inhibiting type I IFN receptor signaling 
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through the induction of SOCS (suppressor of cytokine signaling) proteins which act 

on JAK/STAT activation to inhibit IFN signaling (Pauli et al. 2008; Pothlichet, 

Chignard, and Si-Tahar 2008). 

 

1.7 IFN inducible GTPases 

The IFN-inducible GTPases are a superfamily of proteins that display inhibitory 

activities against a variety of microbial classes (Kim et al. 2012). Bioinformatic 

analysis has lead to the complete mapping of this superfamily in humans and mice but 

many other species have been annotated with IFN-inducible GTPases such as other 

primates, cows, dogs as well as lizards and birds, as seen in fig 1.8 (Kim et al. 2011; 

G. Li et al. 2009). There are currently 47 members in humans and mice which can be 

grouped in to 4 subfamilies based on paralogy and molecular mass; immunity-related 

GTPases (IRGs), guanylate binding proteins (GBPs), Myxoma (MX) resistance 

proteins and very large inducible GTPases (VLIGs/GVINs) (Kim et al. 2011; Martens 

and Howard 2006). 

 

Crystal structures of several IFN-inducible GTPases reveal a globular N-terminal G 

domain followed by a C-terminal helical domain (Kim et al. 2012). This structure plus 

the biochemical similarities have lead to the GTPases being grouped together with the 

dynamin-like family of proteins including dynamins, mitofusin, atlastins and other 

dynamin-like proteins (Ferguson and De Camilli 2012). The IFN-inducible GTPases 

have a wide variety of functions including budding and fusion of transport vesicles, 

cytokinesis and organelle division. These GTPases have a low µM substrate affinity 

whilst exhibiting high rates of GTPase activity and are capable of oligomerising to  
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Figure 1.8. IFN-inducible GTPase sub-families. Phylogenetic tree depicting the 4 sub-families 
of IFN-inducible subfamilies: 21-47 kDa IRGs, 65-73 kDa GBPs, 72-82 kDa MX proteins and 
the 200-285 kDa GVINs. (Adapted from Kim et al, 2012). 
!



! $%!',1A=53<1"=,!

! 7R!

form large complexes over 0.5 MDa in cells (Ferguson and De Camilli 2012). All 

IFN-inducible GTPases are transcribed in response to Type I, II or III IFN apart from 

the MX proteins which are only up-regulated by type I and III IFNs (Kim et al. 2011; 

Kresse et al. 2008). IFN-induced GTPases are some of the most up-regulated target 

genes during IFN signaling events, for example GBPs can account for up to 20% of 

the proteins induced by IFN-$ (Martens and Howard 2006). IFN-inducible GTPases 

are expressed by a large number of the mammalian cell lineages examined to date, 

which is in accordance with the wide-ranging distribution of IFN receptors 

(MacMicking 2012). Although, it should be noted that certain GBPs respond to TNF-

! and IL-1" in murine macrophages and human endothelial cells, therefore furthering 

the number of ways the host can induce these GTPases (Degrandi et al. 2007; Tripal 

et al. 2007). This allows for a cell-autonomous defence to intracellular pathogens, 

protozoa and viruses in a wide range of cell types (Kim et al. 2012). 

 

1.8 Mx Proteins 

The Mx proteins were first discovered as a result of work performed by Jean 

Lindemann, who found that a particular inbred mouse strain was resistant to doses of 

influenza virus that proved to be fatal in ordinary laboratory mice (Lindemann, 1962). 

The research that followed on from this found that the resistance was caused by the 

Mx1 gene, this lead to the screening of several inbred mice strains and perhaps 

surprisingly found that most of these strains were carrying non-functional Mx1 genes 

due to deletions and nonsense mutations (Reeves et al. 1988; Staeheli et al. 1988).  

 

The Mx family of GTPases contains MxA and MxB in humans, with homologues 

found in mice referred to as Mx1 and Mx2. Both human Mx genes are found in close 
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proximity to each other at the distal end of chromosome 21 (21q22.3) which shares 

synteny with mouse chromosome 16 (Horisberger et al. 1988). The human MxA (76 

kDa) and MxB (76/78 kDa) proteins are cytoplasmic proteins as is murine Mx2 yet 

murine Mx1 is found to localise in the nucleus, this difference in localisation has been 

suggested to allow each protein to target viruses in either the cytoplasm or nucleus 

respectively (Hug et al. 1988; O Haller et al. 1995). Human MxB appears to display a 

nuclear localisation-like sequence in its N-terminal extension and although it is 

thought to be a cytoplasmic protein it is localised to the cytoplasmic face of nuclear 

pores and has been suggested to play a role in regulating nucelocytoplasmic transport 

and cell-cycle progression (King, Raposo, and Lemmon 2004). 

 

1.8.1 MxA 

It is well documented that the production of MxA is tightly regulated by type I and III 

IFN signaling events and is one of the most highly inducible antiviral factors 

characterised to date (Holzinger et al. 2007). However, it has recently been shown 

that MxA is inducible through another pathway as an endogenous antimicrobial 

peptide, !-defensin, known to be expressed from polymorphonuclear leukocytes 

(PMNs) can induce MxA in periodontal tissue without the presence of IFN 

(Mahanonda et al. 2012). 

 

MxA has a wide antiviral spectrum, with both RNA and DNA viruses known to be 

susceptible to its antiviral activity including orthomyxoviruses, asfaviruses, 

rhabdoviruses, togaviruses, hepadnaviruses and bunyaviruses (Sadler and Williams 

2008). The antiviral specificities of Mx proteins appears to be reflected by the 

localization of the Mx protein within the cell (see Table 1.2), for example rodent Mx1 
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Protein Species Intracellular 

localization 
Antiviral specificity References 

huMxA Human Cytoplasm Orthomyxoviruses, 
Bunyaviruses 

(Georg Kochs, 
Haener, et al. 
2002; Patzina, 
Haller, and Kochs 
2014) 

huMxB Human Nucleus/Cytoplasm HIV-1 (Z. Liu et al. 
2013) 

muMx1 Mouse Nucleus Orthomyxoviruses (T. Huang et al. 
1992) 

muMx2 Mouse Cytoplasm Hantavirus, VSV (Jin et al. 2001; 
Jin et al. 1999) 

ratMx1 Rat Nucleus Orthomyxoviruses (Stertz et al. 
2007) 

ratMx2 Rat Cytoplasm VSV, Bunyaviruses (Stertz et al. 
2007) 

chMx Chicken Cytoplasm Orthomyxoviruses, 
VSV (Sasaki et al. 

2013) 

duMx Duck Nucleus/Cytoplasm No antiviral activity (Bazzigher, 
Schwarz, and 
Staeheli 1993) 

asMx1 Atlantic 
Salmon 

Cytoplasm Infectious Salmon 
AnaemiaVirus, 

Infectious Pancreatic 
necrosis virus  

(Larsen, 
Røkenes, and 
Robertsen 2004; 
Jensen et al. 
2002) 

  

Table 1.2. Intracellular localization and antiviral spectrum of Mx proteins. 
(Adapted from Haller, Stertz and Kochs. 2007) 



! $%!',1A=53<1"=,!

! >&!

 is nuclear and therefore targets nuclear viruses such as influenza and THOV, whereas 

rodent Mx2 is cytoplasmic and has antiviral effect against cytoplasmic viruses such as 

LACV . Human MxA has been shown to inhibit clinically significant viruses such as 

coxsackie virus and Hepatitis B as well as all infectious genera of the bunyaviridae 

family (Andersson et al. 2004; Chieux et al. 2001; Gordien et al. 2001). However, the 

mechanism of action has been studied for several different viruses but is still unclear.  

 

It is thought that MxA undergoes a physical interaction with viral nucleoproteins, 

which has been demonstrated by the co-sedimentation of THOV and LACV NP with 

MxA (G Kochs and Haller 1999). However, how this interaction takes place is still 

unknown and whether this translates for all viruses inhibited by MxA remains to be 

seen. The current hypothesis on how MxA implements its antiviral effect is that MxA 

accumulates as oligomers on membranes such as the endoplasmic reticulum which 

can recognise viral structures upon infection, which upon recognition recruits more 

MxA molecules to form co-polymers and therefore immobilise the virus for 

degradation (Sadler and Williams 2008; Otto Haller, Stertz, and Kochs 2007). 

However, this is speculation and is yet to be proven. 

 

Mx proteins form a sub-family of dynamin-like GTPases (Otto Haller, Stertz, and 

Kochs 2007). Gao and colleagues recently presented a nucleotide-free atomic 

resolution structure of MxA showing an extended 3-domain structure characteristic of 

dynamin-like GTPases (S. Gao et al. 2011). As shown in fig 1.9, MxA is shown to 

have an N-terminal globular head region containing the catalytic GTPase (G) domain  
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Figure 1.9. Protein domains and structure of Human MxA. A. Schematic representation 
of the domain structure of human MxA. B. Ribbon representation of an MxA monomer, the 
unresolved L4 loop is indicated by the dashed line. C. Amino Acid sequence of MxA with 
highlighted domains (Adapted form Gao et al. 2011) 

C  
 
  1 MVVSEVDIAK ADPAAASHPL LLNGDATVAQ KNPGSVAENN LCSQYEEKVR PCIDLIDSLR 
 61 ALGVEQDLAL PAIAVIGDQS SGKSSVLEAL SGVALPRGSG IVTRCPLVLK LKKLVNEDKW 
121 RGKVSYQDYE IEISDASEVE KEINKAQNAI AGEGMGISHE LITLEISSRD VPDLTLIDLP 
181 GITRVAVGNQ PADIGYKIKT LIKKYIQRQE TISLVVVPSN VDIATTEALS MAQEVDPEGD 
241 RTIGILTKPD LVDKGTEDKV VDVVRNLVFH LKKGYMIVKC RGQQEIQDQL SLSEALQREK 
301 IFFENHPYFR DLLEEGKATV PCLAEKLTSE LITHICKSLP LLENQIKETH QRITEELQKY 
361 GVDIPEDENE KMFFLIDKIN AFNQDITALM QGEETVGEED IRLFTRLRHE FHKWSTIIEN 
421 NFQEGHKILS RKIQKFENQY RGRELPGFVN YRTFETIVKQ QIKALEEPAV DMLHTVTDMV 
481 RLAFTDVSIK NFEEFFNLHR TAKSKIEDIR AEQEREGEKL IRLHFQMEQI VYCQDQVYRG 
541 ALQKVREKEL EEEKKKKSWD FGAFQSSSAT DSSMEEIFQH LMAYHQEASK RISSHIPLII 
601 QFFMLQTYGQ QLQKAMLQLL QDKDTYSWLL KERSDTSDKR KFLKERLARL TQARRRLAQF 
661 PG 
 
54-341  = G Domain 
366-533 = Stalk Domain 
534-572 = L4 Loop 
573-662 = GTPase Effector Domain 
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followed by 3 helices which are known as the bundle signaling element (BSE) and the 

stalk region consisting of the middle domain leading into the C-terminal GTPase- 

effector domain (GED).  Like other dynamin-like large GTPases, MxA is capable of 

self-assembly to form large homo-oligomers, which in vitro has been seen to produce 

ring-like and helical structures (Georg Kochs, Haener, et al. 2002; Accola et al. 2002). 

It appears that self-assembly of Mx proteins is critical to GTPase activity and protein 

stability as single amino acid change at position 612 in the GED from leucine to 

lysine led to a loss of self-assembly and GTPase activity. It should also be noted that 

MxA (L612K) was monomeric and degraded rapidly whereas wt MxA has a half-life 

of over 24 hours, suggesting that oligomerization also helps to prevent degradation 

and perhaps offers a storage from which active molecules can be recruited (Janzen, 

Kochs, and Haller 2000). A broad range of mutations across the BSE, stalk region, 

hinge region and GED have all been shown to have an effect on the antiviral activity 

of MxA as well as oligomerization and GTPase activity of MxA. However whether 

these mutations have affected individual functions of MxA or had large effects on the 

structural characteristics of MxA are unknown (Otto Haller et al. 2010; Sadler and 

Williams 2011).  

 

The GTP binding domain has also been shown to be critical to the antiviral activity of 

MxA. Dick et al, (2015) set out to characterise a number of G domain mutants to 

ascertain the importance of GTP hydrolysis and G domain dimerization in MxA’s 

antiviral function. Residues within the catalytic centre of the G domain were found to 

be essential for G domain dimerisation and although these mutants were able to 

precipitate the nucleocapsid of THOV, these mutants did not display antiviral activity 
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against influenza A virus, THOV or LACV due to the lack of GTPase activity (Dick 

et al. 2015b).  

 

Another region that is thought to be important for antiviral activity is the L4 loop, 

which is an unstructured loop containing positively charged residues thought to be 

responsible for lipid binding as substitution of Lysine residues within the loop leads to 

a loss of lipid binding function without affecting oligomerization (von der Malsburg 

et al. 2011). In the model of oligomerization proposed by Gao et al., (2011) it was 

suggested that the L4 loop would be pointing towards the inside of the ring where it is 

capable of interacting with either viral structures or membrane structures such as the 

endoplasmic reticulum.  

 

Mitchell and colleagues (2012) have studied the L4 loop from an evolutionary 

perspective to try and understand how MxA confers viral specificity across a wide 

range of viruses. They showed that the L4 loop has undergone significant positive 

selection and that a single amino acid change at position 561 in primate MxA was 

capable of altering the antiviral activity and specificity against both Thogoto Virus 

(THOV) and an avian influenza virus, suggesting that the L4 loop is a genetic 

determinant of MxA antiviral specificity (Mitchell et al. 2012). Following this, 

another position within the L4 loop has been shown to be important for the antiviral 

activity against both orthomyxoviruses and bunyaviruses. Mutations at position 561 

or 562 abolished antiviral activity against both influenza and THOV, however this 

had no impact on the antiviral activity against LACV, yet a mutation at position 577 

was shown to abolish antiviral activity against all 3 viruses leading to the suggestion 

that the proximal mutations in the L4 loop are specific to orthomyxoviruses whereas 
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the distal mutation at position 577 may have a conserved structural function (Patzina, 

Haller, and Kochs 2014).  

 

1.8.2 MxB  

Human MxB has two different isoforms, a long 78 kDa isoform and a shorter 76 kDa 

isoform. The 78 kDa isoform has a NLS sequence at the N-terminus of the protein, 

which appears to target the protein to nuclear pores. The translation of the shorter 

isoform starts from an alternative ATG at position 26 and is therefore lacking the 

NLS sequence and localised to the cytoplasm (Melén et al. 1996; King, Raposo, and 

Lemmon 2004).  

 

Until recently, there was no known antiviral activity attributed to MxB despite being 

an IFN-inducible protein. MxB has since been shown to be a restriction factor for 

Human Immunodeficiency Virus (HIV-1), targeting the virus between reverse 

transcription and integration through an interaction with the viral capsid protein (Kane 

et al. 2013; Goujon et al. 2013; Z. Liu et al. 2013). Despite the large homology 

between MxA and MxB, the antiviral mechanism of MxB is highly distinct to that of 

MxA (X. Jia, Zhao, and Xiong 2015). It has been shown the long isoform is required 

for HIV-1 restriction and that this activity is independent of both oligomerisation and 

GTPase activity (Goujon et al. 2014; Fricke et al. 2014). The mechanism of action 

against HIV-1 is becoming clearer with the recent discovery that an RRR motif in the 

N-terminal end of MxB is required for binding of the viral capsid protein to MxB to 

exert its antiviral effect and not the nuclear localization determined by this region as 

previously thought (Schulte et al. 2015).  
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1.9 Influenza and MxA 

MxA proteins have long been known for their ability to inhibit influenza viruses, 

however the mechanism of MxA’s antiviral activity is not yet fully understood 

(Matzinger et al. 2013). Following cell entry, influenza imports vRNPs into the cell 

nucleus that leads to the activation of the viral RNA polymerases and the beginning of 

primary transcription. Murine Mx1 localises to the nucleus and blocks primary 

transcription likely through interacting with NP (Dittmann et al. 2008; Zimmermann 

et al. 2011). Human MxA is localised to the cytoplasm and therefore does not inhibit 

the primary transcription of influenza viruses like Mx1, instead human MxA is 

believed to inhibit a later stage in viral replication involved in genome amplification 

and secondary transcription. It has been suggested that MxA binds to newly translated 

NP and blocks it from entering into the nucleus to aid further rounds of transcription 

and genome replication (Zürcher, Pavlovic, and Staeheli 1992). Interestingly, a 

mutant form of MxA was produced to carry a foreign nuclear localization sequence, 

which resulted in re-localisation of MxA from the cytoplasm into the nucleus. This 

led to the MxA-mediated inhibition of influenza virus primary transcription, similar to 

that observed for murine Mx1 (Engelhardt et al. 2004; Zürcher, Pavlovic, and Staeheli 

1992). This nuclear MxA variant was also shown to complex with NP whilst wt MxA 

was co-immunoprecipitated with NP, albeit under non-physiological cross-linking 

conditions (Turan et al. 2004). This suggested that these proteins both targeted the 

same viral protein or target structure (Dittmann et al. 2008). 

 

It should also be noted that Mx1-mediated inhibition of influenza virus replication has 

been linked to the viral polymerase protein PB2. It was first shown that over-

expression of the influenza polymerase complex could out-compete the inhibition by 
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Mx1 (T. Huang et al. 1992). This was followed by an experiment showing that it was 

the PB2 subunit, which could inhibit Mx1 when over-expressed (Stranden, Staeheli, 

and Pavlovic 1993). However, neither of these studies found a direct interaction 

suggesting that perhaps these two proteins are competing for a common target protein 

(Turan et al. 2004). Based on this observation Turan and colleagues looked at the 

possibility that MxA was interacting with the influenza virus polymerase complex, 

however they showed that PB2 over-expression only suppressed MxA to a small 

extent. The striking finding was the significant suppression of MxA inhibition by the 

over-expression of NP, showing that the antiviral effect of MxA against influenza 

virus is linked to NP through either direct or indirect interactions (Turan et al. 2004). 

 

It has also been shown that subtypes and strains of influenza virus differ in their 

sensitivity to MxA inhibition. Dittmann et al., (2008) hypothesised that as the 

pathogenicity of different influenza virus strains can differ between hosts that it was 

possible that variation in their susceptibility to MxA inhibition could partially account 

for these differences in pathogenicity. They compared the sensitivity of various 

influenza strains to the antiviral effects of Mx1 and MxA and found some interesting 

differences. Firstly, it was clear that influenza viruses of avian origin were highly 

sensitive to Mx1 yet viruses from a human background were much less sensitive. 

Following re-assortments of components in a mini-replicon system it was clear that 

NP was the viral target structure for Mx1 as the exchange of other plasmids encoding 

for PB1, PB2 and PA did not show any significant change in Mx1 sensitivity. 

Interestingly, mini-replicon assays involving 1918 H1N1 ‘Spanish Flu’ was almost 

completely insensitive to inhibition by MxA, yet pathogenic avian strain H5N1 

A/Vietnam/1203/04 replication was significantly inhibited by MxA. This suggested 
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that MxA is an important barrier blocking avian influenza viruses from infecting 

humans whilst also offering an insight of what may have contributed to the incredible 

virulence of 1918 “Spanish Flu” (Dittmann et al. 2008). 

 

Evidence that influenza NP determined the sensitivity of a virus to Mx was 

strengthened further as Zimmermann and colleagues compared the 2009 pandemic 

strain H1N1 A/Hamburg/4/09 with the highly pathogenic avian H5N1 

A/Thailand/1(KAN-1)/04 for their sensitivity to inhibition by MxA and Mx1. They 

found that both MxA and Mx1 significantly inhibited the H5N1 strain, whereas 

pandemic H1N1 was nearly insensitive and similarly to Dittmann et al., (2008) found 

upon substituting components of the viral polymerase that NP was the main target of 

MxA’s antiviral effect. They also looked at this effect in vivo by producing re-

assorted viruses containing the NP of H5N1 in a H1N1 background or vice versa. 

These viruses were then used to infect mice containing functional Mx1 and those 

mice infected with a virus containing the H5N1 NP survived, whereas those mice 

exposed to pandemic H1N1 NP succumbed to infection. This also suggested that NP 

is important to MxA sensitivity and also highlighted that human influenza viruses 

have evolved to encompass adaptive mutations to evade inhibition by MxA 

(Zimmermann et al. 2011). 

 

Following on from this research, specific MxA resistant mutations have been 

identified in influenza NP (Mänz et al. 2013; Riegger et al. 2015). Manz et al, 

compared a recent MxA sensitive virus A/Thailand/1(KAN-1)/04 (H5N1) to the MxA 

resistant NP from pandemic H1N1 strains A/Brevig Mission/1/1918 (1918) and 

A/Hamburg/4/2009 and identified 5 key adaptive mutations which conferred for MxA 
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resistance at positions 16, 53, 100, 283 and 313. However, introducing these 

mutations into an MxA sensitive NP led to impaired viral growth in vitro (Mänz et al. 

2013). Then the emergence of H7N9 in 2013 showed that this avian virus also 

encoded for a resistance mutation at position 52 which had been shown to compensate 

when other resistance mutations such as those at position 100, 183 and 313 were not 

present. The substitution of asparagine at position 52 for tyrosine led to the NP being 

more sensitive to MxA in a polymerase reconstitution assay, adding further weight to 

the hypothesis that MxA is a barrier to zoonotic transmission of avian influenza 

viruses (Riegger et al. 2015). 

 

More recently, a study looking at how MxA expression affects influenza replication in 

IFN-treated primate cells has suggested that MxA may also have another mechanism 

to restrict influenza replication. Matzinger and colleagues looked to further previous 

work showing that MxA inhibits influenza A replication in mouse cells after primary 

transcription by determining the role of MxA in human influenza infection in primate 

cells. They found that pre-treating the cells with IFN before infection with human 

isolated viruses A/Memphis/7/01 and A/Wyoming/3/03 suppressed viral replication. 

Using siRNA to knockdown MxA expression in IFN treated cells released this 

suppression showing the importance of MxA to the control of influenza replication in 

primate cells. Following on from this, they used RT-PCR to look at the levels of 

influenza replication in naïve Vero cells and Vero cells which constitutively express 

MxA 8 hours after infection and found that the levels of all virus-specific RNA 

species were drastically suppressed, suggesting that MxA is capable of blocking 

influenza virus replication at a step prior to primary transcription (Matzinger et al. 

2013).   
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Further evidence has confirmed that MxA exerts an antiviral effect prior to primary 

transcription. Xiao et al, (2013) showed that in the presence of IFN incoming viral 

genomes became trapped in the perinuclear region, unable to translocate to the 

nucleus for replication. They also went on to show that this block was dependent on 

MxA, although the over-expression of MxA was not enough to inhibit nuclear 

translocation, but also required pre-treatment with IFN, suggesting that an unknown 

IFN induced co-factor was also necessary for this antiviral effect of MxA (Xiao et al. 

2013). However, how MxA exerts an antiviral effect so early during infection is still 

to be elucidated.  
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1.10 Aims of Thesis 

It is well documented that the expression of MxA is tightly regulated by type I and III 

IFN signaling events and is one of the most highly inducible antiviral factors 

characterised to date (Holzinger et al. 2007). In fact MxA constitutes up to 1% of the 

total cytoplasmic proteins following induction via IFN (Horisberger 1992). MxA also 

has a wide antiviral spectrum, capable of targeting both RNA and DNA viruses 

(Sadler and Williams 2008). One of these targets is influenza viruses, yet the 

mechanism of antiviral activity against these viruses is still unknown. 

 

MxA has been shown to inhibit influenza A viruses at two distinct stages of the viral 

replication cycle; during viral entry and following primary transcription of viral 

mRNAs. The antiviral effects of MxA during viral entry are highly dependent on IFN, 

however activity exerted after primary transcription can occur in the absence of IFN, 

suggesting two potentially different mechanisms of action. The aim of this thesis is to 

gain a better understanding of the functional characteristics required for MxA to exert 

its antiviral activity against influenza viruses at these two distinct stages of 

replication. Firstly this will be addressed using microscopy techniques to elucidate the 

nature of the IFN-dependent block in virus entry described by Xiao et al. (2013). 

Secondly mutational analysis will be used to determine the natural functions and 

characteristics of MxA responsible for antiviral activity in both the presence and 

absence of IFN. Finally this thesis will also investigate the impact of MxA against 

influenza B viruses and whether this strictly human pathogen harbours any natural 

resistance to the antiviral effect of MxA.  
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Chapter 2 - Materials and Methods 

2.1 Mammalian cell culture 

2.1.1 Cell lines 

Parental cell lines used in this study: 

Cell line Origin 
293T Human embryonic kidney cells constitutively expressing Simian 

vacuolating virus (SV40) large T antigen. 
A549 Human epithelial lung cells derived from a lung cell carcinoma. 

Calu-3 Human epithelial lung cells derived from an adenocarcinoma (Kindly 
provided by Dr. J. Telford, University of St. Andrews). 

BEAS-2B Human epithelial bronchial cells transformed with an adenovirus 12-
SV40 hybrid. (Kindly provided by Prof. R. E. Randall, University of St. 

Andrews) 
MDCK Madin-Darby canine epithelial kidney cells. 

 

The following cell lines were previously generated through lentiviral transduction and 

used in this study: 

Cell line Origin 
A549/shMxA A549 cells which knock down the expression of IFN-induced 

GTPase, MxA (Kindly provided by Dr. D. Jackson) 
A549/MxA A549 cells which constitutively express the IFN-induced GTPase, 

MxA (Kindly provided by Dr. D. Jackson) 
 

The following cell lines were produced by lentivirus transduction for this study: 

Cell line Origin 
A549/shMxA/wt wMxA A549/shMxA cells which constitutively overexpress 

wobble MxA (wMxA) wild-type 
A549/shMxA/R640A 

wMxA 
A549/shMxA cells which constitutively overexpress 

wMxA R640A mutant 
A549/shMxA/I376D 

wMxA 
A549/shMxA cells which constitutively overexpress 

wMxA I376D mutant 
A549/shMxA/T103A 

wMxA 
A549/shMxA cells which constitutively overexpress 

wMxA T103A mutant 
A549/shMxA/V268M 

wMxA 
A549/shMxA cells which constitutively overexpress 

wMxA V268M mutant 
A549/shMxA/G255E 

wMxA 
A549/shMxA cells which constitutively overexpress 

wMxA G255E mutant 
A549/shMxA/F561V 

wMxA 
A549/shMxA cells which constitutively overexpress 

wMxA F561V mutant 
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Cell line Origin 
A549/shMxA/D478A 

wMxA 
A549/shMxA cells which constitutively overexpress 

wMxA D478A mutant 
A549/shMxA/KEKE 

wMxA 
A549/shMxA cells which constitutively overexpress 

wMxA KEKE mutant 
A549/shMxA/AKAK 

wMxA 
A549/shMxA cells which constitutively overexpress 

wMxA AKAK mutant 
MDCK/MxA MDCK cells which constitutively overexpress MxA 

A549/shMxA/GFP 
wMxA 

A549/shMxA cells which constitutively overexpress 
GFP-tagged wMxA  

A549/shMxA/GFP 
wMxA mRFP Rab 5 

A549/shMxA cells which constitutively overexpress 
GFP-tagged wMxA and mRFP-tagged Rab 5 

A549/shMxA/GFP 
wMxA mRFP Rab7 

A549/shMxA cells which constitutively overexpress 
GFP-tagged wMxA and mRFP-tagged Rab 7 

A549/GFP wMxA A549 cells which constitutively overexpress GFP-tagged 
wMxA 

A549/GFP wMxA mRFP 
Rab5 

A549 cells which constitutively overexpress GFP-tagged 
wMxA and mRFP-tagged Rab 5 

A549/ GFP wMxA 
mRFP Rab7 

A549 cells which constitutively overexpress GFP-tagged 
wMxA and mRFP-tagged Rab 7 

 

2.1.2 Cell maintenance 

All cell lines were maintained in 25cm2 or 75cm2 flasks (Grenier) with Dulbecco’s 

modified Eagle’s medium (DMEM; Life Technologies) supplemented with 10% (v/v) 

heat inactivated foetal bovine serum (FBS; Life Technologies) and 500 units/mL 

Penicillin and Streptomycin (Life Technologies). Cells were incubated at 37 °C in a 

humidified incubator at 5% CO2 and routinely passaged using trypsin/EDTA (Becton 

Dickinson Ltd.) at a frequency determined by the rate of cell growth. 
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2.1.3 Treatment of cells 

2.1.3.1 Interferon Treatment 

Cells were treated using 1000 units/ml human recombinant interferon !-2a (IFN!-2a; 

Roferon; Roche Diagnostics) for at least 16 hours (unless stated otherwise) prior to 

viral infection. 

 

2.1.3.2 Transfection of plasmid DNA 

Cells were transfected with plasmid DNA in suspension. Cells were detached using 

trypsin/EDTA and resuspended in antibiotic free DMEM/10% FBS and spun at 1000 

rpm for 5 minutes. The supernatant was removed and cells were resuspended in an 

appropriate volume of antibiotic free DMEM/10% FBS before addition of plasmid 

DNA and transfection reagent FuGENE 6 (Promega) used following the 

manufacturer’s instructions. 

 

2.1.3.3 Production of canine IFN from MDCK cells 

To prepare conditioned media containing canine IFN, 100% confluent MDCK 

monolayers in 12-well plates were washed in PBS to remove any trace of serum. Cells 

were then inoculated at a high MOI of Sendai Virus in 300 µL serum-free DMEM and 

placed at 37 °C/5% CO2 for 1 hour with gentle agitation at short intervals. Virus 

inoculum was removed, monolayers were washed with serum-free DMEM and 1 mL 

serum-free DMEM was added. Cells were then incubated at 37 °C/ 5% CO2 for 18 

hours. Supernatants were then harvested and cellular debris removed by 

centrifugation at 3000 rpm for 10 mins. Cleared supernatants were then filtered 
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through 0.45 µm membrane filters and aliquots were frozen at -80 °C. Prior to use, 

supernatants were UV-treated for 2 minutes to inactivate any live virus. 

 

2.1.4 Generation of stable cell lines by lentiviral transduction 

 

2.1.4.1 Lentivirus production 

HEK 293T cells were grown on 75 cm2 flasks until approximately 70% confluent. 

Prior to transfection, antibiotics were removed from the media and cells were then 

transfected with 6 µg pCMVR8.91, 6 µg pVSVG and 10 µg of pdl plasmid containing 

the gene of interest using Lipofectamine 2000 (Invitrogen) following the 

manufacturer’s instructions. 

 

Lentivirus containing supernatant was harvested at 48 and 72 hours post transfection 

and cleared of cellular debris by centrifugation at 3000rpm for 10 minutes. The 

supernatant was then filtered through a 0.45 µm membrane filter and stored at -80 °C. 

 

2.1.4.2 Lentiviral transduction of mammalian cells 

Parental cells were grown in 6-well plates (Grenier) until approximately 40% 

confluent. 1,5-dimethyl-1,5-diazaundecamethylene polymethobromide 

hexadimethrine bromide (Polybrene; Sigma Aldrich) was added to the lentivirus 

samples at a final concentration of 8 µg/ml and the target cells were transduced with 

the lentivirus supernatant (1.5 ml per well) for 2 hours before adding 1 mL 

DMEM/10% FBS and incubated for 48 hours.  
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Cells were then transferred to a 25 cm2 tissue culture flask and cells expressing the 

transduced construct were selected using either puromycin (Melford) or blasticidin S 

(Melford) until control cells were dead. Cells were then passaged under selection with 

the exception of experimental procedures. The quality of each cell-line was assessed 

through Western Blot and Immunofluorescence analysis.  

 

2.1.4.3 Clonal selection 

Cells that showed heterogeneity in the expression of the protein of interest were then 

clonally selected to ensure a consistent level of expression by all cells. Cells that 

expressed green fluorescent protein (GFP) tagged MxA were sorted using 

Fluorescence activated Cell sorting (FACS), whereas cells that did not express a 

fluorescently tagged protein were sorted into 96 well plates so that only 1 cell was 

sorted per well, allowing for the growth of homogenous cell lines. The expression 

levels of selected colonies were assessed by immunofluorescence and immunoblotting 

as described below. FACS analysis was performed by Miss Claire Stewart. 
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2.2 Viruses and Viral Assays 

2.2.1 Viruses used 

Influenza Viruses  

rWSN: Recombinant wild-type influenza A virus (A/WSN/33) generated and 

provided by Dr. D. Jackson (University of St Andrews).  

 

rUd: Recombinant wild-type influenza A virus (A/Udorn/72) generated and provided 

by Dr. D. Jackson (University of St Andrews). 

 

rB/Yam: Recombinant wild-type influenza B virus (B/Yamanashi/98) generated and 

provided by Dr. D. Jackson (University of St Andrews). 

 

2.2.2 Virus infection 

Virus preparations were diluted to an appropriate multiplicity of infection (MOI) in 

serum-free DMEM. The confluency and cell line used were dependent on the 

experimental design. Prior to infection cell monolayers were washed in Phosphate 

buffered Saline (PBS), (137 mM NaCl, 12 mM Na2HPO4, 2.7 mM KCl pH 7.4) to 

remove any trace of serum, virus dilutions were then added to the monolayer in an 

appropriate total volume for virus adsorption and incubated at 37 °C/5% CO2 for one 

hour with gentle agitation at short intervals. The virus inoculum was then removed, 

and replaced with serum-free DMEM and incubated at 37 °C/5% CO2 until the virus 

or cells were collected. The volumes used for virus infection were as follows: 300 µl 

for 12-well plate wells, 400 µl for 6-well plate wells, 1.5 mL for 25 cm2 flasks 4 ml 

for 75 cm2 flasks. 

 



! &%!K-14A"-.*!-,5!K41N=5*!

! ?R!

2.2.3 Virus stock preparation 

To prepare influenza virus stocks, 100% confluent MDCK monolayers in 75 cm2 

flask were washed in PBS to remove any trace of serum. Cells were then inoculated at 

an MOI of approximately 0.001 in 4 mL serum-free DMEM and placed at 37 °C/5% 

CO2 for 1 hour with gentle agitation at short intervals. Virus inoculum was removed, 

monolayers were washed with serum-free DMEM and 10 mL serum-free DMEM 

supplemented with 2.5µg/ml N-acetyl trypsin (NAT; Sigma) were added. Cells were 

then incubated at 37 °C/ 5% CO2. Supernatants were harvested when 80-90% 

cytopathic effect (CPE) was observed (approximately 48-72 hours). Cell debris was 

removed by centrifugation at 3000 rpm for 10 mins. Cleared supernatants were then 

filtered through a 0.45 µm membrane filter and aliquots were frozen at -80 °C. Virus 

titers were determined by plaque assay as described below 

 

2.2.4 Virus titration 

Titration of influenza virus was carried out on confluent MDCK monolayers in 6-well 

plates. The procedure was carried out essentially as described elsewhere (Takeda et 

al., 2002). Virus titrations were carried out using 10-fold serial dilutions in serum-free 

DMEM, and then cells were washed in PBS in order to remove any traces of serum. 

Cells were inoculated with 400 µL of diluted virus preparation and incubated at 37 

°C/5% CO2 for 1 hour. The plates were gently agitated every 10 minutes to ensure 

even adsorption of the virus across the monolayers.  

 

During this period, 2* overlay medium (13.4g DMEM, 3.7g NaHCO3, 10mM HEPES 

pH 7.4, 1000 units/mL penicillin and streptomycin made up to 500 mL in distilled 

H2O) supplemented with 2 µg/ml N-actetyl trypsin (NAT, Sigma) was incubated at 
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37°C. 2% agarose (NuSieve® GTG®) in water was melted in a microwave oven and 

placed in a 55°C water bath until required. After 1 hour, virus inoculum was removed 

and the 2* overlay medium and the 2% agarose were mixed in a 1:1 ratio, and 2 mL 

of this overlay mixture was added to each well. After the overlay had solidified, plates 

were inverted and incubated at 37°C with 5% CO2 until distinct plaques had formed 

(approximately 48 hours for influenza A virus, 72 hours for influenza B virus). Cells 

were fixed by adding 2 mL 5% formaldehyde/PBS on top of the agarose plugs for 1 

hour at room temperature. Agarose plugs were then removed and washed with PBS, 

the monolayer was then stained with crystal violet (0.1% crystal violet, 8% 

formaldehyde, 20% methanol in PBS) to visualise the plaques or plaques were 

visualised by immunostaining as described below. 

 

Virus titration using A549 cells were carried out as above until the removal of viral 

inoculum. Following the removal of viral inoculum the 2* overlay medium was 

mixed in a 1:1 ratio with 2% low-melting point agarose (Lonza SeaPlaque ® 

Agarose) and 2 mL of this overlay mixture was added to each well. After the overlay 

had solidified, plates were inverted and incubated at 37°C incubator with 5% CO2 for 

5 days. Cells were fixed by adding 2 mL 5% formaldehyde/PBS on top of the agarose 

plugs for one hour at room temperature. Agarose plugs were then removed and 

washed with PBS, plaques were then visualised by immunostaining as described 

below. 
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2.2.5 Virus Yield Assay 

To determine viral growth kinetics from individual experiments, confluent cell 

monolayers grown in 6-well plates were inoculated with virus at a MOI indicated for 

individual experiments. Following an adsorption period of 1 hour the inoculum was 

removed and 1.5 mL Serum Free DMEM supplemented 50 units/mL Penicillin and 

Streptomycin was added to each well. Cells were then incubated at 37 °C / 5% CO2 

in a humidified incubator. Virus samples were harvested by removing the supernatant 

at various times post- infection and frozen at -80 °C. Virus titre was then determined 

by plaque assay on MDCK cells as described above. 

 

2.2.6 Virus Input Assay 

Cells were seeded into 12-well plates (nunc) containing coverslips 2 days before the 

experiment at a very low density aiming to be approximately 50% confluent for 

infection. After 24 hours, cells were treated with IFN (Roferon; Roche Diagnostics) 

for at least 16 hours before infection. Cells were washed in PBS to remove any trace 

of serum. Virus preparations were diluted to an appropriate MOI to allow detection of 

incoming virus particles via immunofluorescence without overloading the IFN 

system. Coverslips were placed on 12-well plate lids covered in parafilm and 

inoculated with 50 µL of diluted virus, covered and incubated for 30 minutes at 37 

°C/5% CO2. Coverslips were then washed in PBS followed by a citric acid wash 

(40mM Citric Acid, 10mM KCl and 135mM NaCl; pH 3.0) to remove any virus 

bound to the surface, followed by another wash in PBS. Cells were then placed back 

in 12-well plates with serum-free DMEM and cyclohexamide to block translation of 

any nascent protein. The cells were then incubated for 2-3 hours at 37 °C/5% CO2. 
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Media was then removed from the wells and the cells fixed using 5% 

formaldehyde/PBS for 20 minutes before being replaced with PBS. Cells were then 

stored at 4 °C until analysis via immunofluorescence.  
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2.3 Molecular Biology 

 

2.3.1 Polymerase Chain Reaction (PCR) 

To amplify genes of interest PCR was carried out using polymerase enzymes either 

with proof-reading capability; PFU (Promega), Phusion (Thermo Scientific) and Q5 

(New England Biolabs), or without proof-reading ability, Taq (Promega), depending 

on the purpose of the reaction. Reactions were performed to the manufacturer’s 

instructions. Briefly, reactions were set up in a total volume of 30 or 50 µL containing 

enzyme buffer (at appropriate dilution), 200-300 µM of each dNTP, 3 Dimethyl 

Sulfoxide (DMSO; Thermo Scientific), between 10-50 ng of DNA template 

(dependent on polymerase used), gene specific forward and reverse primers at 1-1.5 

µM (varied with polymerase used) and polymerase (unit definition depending on 

manufacturer) in sterile water.  

 

Reactions were performed using thermocyclers with a general setting of initial 

denaturing step at 95-98 °C (varies with enzyme used), followed by 30 cycles of 

denaturing 95°C for 30 seconds, annealing 50-65 °C for 30 seconds and extension of 

DNA primer strands at 72 °C for as long as required for the polymerase to replicate 

the gene of interest, with a final extension step for 10 minutes at the same 

temperature. 

 

2.3.2 Agarose Gel Electrophoresis 

DNA samples were analysed by gel electrophoresis in gels of 1 – 1.5% (w/v) agarose 

(HydraGene) in TBE buffer (89 mM Tris, 89 mM Boric Acid and 2 mM EDTA) and 

ethidium bromide (1 µg/ml; Promega). Prior to loading of DNA samples, 6x-loading 
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buffer (Promega) was added to the samples at appropriate volume. Samples were 

resolved on agarose gels at 90 V in TBE buffer. For comparison, a DNA marker with 

known DNA size fragments (1 kb ladder; Promega) was loaded onto the gel. DNA 

was visualised on an ultra-violet transilluminator. If required DNA samples were 

excised from the gel and DNA was recovered using the GenElute Gel Extraction kit 

(Sigma Aldrich). 

 

2.3.3 Restriction Enzyme Digestion 

All restriction digests were carried out using enzymes from Promega and performed 

to the manufacturer’s instructions. Typically, 3-4 µg of plasmid DNA or purified PCR 

product were digested in 20 reactions containing reaction buffer, 1 mg/ml acetylated 

BSA (Promega) and 5 units of the desired restriction enzyme were used per reaction 

at 37 °C for 3 hours. When a single enzyme was used for digestion of plasmid DNA 

to create cohesive ends for ligation, Calf intestinal Alkaline Phosphatase (CIAP, 

Promega) was added into reaction tube following digestion for 30 minutes to prevent 

vector self-ligation. 

 

2.3.4 Ligation of DNA 

DNA samples purified following restriction digest and gel purification were then used 

for ligation. Approximately 50 ng of vector backbone was mixed 1:3 (molar ratio) 

with insert, 1 µL of 10x T4 DNA ligase buffer and 0.2 µL T4 ligase (Thermo 

Scientific) was added to the mix and the total volume was adjusted to 10 µL in sterile 

water. The sample was incubated at room temperature for 30 minutes. The ligation 

mix was used to transform into competent E. coli DH5! cells as described below at a 

ratio of 1:10 (v/v). 
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2.3.5 Transformation of competent cells 

Plasmid DNA was diluted to a suitable concentration and approximately 5 ng was 

added directly to 50 µL of thawed, E. coli DH5! chemically competent cells for 

plasmid propagation or E. coli Rosetta competent cells for protein expression. The 

plasmid-cell mix was incubated on ice for 30 min before being transferred to a 42 °C 

water bath for 45 seconds. Cells were then placed back on ice for 2 minutes, mixed 

with 250 µL SOC media (20 g bacto-tryptone, 5 g bacto-yeast extract, 0.5 g NaCl and 

2.5 mL 1 M KCl adjusted to pH7.0 using NaOH to 1 L total volume followed by the 

addition of 20 mL 1 M glucose) and allowed to recover at 37 °C for 1 hour in a 

shaking incubator. Cells were then plated onto LB-agar plates supplemented with 

either ampicillin or kanamycin, plates inverted and incubated at 37 °C overnight. 

Individual colonies were picked for mini-cultures. 

 

2.3.6 Preparation of plasmid DNA 

For small-scale preparations of DNA, individual bacterial colonies were placed in 10 

mL LB broth were supplemented with either ampicillin (50 µg/ml) or kanamycin (25 

µg/ml) and incubated at 37 °C in a shaking incubator overnight. 5 mL of the bacterial 

culture was pelleted at 4000 rpm by centrifugation and plasmid DNA was extracted 

using the GenElute Plasmid Miniprep kit (Sigma Aldrich), according to the 

manufacturer’s instructions. For large-scale DNA preparations 500 mL bacterial 

cultures in LB broth supplemented with either ampicillin or kanamycin were prepared 

and incubated at 37 °C in a shaking incubator overnight. The cells were pelleted by 

centrifugation and DNA was subsequently extracted using QIAfilter Plasmid Maxi kit 

(QIAGEN), according to the manufacturer’s protocol. DNA concentration and quality 
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was assessed using a NanoDrop 1000 (LabTech) spectrophotometer. Plasmids were 

then sequenced at DNA Sequencing & Services, University of Dundee, to determine 

they were correct before use in experimentation.  
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2.4 Protein Analysis 

2.4.1 SDS polyacrylamide gel electrophoresis  

Protein samples were prepared for SDS-PAGE analysis in either 2x disruption buffer 

(4.2% (w/v) Sodium dodecyl sulphate, 2 M 2-Mercaptoethanol, 10 M Urea and 

bromophenol blue) and stored at -20 °C. The viscosity of the samples was reduced by 

sonication, then samples were heated to 100 °C for 5 minutes before loading onto the 

gel. Proteins were separated on 10, 12 or 15% polyacrylamide gels (30%:1; Sigma 

Aldrich?) at 180 V using Tris-Glycine running buffer (25 mM Tris and 190 mM 

glycine) until necessary separation was achieved. Gels were then either stained with 

Coomassie stain (0.5% (w/v) G250 Coomassie Blue (BDH Chemicals), 40% (v/v) 

methanol, 10% acetic acid) or the presence of specific proteins was determined 

through immunoblotting. 

 

2.4.2 Immunoblotting 

Following SDS PAGE, protein lysates were transferred to Polyvinylidene difluoride 

(PVDF; Millipore) membrane following membrane activation with 100% Methanol. 

Protein was transferred to the membrane by using the Trans-Blot Turbo Transfer 

System (Biorad) according to manufacturer’s protocols. Following transfer, 

membranes were blocked for 1 hour (room temperature) in blocking buffer (5% (w/v) 

skimmed milk powder, in PBS). Then membranes were incubated for either 1 hour at 

room temperature or overnight at 4 °C with primary antibody diluted in 5% (w/v) 

skimmed milk powder, 0.1% (v/v) Tween 20 in PBS, the antibody was diluted 

according to the manufacturer’s instructions. After incubation with primary antibody, 

membranes were washed several times with PBS-T (PBS, 0.1% (v/v) Tween 20) on a 

shaking platform. Membranes were then incubated with a IRDye 680/800-conjugated 
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secondary antibody (Licor), using a species raised against the primary antibody, in 

5% (w/v) skimmed milk powder in PBS-T at room temperature for 1 hour followed 

by repeated washes in PBS-T. Probed proteins were subsequently detected using the 

Odyssey CLx Imaging System (Licor). 

 

2.4.3 Immunofluorescence 

Cells were grown on either 10 or 15 mm cover slips (Fisher Scientific). At the desired 

time cells were fixed using 5% (v/v) paraformaldehyde/PBS for 30 minutes followed 

by permeabilisation (10% (w/v) sucrose, 0.5% (v/v) Igepal, 0.5% (v/v) Triton X-100 

in PBS) for 30 minutes. To block free aldehyde groups the cells were incubated with 

100 mM glycine in PBS for 30 minutes before blocking non-specific binding sites 

with PBN, 1% BSA (Melford), 0.02% (w/v) sodium azide (Sigma Aldrich) in PBS for 

1 hour. After the blocking steps, cells were incubated with primary antibody diluted in 

PBN for 1 hour, at a dilution recommended by the manufacturer. Coverslips were 

then washed with PBN before incubating the cells with Alexa Fluor (488 or 594, Life 

Technologies) conjugated antibody and 4', 6-diamidino-2-phenylindole (DAPI; 0.5 

µg/ml; Sigma Aldrich) to stain nuclei for 1 hour. After washing unbound antibody 

with PBN coverslips were mounted onto glass slides with Fluoprep (Biomerieux) that 

was supplemented with 3% (v/v) 1,4-diazabicyclo[2.2.2]octane (DABCO; Sigma 

Aldrich). Images were taken using a Zeiss Axioplan 2, Deltavision or a Zeiss Pascal 

500 confocal microscope. 
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2.4.4 Tandem Affinity Purification 

293T cells transfected with 9 ug pcDNA TAP-empty, TAP-wMxA wt or TAP-wMxA 

T103A constructs were washed in PBS and removed from a 75 cm2 flask using 10 

mM EDTA in PBS. Cells were then resuspended in 250 µL TRIS-lysis buffer (50 mM 

TRIS-HCL pH 8.0, 100 mM NaCl, 25% (v/v) Glycerol, 0.5% (v/v) Igepal, Protease 

inhibitors (Roche)) and stored at -20 °C. Cell lysates were then thawed and sonicated 

to disrupt cellular membranes. Following sonication, cell lysates were centrifuged at 

12, 000 rpm for 2 minutes. Then 20 µL of protein A beads were washed by inversion 

using IgG wash buffer (10 mM TRIS-HCL pH 8.0, 150 mM NaCl, 0.1% (v/v) Igepal, 

Protease inhibitors (Roche)) and centrifuged at 1, 000 rpm and the supernatant then 

removed. 200 µL of cell lysate was added to the protein A beads and made up to 1 mL 

with sterile water and NaCl to match the NaCl concentration in the IgG wash buffer. 

The beads were then incubated with the cell lysates rotating overnight at 4 °C. The 

samples were the centrifuged at 1, 000 rpm for 5 minutes, the supernatant carefully 

removed and replaced with 1 mL of ice-cold IgG wash buffer. The beads were 

washed a further 3 times before the samples are eluted using 100 mM acidified 

glycine (pH 3.0). Disruption buffer was then added to the eluate for analysis through 

SDS-PAGE, immunoblotting and Mass Spectrometry. 
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2.5 Miscellaneous Assays 

2.5.1 Mini-Replicon (Luciferase) 

293T cells in 12-well plates were transfected with 10 ng of pcDNA plasmids that 

express PB1, PB2, and PA, 100 ng of pcDNA-NP for A/Udorn/72, alongside 200 ng 

pCAGGS MxA or wobble MxA (wild type or mutants) plus 250 ng of pHH-ANSren, 

this plasmid expresses Renilla luciferase, which is flanked by the non-coding regions 

of the influenza A NS segment and used as a read-out for polymerase activity.  These 

plasmids are transfected alongside 10 ng of pCMV-FF (which expresses firefly 

luciferase under the control of the cytomegalovirus [CMV] promoter used to 

normalize variations in transfection efficiency).  

 

To analyse the luciferase activity of H5N1 A/KAN-1/2009 293T cells in 12-well 

plates were transfected with 10 ng of pCAGGS plasmids that express PB1, PB2, and 

PA, 100 ng of pCAGGS NP, alongside 200 ng pCAGGS MxA or wobble MxA (wild 

type or mutants) plus 250 ng of pHH-ANSren, and 10 ng of pCMV-FF. 

 

For influenza B polymerase activity 293T cells in 12-well plates were transfected 

with 10 ng of pCI plasmids that express PB1, PB2, and PA, 100 ng of pCI NP for 

B/Pan/90, alongside 200 ng pCAGGS wobble MxA (wild type or mutants) plus 250 

ng of pHH-BNSren, which is flanked by the non-coding regions of the influenza B 

NS segment and used as a read-out for polymerase activity, and 10 ng of pCMV-FF.  

 

Twenty-four hours post-transfection, cells were lysed and firefly and renilla luciferase 

activities were measured using a dual-luciferase reporter assay (Promega). Results 

represent averages from three independent experiments ± SD. 
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2.5.2 Sample Preparation for Transmission Electron Microscopy 

Following a virus input assay (described above) cells were fixed in 0.5% 

glutaraldehyde in PBS for 15 minutes before scraping the cells from the culture flask 

in a small volume of the fixative. The cells were then pelleted (16, 000 x g for 15 

minutes) in an 1.5 ml Eppendorf tube, washed 3 times in 100 mM sodium cacodylate 

buffer (pH 7.2) followed by postfixation for 1.5 h in 1% osmium tetraoxide in 0.1 M 

sodium cacodylate reduced with 1.5% w/v potassium ferrocyanide to improve 

membrane contrast. Samples were subsequently washed 3 times with de-ionized 

MilliQ water and the cell pellet then underwent dehydration through a series of 

washes in increasing concentrations of ethanol (10 minutes per ethanol step), starting 

at 50% and finishing with 2 washes in 100% ethanol and 2 final washes in propylene 

oxide (15 minutes each). The propylene oxide was removed and replaced with an 

epoxy-propylene oxide mixture (1:1) and incubated, rotating overnight at room 

temperature. The pellet was then removed from the overnight incubation mix, blotted 

on filter paper and cut into smaller fragments prior to embedding in fresh epoxy resin. 

The embedded expoxy pellet was then baked at 65 °C for 24 hours or until the epoxy 

block had solidified. The embedded pellet was then mounted into an ultra-microtome 

(Reichert-Jung Ultracut) and a diamond knife is used to cut ultrathin sections (80 nm), 

which were collected onto pioloform-coated EM copper grids (Agar Scientific, 

Stansted, UK) for staining. To increase membrane contrast the sections were stained 

for 10 minutes using lead citrate (according to Reynolds, 1963), washed several times 

in MilliQ water, followed by staining with 3% w/v uranyl acetate for 5 minutes to 

increase protein contrast. The grids were subsequently washed several times in MilliQ 

water before air-drying. Sections were imaged using a JEOL 1200 EX transmission 
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electron microscope at 80kV and images taken with a Gatan Orius 200 digital camera 

(Gatan, Abingdon Oxon). 

2.5.3 Lipid Extraction 

Total lipids from various treated A549 cells were extracted based upon a slightly 

modified Bligh-Dyer method. Briefly, cells from confluent 25 cm2 flasks were 

washed in PBS and suspended in 100 µL PBS and transferred to a glass tube, 375 µL 

of 1:2 (v/v) CHCl3: MeOH added and vortexed. The samples were agitated vigorously 

for a further 10-15min. The samples were made biphasic by the addition of 125 µL of 

CHCl3, vortexed, 125 ul of H2O added, vortexed again and centrifuged at 1000 g at 

RT for 5 min. The resultant lower phase lipid extract was transferred to a new tube, 

dried under nitrogen and stored at 4 °C, until analysis. 

2.5.4 Electrospray-mass spectrometry analysis 

Lipid extracts, were dissolved in 15 µL of choloroform:methanol (1:2) and 15 µL of 

acetonitrile:isopropanol:water (6:7:2) and analysed with a Absceix 4000 QTrap, a 

triple quadrupole mass spectrometer equipped with a nanoelectrospray source. 

Samples were delivered using a Nanomate interface in direct infusion mode (~125 

nl/min).  The lipid extracts were analysed in both positive and negative ion modes 

using a capillary voltage of 1.25 kV. MS/MS scanning (daughter, precursor and 

neutral loss scans) were performed using nitrogen as the collision gas with collision 

energies between 35-90 V. Each spectrum encompassed at least 50 repetitive scans. 

Tandem mass spectra (MS/MS) were obtained with collision energies between 35-90 

V. Assignment of phospholipid and neutral lipid species was based upon a 

combination of survey, daughter, precursor and neutral loss scans. The identity of 
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phospholipid peaks was verified using the LIPID MAPS: Nature Lipidomics Gateway 

(www.lipidmaps.org).  
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2.6 Antibodies used 

Antibody Species Source Dilution in Assay 

#-Actin Mouse Sigma 1:10000 (WB) 

#-Hong Kong/73 Rabbit Kind gift from by Prof. R. E. 

Randall, University of St. 

Andrews 

1:1000 (WB) 

#-Influenza A NP Mouse Abcam 1:200 (IF) 

#-Influenza B NP Mouse Abcam 1:200 (IF) 

#-MxA Rabbit Santa Cruz 1:50 (IF) 

1:500 (WB) 

#-X-31 Sheep Diagnostics Scotland 1:1000 (WB) 

IRDye® 800CW #-

Mouse 

Goat Licor 1:20000 (WB) 

IRDye® 680RD  #-

Rabbit 

Goat Licor 1:20000 (WB) 

IRDye® 680RD  #-

Goat 

Donkey Licor 1:20000 (WB) 

Texas Red-

conjugated  

#-Mouse 

Goat Abcam 1:200 (IF) 

Texas Red-

conjugated  

#-Rabbit 

Goat Abcam 1:200 (IF) 

Alex Fluor® 488 #-

Rabbit 

Goat Life Technologies 1:400 (IF) 

Table 2.1Table of Antibodies 
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Chapter 3 – The impact of interferon and MxA on influenza virus infection 

3. Introduction 

The interferon response is the initial host barrier to viral infection, as described in 

section 1.1. The interactions between influenza A virus and components of the IFN 

response has been well studied, defining the multi-functional NS1 protein as the main 

IFN antagonist as well as roles for other viral proteins such as PB2, PB1-F2, and NP 

in regulating the host response to influenza virus infection. More recently a number of 

studies have been focusing on the impact of IFN on viral entry, and the impact this 

has on viruses that are entering cells already primed by IFN.  

 

For example, cholesterol-25-hydroxylase (CH25H) is an ISG which was identified by 

two different groups to have antiviral activity in the early stages of infection (S.-Y. 

Liu et al. 2013; Blanc et al. 2013). CH25H is an enzyme that oxidises cholesterol to 

produce 25-hydroxycholesterol (25HC) a metabolite that has been shown to have an 

important role in lipid biosynthesis and metabolism as well as immunity (Wilkins and 

Gale 2013). Both groups identified this metabolite to have antiviral properties with 

Blanc et al, showing the impact of 25HC against murine cytomegalovirus (MCMV) as 

well as a range of other viruses including influenza A virus and herpes simplex virus 

1 (HSV-1). It was suggested that the mechanism of action against MCMV was 

functional during DNA replication, differing from the impact on HSV-1, where 25HC 

inhibited viral entry (Blanc et al. 2013). This corroborated the results of Liu et al, who 

showed CH25H could have a broad-spectrum antiviral effect on a number of different 

enveloped viruses such as HSV-1, HIV-1, ebola virus and Rift Valley fever virus 
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among others, and provided evidence that 25HC inhibited virus infection through 

blocking viral fusion with host lipid membranes (S.-Y. Liu et al. 2013). 

This section looks to investigate the effect of interferon on viral entry as well as the 

IFN-induced block of influenza genome translocation as described by Xiao et al. 

2013, using electron microscopy. Secondly, this section explores the impact of the 

interferon stimulated GTPase MxA upon early influenza infection, both in the 

presence and absence of interferon. Lastly this section explores the influence of IFN 

treatment and MxA expression on the overall cellular lipid composition of human 

lung adenocarcinoma A549 cells. 

 

3.1 Impact on virus entry 

Previous work has shown that when cells are pre-treated with IFN, influenza virus is 

only capable of generating a productive infection in a subset of cells, dependent on 

the multiplicity of infection (MOI) (Xiao et al., 2013). At an MOI of 5, where all 

naïve cells were positive for viral antigen only 20% of cells pre-treated with IFN 

showed signs of a productive infection, and even when the MOI was increased to 50 

the number of cells positive in the IFN-treated condition only reached 52%, indicating 

that the level of IFN-mediated protection was dependent on the amount of incoming 

virus particles and that influenza A virus was capable of overcoming the block 

through overwhelming the cellular response (Xiao et al. 2013). However, following 

the publication on the impact of ISG CH25H (S.-Y. Liu et al. 2013), and the broad-

spectrum antiviral activity against enveloped virus offered another potential 

mechanism alongside the intracellular-acting ISGs such as IFITM3 and MxA(Feeley 

et al. 2011; Matzinger et al. 2013), for the low levels of influenza positive IFN treated 

cells as described by Xiao et al. (2013).  
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Figure 3.1: Impact of IFN on Viral Entry. (A) Immunoblot showing the level of virus 
endocytosed either in the absence or presence of IFN at increasing MOI following 1 h 
adsorption. Influenza NP was detected using a sheep anti-X31 antibody, MxA detection using 
a rabbit anti-MxA antibody acted as a control for induction of the IFN-induced antiviral state 
and actin was detected as a loading control. (B) Quantification of endocytosed viral protein 
normalised against actin levels. Results are shown as a percentage of viral protein in untreated 
A549 cells at each MOI and are the average of three independent experiments ± S.D. 
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The propensity for influenza virus entry in A549 cells with and without IFN pre-

treatment was assed through quantitative western blot and plaque assay.  A549 cells 

were either left untreated or pre-treated with 1000 units/mL IFN-! for 16 hours prior 

to infection. Cells were then infected with influenza A/Udorn/72 at a range of 

different MOIs for 1 hour, allowing for virus adsorption, with any excess virus 

removed using a citric acid wash. The cells were infected in the presence of 

cyclohexamide to ensure that any viral protein present was from input virus and not 

from early rounds of viral protein translation. Pre-treatment with IFN appeared to 

have no impact on the ability of influenza A virus to enter the cell. At MOIs of 10, 25 

and 50 there is a negligible difference in the amount of viral antigen found in the cell 

whether they had been treated with IFN or not (Fig. 3.1). To further address whether 

IFN treatment prevented viral infection, A549 cells were either pre-treated with IFN 

or left untreated prior to infection with influenza A/Udorn/72 at an MOI 10. 

Following adsorption, the viral inoculum was removed from the cells, the 

concentration of virus remaining in the inoculum was determined by plaque assay and 

the titre was compared to that of the initial inoculum. In both IFN-treated and 

untreated conditions approximately 16% of the initial viral inoculum was not 

endocytosed by the A549 cells, suggesting that IFN pre-treatment has no impact on 

the initial stages of influenza virus entry (Fig. 3.2). 
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Figure 3.2: Impact of IFN on Viral Entry. A549 cells were either untreated or pre-treated 
with 1000 U/mL IFN-a for 16 h prior to infection with A/Udorn/72 at an MOI of 10. Following 
one hour adsorption, the viral inoculum was removed and the concentration of virus remaining 
in the inoculum was determined by plaque assay. The results show the concentration of 
infectious virus in the removed inoculum as a percentage of that used to infect the cells and 
represent the average of three independent experiments ± S.D. 
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3.2 Electron Microscopy analysis of the IFN-induced block in influenza genome 

nuclear translocation 

The work of Xiao et al, (2013) showed that in cells pre-treated with IFN, influenza A 

virus genome was incapable of translocating to the nucleus, but instead was caught in 

the perinuclear region following endocytosis. They showed that this block was not 

only dependent on IFN but was also dependent on the presence of MxA (Xiao et al. 

2013). To study this block in more detail it was first necessary to replicate this data 

using the viral input assay. An immunofluorescence-based infection assay in which a 

large MOI is used to infect cells in the presence of cycloheximide to inhibit any 

translation of mRNAs, thereby allowing one to visualise protein present in the input 

virions.  

 

Figure 3.3 shows an example of an input assay using H1N1 influenza A/WSN/1933 

(WSN). A549 cells were either untreated or pre-treated with 1000 units IFN for 16 

hours prior to infection. The cells were then infected at a high MOI and incubated at 

37°C for 3 hours, allowing sufficient time for the incoming viral genomes to 

translocate to the nucleus. In the untreated A549 cells there was a distinct nuclear 

staining for influenza NP. However, in the IFN treated cells, indicated by the 

cytoplasmic staining of MxA, the NP had a punctate pattern with the virus appearing 

to be stuck in the cytoplasm, often in the perinuclear region, corroborating with the 

results of Xiao et al, 2013. 

 

Although it is clear that the incoming virus is blocked within the cytoplasm, it is not 

known at which stage during viral entry this block is taking place. In an attempt to get 

a clearer understanding of the IFN-mediated block on influenza nuclear translocation  
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Figure 3.3 Immunofluorescene of viral input assay. Immunofluorescent staining of 
A549 cells 3 hours post-infection (h.p.i.) with WSN at an MOI of approximately 500 in 
the presence of cycloheximide. Interferon treatment was administered 16 hours prior to 
infection. Cells were fixed and probed with an !-influenza A NP monoclonal mouse 
antibody and an !-MxA polyclonal rabbit antibody then Texas red conjugated goat !-
mouse and Alexa-488 conjugated goat !-rabbit. Red = NP, green = MxA. 
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the same assay was used but rather than use immunofluorescence the cells were 

processed for analysis by Transmission Electron Microscopy (TEM). As before, the 

same conditions as used in the immunofluorescence assay were used for analysis by 

TEM looking at infected and uninfected cells either in the absence or presence of IFN. 

 

Figure 3.4 shows WSN-infected cells that have been pre-treated with IFN. The initial 

analysis showed that virus-infected, IFN treated cells appeared to have a large number 

of highly ordered, membranous structures located in the cytoplasm, often localizing to 

the perinuclear region. Panels A and B show two different micrographs at 4000x 

magnification containing these large multi-vesicular structures which are ranging 

between 300-1000 nm in diameter. Panels C and D show higher magnification cross-

sections of these multi-membranous structures containing ultrastructure which could 

be indicative of a typical influenza virion when viewed under TEM, showing a clear 

lipid membrane and a fuzzy outer-layer, which would be indicative of the external 

glycoproteins. In both C and D the potential virion-like particle is located within a 

highly ordered membranous structure and after measuring the size of the particle in 

panel C it is approximately 100 nm in diameter, which fits with the biophysical 

characterisation of spherical influenza particles, which range between 80-150 nm in 

diameter. However, panel D has 2 potential virion structures, showing the same ultra-

structure as seen in panel C, yet the size of the structures are much smaller in size. 

This could be because due to the nature of the cross-section, as the samples were 

sectioned into 80 nm slices and due to the random sampling the section could cut at 

any point through the 80-150 nm spherical virion. Therefore the size of the section we 

see may give a false representation as to the size of the 3D structure.   
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Figure 3.4. Electron Micrograph of influenza WSN-infected cells post-IFN treatment. 
IFN treated A549 cells were infected with WSN in an input assay as described above. After 
fixation the cells were sectioned under conventional EM conditions and stained using lead 
citrate and uranyl acetate. Panels A and B are at a magnification of 4000x. Panels C and D 
are at a magnification of 15000x. Panels A and B each show highly membranous structures 
in the perinuclear region in close proximity to mitochondria. Panels C and D are a higher 
magnification image of a multi-lamellar structure, potentially containing an influenza 
virion. 
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Following a review of the literature, it appears that these structures seen in Fig 3.4 are 

the cause of some controversy in the field, often being described as part of two 

different pathways, which culminate in degradation, by the lysosome. The structures 

fit the description of late endosomes becoming lysosomes or endolysomes, which 

typically exhibit multi-lamellar and multi-vesicular structures, typically found in the 

perinuclear region as well as fitting in the described size range of 250-1000 nm in 

diameter (Huotari and Helenius 2011). However, they also appear to fit the 

description of multi-lamellar autophagosomes, which are organelles that are induced 

to capture proteins, other damaged organelles and incoming pathogens producing 

multi-lamellar structures before fusing with the lysosome (Lai et al. 2007; Hernandez 

et al. 2003). Also, in each of these images it is interesting to note that these structures 

appear to be forming in close proximity to mitochondria, which also fits the criteria 

for autophagosomes (Hamasaki et al. 2013). Interestingly, autophagy has recently 

been shown to be involved in the degradation of Sindbis virus nucleocapsids, leading 

to suggestions that selective autophagy of incoming pathogens, such as viruses, is 

used as a defensive strategy by the host (Orvedahl et al. 2010; Dong and Levine 

2013). 

 

Figure 3.5 shows uninfected A549 cells that have been either untreated or pre-treated 

with IFN. The micrographs show that multi-lamellar structures observed in the WSN 

infected and IFN treated cells are also visible in the uninfected cells with and without 

IFN treatment. Similarly, as seen in the virus-infected cells, the multi-lamellar 

structures are also forming in the perinculear region in close proximity to 

mitochondria. It was not surprising to find that these structures are also present in 

both uninfected and untreated cells as it is likely to be a common cellular process 
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Figure 3.5 Electron Micrograph of uninfected A549 cells. Untreated or IFN-treated A549 
cells were sectioned under conventional EM conditions and stained using lead citrate and 
uranyl acetate. All panels are at a magnification of 2000x. Panels A and B are untreated 
uninfected A549 cells whereas panels C and D have been pre-treated with 1000 U/mL IFN-a 
prior to sectioning. Each micrograph shows highly membranous structures similar to those 
seen in the virus-infected cells. 
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involved in either endocytosis or degradation. Interestingly, it appeared that these 

structures were more frequent in the WSN-infected cells and particularly in the 

presence of IFN treatment, however to confirm this observation these structures 

required quantification. 

 

To determine the significance of these multi-membranous structures it was necessary 

to quantify the frequency at which they occur in each of the experimental conditions. 

However, due to the nature of these structures and other cellular organelles it is not 

possible to determine their number through standard counts. Equal numbers of 

different organelles can differ in size and this in turn can alter the number of times 

they can appear in 2D slices, as larger organelles will appear in more 2D slices than 

smaller organelles, leading to a misinterpretation of the frequency of each organelle. 

An example is shown in Fig. 3.6 A. as the schematic shows equal numbers of 

organelles which range in size, on the left a multi-vesicular body would be sectioned 

through 13 times, whereas the late endosome/lysosomal structure on the right would 

only be present in 6 sections despite there being equal numbers of organelles. 

Therefore to analyse these samples systematic uniform random (SUR) sampling was 

used for both its efficiency and lack of bias (Lucocq and Hacker 2013).  

 

Following sample preparation, slices were appropriately stained and then viewed 

using TEM. Micrographs were taken in an SUR array, where 20 random images were 

taken per experimental condition at low-level magnification in order to maximize the 

amount of cytoplasm in each micrograph. Figure 3.6B shows an example of the SUR 

analysis that was performed on each micrograph. Initially a grid, which is larger than 

the micrograph, is placed over the micrograph at random and the number of times a  
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Figure 3.6. Electron Micrograph Analysis. A. The number of 2D intersections is 
influenced by the size of the organelle. The size of an organelle determines its chance of 
occurring in a section plane as illustrated by the 2D section planes (black horizontal lines). 
Although the numbers of each organelle in 3D are equal, the bias caused by sectioning 
would produce over twice as many profiles when the section planes intersect the largest 
organelle (in this case 13 section planes) compared with smallest organelle (6 section 
planes). B. Systematic uniform random (SUR) sampling allows the cell to be sectioned into a 
randomly placed and evenly spaced set of slices. Micrographs are taken at low magnification 
in an SUR array, covering a whole section profile (typically, these number 10–20). The 
magnification is selected to contain maximal areas of the cytoplasm but allow clear 
identification of ultrastructure profiles for subsequent image recording at high power. The 
grids are used for point counting on each of the micrographs to determine the ratio of 
cytoplasmic area to the structure of interest. 
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grid cross-section intersects the cytoplasm, a count is made. This is because the 

structures of interest can only be present within the cytoplasm. Then a second grid 

containing smaller squares is also placed over the micrograph at random and any time 

the grid cross-section intersects a multi-membranous structure (MS) it is counted. 

This then allows for a ratio of the amount of MS structures per cytoplasmic count, 

allowing for an unbiased comparison between experimental conditions. 

 

Figure 3.7 shows the ratio of multi-membranous structures found in the cytoplasm of 

the different experimental conditions. Untreated, uninfected A549 cells had the lowest 

number of MS structures, with a MS:cytoplasm ratio of 0.001. Untreated, infected 

cells showed an increased MS:cytoplasm ratio of 0.0022. This increase was 

potentially due to incoming virions that were trafficked towards a degradation 

pathway or failed to fuse and release the viral genome for translocation to the nucleus.  

 

Interestingly, pre-treatment of A549s with IFN led to a significant increase in the ratio 

of MS structures, giving a ratio of 0.0042, twice as many structures per cytoplasmic 

area than untreated, WSN-infected cells and a 4-fold increase on the uninfected, 

untreated cells, suggesting that these structures are induced by IFN treatment as an 

innate response to any incoming pathogens. This is further supported by the number 

of MS structures present in the IFN treated, WSN infected cells, as the ratio increases 

further to 0.01. This increase suggests that these structures, although naturally 

occurring at low levels within A549 cells, are induced by increased levels of 

endocytosis, as shown by the increase after WSN infection alone. It also shows that 

these structures are significantly induced by the pre-treatment with IFN as a potential 

host response to any incoming viruses and that infecting cells in a pre-existing  
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Figure 3.7. Analysis of MS Ultrastructure. A549 cells were either left untreated or treated 
with IFN for 16 hours prior to infection with WSN at an MOI of approximately 500 in a viral 
input assay. Cells were processed for EM analysis as described above. Systematic uniform 
random sampling was used to obtain 20 images at 2000x magnification per experimental 
condition. Micrographs were then analysed using grid cross-sections to determine the ratio of 
MS structures in the cytoplasm to the number of cytoplasmic counts. Results represent the 
average of three independent experiments ± S.D. 
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antiviral state with a high MOI of influenza virus can further induce the quantity of 

these structures present within the cytoplasm. 

 

3.3 Does MxA inhibit influenza virus prior to primary transcription in the 

absence of IFN? 

Previous work on the antiviral activity of MxA has shown that MxA can target two 

distinct steps of the virus replication cycle; i) over-expression of MxA alone has been 

shown to have an impact post-primary transcription, slowing the rate of viral RNA 

transcription and replication, and ii) Xiao et al. (2013) showed that in the presence of 

IFN, MxA is also capable of blocking the nuclear translocation of incoming viral 

genome. However, it has not been determined whether the over-expression of MxA in 

the absence of IFN treatment is capable of inhibiting the incoming viral genome from 

translocating to the nucleus. Previous studies have used a high MOI in the presence of 

cyclohexamide in order to visualise incoming viral genome without any genome 

replication. Using such a high MOI could over-power any antiviral effect exerted by 

MxA prior to primary transcription in the absence of IFN. 

 

To address this A549-MxA cells, a cell line previously generated through lentivirus 

transduction to constitutively express MxA was infected with A/Udorn/72 at an MOI 

of 0.5 alongside naïve A549 cells and fixed 12 hours post infection. Following 

fixation the cells were immunostained for influenza NP as a marker for infected cells. 

The number of viral antigen positive cells was determined through taking 10 random 

images per condition at 20x magnification and then counted for the number of virus 

positive cells.  
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Figure 3.8 Over-expression of MxA does not impact influenza nuclear import. A549 
and A549-MxA cells were infected with A/Udorn/72 at an MOI 0.5. Cells were fixed 12 
h.p.i and immunostained for cell nuclei using DAPI and influenza NP. Systematic 
uniform random sampling was used to obtain 10 images per condition at 20x 
magnification. Cells that were positive for viral antigen were then counted using ImageJ 
cell counter. The results represent the average of three independent experiments ± S.D. 
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Figure 3.8 shows the impact of MxA on the number of influenza NP positive cells. 

The A549-MxA cells showed a small reduction in NP positive cells as naïve A549 

cells had an average of 859.33 (+/- S.D 99.04) NP positive cells whereas the A549-

MxA cells had an average of 787.66 (+/- S.D 86.40). However, there was no 

significant difference in the number of NP positive cells between naïve A549 cells 

and A549-MxA cells. This shows that in A549 cells that MxA over-expression does 

not appear to have a significant impact on the virus entering the nucleus and 

generating a productive infection and the small difference shown could be due to the 

effects the antiviral effects exhibited post-primary transcription. This result is also 

adds weight to the suggestion that MxA potentially has two separate antiviral 

mechanisms for inhibiting influenza virus, one which is IFN dependent and one which 

is independent of IFN. 

 

3.5 The impact of MxA on viral protein expression 

To determine the overall impact of MxA on influenza virus protein expression, naïve 

A549 cells, A549-MxA cells and A549-#MxA cells, a previously generated cell line 

which has been knocked down for endogenous MxA expression using an shRNA 

were infected with A/Udorn/72 virus at an MOI of 5. Cells had been either pre-treated 

with IFN (1000 U/mL) or left untreated for 16 hours prior to infection. Following 

infection cell lysates collected 8 h.p.i and assessed for the levels of viral NP via 

immunoblotting.  

 

Figure 3.9A shows the effect of MxA on NP expression both with and without IFN 

pre-treatment. As expected MxA expression was not observed in either untreated 

naïve A549 cells or in A549-#MxA cells both in the presence and absence of IFN 
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treatment. Figure 3.9A clearly shows that in the absence of IFN the impact of MxA on 

NP expression is minimal, however in the presence of IFN there is a large decrease in 

the amount of NP being synthesized.  

 

Figure 3.9B shows the levels of viral protein being produced firstly normalised to 

actin as the loading control and then normalised to naïve A549 cells without IFN 

treatment. In the absence of IFN there was only a 7% reduction in the amount of NP 

in A549-MxA cells when compared to naïve A549s, whereas NP levels in A549-

#MxA increased by 11% compared naïve untreated cells. 

 

However, in the presence of IFN there is a large impact on the amount of NP 

produced at 8 h.p.i. Using naïve, untreated A549 cells as 100% viral protein levels, 

IFN treated naïve A549 cells showed an 89% reduction in the amount of NP 

produced. A549-MxA cells showed a very similar reduction in the presence of IFN 

whereas the virus infection in A549-#MxA cells produced 52% the amount of NP as 

present in the untreated, naïve A549 cell control.  

 

The amount of viral protein produced in the untreated cells demonstrates that without 

IFN treatment MxA appears to have little impact on the amount of viral protein 

produced, suggesting the only impact on virus replication is post-primary 

transcription, which is in line with the data seen in section 3.3. However, in the 

presence of IFN we see a huge reduction in the amount of NP being produced in both 

the naïve A549 cells and the A549-MxA cells as expected due to the large number of 
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Figure 3.9. The impact of MxA on influenza A virus protein expression. A. Immunoblot showing 
the level of influenza NP expressed 8 h.p.i in A549, A549-%MxA and A549-MxA cells either in the 
absence or presence of IFN. Influenza NP was detected using a sheep anti-X31 antibody, MxA 
detection acted as a control for the presence of the IFN-induced antiviral state and actin levels were 
detected as a loading control. B. Quantification of NP synthesized 8 h.p.i firstly normalised to actin 
and then normalised to untreated A549 cells. The results represent the average of three independent 
experiments ± S.D. 
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antiviral proteins that are up regulated by IFN treatment. The over-expression of MxA 

only contributed an extra 4% reduction compared to naïve A549 cells in the presence 

of IFN. Interestingly, infected A549-#MxA cells produced 52% the amount of NP in 

the presence of IFN as untreated naïve A549 cells. This shows the importance of 

MxA to early influenza virus infection and the importance of MxA to the IFN 

response suggesting that approximately 40% of the reduction seen in naïve A549s in 

the presence of IFN is due to the expression of MxA.  

 

3.5 The effect of MxA on viral titre 

Although the results in section 3.4 gave a clear indication of the importance of MxA 

to the antiviral response it does not show the overall impact on the amount of virus 

produced during infection. To assess this naïve A549 cells, A549-MxA cells and 

A549-#MxA cells were infected with A/Udorn/72 virus at an MOI 0.001, supernatant 

samples were taken every 12 hours until 72 h.p.i and the infectious titre of each 

determined by viral plaque assay on MDCK cells.  

 

At 12 h.p.i the amount of virus produced was relatively similar across the different 

cell lines, however by 24 h.p.i the viral titre was over half a log lower in the A549-

MxA cells in comparison to the A549-#MxA cells and this level of attenuation 

continued for the remainder of the time course (Fig. 3.10A). Figures 3.10 B, C and D 

demonstrate the differences between the cell lines at 24, 36 and 48 h.p.i. respectively 

and clearly show the difference in the amount of virus produced. The amount of virus 

produced has been normalised to naïve A549 cells, which have been set as 100% 

virus production for a standard virus infection. At 24 h.p.i A549-#MxA cells 

produced an average of 60% more infectious virus particles than naïve A549 cells,  
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Figure 3.10. Impact of MxA on influenza A Multistep infection. A. A549, A549-%MxA and A549-MxA cells were infected at an 
MOI 0.001 using A/Udorn/72. Samples were taken every 12 hours post-infection and titred via plaque assay on MDCK cells. B, C 
and D. Show the percentage of virus produced normalised to naïve A549 cells as 100% virus production at 24, 36 and 48 h.p.i 
respectively!
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whereas the A549-MxA cells show a 60% reduction when compared to the naïve 

A549 cells. The infectious titre peaked at 36 h.p.i at which time the A549-#MxA cells 

had produced 120% more infectious virus particles than the naïve A549s with A549- 

 

MxA cells producing only 66% the amount of infectious virus. A similar trend was 

observed at 48 h.p.i with 201% and 57% infectious virus particles produced from 

A549-#MxA and A549-MxA cells respectively.  

 

These results clearly show the importance of MxA on influenza virus infection as the 

impact post-primary transcription is able to reduce the amount of virus produced by 

approximately 50% across the whole infection, whereas having cells incapable of  

producing MxA in response to virus infection showed an increased capacity to 

produce infectious virus particles.  

 

However, the above analysis does not allow one to observe the impact that MxA is 

capable of having in the presence of IFN, which is the native cellular environment for 

MxA to be present. Therefore based on the previous results in section 3.4, where it 

was shown that MxA is hugely important to the antiviral response during early 

influenza infection, the three cell-lines which had either been untreated or pre-treated 

with IFN (1000 U/mL) were infected with A/Udorn/72 virus at an MOI of 5 in the 

absence of trypsin to observe the impact of MxA and IFN on a single viral replication 

cycle. Following inoculation, samples were collected every 3 hours until 15 h.pi and 

then a final read out at 24 h.p.i. Negligible levels of virus were present at 3 and 6 h.p.i 

as the single cycle of replication had not yet reached the point of virus release and 

following the virus inoculation the cells were washed with a citric acid wash to  
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Figure 3.11. Impact of MxA on influenza A single cycle infection. A. A549, A549-%MxA and A549-MxA cells were either untreated or pre-
treated with IFN-a 1000 U/mL  for 16 hours prior to infection at an MOI 5 using A/Udorn/72. Samples were taken every 3 h.p.i  until 15 hours and 
then at 24 h.p.i and titred via plaque assay on MDCK cells. B, C and D. Show the percentage of virus produced normalised to  untreated naïve 
A549 cells as 100% virus production at 9, 12 and 15 h.p.i respectively!
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remove virus which had not been endocytosed (Fig 3.11A). Therefore the first time 

point at which virus was released was at 9 h.p.i. As seen in the multi-step growth 

curve (Fig. 3.10), there was a half-log difference between the amount of virus 

produced from A549-#MxA cells and the A549-MxA cells at 9 h.p.i. which slowly 

reduced over each time point suggesting that using a high MOI is capable of 

eventually surpassing the antiviral effect induced by the over-expression of MxA. 

Interestingly, at 9 h.p.i in the IFN-treated naïve A549 cells and A549-MxA cells there 

was a clear reduction in infectious viral titre of nearly 2 logs, whereas in the A549-

#MxA cells the reduction in the presence of IFN at 9 h.p.i was only 1 log in 

comparison to untreated naïve A549 cells, again showing the importance of MxA on 

the early stages of influenza infection, particularly in the presence of IFN. 

 

Figure 3.11B shows a graphical representation of viral titres released at 9 h.p.i 

normalised to untreated naive A549s as 100% virus production at each time point. In 

untreated cells there was approximately twice as many infectious virus particles 

produced by A549-#MxA cells compared to naïve cells, whereas in A549-MxA cells 

there was a 31% decrease in viral titre. In the presence of IFN it is clear that in the 

naïve A549 cells and the A549-MxA cells that IFN greatly reduced the amount of 

virus to 2.5% and 2.9% respectively, whereas the A549-#MxA cells produced 

approximately 20% the amount of virus of untreated naïve A549 cells. This supports 

the data shown in section 3.4 in which there was a large increase in the amount of NP 

protein translated in the IFN-treated A549-#MxA cells in comparison to IFN-treated 

naïve A549 cells and again shows the importance of MxA to the early stages of 

infection, particularly in the context of IFN. 
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This trend was continued at 12 h.p.i as Figure 3.11C shows a 60% increase in the 

amount of virus produced in A549-#MxA cells in untreated cells. At 15 h.p.i. this was 

reduced to a 30% increase on the amount of virus produced from naïve A549 cells 

whereas at 15 h.p.i the A549-MxA cells produce 73% the amount of virus as naïve 

A549 cells. This suggests that as the infection continues in the absence of IFN that the 

virus is able to reduce the impact of MxA over-expression and reduces the overall 

impact of not having endogenous MxA available. 

 

In the IFN-treated cells there was a significant reduction in the amount of virus 

produced in all 3 cell lines at 12 h.p.i but again there was a significant difference in 

the amount of virus produced from the A549-#MxA cells in comparison to naïve 

A549 and A549-MxA cells. The level of virus production in the presence of IFN is 

9.9% and 10.6% in these two cell lines respectively, however in A549-#MxA cells it 

was 40% that of untreated naïve cells. This trend continued at 15 h.p.i (Fig. 3.11D.) 

where A549 cells and A549-MxA cells produced 35% and 25% the amount of 

infectious particles compared to naïve untreated A549s yet the A549-#MxA cells 

produced 50%. This data not only shows that MxA has a large impact on the 

production of infectious influenza virus particles but also the importance of MxA to 

the early antiviral effects of IFN against influenza virus.  

 

However, this data set also shows the capability of influenza virus to dismantle the 

host’s pre-existing antiviral state as although the levels of virus produced at 9 h.p.i in 

the presence of IFN was in the order of 2 logs lower, producing only 2% the amount 
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of virus as the untreated control A549s, the percentage of virus produced from the 

IFN-treated cells increased steadily throughout the time course.  

 

3.6 Influence of MxA on A549 Lipid profiles 

A large amount of the work in the available literature regarding the IFN response and 

the ability of ISGs to inhibit viruses focuses on upregulated proteins and protein-

protein interactions between ISGs and the viral proteins or blocking a specific part of 

the viral replication cycle to inhibit viral replication. However, a large part of the host 

defence lies in the cellular membranes, which are essential to both the host and 

enveloped viruses, but their role in the antiviral responses of the host is largely 

unknown. Briefly, mammalian cells consist of hundreds of different lipid species 

which can be grouped into three main classifications; glycerophospholipids, 

sphingolipids and sterols (Hermansson, Hokynar, and Somerharju 2011). The most 

abundant of which are glycerophospholipids, which can be catergorised based on their 

head group with the major classes as follows; phosphatidylcholines (PC), 

phosphatidylethanolamines (PE), phosphatidylinositols (PI) phosphatidylserines (PS) 

and cardiolipins (CL). 

 

Lipids can be seen to exhibit three major biological functions within mammalian 

cells. Firstly, they are used to store energy, mainly in the form of steryl esters and 

triacylglycerols but also stored as fundamental building blocks for membrane 

biogenesis. The second major function is the formation of cellular membranes by 

polar lipids providing a barrier function to the outer environment as well as producing 

discrete organelles. The third function of lipids is to act as a chemical messenger 

during signal transduction. Lipid signaling can be bipartite in nature following the 
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degradation of amphipathic lipids as the hydrophobic portions can signal through 

membranes, whereas the polar portions are capable of transmitting signals through the 

cytoplasm (van Meer, Voelker, and Feigenson 2008). 

 

MxA has been shown to bind to lipids and has been shown to shuttle between both the 

endoplasmic reticulum and the plasma membrane (von der Malsburg et al. 2011). 

Therefore removing endogenous MxA may have a significant impact on the lipid 

profile of the cell. To assess the overall impact of MxA on cellular lipid composition, 

the total cellular lipid contents of naïve A549 and A549-#MxA cells were extracted 

using the bligh-dyer method and analysed using electrospray-mass spectrometry. 

Interestingly, A549-#MxA cells showed a markedly different negative ion spectrum 

to naïve A549 cells (Fig. 3.12). The peaks corresponding to major lipid species 

present in each sample are labeled in Fig 3.12, which shows an increase in the 

abundance of a number of different lipid species in A549-#MxA cells compared to 

naive cells, such as PE 36:2, 38:4 and 40:4 and PG36:1. The results also show a 

reduction in levels of PS 34:2, 36:1 and 36:5 in comparison to naïve cells. These 

differences appear to show a clear impact of MxA on the lipid profile of A549 cells 

(Personal communication: Terry Smith). The increase in PE in A549-#MxA cells 

could potentially be advantageous for the virus as a recent study showed that for 4 

different strains of influenza A virus the major lipid present in the virion was PE 

ranging from 48% up to 55% (Ivanova et al. 2015). This suggests that the virus 

requires a certain level of PE as it has been shown PE with suitable molecular 

geometry facilitate appropriate membrane fluidity and dynamics necessary for virus 

infection (R. B. Chan, Tanner, and Wenk 2010). The reduction in PS could also be of 

interest from the host’s perspective, as PS is well known to be an important apoptotic  
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Figure 3.12. Negative ion ES-MS lipidomic analysis of lipid extracts from naïve A549 
and A549-#MxA cells. Spectra show survey scans (600-1000m/z) of A) naïve A549 cells, B) 
A549-%MxA cells!"#$%"&'('")*"+%,+%*%-('().%"/0"1"%2,%+)3%-(*! 
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marker, which is recognised by antigen presenting cells such as macrophages 

(Segawa et al. 2014). Therefore, MxA could have a role in regulating PS metabolism 

and trafficking, and potentially apoptosis. This profile suggests that MxA is 

potentially involved in lipid metabolism and is capable of altering the lipid profile of 

the cell. At first this result seems surprising, as MxA has only been reported to be 

expressed in response to IFN, whereas in this instance there is no IFN present within 

this system. However, although MxA transcription increases significantly following 

IFN treatment, transcriptomic data shows that small amounts of MxA are being 

transcribed at all times (Benitez et al. 2015). This coupled with the inherent stability 

of MxA within the cell suggests that there could be a small amount of MxA 

consistently expressed which could play a role in the either lipid metabolism or lipid 

trafficking within the cell  

 

3.7 Discussion 

Recent studies have indicated that ISGs can have an impact on the attachment and 

induction of endocytosis by enveloped viruses through the expression of CH25H 

(Blanc et al. 2013; S.-Y. Liu et al. 2013). To determine whether A549 cells were 

capable of inhibiting the initial entry of influenza A virus, A549 cells were pre-treated 

with IFN and then challenged with A/Udorn/73 at a range of different MOIs. The 

cells were then subjected to a citric acid wash to remove any virus particles that were 

bound to the cell surface but not endocytosed. The results clearly demonstrated that 

pre-treatment with IFN had no impact on the ability of influenza A virus to be 

endocytosed. Therefore it would appear that A549 cells do not express an ISG that is 

capable of inhibiting the initial entry of enveloped viruses. Consequently, any impact 
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of IFN-treatment on influenza virus replication in A549 cells is due to the intracellular 

ISG function. 

 

Previously, it was shown that in the presence of IFN in A549 cells, incoming 

influenza virus genome was prevented from translocating to the nucleus and was 

found arrested in the perinuclear region (Xiao et al. 2013). Although it was clear that 

incoming virus was stuck in the cytoplasm and had been localised near to Rab-7, the 

nature of this block was still to be resolved. In this chapter the same viral input assay 

as described by Xiao et al. (2013) was used but analysed by transmission electron 

microscopy to try and further clarify where and how the incoming virus was blocked. 

The micrographs suggested a potential increase in multi-membranous ultrastructure in 

A549 cells after both IFN pre-treatment and virus infection, particularly at higher 

magnification where inside these structures there appeared to be structures possessing 

a double membrane and fuzzy glycoprotein outer-layer, not unlike the known 

influenza virion structure (Fig 3.4). However, the multi-membranous structures were 

also seen in other experimental conditions, although unsurprising as this is likely to be 

a normal cellular process potentially up-regulated in the presence of IFN, it meant that 

these structures required further quantification. This confirmed that these structures 

were much more abundant in A549 cells which had been pre-treated with IFN and 

infected with A/WSN/33 and in comparison to naïve untreated A549 cells, IFN 

treatment alone was capable of increasing the frequency of these structures. The 

identity of these structures is unknown, and is debated within the literature as to 

whether they represent late endosomes fusing with lysosomes, or whether they are in 

fact autophagic structures (Huotari and Helenius 2011; Hernandez et al. 2003; Lai et 

al. 2007).  
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It is well known that IFN-$ is capable of inducing autophagy, which in conjunction 

with constitutively expressed GTPases such as immunity-related GTPase M (Irgm) 

and IFN-$ inducible GTPases such as Irga6 produces a robust immune response 

against intracellular pathogens (Matsuzawa et al. 2012; P. Li et al. 2012; Z. Zhao et 

al. 2008). However, the induction of autophagy through IFN-" is a relatively new 

concept, as only recently has type I IFN been implicated in autophagy induction, 

shown to be dependent on both autophagy protein, atg7 and STAT-1 (Ambjørn et al. 

2013). Importantly this was quickly followed by another research group showing that 

type I IFN induced autophagy in several different cell lines, including A549s, and was 

not a cell-line specific effect (Schmeisser et al. 2013).!Further work will be required 

to determine whether the structures observed in Figure 3.4 are the product of 

lysosomal degradation or non-canonical autogphagy.  

 

Xiao et al. (2013) also showed that this block was not only dependent on MxA but 

also dependent on IFN, as the over-expression of MxA was not enough to inhibit the 

translocation of viral genome to the nucleus but also required pre-treatment with IFN, 

suggesting a second antiviral activity of MxA after the initial observation of inhibiting 

influenza virus replication post-primary transcription (Zürcher, Pavlovic, and Staeheli 

1992; Turan et al. 2004). This suggested that MxA was unable to block nuclear 

import of incoming influenza virus genome without the presence of IFN, however a 

caveat in their experimental approach was that in order for a detectable signal to be 

observed a very large MOI had to be used, which could have easily over-powered any 

antiviral effect produced by over-expressing MxA. This was addressed in this chapter 

by infecting A549 cells and A549-MxA cells at an MOI 0.5 and the levels of viral 
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antigen present were assessed. The data in Fig. 3.8 suggests that there was no 

significant difference in the number of cells displaying viral antigen and that the over-

expression of MxA in A549 cells does not have an impact on influenza genome 

translocation. Therefore any differences observed in viral replication, such as the 

reduction in plaque number described by Xiao et al. (2013), in the absence of IFN 

were likely due to the antiviral effect induced by MxA following primary 

transcription. Although it did show that MxA was incapable of performing this block 

without IFN, it also suggested that there are two potentially different mechanisms to 

the antiviral activity exerted by MxA. 

 

After determining the impact of MxA over-expression on the ability of influenza virus 

to establish a productive infection, it was necessary to determine the impact of MxA 

on virus replication as a whole in the presence of both over-expressed MxA and the 

lack of any endogenous MxA in A549 cells. The protein data shown in Fig.3.9 clearly 

showed that in the absence of IFN there was only a small difference in the levels of 

viral protein produced. However, the impact of IFN on virus protein and consequently 

virus production is highly significant as expected.  

 

Interestingly, this data shows the importance of MxA to the early stages of virus 

infection particularly in the presence of IFN, as at 8 h.p.i, IFN-treated A549-#MxA 

cells produced 50% the amount of protein as untreated naïve A549 cells, which is a 

40% increase over IFN-treated naïve A549s and A549-MxA cells. These results show 

the efficiency of the IFN response, as the over-expression of MxA coupled with IFN 

did not lead to a much greater reduction in viral protein produced. This is likely due to 

the large number of other ISG which are capable of producing an inhibitory effect 
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against influenza A virus, such as IFITM3, Viperin and ISG15 (Feeley et al. 2011; 

Wang, Hinson, and Cresswell 2007; C. Zhao et al. 2010).  

 

However, the importance of MxA to the IFN response against influenza A virus is 

underlined by the large increase in viral protein produced without endogenous MxA. 

Therefore, if MxA has two separate mechanisms of antiviral function; one 

independent of IFN and one which is IFN-dependent. This data suggests that the IFN-

dependent block of influenza A virus prior to primary transcription by MxA is more 

important to the host response than impact displayed following primary transcription 

in A549 cells.  

 

MxA is known to reside at the endoplasmic reticulum (ER) and shuttle between the 

ER and plasma membrane whilst also being shown to be capable of binding to lipids 

and in vitro has been shown to be capable of tubulating liposomes mediated by a run 

of lysine residues in positions 554-557 (von der Malsburg et al. 2011). Based on this 

knowledge, it was hypothesised that MxA may have a role in lipid metabolism or 

shaping the lipid profile of the cell. This was investigated through whole cell lipid 

extraction and comparing the lipid profiles of naïve A549 cells and A549-#MxA cells 

to determine the impact of removing endogenous MxA.  

 

Surprisingly, there was a clear difference in the overall lipid profiles of the two cell 

types. Differences were detected in the major glycerophospholipid head groups, in 

particular increased PE lipid peaks and reduced PS lipid peaks were observed, both of 

which could have an impact on virus infection. This is because lipids have intrinsic 

shapes that are dependent on the size of the head groups and acyl chain length and 
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saturation and these characteristics determine their side-by-side packing, and the 

curvature of the membrane (McMahon and Boucrot 2015). The change in lipid profile 

could offer an explanation for the increase in the viral titre produced from A549-

#MxA cells. In the absence of IFN treatment, these cells should not be expressing 

levels of MxA, which could impact virus production. Therefore the levels of virus 

produced from cells that do not express endogenous MxA should be similar to naïve 

A549 cells. However, there is a large increase in the amount of infectious virus 

released from A549-#MxA cells (Fig. 3.11). This could be due to very small amounts 

of MxA that is constitutively expressed within the cell having an impact on lipid 

metabolism. Therefore completely removing MxA and subsequently increasing the 

cellular levels of PE, shown to be a key part of the viral lipid envelope by Ivanov et 

al. 2015, could lead to an increase in the levels of infectious virus produced. 

However, to determine the real impact of knocking out MxA on lipid levels an 

internal standard would be required to allow for quantification. Also, this analysis 

looks at the cellular lipid composition as a whole and does not differentiate between 

lipid localization as these changes could be taking place at any lipid bound organelle 

within the cell and not necessarily at the plasma membrane. To address this one 

would have to fractionate the cells and characterise the lipid levels in various cellular 

compartments, especially those found specifically in the plasma membrane. Changes 

in plasma membrane-associated lipids could then be correlated with effects on viral 

infectivity. 

 

Despite these limitations, this data offers another potential role for MxA within the 

host cell and a third potential mechanism of antiviral activity, whereby MxA is 

capable of manipulating the cellular lipid metabolism so that progeny virions do not 
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incorporate the correct lipid composition required for optimal infectivity. Therefore 

although the virus particles would likely still be capable of binding to the host cell, 

they may not be able to undergo efficient fusion due to biophysical restrictions 

imposed by the altered curvature of the lipid membrane.  
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Chapter 4 - Investigating the structural and functional characteristics of the 

antiviral activity of MxA  

MxA is recognised as a key protein within the host antiviral response and can be 

defined through a number of major characteristics as not only is it a GTPase, it is also 

capable of binding to lipid membranes and homo-oligomerization which can lead to 

the production of huge ring-like structures in vitro, whilst existing primarily as a 

tetramer in vivo (Kochs et al. 2002 and Janzen et al. 2000). More recently canine Mx1 

has been shown to play a role for apical transport of post-golgi vesicles, adding to the 

growing understanding of the number of functions performed by Mx proteins aside 

from their antiviral action (Hoff et al. 2014).  

 

The previous section identified the importance of MxA to the interferon response 

during the early stages of influenza infection. To determine which of the 

aforementioned characteristics are essential to the antiviral activity of MxA against 

influenza virus a number of mutations previously described in the literature were 

introduced into MxA (Table 4.1). Each of the mutations were cloned into the MxA 

gene within the mammalian expression vector pCAGGS and lentivirus expression 

plasmid pdl-MCS-R’ to be used in transient and stable protein expression systems 

respectively.  

 

4.1 Characterisation of wobble MxA constructs 

Previously it has been shown that the over-expression of MxA was not capable of 

inhibiting the translocation of incoming influenza genome to the nucleus (Xiao et al. 

2013). This had been shown by silencing the expression of endogenous MxA using an 
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Table 4.1 MxA Mutations.  

Mutations Function 

T103A !"#$%&'(&)*+,)"%-.%-/)0-.)0-1%23%40$)051%3%16)"71).#(&)8#49)#$%/#9(4&):;0-<(-)=)>#5'&)0-.)
?0$$(4@)ABBBC) 

G255E Human Biallelic polymorphism G255E is predicted to effect MxA structure (Duc et al. 2012)  

V268M Human Biallelic polymorphism V268M is not predicted to effect MxA structure (Duc et al. 
2012)  

I376D Interface 1 mutant critical for oligomerization (Haller et al. 2010)  

D478A BSE stalk region, which oligomerised like WT but preferentially in dimer form. Can bind to La 
Crosse Virus NP and is active in an influenza A mini-replicon assay. (Gao et al. 2011)  

AKAK (554-557) Lipid binding mutant within the L4 loop shown to negate Mx lipid binding and liposome 
tubulation in vitro (van der Malsburg et a. 2011) 

KEKE (554-557) Lipid binding mutant within the L4 loop shown to negate Mx lipid binding and liposome 
tubulation in vitro (van der Malsburg et a. 2011) 

F561V Single amino acid change in L4 loop confers Thogoto virus antiviral specificity.  F561V 
decreases its ability to restrict influenza A H5N1 replication. (Mitchell et al. 2012)  

F602D Interface 2 mutants that disrupts tetramer formation but produce monomers (Daumke et al. 
2010)  

L612K Fails to form oligomers and has no detectable GTPase activity but still has antiviral activity in 
transiently transfected Vero cells against Thogoto Virus and Thogoto mini-replicon system. 
Rapidly degraded (Janzen, Kochs and Haller. 2000).  

R640A Does not oligomerise with or without the presence of [S]. Shown as a dimer. Does not sequester 
La Crosse V N nor does it inhibit H5N1 replication in a mini-replicon assay (Gao et al. 2011)  
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shRNA targeting the MxA mRNA for degradation in A549 cells (A549-#MxA). Xiao 

et al. (2013), then re-introduced MxA into these cells using a codon-optimised version 

of the MxA gene (in which 3rd base synonymous changes were introduced) , which 

was no longer targeted by the shRNA and allowed constitutive expression of MxA 

within these cells. This provided a system in which the antiviral effects of 

overexpressed MxA could be monitored without the expression of endogenous MxA 

affecting the results. As the nucleotide sequence of the codon-optimised MxA gene 

had been “wobbled” (due to the redundancy of the genetic code) from its original 

sequence this will be referred to as wobble MxA (wMxA) from here on in. The 

nucleotide alignment is seen in Figure 4.1.  

 

To determine the impact of the mutations introduced to MxA (Table 4.1) on its 

antiviral activity in the absence of endogenous MxA, the mutations of interest were 

also made in the wMxA background so that these mutant proteins could be introduced 

into the A549-#MxA cells. Prior to stable cell-line production the mutant MxA 

proteins were firstly characterised by determining their expression and localization in 

293T cells by transient transfection. Figure 4.2 shows each of the constructs displayed 

cytoplasmic localization as expected. It is interesting to note that similar to wild-type 

MxA all but two of the mutant versions were distributed in areas of intense punctate 

expression. Although punctate staining of MxA is not typical of endogenous MxA 

expression induced through IFN, it is likely that the punctate phenotype observed in 

over-expression systems is due to the accumulation of larger quantities of protein 

being expressed leading to the formation of the higher molecular weight complexes 

postulated by Kochs et al. (2002).  This hypothesis is supported by the phenotypes 

displayed by the MxA proteins containing mutations at position 602 and 612, which !  
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ATGGTTGTTTCCGAAGTGGACATCGCAAAAGCTGATCCAGCTGCTGCATCCCACCCTCTA MxA  
ATGGTGGTGTCTGAAGTCGATATTGCCAAGGCCGACCCCGCAGCCGCCAGCCATCCCCTC Wobble            
***** ** ** ***** ** ** ** ** ** ** ** ** ** **   *** ** ** 
TTACTGAATGGAGATGCTACTGTGGCCCAGAAAAATCCAGGCTCGGTGGCCGAGAACAAC MxA 
CTCCTCAACGGCGACGCCACCGTCGCTCAAAAGAACCCCGGAAGCGTCGCTGAAAATAAT Wobble                                                       
 * ** ** ** ** ** ** ** ** ** ** ** ** **    ** ** ** ** **  
CTGTGCAGCCAGTATGAGGAGAAGGTGCGCCCCTGCATCGACCTCATTGACTCCCTGCGG MxA 
CTCTGTTCCCAATACGAAGAAAAAGTCCGGCCTTGTATTGATCTGATCGATAGCCTCAGA Wobble            
** **   *** ** ** ** ** ** ** ** ** ** ** ** ** **   ***  * 
GCTCTAGGTGTGGAGCAGGACCTGGCCCTGCCAGCCATCGCCGTCATCGGGGACCAGAGC MxA 
GCCCTGGGCGTCGAACAAGATCTCGCTCTCCCCGCTATTGCAGTGATTGGCGATCAATCC Wobble           
** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **   * 
TCGGGCAAGAGCTCCGTGTTGGAGGCACTGTCAGGAGTTGCCCTTCCCAGAGGCAGCGGG MxA      
AGCGGAAAATCTAGCGTCCTGGAAGCCCTCAGCGGCGTGGCTCTGCCTAGGGGATCCGGC Wobble                
   ** **      ***  **** ** **    ** ** ** ** ** ** **   *** 
ATCGTGACCAGATGCCCGCTGGTGCTGAAACTGAAGAAACTTGTGAACGAAGATAAGTGG MxA 
ATTGTCACACGGTGTCCTCTCGTCCTCAAGCTCAAAAAGCTGGTCAATGAGGACAAATGG Wobble           
** ** **  * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ***           
AGAGGCAAGGTCAGTTACCAGGACTACGAGATTGAGATTTCGGATGCTTCAGAGGTAGAA MxA 
CGGGGAAAAGTGTCCTATCAAGATTATGAAATCGAAATCAGCGACGCCAGCGAAGTGGAG Wobble  
 * ** ** **    ** ** ** ** ** ** ** **    ** **    ** ** ** 
AAGGAAATTAATAAAGCCCAGAATGCCATCGCCGGGGAAGGAATGGGAATCAGTCATGAG MxA      
AAAGAGATCAACAAGGCTCAAAACGCTATTGCTGGCGAGGGCATGGGCATTTCTCACGAA Wobble           
** ** ** ** ** ** ** ** ** ** ** ** ** ** ***** **   *** **            
CTAATCACCCGTGAGATCAGCTCCCGAGATGTCCCGGATCTGACTCTAATAGACCTTCCT MxA      
CTGATTACACTAGAAATTTCTAGCAGGGACGTGCCTGACCTCACCCTGATCGATCTGCCC Wobble           
** ** ** *  ** **      * * ** ** ** ** ** ** ** ** ** ** **           
GGCATAACCAGAGTGGCTGTGGGCAATCAGCCTGCTGACATTGGGTATAAGATCAAGACA MxA      
GGAATCACACGGGTCGCCGTCGGAAACCAACCCGCCGATATCGGCTACAAAATTAAAACC Wobble           
** ** **  * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** 
CTCATCAAGAAGTACATCCAGAGGCAGGAGACAATCAGCCTGGTGGTGGTCCCCAGTAAT MxA 
CTGATTAAAAAATATATTCAACGGCAAGAAACCATCTCCCTCGTCGTCGTGCCTAGCAAC Wobble           
** ** ** ** ** ** **  **** ** ** ***  *** ** ** ** ** ** **           
GTGGACATTGCCACCACAGAGGCTCTCAGCATGGCCCAGGAGGTGGACCCCGAGGGAGAC MxA      
GTCGATATCGCTACAACCGAAGCCCTGTCTATGGCTCAGGAAGTCGATCCTGAAGGCGAT Wobble            
** ** ** ** ** ** ** ** **    ***** ***** ** ** ** ** ** **           
AGGACCATCGGAATCTTGACGAAGCCTGATCTGGTGGACAAAGGAACTGAAGACAAGGTT MxA     
CGCACAATTGGCATTCTGACCAAACCCGACCTCGTCGATAAGGGCACCGAGGATAAAGTG Wobble  
 * ** ** ** **  **** ** ** ** ** ** ** ** ** ** ** ** ** ** 
GTGGACGTGGTGCGGAACCTCGTGTTCCACCTGAAGAAGGGTTACATGATTGTCAAGTGC MxA      
GTCGATGTCGTCAGAAATCTGGTCTTTCATCTCAAAAAAGGCTATATGATCGTGAAATGT Wobble          
** ** ** **  * ** ** ** ** ** ** ** ** ** ** ***** ** ** ** 
CGGGGCCAGCAGGAGATCCAGGACCAGCTGAGCCTGTCCGAAGCCCTGCAGAGAGAGAAG MxA     
AGAGGACAGCAAGAAATTCAGGATCAGCTCTCTCTCAGCGAGGCTCTCCAGCGGGAAAAA Wobble  
 * ** ***** ** ** ***** *****    **   *** ** ** *** * ** **  
ATCTTCTTTGAGAACCACCCATATTTCAGGGATCTGCTGGAGGAAGGAAAGGCCACGGTT MxA      
ATTTTTTTCGAAAATCATCCCTACTTTCGGGACCTCCTCGAAGAGGGGAAAGCTACCGTC Wobble           
** ** ** ** ** ** ** ** **  **** ** ** ** ** ** ** ** ** **           
CCCTGCCTGGCAGAAAAACTTACCAGCGAGCTCATCACACATATCTGTAAATCTCTGCCC MxA     
CCTTGTCTCGCCGAGAAGCTGACATCTGAACTGATTACCCACATCTGCAAGAGCCTCCCT Wobble           
** ** ** ** ** ** ** **    ** ** ** ** ** ***** **    ** ** 
CTGTTAGAAAATCAAATCAAGGAGACTCACCAGAGAATAACAGAGGAGCTACAAAAGTAT MxA      
CTCCTGGAAAACCAGATTAAAGAAACCCATCAGAGGATCACCGAGGAACTGCAGAAATAC Wobble           
**  * ***** ** ** ** ** ** ** ***** ** ** ***** ** ** ** ** 
GGTGTCGACATACCGGAAGACGAAAATGAAAAAATGTTCTTCCTGATAGATAAAATTAAT MxA     
GGCGTGGATATCCCCGAGGATGAGAACGAGAAGATGTTTTTTCTCATCGACAAGATCAAC Wobble           
** ** ** ** ** ** ** ** ** ** ** ***** ** ** ** ** ** ** ** 
GCCTTTAATCAGGACATCACTGCTCTCATGCAAGGAGAGGAAACTGTAGGGGAGGAAGAC MxA 
GCTTTCAACCAGGATATTACCGCACTGATGCAGGGGGAAGAAACCGTGGGCGAAGAGGAT Wobble            
** ** ** ***** ** ** ** ** ***** ** ** ***** ** ** ** ** **           
ATTCGGCTGTTTACCAGACTCCGACACGAGTTCCACAAATGGAGTACAATAATTGAAAAC MxA 
ATCAGACTCTTCACAAGGCTGAGGCATGAATTTCATAAGTGGAGCACCATCATCGAGAAT Wobble            
**  * ** ** ** ** **  * ** ** ** ** ** ***** ** ** ** ** **           
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AATTTTCAAGAAGGCCATAAAATTTTGAGTAGAAAAATCCAGAAATTTGAAAATCAGTAT MxA      
AACTTCCAGGAAGGACACAAGATCCTCAGCAGGAAGATTCAGAAGTTCGAGAACCAGTAC Wobble            
** ** ** ***** ** ** **  * ** ** ** ** ***** ** ** ** ***** 
CGTGGTAGAGAGCTGCCAGGCTTTGTGAATTACAGGACATTTGAGACAATCGTGAAACAG MxA      
AGAGGCAGAGAACTCCCCGGATTCGTCAACTACCGCACCTTCGAAACTATTGTCAAGCAG Wobble                     
 * ** ***** ** ** ** ** ** ** *** * ** ** ** ** ** ** ** ** 
CAAATCAAGGCACTGGAAGAGCCGGCTGTGGATATGCTACACACCGTGACGGATATGGTC MxA      
CAGATTAAAGCCCTCGAGGAACCCGCCGTCGACATGCTGCATACAGTCACCGACATGGTC Wobble          
** ** ** ** ** ** ** ** ** ** ** ***** ** ** ** ** ** ****** 
CGGCTTGCTTTCACAGATGTTTCGATAAAAAATTTTGAAGAGTTTTTTAACCTCCACAGA MxA     
CGCCTGGCCTTTACCGACGTGTCCATCAAGAATTTCGAGGAATTCTTCAACCTGCACCGG Wobble            
** ** ** ** ** ** ** ** ** ** ***** ** ** ** ** ***** *** * 
ACCGCCAAGTCCAAAATTGAAGACATTAGAGCAGAACAAGAGAGAGAAGGTGAGAAGCTG MxA      
ACAGCTAAAAGCAAGATCGAGGATATCCGGGCCGAGCAGGAAAGGGAGGGCGAAAAACTC Wobble          
** ** **   *** ** ** ** **  * ** ** ** ** ** ** ** ** ** ** 
ATCCGCCTCCACTTCCAGATGGAACAGATTGTCTACTGCCAGGACCAGGTATACAGGGGT MxA     
ATTAGACTGCATTTTCAGATGGAGCAAATCGTGTATTGTCAGGATCAAGTGTATAGAGGC Wobble            
**  * ** ** ** ******** ** ** ** ** ** ***** ** ** ** ** ** 
GCATTGCAGAAGGTCAGAGAGAAGGAGCTGGAAGAAGAAAAGAAGAAGAAATCCTGGGAT MxA      
GCCCTCCAGAAAGTGCGCGAAAAAGAACTCGAAGAGGAGAAAAAAAAGAAGAGTTGGGAC Wobble           
**  * ***** **  * ** ** ** ** ***** ** ** ** *****    ***** 
TTTGGGGCTTTCCAATCCAGCTCGGCAACAGACTCTTCCATGGAGGAGATCTTTCAGCAC MxA      
TTTGGCGCCTTCCAGAGCAGCAGCGCCACCGACAGCAGCATGGAAGAAATTTTCCAGCAT Wobble            
***** ** *****   ****   ** ** ***     ****** ** ** ** ***** 
CTGATGGCCTATCACCAGGAGGCCAGCAAGCGCATCTCCAGCCACATCCCTTTGATCATC MxA      
CTCATGGCTTACCATCAGGAAGCATCTAAGAGAATCAGCTCCCATATTCCCCTGATTATT Wobble           
** ***** ** ** ***** **    *** * ***  *  *** ** **  **** ** 
CAGTTCTTCATGCTCCAGACGTACGGCCAGCAGCTTCAGAAGGCCATGCTGCAGCTCCTG MxA 
CAGTTTTTTATGCTGCAGACCTATGGACAGCAGCTGCAGAAAGCTATGCTCCAGCTGCTC Wobble            
***** ** ***** ***** ** ** ******** ***** ** ***** ***** ** 
CAGGACAAGGACACCTACAGCTGGCTCCTGAAGGAGCGGAGCGACACCAGCGACAAGCGG MxA 
CAGGATAAAGATACTTATTCTTGGCTCCTGAAAGAAAGATCCGATACATCTGATAAAAGA Wobble           
***** ** ** ** **    *********** **  *   *** **    ** **  * 
AAGTTCCTGAAGGAGCGGCTTGCACGGCTGACGCAGGCTCGGCGCCGGCTTGCCCAGTTC MxA 
AAATTTCTCAAAGAGAGACTCGCCAGACTGACCCAGGCCAGAAGAAGGCTGGCTCAGTTT Wobble          
** ** ** ** *** * ** **  * ***** *****  *  *  **** ** *****  
CCCGGTTAA           MxA 
CCTGGCTGA                      Wobble 
** ** * *                      

!

!

!

!

!

!

Figure 4.1 Nucleotide alignment of endogenous and wobble MxA sequences. 
Nucleotide sequences were aligned using the online sequence alignment tool Clustal 
Omega. Stars indicate bases that align. 
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encode for a phenylalanine to aspartate (F602D) and a leucine to lysine (L612K) 

respectively. Both of these mutations cause MxA to be expressed in a monomeric 

form incapable of forming oligomers, therefore suggesting that the punctate 

phenotype observed is likely due to higher molecular weight oligomer formation 

(Janzen, Kochs and Haller. 2000 and Daumke et al. 2010).  

 

4.2 Impact of MxA mutations on influenza virus polymerase activity 

Following the characterisation of wt and mutant wMxA protein expression, these 

constructs were then tested functionally in the influenza A virus mini-genome 

replication system. This system requires the expression of the influenza A virus 

polymerase subunits, PB2, PB1, PA and NP for successful replication of a negative-

sense viral RNA template. The template in this assay was a renilla luciferase construct 

flanked by a conserved untranslated region (UTR) of the NS segment of influenza A 

virus. Transfected together this leads to the transcription and translation of renilla 

luciferase, the expression level of which can be directly correlated to the extent of 

polymerase activity. To control for the number of cells transfected a plasmid encoding 

firefly luciferase under the control of a CMV promoter was used to normalise the 

polymerase activity in a dual luciferase assay. As MxA is a cytoplasmic protein but 

the transcription of renilla mRNA in this assay occurs exclusively in the nucleus, the 

antiviral effects of MxA measured in this assay are solely due to its affect post 

primary transcription, likely through preventing newly synthesized NP from entering 

the nucleus to aid in transcription of the viral-like renilla vRNA gene. 

 

Firstly, the wMxA constructs were assessed for antiviral activity using the H3N2 

influenza A Udorn/1972 polymerase through transfection of the polymerase sub-units  
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Figure 4.2 Immunofluorescence of wMxA constructs. Immunofluorescent staining of 
293T cells 24h post-transfection with 500ng plasmid showing the expression phenotypes of 
wt and mutant wMxA proteins.  293T cells were first probed with an !-MxA polyclonal 
rabbit antibody then an Alexa-488 conjugated goat !-rabbit antibody. Nuclei were stained 
using DAPI. Green; !-MxA Blue; DAPI-stained nuclei. 
!

WT wMxA 

V268M wMxA 
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G255E wMxA F561V wMxA 
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and the two reporter genes. Following the dual luciferase assay the polymerase 

activity was normalised to the activity in the absence of wMxA to determine the level 

of antiviral activity exhibited by each of the mutant wMxA constructs. 

 

As shown in Fig. 4.3 the expression of wt wMxA reduced the polymerase activity by 

approximately 60% overall. Although the T103A mutant was previously described to 

be an antiviral null mutant it displayed antiviral activity in this assay, although the 

level of activity was reduced in comparison to wt MxA. Two other mutants also 

showed similar levels of attenuation in antiviral activity as T103A as both lipid-

binding mutants, AKAK and KEKE only reduced the polymerase activity by 30 and 

35% respectively. Interestingly, MxA proteins containing the monomeric mutations, 

L612K and F602D, appeared to be just as effective as wt MxA in reducing H3N2 

polymerase activity, suggesting that the ability of MxA to oligomerise is not required 

to produce the antiviral effect post-primary transcription.  

 

The two dimeric mutants, R640A and D478A both appeared capable of inhibiting 

polymerase activity post-primary transcription, although the antiviral activity of the 

oligomerisation mutant I376D appears to be slightly more attenuated. Strikingly, 

these results show that the antiviral activity of one of the human polymorphisms, 

G255E, is similar to that of wt wMxA, whilst the activity of the other human 

polymorphism identified by Duc et al. (2012), V268M, was reduced in comparison to 

wt wMxA. 

 

Avian influenza viruses have been shown to be more susceptible to the antiviral 

activity displayed by MxA (Zimmermann et al. 2011). Therefore to determine the  
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Figure 4.3 The effects of MxA on A/Udorn/72 polymerase activity in a luciferase-
based mini-genome assay. A. 293T cells were transfected with plasmids expressing the 
polymerase subunits and NP of A/Udorn/72 virus (10 ng each), a renilla-encoding mini-
genome plasmid (250 ng), a plasmid encoding firefly luciferase (10ng) and the various 
wMxA constructs (200 ng each). The relative luciferase activity was measured in a dual 
luciferase assay. Results are represented as a percentage of luciferase activity in the no 
MxA control and are the average of three independent experiments ± S.D. B. Immunoblot 
showing the level of wMxA expressed following 24h expression in 293T cells. MxA was 
detected through an !-Rabbit MxA antibody and actin levels were detected as a loading 
control. (* denotes p-value = <0.05 following students T-test) 
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impact of these mutations on the antiviral activity of MxA in the context of an avian 

polymerase, the dual luciferase assay was performed using the polymerase subunits 

from the A/Thailand/1(KAN-1)/04 (H5N1) virus (kindly provided by Martin 

Schwemmle, University of Freiburg). 

 

It is clear from the data presented in Fig 4.4 that wt wMxA was much more potent in 

its antiviral effect when compared to the mutants wMxA constructs. The trend largely 

stays the same as that seen in the A/Udorn/72 polymerase assay, although the 

differences between wt wMxA and the other constructs were more prominent. A 

number of the results from the H5N1 polymerase assay are in line with previously 

published data, such as the reduced antiviral activity of F561V and D478A. 

Interestingly, human polymorphisms G255E and V268M as well as the monomeric 

mutants, F602D and L612K, all show reduced antiviral activity compared to wt 

wMxA, whereas in the previous assay these mutants were as active as wt wMxA. 

Despite a number of similarities, there are some differences with the current literature 

with both T103A and R640A exhibiting antiviral activity against influenza A viruses 

when previously they have been stated to have no antiviral effect (Janzen, Kochs, and 

Haller 2000; S. Gao et al. 2011). 

 

4.3 Influence of wobble RNA on MxA protein folding, localization and function 

One of the key differences observed was the impact of the antiviral-null mutant 

T103A, which although attenuated in comparison to wt wMxA, was not completely 

antiviral-null in the polymerase reconstitution assay using the polymerase and NP 

proteins of either A/Udorn/72 virus or an H5N1 virus. Interestingly a recent 

publication looking at the impact of G-domain mutations in MxA showed a  
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Figure 4.4 The effects of MxA on A/Thailand/1(KAN-1)/04 (H5N1) virus polymerase 
activity in a luciferase-based mini-genome assay. A. 293T cells were transfected with 
plasmids expressing the polymerase subunits and NP of A/Thailand/1(KAN-1)/04 (H5N1) 
virus (10 ng each), a renilla-encoding mini-genome plasmid (250 ng), a plasmid encoding 
firefly luciferase (10ng) and the various wMxA constructs (200 ng each). The relative 
luciferase activity was measured in a dual luciferase assay. Results are represented as a 
percentage of luciferase activity in the no MxA control and are the average of three 
independent experiments ± S.D. B. Immunoblot showing the level of MxA expressed 
following 24h expression in 293T cells. MxA was detected through an !-Rabbit MxA 
antibody and actin levels were detected as a loading control. (* denotes p-value = <0.05 
following students T-test) 
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phenotypically different immunostaining pattern for T103A MxA than observed in 

section 4.1 for T103A wMxA (Dick et al. 2015a). Furthermore it was also shown that 

one of the antiviral-null human polymorphism mutations, G255E, showed a similar 

staining pattern to T103A MxA, again differing from what was observed for G255E 

wMxA.  

 

Upon recognising these differences, the previously assessed mutations were then 

introduced to the wt MxA mRNA background and cloned into the mammalian 

expression vector pCAGGS to evaluate the phenotypic expression patterns of these 

mutations in both the wt mRNA background and the wobble mRNA background. 

293T cells were transfected with each of the constructs and the distribution of MxA 

determined by immunofluorescence. Distribution of the wt MxA protein was similar 

to the wMxA constructs, as they displayed a distinct punctate phenotype associated 

with the over-expression of MxA with an otherwise diffuse cytoplasmic staining (Fig. 

4.5). The distribution of MxA proteins containing other mutations was also similar in 

both mRNA backgrounds as seen for V268M, R640A, F561V and both lipid binding 

mutants AKAK and KEKE. Both the monomeric mutations F602D and L612K also 

show diffuse cytoplasmic staining with no punctate staining of MxA, indicating that 

the change in mRNA sequence did not impact the overall localization and 

functionality of these mutants. 

 

However, there are some clear phenotypic differences in the appearance of a number 

of different mutants. Firstly, the antiviral-null mutant T103A showed a significantly 

altered expression pattern when expressed from the wt mRNA sequence when 

compared to the wobble mRNA sequence. MxA derived from the wt mRNA sequence   
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Figure 4.5 Immunofluorescence comparison of MxA derived from wt MxA mRNA- and 
wMxA mRNA-expressing constructs. 293T cells were transfected with 500ng plasmid to 
express MxA from either the endogenous mRNA background or the wobble mRNA 
background. 24 hours post-transfection cells were fixed and probed with an !-MxA 
polyclonal rabbit antibody followed by an Alexa-488 conjugated goat !-rabbit antibody. 
Nuclei were stained using DAPI. Green; !-MxA, Blue; DAPI-stained nuclei. 
!
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showed an aggregation pattern within the cytoplasm as described previously by Dick 

et al. (2015) whereas the MxA expression pattern from the wobble mRNA 

background shows a distinctly wt-like phenotype. This suggests that the mRNA 

sequence may play an important role in the overall protein expression pattern as these 

two proteins share the exact same amino acid sequence. A similar difference was 

observed between MxA proteins expressed from the wt-mRNA and wobble mRNA 

sequences contianing the human polymorphism G255E, with MxA derived from the 

wt mRNA sequence showing a clear punctate pattern, whereas that from the wobble 

mRNA demonstrated a wt-like expression pattern. 

 

Two other mutants showed differing phenotypes when expressed from the different 

mRNA backgrounds. Both I376D and D478A present with a wt-like punctate over-

expression phenotype from the wobble mRNA background. However, from the wt 

mRNA sequence these two mutants offer very different staining patterns. I376D was 

previously described to disrupt tetramer formation resulting in a predominantly 

dimeric form of MxA (S. Gao et al. 2010). However no immunofluorescence or 

antiviral functionality data was presented. The introduction of I376D into the wt 

mRNA background produced a striking phenotype suggestive of long oligomeric 

structures in the perinuclear region, which appears to be dependent on the level of 

MxA protein available as surrounding cells with less MxA expression appear to only 

have the beginnings of this structure whilst having a diffuse cytoplasmic background 

staining. D478A is a stalk mutant that has been shown to behave similarly to wild 

type in vitro and this mutant was shown to localise with LACV Nucleoprotein (N) (S. 

Gao et al. 2011). The expression phenotype seen in the wt mRNA background 

matches the previously published phenotype, however, this is not in the context of 
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LACV N, suggesting that this staining pattern is indicative of MxA localizing with 

another cellular organelle in the perinuclear region.  

 

Following the identification of these differences in phenotype it was necessary to 

ascertain the impact of these mutations on the antiviral activity of MxA against 

influenza A virus post primary transcription. Figure 4.6 shows the comparison 

between the A/Thailand/1(KAN-1)/04 virus polymerase activity in the presence of the 

MxA mutants expressed from both the wt mRNA and wobble mRNA backgrounds. 

Both T103A and G255E show complete attenuation in the ability to produce an 

antiviral effect against influenza A virus when expressed from wt mRNA. This 

matches the data published by Dick et al. (2015) for both T103A and G255E, and is 

not surprising considering the aggregated phenotypes displayed by both of these 

mutants. Interestingly, the two other mutants that appear to display a non-wt like 

expression pattern after expression from wt MxA mRNA (D478A and I376D) do not 

appear to differ in antiviral activity regardless of the mRNA background, displaying 

inhibition at around the 50% and 60% mark for D478A and I376D respectively, 

which matches the antiviral activity previously stated for the D478A mutation (S. Gao 

et al. 2011). Although the change in mRNA background appears to have accounted 

for the majority of discrepancies between the data presented here and previously 

published data, R640A demonstrated a decent level of antiviral activity in both 

mRNA backgrounds, despite being previously described as antiviral null (S. Gao et al. 

2011). 
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Figure 4.6 Comparison between wMxA and MxA constructs in A/Thailand/1(Kan-
1)/04 viral polymerase activity in a luciferase-based mini-genome assay. 293T cells 
were transfected with plasmids expressing the polymerase subunits and NP of 
A/Thailand/1(KAN-1)/04 (H5N1) virus (10 ng each), a renilla-encoding mini-genome 
plasmid (250 ng), a plasmid encoding firefly luciferase (10ng) and the various MxA and 
wMxA constructs (200 ng each). The relative luciferase activity was measured in a dual 
luciferase assay. Results are represented as a percentage of luciferase activity in the no 
MxA control and are the average of three independent experiments ± S.D. 
 



! 7%!:4*3.1*!

! $/F!

4.5 Identification of potential MxA interacting partners 

MxA is believed to exert its antiviral effect by targeting and binding to influenza A 

virus NP (Dittmann et al. 2008). Although MxA has been shown to bind directly to 

THOV nucleocapsids as well as being shown to sequester LACV N protein, there has 

been no direct interaction shown between MxA and influenza A virus NP without the 

aid of cross-linking (G Kochs and Haller 1999; Georg Kochs, Janzen, et al. 2002; 

Turan et al. 2004). It is entirely plausible that NP-MxA interactions may be mediated 

by another viral or cellular protein. Furthermore the block in nuclear translocation of 

incoming influenza A virus vRNPs has been suggested to require an ISG co-factor 

(Xiao et al. 2013). Therefore it is possible that MxA may inhibit influenza virus via an 

indirect interaction. Despite MxA being able to perform a number of functions, there 

are a surprisingly low number of host proteins that have been shown to interact 

directly with MxA. To date the key interactors that have been identified include actin 

and tubulin, the cellular RNA helicases UAP56 and URH49, Fanconi anemia 

proteins, ISG15 and more recently, MxA has been shown to undergo SUMOylation 

(Horisberger 1992; Wisskirchen et al. 2011; Reuter et al. 2003; C. Zhao et al. 2005b; 

Brantis-de-Carvalho et al. 2015).  

 

To identify potential interacting partners of MxA, wt wMxA and, following the 

discovery that wT103A is not completely antiviral null, but attenuated for antiviral 

activity against influenza A virus, T103A wMxA were cloned into expression vectors 

to allow expression with an N-terminal modified tandem affinity purification (TAP) 

tag. This modified TAP-tag no longer has a calmodulin-binding site, therefore 

allowing for purification in a single step using protein A. These two constructs were 

transfected into 293T cells alongside a third experimental vector which expressed the 
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modified TAP tag and linker sequence followed by a stop codon as a control for false 

positive hits. 48 hours post-transfection, the cells were lysed, the proteins of interest 

purified using IgG beads and separated by SDS-PAGE (Fig. 4.9 A) and confirmed by 

immunoblotting (Fig 4.9 B). The samples were then excised and prepared for mass 

spectrometry analysis by tandem mass spectrometry (MS/MS). The initial results 

were blasted against the MASCOT server before being analysed using the Scaffold4 

software. Proteins were scored after a minimum of two peptides resulted in protein 

identification and due to large numbers of immunoglobulin domains being eluted, any 

protein identified as an immunoglobulin were excluded from the analysis. 

 

The analysis resulted in the identification of 173 proteins (Fig 4.9 C) that include 

proteins involved in variety of cellular processes such as cytoskeleton proteins, 

molecular chaperones and helicases, mitochondrial and translation machinery, or 

proteins involved in trafficking between organelles such as the golgi, ER and the 

nucleus. Of the 173 identified proteins 77 of these were identified in all constructs, 

however, these were not excluded from analysis as although some of these also 

interacted with TAP tag alone, they were also previously identified interacting 

partners of MxA such as actin and tubulin (Horisberger 1992). Of all the identified 

proteins, none were specific to TAP-tag alone or T103A wMxA. The empty TAP 

construct also shared 6 proteins with only wt wMxA, whereas T103A wMxA shared 

48 protein hits with wt wMxA, showing a large overlap in the proteins that both of 

these proteins bind to. Surprisingly, there appeared to be 42 proteins which were 

exclusively precipitated by wt wMxA. Although some of these may be partially 

explained by issues with detection thresholds. 
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Figure 4.7. Purification of potential MxA interacting partners. TAP wt wMxA and TAP 
T103A wMxA were transfected into 293T cells alongside a TAP only control and cell lysates 
harvested 48 hours post-transfection. Following purification, protein lysates were analysed by 
SDS-PAGE via coomassie staining (A) and immunoblotting (B). MxA was detected using an 
anti-rabbit MxA antibody and then probed with a goat-anti-rabbit secondary antibody. C. 
Following MS/MS analysis of purified lysates, protein hits were further analysed using 
Scaffold 4 to determine the number of protein hits specific to MxA, T103A and the TAP 
control as depicted by the Venn diagram. *Denotes heavy and light antibody chains.!
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Table 4.3 shows a selected number of previously unidentified proteins that interact 

with MxA, and whether these proteins are identified as interacting with either wt 

wMxA or T103A wMxA. These proteins were selected for their potential relevance to 

the antiviral activity of MxA. This list predominantly features a large number of 

proteins that are directly related to nuclear import and protein trafficking. This is 

particularly interesting as both antiviral mechanisms proposed for MxA have an 

impact on the ability of influenza A virus to either traffic the genome or nascent NP 

into the nucleus. The interaction with Clathrin is interesting in relation to the IFN-

dependent block described by Xiao et al. (2013) as this suggests that MxA is 

potentially interacting directly with the endocytic pathway, even in the absence of  

IFN. Also, MxA is shown to interact with a number of different coatomer subunits. 

Coatomer complexes are involved in the trafficking of membrane bound vesicles 

during endocytosis as well as for trafficking between the Golgi apparatus and the ER 

(L. P. Jackson 2014). This also suggests that MxA interacts with the endocytic 

machinery but also plays a role in transport between the Golgi and the ER, which is in 

agreement with localization of MxA (Accola et al. 2002). 
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Protein Function Wt wMxA T103A wMxA 
Clathrin Endocytosis ! ! 

Coatomer Subunits Endocytosis/Retrograde 
Transport 

! ! 

Importin Subunit B-1 Nuclear Import ! ! 
DDX39A RNA Helicase ! ! 

Hsp90 Molecular Chaperone ! ! 
RANBP5 Nuclear Import ! " 

Importin-4 Nuclear Import ! " 
Importin-8 Nuclear Import ! " 
Importin-9 Nuclear Import ! " 

Nucleoporin (NUP 
205) 

Nuclear Import ! " 

Alpha-Actinin 4 Cytoskeleton ! " 

  

Table 4.2 Selected interacting partners of MxA. The MS/MS analysis identified 173 
unique proteins that were precipitated by wt MxA. These proteins have been highlighted for 
their potential insight into the antiviral activity of MxA or known involved in the replication 
cycle of influenza A virus. 
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4.6 Discussion 

Following a review of the literature a number of mutations in MxA previously shown 

to affect functions and characteristics of MxA were cloned into the wMxA gene 

within the pCAGGs mammalian expression vector to assess the affects of these 

mutations on the antiviral activity of MxA against a human-derived influenza virus 

polymerase (A/Udorn/72 virus), and an avian-derived influenza virus polymerase 

(A/Thailand/1(KAN-1)/04). A number of these mutants had been previously 

described in the literature and behaved similarly in the context of wMxA such as 

F561V and D478A. Whereas some of these had not been tested against influenza A 

but had displayed antiviral activity against THOV like L612K (Mitchell et al. 2012; S. 

Gao et al. 2011; Janzen, Kochs, and Haller 2000). However, a number of these 

mutations had not been previously characterised for antiviral activity such as I376D, 

F602D, the human polymorphisms G255E and V268M, as well as the lipid binding 

mutants AKAK and KEKE (Haller et al. 2010; Daumke et al. 2010; Duc et al. 2012; 

von der Malsburg et al. 2011). Interestingly the F602D mutant, in which MxA is 

monomeric, displayed a similar level of antiviral activity to wt MxA (Fig 4.3), which 

suggests that oligomerisation is not required for the antiviral activity of MxA post-

primary transcription and agrees with the previous work shown for the other 

monomeric mutant, L612K, against THOV. Therefore it is not surprising that these 

two mutations show similar antiviral phenotypes. The two lipid binding mutants, 

AKAK and KEKE, showed a reduction in antiviral activity in comparison to wt MxA, 

but showed a similar level of activity to the L4 loop mutant F561V. It is plausible that 

the lipid-binding ability of MxA is involved in conferring its antiviral activity. 

However, the lipid-binding mutations occur close to the L4 loop. This flexible loop 
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has been shown to be highly important for antiviral activity against both 

orthomyxoviruses and bunyaviruses, therefore if these mutations impact the structure 

of the L4 loop this could also explain the reduction in antiviral activity (Mitchell et al. 

2012; Patzina, Haller, and Kochs 2014).   

 

Intriguingly, in the context of wMxA, both human polymorphisms, G255E and 

V268M, appeared to reduce the antiviral activity of MxA, but not to completely 

prevent this activity (Fig. 4.3 and 4.4). During these studies a paper was published in 

which the antiviral activity of these mutants was tested in the context of non-wobbled 

MxA and the authors showed the same reduction in antiviral activity conferred by the 

V268M mutation, however the G255E mutation completely abrogated antiviral 

activity (Dick et al. 2015a). The difference between the antiviral activity described in 

the wobble and non-wobble constructs was later determined to likely be due to 

differences in the coding RNA sequences. However, based on structural models 

described by Dick et al. (2015) these SNP mutations localise to the G interface and 

may influence dimer formation. Suggesting that when correctly folded these mutants 

may show diminished GTP hydrolysis alongside a reduced antiviral activity. 

Reductions in antiviral activity as a direct result of these and other SNPs in MxA 

could have significant implications for susceptibility of individuals to infection by 

influenza and many other viruses. Two SNPs found in the promoter region of MxA 

have been shown to be important for patient susceptibility for a number of different 

viruses including, SARS, enterovirus 71 and HCV (Hamano et al. 2005; X. Zhang et 

al. 2014; Shaker, Abdel-Rahim, and Bayoumi 2015). Therefore, it would be 

interesting and important to study whether such coding polymorphisms are present in 
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patients suffering from severe influenza infection as has been described recently for 

IFITM3 (Everitt et al. 2012).  

 

It was previously reported that NP derived from avian influenza viruses is more 

susceptible to the antiviral effect of MxA post-primary transcription (Zimmermann et 

al. 2011) and NP residues conferring resistance/susceptibility to MxA have since been 

reported (Mänz et al. 2013). Based on these findings, the wMxA constructs were 

tested for their antiviral activity against in a mini-genome reporter assay using the 

viral polymerase derived from either A/Udorn/72 virus, a human virus that carries two 

of the key resistance mutations identified by Mänz et al. (2013), or 

A/Thailand/1(KAN-1)/04, an avian virus that is deemed to be Mx-sensitive. 

Interestingly, there did not appear to be a large difference in the susceptibility 

displayed between A/Udorn/72 and A/Thailand/1(KAN-1)/04 as both showed a 60% 

reduction in relative luciferase activity in comparison to samples lacking MxA 

(Figure 4.3 and 4.4). However, these experiments were transfection-based, the results 

of which are heavily influenced by the amount of plasmid that is transfected into the 

cells and the strength of the promoter from which the genes of interest are transcribed, 

particularly as it has been shown that increasing levels of NP is capable of 

outcompeting MxA and vice-versa (Zimmermann et al. 2011).  A more appropriate 

read out to determine the impact of MxA sensitivity would be through viral infection 

in cell lines which constitutively express MxA, allowing the levels of viral protein to 

be determined via infection with equal number of infecting virus particles, rather than 

by plasmid promoter strength. 

 



! 7%!:4*3.1*!

! $7>!

Following the recent publication from Dick et al. (2015), the mutants previously 

expressed in the wMxA background were cloned into a wt mRNA background and 

assessed for the impact on both phenotype and functionality in comparison to the 

wMxA constructs. Although a number of the constructs displayed a similar 

distribution to that observed for the wMxA versions, four constructs showed 

markedly different expression phenotypes (Fig. 4.5). Two of these mutants, T103A 

and G255E, were highly aggregated. This clarified the discrepancy between the 

inhibitory effect seen for the wMxA T103A, which had originally been described as 

an antiviral-null mutant using the wt mRNA background (Ponten et al. 1997). This 

loss in antiviral activity was attributed to the loss of GTPase activity as a result of the 

mutation, which was also suggested to be the reason for the punctate aggregation, as 

MxA is thought to require GTP-binding in order to oligomerise and localise to 

syntaxin-17, a marker for the smooth ER. Therefore, it was thought that MxA 

containing the T103A mutation is capable of binding to GTP but incapable of 

hydrolyzing it, leading to the formation of aggregates (Dick et al. 2015a). However, 

Fig. 4.5 shows that wMxA T103A does not show the same phenotype as that 

previously reported, showing a diffuse cytoplasmic staining akin to wt MxA as well 

as some punctate regions of higher molecular weight oligomers. Also, wMxA T103A 

is not completely antiviral-null (Fig. 4.6). Therefore the previously observed T103A 

phenotype is unlikely to be due to the protein sequence but should actually be 

attributed to the change in RNA sequence leading to protein aggregation. 

 

The human polymorphism, G255E, was also characterised by Dick et al. (2015), and 

was determined to have no GTPase activity, like T103A. Similarly, G255E 

demonstrates the same phenotype, producing cytoplasmic aggregates with abolished 
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antiviral activity in the context of wt mRNA. Yet G255E wMxA not only exhibits a 

wt-like expression phenotype but also only shows minor attenuation in antiviral 

activity. A defining feature of both the T103A and G255E mutants is that they have 

been shown to have no GTPase activity in the context of wt mRNA, and therefore 

GTPase activity has been suggested to be integral to the antiviral activity of MxA. 

This has not yet been determined for the wMxA mutants but if these mutations do 

abolish GTPase activity then the antiviral activity seen for wMxA T103A and wMxA 

G255E suggests that although GTPase activity is important for MxA to fully exert its 

antiviral effect it may not be the whole story. 

 

Interestingly, the other two mutants to exhibit different expression phenotypes were 

I376D and D478A, previously described as structural mutants which inhibited 

tetramer formation or encoded for a stalk interface mutant respectively (S. Gao et al. 

2010; S. Gao et al. 2011). Although the previously published data did not show 

immunofluorescent data or antiviral activity for I376D, the differences in the 

expression phenotypes and antiviral activity in the different mRNA backgrounds is 

striking. Although, both I376D constructs show attenuation in comparison to wt MxA 

(Fig. 4.6), it appears that this mutant is still capable of exerting an antiviral effect 

post-primary transcription against influenza A virus.  

 

MxA containing the D478A mutation was shown to behave similarly to wt MxA in a 

mini-replicon assay (Fig.4.6). Although, the distribution of the protein derived from 

the non-wobbled construct is similar to that seen by Gao et al, (2011), in this study it 

is not in the context of LACV N expression. This suggests that although D478A is 

capable of sequestering LACV N, however this mutation in the context of the wt 
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mRNA sequence is capable redistributing the localization of MxA, whereas the 

wMxA D478A construct offers a typical MxA staining pattern. This suggests that the 

staining pattern seen by Gao et al. (2011) is not due to the sequesteration of LACV N, 

but actually due to the change in mRNA sequence. The specific localization of these 

two mutants is unknown, although both appear to be perinuclear in appearance, the 

exact location may offer further evidence to determine what is required MxA to exert 

the full extent of its antiviral activity.  

 

Intriguingly, for each mutant MxA, the amino acid sequence that is translated from 

both the wt and wobble mRNA constructs is identical, suggesting that the phenotype 

seen for these mutants may not be due to the individual mutation, but may be caused 

by changes to the mRNA sequence. It is possible that these changes in RNA sequence 

may have impacted the secondary structure of the RNA and therefore impacted 

interactions with RNA binding proteins and potentially altering the rate of translation. 

The impact of these mutations was assessed through the RNA secondary structure 

prediction software, mFold and is discussed further in the Appendix (A1).  

 

Following the differences observed in antiviral activity between the wobble and non-

wobble derived MxA proteins and the suggestion of a co-factor being necessary for 

MxA to exert it’s IFN-dependent antiviral effect by Xiao et al, (2013), wt wMxA and 

the antiviral attenuated T103A wMxA were used in an attempt to identify potential 

interacting partners to offer an insight into the antiviral mechanism of MxA. As a 

marker for the successful purification of interacting partners, it was necessary to 

compare the protein hits with interacting partners that have been previously identified. 

A number of precipitated proteins had been identified previously by other studies 



! 7%!:4*3.1*!

! $7G!

such as actin, tubulin, fanconi anemia proteins and HNRNP1 (Horisberger 1992; 

Reuter et al. 2003; Roy et al. 2014). This purification also identified one of the 

previously identified RNA helicases, URH49 (DDX39A) but not UAP56, which were 

previously shown to interact with MxA (Wisskirchen et al. 2011). This discrepancy 

could be down to a number of different reasons, for example, the method of 

precipitation and the buffers used to both lyse the cells and wash the beads are likely 

to be different between the different precipitation procedures, which could impact the 

proteins identified post-purification. Another reason for this difference is the 

threshold of detection and the amount of sample used for the MS/MS analysis, which 

could also influence the nature of the hits.  

 

However, this analysis did also identify a large number of proteins that have not 

previously been reported to interact with MxA. Interestingly, a large number of these 

were involved with the nuclear import processes, as many importin proteins were 

identified as interacting with wt wMxA but not with T103A wMxA. A number of 

these proteins have also previously been shown to play a role during influenza A virus 

infection. Importin-"-1 is part of the classical nuclear import pathway, which is used 

by both vRNPs and monomeric NP as well as PB2 through direct interaction with 

importin-!, which then binds to Importin-"-1 before trafficking to the nuclear pore 

complex (E. C. Hutchinson and Fodor 2012; Strambio-De-Castillia, Niepel, and Rout 

2010).  Whereas PB1 and PA are imported to the nucleus using RANBP5, another 

protein identified as interacting with MxA, which is an importin-"-1 homologue 

which conducts nuclear import independently of importin-! (E. C. Hutchinson and 

Fodor 2012). Intriguingly, another protein suggested to be involved in the nuclear 

import of influenza polymerase proteins, Hsp90, suggested to import PB1-PB2 or 
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PB1-PA heterodimers directly into the nucleus, (Naito et al. 2007), was also identified 

as interacting with MxA. Alpha-actinin 4 was precipitated by wt wMxA. This protein 

has been shown to be important for efficient viral replication through directly 

interacting with NP and it has been suggested that this protein may have a role in the 

nuclear localization of NP (S. Sharma et al. 2014).  

 

Taking all of this information together it seems there is a large degree of overlap 

between the proteins precipitated by MxA and those required by various components 

of influenza A viruses to gain entry into the nucleus. What is striking is the absence of 

some of these factors from T103A wMxA, a mutant that displays reduced antiviral 

activity compared to wt MxA. This reduced activity may be explained by a lack of 

GTPase activity, but could also be explained by the lack of interaction with an 

intermediate host factor required by MxA to block the nuclear import of NP. 

Although this requires further work, coupled with the inability to precipitate influenza 

NP with MxA without cross-linking conditions, this data opens the possibility for an 

alternative model of MxA antiviral action.
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Chapter 5 - Investigating the antiviral mechanism of MxA using constitutive 

expressing cell lines  

 
In section 4 a number of mutations were inserted into MxA (Table 4.1) to determine 

which characteristics are essential to the antiviral activity against influenza A virus 

post-primary transcription. However, this analysis was done in the context of transient 

expression and did not determine the impact of each these mutations on the virus as a 

whole or in the context of IFN treatment, the native cellular environment for MxA.  

 

Both the literature and the findings in section 3 show that MxA appears to have two 

distinct functions, one which is IFN-independent and one which is IFN-dependent 

(Xiao et al. 2013; Matzinger et al. 2013). Although it is clear that the block on nuclear 

translocation of the influenza virus genome during viral entry is dependent on both 

MxA and IFN, little is known about the specific details of this block. It has previously 

been shown that the viral genome localised near to, but not co-localised with Rab-7, a 

marker for late endosomes, but how and where MxA is recruited to incoming virus 

particles is still unknown (Xiao et al. 2013).  

 

This section investigates the impact of the MxA mutations on the ability of MxA to 

exhibit an antiviral effect on influenza A virus in both context of IFN and viral 

infection. Secondly, this chapter addresses the localization of MxA and attempts to 

elucidate further aspects of MxA’s ability to block the viral genome translocation to 

the nucleus prior to primary transcription. 
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5.1 Characterisation of cell lines 

To achieve constitutive expression of the mutant wMxA constructs, A549-#MxA 

cells were transduced with lentiviruses encoding for the mutant of interest and 

selected for using puromycin; from here on in, all A549-#MxA cells expressing 

reintroduced wMxA will be referred to as A549-wMxA. A549-#MxA cells were used 

to create the wMxA-expressing cells such that the effects of the MxA mutations could 

be observed in the absence of endogenous MxA. The original transduction led to 

constitutive expressing cell lines that were heterogeneous in their expression levels. 

Therefore, to really assess the impact of these mutations it was necessary to select 

cells from a single colony to ensure for homogenous expression across the population, 

therefore allowing more certainty when assessing the effect these mutations have on 

the antiviral activity of MxA.  

 

Fig. 5.1 shows the both the expression levels and cellular distribution of each of the 

A549-wMxA cell lines as determined by immunofluorescence. All wMxA cell lines 

showed diffuse cytoplasmic staining, similar to that observed in naïve A549s that 

have been pre-treated with IFN.  

 

MxA expression was further tested by immunoblotting analysis (Fig. 5.2 A). Fig. 5.2 

B shows the level of wMxA expression normalized to the levels of actin in each cell 

line compared to A549-MxA expression levels, which was set at 100%. It is clear that 

the level of expression wMxA expression is highly reduced in comparison to the 

A549-MxA cell line, with only A549-wR640A and A549-wD478A cells expressing 

over 20% the level of MxA seen in the A549-MxA cells.  A549-wWT MxA only  
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WT wMxA 

V268M wMxA 

R640A wMxA T103A wMxA 

G255E wMxA I376D wMxA 

A549-!MxA 

KEKE wMxA D478A wMxA AKAK wMxA 

Naïve A549  A549-MxA 

Figure 5.1 Expression and cellular distribution of wMxA in A549-wMxA cell lines. Clonally 
selected A549-wMxA cells were subjected to immunofluorescence analysis using a rabbit !-MxA 
polyclonal antibody and an Alexa-488 conjugated goat !-rabbit secondary antibody. Nuclei were 
stained using DAPI. Green; !-MxA Blue; DAPI-stained nuclei. 
!
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Figure 5.2 MxA protein expression levels. A. Immunoblot showing the MxA expression 
levels in the A549-wMxA cells in comparison to A549-MxA cells. MxA was detected using a 
rabbit anti-MxA antibody and actin was detected as a loading control B. Quantification of 
MxA expression levels, firstly normalised to actin, then to A549-MxA which was set as 100% 
MxA expression.  
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expressed to 3.5% the level seen in the A549-MxA cells, with similar levels produced 

in the A549-wI376D and A549-wAKAK cells. The A549-wV268M and A549-

wKEKE expressed 6% and 8% respectively, whereas A549-wT103A and A549-

wG255E expressed MxA at 8% and 13% the level expressed in A549-MxA cells. 

This is an important read-out when determining the importance of these mutations.  

 

Unfortunately, it was not possible to create constitutively expressing cell lines for 

F561V, or the two monomeric mutants, F602D and L612K. In the case of F561V, 

despite several attempts at single colony selection, it was not possible to select a 

colony with good expression levels. Stability issues were caused by the monomeric 

mutations leading to declining levels of protein expression with each passage of the 

cells. This phenomenon has also been observed by another group (Personal 

communication: Jovan Pavlovic). 

  

5.2 Impact of MxA mutants on influenza A virus protein expression 

To determine the impact of wMxA on influenza A virus protein expression, A549-

#MxA cells and the A549-wMxA mutant cells, were infected with A/Udorn/72 virus 

at an MOI of 5. Following infection cell lysates were collected 8 h.p.i and assessed 

for the levels of viral NP via immunoblotting. Figure 5.3 A shows that in the absence 

of IFN the impact of MxA on NP expression is minimal but does show some minor 

differences across the different A549-wMxA cell lines. Figure 5.3 B shows the levels 

of viral protein being produced firstly normalised to actin as the loading control and 

then normalised to the parental A549-#MxA cells. There was an approximate 10% 

reduction in the levels of influenza virus NP produced in the A549-wWT MxA cells  
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Figure 5.3 Impact of wMxA on influenza A virus protein expression. A. Immunoblot 
showing the level of influenza A virus NP expressed 8 h.p.i in either A549-ΔMxA or A549-
wMxA cells. Influenza NP was detected using a sheep anti-X31 antibody, MxA was detected 
using a rabbit anti-MxA antibody and actin levels were detected as a loading control. B. 
Quantification of NP synthesized 8 h.p.i firstly normalised to actin and then normalised to NP 
levels in A549-ΔMxA. The results represent the average of three independent experiments ± 
S.D. 
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in comparison to A549-#MxA cells, with A549-wI376D also showing a similar level 

of inhibition. This coupled with the protein expression levels shown in Fig 5.2 

indicates that only a small amount of MxA is required to have an impact on influenza 

A replication post-primary transcription (as the antiviral effect of MxA at this stage of 

viral replication is independent of IFN treatment). The expression of wT103A and the 

two human polymorphisms, wV268M and wG255E did not appear to reduced the 

level of NP produced, as levels were similar to those observed in cells lacking MxA 

(A549-#MxA cells). This suggests that GTPase activity is likely important to inhibit 

virus replication post-primary transcription and also that the two human 

polymorphisms are attenuated in their antiviral activity at this stage of infection. 

Interestingly, the two lipid-binding mutants displayed some antiviral activity with 

A549-wAKAK showing similar inhibition to A549-wWT and A549-wKEKE 

showing an increased reduction to 70% the level of NP produced in A549-#MxA 

cells. Also, the two cell lines that exhibit the highest level of MxA expression, A549-

wR640A and A549-wD478A, showed an increased level of NP reduction, reducing 

the levels of expression by 24% and 37% respectively. 

 

These results indicate that the over-expression of wMxA does indicate that a number 

of these mutations are still capable of impacting influenza A virus replication post-

primary transcription. However, as shown in section 3.5 the impact of MxA on 

influenza virus protein expression is more prominent in the presence of IFN. 

Therefore, A549-#MxA cells and the A549-wMxA mutant cells were infected with 

A/Udorn/72 virus at an MOI of 5 following pre-treatment with IFN (1000 U/mL) 16 

hours prior to infection. Following infection cell lysates were collected 8 h.p.i and 

assessed for the levels of influenza A virus NP via immunoblotting. 
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Figure 5.4 A shows the impact of each A549-wMxA mutant on NP production in the 

presence of IFN. As expected MxA expression was not observed in A549-#MxA  

cells.  Differing levels of influenza NP expression in the presence of IFN were 

observed in the different A549-wMxA cell lines, suggesting that some of the 

introduced mutations are likely important to the antiviral activity exerted by MxA 

when the cell is in an antiviral state. Figure 5.4 B displays the levels of viral protein 

being produced normalised to actin as the loading control and then normalised to NP 

levels in the parental A549-#MxA cells. The A549-wWT MxA cells demonstrated a 

similar level of NP to that observed in the absence of IFN treatment (Fig 5.3 B). This 

was slightly surprising as MxA is such a key factor in the host antiviral response, 

however this may be due to the relatively low level of wWT MxA expression in these 

cells. A similar level of NP to that of wWT MxA-expressing cells was observed in 

A549-wG255E cells, which suggests in the presence of IFN, this polymorphism 

mutant is capable of inhibiting influenza A virus to a similar level as wt MxA. A 

similar level of NP was observed in A549-wI376D cells, which expresses MxA at a 

similar level to A549-wWT MxA and therefore suggests that this mutation is also 

capable of inhibiting influenza A virus in a similar way to wt MxA.  

 

Interestingly, one of the lipid-binding mutants, A549-wAKAK, showed an increased 

level of inhibition, reducing influenza NP levels to 74% of A549-#MxA cells, 

suggesting that this mutation does not have an impact on the ability of MxA to inhibit 

influenza A virus, however, in comparison to the other lipid-binding mutant, A549-

wKEKE, there is marked difference. A549-wKEKE cells expressed a similar level of 

NP to A549-#MxA cells, suggesting that this 
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Figure 5.4 Impact of wMxA on influenza A virus protein expression in the presence of 
IFN. A. Immunoblot showing the level of influenza virus NP expressed 8 h.p.i in either A549-
%MxA or A549-wMxA cells following 16 hours pre-treatment with IFN (1000 U/mL). NP 
was detected using a sheep anti-X31 antibody, MxA was detected using a rabbit anti-MxA 
antibody and actin levels were detected as a loading control. B. Quantification of NP 
synthesized 8 h.p.i firstly normalised to actin and then normalised to NP levels in A549-
%MxA cells. The results represent the average of three independent experiments ± S.D. 
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lipid-binding mutant is potentially not capable of inducing the IFN-mediated block on 

influenza prior to primary transcription. It is also interesting to note that two other 

mutants, A549-wT103A and A549-wV268M, appear to show no increased reduction 

on influenza NP production, in fact both cell lines showed an increase in viral protein 

in comparison to A549-#MxA cells. This data suggests that MxA appears to require 

GTPase activity to fully exert the antiviral effect against influenza A virus in the 

context of IFN, whereas the human polymorphism V268M appears to be incapable of 

exerting the IFN-dependent antiviral function of MxA against influenza A virus. The 

two cell-lines that express the most MxA showed the largest reduction in influenza 

NP production, reducing the levels of protein by 28% in the A549-wR640A cells and 

by 49% in the A549-wD478A cells.  

 

5.3 Influenza A virus replication analysis 

Although the results in section 5.2 give a clear indication of the impact of these 

mutations on the ability of MxA to restrict viral protein production, it does not show 

the overall influence of these mutations on the amount of virus produced during 

infection. To assess this naïve A549, A549-MxA and A549-#MxA cells were 

infected alongside the A549-wMxA mutants with A/Udorn/72 virus at an MOI 5, 

supernatant samples were taken every 3 hours until 15 h.p.i and then at 24 h.p.i and 

the infectious titre of each determined by viral plaque assay on MDCK cells. 

 

As seen previously in section 3.6 and Fig 3.11, the over-expression of MxA in the 

A549-MxA cells leads to a log-reduction in the number of infectious virions produced 

in comparison to A549-#MxA cells and an approximately 0.5 log-reduction in 
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Figure 5.5. Impact of wMxA on influenza A virus during a single cycle of replication. A. Naïve 
A549, A549-MxA, A549-%MxA and the A549-wMxA cells were infected at an MOI 5 using 
A/Udorn/72. Samples were taken every 3 h.p.i until 15 hours and then at 24 h.p.i and infectivity 
determined by titration via plaque assay on MDCK cells. !
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comparison to naïve A549s (Fig. 5.5). Between 9 and 15 hours there does not appear 

to be a discernable difference in the number of infectious particles produced between 

the naïve A549 cells and the A549-wMxA cells for wt wMxA, wT103A, wG255E 

and wKEKE, suggesting that the over-expression levels in these cells may not be high 

enough to exhibit an impact on the level of infectious virions produced (Fig 5.5). 

These A549-wMxA cells did not show a large reduction in the number of virus 

particles produced compared to the parental A549-#MxA cells over the duration of 

the time course, with the largest difference being seen after the initial burst of virus 

production at 9 h.p.i. The human polymorphism cell line A549-wV268M, also 

showed similar levels of virus production as naïve A549 cells until the later time 

points. At 15 hours there was a minor reduction in infectious virus produced, although 

the range of plaques formed showed that this was not a significant reduction in plaque 

number, whereas at 24 h.p.i, the plaque number was similar to those produced by 

A549-MxA cells. Interestingly, one of the lipid-binding mutants, wAKAK, showed 

viral attenuation on a par with A549-MxA. This is somewhat surprising based on the 

differences in protein levels described in Fig 5.2, with these cell lines expressing less 

than 10% the amount of MxA expressed in the A549-MxA cells. Interestingly, this 

offers a similar insight as shown in Fig. 5.3 B, which suggests that the cell does not 

require a large amount of MxA to exhibit an antiviral effect post-primary transcription 

in the absence of IFN.  

 

5.4 Plaque reduction assays  

Although section 5.2 offers a clear indication of the inhibition offered by each of 

these mutations in both the presence and absence of IFN, it only determines the 

impact on protein expression at a high MOI during a single replication cycle. 
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Therefore, to see the impact of both these mutations through multiple replication 

cycles the A549-wMxA cells were assessed for the ability to inhibit the production of 

plaque-forming units in comparison to the parental A549-#MxA cells, naïve A549 

cells and A549-MxA cells in the presence and absence of IFN. The cells were 

infected with 10-fold serial dilutions of A/Udorn/72 virus following either treatment 

with IFN (1000 U/mL) or no treatment for 16 hours prior to infection. Cells were then 

fixed 5 days post-infection and plaques visualised via immunostaining. Plaque 

number was then normalised to the number of plaques produced on the untreated 

A549-#MxA cells, which was set to 100%. 

 

Fig. 5.6 shows the effect of each wMxA mutant on plaque number. In the absence of 

IFN, it is clear that the over-expression of the MxA mutants appeared to demonstrate 

an inhibitory effect on plaque number in comparison to the parental cell line A549-

#MxA. However, in the various wMxA-expressing cells plaque number was 

approximately 50-60% the number observed in A549-#MxA cells, which is similar to 

the plaque number observed in naïve A549 cells. The A549-MxA cells showed a 

more dramatic impact on plaque number, reducing plaque number by approximately 

75% in comparison to A549-#MxA cells. Surprisingly plaque number in the A549-

wR640A cells was reduced by approximately 70% compared to A549-#MxA cells 

However this may be due to the increased levels of MxA expressed in this cell line in 

comparison to the others, as seen in Fig. 5.2. 
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Figure 5.6 Impact of wMxA on influenza A virus plaque development. Naïve A549, 
A549-MxA, A549-%MxA and the A549-wMxA cells were either untreated or treated with 
IFN (1000 U/mL) 16 hours prior to inoculation with a serial ten-fold dilution series of 
influenza A/Udorn/72 in a viral plaque assay. Cells were fixed 5 days post-infection and 
plaque number was determined by immunostaining. Plaque number is expressed as a 
percentage of plaques observed on untreated A549-%MxA cells. Results are expressed as 
the average of three independent experiments ± S.D. B. Shows the same data for IFN-
treated cells normalised to A549- %MxA cells in the presence of IFN. 
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In the presence of IFN (also shown in Fig. 5.6 B normalised to IFN-treated A549-

#MxA cells), there were some more noticeable differences. It is clear from the 

reduction in plaque number that each cell line responded to treatment with IFN; 

however there were differing levels of plaque reduction between the various A549-

wMxA cell lines. Both the naïve A549 cells and the A549-MxA cells reduced the 

plaque number to approximately 1.5% in the presence of IFN, whereas in the A549-

#MxA cells plaque number was reduced to 8% in comparison to untreated A549-

#MxA cells. Plaque number in the A549-wMxA wt, A549-wG255E and A549-

wD478A cells was reduced to between 4-5%, which is an approximately 50% 

reduction in plaque number in comparison to IFN-treated A549-#MxA cells. It is 

interesting to note that three of the A549-wMxA cell lines reduced the plaque number 

to near A549-MxA levels, with the A549-wR640A, A549-wI376D and A549-

wAKAK cells producing 2.5%, 3.3% and 2.7% the number of plaques observed on 

untreated A549-#MxA respectively.  

 

Interestingly, A549-wT103A, A549-wV268M and A549-wKEKE, all showed similar 

patterns to that described in section 5.3, displaying similar plaque numbers, or in the 

case of A549-wV268M, an increase in the number of plaques in comparison to IFN-

treated A549-#MxA cells. Both A549-wT103A and A549-wKEKE cells produced 

approximately 7% the number of plaques, suggesting a small additive effect for these 

two wMxA mutants in the presence of IFN in comparison to IFN-treated A549-

#MxA cells. Whereas, A549-wV268M cells produced 14 % the number of plaques in 

comparison to IFN-treated A549-#MxA cells, a 6% increase on the number observed 

in A549-#MxA cells. Interestingly, these cells also showed a slightly higher number 
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of plaques in the untreated cells, showing only a 30% reduction in comparison to the 

other A549-wMxA mutants. The data therefore suggest that this human 

polymorphism may inhibit the IFN-dependent mechanism of MxA antiviral activity.  

5.5 Investigating the antiviral activity of MxA using GFP MxA cell lines 

MxA is known to localise closely to the ER membrane, being shown to co-localise 

with syntaxin-17 positive membranes (Dick et al. 2015; Accola et al. 2002). To see if 

these expression patterns were consistent across a range of different human lung cell 

lines, A549, BEAS-2B and Calu-3 cells were treated with IFN for 16 hours and then 

probed for MxA expression by immunofluorescence. Fig. 5.7 shows the expression 

patterns for MxA in each of the different cell lines. In both the A549 cells and BEAS-

2B cells the MxA staining appeared more concentrated in the perinuclear region and 

also at the cell periphery around the plasma membrane. The perinuclear staining is 

likely to be MxA localizing to the ER and with MxA being known to shuttle between 

both the ER and the plasma membrane, the staining pattern was as expected (Accola 

et al. 2002). Calu-3 cells grow in clustered colonies rather than spread out like A549 

or BEAS-2B cells, therefore it is more difficult to see this concentrated staining at the 

plasma membrane, but it is possible to determine increased staining in the perinuclear 

region. 

 

This suggests that MxA is potentially capable of interacting with incoming virus 

particles from the moment the virus is endocytosed from the plasma membrane. 

Therefore in an attempt to determine where MxA is recruited to block incoming 

influenza virus particles, wt wMxA was tagged with GFP by cloning the gene into a 

lentivirus vector with an N-terminal GFP tag followed by a flexible linker to reduce 
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A549  BEAS-2B Calu-3 

Figure 5.7 MxA expression phenotypes in different human lung epithelial cells. Immunofluorescent staining of A549, BEAS-2B and Calu-3 
cells following treatment with IFN (1000U/mL) for 16 hours prior to fixation. Cells were first probed with an !-MxA polyclonal rabbit antibody 
then an Alexa-488 conjugated goat !-rabbit antibody. (Magnification 63x) Nuclei were stained using DAPI. Green; !-MxA Blue; DAPI-stained 
nuclei. 
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the likelihood of steric hindrance. The lentivirus was used to transduce both naïve 

A549 and A549-#MxA cells. Both of these cells offered heterogeneous populations 

of cells expressing different levels of GFP-MxA, therefore to maximize the 

expression levels, these cells underwent Fluorescence Activated Cell Sorting (FACS) 

to produce a population of cells with a good level of expression. Fig. 5.8 shows the 

expression pattern determined by immunofluorescence and the expression levels in 

both A549 GFP-wMxA and A549-#MxA-GFP-wMxA cells in the both the absence 

and presence of IFN via immunoblotting. There is a clear difference in the molecular 

weight between the GFP-wMxA and the endogenous MxA induced by IFN. Also, as 

expected the A549-#MxA-GFP-wMxA only show a band corresponding with GFP-

wMxA even in the presence of IFN.  

 

It had previously been noted within our lab that MxA is recruited into specific 

punctate spots within the cytoplasm in the event of infection with Pichinde virus, a 

member of the Arenaviridae family. Therefore to determine the functionality of GFP-

wMxA, naïve A549 cells along with the two GFP-wMxA cell lines were infected with 

Pichinde virus at an MOI of 20, both in the presence and absence of IFN. The cells 

were fixed 48 h.p.i and immunostained for MxA. Fig. 5.9 shows that even in the 

absence of IFN, Pichinde virus is capable of inducing a large amount of MxA 

expression in naïve A549 cells and shows punctate cytoplasmic staining, suggesting 

that MxA is being recruited to potential sites of virus replication.  
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Figure 5.8 Characterisation of GFP-wMxA expressing cell lines. A. Immunoblot of FACS 
sorted A549 GFP-wMxA and A549-%MxA-GFP-wMxA cells in comparison to naïve A549 and 
A549-%MxA cells. Cells were untreated or treated with IFN (1000 U/mL) for 16 hours prior to 
sample collection. MxA was detected using a rabbit anti-MxA antibody and actin levels were 
detected as a loading control. B. Immunostaining of A549 GFP-wMxA and A549-%MxA-GFP-
wMxA cells. Cells were first probed with a rabbit !-MxA polyclonal antibody then a Texas Red-
conjugated goat !-rabbit secondary antibody. Green; GFP Red; !-MxA. 
!
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This is also the case in the A549 GFP-wMxA cell line as in both conditions, MxA 

was recruited to specific cytoplasmic regions, with both the GFP and MxA signals 

merging together, indicating that GFP-tagged wMxA was potentially functional. 

Interestingly, in the A549-#MxA-GFP-wMxA cells, there is no punctate staining 

visible with in the cytoplasm, despite the GFP fluorescence and MxA staining 

overlapping. Therefore it appears that for GFP-wMxA to be recruited to the punctate 

regions seen in the A549 GFP-wMxA cells the expression of endogenous MxA is 

required. This may indicate that either GFP-MxA is in fact non-functional or that 

multiple GFP-MxA molecules are not able to oligomerise without the presence of the 

non-tagged form and are therefore unable to be recruited to specific cytoplasmic areas 

upon Pichinde Virus infection.  

 

To then determine where in the endocytic pathway MxA is recruited to the incoming 

virus particles, Rab 5, an early endosome marker, and Rab 7, a marker of the late 

endosome, were cloned into lentivirus vector with an N-terminal mRFP tag. These 

lentiviruses were then used to transduce the A549 GFP-wMxA cell line to create 

A549 GFP-wMxA/mRFP-Rab5 and A549 GFP-wMxA/mRFP-Rab7 cells. Fig. 5.10 

shows the immunofluorescence characterization of the two cell lines. The mRFP-Rab 

5 staining shows an overall more diffuse cytoplasmic staining, offering some 

increased expression around the perinuclear region. Whereas, the mRFP-Rab7 

staining is more localised to the perinuclear region, likely reflecting the localization of 

late endosomes (Perez Bay, Schreiner, and Rodriguez-Boulan 2015). What is clear 

form these images, is that even in the absence of IFN and virus infection that there  
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Figure 5.9 Functional Characterisation of GFP-wMxA expressing cell lines. Immunostaining of FACS sorted 
A549 GFP-wMxA and A549-%MxA-GFP-wMxA cells. Cells were either left untreated or treated with IFN 
(1000 U/mL) for 16 hours prior to infection with Pichinde virus at an MOI of 20. Cells were fixed 48 h.p.i and 
were first probed with an !-MxA polyclonal rabbit antibody then a Texas Red-conjugated goat !-rabbit antibody. 
Nuclei were stained using DAPI. Green; GFP Red; !-MxA Blue; DAPI-stained nuclei. 
!
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appears to be a reasonable level of overlap between GFP-wMxA staining and the two 

endosomal markers, mRFP-Rab5 and mRFP-Rab7. This is unsurprising following the 

identification of interacting partners shown to be involved in cellular trafficking seen 

in section 4.6. Yet, this localization is not seen in all cells, therefore it is difficult to 

determine whether this is a true co-localisation event. 

 

The block exhibited on incoming influenza virus by MxA prior to primary 

transcription is known to be dependent on IFN (Xiao et al. 2013). Therefore, in an 

attempt to ascertain whether MxA is recruited to a specific step of endocytic 

trafficking, A549 GFP-wMxA/mRFP-Rab5 and A549 GFP-wMxA/mRFP-Rab7 cells 

were infected at a high MOI of A/WSN/33 following pre-treatment with 1000 U/mL 

IFN-!. The infection was fixed 1 h.p.i and analysed using confocal microscopy to 

determine the level of GFP-wMxA/mRFP-Rab co-localisation in comparison to 

mock-infected cells (Fig. 5.11). No co-localisation was observed after infection with 

influenza A virus, especially when considering the dramatic re-localisation 

demonstrated during Pichinde virus infection (Fig 5.9). These data are inconclusive in 

determining whether MxA is recruited to incoming endosomes and at what stage of 

the endocytic pathway this occurs and will therefore require further investigation. 
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Figure 5.10 Characterisation of A549 GFP-wMxA mRFP Rab-expressing cell lines. 
Fluorescent images of A549 GFP-wMxA mRFP Rab 5 and A549 GFP-wMxA mRFP Rab 7 cells. 
Nuclei were stained using DAPI. Green; GFP-wMxA Red; mRFP-Rab Blue; Nuclei 
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Figure 5.11 Influenza input assay in A549 GFP-wMxA mRFP-Rab expressing cell lines. 
Cells were either left untreated or treated with IFN (1000 U/mL) for 16 hours prior to infection 
with influenza A/WSN/33 virus at an MOI of approximately 500 in the presence of 
cycloheximide. Cells were fixed 1 h.p.i and analysed via confocal microscopy. Green; GFP-
MxA Red; mRFP-Rab. 
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5.6 Discussion 

The results in section 5.2 corroborate the previous results observed in Section 4.2 (Fig 

4.4) where mutants T103A, V268M and G255E were shown to be attenuated in their 

ability to inhibit influenza A virus post-primary transcription in comparison to WT 

MxA. A549-wWT-MxA cells offered only a small level of attenuation in the absence 

of IFN, similar to the difference seen in section 3.5 (Fig 3.9). This was likely due to 

the low level of MxA expressed in A549-wWT-MxA cells compared to A549-MxA 

cells (Fig 5.2). However this does suggest that to exhibit an antiviral effect post-

primary transcription, only a small amount of MxA seems to be required.  

Interestingly, some mutations seemed to show an enhanced reduction in the level of 

viral protein produced in comparison to A549-wWT-MxA cells. A549-wKEKE, 

A549-wR640A and A549-wI376D all displayed increased inhibition of influenza A 

virus in the absence of IFN, however each of these cell lines expresses MxA to a 

higher level than that seen for A549-wWT-MxA, and may offer an explanation as to 

the increased antiviral activity displayed here in the absence of IFN.  

 

The ability of these mutations to inhibit influenza A virus protein synthesis in the 

presence of IFN was addressed in Fig 5.4. The data indicated that there appeared to be 

a similar reduction in viral protein levels in the A549-wWT MxA cells as that 

observed in the absence of IFN treatment (Fig 5.3 B) Again this is likely due to the 

low levels of wWT MxA being expressed, especially in comparison to the level of 

MxA which would be normally be induced following IFN treatment, where MxA can 

represent up to 1% of the cytoplasmic protein within the cell (Horisberger 1992). 

Therefore, as no endogenous MxA was present and the levels of WT-MxA were low 

(Fig 5.2), it is not surprising to see such a small impact of MxA in the presence of 
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IFN. A similar reduction in viral protein synthesis was observed in the human 

polymorphism A549-wG255E cells, which suggests in the presence of IFN this 

mutant was capable of inhibiting influenza A virus to a similar level as wt MxA. As 

this cell line expressed a higher level of MxA in comparison to the A549-wWT MxA 

cells, the data suggest that this mutant MxA protein may be slightly attenuated in its 

ability to inhibit influenza A virus prior to primary transcription. However, it cannot 

be ruled out that this difference could be due to the attenuation described post-primary 

transcription.  

 

Interestingly, in the presence of IFN there appeared to be a difference in the impact of 

the two lipid-binding mutants. The A549-wAKAK cell line reduced influenza NP 

levels to 74% of A549-#MxA cells (Fig 5.4), suggesting that this mutation does not 

have an impact on the ability of MxA to inhibit influenza A virus. However, the other 

lipid-binding mutant, A549-wKEKE did not appear to have an impact on the level of 

reduction seen in the presence of IFN, suggesting that this lipid-binding mutant is 

potentially not capable of inducing the IFN-mediated block on influenza prior to 

primary transcription. This is surprising as both of these mutants have been previously 

described in vitro as having a diminished ability to bind to and tubulate liposomes 

(von der Malsburg et al. 2011), therefore it may be expected that they would behave 

similarly to each other in cell culture. However, neither of these mutants have been 

characterised in the context of mammalian cell culture, therefore it is possible that 

they have different binding capabilities under physiological conditions. Despite the 

fact that they have been characterised as lipid-binding mutants in vitro, perhaps only 

one of these, A549-wKEKE is truly diminished in its ability to bind to lipids within 

the cell. If this is the case, it suggests that the block induced prior to primary 
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transcription by MxA is potentially dependent on lipid binding, suggesting that MxA 

may interact directly with incoming viral endosomes.  

 

Neither the A549-wT103A nor the A549-wV268M cell-lines showed an enhanced 

reduction in influenza NP production in comparison to A549-#MxA cells. This 

suggests that MxA may require GTPase activity to fully exert the antiviral effect 

against influenza A virus in the context of IFN, and the human polymorphism V268M 

may be incapable of exerting the IFN-dependent antiviral function of MxA against 

influenza A virus. This may be due to the reduced ability to hydrolyse GTP which has 

been previously described for V268M (Dick et al. 2015). If T103A has a reduced 

impact due to the lack of GTPase activity, then V268M may also be attenuated in its 

antiviral activity for a similar reason.  

 

The results of the single cycle time course did not offer discernable differences 

between the different A549-wMxA cell lines, showing similar differences to that 

observed in Figure 5.3. This is likely due to the difference in MxA expression 

between the A549-MxA cells and the A549-wMxA cells. It is likely that the low 

levels of expression were not capable of producing a phenotypic difference for each 

mutant during a single cycle, high multiplicity infection. Unfortunately it was not 

possible to determine the impact that the R640A, I376D or D478A mutations as these 

cell lines had not been obtained at this point in the study.  

 

To address the impact on these mutations in a multi-step, lower multiplicity infection 

as well as in the presence of IFN, these cell lines were subject to a plaque reduction 

assay. Interestingly, these results corroborate the results seen in section 5.2. In the 
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absence of IFN, the number of plaques was reduced in each cell line in comparison to 

A549-#MxA cells by approximately 40-50%, suggesting that even a small amount of 

MxA-expression is enough to exert an effect against influenza A virus post-primary 

transcription (Fig 5.6). Although this reduction is not as striking as observed in the 

A549-MxA cells, which offered a similar reduction to that seen in by Xiao et al. 

(2013). This suggests that although only a small amount of MxA is required for 

antiviral activity, that the impact is protein concentration dependent, as with 

increasing MxA increasing antiviral activity is observed, particularly post-primary 

transcription. This is in agreement with Riegger et al. (2015) who showed that 

increasing levels of MxA were even capable of reducing the polymerase activity of 

influenza A viruses containing MxA resistance mutations. This is further supported 

by the increased reduction observed in A549-wR640A cells (Fig 5.6), which 

expresses almost 8-fold more MxA in comparison to A549-wWT MxA cells (Fig 

5.2). 

 

The impact of these mutations in MxA is clearer in the presence of IFN. The number 

of plaques produced on the parental A549-#MxA cell line was reduced to 8% 

following IFN treatment in comparison to untreated cells (Fig 5.6). The expression of 

a number of the wMxA proteins reduced plaque number in comparison to the IFN-

treated A549-#MxA cells suggesting that each of these mutations were capable of 

inhibiting influenza virus in an IFN-dependent manner. Plaque number in the A549-

wWT MxA, A549-wG255E and A549-wD478A cells was reduced to 4-5%, which 

further highlights how only a small amount of MxA is required to exhibit an antiviral 

effect. It is interesting to note that both A549-wG255E and A549-wD478A cells 

expressed higher levels of MxA in comparison to A549-wWT-MxA cells, therefore 
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these mutants may actually confer for a slight attenuation in antiviral activity in the 

presence of IFN if similar levels of protein were expressed. Two of the A549-wMxA 

cell lines reduced the plaque number to near A549-MxA levels. Perhaps 

unsurprisingly, A549-wR640A was capable of this reduction, but this cell-line 

expressed MxA at a higher level that A549-wWT MxA and therefore suggests that 

this mutations has less impact on the IFN-dependent antiviral activity of MxA. 

Intriguingly, plaque number in A549-wI376D cells was also reduced in the presence 

of IFN.  This is surprising as A549-wI376D cells expressed a similar level of MxA to 

the A549-wWT MxA cells. However, it is not possible to rule out that this is an 

impact of clonal selection and that by chance a cell-line that is less permissive to 

influenza A virus was selected.  

 

As in section 5.3, the lipid-binding mutants showed differing abilities to reduce 

plaque numbers in the context of IFN. A549-wAKAK was capable of reducing plaque 

numbers to a greater level than A549-wWT MxA cells, suggesting that this mutation 

does not appear to prevent the antiviral activity exerted by MxA. Yet, A549-wKEKE 

showed similar numbers of plaques as the IFN-treated A549-#MxA, suggesting that 

the IFN-dependent mechanism of MxA is impacted by this mutation. Similarly to Fig 

5.4, both A549-wT103A and A549-wV268M showed no increase in plaque reduction 

in comparison to IFN-treated A549-#MxA. Again this provides further evidence that 

these two mutations are important for the antiviral activity of MxA. Interestingly, 

A549-wV268M showed increased numbers of plaques in both the untreated and IFN-

treated cells, therefore it is possible that the selected cells may be slightly more 

permissive to influenza A virus infection. Despite this, it is clear that they have 

responded to IFN due to the reduction in plaque number, therefore this suggests that 
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the human polymorphism V268M may be highly important in the response to 

influenza virus infection.  

 

Although these cell lines do not express high levels of MxA, it is possible to 

determine some of the potential characteristics of MxA that are important for the IFN-

dependent mechanism of antiviral activity against influenza A virus.  The results in 

section 5.2 and 5.4 indicate that in the presence of IFN, MxA potentially requires both 

GTPase activity and lipid binding activity to fully exert its antiviral effect prior to 

primary transcription. The necessity of GTPase activity is supported through the 

attenuation observed in the cell-line expressing the V268M mutation, which has 

previously been shown to allow binding, but not hydrolysis of GTP (Dick et al. 2015). 

However, this could also be due to a potential interaction with another host-factor, as 

Xiao et al. (2013) suggested that MxA might interact with an unidentified IFN-

inducible co-factor to exert its IFN-dependent antiviral effect. To understand this 

attenuation and to confirm the characteristics required for the IFN-dependent antiviral 

effect of MxA in more detail, further work is required. 

 

The induction of MxA using IFN leads to a clear expression pattern, shown in Fig 5.7. 

Both A549 cells and BEAS-2B cells show concentrated MxA staining in the 

perinuclear region and also at the cell periphery around the plasma membrane. To 

assess where in the endocytic process MxA is recruited to exhibit its antiviral effect in 

the context of IFN two GFP-wMxA cell lines were created in the context of naïve 

A549 cells or A549-#MxA cells. The functionality of these cell lines was determined 

using Pichinde virus as seen in Fig. 5.9. The results showed that GFP wMxA requires 

the expression of endogenous MxA to allow recruitment to large punctate areas of 
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MxA staining, as in the context of the A549-#MxA-GFP-wMxA cells there was a 

lack of punctate staining. This suggests that the N-terminal tagging of MxA may have 

caused a structural change or sterically hindered the ability of GFP-MxA to be 

recruited to the sites of Pichinde infection, hence requiring the endogenous MxA to 

allow the GFP-wMxA recruitment observed in Fig 5.9. It is not clear whether this 

localization is due to MxA being recruited to sites of Pichinde virus replication or 

whether MxA is sequestering a specific viral protein. It has recently been observed 

that MxA is capable of sequestering the capsid protein of West Nile Virus into tubular 

cytoplasmic structures (Hoenen et al. 2014).  

 

Experiments were performed to determine whether GFP-MxA was being recruited to 

a specific stage of the endocytic pathway during influenza virus infection (Fig. 5.11). 

Unfortunately the results were inconclusive and did not show any specific co-

localisation events between the mRFP-labelled Rab proteins and the GFP-wMxA. 

This could be due to the difficulty in assessing fluorescently tagged proteins as due to 

the nature of microscopy, a single GFP-tagged protein can emit light as wide as 250 

nm in diameter, when in reality the GFP protein itself is only 3 nm in size (Grove 

2014). Therefore in a system where a large number of GFP-tagged MxA proteins are 

spread over a diffuse area such as the cytoplasm, rather than localizing closely to 

individual organelles, as seen with the mRFP-tagged Rab proteins, it can be difficult 

to determine where individual MxA proteins are localised. For example, in the 

context of Pichinde virus infection shown in Fig 5.9, there are only a few defined 

punctate areas per cell. This means that a relocalisation event is obvious to see as 

MxA is being recruited to a specific area. However, in the context of the viral input 

assay using influenza virus, an infection is taking place with a high MOI, therefore as 
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many as 500 influenza particles are being endocytosed per cell. Therefore any 

redistribution of MxA is likely to be spread over a large number of endocytic events, 

making it difficult to ascertain whether MxA is interacting directly with the incoming 

endosomes. Consequently, in order to determine whether MxA is being recruited to 

endosomes carrying incoming virus particles, more sensitive detection methods, such 

as single particle fluorescence microscopy, are required. 
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Chapter 6 - The antiviral effect of MxA against influenza B virus 

6. Introduction 

There are 3 types of influenza viruses, all of which are capable of infecting humans. 

The most common of these are influenza A and B viruses, although similar, they have 

a number of unique features that set them apart. Influenza C virus is much less 

common and causes a milder disease in humans than both influenza A and B viruses. 

Although influenza A viruses are divided into subtypes based on the surface 

glycoproteins, HA and NA, influenza B viruses are not divided into subtypes but into 

2 antigenically and genetically distinct lineages (Paul Glezen et al. 2013). These two 

lineages, B/Victoria/2/87–like (Victoria lineage) and B/Yamagata/16/88–like 

(Yamagata lineage), have circulated in humans worldwide since 1983 (Rota et al. 

1990). 

!

Unlike influenza A virus which has a diverse host range, influenza B virus has not 

been shown to have a natural reservoir in other animal species and although there has 

been several reports of influenza B virus isolation from seals, Osterhaus et al. (2000) 

showed that the virus was in fact identical to isolates from humans and has not 

undergone any host adaptation (Osterhaus et al. 2000). In a later study, it was shown 

that a number of seals had also been infected Z"1N! an influenza B virus similar to 

B/Yamanashi/166/98, which is antigenically different from 

B/Seal/Netherlands/1/1999. This suggested a novel infection and offered evidence 

towards seals being another mammalian host for influenza B virus (Bodewes et al. 

2013).!  More recently, it has been suggested that domestic pigs may also be a 

potential animal reservoir for influenza B virus as after infection with 1Z=! viruses 

representative of the two distinct lineages of influenza B virus; B/Brisbane/60/2008 
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(Victoria lineage) and B/Yamagata/16/1988 (Yamagata lineage) pigs developed 

influenza-like symptoms and lung lesions. Pigs that were infected with 

B/Brisbane/60/2008 virus were also capable of successfully transmitting the virus to 

other animals. Therefore suggesting swine as another potential host of influenza B 

virus (Ran et al. 2015).!It also been shown that influenza A and influenza B virus gene 

segments are not capable of reassortments. In fact, influenza B NP has been shown to 

inhibit the influenza A polymerase through competitively binding to the influenza A 

NP, therefore inhibiting replication (Jaru-ampornpan et al. 2014). Therefore, influenza 

B viruses do not have pandemic potential but are responsible for significant seasonal 

epidemics and has been shown to be the main circulating strain of influenza virus 1 in 

every 3 years (Y. P. Lin et al. 2004). Thus, influenza B virus still poses a significant 

threat to the human population. 

 

Despite this, influenza B viruses are far less studied than influenza A virus with a 

number of assumptions suggesting that characteristics of influenza A viruses are 

likely to be true for influenza B virus. Although these viruses do share a number of 

characteristics, influenza B viruses harbour a number of unique differences.  

 

For example, both viruses possess nucleotide sequences at the 3’ and 5’ end of each 

of the eight RNA segments which is completely conserved and following these 

common terminal sequences are further non-coding nucleotides which have been 

shown to be specific for each RNA segment (D. Jackson, Elderfield, and Barclay 

2011). These regions are known as the untranslated regions (UTRs). Like influenza A 

viruses, the UTR regions of the influenza B virus genome are absolutely essential for 

replication (Barclay and Palese 1995). Although the function of the UTR regions 
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within the genome are unknown, there is a remarkable difference in the length of the 

5+ non-coding regions of influenza B virus vRNA segments in comparison to those of 

influenza A viruses, with the influenza B virus UTRs being significantly longer 

(Stoeckle, Shaw, and Choppin 1987). It has been suggested that theses segment-

specific regions could regulate gene expression or potentially be involved in the 

specific packaging of gene segments into nascent virions (D. Jackson, Elderfield, and 

Barclay 2011). Interestingly, a number of mutations introduced to the influenza B 

virus HA gene-specific non-coding regions at the 5+ end of the vRNA resulting in 

truncation, did not affect gene expression. However, a 67 nt deletion from this region 

could not be recovered into recombinant virus (Barclay and Palese 1995). 

 

The influenza B virus genome also encodes for a specific protein, which is not present 

in influenza A virus, encoded on RNA segment 6 from an initiation codon just 4 nt 

upstream of the start of the NA ORF (Williams and Lamb 1986). This ORF produces 

a protein 100 amino acids in length known as NB. NB is a small hydrophobic type III 

integral membrane protein, which is completely conserved in all sequenced influenza 

B virus strains. Due to structural similarities it had previously been hypothesized that 

NB was the functional equivalent of the influenza A virus M2 ion channel protein. 

NB protein had also been shown to be incorporated in similar levels to M2 in nascent 

virus particles (Betakova, Nermut, and Hay 1996; Brassard, Leser, and Lamb 1996; 

Zebedee and Lamb 1988). However, NB was determined to not be essential for 

replication of influenza B viruses in MDCK cells via reverse genetics, as an NB-null 

mutant replicated as efficiently at wild-type (Hatta and Kawaoka 2003). Therefore 

NB was unlikely to be a true homologue of the influenza A virus M2 ion channel. 

Although this NB-null virus was shown to be attenuated in mice, suggesting that 
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although this protein may not be essential to replication in vitro, it may have a role in 

replication or pathogenesis in vivo. A protein encoded on the influenza B virus vRNA 

segment seven, the BM2 protein, was later shown to be the functional equivalent of 

the influenza A virus M2 ion channel protein (Paterson et al. 2003; Mould et al. 

2003). 

 

Recently the morphology of influenza B virions was investigated using cryo-electron 

microscopy and has shown some clear differences in virion morphology to that seen 

for influenza A viruses (Katz et al. 2014). Firstly Katz et al., (2014) assessed the 

number of glycoprotein projections per virion, and suggested that a typical 130 nm 

influenza B/Lee/40 virion may contain approximately 460 surface glycoproteins 

which is higher than the estimated 375 on a 120 nm influenza A virus particle (Harris 

et al. 2006). However, the most striking difference in this analysis was shown to be in 

the orientation of the vRNPs. Influenza A virions are best known to display a 7 + 1 

configuration of the genome segments, yet the influenza B vRNPs do not share this 

configuration and appear to have a more twisted conformation of the RNPs 

suggesting a potential difference in genome packaging between influenza A and 

influenza B viruses (Harris et al. 2006; Noda et al. 2006; Katz et al. 2014). 

 

Almost all research conducted into the antiviral activity of MxA against 

Orthomyxoviruses use either influenza A virus or Thogoto virus yet very little 

research has been done into the impact of MxA on influenza B viruses. Canine Mx1 

has previously been shown to have no effect on influenza B virus replication as it was 

shown that the ability of the virus to replicate efficiently within MDCK cells was due 

to an inefficient IFN-induced antiviral response within MDCK cells (Frensing et al. 
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2011). Frensing et al. (2011) also showed that although canine Mx1 had no impact on 

influenza B virus replication, murine Mx1 was capable of inhibiting the virus in a 

mini-replicon assay. However, murine Mx1 localises to the nucleus unlike human 

MxA, which localises within the cytoplasm. Therefore this section investigates the 

impact of human MxA firstly on influenza B virus in mini-replicon assays and in the 

context of viral infection, secondly on the additive impact of IFN on the antiviral 

effect exhibited by MxA and finally, determining the ability of influenza B virus to 

overcome inhibition by MxA. 

 

6.1 Effect of MxA on influenza B virus polymerase activity 

In chapter 4 a number of wMxA constructs were tested for antiviral activity in 

influenza A virus mini-genome replication system. To build on the work of Frensing 

et al. (2011) and determine the antiviral impact of MxA on influenza B virus 

replication, mini-genome experiments were performed. In the influenza B virus 

version of this assay the renilla luciferase mini-genome template (used to quantify 

viral RNA replication) was flanked by the UTRs of the influenza B virus NS segment. 

293T cells were transfected with the influenza B virus polymerase subunits (PB2, 

PB1 and PA; derived from B/Panama/90 virus) and NP alongside the wMxA 

constructs and the mini-genome construct. The transfection efficiency was determined 

through the transfection of a plasmid encoding firefly luciferase under the control of a 

CMV promoter. This was then used to normalise the polymerase activity in a dual 

luciferase assay. The polymerase activity was then normalised to the activity in the 

absence of wMxA to determine the level of antiviral activity exhibited by each of the 

mutant wMxA constructs. 
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Figure 6.1 Influenza B/Panama/90 Luciferase assay. Relative Luciferase activity was 
measured and normalised to no the No MxA positive control following the transfection of 
expression plasmids encoding the viral polymerase subunits and NP (100ng) and the 
indicated wMxA construct (200ng). The polymerase activities are represented as a 
percentage of luciferase activity in the no MxA control and are the average of three 
independent experiments ± S.D. 
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Fig. 6.1 shows the impact of each of the wMxA mutations on the antiviral activity of 

MxA against influenza B virus. This clearly shows that MxA is capable of reducing 

the relative luciferase activity of influenza B polymerase, however the reduction is not  

as prominent as that seen in section 4.2 for influenza A viruses. Here wt wMxA only 

leads to a 30% reduction in the amount of luciferase activity in comparison to the no 

MxA control. All other mutants appear to be slight attenuated in comparison to wt 

MxA apart from D478A. Interestingly, T103A still has some antiviral activity but it 

appears that this affect is diminished in the influenza B polymerase assay, reducing 

activity by approximately 10% whereas in the influenza A assay T103A reduced 

polymerase activity by approximately 25% (Fig. 4.3). Also, it would appear that the 

monomeric mutations, L612K and F602D, are less active against influenza B 

averaging an 8% reduction along with the L4 loop F561V mutant which shows very 

little antiviral activity against influenza B virus. The human polymorphism proteins 

appear to show a similar pattern to that in the context of influenza A virus in that 

wMxA G255E has slightly more antiviral activity than V268M, yet both are capable 

of exerting an antiviral effect even if it is attenuated in comparison to wt MxA. 

 

6.2 Expression of MxA leads to a reduction in plaque titre 

To assess the impact of MxA on the virus as a whole, MDCK cells were transduced 

using a lentivirus expressing wt MxA for the constitutive expression of human MxA. 

Fig. 6.2 shows the expression levels of MxA in MDCKs through western blot and 

immunofluorescence analysis. The western blot shows a strong level of expression, 

which is supported by the immunofluorescence staining. 
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Figure 6.2 Constitutive expression of human MxA in MDCK cells. A. Immunoblot 
showing the expression of human MxA in MDCK cells. B. Immunostaining of naïve 
MDCK and MDCK-MxA cells. Cells were fixed and probed with an !-MxA polyclonal 
rabbit antibody then an Alexa-488 conjugated goat !-rabbit secondary antibody. Cell 
nuclei were stained with DAPI (blue).  
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MDCK cells are highly permissive to both influenza A and B viruses Therefore to 

determine the effect of human MxA on influenza viruses in MDCK cells, both 

influenza A/Udorn/1972 and influenza B/Yamanshi/1998 were assessed for the ability 

to produce plaque-forming units on both MDCK naïve cells and MDCK MxA cells. 

Fig 6.3 shows that human MxA reduces the ability of both influenza viruses to 

produce plaques on MDCK cells. In the case of influenza B virus, the over-expression 

of MxA leads to a 75% reduction in the number of plaques in comparison to naïve 

MDCK cells showing that MxA has a clear antiviral effect on influenza B virus. 

Surprisingly, it appears that the over-expression of MxA in MDCK cells has an even 

larger impact on the ability of influenza A virus to produce plaques, only producing 

1.9% the number of plaques compared to the plaques produced on naïve MDCK cells. 

These results clearly highlight the ability of MxA to inhibit orthomyxoviruses, 

however they also highlight a clear difference in sensitivity to MxA in MDCK cells. 

Influenza A virus showed a much greater reduction in MDCK-MxA cells than 

previously observed in A549-MxA cells, where a 74% reduction in plaque number 

was reported, suggesting that the antiviral effect of MxA is also influenced by the cell 

line used for virus propagation (Xiao et al. 2013).  

 

6.3 Does MxA inhibit influenza virus prior to primary transcription in MDCK 

cells in the absence of IFN 

Section 3.4 attempted to address the impact of MxA over-expression on influenza 

virus prior to primary transcription in A549 cells. However, following the increased 

inhibitory effect of MxA in MDCK cells, the impact of   MxA overexpression in the 

absence IFN treatment was addressed in MDCK cells. MDCK-MxA cells were 

infected with either influenza A/Udorn/72 or influenza B/Yamanshi/98 at an MOI of  
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Figure 6.3 Over-expression of MxA reduces plaque numbers of influenza viruses. 
Naïve MDCK and MDCK-MxA cells were inoculated with a serial ten-fold dilution 
series of either (A) influenza B/Yam/98 or (B) influenza A/Udorn/72 in a viral plaque 
assay. The cells were stained using crystal violet after 72 and 48 hours respectively. 
Plaque number is expressed as a percentage of plaques observed on naïve MDCK cells. 
Results are expressed as the average of three independent experiments ± S.D 
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0.5 alongside naïve MDCK cells and fixed 12 hours post infection. Following fixation 

the cells were immunostained for influenza NP as a marker for infected cells. The 

average number of viral antigen positive cells was determined from 10 random 

images per condition at 20x magnification and the number of viral antigen positive 

MDCK cells was set to 100%. Fig. 6.4 A shows that the overexpression of MxA had 

very little impact on the number of influenza B virus infected cells, with MDCK-

MxA cells averaging only a 4% reduction in the number of antigen-positive cells 

compared to naïve MDCKs. However, there was a much larger reduction in the 

number of influenza A virus NP positive cells (Fig 6.4 B). The over-expression of 

MxA in MDCK cells caused a 70% reduction in the number of influenza A virus NP 

positive cells. Although the influenza B virus data is reminiscent of the impact seen of 

influenza A virus in A549 cells (section 3.4), it appears that the over-expression of 

MxA had a much larger inhibitory effect on influenza A virus in MDCK cells, 

suggesting that perhaps in MDCK cells, MxA is capable of inhibiting the initial 

nuclear translocation of vRNPs without the presence of IFN. Although, it is not 

possible to rule out that this impact could be caused purely by the post-primary 

transcription antiviral effect being much stronger in MDCK cells than in A549 cells. 

 

6.4 Impact of MxA on influenza B virus growth 

Although the results in section 6.2 give a clear indication of the importance of MxA 

to the inhibition of influenza B virus, it does not show the overall impact of MxA on 

the amount of virus produced during infection. To assess this naïve MDCK cells and 

MDCK-MxA cells were infected with B/Yamanashi/98 virus at an MOI 0.001, 

supernatant samples were taken every 12 hours until 72 h.p.i and the infectious titre of 
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Figure 6.4 Over-expression of MxA may impact nuclear import of influenza A virus 
but not influenza B virus in MDCK cells. MDCK and MDCK-MxA cells were infected 
with  (A) B/Yam/98 and (B) A/Udorn/72 at an MOI 0.5. Cells were fixed 12 h.p.i and 
immunostained for DAPI and influenza A or B virus NP. Systematic uniform random 
sampling was used to obtain 10 images per condition at 20x magnification. Cells that 
were positive for viral antigen were then counted using ImageJ cell counter. Results are 
expressed as a percentage of virus positive cells observed in naïve MDCK cells and are 
the average of three independent experiments ± S.D 
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each determined by viral plaque assay on MDCK cells. At 12 h.p.i the amount of 

virus produced was relatively similar across both cell lines, however by 24 h.p.i the 

viral titre was approximately a log lower in the MDCK-MxA cells in comparison to 

the naïve MDCK cells (Fig. 6.5). The viral titre peaked at 36 h.p.i in the naïve MDCK 

cells but this was delayed in the MDCK-MxA cells, which peaked 12 hours later at 48 

h.p.i. The peak titre reached in the MDCK-MxA cells was also lower than that 

reached in the naïve MDCK cells, as the MDCK-naïve cells reached a peak of 5 x 108 

pfu/mL whereas the MDCK naïve cells only reached 9.2 x 107 pfu/mL.  

 

These results clearly show that MxA is an important antiviral protein that can exhibit 

an effect against influenza B virus infection as the over-expression of MxA alone is 

able to reduce the amount of virus produced by a log in the early stages of infection 

up until 36 h.p.i and by half a log in the latter stages of infection in MDCK cells, 

showing a similar trend to the antiviral effect demonstrated by MxA against influenza 

A virus in A549 cells. 

 
As described earlier MxA has been shown to target two distinct steps of the virus 

replication cycle; one of which is independent of IFN, requiring only the over-

expression of MxA and one that is IFN dependent. In previous chapters, A549 cells 

were pre-treated with IFN-! prior to infection to induce the antiviral state and 

promote the IFN dependent activity of MxA. However, despite being IFN-competent 

cells, MDCK cells do not respond well to universal IFN and therefore an alternative 

method of inducing an antiviral state in MDCK cells was required. It has been shown 

by Frensing et al. (2011) that through the production of conditioned media (C.M) it is 

possible to induce an IFN response. Therefore MDCK cells were infected at a high   
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Figure 6.5. The impact of MxA on influenza B virus multistep replication. Naïve MDCK 
and MDCK-MxA cells were infected at an MOI 0.001 using B/Yam/98. Samples were taken 
every 12 hours post-infection and titred via plaque assay on MDCK cells. Results represent 
the average of three independent experiments ± SD.!
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MOI with Sendai virus, a high IFN inducing virus, to allow secretion of IFN into the 

supernatant. The supernatant was collected 18 h.p.i and stored at -80C. Prior to use 

the supernatants were UV-treated for 2 minutes to inactivate any virus and then 

placed onto fresh MDCK cells. The cells were lysed 16 hours post-treatment and 

assessed for the induction of canine Mx1 as a marker for IFN stimulation via 

immunoblotting. Fig. 6.6 A shows that pre-treatment of MDCK cells with C.M lead to 

the production of Mx1, suggesting that this method could be used to induce an 

antiviral state in MDCK cells to determine the impact of IFN on influenza B 

replication as well as any additive effect IFN treatment may have on MDCK-MxA 

cells.  

 

To determine the impact of MxA on influenza B virus protein expression, naïve 

MDCK cells and MDCK-MxA cells were infected with B/Yamanashi/98 virus at an 

MOI of 5. Cells had been either pre-treated with UV-inactivated C.M or left untreated 

for 16 hours prior to infection. Following infection cell lysates were collected 8 h.p.i 

and assessed for the levels of viral NP via immunoblotting. Figure 6.6 B shows the 

impact of MxA on influenza B virus NP expression both with and without C.M pre-

treatment. Naïve MDCK were negative for Mx1 expression but in conditioned-media 

treated cells there was a clear band showing the induction of Mx1 expression, 

indicating that these cells were in an antiviral state. Figure 6.6 B demonstrates that the 

over-expression of MxA alone had a negative impact on the levels of NP synthesized 

and this impact was amplified by pre-treatment with C.M. However, pre-treatment 

with C.M led to a large decrease in the amount of NP synthesized in both naïve 

MDCK and MDCK-MxA cells.  
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Figure 6.6. The impact of MxA on influenza B virus protein expression. A. Immunoblot showing that 
conditioned media is capable of inducing Mx1 expression in MDCK cells. B. Immunoblot showing the level of 
influenza B virus NP expressed 8 h.p.i in MDCK and MDCK-MxA cells either in the absence or presence of 
C.M. Influenza B virus NP was detected using a rabbit anti-B/Hong Kong/73 antibody, MxA detection acted as 
a control for the presence of the IFN-induced antiviral state and actin levels were detected as a loading control. 
C. Quantification of NP synthesized 8 h.p.i firstly normalised to actin and then normalised to untreated MDCK 
cells. The results represent the average of three independent experiments ± S.D. (* The higher band where there 
are doublets is due to a background influenza B band as both the anti-MxA and anti-B/Hong Kong/73 are rabbit 
antibodies) 
!

`!
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The levels of influenza B virus NP were quantified and normalised firstly to actin as 

the loading control and then to naïve MDCK cells without treatment with C.M (Fig. 

6.6 C). In the absence of IFN the over-expression of MxA caused a 13% reduction in 

NP levels in comparison to untreated naïve MDCK cells. Using C.M to prime the 

cells prior to infection had a larger impact on the levels of influenza B virus NP 

produced at 8 h.p.i. In comparison to naïve, untreated MDCK cells, C.M treated naïve 

MDCK cells showed a 36% reduction in the amount of NP produced. Pre-treatment 

with C.M has an additive effect on the impact MDCK-MxA cells, which 

demonstrated a very similar reduction in the presence of C.M reducing the amount of 

NP to 53% the amount of NP present in the untreated, naïve MDCK cell control.  

 

The results from the untreated cells are very similar to the results observed in 

influenza A infected A549 cells in section 3.5. The quantity of viral protein produced 

in the untreated cells demonstrates that without IFN treatment MxA appears to have a 

slightly larger impact on the amount of viral protein produced for influenza B virus in 

MDCK cells in comparison to influenza A virus in A549 cells. Therefore suggesting 

the only impact on influenza B virus replication is post-primary transcription, but also 

that perhaps influenza B virus is potentially as susceptible to MxA in MDCK cells as 

influenza A/Udorn/72 virus is in A549 cells. However, in the presence of C.M a 

larger reduction in the amount of NP was produced in both the naïve MDCK cells and 

the MDCK-MxA cells likely due to the large number of antiviral proteins that are up-

regulated by the induction of the antiviral state. The MDCK-MxA cells contributed an 

extra 11% reduction compared to naïve MDCK cells in the presence of C.M.  
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Interestingly, even with naïve MDCK cells in an antiviral-induced state, influenza B 

virus was capable of producing 64% the amount of viral protein compared to 

untreated, naïve MDCK cells 8.h.p.i. This reduction pales in comparison to the 

reduction observed in IFN-treated influenza A virus infected A549 cells, which 

showed a reduction of up to 90% in NP production (Fig 3.9). This highlights the 

species difference in the IFN response against orthomyxoviruses and how canine 

kidney cells lack an efficient innate immune response against influenza viruses, which 

corroborates with the previous work of Frensing et al. (2011). Even the over-

expression of MxA did not lead to a more dramatic response in the presence of IFN, 

as the comparative differences between MDCK and MDCK-MxA cells in untreated 

and C.M-treated were 36% and 34% in MDCK and MDCK-MxA cells respectively. 

This suggests that perhaps the IFN response in MDCK cells does not lead to the up-

regulation of a co-factor required for MxA to exhibit the IFN-dependent antiviral 

activity shown by Xiao et al. (2013) in A549 cells. 

 

Although the previous results give a clear indication of the importance of MxA and 

IFN on influenza B virus infection, they do not show the overall impact on the 

amount of virus produced during infection. Therefore naive MDCK and MDCK-MxA 

cells were untreated or pre-treated with C.M for 16 hours prior to infection with 

B/Yamanshi/98 virus at an MOI of 5 in the absence of trypsin to observe the impact 

of MxA and IFN on a single viral replication cycle. Following inoculation, samples 

were collected every 3 hours until 15 h.pi and then a final sample collected at 24 h.p.i.  
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Figure 6.7. Impact of MxA on a single cycle of influenza B virus replication. A. MDCK and  MDCK-MxA cells were either left untreated or 
pre-treated with C.M  for 16 hours prior to infection at an MOI 5 using B/Yam/98. Samples were taken every 3 h.p.i  until 15 h.p.i. with a final 
sample taken at 24 h.p.i. Virus titres were determined via plaque assay on MDCK cells. B, C and D. Show the percentage of virus produced 
normalised to untreated naïve MDCK cells as 100% virus production at 6, 9 and 12 h.p.i respectively!
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Negligible levels of virus were present at 3 h.p.i. as the single cycle of replication had 

not yet reached the point of virus release and following virus inoculation the cells 

were washed with a citric acid wash to remove virus which had not been endocytosed 

(Fig. 6.7 A). Therefore the first time point at which infectious virus was released was 

at 6 h.p.i.  Similar to the data shown in the multi-step growth curve (Fig. 6.5), there 

was a 1-log difference between the amount of virus produced from naïve MDCK cells 

and the MDCK-MxA cells at 6 h.p.i. which then reduced to a 0.5 log reduction by 9 

h.p.i. Similar to that trend seen in the multi-step growth curve, the over-expression of 

MxA caused influenza B virus to peak slightly later than in naïve MDCK cells with 

MDCK-MxA cells peaking at 15 h.p.i whereas naïve MDCK cells peaked at 12 h.p.i. 

It is also noticeable that the difference in titre between naïve MDCK and MDCK-

MxA cells reduced over each time point suggesting that using a high MOI is capable 

of eventually surpassing the antiviral effect induced by the over-expression of MxA.  

 

Interestingly, inducing an antiviral state in MDCK cells did not cause the same level 

of inhibition of infectious virus production for influenza B virus compared to that 

observed in section 3.5 for influenza A virus in A549 cells. Pre-treatment with C.M 

did lead to a clear reduction in infectious titre in both naïve MDCK and MDCK-MxA 

cells but only modest increase on the reduction seen by the over-expression of MxA. 

At 6 h.p.i in both cell-lines treated with C.M there was a reduction in infectious viral 

titre of approximately 1.2 and 1.4 logs (naïve and MxA-expressing cells respectively). 

This extent of inhibition slowly reduced to approximately 0.5 log by 12 h.p.i with 

infectious virus production peaking at approximately 15 h.p.i. Although, it is 

noticeable that C.M treatment did offer an additive effect to the antiviral activity of 
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MxA, as the viral titre from C.M treated MDCK-MxA cells never reached the same 

level as the untreated naïve MDCK cells.  

 

Figure 6.7 B shows a graphical representation of viral titres released at 6 h.p.i 

normalised to untreated naive MDCK cells as 100% virus production at each time 

point. In untreated MDCK-MxA cells, the overexpression of MxA alone resulted in a 

75% reduction in the amount of virus released at 6 h.p.i. The induction of IFN prior to 

infection greatly reduced the amount of virus produced from both naïve MDCK cells 

and MDCK-MxA cells to 8.5% and 5% respectively. This trend was continued at 9 

h.p.i as Figure 6.7 C shows that the amount of infectious virus produced in untreated 

MDCK-MxA cells increased to 52% the amount of virus produced in naïve MDCK 

cells. However, at 12 h.p.i. the amount of infectious virus produced from MDCK-

MxA cells in comparison to naïve MDCKs was similar at 47% (Fig 6.7 D). This 

suggests that, despite the clear impact of MxA on influenza B virus at early time 

points during infection, as the infection progressed in the absence of IFN the virus 

was able to reduce the impact of MxA overexpression. 

 

In the C.M treated cells there was a large reduction in the amount of virus produced in 

both cell lines compared to untreated naïve MDCK cells. At 9 h.p.i, the amount of 

virus produced had increased to 25% and 18% of untreated naïve MDCK cells (C.M-

treated naïve MDCK and MDCK-MxA cells respectively) (Fig. 6.7 C). This trend 

continued at 12 h.p.i (Fig. 6.7 D.) where C.M treated MDCK cells and MDCK-MxA 

cells produced 43% and 39% the amount of infectious particles. However at the later 

time points the C.M treated cells only showed a modest increase in inhibition in 

comparison to naïve untreated MDCK cells, which produced between 4% and 8% 
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more infectious virus in the MDCK and MDCK-MxA cells. This data, coupled with 

the protein production data highlights that MxA is clearly capable of inhibiting 

influenza B virus post-primary transcription but also highlights the inefficiency of the 

IFN response in MDCK cells against orthomyxoviruses as following 12 h.p.i the level 

of inhibition exhibited by C.M-treated cells is on a par with untreated cells which only 

overexpress MxA.  

 

However, this data set also shows the capability of influenza B virus to dismantle the 

host’s pre-existing antiviral state as although the level of virus produced at 6 h.p.i in 

the presence of IFN was only 8% the amount of virus in the untreated control MDCK 

cells, the percentage of virus produced from the C.M treated cells increased steadily 

throughout the time course.  

 

6.5 Investigating influenza B virus MxA resistance 

The current literature points towards the viral NP being the antiviral target of MxA, 

for orthomyxoviruses as well as other virus families such as bunyaviridae. Therefore, 

it is reasonable to assume that the NP of influenza B virus may also be the antiviral 

target of MxA. Specific amino acids in influenza A NP have been described to either 

cause susceptibility or resistance to MxA (Mänz et al. 2013).  Mänz et al. (2013) 

identified a cluster of amino acids which conferred resistance at a number of 

positions, with a particular emphasis on positions 100, 283 and 313 and mapped these 

onto the A/HK/483/97 (H5N1) virus NP structure previously solved by Ng et al. 

(2008). A follow-up study also identified position 52 as having the potential to confer 

resistance to human MxA in influenza A NP (Riegger et al. 2015). The structure for 

influenza B NP has also been determined recently and used the A/HK/483/97 (H5N1) 
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NP structure for molecular replacement in order for it to be solved (Ng et al. 2012). 

Therefore to study whether influenza B virus NP encoded for amino acids that 

increased susceptibility to MxA, the structures for influenza A and influenza B NP 

were aligned and assessed for amino acid conservation at the positions highlighted by 

Mänz et al. (2013). The influenza B virus NP structure used for the structural 

alignment comes from B/Managua/2008 which only has 5 amino acid substitutions in 

comparison to B/Yamanshi/1998, none of which overlap with the residues of interest. 

The alignment is shown in Fig. 6.8 and the amino acid comparison is presented in 

table 6.1.  

 

It is clear from the structural alignment that the NP of both influenza viruses is highly 

similar in structure as described by Ng et al. (2012), who suggest that the only major 

difference is the orientation of the tail loop, whereas the majority of other structural 

differences are in flexible surface loops. The table lists the key amino acid positions 

that have been previously suggested to determine resistance to the antiviral effect of 

MxA. Interestingly, the structural alignment shows that there is a mix of MxA 

sensitive amino acids and amino acids that confer resistance to MxA. For instance, 

aspartic acid is required to confer resistance at position 53 in influenza A NP, whereas 

the equivalent position in influenza B NP is E104, which has been shown to be 

present in MxA-sensitive avian NP. Furthermore, at positions 283 and 289, resistance 

is encoded by proline and tyrosine respectively whereas the corresponding amino 

acids in influenza B virus NP are K341 and F347 suggesting that influenza B virus 

NP may be susceptible to the antiviral effect of MxA. 

! !
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Figure 6.8 Structural Alignment of influenza A and influenza B virus NP. The NP of 
influenza B/Managua/2008 (PDB no. 3TJ0) was structurally aligned to A/HK/483/97 (PDB no. 
2Q06) using Pymol. Influenza A NP = aqua and influenza B NP = gold. 

Amino Acid 
Position in 
influenza A 

MxA Susceptibly 
Amino Acids 

Resistance Mutation Amino Acid and position in 
influenza B/Yam/98 

16 G D (Not in structure) N/A 
52 Q N M103 
53 E D E104 

100 R I/V V158 
283 L P K341 
289 Y Y F347 
313 F Y/V V369 

!
Table 6.1 Structural Alignment of influenza A and influenza B virus NP. This table lists the 
amino acids that confer for either MxA resistance or susceptibility for influenza A viruses are 
displayed against the structurally aligned amino acids of influenza B/Yamanshi/98 virus 



! ?%!:4*3.1*!

! &I?!

 
 
However, two of the key amino acids suggested to confer resistance in influenza A 

NP by both Mänz et al. (2013) and Riegger et al. (2015) are present in the 

corresponding positions in influenza B NP. Both I/V100 and Y/V313 have been 

shown to increase MxA resistance in influenza A virus NP and influenza B virus NP 

encodes for V158 and V369 at the corresponding positions, suggesting that influenza 

B virus may well be resistant to the antiviral effect of MxA. Yet, it could also be 

difficult to determine the potential resistance markers within influenza B virus NP for 

MxA, as influenza B virus NP encodes a large N-terminal extension which did not 

offer any density in the crystal structure (Ng et al. 2012), therefore suggesting that 

this N-terminal extension is flexible and has the potential to mask parts of influenza B 

virus NP. 

 

The structural alignment suggests that resistance to MxA may be found at different 

positions, as a number of positions identified by Mänz et al. (2013) are shown to have 

the same ‘resistance’ amino acids, yet influenza B virus is inhibited by MxA in both 

plaque reduction assays and viral growth curves (Fig 6.3 & Fig 6.5). To determine 

whether influenza B virus was capable of becoming resistant to the antiviral effect of 

MxA, B/Yamanshi/98 was serially passaged through MDCK-MxA expressing cells 

and assessed for resistance to MxA through plaque reduction assays in MDCK and 

MDCK-MxA cells. Figure 6.9 shows the percentage of plaque number on MDCK-

MxA cells at each passage in comparison to naïve MDCK cells. At passage 0 (P0) the 

plaque number produced on MDCK-MxA cells was only 25% that of naïve MDCK 

cells and P1 showed a similar number of plaque number at 31%. Following P2 the 

number of plaques rose sharply to 61% and P3-P5 averaged consistently around the 
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65% mark in comparison to naïve MDCK cells. However, by P6 there was another 

sharp increase in the number of plaques as plaque number on the MDCK-MxA cells 

was equal to or greater than the plaques observed on naïve MDCK cells. Subsequent 

passages, P7, P8, and P9, averaged between 85 and 96% the number of plaques on 

MDCK-MxA cells in comparison to naïve MDCKs.  

 

This data suggests that influenza B virus is capable of evolving to produce mutations 

causing resistance to the antiviral effect of MxA. To determine whether these 

mutations took place in influenza B virus NP, the viral RNA was extracted from P0 

and P9 and used to produce cDNA for sequencing. Unfortunately the sequencing did 

not reveal any coding mutations to have taken place in NP, therefore the reason for 

the enhanced replication in MDCK-MxA cells is currently unknown. Sequencing of 

other gene segments may shed light on this enhanced replication. 

 

6.6 Discussion 

Frensing et al. (2011), showed that influenza B virus polymerase activity was 

sensitive to Mx1 expression, therefore this activity was assessed for sensitivity to 

human MxA and the panel of wMxA mutants described in section 4.2. These assays 

were performed using the same conditions and amounts of plasmids used to determine 

the impact of wMxA on A/Udorn/72 virus (Fig 4.3). The data suggests that although 

MxA is capable of producing an inhibitory effect against the influenza B virus 

polymerase, it is not as potent as against influenza A virus. This is possibly because 

influenza B virus is a predominantly human virus that may have evolved resistance to 

human MxA. Based on this data it appears that the L4 loop mutant is the most 

attenuated against influenza B virus. This is not surprising as this mutation substitutes   
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Figure 6.9. Viral passage through MDCK-MxA cells. MDCK-MxA cells were infected at 
an approximate MOI 0.001 using B/Yam/98 and viruses collected after observation of 
approximately 80-90% cytopathic effect. Samples were titrated via plaque assay on MDCK 
and MDCK-MxA cells. The cells were stained using crystal violet after 72 and 48 hours 
respectively. Plaque number is expressed as a percentage of plaques observed on naïve 
MDCK cells. Results are expressed as the average of three independent experiments ± S.D 
 !
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the phenylalanine at position 561 for a valine which is present in the equivalent 

position in the MxA protein of macaques. This has previously been shown to be a key 

antiviral determinant for MxA against influenza A virus. Therefore as influenza B is a 

predominantly human virus, it is likely that this point mutation is going to have an 

increased impact on the antiviral activity of MxA against influenza B virus (Mitchell 

et al. 2012).  

 

Interestingly, the T103A mutant is still capable of producing some antiviral effect, 

therefore suggesting that GTPase activity may not be entirely necessary for antiviral 

activity, but removing GTPase activity may lessen the antiviral effect of MxA as seen 

for influenza A virus in section 4.2. This data also indicates that the two monomeric 

mutants appear to be attenuated in antiviral activity against influenza B virus whereas 

this is not the case for influenza A, where both F602D and L612K appear to be only 

slightly attenuated, if at all, in comparison to wt wMxA. This suggests that perhaps 

the ability to oligomerise is more important for the antiviral activity against influenza 

B virus than it is against influenza A virus. However, with the reduced antiviral 

activity of MxA against influenza B virus in this assay, it makes it difficult to 

determine the importance of the wMxA mutations on the antiviral activity against 

influenza B virus and therefore further work is required to determine the structural 

and functional characteristics required for the antiviral activity of MxA against 

influenza B virus.  

 

Interestingly, there was a large difference in the inhibitory affect of MxA on the 

ability of influenza A and influenza B viruses to produce plaques. The difference seen 

for influenza B virus was akin to that seen for influenza A virus in A549-MxA 
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expressing cells as demonstrated by Xiao et al. (2013). This suggests that the 

mechanism of antiviral activity is maybe similar to that seen in A549-MxA cells, 

where it is suggested that MxA inhibits the nuclear translocation of nascent NP post-

primary transcription (Zürcher, Pavlovic, and Staeheli 1992; Dittmann et al. 2008).  

However, the impact of MxA on influenza A virus was much more prominent in 

MDCK cells than previously seen for A549 cells yet the 2 log reduction in plaque titre 

is similar to the reduction observed in murine 3T3 cells overexpressing human MxA 

(Pavlovic et al. 1990). A similar 2 log reduction was observed in the levels of 

influenza A virus genomic viral RNA in Vero cells overexpressing human MxA 

(Matzinger et al. 2013). Although genomic viral RNA is not the same read-out as 

viral titre, it is interesting to see the parallels in the scale of inhibition.  

 

Following on from the differences in plaque reduction, it was also clear that MxA had 

a large impact on the early stages of influenza A virus replication in MDCK cells (Fig 

6.4). As influenza B virus has already shown similar results in the plaque reduction 

assay (Fig 6.3) to influenza A virus in A549 cells, it comes as no surprise that there 

was a negligible difference in the number of cells which were positive for viral 

antigen in MDCK-MxA cells in comparison to naïve MDCKs as seen for influenza A 

virus in A549 and A549-MxA cells in section 3.4. However, there is a clear 3-fold 

reduction in the number of influenza A virus antigen positive cells in the presence of 

MxA. This data agrees with the plaque reduction data and suggests that perhaps MxA 

is exerting an antiviral effect prior to primary transcription. However, this can not be 

conclusively proven as if MxA has an increased impact post-primary transcription, by 

blocking nuclear translocation of nascent NP more efficiently, then MxA could be 

causing the increased inhibition through this mechanism instead. It is also interesting 
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to note that it has not been possible to observe a direct interaction between influenza 

A virus NP and MxA without the aid of cross-linking, whereas MxA has been shown 

to interact directly with other viral nucleoproteins such as THOV NP and LACV N 

(Turan et al. 2004; G Kochs and Haller 1999; Georg Kochs, Janzen, et al. 2002). 

Taken together, the differences in inhibition between human cells overexpressing 

MxA and cells from other hosts, coupled with the fact that an interaction between 

influenza A virus NP and MxA has only been observed via cross-linking, suggests 

that there may also be another host factor or factors involved in the antiviral activity 

of MxA.  

 

Influenza B virus replication was reduced by a log in MDCK-MxA cells in early 

stages of both the single cycle and multi-cycle growth curves, reducing the peak titre 

that virus was able to reach in comparison to naïve MDCKs. This is the first time that 

human MxA has been shown to have an antiviral effect on influenza B virus, showing 

MxA to have antiviral effect against a number of the members of the 

orthomyxoviridae family, including influenza A virus, influenza C virus and Thogoto 

Virus (Marschall et al. 2000; Frese et al. 1995; Pavlovic et al. 1990). Although, this 

may be slightly surprising with influenza B virus being specific to humans it may 

have been possible for the virus to evolve intrinsic resistance to what is a key protein 

in the host antiviral response against orthomyxoviruses.    

 

The initial impact of MxA on influenza B virus protein expression showed a minor 

reduction in NP synthesis which suggests that when MxA is overexpressed in the 

absence of IFN it is only capable of inhibiting influenza B virus post-primary 

transcription. However, it was shown that in the presence of IFN in A549 cells, MxA 
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was capable of producing another antiviral function, suggesting that another ISG may 

work as a co-factor for MxA to produce this effect (Xiao et al. 2013). To investigate 

whether MxA was also capable of inhibiting nuclear translocation of the influenza B 

virus genome in the presence of IFN, cells were pre-treated with C.M and assayed for 

protein levels. Although the C.M treatment was capable of inducing an antiviral state, 

the impact on virus protein production was not as drastic as previously observed for 

influenza A virus in IFN-treated A549 cells. This suggested that perhaps MxA was 

incapable of producing this second mechanism of antiviral activity in MDCK cells. 

However, it is not possible to conclude that MxA is incapable of blocking the 

translocation of influenza B virus genome prior to primary transcription. Firstly, 

unlike in A549 cells, the MDCK cells were not treated with purified IFN at a 

determined concentration, but with UV-inactivated conditioned media, which did 

contain IFN, but at an unknown concentration. If the level of IFN was lower then the 

response was likely to be less robust, therefore causing MxA to be unable to block 

nuclear translocation. Secondly, the genes that will be up-regulated in response to 

canine IFN is likely to be different to the genes up-regulated in response to human 

IFN in A549 cells, therefore it is possible that MDCK cells do not express the same 

co-factor, that the canine homologue of the IFN-induced co-factor may preferentially 

bind to canine Mx1 or does not interact with human MxA to allow for this antiviral 

function to occur.  

 

Interestingly, the impact of C.M treatment prior to a virus growth experiment did not 

lead to a large synergistic effect alongside the over-expression of MxA as the impact 

of C.M treatment reduced the titre to only slightly lower than the reduction caused by 

MxA-expression alone. Again, as described above, this may have been down to a less 
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than optimal antiviral response. Yet, these results appear to corroborate the results 

reported by Frensing et al, (2011) who showed that the induction of an antiviral state 

in MDCKs had a minimal effect on influenza B virus replication, whilst showing in a 

mini-replicon assay that canine Mx1 has no antiviral activity against influenza B 

virus. This shows that the impact observed in the studies shown above was through 

the action of human MxA and other ISGs. Following sequence alignment (data not 

shown) the lack of activity of canine Mx1 appears to be due to a lack of conservation 

throughout the L4 loop which has previously been shown to be highly important to 

MxA’s antiviral activity against orthomyxoviruses (Patzina, Haller, and Kochs 2014).  

 

A number of MxA resistance mutations have been identified recently for influenza A 

virus NP, which have been shown to confer resistance both in a mini-replicon assay 

and in vivo (Riegger et al. 2015; Mänz et al. 2013). NP is one of the most highly 

conserved proteins between influenza A and B viruses, sharing up to 38% amino acid 

conservation. However, one clear difference between the NP of these viruses is that 

influenza B virus NP encodes for an N-terminal extension, in which the first 69 

residues show no homology to those of influenza A virus NP. Also, the N-terminus of 

influenza B virus NP contains an evolutionarily conserved 50-amino-acid extension 

that is absent in influenza A virus NP (Sherry et al. 2014). Therefore due to 

differences in the length of influenza A and influenza B virus NP it was necessary to 

align the two protein structurally to ascertain which amino acids in influenza B virus 

NP correspond to the resistance clusters in influenza A NP. This analysis concluded 

that although not all the resistance mutations were present, some of the important 

resistance mutations, such as at positions 100 and 313, are also encoded in influenza 

B virus NP. Despite these resistance mutations influenza B virus still shows 
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susceptibility to MxA, which suggests that there could be other regions of influenza B 

virus NP that contain residues conferring MxA resistance. Recently, the N-terminal 

extension of influenza B NP has been shown to be required for efficient nuclear 

import of recombinant NP protein (Wanitchang, Narkpuk, and Jongkaewwattana 

2013). In the context of whole virus it was shown not only to be important for nuclear 

localization but that this extension was essential for virus viability and played a clear 

role in mRNA transcription and genome replication (Sherry et al. 2014). It is possible 

that the N-terminal extension may also play a role in the ability of MxA to inhibit 

influenza B virus as this highly flexible region may be altering the accessibility of NP 

to MxA if a direct interaction takes place. 

 

To determine the ability of influenza B virus to become resistant to the antiviral effect 

of MxA, the virus was blind passaged through MDCK-MxA cells at an approximate 

MOI of 0.001. Following titration the MOI for each passage was seen to be between 

0.001 and 0.01, ensuring a low enough multiplicity to avoid the production of high 

levels of defective particles. There was a step-wise increase in plaque number when 

each passaged virus was plaqued on MDCK-MxA cells compared to naïve MDCK 

cells. By passage P6 the virus produced approximately equal numbers of plaques on 

both cell types. The NP gene of the P9 virus was then sequenced and compared to that 

of the starting virus to screen for adaptive mutations. Unfortunately the sequencing 

did not reveal any adaptive mutations with in the NP of influenza B virus, which is 

surprising as NP proteins of many viruses are thought to be the viral target for MxA. 

However, as this sequence analysis only considers NP, it is possible that other 

mutations may have arisen in other gene segments, such as within the polymerase 
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subunits, which would have allowed for a replicative advantage in the MDCK-MxA 

cells.  
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Chapter 7 - General Discussion 

7.1 The impact of IFN and MxA on influenza A virus 

Xiao et al. (2013) had previously described the IFN-induced block on influenza virus 

genome nuclear translocation using a viral input assay. In Fig 3.4, this same assay was 

used and the nature of this IFN-induced block was investigated using TEM. The 

electron micrograph images showed a number of multi-membranous structures (MS) 

in the perinuclear region of the cytoplasm in all experimental conditions. Higher 

magnification images of IFN-treated, WSN-infected A549 cells suggested that these 

structures may contain virions. These structures were then determined to be more 

prevalent in both IFN-treated cells and IFN-treated, WSN-infected cells (Fig 3.7). 

This suggested that the increase in the MS structures might be an innate immune 

response, where the cell is responding to incoming endosomes as a potential 

pathogen.  

 

The literature did not give a clear indication of what these structures might be as the 

structures fit the description of late endosomes becoming lysosomes or 

endolysosomes (Huotari and Helenius. 2011), whilst also appearing to fit the 

description of multi-lamellar autophagosomes (Lai et al. 2008 & Hernandez et al. 

2003). Following the recent research suggesting that type I IFN is capable of inducing 

autophagy (Ambjon et al. 2013, Schmeisser et al. 2013) it is possible that IFN induces 

non-canonical autophagy of endosomes as a host defence against incoming pathogens. 

However, to determine whether these structures are related to either the lysosomal or 

autophagy pathways these structures need further characterisation as to the protein 

components involved as well as determining whether the virion-like structures 

observed in these MS structures are in fact viruses. One way of answering these 
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questions is to use immune-gold labeling following cryogenic sectioning of the 

samples. This uses antibodies specific to your structures of interest, such as the highly 

abundant influenza virus NP or M1 proteins, labeled with gold nanoparticles. These 

gold nanoparticles can differ in size, which allows for co-localisation studies using 

antibodies specific to different antigens. This would be particularly interesting in 

relation to the localization of MxA in these MS structures. The IFN-induced block 

described by Xiao et al. (2013) was shown to be dependent on MxA, therefore if these 

structures are the organelles that are restricting the nuclear translocation of the viral 

genome then it is possible that MxA localises to these structures.!!

!
The impact of MxA on influenza A virus replication was assessed in both the absence 

and presence of IFN (Section 3.5 & 3.6) and showed that the over-expression of MxA 

alone had a small impact on the level of influenza virus protein production. However, 

the importance of MxA to the IFN response against influenza A virus was highlighted 

through the use of A549-#MxA cells. In the presence of IFN, these cells produced 10-

fold more virus than in IFN-treated naïve A549 cells. This suggested that MxA might 

have two different mechanisms of antiviral activity, one that is IFN-independent and 

one that is IFN-dependent as described in Fig 7.1. It has previously been suggested 

that MxA forms large oligomeric ring structures, which could wrap around the 

influenza vRNP (Gao et al. 2011). However, this hypothesis was based on the fact 

that that diameter of these ring structures was of a sufficient size to wrap around the 

vRNPs. This hypothesis was also put forth prior to the current knowledge that MxA 

restricts influenza virus genome import into the nucleus during viral entry, therefore 

at the time the hypothesis for the antiviral mechanism of MxA was that it was able to 

prevent nuclear entry post primary transcription. However a flaw in this model is that 

most of the experimental data was generated using minireplicon assays in the absence 
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 of the viral nuclear export protein (NEP), therefore vRNPs would be entirely nuclear 

and unavailable for interaction with the exclusively cytoplasmic MxA. It is more 

likely that after primary transcription MxA is able to bind to newly synthesised NP in 

the cytoplasm thereby preventing its nuclear entry and subsequent genome 

replication. Free monomeric NP is a different size and in a different conformation to 

NP in vRNPs, therefore the predicted model of the antiviral activity of MxA on the 

post-primary transcription stage of influenza A virus replication is likely incorrect. 

However as it is now known that MxA is able to block the nuclear entry of vRNPs it 

is possible that the mechanism of antiviral activity suggested by Gao et al. (2011) is 

likely to occur at the viral entry stage. Therefore although the mechanism behind the 

antiviral activity of MxA may have been accurately predicted by Gao et al. (2011), it 

was postulated to act at the incorrect stage of viral replication. The MxA oligomeric 

structures observed by Gao et al. (2011) may therefore represent the active 

conformation of MxA during viral entry, however the conformation of MxA at the 

point of its post-primary transcription activity may be very different. However 

confirmation of this requires further work.  

 

Due to the large increase in virus protein and virion production in the absence of MxA 

in IFN-treated cells and the minor differences observed when MxA is over-expressed 

in the absence of IFN, the results in this thesis suggests that the IFN-dependent 

mechanism of antiviral activity of MxA (during viral entry) is likely to be more 

important to the host defence against influenza A viruses. However, this mechanism 

appears to be similar to that employed by IFITM3 to block incoming influenza 

viruses. IFITM3 has been shown to have a wide antiviral spectrum and has been 

shown to block cellular entry of a number of different viruses including influenza A 
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virus, HIV, flaviviruses and rhabdoviruses (Bailey et al. 2014). IFITM3 has been 

shown to block influenza virus entry through the inhibition of fusion pore formation 

between the virus and the endosome (Desai et al. 2014) and is shown to interact 

directly with clathrin-mediated endosomes through an interaction with the AP2 µ2 

subunit (R. Jia et al. 2014). It is perhaps surprising that MxA and IFITM3 may have 

duplicated roles in the innate immune response against a number of different viruses. 

However it appears that they may also have a different range of target viruses, as 

MxA is capable of inhibiting RNA viruses that are not inhibited by IFITM3 such as 

Crimean-Congo haemorrhagic fever virus (Andersson et al. 2004). Also, there does 

not appear to be any evidence for IFITM3 inhibiting DNA virus infection, whereas 

MxA has been shown to have antiviral activity against viruses like Hepatitis B virus 

and African Swine Fever virus (N. Li et al. 2012; Netherton et al. 2009). Although 

both MxA and IFITM3 demonstrate antiviral activity at a similar stage of influenza A 

virus entry, the mechanism behind the action of MxA is still unknown. It is possible 

that it has a very different mechanism to that of IFITM3 and therefore represents an 

alternative line of defence against any viruses that manage to bypass the IFITM3-

mediated block. It is also possible that as IFITM3 is found primarily in clathrin-

containing endosomes that MxA provides an antiviral defence against viruses that 

enter cells through non-clathrin-mediated endocytosis. If this is the case it would not 

be surprising that influenza A viruses are inhibited by both MxA and IFITM3 as these 

viruses use both clathrin-mediated and non-clathrin-mediated endocytosis 

mechanisms to enter cells. Further work to uncover the exact mechanism behind the 

antiviral activity of MxA will shed light on the roles that MxA and IFITM3 play in 

inhibiting viral infection.  
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MxA has previously been determined to bind to and tubulate liposomes in vitro (von 

der Malsburg et al. 2011). Section 3.7 investigated the impact of MxA on overall 

cellular lipid composition by comparing the lipid profiles of naïve A549 cells and 

A549-#MxA cells. Surprisingly, depleting cells of MxA appeared to have a large 

impact on the lipid profile of the cell. Firstly, this suggests that although MxA is 

under tight regulation by type I and type III IFN, there is still a small amount of 

constitutive expression that may play a role in the lipid metabolism of cells. This was 

supported by transcriptomic data presented by Benitez et al. (2015), which indicated 

there were approximately 40 mRNA transcripts of MxA available in naïve uninfected 

cells. Intriguingly, the two major changes in overall lipid profile suggested an 

increase in PE whilst also suggesting a reduction in PS, two lipids that could have 

implications for virus infection. However, these results do not offer quantification on 

the differences between the A549 and A549-#MxA cells, nor does this indicate in 

which membrane these changes are occurring. To fully characterise the impact of 

MxA on the cellular lipid profile separation of specific lipid membranes would be 

required whilst using an internal standard to determine lipid concentrations.   

 

The changes observed in the lipid profile coupled with the increase in virus 

production from cells lacking MxA could suggest that MxA has a third potential 

mechanism of antiviral activity. By manipulating cellular lipid metabolism MxA 

could potentially alter the lipid species available to the virus during the assembly 

stage, which could have a significant impact on the fluidity of the viral envelope. The 

virus envelope requires a certain level of fluidity and movement to be able to undergo 

efficient fusion in the next cell. With an altered lipid profile resulting in decreased 

fluidity of the virion envelope the virus would still likely be capable of binding to the 
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cell and initiating receptor-mediated endocyotisis, however the efficiency of fusion 

could be significantly decreased due to biophysical restrictions imposed by the 

curvature of the lipid membrane. This would likely result in an increased number of 

infecting virus particles unable to efficiently deliver their genome into the cell and 

subsequently undergoing lysosomal degradation.  

 

To determine whether MxA is having this affect on the viral lipid membrane it will be 

necessary to purify virions that have been produced from both naïve A549 cells and 

A549-#MxA cells in the absence and presence of IFN and analyse the lipid content of 

the virus envelope. To ascertain whether any identified differences have an impact on 

virus infectivity would require live cell imaging analysis of cells infected with viruses 

produced from MxA-expressing cells in which a lipid dye has been inserted into the 

viral membrane that fluoresces upon viral-endosomal membrane fusion. The effiency 

of fusion could be determined through fluorescent kinetic analysis alongside assessing 

virus production following infection with viruses produced in IFN-treated cells. 

 

7.2 Investigating the structural and functional characteristics of the antiviral 

activity of MxA 

Section 4.2 set out to investigate the impact of a number of mutations on MxA, some 

of these had been previously characterised as to there impact on influenza A virus 

replication, however some of these mutations had yet to be studied in the context of 

antiviral activity. Two SNPs had been identified within the coding region of MxA 

(Duc et al. 2012). These led to the two mutations G255E and V268M, which were 

initially introduced into the wMxA background. Although these mutations showed 

attenuated antiviral activity compared to wt MxA in a mini-replicon assay, they were 
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still able to have an effect on the replication of a viral-like RNA. The identification of 

polymorphisms within ISGs is becoming increasingly important in our understanding 

of human genetic determinants of disease susceptibility. An SNP identified in the N-

terminal region of IFITM3 has been shown to be critically important in patient 

outcome following infection with influenza A virus (Everitt et al. 2012). Therefore 

determining the impact of polymorphisms on the antiviral activity of MxA may be 

very important to future vaccination strategy as society moves towards an era of 

personalized medicines. Also, as MxA has antiviral activity against a wide-range of 

viruses it is important that these mutations are assessed in the context of other MxA-

sensitive viruses to determine the genetic risk of carrying these mutations.  

 

However, during this study, another publication identified the impact of these SNPs 

on antiviral activity in the context of the endogenous MxA mRNA sequence with 

their results suggesting that the G255E mutant lacked antiviral activity (Dick et al. 

2015a). This is in contrast to the results in this thesis in which this mutation was 

introduced into the wMxA background, showing that although the antiviral activity 

was reduced compared to wt MxA, it was still able to exert some degree of antiviral 

activity. This difference was emphasized by the clear difference in expression 

phenotype determined by immunofluorescence (Fig 4.5). This was surprising as the 

amino acid sequence encoded on the two constructs was identical, with the only 

difference being in the mRNA nucleotide sequence. This suggested that the changes 

mRNA sequence had influenced the expression phenotype and therefore the antiviral 

activity of this MxA mutant. A similar difference in antiviral activity and expression 

phenotype was also observed for the T103A mutant, which had previously been 

reported as antivirally inactive and used to suggest that GTPase activity is required for 
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antiviral activity against influenza A virus (Janzen, Kochs, and Haller 2000). 

However, in the context of wMxA mRNA, T103A is capable of exerting a small 

antiviral effect, which suggests that GTPase activity may not be essential for antiviral 

activity. It seems that the literature has been premature in describing the T103A 

mutant as inactive due to the loss of GTPase activity, as in all likelihood the lack of 

activity is simply due to the highly aggregated phenotype shown by this mutant. 

Therefore the lack of antiviral activity cannot be linked to the lack of GTPase activity 

until the antiviral effects of the wMxA-T103A mutant are determined, as this mutant 

does not display an aggregated phenotype. Therefore, to determine the impact of 

wMxA on this functional characteristic of MxA, this mutant should be purified and 

analysed for its ability to bind and hydrolyse GTP whilst also tested for its ability to 

produce oligomers to determine whether the changes in RNA sequence have an 

impact on the functional characteristics of MxA.  

 

RNA structure is currently a topic of debate within the literature, with a number of 

recent papers tackling the topic in vivo (Mortimer, Kidwell, and Doudna 2014; Ding 

et al. 2014; Rouskin et al. 2014). Interestingly, changes in the mRNA coding regions 

have been implicated in the localization of nascent RNA, which could be a key factor 

in the expression phenotype differences observed in (Fig. A.1). Although structures 

predicted from mFold are capable of suggesting the most stable differences, recent 

studies have shown that the predicted structures based on in vitro RNA structures are 

very different to the structures adopted by RNA in the physiological cellular 

environment (Ding et al. 2014; Rouskin et al. 2014). Interestingly, in the context of 

plant cells, stress-induced genes have been shown to have much less secondary 

structure than housekeeping genes (Ding et al. 2014). Potentially this is to prioritise 
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the translation of these proteins for a rapid response to stress. Therefore it would be 

interesting to determine the impact of mutations on MxA under the control of an 

ISRE promoter following stimulation with IFN, rather than in the context of an over-

expression plasmid with a promoter designed for consistent expression. This would 

also determine whether the human polymorphism aggregates under physiological 

conditions rather than in an over-expression system.  

 

Another key factor in the phenotype differences observed in Fig. 4.5, is that the these 

mutations could also introduce differences in codon frequency which is detailed in 

Table A.1, where in the case of T103A, G255E and I376D, the mutation leads to an 

increase in codon frequency. This could increase the pool of available tRNAs for 

protein translation, thereby potentially speeding up the rate of translation and 

impacting the rate of folding. To determine whether this is the case, the endogenous 

mRNA sequence could be mutated such that all codon variations are tested for a 

particular mutation. Therefore in the case of T103A it would require 4 different 

mutants, which would each be transfected and then analysed for the expression 

phenotype by immunofluorescence. 

 

MxA has been hypothesised to exert its antiviral effect by targeting and binding to 

influenza A virus NP (Dittmann et al. 2008). However, no direct interaction has been 

observed between MxA and influenza A virus NP without the aid of cross-linking (G 

Kochs and Haller 1999; Georg Kochs, Janzen, et al. 2002; Turan et al. 2004). 

Therefore it is possible that the interaction between NP and MxA may be mediated by 

another viral or cellular protein. Section 4.5 investigates the potential interacting 

partners of MxA that were identified through MS/MS analysis. This analysis 
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successfully identified a number of proteins had been identified previously by other 

precipitation studies such as actin, tubulin, fanconi anemia proteins and HNRNP1 

(Horisberger 1992; Reuter et al. 2003; Roy et al. 2014). Not only did this analysis 

identify a number of known interacting partners but also identified a number of 

proteins which are involved in nuclear import, specifically with proteins known to be 

involved in the nuclear import of influenza proteins such as Importin-"-1 and Alpha-

actinin 4. Both Importin-"-1 and Alpha-actinin 4 are involved in the nuclear import of 

influenza A virus NP and PB2 (E. C. Hutchinson and Fodor 2012; Strambio-De-

Castillia, Niepel, and Rout 2010; S. Sharma et al. 2014).  Intriguingly, both of these 

proteins were precipitated with wt wMxA and this is particularly interesting as 

increasing concentrations of NP, and also to a weaker extent PB2, is capable of 

reducing the antiviral effect of MxA. This coupled with the absence of these factors 

from precipitations using the T103A wMxA mutant (which displays reduced antiviral 

activity in comparison to wt wMxA) suggests the potential for an alternative model of 

MxA antiviral activity. This proposes a potential mechanism whereby MxA binds to 

the cellular co-factor required by influenza NP and PB2 for nuclear import, therefore 

inhibiting the nuclear import of vRNPs or newly synthesised influenza proteins.  

 

However, to confirm this hypothesis a number of factors need to be investigated. For 

example, to determine the effect of these nuclear import proteins, they could be 

overexpressed in the context of a mini-replicon assay in the presence of MxA to 

determine the impact on replication efficiency. If overexpression of either Importin-"-

1 or Alpha-actinin 4 result in increased viral replication in the presence of MxA then 

the interaction between these two proteins should be confirmed via immune-

precipitation followed by mapping of this potential interaction between MxA and 
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these nuclear import factors. This would allow a functional model of the antiviral 

effects of MxA against influenza A viruses to be proposed. 

 

7.3 Investigating the antiviral mechanism of MxA using constitutive expressing 

cell lines 

Chapter 5 investigated the impact of mutations on the antiviral activity of MxA in the 

context of both viral infection and in the presence of IFN using cells constitutively 

expressing wt and mutant versions of MxA. The impact of these mutations at the 

different stages of influenza replication is summarized in Table 7.1. Despite 

differences in protein levels, the impact of these mutations was consistent across both 

the level of viral protein produced and the impact on plaque development in sections 

5.2 and 5.4, particularly in the presence of IFN. These results showed that MxA 

expressed in A549-wT103A, A549-wV268M and A549-wKEKE cells exhibited a 

reduced ability to attenuate plaque development in the presence if IFN compared to 

wt wMxA. This could offer some insight into the functional characteristics of MxA 

required for the IFN-dependent block on influenza A virus, suggesting that both 

GTPase activity and lipid-binding are essential for antiviral activity. However, due to 

the low levels of MxA expressed, as shown in Fig 5.2, it is not possible to make any 

clear conclusions on the impact of these mutations on the ability of MxA to inhibit 

influenza A virus replication. Therefore, all cell lines should be created to express 

similar levels of protein to ascertain the full impact of these mutations.  

 

However, these cell lines did suggest that the human polymorphism V268M did not 

show any antiviral activity in the presence of IFN. Similar to the antiviral attenuation 

described in section 4.2, this could have a severe impact on patient outcome in the  
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Mutation Impact on MxA Reduced antiviral 
activity post-

primary 
transcription 

Reduced antiviral 
activity pre-

primary 
transcription 

wT103A Abolishes GTPase 
activity 

Yes Yes 

wR640A Preferentially Dimeric Yes No 
wV268M Human Polymorphism Yes Yes 
wG255E Human Polymorphism Yes No 
wF561V L4 loop mutation, 

reduces antiviral activity 
against influenza virus 

Yes No 

wF602D Monomeric Yes No 
wL612K Monomeric Yes No 
wI376D Preferentially Dimeric Yes No 
wD478A Preferentially Dimeric Yes No 
wAKAK Potentially impacts lipid 

binding 
Yes No 

wKEKE Potentially impacts lipid 
binding 

Yes Yes 

  

!"#$%&F151&7L4":+&'(&L9+"+0'*,&'*&+3%&"*+0/0."$&":+0/0+C&'(&J2-&"N"0*,+&

0*($9%*A"&-&/0.9,1&&8N4!"2;-<1!=,!1N4!-,1"#"A-.!-<1"#"1J!C=A!4-<N!231-,1!;=*1M
;A"2-AJ!1A-,*<A";1"=,!Z-*!-**4**45!-+-",*1!-,!KLM*4,*"1"#4!-#"-,!)B!CA=2!!
Ea8N-".-,5a$XV-,M$YaI7!-,5!1N4!"2;-<1!=C!1N4*4!231-1"=,*!",!1N4!;A4*4,<4!=C!
'()!Z-*!-**4**45!#"-!;.-b34!A453<1"=,!-**-J%!



! F%!U"*<3**"=,!

! &&R!

context of influenza virus infection. Therefore to determine whether these mutations 

have an impact in vivo it may be necessary to introduce this mutation into an animal 

model. There are currently transgenic mouse models that constitutively express 

human MxA instead of murine Mx1 (Hefti et al. 1999). The human SNPs described 

by Duc et al. (2002) could be introduced into the MxA gene of these transgenic mice 

and following virus challenge the effects of wt and mutant MxA on animal survival 

could be determined. This can also be assessed in the absence of IFN as MxA-

expressing mice have previously been crossed with mice that do not express the IFN-

!/" receptor (Hefti et al. 1999). Therefore, it would be possible to determine whether 

this mutation also causes a disadvantage for the host following post-primary 

transcription during challenge with influenza A virus. 

 

As described previously, MxA has a wide range of antiviral targets and appears to 

have different mechanisms of antiviral activity for a number of different viruses, 

whether it is through a direct interaction such as with THOV RNPs or via 

sequestering an important part of the virus replication machinery such as the isolation 

of LACV N away from viral replication centres (G Kochs and Haller 1999; Georg 

Kochs, Janzen, et al. 2002). More recently a region in the L4 loop of MxA was 

determined to be necessary for antiviral activity against bunyaviruses (Patzina, Haller, 

and Kochs 2014). MxA therefore has a variety of antiviral mechanisms to inhibit a 

wide range of viruses. Therefore it would be interesting to determine which functional 

characteristics of MxA are required for the antiviral activity against other viruses 

through infection of constitutive expressing cell lines. 
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IFN induced MxA expression appears to have a very distinct expression phenotype, 

co-localising to the perinuclear regions, likely to ER membranes, and to the plasma 

membrane (Fig 5.7). This suggests that MxA may be positioned at the plasma 

membrane in order to quickly localise to any incoming endosomes whilst the cell is in 

an antiviral state. One method well suited to determine the localization and protein 

dynamics at the plasma membrane is total internal reflection microscopy (TIRF). 

TIRF allows for the selective illumination of fluorophores, which are close to the 

plasma membrane whilst being able to reduce the level of background fluorescence 

emitted from the rest of the cell. TIRF has been used previously to study the distinct 

dynamics of endosome formation by determining the presence and absence of 

proteins throughout the vesicle forming process (Mattheyses, Simon, and Rappoport 

2010). This suggests that TIRF would be a good candidate to determine whether MxA 

is being recruited directly to endosomes during vesicle formation or later stages of the 

endosomal process. 

 

Section 5.5 attempted to determine whether MxA was recruited to the incoming 

influenza viruses using N-terminally tagged MxA and Rab proteins (Fig 5.11). 

Unfortunately, it was not possible to determine any clear co-localisation events in the 

presence of IFN with a high MOI. This may have been due to the nature of GFP-

fluorescence which emits light almost 80-fold wider than the actual size of the GFP 

molecule itself (Grove 2014). Therefore, to determine whether MxA is localizing with 

incoming endosomes, it may be necessary to use super resolution microscopy. For 

example stimulated emission depletion (STED) microscopy is a confocal technique 

that uses a depletion laser to block the fluorescent emission in the specific area around 
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a discrete spot of 10–100 nm. This block then allows the proteins of interest within 

this area to be assessed in isolation (Schermelleh, Heintzmann, and Leonhardt 2010).  

 

It may also be possible to use Photo-Activated Localization Microscopy (PALM), 

which requires the use of switchable fluorescent proteins such as mEOS or Photo-

Activated GFP (PA-GFP). These tags can be triggered from a dark ‘off’ state into a 

fluorescent ‘on’ state using a specific short wavelength activation laser. This followed 

by illumination with an excitation laser then causes the tagged proteins to emit a 

bright fluorescent signal before a rapid photo-bleaching event. The signals from each 

probe appear randomly and with a high probability of only appearing once, making it 

possible to determine not only molecular localization but also molecular 

stoichiometry (Lee et al. 2012; Puchner et al. 2013). Applying this technology to the 

study of MxA cellular localization would not only identify whether MxA localises to 

early or late endosomes but would also allow the number of MxA molecules present 

to be determined. 

 

7.4 Investigating the antiviral activity of MxA against influenza B virus 

Sections 6.2 and 6.3 investigate the impact of MxA on both influenza A and B 

viruses. Fig 6.3 shows that influenza B virus plaques dropped by approximately 75% 

in the presence of human MxA in comparison to naïve MDCK cells, showing a 

similar level of reduction to that seen by Xiao et al. (2013) when investigating the 

impact of MxA on influenza A virus in the context of A549 cells. This suggests that 

influenza B virus is also susceptible to MxA, like both influenza A and influenza C 

viruses (Marschall et al. 2000). The extent of plaque reduction is similar to that seen 

for A/Udorn/72 in A549-MxA cells. A/Udorn/72 is a virus that contains residues in 
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NP that have been shown to confer a level of MxA resistance compared to the MxA-

sensitive avian influenza viruses. The similarity in plaque reduction observed between 

A/Udorn/72 and influenza B virus in the presence of MxA suggests that although 

influenza B virus replication is reduced in the presence of MxA, the virus may have 

some level of natural resistance to MxA. If this is the case it would not be surprising 

as influenza B viruses are strictly human pathogens that may have evolved resistance 

to MxA over time, whereas MxA has been shown to be more effective against 

zoonotic viruses that cross the species barrier from avian species into humans 

(Zimmermann et al. 2011; Mänz et al. 2013).  

 

However, what was striking was the difference in plaque reduction observed in 

influenza A virus-infected MDCK cells expressing MxA. A near 2-log reduction was 

observed in A/Udorn/72 virus-infected MDCK-MxA cells in comparison to naïve 

MDCK cells, yet only a 75% reduction in plaque number was observed in A549-MxA 

cells (section 5.4 and Xiao et al. (2013)). This is somewhat surprising as A/Udorn/72 

harbours some of the key MxA resistance mutations that were identified by Mänz et 

al. (2013). Therefore such a large difference in susceptibility of the same virus in two 

different cell lines transduced with the same lentivirus construct was unexpected. This 

level of reduction is similar to those observed in MxA-overexpressing murine 3T3 

cells and Vero cells (Pavlovic et al. 1990; Matzinger et al. 2013). This suggests that 

there may be host differences that affect the level of antiviral activity exerted by MxA 

against influenza A virus. This offers more evidence to suggest that the inhibition 

caused by MxA is likely down to an indirect interaction with NP, as a direct 

interaction would likely show similar levels of reduction across a number of different 

cell lines.  
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Influenza A and B virus NP were structurally aligned to establish whether influenza B 

virus NP encoded for any of the resistance mutations previously identified in 

influenza A virus NP (Fig 6.8). This analysis showed that influenza B virus NP did 

appear to have some of the resistance mutations which were present in influenza A 

NP, yet still showed a log-reduction during viral growth kinetics (Fig 6.5 & Fig 6.7) 

The presence of potential resistance mutations at conserved positions within NP was 

unsurprising due to the fact that humans are the natural host of influenza B viruses. 

Due to the susceptibility displayed in the context of viral growth kinetics and plaque 

reduction assay, influenza B/Yamanashi/98 was passaged through MDCK-MxA cells 

until the infectious titre of virus released from naïve MDCK cells and MDCK-MxA 

cells was similar. Following passage 9 the viral NP gene was sequenced to determine 

whether any compensatory mutations had taken place within the gene, resulting in the 

enhanced MxA resistance observed. Unfortunately no differences were found, 

however, resistance mutations may have taken place in another gene segment 

involved in MxA resistance, such as has been shown for the PB2 gene of influenza A 

virus (Turan et al. 2004). However, to determine whether a resistance mutation truly 

conferred resistance to MxA the mutation would need to be individually introduced 

into the wt virus in the absence of any mutations by reverse genetics, and the virus 

then compared to wt virus in viral growth kinetics and plaque reduction assays in both 

naïve MDCK and MDCK-MxA cells. If the mutation was detected in a polymerase 

gene the functional consequence of the mutation could be determined by introducing 

the mutation into the protein expression plasmid used in mini-genome assays and 

assessing differences in polymerase activity in the presence of MxA.  
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7.5 Conclusions 

The aim of this thesis was to investigate the mechanism of antiviral activity of MxA 

against influenza viruses. This study has led to the conclusion that MxA has two 

different mechanisms of antiviral activity, one that is dependent of IFN, at the virus 

entry stage, and one that is independent of IFN post-primary transcription of viral 

mRNAs. The data suggests that the IFN-independent function of MxA may be 

mediated by an indirect interaction between MxA and the influenza virus NP with this 

interaction dependent on a host-derived co-factor. Surprisingly, there is also an 

indication that MxA may have a third mechanism of antiviral activity against 

enveloped viruses by affecting lipid composition, thereby potentially decreasing viral 

infectivity. Although it has not been possible to conclude the specific functions and 

characteristics of MxA required for antiviral activity, it has been possible to determine 

a number of different factors which may be important for antiviral activity. 

Interestingly, it appears that oligomerisation of MxA is not required for MxA to exert 

its antiviral effect post-primary transcription, yet GTPase activity and potentially 

lipid-binding may be essential to the IFN-dependent mechanism of antiviral activity. 

 

 

This work also unexpectedly showed the importance of RNA sequence to the 

translation of MxA. This suggested that previous conclusions in the literature 

regarding the functions and characteristics of MxA required for exerting antiviral 

activity, based on the use of mutant MxA proteins, may be incorrect. The effects of 

mutations in MxA on its antiviral activity reported in these previous studies may not 

be due to the protein sequence or function being affected by the mutations, but are 

likely due to protein aggregation determined by the RNA sequence. This opened up a 
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number of interesting questions about the importance of RNA sequence and structure 

for protein translation and localization, which may have implications for wider fields 

than virology and innate immunity. 

 

The results in chapter 5 have also determined that like other influenza viruses, 

influenza B virus is also susceptible to the antiviral activity of MxA, despite being a 

human-specific pathogen, whilst also separately evolving some of the MxA resistance 

mutations observed in human-derived influenza A viruses. 

 

Overall the data in this thesis has shed light on a number of important aspects of 

MxA’s ability to inhibit influenza virus replication. The data has i) further 

characterised the role of MxA in preventing entry of influenza viruses into the cell; ii) 

provided insights into the requirements of MxA to perform its antiviral activity, such 

as GTPase and lipid-binding abilities; iii) identified natural SNPs as genetic 

determinants of influenza virus susceptibility; iv) identified a role of MxA in altering 

cellular lipid metabolism, thereby potentially offering a third antiviral mechanism; 

and v) characterised the effects of MxA against influenza B viruses for the first time. 

Taken together the data generated during this project has provided new information 

illustrating how the human MxA protein provides potent antiviral activity against 

influenza virus infection. Understanding the molecular basis of how the various 

components of the innate immune system, such as MxA, function against important 

human pathogens is fundamentally important in our efforts to create better long-term 

treatment options for all viral diseases. Furthermore the work has shown that naturally 

occurring defects in MxA may represent genetic determinants of disease. These 

results could from the basis for future studies that could provide significant advances 
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in understanding how genetic defects in innate immunity affect human susceptibility 

not only to influenza viruses, but also to infection by other pathogens. This will have 

significant impacts not only on our efforts for controlling viral infections in general, 

but also for shaping future methods of genetic susceptibility screening and 

vaccination strategies. 
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F7% ("A1N\!E,5A4Z!H%\!-,5!'-,!SA"4A.4J%!&I$&%!e)=,MT-,=,"<-.!8A-,*.-1"=,!",!
:)E!@"A3*4*%g!'(&)*+$%,"-)+.)L&,&%"-)<0%+-+16!R/!XB1!FYh!$/G>i$7IR%!
5="h$I%$IRRa#"A%I%I7&7RRMI%!

F>% ("1D+4A-.5\!V-1N4A",4!E%!&I$$%!e8N4!',14AC4A=,!',53<"Q.4!64,4h!@";4A",%g!
*+$%,"-)+.)H,#&%.&%+,)V)36#+D0,&)J&5&"%2(Q)'(&)9..020"-)*+$%,"-)+.)#(&)
H,#&%,"#0+,"-)?+20&#6).+%)H,#&%.&%+,)",>)36#+D0,&)J&5&"%2(!/$!X$Yh!$/$i/>%!
5="h$I%$IGRa["A%&I$I%I$&F%!

F?% (=5=A\!H%!&I$/%!e8N4!:)E!B=.J24A-*4!=C!',C.34,D-!-!@"A3*h!K4<N-,"*2*!=C!
@"A-.!8A-,*<A";1"=,!-,5!:4;."<-1"=,%g!:2#")<0%+-+102"!>F!X&Yh!$$/i&&%!

FF% (=3<N"4A\!:=,!E%!K%\!@",<4,1!K3,*14A\!E,54A*!_-..4,*14,\!8N4=!K%!
S4*14QA=4A\!0-,54A!]4AC*1\!U4A4P!02"1N\!633*!(%!:"224.DZ--,\!S[cA,!
n.*4,\!-,5!E.Q4A1!U%!K%!H%!n*14AN-3*%!&II>%!eTN-A-<14A"D-1"=,!=C!-!)=#4.!
',C.34,D-!E!@"A3*!]42-++.31",",!03Q1J;4!X]$?Y!nQ1-",45!CA=2!S.-<PM
]4-545!63..*%g!*+$%,"-)+.)<0%+-+16!FR!X>Yh!&G$7i&&%!
5="h$I%$$&Gad@'%FR%>%&G$7M&G&&%&II>%!

FG% (A454A"<P*4,\!SA4,5-!9%\!SA"-,!T%!V4..4A\!d-2"4!(=A,4P\!K"<N-4.!6%!V-1D4\!
-,5!K"<N-4.!6-.4%!&IIG%!eH*1-Q."*N24,1!-,5!K-",14,-,<4!=C!1N4!',,-14!
E,1"#"A-.!:4*;=,*4!1=!_4*1!)".4!@"A3*!',#=.#4*!S=1N!:'6M'!-,5!KUE>!
0"+,-.",+!1NA=3+N!'B0M$%g!*+$%,"-)+.)<0%+-+16!G&!X&Yh!?IRi$?%!
5="h$I%$$&Gad@'%I$/I>MIF%!

FR% (A4,*",+\!8"2=\!T.-35"3*!04"1D\!S[=4A,!]4J,"*<N\!T=A",,-!B-1D",-\!64=A+!
V=<N*\!-,5!O5=!:4"<N.%!&I$$%!eHCC"<"4,1!',C.34,D-!S!@"A3*!BA=;-+-1"=,!534!
1=!U4C"<"4,1!',14AC4A=,M',53<45!E,1"#"A-.!E<1"#"1J!",!KUTV!T4..*%g!<"220,&\!
@-<<",4!84<N,=.=+J!'''h!E5#-,<4*!",!@-<<",4!84<N,=.=+J\!&R!X7$Yh!F$&>i
&R%!5="h$I%$I$?a[%#-<<",4%&I$$%I>%I?R%!

GI% (A4*4\!K%\!6%!V=<N*\!O%!K4"4AMU"414A\!d%!0"4Q.4A\!-,5!n%!]-..4A%!$RR>%!e]32-,!
KLE!BA=14",!',N"Q"1*!8"<PMS=A,4!8N=+=1=!@"A3*!Q31!)=1!UN=A"!@"A3*%g!
*+$%,"-)+.)<0%+-+16!?R!X?Yh!/RI7iR%!

G$% (A"<P4\!8N=2-*\!8=22J!H%!_N"14\!S"-,<-!0<N3.14\!U-,"4.!E%!54!0=3D-!
EA-,N-!@"4"A-\!E5-A*N!UN-A-,\!H5Z-A5!K%!T-2;Q4..\!E.Q4A1=!SA-,5-A"DM
)3z4D\!-,5!(4.";4!U"-DM6A"CC4A=%!&I$7%!eKLS!S",5*!1=!1N4!]'@M$!T=A4!-,5!
BA4#4,1*!1N4!O,<=-1",+!BA=<4**!=C!]'@M$%g!J&#%+K0%+-+16!$$h!?G%!
5="h$I%$$G?aB:HETTHB8M?7>/?F7IG$/F/RG?%!

G&% 6-QA"4.\!6j.*-N\!E*1A"5!]4AZ"+\!-,5!]-,*MU"414A!V.4,P%!&IIG%!e',14A-<1"=,!
=C!B=.J24A-*4!03Q3,"1!BS&!-,5!)B!Z"1N!'2;=A1",!-.;N-$!'*!-!U414A2",-,1!
=C!]=*1!:-,+4!=C!',C.34,D-!E!@"A3*%g!=P+?)="#(+1&,5!7!X&Yh!4$$%!
5="h$I%$/F$a[=3A,-.%;;-1%II7II$$%!

G/% 6-QA"4.\!6j.*-N\!V-A",!V.",+4.\!E,,-!n114\!0Z-,1[4!8N"4.4\!S4,!]35[41D\!
6cPN-,!EA2-,MV-.<4P\!K-A1",-!0-314A\!41!-.%!&I$$%!eU"CC4A4,1"-.!O*4!=C!
'2;=A1",M{!'*=C=A2*!6=#4A,*!T4..!8A=;"*2!-,5!]=*1!E5-;1-1"=,!=C!
',C.34,D-!@"A3*%g!!"#$%&)3+44$,02"#0+,5!&!Xd-,3-AJYh!$>?%!
5="h$I%$I/Ga,<=22*$$>G%!

G7% 6-=\!B3\!K-,34.!E*<-,=\!W-,+!_3\!_",CA"45!S-A<N41\!S-AQ-A-!9%!6-CC,4J\!
8N=2-*!s"..",+4A\!EA142!E%!04A+-,=#\!41!-.%!&I$/%!eTJ<."<!



! G%!:4C4A4,<4*!

! &77!

|6X&f\>fY;EX/f\>fY;}!'*!1N4!K41-D=-,!04<=,5!K4**4,+4A!BA=53<45!QJ!U)EM
E<1"#-145!TJ<."<!6KBMEKB!0J,1N-*4%g!3&--!$>/!X>Yh!$IR7i$$IF%!
5="h$I%$I$?a[%<4..%&I$/%I7%I7?%!

G>% 6-=\!0=,+\!E.4L-,54A!#=,!54A!K-.*Q3A+\!E.4L4[!U"<P\!V-1[-!(-4.Q4A\!63,,-A!
(!0<NAc54A\!n11=!]-..4A\!64=A+!V=<N*\!-,5!n."#4A!U-32P4%!&I$$%!
e01A3<13A4!=C!KJL=#"A3*!:4*"*1-,<4!BA=14",!-!:4#4-.*!',1A-M!-,5!
',14A2=.4<3.-A!U=2-",!',14A-<1"=,*!:4b3"A45!C=A!1N4!E,1"#"A-.!(3,<1"=,%g!
H44$,0#6!/>!X7Yh!>$7i&>%!5="h$I%$I$?a[%"223,"%&I$$%IF%I$&%!

G?% 6-=\!0=,+\!E.4L-,54A!#=,!54A!K-.*Q3A+\!03*-,,!B-4*<NP4\!d=-<N"2!S4N.P4\!
n11=!]-..4A\!64=A+!V=<N*\!-,5!n."#4A!U-32P4%!&I$I%!e01A3<13A-.!S-*"*!=C!
n."+=24A"D-1"=,!",!1N4!01-.P!:4+"=,!=C!UJ,-2",M."P4!KLE%g!!"#$%&!7?>!
XF&RFYh!>I&i?%!5="h$I%$I/Ga,-13A4IGRF&%!

GF% 6-A<o-M0-*1A4\!E\!E!H+=A=#\!U!K-1-**=#\!0!SA-,51\!U!H!94#J\!d!H!U3AQ",\!B!
B-.4*4\!-,5!8!K3*14A%!$RRG%!e',C.34,D-!E!@"A3*!9-<P",+!1N4!)0$!64,4!
:4;."<-14*!",!',14AC4A=,MU4C"<"4,1!0J*142*%g!<0%+-+16!&>&!X&Yh!/&7i/I%!

GG% 6-*1-2",D-\!B-Q.=\!S4-1A"D!B4A-.4*\!E,-!K%!(-.<p,\!-,5!d3-,!nA1o,%!&II/%!
eK31-1"=,*!",!1N4!)M84A2",-.!:4+"=,!=C!',C.34,D-!@"A3*!BS&!BA=14",!ECC4<1!
@"A3*!:)E!:4;."<-1"=,!Q31!)=1!8A-,*<A";1"=,%g!*+$%,"-)+.)<0%+-+16!FF!XRYh!
>IRGi>$IG%!

GR% 6-#-DD"\!TJA"..4\!K-11N"43!W#4A\!T-1N4A",4!'*4.\!:452=,5!B%!02J1N\!K-,34.!
:=*-MT-.-1A-#-\!SA3,=!9",-\!@",<4,1!K=3.~*\!-,5!:=.-,5!K-Ab341%!&I$/%!
eE!(3,<1"=,-.!04b34,<4M0;4<"C"<!',14A-<1"=,!Q41Z44,!',C.34,D-!E!@"A3*!
64,=2"<!:)E!04+24,1*%g!=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)?20&,2&5)
+.)#(&)@,0#&>)?#"#&5)+.):4&%02"!$$I!X7$Yh!$??I7iR%!
5="h$I%$IF/a;,-*%$/$77$R$$I%!

RI% 64AQ4A\!K-A"4\!T-1N4A",4!'*4.\!@",<4,1!K=3.4*\!-,5!:=.-,5!K-Ab341%!&I$7%!
e04.4<1"#4!B-<P-+",+!=C!1N4!',C.34,D-!E!64,=24!-,5!T=,*4b34,<4*!C=A!
64,41"<!:4-**=A124,1%g!'%&,>5)0,)802%+I0+-+16!&&!XGYh!77?i>>%!
5="h$I%$I$?a[%1"2%&I$7%I7%II$%!

R$% 64A."4A\!U4,"*\!-,5!U=3+.-*!0!9J.4*%!&I$$%!e',14A;.-J!Q41Z44,!',,-14!
'223,"1J!-,5!)4+-1"#4M01A-,5!:)E!@"A3*4*h!8=Z-A5*!-!:-1"=,-.!K=54.%g!
802%+I0+-+16)",>)8+-&2$-"%)/0+-+16)J&K0&B5Q)88/J!F>!X/Yh!7?GiRI\!
*4<=,5!;-+4!=C!1-Q.4!=C!<=,14,1*%!5="h$I%$$&GaKKS:%IIIIFM$$%!

R&% 641"4MV4Q1"4\!K4.P-23\!'*NA-1!03.1-,-\!K-AJ,-!H"<N4.Q4A+4A\!-,5!K"<N-".!
E.14A2-,%!&I$/%!e9-Q4.M(A44!K-**!0;4<1A=241AJMS-*45!w3-,1"C"<-1"=,!=C!
]42-++.31",",!-,5!)43A-2","5-*4!",!',C.34,D-!@"A3*!BA4;-A-1"=,*!-,5!
@-<<",4*%g!H,.-$&,W")",>)9#(&%)J&5;0%"#+%6)<0%$5&5!F!X7Yh!>&$i/I%!
5="h$I%$$$$a"A#%$&II$%!

R/% 6"1.",\!94=,"5\!_",CA"45!S-A<N41\!03*-,!6".C"..-,\!K-A",-!T4..-\!SA3<4!
S431.4A\!:"<N-A5!E!(.-#4..\!K"<N-4.!0!U"-2=,5\!-,5!K-A<=!T=.=,,-%!&II?%!
eH**4,1"-.!:=.4!=C!K5-M>!",!8J;4!'!'()!:4*;=,*4*!1=!
B=.JA"Q=",=*","<h;=.JA"Q=<J1"5J."<!E<"5!-,5!H,<4;N-.=2J=<-A5"1"*!
B"<=A,-#"A3*%g!=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)?20&,2&5)+.)#(&)
@,0#&>)?#"#&5)+.):4&%02"!$I/!X&&Yh!G7>Ri?7%!
5="h$I%$IF/a;,-*%I?I/IG&$I/%!

R7% 6p24DMB34A1-*\!B%\!T%!E.Q=\!H%!BqA4DMB-*1A-,-\!E%!@"#=\!-,5!E%!B=A14.-%!
&III%!e',C.34,D-!@"A3*!K-1A"L!BA=14",!'*!1N4!K-[=A!UA"#",+!(=A<4!",!@"A3*!
S355",+%g!*+$%,"-)+.)<0%+-+16!F7!X&7Yh!$$>/Gi7F%!



! G%!:4C4A4,<4*!

! &7>!

R>% 6=,D�.4D\!0%\!-,5!d%!nA1o,%!$RRR-%!eTN-A-<14A"D-1"=,!=C!',C.34,D-!@"A3*!BS$!
BA=14",!S",5",+!1=!@"A-.!:)Eh!8Z=!04;-A-14!:4+"=,*!=C!1N4!BA=14",!
T=,1A"Q314!1=!1N4!',14A-<1"=,!U=2-",%g!*+$%,"-)+.)<0%+-+16!F/!X$Yh!?/$i/F%!

R?% xxx%!$RRRQ%!eU"*1",<1!:4+"=,*!=C!',C.34,D-!@"A3*!BS$!B=.J24A-*4!
03Q3,"1!:4<=+,"D4!#:)E!-,5!<:)E!842;.-14*%g!'(&)78/9)*+$%,"-!$G!
X$/Yh!/F?FiF>%!5="h$I%$IR/a42Q=[a$G%$/%/F?F%!

RF% 6=,D�.4D\!0%\!8%!sjA<N4A\!-,5!d%!nA1o,%!$RR?%!e'54,1"C"<-1"=,!=C!8Z=!04;-A-14!
U=2-",*!",!1N4!',C.34,D-!@"A3*!BS$!BA=14",!',#=.#45!",!1N4!',14A-<1"=,!
Z"1N!1N4!BS&!-,5!BE!03Q3,"1*h!E!K=54.!C=A!1N4!@"A-.!:)E!B=.J24A-*4!
01A3<13A4%g!!$2-&02):20>5)J&5&"%2(!&7!X&&Yh!77>?i?/%!

RG% 6==5Q=3A,\!0%\!9%!U"5<=<P\!-,5!:%!H%!:-,5-..%!&III%!e',14AC4A=,*h!T4..!
0"+,-..",+\!'223,4!K=53.-1"=,\!E,1"#"A-.!:4*;=,*4!-,5!@"A3*!
T=3,14A24-*3A4*%g!*+$%,"-)+.)L&,&%"-)<0%+-+16!G$!X$IYh!&/7$i?7%!

RR% 6=A-"\!8-P4=\!]"54=!6=1=\!8-P4*N"!)=5-\!8=P"P=!_-1-,-Q4\!]"A=P=!
V=D3P-M]-1-\!K-*--P"!nJ-2-\!:J=!8-P-,=\!6-QA"4.4!)432-,,\!0N",["!
_-1-,-Q4\!-,5!W=*N"N"A=!V-Z-=P-%!&I$&%!e($(=ME8B-*4\!(M8J;4!BA=1=,M
8A-,*.=<-1",+!E8B-*4\!-1!1N4!B.-*2-!K42QA-,4!'*!TA"1"<-.!C=A!HCC"<"4,1!
',C.34,D-!@"A3*!S355",+%g!=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)?20&,2&5)
+.)#(&)@,0#&>)?#"#&5)+.):4&%02"!$IR!X$&Yh!7?$>i&I%!
5="h$I%$IF/a;,-*%$$$7F&G$IR%!

$II% 6=A5"4,\!H\!n!:=*2=A53<\!T!B4.14P"-,\!(!6-AA4-3\!T!SAq<N=1\!-,5!U!
VA42*5=AC%!&II$%!e',N"Q"1"=,!=C!]4;-1"1"*!S!@"A3*!:4;."<-1"=,!QJ!1N4!
',14AC4A=,M',53<"Q.4!KLE!BA=14",%g!*+$%,"-)+.)<0%+-+16!F>!X?Yh!&?G7iR$%!
5="h$I%$$&Gad@'%F>%?%&?G7M&?R$%&II$%!

$I$% 6=3[=,\!T-A=.",4\!n."#"4A!K=,<=A+q\!]q.~,4!S-3QJ\!8=2-*!U=J.4\!
_4,5J!0%!S-A<.-J\!-,5!K"<N-4.!]%!K-."2%!&I$7%!e8A-,*C4A!=C!1N4!E2",=M
84A2",-.!)3<.4-A!H,#4.=;4!8-A+41",+!U=2-",!=C!]32-,!Ku&!T=,#4A1*!
Ku$!",1=!-,!]'@M$!:4*"*1-,<4!(-<1=A%g!*+$%,"-)+.)<0%+-+16!GG!X$?Yh!RI$Fi
&?%!5="h$I%$$&Gad@'%I$&?RM$7%!

$I&% 6=3[=,\!T-A=.",4\!n."#"4A!K=,<=A+q\!]q.~,4!S-3QJ\!8=2-*!U=J.4\!
TNA"*1=;N4A!T%!_-A5\!8=A*14,!0<N-..4A\!01q;N-,4!]3q\!_4,5J!0%!S-A<.-J\!
:4",4A!0<N3.D\!-,5!K"<N-4.!]%!K-."2%!&I$/%!e]32-,!Ku&!'*!-,!',14AC4A=,M
',53<45!B=*1MH,1AJ!',N"Q"1=A!=C!]'@M$!',C4<1"=,%g!!"#$%&!>I&!XF7F&Yh!
>>Ri?&%!5="h$I%$I/Ga,-13A4$&>7&%!

$I/% 6A-4C\!V-1J!K\!(A-,P!8!@A4454\!W3PM(-"!9-3\!E2Q4A!_!K<T-..\!
0"2=,!K!T-AA\!V-,1-!03QQ-A-=\!-,5!HA#",!(=5=A%!&I$I%!e8N4!BS&!03Q3,"1!
=C!1N4!',C.34,D-!@"A3*!:)E!B=.J24A-*4!ECC4<1*!@"A3.4,<4!QJ!',14A-<1",+!
Z"1N!1N4!K"1=<N=,5A"-.!E,1"#"A-.!0"+,-.",+!BA=14",!-,5!',N"Q"1",+!
HL;A4**"=,!=C!S41-!',14AC4A=,%g!*+$%,"-)+.)<0%+-+16!G7!X$FYh!G7//i7>%!
5="h$I%$$&Gad@'%IIGFRM$I%!

$I7% 6A=#4\!d=4%!&I$7%!e03;4AM:4*=.31"=,!K"<A=*<=;Jh!E!@"A3*t!HJ4!@"4Z!
=C!1N4!T4..%g!<0%$5&5!?!X/Yh!$/?>iFG%!5="h$I%//RIa#?I/$/?>%!

$I>% ]-.4\!S4,[-2",!6\!:-,5J!E!E.QA4<N1\!-,5!E5=.C=!6-A<o-M0-*1A4%!
&I$I%!e',,-14!'223,4!H#-*"=,!01A-14+"4*!=C!',C.34,D-!@"A3*4*%g!X$#$%&)
802%+I0+-+16!>!X$Yh!&/i7$%!5="h$I%&&$FaC2Q%IR%$IG%!

$I?% ]-.4\!S4,[-2",!6\!:"<N-A5!H!:-,5-..\!d3-,!nA1o,\!-,5!U-#"5!d-<P*=,%!
&IIG%!e8N4!K3.1"C3,<1"=,-.!)0$!BA=14",!=C!',C.34,D-!E!@"A3*4*%g!'(&)
*+$%,"-)+.)L&,&%"-)<0%+-+16!GR!XB1!$IYh!&/>RiF?%!
5="h$I%$IRRa#"A%I%&IIGaII7?I?MI%!



! G%!:4C4A4,<4*!

! &7?!

$IF% ]-..4A\!n\!K!(A4*4\!U!:=*1\!B!E!)311-..\!-,5!6!V=<N*%!$RR>%!e8"<PM
S=A,4!8N=+=1=!@"A3*!',C4<1"=,!",!K"<4!'*!',N"Q"145!QJ!1N4!nA1N=2JL=#"A3*!
:4*"*1-,<4!64,4!BA=53<1!KL$%g!*+$%,"-)+.)<0%+-+16!?R!X7Yh!&>R?i&?I$%!

$IG% ]-..4A\!n11=\!0=,+!6-=\!E.4L-,54A!#=,!54A!K-.*Q3A+\!n."#4A!
U-32P4\!-,5!64=A+!V=<N*%!&I$I%!eUJ,-2",M."P4!KLE!68B-*4h!01A3<13A-.!
',*"+N1*!",1=!n."+=24A"D-1"=,!-,5!'2;."<-1"=,*!C=A!E,1"#"A-.!E<1"#"1J%g!'(&)
*+$%,"-)+.)/0+-+102"-)3(&405#%6!&G>!X/FYh!&G7$Ri&7%!
5="h$I%$IF7a[Q<%:$$I%$7>G/R%!

$IR% ]-..4A\!n11=\!0".P4!014A1D\!-,5!64=A+!V=<N*%!&IIF%!e8N4!KL!68B-*4!
(-2".J!=C!',14AC4A=,M',53<45!E,1"#"A-.!BA=14",*%g!802%+I&5)",>)H,.&2#0+,!R!
X$7i$>Yh!$?/?i7/%!5="h$I%$I$?a[%2"<",C%&IIF%IR%I$I%!

$$I% ]-2-,=\!H2"\!K",-P=!]"["P-1-\!0-1=A3!'1=J-2-\!8A-,!w3J\!)+3J4,!
TN"!BN"\!]=-,+!8N3J!9=,+\!94!U-,+!]-\!41!-.%!&II>%!eB=.J2=A;N"*2*!=C!
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3+44$,02"#0+,5!77/!X$Yh!&R?i/II%!5="h$I%$I$?a[%QQA<%&I$/%$$%$II%!

$7R% d4,*4,\!',+#"..\!EA13A!E.Q3b34Ab34\!E,,M',+4A!0=224A\!-,5!SkAA4!
:=Q4A1*4,%!&II&%!eHCC4<1!=C!B=.J!'hT!=,!1N4!HL;A4**"=,!=C!KL!BA=14",*!-,5!
:4*"*1-,<4!-+-",*1!',C4<1"=,!QJ!',C4<1"=3*!0-.2=,!E,-42"-!@"A3*!",!
E1.-,1"<!0-.2=,%g!X05()V)?(&--.05()H44$,+-+16!$/!X7Yh!/$$i&?%!

$>I% d"-\!:3"\!w",+N3-!B-,\!0N".4"!U",+\!9"Z4"!:=,+\!0N-,M93!9"3\!W3,b"!
64,+\!_4,1-=!w"-=\!-,5!TN4,!9"-,+%!&I$&%!e8N4!)M84A2",-.!:4+"=,!=C!
'('8K/!K=53.-14*!'1*!E,1"#"A-.!E<1"#"1J!QJ!:4+3.-1",+!'('8K/!T4..3.-A!
9=<-."D-1"=,%g!*+$%,"-)+.)<0%+-+16!G?!X&7Yh!$/?RFiFIF%!
5="h$I%$$&Gad@'%I$G&GM$&%!

$>$% d"-\!:3"\!(4,+Z4,!u3\!d",!w"-,\!W3,C-,+!W-=\!TN3,N3"!K"-=\!W"MK",!
sN4,+\!0N-,M93!9"3\!41!-.%!&I$7%!e'54,1"C"<-1"=,!=C!-,!H,5=<J1"<!0"+,-.!
H**4,1"-.!C=A!1N4!E,1"#"A-.!E<1"=,!=C!'('8K/%g!3&--$-"%)802%+I0+-+16!$?!XFYh!
$IGIiR/%!5="h$I%$$$$a<2"%$&&?&%!

$>&% d"-\!u"-=C4"\!w"!sN-=\!-,5!W=,+!u"=,+%!&I$>%!e]'@!03;;A4**"=,!QJ!
]=*1!:4*1A"<1"=,!(-<1=A*!-,5!@"A-.!'223,4!H#-*"=,%g!3$%%&,#)9;0,0+,)0,)
?#%$2#$%"-)/0+-+16!/$!XE;A".Yh!$I?i$7%!5="h$I%$I$?a[%*Q"%&I$>%I7%II7%!

$>/% d",\!]%!V%\!E%!8-P-5-\!W%!V=,\!n%!]-..4A\!-,5!8%!_-1-,-Q4%!$RRR%!
e'54,1"C"<-1"=,!=C!1N4!K3A",4!KL&!64,4h!',14AC4A=,M',53<45!HL;A4**"=,!=C!
1N4!KL&!BA=14",!CA=2!1N4!(4A-.!K=3*4!64,4!T=,C4A*!:4*"*1-,<4!1=!
@4*"<3.-A!01=2-1"1"*!@"A3*%g!*+$%,"-)+.)<0%+-+16!F/!X?Yh!7R&>i/I%!

$>7% d",\!]%!V%\!V%!W=*N"2-1*3\!E%!8-P-5-\!K%!n+",=\!E%!E*-,=\!d%!EA"P-Z-\!
-,5!8%!_-1-,-Q4%!&II$%!eK=3*4!KL&!BA=14",!',N"Q"1*!]-,1-#"A3*!Q31!)=1!
',C.34,D-!@"A3*!:4;."<-1"=,%g!:%2(0K&5)+.)<0%+-+16!$7?!X$Yh!7$i7R%!



! G%!:4C4A4,<4*!

! &>I!

$>>% V-,4\!K4."**-\!0N-.","!0%!W-5-#\!d3."-!S"1D4+4"=\!04Q.-!S%!V31.3-J\!
8A","1J!s-,+\!0-2!d%!_".*=,\!d=N,!_%!0<N=++",*\!41!-.%!&I$/%!eKu&!'*!-,!
',14AC4A=,M',53<45!',N"Q"1=A!=C!]'@M$!',C4<1"=,%g!!"#$%&!>I&!XF7F&Yh!>?/i
??%!5="h$I%$I/Ga,-13A4$&?>/%!

$>?% V-,,4+-,1"\!8N"A32-.-MU4#"\!K-1N".54!S=5JMK-.-;4.\!E2-.!E24A\!
d=,+M]Z-,!B-AP\!d=4.!_N"1C"4.5\!93"+"!(A-,<N"\!s4,=Q"-!(!8-A-;=A4Z-.-\!41!
-.%!&II?%!eTA"1"<-.!:=.4!C=A!TAJ=;JA",a)-.;/!",!E<1"#-1"=,!=C!T-*;-*4M$!",!
:4*;=,*4!1=!@"A-.!',C4<1"=,!-,5!U=3Q.4M01A-,545!:)E%g!'(&)*+$%,"-)+.)
/0+-+102"-)3(&405#%6!&G$!X7GYh!/?>?Ii?G%!5="h$I%$IF7a[Q<%K?IF>R7&II%!

$>F% V-1=\!]"A=P"\!n*-23!8-P43<N"\!HA"P=!K"P-2=M0-1=N\!:4"P=!]"A-"\!
8=2=["!V-Z-"\!V-D3C32"!K-1*3*N"1-\!EP-,4!]""A-+"\!84A4,<4!0%!U4A2=5J\!
8-P-*N"!(3["1-\!-,5!0N"D3=!EP"A-%!&IIG%!e94,+1NMU4;4,54,1!:4<=+,"1"=,!=C!
U=3Q.4M01A-,545!:"Q=,3<.4"<!E<"5*!QJ!:41",="<!E<"5M',53<"Q.4!64,4M'!-,5!
K4.-,=2-!U"CC4A4,1"-1"=,ME**=<"-145!64,4!>%g!'(&)*+$%,"-)+.)7N;&%04&,#"-)
8&>020,&!&I>!XFYh!$?I$i$I%!5="h$I%$IG7a[42%&IIGIIR$%!

$>G% V-1=\!]"A=P"\!n*-23!8-P43<N"\!0N",1-A=!0-1=\!K"1*31=*N"!
W=,4J-2-\!K-*-N"A=!W-2-2=1=\!V=*3P4!K-1*3"\!0-1=*N"!O42-1*3\!41!-.%!
&II?%!eU"CC4A4,1"-.!:=.4*!=C!KUE>!-,5!:'6M'!]4."<-*4*!",!1N4!:4<=+,"1"=,!
=C!:)E!@"A3*4*%g!!"#$%&!77$!XFIGRYh!$I$i>%!5="h$I%$I/Ga,-13A4I7F/7%!

$>R% V-1D\!6-AA411\!W=3,4*!S4,P-AA=32\!]3"!_4"\!_".."-2!d%!:"<4\!U=A"*!
S3<N4A\!E.4L-,5A-!E."2=#-\!E.!V-1D\!d=-,,-!V.3P=Z*P-\!6-Q=A!8%!]4A2-,\!
-,5!B-3.!6=11."4Q%!&I$7%!eK=A;N=.=+J!=C!',C.34,D-!Sa944a7I!U414A2",45!
QJ!TAJ=MH.4<1A=,!K"<A=*<=;J%g!=P+?)9!7!R!X&Yh!4GG&GG%!
5="h$I%$/F$a[=3A,-.%;=,4%IIGG&GG%!

$?I% V".Q=3A,4\!H%!U%\!_%!6%!9-#4A\!d%!9%!0<N3.2-,\!-,5!:%!6%!_4Q*14A%!
$R?G%!eE,1"#"A-.!E<1"#"1J!=C!E,1"*4A32!0;4<"C"<!C=A!-,!',C.34,D-!@"A3*!
)43A-2","5-*4%g!*+$%,"-)+.)<0%+-+16!&!X7Yh!&G$iGG%!

$?$% V"2\!S-4M]==,\!E#",-*N!:!0N4,=J\!BA-544;!V32-A\!T.",1=,!d!
SA-5C"4.5\!-,5!d=N,!U!K-<K"<P",+%!&I$&%!e'()M',53<"Q.4!68B-*4*!",!]=*1!
T4..!U4C4,*4%g!3&--)O+5#)V)802%+I&!$&!X7Yh!7/&i77%!
5="h$I%$I$?a[%<N=2%&I$&%IR%IIF%!

$?&% V"2\!S-4M]==,\!E#",-*N!:!0N4,=J\!BA-544;!V32-A\!:"13;-A,-!U-*\!
0-,+441-!8"Z-A"\!-,5!d=N,!U!K-<K"<P",+%!&I$$%!eE!(-2".J!=C!'()MÄM
',53<"Q.4!?>MPU!68B-*4*!BA=14<1*!-+-",*1!S-<14A"-.!',C4<1"=,%g!?20&,2&)
A!&B)C+%DE)!FCFG!//&!X?I/IYh!F$Fi&$%!5="h$I%$$&?a*<"4,<4%$&I$F$$%!

$?/% V"2<N"M0-AC-1J\!TN-#-\!d3,+!K"!nN\!',M_N-!V"2\!s3Q4,!H%!0-3,-\!
E,,-!K-A"-!T-.<-+,=\!03A4*N!@%!E2Q35P-A\!-,5!K"<N-4.!K%!6=114*2-,%!
&IIF%!eE!Å0".4,1t!B=.J2=A;N"*2!",!1N4!KU:$!64,4!TN-,+4*!03Q*1A-14!
0;4<"C"<"1J%g!?20&,2&)A!&B)C+%DE)!FCFG!/$>!X>G$$Yh!>&>i&G%!
5="h$I%$$&?a*<"4,<4%$$/>/IG%!

$?7% V",+\!K4+-,!T\!6A-v-!:-;=*=\!-,5!K-AP!E!9422=,%!&II7%!
e',N"Q"1"=,!=C!)3<.4-A!'2;=A1!-,5!T4..MTJ<.4!BA=+A4**"=,!QJ!K31-145!
(=A2*!=C!1N4!UJ,-2",M."P4!68B-*4!KLS%g!=%+2&&>0,15)+.)#(&)!"#0+,"-)
:2">&46)+.)?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.):4&%02"!$I$!X&7Yh!GR>Fi?&%!
5="h$I%$IF/a;,-*%I7I/$?F$I$%!

$?>% V=<N*\!64=A+\!K-AP3*!]-4,4A\!O4."!E4Q"\!-,5!n11=!]-..4A%!&II&%!
e04.CME**42Q.J!=C!]32-,!KLE!68B-*4!",1=!]"+N.J!nA54A45!UJ,-2",M."P4!
n."+=24A*%g!'(&)*+$%,"-)+.)/0+-+102"-)3(&405#%6!&FF!X$?Yh!$7$F&iF?%!
5="h$I%$IF7a[Q<%K&II&77&II%!



! G%!:4C4A4,<4*!

! &>$!

$??% V=<N*\!64=A+\!TNA"*1"-,!d-,D4,\!]4",D!]=N4,Q4A+\!-,5!n11=!]-..4A%!
&II&%!eE,1"#"A-..J!E<1"#4!KLE!BA=14",!04b34*14A*!9-!TA=**4!@"A3*!
)3<.4=<-;*"5!BA=14",!",1=!B4A",3<.4-A!T=2;.4L4*%g!=%+2&&>0,15)+.)#(&)
!"#0+,"-):2">&46)+.)?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.):4&%02"!RR!X>Yh!/$>/i
>G%!5="h$I%$IF/a;,-*%I>&7/I/RR%!

$?F% V=<N*\!6\!-,5!n!]-..4A%!$RRR%!e',14AC4A=,M',53<45!]32-,!KLE!
68B-*4!S.=<P*!)3<.4-A!'2;=A1!=C!8N=+=1=!@"A3*!)3<.4=<-;*"5*%g!
=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.)
:4&%02"!R?!X>Yh!&IG&iG?%!

$?G% V=23A=\!EP"N"P=\!-,5!T3A1!K%!]=A#-1N%!&II?%!e:)EM!-,5!@"A3*M
',54;4,54,1!',N"Q"1"=,!=C!E,1"#"A-.!0"+,-.",+!QJ!:)E!]4."<-*4!96B&%g!
*+$%,"-)+.)<0%+-+16!GI!X&7Yh!$&//&i7&%!5="h$I%$$&Gad@'%I$/&>MI?%!

$?R% VA4**4\!E.4L-,5A-\!T-A=.",!V=,4A2-,,\!U-,"4.!U4+A-,5"\!T=A,4."-!
S4314AM63,"-\!d-,!_34A1N,4A\!V.-3*!BC4CC4A\!-,5!0-,5A-!S44A%!&IIG%!
eE,-.J*4*!=C!K3A",4!6SB!]=2=.=+J!T.3*14A*!S-*45!=,!",!0"."<=\!",!@"1A=!
-,5!",!@"#=!0135"4*%g!/83)L&,+4025!Rh!$>G%!5="h$I%$$G?a$7F$M&$?7MRM
$>G%!

$FI% VA3+\!:=Q4A1!K%\!-,5!E5=.C=!6-A<o-M0-*1A4%!&I$/%!e8N4!)0$!BA=14",h!
E!K-*14A!:4+3.-1=A!=C!]=*1!-,5!@"A-.!(3,<1"=,*%g!',!'&N#I++D)+.)H,.-$&,W"\!
45"145!QJ!:=Q4A1!6%!_4Q*14A!(:0\!EA,=.5!0%!K=,1=!KU\!8N=2-*!d%!SA-<"-.4!
KU\!-,5!:=Q4A1!E%!9-2Q!0<U\!$$7i/&%!d=N,!_".4J!Ç!0=,*\!915%!
N11;haa=,.",4."QA-AJ%Z".4J%<=2a5="a$I%$II&aRFG$$$G?/?G$F%<NFa*32
2-AJ%!

$F$% VA32QN=.D\!E,5"\!E,[-!BN".";;*\!]-A1231!n4NA",+\!V-1[-!
0<NZ-AD4A\!E,,411!H"1,4A\!B414A!_31D.4A\!-,5!:=.-,5!s4..%!&I$$%!eT3AA4,1!
V,=Z.45+4!=,!BS$M(&!=C!',C.34,D-!E!@"A3*4*%g!8&>02"-)802%+I0+-+16)",>)
H44$,+-+16!&II!X&Yh!?RiF>%!5="h$I%$IIFa*II7/IMI$IMI$F?MG%!

$F&% 9-"\!W"<N4,\!:=Q4A1!_%!]"<P4J\!W-2",+!TN4,\!]j.J-!S-JÉ|",=5=1}ÉA\!
K-A-!9%!03.."#-,\!TN-A.44,!8%!TN3\!B-1A"<P!K%!V=<N-,4P\!41!-.%!&IIF%!
eE31=;N-+J!'*!',<A4-*45!-C14A!8A-32-1"<!SA-",!',[3AJ!",!K"<4!-,5!'*!
B-A1"-..J!',N"Q"145!QJ!1N4!E,1"=L"5-,1!ÄM6.31-2J.<J*14",J.!H1NJ.!H*14A%g!
*+$%,"-)+.)3&%&I%"-)/-++>)X-+B)V)8&#"I+-054!&G!X/Yh!>7Ii>I%!
5="h$I%$I/Ga*[%[<QC2%R?II>>$%!

$F/% 9-P5-Z-.-\!0442-!0%\!H.-",4!_%!9-2"A-,54\!E2=A*=.=!9%!03+3"1-,\!
_4"["-!_-,+\!T4."-!B%!0-,1=*\!94-1A"<4!@=+4.\!W32"P=!K-1*3=P-\!_".."-2!6%!
9",5*.4J\!]=,+!d",\!-,5!V-,1-!03QQ-A-=%!&I$$%!eH3A-*"-,MnA"+",!64,4!
04+24,1*!T=,1A"Q314!1=!1N4!8A-,*2"**"Q"."1J\!E4A=*=.!:4.4-*4\!-,5!
K=A;N=.=+J!=C!1N4!&IIR!B-,542"<!]$)$!',C.34,D-!@"A3*%g!=P+?)="#(+1&,5!
F!X$&Yh!4$II&77/%!5="h$I%$/F$a[=3A,-.%;;-1%$II&77/%!

$F7% 9-P5-Z-.-\!0442-!0%\!W"<=,+!_3\!B414A!_-ZAD3*",\!d3A-[!V-Q-1\!
E,5A4Z!d%!SA=-5Q4,1\!H.-",4!_%!9-2"A-,54\!HA#",!(=5=A\!)"N-.!E.1-,M
S=,,41\!]-A"!0NA=CC\!-,5!V-,1-!03QQ-A-=%!&I$7%!e',C.34,D-!-!@"A3*!
E**42Q.J!',14A245"-14*!(3*4!",!1N4!TJ1=;.-*2%g!=P+?)="#(+1&,5!$I!X/Yh!
4$II/RF$%!5="h$I%$/F$a[=3A,-.%;;-1%$II/RF$%!

$F>% 9-2Q\!:%!E%\!-,5!T%!d%!9-"%!$RGI%!e04b34,<4!=C!',14AA3;145!-,5!
O,",14AA3;145!2:)E*!-,5!T.=,45!U)E!T=5",+!C=A!1N4!8Z=!n#4A.-;;",+!
)=,*1A3<13A-.!BA=14",*!=C!',C.34,D-!@"A3*%g!3&--!&$!X&Yh!7F>iG>%!

$F?% 9-,54A-*MS34,=\!0-A-\!)ÑA"-!d=AQ-\!K-"14!BqA4DMT"5=,<N-\!-,5!
d3-,!nA1o,%!&I$$%!e8N4!0;."<",+!(-<1=A!BA=.",4M6.31-2",4!:"<N!X0(BwaB0(Y!



! G%!:4C4A4,<4*!

! &>&!

'*!',#=.#45!",!',C.34,D-!@"A3*!8A-,*<A";1"=,%g!=P+?)="#(+1&,5!F!X$$Yh!
4$II&/RF%!5="h$I%$/F$a[=3A,-.%;;-1%$II&/RF%!

$FF% 9-A*4,\!:-,,#4"+\!8=A3,,!B%!:kP4,4*\!-,5!SkAA4!:=Q4A1*4,%!&II7%!
e',N"Q"1"=,!=C!',C4<1"=3*!B-,<A4-1"<!)4<A=*"*!@"A3*!:4;."<-1"=,!QJ!E1.-,1"<!
0-.2=,!KL$!BA=14",%g!*+$%,"-)+.)<0%+-+16!FG!X$>Yh!FR/Gi77%!
5="h$I%$$&Gad@'%FG%$>%FR/GMFR77%&II7%!

$FG% 9-1N-2\!8%\!-,5!d%!K%!6-.-AD-%!&II$%!e(=A2-1"=,!=C!_".5M8J;4!-,5!
TN"24A"<!',C.34,D-!@"A3*M."P4!B-A1"<.4*!(=..=Z",+!0"23.1-,4=3*!
HL;A4**"=,!=C!n,.J!(=3A!01A3<13A-.!BA=14",*%g!*+$%,"-)+.)<0%+-+16!F>!X$/Yh!
?$>7i?>%!5="h$I%$$&Gad@'%F>%$/%?$>7M?$?>%&II$%!

$FR% 944\!0-,+M]J3P\!d-4!W4,!0N",\!E,1=,J!944\!-,5!T-A.=*!S3*1-2-,14%!
&I$&%!eT=3,1",+!0",+.4!BN=1=-<1"#-1-Q.4!(.3=A4*<4,1!K=.4<3.4*!QJ!
BN=1=-<1"#-145!9=<-."D-1"=,!K"<A=*<=;J!XBE9KY%g!=%+2&&>0,15)+.)#(&)
!"#0+,"-):2">&46)+.)?20&,2&5!$IR!X7/Yh!$F7/?i7$%!
5="h$I%$IF/a;,-*%$&$>$F>$IR%!

$GI% 94,*<N=Z\!U4Q=A-N!d\!T-A=.",4!9-"\!)-1-."-!(A"-*M01-N4."\!)-5"-!@!
6"-,,-P=;=3.=*\!E,5A4Z!931D\!8N=A*14,!_=.CC\!E,,-!n*"-P\!41!-.%!&IIF%!
e'()M01"23.-145!64,4!$>!(3,<1"=,*!-*!-!TA"1"<-.!E,1"#"A-.!K=.4<3.4!-+-",*1!
',C.34,D-\!]4A;4*\!-,5!0",5Q"*!@"A3*4*%g!=%+2&&>0,15)+.)#(&)!"#0+,"-)
:2">&46)+.)?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.):4&%02"!$I7!X7Yh!$/F$iF?%!
5="h$I%$IF/a;,-*%I?IFI/G$I7%!

$G$% 9"\!63-,+\!d3J=,+!sN-,+\!W"!03,\!]3-!_-,+\!-,5!W"b3-,!_-,+%!
&IIR%!e8N4!H#=.31"=,-A".J!UJ,-2"<!'()M',53<"Q.4!68B-*4!BA=14",*!B.-J!
T=,*4A#45!'223,4!(3,<1"=,*!",!@4A14QA-14*!-,5!T4;N-.=<N=A5-14*%g!
8+-&2$-"%)/0+-+16)",>)7K+-$#0+,!&?!XFYh!$?$Ri/I%!
5="h$I%$IR/a2=.Q4#a2*;IF7%!

$G&% 9"\!V3"\!H".44,!(=J\!d=*4;N",4!T!(4AA4=,\!K"1*3J-*3!)-P-23A-\!
E..-,!T!K!(4AA4=,\!K-*-,=A"!'P45-\!013-A1!T!:-J\!K"<N-4.!6-.4!dA\!-,5!
01-,.4J!K!942=,%!&II>%!e'223,4!H#-*"=,!QJ!]4;-1"1"*!T!@"A3*!)0/a7E!
BA=14-*4MK45"-145!T.4-#-+4!=C!1N4!8=..M."P4!:4<4;1=A!/!E5-;1=A!BA=14",!
8:'(%g!=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)?20&,2&5)+.)#(&)@,0#&>)?#"#&5)
+.):4&%02"!$I&!XGYh!&RR&iRF%!5="h$I%$IF/a;,-*%I7IGG&7$I&%!

$G/% 9"\!)",+\!94"!sN-,+\!9"-,+Z4"!TN4,\!_4,C4,+!(4,+\!W",C4,+!u3\!(4,+!
TN4,\!u"-=N=,+!9"3\!sN"!TN4,\!-,5!_4"!9"3%!&I$&%!eKLE!',N"Q"1*!]4;-1"1"*!
S!@"A3*!:4;."<-1"=,!QJ!',14A-<1"=,!Z"1N!]4;-1"1"*!S!T=A4!E,1"+4,%g!
O&;"#+-+16)A/"-#04+%&E)8>FG!>?!X/Yh!GI/i$$%!5="h$I%$II&aN4;%&>?IG%!

$G7% 9",\!:4,MdJ4\!S"M9-,!TN-,+\!]-,MB-,+!W3\!TN",+M94,!9"-=\!-,5!W"M
9",+!9",%!&II?%!eS.=<P",+!=C!',14AC4A=,M',53<45!d-PM01-1!0"+,-.",+!QJ!
d-;-,4*4!H,<4;N-."1"*!@"A3*!)0>!1NA=3+N!-!BA=14",!8JA=*",4!BN=*;N-1-*4M
K45"-145!K4<N-,"*2%g!*+$%,"-)+.)<0%+-+16!GI!X$&Yh!>RIGi$G%!
5="h$I%$$&Gad@'%I&F$7MI>%!

$G>% 9",\!:4,MdJ4\!TN",+M94,!9"-=\!H.=,+!9",\!-,5!W"M9",+!9",%!&II7%!
eS.=<P",+!=C!1N4!E.;N-!',14AC4A=,M',53<45!d-PM01-1!0"+,-.",+!B-1NZ-J!QJ!
d-;-,4*4!H,<4;N-."1"*!@"A3*!',C4<1"=,%g!*+$%,"-)+.)<0%+-+16!FG!X$FYh!R&G>i
R7%!5="h$I%$$&Gad@'%FG%$F%R&G>MR&R7%&II7%!

$G?% 9",\!W%!B%\!@%!6A4+=AJ\!K%!S4,,411\!-,5!E%!]-J%!&II7%!e:4<4,1!
TN-,+4*!-2=,+!]32-,!',C.34,D-!@"A3*4*%g!<0%$5)J&5&"%2(!$I/!X$M&Yh!7Fi
>&%!5="h$I%$I$?a[%#"A3*A4*%&II7%I&%I$$%!



! G%!:4C4A4,<4*!

! &>/!

$GF% 9"\!B4"J3-,\!w"-,+!U3\!s=,+L"-,!T-=\!sN=,+!63=\!d=N,!H#-,P=#"<N\!
_4"!W-,\!W",+!TN-,+\!41!-.%!&I$&%!e',14AC4A=,M6-22-!',53<4*!E31=;N-+J!
Z"1N!6A=Z1N!',N"Q"1"=,!-,5!T4..!U4-1N!",!]32-,!]4;-1=<4..3.-A!
T-A<",=2-!X]TTY!T4..*!1NA=3+N!',14AC4A=,M:4+3.-1=AJ!(-<1=AM$!X':(M$Y%g!
3",2&%)P&##&%5!/$7!X&Yh!&$/i&&%!5="h$I%$I$?a[%<-,.41%&I$$%IR%I/$%!

$GG% 9"\!0N=35=,+\!d"MW=3,+!K",\!:=Q4A1!K!VA3+\!-,5!6-,4*!T!04,%!&II?%!
eS",5",+!=C!1N4!',C.34,D-!E!@"A3*!)0$!BA=14",!1=!BV:!K45"-14*!1N4!
',N"Q"1"=,!=C!'1*!E<1"#-1"=,!QJ!H"1N4A!BET8!=A!U=3Q.4M01A-,545!:)E%g!
<0%+-+16!/7R!X$Yh!$/i&$%!5="h$I%$I$?a[%#"A=.%&II?%I$%II>%!

$GR% 9"3\!03MW-,+\!:=+N"JN!E."J-A"\!V4.4<N"!TN"P4A4\!63-,+2",+!9"\!
K-11N4Z!U%!K-A*54,\!d4,,"C4A!V%!02"1N\!n."#"4A!B4A,41\!41!-.%!&I$/%!
e',14AC4A=,M',53<"Q.4!TN=.4*14A=.M&>M]J5A=LJ.-*4!SA=-5.J!',N"Q"1*!@"A-.!
H,1AJ!QJ!BA=53<1"=,!=C!&>M]J5A=LJ<N=.4*14A=.%g!H44$,0#6!/G!X$Yh!R&i$I>%!
5="h$I%$I$?a[%"223,"%&I$&%$$%II>%!

$RI% 9"3\!sN4,.=,+\!w",+N3-!B-,\!0N".4"!U",+\!d",!w"-,\!(4,+Z4,!u3\!
d",2",+!sN=3\!0N-,!T4,\!(4"!63=\!-,5!TN4,!9"-,+%!&I$/%!e8N4!',14AC4A=,M
',53<"Q.4!KLS!BA=14",!',N"Q"1*!]'@M$!',C4<1"=,%g!3&--)O+5#)V)802%+I&!$7!
X7Yh!/RGi7$I%!5="h$I%$I$?a[%<N=2%&I$/%IG%I$>%!

$R$% 9.=2;-A1\!T%!K%\!E%!)"41=\!-,5!E%!:=5A"+34DM(A-,5*4,%!&I$7%!
e0;4<"C"<!:4*"534*!=C!BS&!-,5!BE!',C.34,D-!@"A3*!B=.J24A-*4!03Q3,"1*!
T=,C4A!1N4!EQ"."1J!C=A!:)E!B=.J24A-*4!''!U4+A-5-1"=,!-,5!@"A3*!
B-1N=+4,"<"1J!",!K"<4%g!*+$%,"-)+.)<0%+-+16!GG!X?Yh!/7>>i?/%!
5="h$I%$$&Gad@'%I&&?/M$/%!

$R&% 9=,5A"+-,\!0-A-N!9%\!013-A1!6%!83A#"..4\!K"<N4..4!U%!8-14\!W"MK=!
U4,+\!E,5A4Z!6%!SA==P*\!-,5!B-1A"<P!T%!:4-5",+%!&I$$%!e)M9",P45!
6.J<=*J.-1"=,!(-<"."1-14*!0"-."<!E<"5M',54;4,54,1!E11-<N24,1!-,5!H,1AJ!=C!
',C.34,D-!E!@"A3*4*!",1=!T4..*!HL;A4**",+!UTM0'6)!=A!9M0'6)%g!*+$%,"-)+.)
<0%+-+16!G>!X?Yh!&RRIi/III%!5="h$I%$$&Gad@'%I$FI>M$I%!

$R/% 9==\!W34NMK",+\!U-#"5!K%!nZ4,\!V3"!9"\!E,5A4-!V%!HA"<P*=,\!
TJ,1N"-!9%!d=N,*=,\!B4,,J!K%!("*N\!U%!0;4,<4A!T-A,4J\!41!-.%!&II?%!e@"A-.!
-,5!8N4A-;431"<!T=,1A=.!=C!'()MS41-!BA=2=14A!01"23.-1=A!$!53A",+!
]4;-1"1"*!T!@"A3*!',C4<1"=,%g!=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)
?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.):4&%02"!$I/!X$>Yh!?II$i?%!
5="h$I%$IF/a;,-*%I?I$>&/$I/%!

$R7% 93<=<b\!d=N,!K".1=,\!-,5!TNA"*1"-,!]-<P4A%!&I$/%!eT311",+!-!(",4!
("+3A4h!n,!1N4!O*4!=C!8N",!04<1"=,*!",!H.4<1A=,!K"<A=*<=;J!1=!w3-,1"CJ!
E31=;N-+J%g!:$#+;("16!R!XRYh!$77/i7G%!5="h$I%7$?$a-31=%&>>FI%!

$R>% 93,5\!d4,,"C4A!K\!94,-!E.4L=;=3.=3\!EJ3P=!0-1=\!K-A+-A41!V-A=Z\!
)"4.*!T!E5-2*\!)"<N=.-*!_!6-.4\!EP"P=!'Z-*-P"\!-,5!:"<N-A5!E!(.-#4..%!
&II7%!e:4<=+,"1"=,!=C!0",+.4M01A-,545!:)E!@"A3*4*!QJ!8=..M."P4!:4<4;1=A!
F%g!=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.)
:4&%02"!$I$!X$>Yh!>>RGi>?I/%!5="h$I%$IF/a;,-*%I7IIR/F$I$%!

$R?% K-<U=,-.5\!94*."4\!0N".;-!E++-AZ-.\!V4,5A-!E%!S3**4J\!H2".J!E%!
U4*241\!S-4P!V"2\!-,5!8=A3!8-P"2=1=%!&I$&%!eK=.4<3.-A!',14A-<1"=,*!-,5!
8A-CC"<P",+!=C!',C.34,D-!E!@"A3*!B=.J24A-*4!BA=14",*!E,-.JD45!QJ!0;4<"C"<!
K=,=<.=,-.!E,1"Q=5"4*%g!<0%+-+16!7&?!X$Yh!>$i>R%!
5="h$I%$I$?a[%#"A=.%&I$&%I$%I$>%!



! G%!:4C4A4,<4*!

! &>7!

$RF% K-<K"<P",+\!d=N,!U%!&I$&%!e',14AC4A=,M',53<"Q.4!HCC4<1=A!
K4<N-,"*2*!",!T4..ME31=,=2=3*!'223,"1J%g!!"#$%&)J&K0&B5F)H44$,+-+16!
$&!X>Yh!/?FiG&%!5="h$I%$I/Ga,A"/&$I%!

$RG% K-N-,=,5-\!:-,+*","\!)=;;-5=.!0-MEA5M'-2\!B"2;A-;-!:4APJ4,\!
EA3,44!8N"1"1N-,J-,=,1\!V4*P-,J-!03QQ-.4PN-\!-,5!0-1N"1!B"<NJ-,+P3.%!
&I$&%!eKLE!HL;A4**"=,!',53<45!QJ!{MU4C4,*",!",!]4-.1NJ!]32-,!
B4A"=5=,1-.!8"**34%g!7$%+;&",)*+$%,"-)+.)H44$,+-+16!7&!X7Yh!R7?i>?%!
5="h$I%$II&a4["%&I$$7$?>F%!

$RR% K-"4A\!]4.4,-!d%\!8-P-N"1=!V-*N"Z-+"\!V=J3!]-A-\!-,5!64=A+4!6%!
SA=Z,.44%!&IIG%!eU"CC4A4,1"-.!:=.4!=C!1N4!',C.34,D-!E!@"A3*!B=.J24A-*4!BE!
03Q3,"1!C=A!#:)E!-,5!<:)E!BA=2=14A!S",5",+%g!<0%+-+16!/FI!X$Yh!$R7i
&I7%!5="h$I%$I$?a[%#"A=.%&IIF%IG%I&R%!

&II% K-.-1N"\!VA"*N,-23A1NJ\!S4"N3-!U=,+\!K"<N-4.!6-.4!dA\!-,5!:=Q4A1!
]!0".#4A2-,%!&IIF%!e02-..!04.CM:)E!64,4A-145!QJ!:)-*4!9!E2;."C"4*!
E,1"#"A-.!',,-14!'223,"1J%g!!"#$%&!77G!XF$>>Yh!G$?i$R%!
5="h$I%$I/Ga,-13A4I?I7&%!

&I$% Kl,D\!S4,[-2",\!9",5-!SA3,=114\!B414A!:431N4A\!-,5!K-A1",!
0<NZ422.4%!&I$&%!eE5-;1"#4!K31-1"=,*!",!)HB!T=2;4,*-14!C=A!U4C4<1"#4!
]>)$!:)E!:4;."<-1"=,!",!T3.13A45!]32-,!T4..*%g!!"#$%&)3+44$,02"#0+,5!
/h!GI&%!5="h$I%$I/Ga,<=22*$GI7%!

&I&% Kl,D\!S4,[-2",\!U=2","P!U=A,C4.5\!@4A=,"P-!6c1D\!:=.-,5!s4..\!
B41A-!s"224A2-,,\!n11=!]-..4A\!64=A+!V=<N*\!-,5!K-A1",!0<NZ422.4%!
&I$/%!eB-,542"<!',C.34,D-!E!@"A3*4*!H*<-;4!CA=2!:4*1A"<1"=,!QJ!]32-,!
KLE!1NA=3+N!E5-;1"#4!K31-1"=,*!",!1N4!)3<.4=;A=14",%g!=P+?)="#(+1&,5!R!
X/Yh!4$II/&FR%!5="h$I%$/F$a[=3A,-.%;;-1%$II/&FR%!

&I/% K-AP\!6%!H%\!d%!K%!8-J.=A\!S%!SA=,"\!-,5!:%!K%!VA3+%!$RFR%!e)3<.4-A!
E<<323.-1"=,!=C!',C.34,D-!@"A-.!:)E!8A-,*<A";1*!-,5!1N4!HCC4<1*!=C!
TJ<.=N4L"2"54\!E<1",=2J<",!U\!-,5!E.;N-ME2-,"1",%g!*+$%,"-)+.)<0%+-+16!
&R!X&Yh!F77i>&%!

&I7% K-A*<N-..\!K\!E!s-<N\!E!]4<N1C"*<N4A\!6!(=4A*1\!]!K4"4AMHZ4A1\!-,5!
n!]-..4A%!&III%!e',N"Q"1"=,!=C!',C.34,D-!T!@"A3*4*!QJ!]32-,!KLE!BA=14",%g!
<0%$5)J&5&"%2(!?F!X&Yh!$FRiGG%!

&I>% K-A14,*\!0-*<N-\!-,5!d=,-1N-,!]=Z-A5%!&II?%!e8N4!',14AC4A=,M
',53<"Q.4!68B-*4*%g!:,,$"-)J&K0&B)+.)3&--)",>)M&K&-+;4&,#"-)/0+-+16!&&h!
>>RiGR%!5="h$I%$$7?a-,,3A4#%<4..Q"=%&&%I$I/I>%$I7?$R%!

&I?% K-A1",\!V%\!-,5!E%!]4.4,"3*%!$RR$%!e)3<.4-A!8A-,*;=A1!=C!',C.34,D-!
@"A3*!:"Q=,3<.4=;A=14",*h!8N4!@"A-.!K-1A"L!BA=14",!XK$Y!BA=2=14*!HL;=A1!
-,5!',N"Q"1*!'2;=A1%g!3&--!?F!X$Yh!$$Fi/I%!

&IF% K-A1J,-\!E+,"4*DP-\!-,5!d4A42J!:=**2-,%!&I$7%!eE.14A-1"=,*!=C!
K42QA-,4!T3A#-13A4!53A",+!',C.34,D-!@"A3*!S355",+%g!/0+2(&402"-)
?+20&#6)'%",5"2#0+,5!7&!X>Yh!$7&>i&G%!5="h$I%$I7&aS08&I$7I$/?%!

&IG% K-1.",\!V!0\!]!:4++"=\!E!]4.4,"3*\!-,5!V!0"2=,*%!$RG$%!e',C4<1"=3*!
H,1AJ!B-1NZ-J!=C!',C.34,D-!@"A3*!",!-!T-,",4!V"5,4J!T4..!9",4%g!'(&)
*+$%,"-)+.)3&--)/0+-+16!R$!X/!B1!$Yh!?I$i$/%!

&IR% K-1A=*=#"<N\!K"PN-".!)%\!8-1J-,-!W%!K-1A=*=#"<N\!8N=2-*!6A-J\!
)=4.!E%!:=Q4A1*\!-,5!]-,*MU"414A!V.4,P%!&II7%!e)43A-2","5-*4!'*!
'2;=A1-,1!C=A!1N4!',"1"-1"=,!=C!',C.34,D-!@"A3*!',C4<1"=,!",!]32-,!E"AZ-J!
H;"1N4."32%g!*+$%,"-)+.)<0%+-+16!FG!X&&Yh!$&??>i?F%!
5="h$I%$$&Gad@'%FG%&&%$&??>M$&??F%&II7%!



! G%!:4C4A4,<4*!
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&$I% K-1*3D-Z-\!8-P4*N"\!S-4M]==,!V"2\!E#",-*N!:!0N4,=J\!0N"+4P"!
V-2"1-,"\!K-*-2"!K"J-P4\!-,5!d=N,!U!K-<2"<P",+%!&I$&%!e'()MÄ!H."<"1*!
K-<A=;N-+4!E31=;N-+J!#"-!1N4!;/G!KEBV!0"+,-.",+!B-1NZ-J%g!*+$%,"-)+.)
H44$,+-+16)A/"-#04+%&E)8>FQ)RSTUG!$GR!X&Yh!G$/i$G%!
5="h$I%7I7Ra["223,=.%$$I&I7$%!

&$$% K-11N4J*4*\!E.4L-!9%\!0-,C=A5!K%!0"2=,\!-,5!d=*N3-!s%!:-;;=;=A1%!
&I$I%!e'2-+",+!Z"1N!8=1-.!',14A,-.!:4C.4<1"=,!(.3=A4*<4,<4!K"<A=*<=;J!
C=A!1N4!T4..!S"=.=+"*1%g!*+$%,"-)+.)3&--)?20&,2&!$&/!X&$Yh!/?&$i&G%!
5="h$I%$&7&a[<*%I>?&$G%!

&$&% K-1D",+4A\!0N-,,=,!:\!8"2=1NJ!U!T-AA=..\!d=*4;N!T!U31A-\!sN=,+M
K",!K-\!-,5!TNA"*1=;N4A!d!K"..4A%!&I$/%!eKJL=#"A3*!:4*"*1-,<4!64,4!E!
XKLEY!HL;A4**"=,!03;;A4**4*!',C.34,D-!E!@"A3*!:4;."<-1"=,!",!E.;N-!
',14AC4A=,M8A4-145!BA"2-14!T4..*%g!*+$%,"-)+.)<0%+-+16!GF!X&Yh!$$>Ii>G%!
5="h$I%$$&Gad@'%I&&F$M$&%!

&$/% K<T-A1,4J\!014;N4,!E%\!9-A"**-!S%!8N-<PA-J\!94=,"5!6"1.",\!03*-,!
6".C"..-,\!]4AQ4A1!_%!@"A+",\!]4AQ4A1!_%!@"A+",!'#\!-,5!K-A<=!T=.=,,-%!
&IIG%!eKUEM>!:4<=+,"1"=,!=C!-!K3A",4!)=A=#"A3*%g!=P+?)="#(+1&,5!7!XFYh!
4$III$IG%!5="h$I%$/F$a[=3A,-.%;;-1%$III$IG%!

&$7% K<T=Z,\!K-11N4Z!(%\!-,5!E,5A4Z!B4P=*D%!&II>%!e8N4!',C.34,D-!E!
@"A3*!K&!TJ1=;.-*2"<!8-".!'*!:4b3"A45!C=A!',C4<1"=3*!@"A3*!BA=53<1"=,!-,5!
HCC"<"4,1!64,=24!B-<P-+",+%g!*+$%,"-)+.)<0%+-+16!FR!X?Yh!/>R>i/?I>%!
5="h$I%$$&Gad@'%FR%?%/>R>M/?I>%&II>%!

&$>% K<K-N=,\!]-A#4J!8%\!-,5!H22-,34.!S=3<A=1%!&I$>%!eK42QA-,4!
T3A#-13A4!-1!-!6.-,<4%g!*+$%,"-)+.)3&--)?20&,2&!$&G!X?Yh!$I?>iFI%!
5="h$I%$&7&a[<*%$$77>7%!

&$?% K4-+4A\!E,1N=,J\!V3231N","!@"*#-.",+-2\!B-3.-!U".+4A\!U=,,-!
SAJ-,\!-,5!K44,3!_-5NZ-%!&II>%!eS"=.=+"<-.!E<1"#"1J!=C!',14A.43P",*M&G!
-,5!M&Rh!T=2;-A"*=,!Z"1N!8J;4!'!',14AC4A=,*%g!36#+D0,&!/$!X&Yh!$IRi$G%!
5="h$I%$I$?a[%<J1=%&II>%I7%II/%!

&$F% K4N.4\!E,5A4Z\!@"#"4,!6%!U3+-,\!d4CC4AJ!V%!8-3Q4,Q4A+4A\!-,5!
d4,,"C4A!E%!U=35,-%!&I$&%!e:4-**=A124,1!-,5!K31-1"=,!=C!1N4!E#"-,!
',C.34,D-!@"A3*!B=.J24A-*4!BE!03Q3,"1!n#4A<=24!0;4<"4*!S-AA"4A*%g!
*+$%,"-)+.)<0%+-+16!G?!X/Yh!$F>Ii>F%!5="h$I%$$&Gad@'%I?&I/M$$%!

&$G% K4.q,\!VA"*14A\!Bl"#"!V4*P",4,\!8-;-,"!:=,,"\!8"2=!0-A4,4#-\!V-A"!
9=3,-12--\!-,5!'.PP-!d3.P3,4,%!$RR?%!e]32-,!KLS!BA=14",\!-,!
',14AC4A=,M{M',53<"Q.4!68B-*4\!T=,1-",*!-!)3<.4-A!8-A+41",+!0"+,-.!-,5!'*!
9=<-."D45!",!1N4!]414A=<NA=2-1",!:4+"=,!Q4,4-1N!1N4!)3<.4-A!H,#4.=;4%g!
*+$%,"-)+.)/0+-+102"-)3(&405#%6!&F$!X/GYh!&/7FGiG?%!
5="h$I%$IF7a[Q<%&F$%/G%&/7FG%!

&$R% K"Q-J-*N"\!K-*-P"\!93"*!K-A1o,4DM0=QA"5=\!W34NMK",+!9==\!
_-*N",+1=,!S!T�A54,-*\!K"<N-4.!6-.4!dA\!-,5!E5=.C=!6-A<o-M0-*1A4%!&IIF%!
e',N"Q"1"=,!=C!:41",="<!E<"5M',53<"Q.4!64,4!'MK45"-145!',53<1"=,!=C!S41-!
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&R&% 04+-Z-\!V-1*32=A"\!0-<N"P=!V3A-1-\!W3"<N"!W-,-+"N-*N"\!8N"[,!:%!
SA3224.P-2;\!(32"N"P=!K-1*35-\!-,5!0N"+4P-D3!)-+-1-%!&I$7%!
eT-*;-*4MK45"-145!T.4-#-+4!=C!BN=*;N=.";"5!(.";;-*4!C=A!E;=;1=1"<!
BN=*;N-1"5J.*4A",4!HL;=*3A4%g!?20&,2&)A!&B)C+%DE)!FCFG!/77!X?$GGYh!
$$?7i?G%!5="h$I%$$&?a*<"4,<4%$&>&GIR%!

&R/% 04.2-,\!K=N-2245\!0-2-A!V%!U-,P-A\!)"<=.4!H%!(=AQ4*\!d"-,Md3,!
d"-\!-,5!H-A.!6%!SA=Z,%!&I$&%!eE5-;1"#4!K31-1"=,!",!',C.34,D-!E!@"A3*!)=,M
01A3<13A-.!64,4!'*!9",P45!1=!]=*1!0Z"1<N",+!-,5!',53<4*!-!)=#4.!BA=14",!
QJ!E.14A,-1"#4!0;."<",+%g!74&%10,1)802%+I&5)V)H,.&2#0+,5!$!X$$Yh!47&%!
5="h$I%$I/Ga42"%&I$&%/G%!

&R7% 0N-P4A\!n.C-1!6%\!K=N-245!8%!EQ54.M:-N"2\!-,5!0-.2-!8%!S-J=32"%!
&I$>%!e64,4!B=.J2=A;N"*2*!=C!'9M$I!-,5!KLE!",!:4*;=,54A*!-,5!)=,M
:4*;=,54A*!1=!',14AC4A=,!8N4A-;J!",!]T@!H+J;1"-,!B-1"4,1*!64,=1J;4!7%g!
3&--)/0+2(&405#%6)",>)/0+;(65025!F$!X&Yh!?$Fi&>%!5="h$I%$IIFa*$&I$/M
I$7MI&7$MR%!

&R>% 0N-,23+-,-1N-2\!V-A1N"P\!K=N-2245!K%!(44A=D\!9"*-!d=,4*M
H,+4.\!U-#"5!_-.P4A\!02:-Q"3.!E.-2\!KP-2A3.!]-*-,\!B-24.-!K<V4,D"4\!
0<=11!VA-3**\!:"<N-A5!d%!_4QQJ\!-,5!:=Q4A1!6%!_4Q*14A%!&I$7%!e64,4*"*!=C!
E#"-,!',C.34,D-!]R)&!",!S-,+.-54*N%g!74&%10,1)802%+I&5)V)H,.&2#0+,5!/!
X$&Yh!4GG%!5="h$I%$I/Ga42"%&I$7%G7%!

&R?% 0N-A2-\!V3.QN3*N-,\!0N-*N-,P!8A";-1N"\!BA"J-!:-,[-,\!B3A,"2-!
V32-A\!:4Q4<<-!6-A14,\!@-A=3+N!U4J54\!d-<b34.",4!K!V-1D\!41!-.%!&I$$%!
e',C.34,D-!E!@"A3*!)3<.4=;A=14",!HL;.="1*!]*;7I!1=!',N"Q"1!BV:!
E<1"#-1"=,%g!=-+?)9,&!?!X?Yh!4&I&$>%!5="h$I%$/F$a[=3A,-.%;=,4%II&I&$>%!

&RF% 0N-A2-\!0N";A-\!E5-A*N!V%!K-J-,P\!]"2-,"!)-".Z-.\!0N-*N-,P!
8A";-1N"\!d4,"*N!:%!B-14.\!d=N,!S%!S=ZD-A5\!BA-1"QN-!6-3A\!41!-.%!&I$7%!
e',C.34,D-!E!@"A-.!)3<.4=;A=14",!',14A-<1*!Z"1N!TJ1=*P4.41=,!0<-CC=.5",+!
BA=14",!{ME<1",",M7!C=A!@"A-.!:4;."<-1"=,%g!'(&)X7/?)*+$%,"-!&G$!X$/Yh!
&GRRi&R$7%!5="h$I%$$$$aC4Q*%$&G&G%!

&RG% 0N-Z\!K4+-,!9%\!V-1NAJ,!9%!01=,4\!TNA"*1=;N4A!K%!T=.-,+4.=\!HA=.!H%!
63.<"<4P\!-,5!B414A!B-.4*4%!&IIG%!eT4..3.-A!BA=14",*!",!',C.34,D-!@"A3*!
B-A1"<.4*%g!=P+?)="#(+1&,5!7!X?Yh!4$IIIIG>%!
5="h$I%$/F$a[=3A,-.%;;-1%$IIIIG>%!

&RR% 0N4AAJ\!944\!K-11!02"1N\!0=;N"4!U-#"5*=,\!-,5!U-#"5!d-<P*=,%!&I$7%!
e8N4!)!84A2",3*!=C!1N4!',C.34,D-!S!@"A3*!)3<.4=;A=14",!'*!H**4,1"-.!C=A!
@"A3*!@"-Q"."1J\!)3<.4-A!9=<-."D-1"=,\!-,5!n;1"2-.!8A-,*<A";1"=,!-,5!
:4;."<-1"=,!=C!1N4!@"A-.!64,=24%g!*+$%,"-)+.)<0%+-+16!GG!X&$Yh!$&/&?i/G%!
5="h$I%$$&Gad@'%I$>7&M$7%!

/II% 0N"2"D3\!84;;4"\!)-=P"!8-P"D-Z-\!V4,!_-1-,-Q4\!VJ=*3P4!)-+-1-\!
-,5!)=Q3J3P"!V=Q-J-*N"%!&I$$%!eTA3<"-.!:=.4!=C!1N4!',C.34,D-!@"A3*!)0&!
X)HBY!TM84A2",-.!U=2-",!",!K$!S",5",+!-,5!)3<.4-A!HL;=A1!=C!#:)B%g!
X7/?)P&##&%5!>G>!X$Yh!7$i7?%!5="h$I%$I$?a[%C4Q*.41%&I$I%$$%I$F%!



! G%!:4C4A4,<4*!

! &?/!

/I$% 0N"\!_4"C4,+\!W"!0N"\!W",+!_3\!U"!9"3\!-,5!64=A+4!(%!6-=%!&I$/%!
enA"+",!-,5!K=.4<3.-A!TN-A-<14A"D-1"=,!=C!1N4!]32-,M',C4<1",+!]?)$!
',C.34,D-!@"A3*!",!8-"Z-,%g!=%+#&0,)V)3&--!7!X$$Yh!G7?i>/%!
5="h$I%$IIFa*$/&/GMI$/M/IG/MI%!

/I&% 0N1JAJ-\!W%E%\!9%@%!K=<N-.=#-\!-,5!)%@%!S=#",%!&IIR%!e',C.34,D-!
@"A3*!)43A-2","5-*4h!01A3<13A4!-,5!(3,<1"=,%g!:2#")!"#$%"&!$!X&Yh!&?i/&%!

/I/% 0N3<P\!V4#",\!:=Q4A1!E%!9-2Q\!-,5!9-ZA4,<4!]%!B",1=%!&III%!
eE,-.J*"*!=C!1N4!B=A4!01A3<13A4!=C!1N4!',C.34,D-!E!@"A3*!K&!'=,!TN-,,4.!QJ!
1N4!03Q*1"13145MTJ*14",4!E<<4**"Q"."1J!K41N=5%g!*+$%,"-)+.)<0%+-+16!F7!
X$FYh!FF>>i?$%!

/I7% 0"4<DP-A*P"\!0-A-!S%\!-,5!6-AJ!:%!_N"11-P4A%!&II&%!e',C.34,D-!@"A3*!
T-,!H,14A!-,5!',C4<1!T4..*!",!1N4!EQ*4,<4!=C!T.-1NA",MK45"-145!
H,5=<J1=*"*%g!*+$%,"-)+.)<0%+-+16!F?!X&IYh!$I7>>i?7%!

/I>% 02"1N\!U4A4P!d\!E.-,!0!9-;454*\!d-,!T!54!d=,+\!8N4=!K!S4*14QA=4A\!
633*!(!:"224.DZ--,\!E.Q4A1!U!K!H!n*14AN-3*\!-,5!:=,!E!K!(=3<N"4A%!
&II7%!eK-;;",+!1N4!E,1"+4,"<!-,5!64,41"<!H#=.31"=,!=C!',C.34,D-!@"A3*%g!
?20&,2&)A!&B)C+%DE)!FCFG!/I>!X>?G&Yh!/F$iF?%!
5="h$I%$$&?a*<"4,<4%$IRF&$$%!

/I?% 01-4N4."\!B\!:!6A=Q\!H!K4"4A\!d!6!031<."CC4\!-,5!n!]-..4A%!$RGG%!
e',C.34,D-!@"A3*M03*<4;1"Q.4!K"<4!T-AAJ!KL!64,4*!Z"1N!-!9-A+4!U4.41"=,!
=A!-!)=,*4,*4!K31-1"=,%g!8+-&2$-"%)",>)3&--$-"%)/0+-+16!G!X$IYh!7>$Gi&/%!

/IF% 014A1D\!0".P4\!d-,!U"112-,,\!d=A+4!T%!6%!S.-,<=\!9"=3Q=#!K%!B.41,4#-\!
n11=!]-..4A\!-,5!64=A+!V=<N*%!&IIF%!e8N4!E,1"#"A-.!B=14,1"-.!=C!',14AC4A=,M
',53<45!T=11=,!:-1!KL!BA=14",*!-+-",*1!nA1N=2JL=#"A3*!X",C.34,D-Y\!
:N-Q5=#"A3*\!-,5!S3,J-#"A3*%g!*+$%,"-)+.)H,#&%.&%+,)V)36#+D0,&)J&5&"%2(Q)
'(&)9..020"-)*+$%,"-)+.)#(&)H,#&%,"#0+,"-)?+20&#6).+%)H,#&%.&%+,)",>)36#+D0,&)
J&5&"%2(!&F!X$IYh!G7Fi>>%!5="h$I%$IGRa["A%&II?%I$F?%!

/IG% 01=4<P.4\!K%!W%\!K%!_%!0N-Z\!-,5!B%!_%!TN=;;",%!$RGF%!e04+24,1M
0;4<"C"<!-,5!T=22=,!)3<.4=1"54!04b34,<4*!",!1N4!)=,<=5",+!:4+"=,*!=C!
',C.34,D-!S!@"A3*!64,=24!:)E*%g!=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)
?20&,2&5!G7!XRYh!&FI/iF%!

/IR% 01A-2Q"=MU4MT-*1".."-\!T-14A",-\!K-A"=!)"4;4.\!-,5!K"<N-4.!B%!:=31%!
&I$I%!e8N4!)3<.4-A!B=A4!T=2;.4Lh!SA"5+",+!)3<.4-A!8A-,*;=A1!-,5!64,4!
:4+3.-1"=,%g!!"#$%&)J&K0&B5)8+-&2$-"%)3&--)/0+-+16!$$!XFYh!7RIi>I$%!
5="h$I%$I/Ga,A2&R&G%!

/$I% 01A-,54,\!E!K\!B!01-4N4."\!-,5!d!B-#.=#"<%!$RR/%!e(3,<1"=,!=C!1N4!
K=3*4!KL$!BA=14",!'*!',N"Q"145!QJ!n#4A4L;A4**"=,!=C!1N4!BS&!BA=14",!=C!
',C.34,D-!@"A3*%g!<0%+-+16!$RF!X&Yh!?7&i>$%!5="h$I%$II?a#"A=%$RR/%$?/R%!

/$$% 03+"J-2-\!V-,-P=\!H"["!nQ-J-*N"\!E1*3*N"!V-Z-+3<N"\!W3P-A"!
03D3P"\!d4A42J!:!]!8-24\!VJ=*3P4!)-+-1-\!-,5!0-2MW=,+!B-AP%!&IIR%!
e01A3<13A-.!',*"+N1!",1=!1N4!H**4,1"-.!BS$MBS&!03Q3,"1!T=,1-<1!=C!1N4!
',C.34,D-!@"A3*!:)E!B=.J24A-*4%g!'(&)78/9)*+$%,"-!&G!X$&Yh!$GI/i$$%!
5="h$I%$I/Ga42Q=[%&IIR%$/G%!

/$&% 031N-A\!K4N3.!0%\!]".-A"=!d%!:-2=*\!K-A+-A41!K%!SA-**".\!d-*=,!
)41.-,5\!TA-"+!B%!TN-;;4..\!6-QA"4.4!S.-N,"P\!E"244!K<K"..-,\!41!-.%!&I$&%!
e8N4!:'6M'M."P4!:4<4;1=A!96B&!T=,1A=.*!TUGXÖY!8!T4..!03A#"#-.!-,5!
("1,4**%g!H44$,0#6!/F!X&Yh!&/>i7G%!5="h$I%$I$?a[%"223,"%&I$&%IF%II7%!

/$/% 03\!_4,MTN"\!W3,+MTN"-!TN4,\!TN3,+M]*",!8*4,+\!B-3.!_4"MTN4!
]*3\!V3=M(4,+!83,+\!V",+M0=,+!d4,+\!-,5!K"<N-4.!K%!T%!9-"%!&I$/%!eB==.45!



! G%!:4C4A4,<4*!

! &?7!

:)E"!0<A44,!'54,1"C"4*!OQ"b3"1",!9"+-*4!'1<N!-*!TA3<"-.!C=A!',C.34,D-!E!
@"A3*!:4.4-*4!CA=2!1N4!H,5=*=24!53A",+!@"A3*!H,1AJ%g!=%+2&&>0,15)+.)#(&)
!"#0+,"-):2">&46)+.)?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.):4&%02"!$$I!X7/Yh!
$F>$?i&$%!5="h$I%$IF/a;,-*%$/$&/F7$$I%!

/$7% 8-Q41-\!V="<N"\!BN".";;4!64=A+4.\!H5"1N!d-,**4,\!u",!U3\!V-*;4A!
]=4Q4\!V-A",4!TA=D-1\!03D-,,4!K355\!41!-.%!&II7%!e8=..M."P4!:4<4;1=A*!R!
-,5!/!-*!H**4,1"-.!T=2;=,4,1*!=C!',,-14!'223,4!U4C4,*4!-+-",*1!K=3*4!
TJ1=24+-.=#"A3*!',C4<1"=,%g!=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)
?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.):4&%02"!$I$!X$IYh!/>$?i&$%!
5="h$I%$IF/a;,-*%I7II>&>$I$%!

/$>% 8-P45-\!K-P=1=\!E,5A4Z!B4P=*D\!V4#",!0N3<P\!9-ZA4,<4!]%!B",1=\!
-,5!:=Q4A1!E%!9-2Q%!&II&%!e',C.34,D-!E!@"A3*!K&!'=,!TN-,,4.!E<1"#"1J!'*!
H**4,1"-.!C=A!HCC"<"4,1!:4;."<-1"=,!",!8"**34!T3.13A4%g!*+$%,"-)+.)<0%+-+16!F?!
X/Yh!$/R$iRR%!5="h$I%$$&Gad@'%F?%/%$/R$M$/RR%&II&%!

/$?% 8-P43<N"\!n*-23\!-,5!0N"D3=!EP"A-%!&IIR%!e',,-14!'223,"1J!1=!
@"A3*!',C4<1"=,%g!H44$,+-+102"-)J&K0&B5!&&F!X$Yh!F>iG?%!
5="h$I%$$$$a[%$?IIMI?>u%&IIG%IIF/F%L%!

/$F% 8-..p<DJ\!s*=.1\!_4,L"-!d"-,+\!]4AQ4A1!_!@"A+",!71N\!U-#"5!E!94"Q\!
U=,-.J,!0<N43,4A\!:-,5-.!d!V-3C2-,\!H4#-M9""*-!H*P4.",4,\!-,5!S41N!
94#",4%!&II&%!e:4+3.-1"=,!=C!01-A#-1"=,M!-,5!@"A3*M',53<45!E31=;N-+J!QJ!
1N4!4'(&-.;N-!V",-*4!0"+,-.",+!B-1NZ-J%g!=%+2&&>0,15)+.)#(&)!"#0+,"-)
:2">&46)+.)?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.):4&%02"!RR!X$Yh!$RIiR>%!
5="h$I%$IF/a;,-*%I$&7G>&RR%!

/$G% 8-,+\!W3d"4\!6=,+L3,!sN=,+\!9"-,N3"!sN3\!u",+!9"3\!W3C4"!0N-,\!
]3-;4,+!(4,+\!sN"6-=!S3\!]3-.-,!TN4,\!-,5!TN4,!_-,+%!&I$I%!e]4A<>!
E114,3-14*!',C.34,D-!E!@"A3*!QJ!T-1-.JD",+!'06J.-1"=,!=C!@"A-.!)0$!
BA=14",%g!*+$%,"-)+.)H44$,+-+16)A/"-#04+%&E)8>FQ)RSTUG!$G7!X$IYh!>FFFi
RI%!5="h$I%7I7Ra["223,=.%IRI/>GG%!

/$R% 8-3Q4,Q4A+4A\!d4CC4AJ!V%!$RRG%!e',C.34,D-!@"A3*!]42-++.31",",!
T.4-#-+4!",1=!]E$\!]E&h!)=!9-3+N",+!K-114A%g!=%+2&&>0,15)+.)#(&)!"#0+,"-)
:2">&46)+.)?20&,2&5!R>!X$FYh!RF$/i$>%!5="h$I%$IF/a;,-*%R>%$F%RF$/%!

/&I% 14,n4#4A\!S4,[-2",!:\!K-A<!d!04A#-,1\!)-1N-."4!6A-,5#-3L\!
:=,+13-,!9",\!-,5!d=N,!]"*<=11%!&II&%!e:4<=+,"1"=,!=C!1N4!K4-*.4*!@"A3*!
)3<.4=<-;*"5!-*!-!K4<N-,"*2!=C!':(M/!E<1"#-1"=,%g!*+$%,"-)+.)<0%+-+16!F?!
XGYh!/?>Ri?R%!

/&$% 8=,+\!03L"-,+\!W-,!9"\!B"4AA4!:"#-"..4A\!TNA"*1",-!T=,A-A5J\!U-,".=!E!
E.#-A4D!T-*1"..=\!9"MK4"!TN4,\!04A+"=!:4<34,<=\!41!-.%!&I$&%!eE!U"*1",<1!
9",4-+4!=C!',C.34,D-!E!@"A3*!CA=2!S-1*%g!=%+2&&>0,15)+.)#(&)!"#0+,"-)
:2">&46)+.)?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.):4&%02"!$IR!X$$Yh!7&?RiF7%!
5="h$I%$IF/a;,-*%$$$?&II$IR%!

/&&% 8=,+\!03L"-,+\!u34J=,+!sN3\!W-,!9"\!K-,+!0N"\!d",+!sN-,+\!K4."**-!
S=3A+4="*\!]3-!W-,+\!41!-.%!&I$/%!e)4Z!_=A.5!S-1*!]-AQ=A!U"#4A*4!
',C.34,D-!E!@"A3*4*%g!=P+?)="#(+1&,5!R!X$IYh!4$II/?>F%!
5="h$I%$/F$a[=3A,-.%;;-1%$II/?>F%!

/&/% 8A";-.\!BN".";;\!K"<N-4.!S-34A\!H."*-Q41N!)-*<NQ4A+4A\!8N=2-*!
KcA1",+4A\!TNA"*1",4!]=N4,-5.\!H22-,34..4!T=A,-."\!K-1N"-*!8N3A-3\!-,5!
K"<N-4.!01jAD.%!&IIF%!eO,"b34!(4-13A4*!=C!U"CC4A4,1!K42Q4A*!=C!1N4!
]32-,!63-,J.-14MS",5",+!BA=14",!(-2".J%g!*+$%,"-)+.)H,#&%.&%+,)V)
36#+D0,&)J&5&"%2(Q)'(&)9..020"-)*+$%,"-)+.)#(&)H,#&%,"#0+,"-)?+20&#6).+%)



! G%!:4C4A4,<4*!

! &?>!

H,#&%.&%+,)",>)36#+D0,&)J&5&"%2(!&F!X$Yh!77i>&%!
5="h$I%$IGRa["A%&IIF%IIG?%!

/&7% 83A-,\!V-5"A\!K-*-P"!K"Q-J-*N"\!V4,["!03+"J-2-\!0N=P=!0-"1=\!
EP"P=!)32-["A"\!-,5!VJ=*3P4!)-+-1-%!&II7%!e)3<.4-A!KLE!BA=14",*!(=A2!-!
T=2;.4L!Z"1N!',C.34,D-!@"A3*!)B!-,5!',N"Q"1!1N4!8A-,*<A";1"=,!=C!1N4!
H,+",44A45!',C.34,D-!@"A3*!64,=24%g!!$2-&02):20>5)J&5&"%2(!/&!X&Yh!?7/i
>&%!5="h$I%$IR/a,-Aa+PN$R&%!

/&>% 83AA4..\!9-3A4,\!H5Z-A5!T%!]31<N",*=,\!(A-,P!8%!@A4454\!-,5!HA#",!
(=5=A%!&I$>%!e:4+3.-1"=,!=C!',C.34,D-!E!@"A3*!)3<.4=;A=14",!
n."+=24A"D-1"=,!QJ!BN=*;N=AJ.-1"=,%g!*+$%,"-)+.)<0%+-+16!GR!X&Yh!$7>&i>>%!
5="h$I%$$&Gad@'%I&//&M$7%!

/&?% 83AA4..\!9-3A4,\!d=,!_%!9J-..\!9-3A4,<4!0%!8".4J\!HA#",!(=5=A\!-,5!
(A-,P!8%!@A4454%!&I$/%!e8N4!:=.4!-,5!E**42Q.J!K4<N-,"*2!=C!
)3<.4=;A=14",!",!',C.34,D-!E!@"A3*!:"Q=,3<.4=;A=14",!T=2;.4L4*%g!!"#$%&)
3+44$,02"#0+,5!7h!$>R$%!5="h$I%$I/Ga,<=22*&>GR%!

/&F% O.2-,4,\!'%\!S%!E%!SA=,"\!-,5!:%!K%!VA3+%!$RG$%!e:=.4!=C!8Z=!=C!1N4!
',C.34,D-!@"A3*!T=A4!B!BA=14",*!",!:4<=+,"D",+!T-;!$!01A3<13A4*!
X2F6;;;)2Y!=,!:)E*!-,5!",!',"1"-1",+!@"A-.!:)E!8A-,*<A";1"=,%g!
=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.)
:4&%02"!FG!X$&Yh!F/>>i>R%!

/&G% ODq\!6"..4*\!-,5!U-,"~.4!K=,,4A=,%!&IIF%!e'9M&G!-,5!'9M&Rh!
)4Z<=24A*!1=!1N4!',14AC4A=,!(-2".J%g!/0+2(040&!GR!X?MFYh!F&Ri/7%!
5="h$I%$I$?a[%Q"=<N"%&IIF%I$%IIG%!

/&R% #-,!54!0-,51\!T-A=."4,!H\!d==*1!]!T!K!VA4"[1D\!-,5!633*!(!
:"224.DZ--,%!&I$&%!eH#-*"=,!=C!',C.34,D-!-!@"A3*4*!CA=2!',,-14!-,5!
E5-;1"#4!'223,4!:4*;=,*4*%g!<0%$5&5!7!XRYh!$7/GiF?%!
5="h$I%//RIa#7IR$7/G%!

//I% #-,!K44A\!64AA"1\!U4,,"*!:%!@=4.P4A\!-,5!64A-.5!_%!(4"+4,*=,%!
&IIG%!eK42QA-,4!9";"5*h!_N4A4!8N4J!EA4!-,5!]=Z!8N4J!S4N-#4%g!!"#$%&)
J&K0&B5)8+-&2$-"%)3&--)/0+-+16!R!X&Yh!$$&i&7%!5="h$I%$I/Ga,A2&//I%!

//$% @-A+-\!s*3D*-,,-!8\!'A4,4!:-2=*\!:=,+!]-"\!K"A<=!0<N2=.P4\!
E5=.C=!6-A<o-M0-*1A4\!E,-!(4A,-,54DM04*2-\!-,5!B414A!B-.4*4%!&I$$%!e8N4!
',C.34,D-!@"A3*!BA=14",!BS$M(&!',N"Q"1*!1N4!',53<1"=,!=C!8J;4!'!',14AC4A=,!
-1!1N4!94#4.!=C!1N4!KE@0!E5-;1=A!BA=14",%g!=P+?)="#(+1&,5!F!X?Yh!
4$II&I?F%!5="h$I%$/F$a[=3A,-.%;;-1%$II&I?F%!

//&% @-*",\!E%!@%\!n%!E%!842P",-\!@%!@%!H+=A=#\!0%!E%!V.=1<N4,P=\!K%!E%!
B.=1,"P=#-\!-,5!n%!'%!V"*4.4#%!&I$7%!eK=.4<3.-A!K4<N-,"*2*!H,N-,<",+!1N4!
BA=14=24!=C!',C.34,D-!E!@"A3*4*h!E,!n#4A#"4Z!=C!:4<4,1.J!U"*<=#4A45!
BA=14",*%g!<0%$5)J&5&"%2(!$G>!Xd3,4Yh!>/i?/%!
5="h$I%$I$?a[%#"A3*A4*%&I$7%I/%I$>%!

///% @4,P-1-A-2-,\!8N"-+-A-[-,\!K-"P4.!@-.54*\!:-<N4.!H.*QJ\!0N"+4A3!
V-P31-\!6"*4.-!T-<4A4*\!0N",=Q3!0-"[=\!W="<N"A=!'Z-P3A-\!-,5!6.4,!)%!
S-AQ4A%!&IIF%!e9=**!=C!UHLUa]!S=L!:)E!]4."<-*4!96B&!K-,"C4*1*!
U"*;-A-14!E,1"#"A-.!:4*;=,*4*%g!*+$%,"-)+.)H44$,+-+16)A/"-#04+%&E)8>FQ)
RSTUG!$FG!X$IYh!?777i>>%!

//7% #=,!54A!K-.*Q3A+\!E.4L-,54A\!',Q-.!EQ31Q3.M'=,"1-\!n11=!]-..4A\!
64=A+!V=<N*\!-,5!U+-,"1!U-,",=%!&I$$%!e01-.P!U=2-",!=C!1N4!UJ,-2",M."P4!
KLE!68B-*4!BA=14",!K45"-14*!K42QA-,4!S",5",+!-,5!9";=*=24!



! G%!:4C4A4,<4*!

! &??!

83Q3.-1"=,!#"-!1N4!O,*1A3<13A45!97!9==;%g!'(&)*+$%,"-)+.)/0+-+102"-)
3(&405#%6!&G?!X7/Yh!/FG>Gi?>%!5="h$I%$IF7a[Q<%K$$$%&7RI/F%!

//>% @A4454\!(A-,P!8%\!E,,"4!W%!TN-,\!d-,4!0N-A;*\!-,5!HA#",!(=5=A%!
&I$I%!eK4<N-,"*2*!-,5!(3,<1"=,-.!'2;."<-1"=,*!=C!1N4!U4+A-5-1"=,!=C!
]=*1!:)E!B=.J24A-*4!''!",!',C.34,D-!@"A3*!',C4<145!T4..*%g!<0%+-+16!/R?!
X$Yh!$&>i/7%!5="h$I%$I$?a[%#"A=.%&IIR%$I%II/%!

//?% @A4454\!(A-,P!8%\!]3+N!6"CC=A5\!-,5!64=A+4!6%!SA=Z,.44%!&IIG%!
e:=.4!=C!',"1"-1",+!)3<.4=*"54!8A";N=*;N-14!T=,<4,1A-1"=,*!",!1N4!
:4+3.-1"=,!=C!',C.34,D-!@"A3*!:4;."<-1"=,!-,5!8A-,*<A";1"=,%g!*+$%,"-)+.)
<0%+-+16!G&!X$7Yh!?RI&i$I%!5="h$I%$$&Gad@'%II?&FMIG%!

//F% _-,+\!u"3J-,\!H..-!:!]",*=,\!-,5!B414A!TA4**Z4..%!&IIF%!e8N4!
',14AC4A=,M',53<"Q.4!BA=14",!@";4A",!',N"Q"1*!',C.34,D-!@"A3*!:4.4-*4!QJ!
B4A13AQ",+!9";"5!:-C1*%g!3&--)O+5#)V)802%+I&!&!X&Yh!R?i$I>%!
5="h$I%$I$?a[%<N=2%&IIF%I?%IIR%!

//G% _-,"1<N-,+\!E*-Z",\!d-A-*;"2!)-AP;3P\!-,5!E,-,!
d=,+P-4ZZ-11-,-%!&I$/%!e)3<.4-A!'2;=A1!=C!',C.34,D-!S!@"A3*!
)3<.4=;A=14",h!',#=.#424,1!=C!-,!)M84A2",-.!)3<.4-A!9=<-."D-1"=,!0"+,-.!
-,5!-!T.4-#-+4MBA=14<1"=,!K=1"C%g!<0%+-+16!77/!X$Yh!>Ri?G%!
5="h$I%$I$?a[%#"A=.%&I$/%I7%I&>%!

//R% _-1-,-Q4\!:"4\!64=A+4!B!94*4A\!-,5!:=Q4A1!E!9-2Q%!&I$$%!
e',C.34,D-!@"A3*!'*!)=1!:4*1A"<145!QJ!841N4A",!_N4A4-*!',C.34,D-!@9B!
BA=53<1"=,!'*!:4*1A"<145!QJ!841N4A",%g!<0%+-+16!7$F!X$Yh!>Ii>?%!
5="h$I%$I$?a[%#"A=.%&I$$%I>%II?%!

/7I% _".P",*\!T=3A1,4J\!-,5!K"<N-4.!6-.4%!&I$/%!e014A=.M'D",+!',,-14%g!
H44$,0#6!/G!X$Yh!/i>%!5="h$I%$I$?a[%"223,"%&I$/%I$%II&%!

/7$% _".."-2*\!K%!E%\!-,5!:%!E%!9-2Q%!$RG?%!eU414A2",-1"=,!=C!1N4!
nA"4,1-1"=,!=C!-,!',14+A-.!K42QA-,4!BA=14",!-,5!0"14*!=C!6.J<=*J.-1"=,!QJ!
n."+=,3<.4=1"54MU"A4<145!K31-+4,4*"*h!',C.34,D-!S!@"A3*!)S!6.J<=;A=14",!
9-<P*!-!T.4-#-Q.4!0"+,-.!04b34,<4!-,5!]-*!-,!HL1A-<4..3.-A!)]&M84A2",-.!
:4+"=,%g!8+-&2$-"%)",>)3&--$-"%)/0+-+16!?!X$&Yh!7/$Fi&G%!
5="h$I%$$&GaKTS%?%$&%7/$F%!

/7&% _"*4\!]4.4,!K\!E+,4*!(=4+.4",\!d"4<N-=!03,\!:=*-!K-A"-!U-.1=,\!
0N441-.!B-14.\!_4,5J!]=Z-A5\!H22-!T!E,54A*=,\!_4,5J!0!S-A<.-J\!-,5!
B-3.!U"+-A5%!&IIR%!eE!T=2;."<-145!K4**-+4h!'54,1"C"<-1"=,!=C!-!)=#4.!BS$M
:4.-145!BA=14",!8A-,*.-145!CA=2!',C.34,D-!E!@"A3*!04+24,1!&!2:)E%g!
*+$%,"-)+.)<0%+-+16!G/!X$?Yh!GI&$i/$%!5="h$I%$$&Gad@'%IIG&?MIR%!

/7/% _"*4\!]4.4,!K%\!H5Z-A5!T%!]31<N",*=,\!SA411!_%!d-++4A\!E2-,5-!U%!
013-A1\!s"!]%!V-,+\!)"<=.4!:=QQ\!9=3"*!K%!0<NZ-A1D2-,\!41!-.%!&I$&%!
e'54,1"C"<-1"=,!=C!-!)=#4.!0;."<4!@-A"-,1!(=A2!=C!1N4!',C.34,D-!E!@"A3*!K&!
'=,!TN-,,4.!Z"1N!-,!E,1"+4,"<-..J!U"*1",<1!H<1=5=2-",%g!=P+?)="#(+1&,5!G!
X$$Yh!4$II&RRG%!5="h$I%$/F$a[=3A,-.%;;-1%$II&RRG%!

/77% _"**P"A<N4,\!TNA"*1"-,\!8N=2-*!]%!9354A*5=AC4A\!U=2","P!E%!
Kj..4A\!H#-!K=A"1D\!-,5!d=#-,!B-#.=#"<%!&I$$%!e',14AC4A=,M',53<45!
E,1"#"A-.!BA=14",!KLE!',14A-<1*!Z"1N!1N4!T4..3.-A!:)E!]4."<-*4*!OEB>?!
-,5!O:]7R%g!'(&)*+$%,"-)+.)/0+-+102"-)3(&405#%6!&G?!X7IYh!/7F7/i>$%!
5="h$I%$IF7a[Q<%K$$$%&>$G7/%!

/7>% u"-=\!]-,\!K-A"-,!d%!V"..";\!B414A!01-4N4."\!:"<N-A5!H%!:-,5-..\!-,5!
U-#"5!d-<P*=,%!&I$/%!e8N4!]32-,!',14AC4A=,M',53<45!KLE!BA=14",!
',N"Q"1*!H-A.J!01-+4*!=C!',C.34,D-!E!@"A3*!',C4<1"=,!QJ!:41-",",+!1N4!



! G%!:4C4A4,<4*!

! &?F!

',<=2",+!@"A-.!64,=24!",!1N4!TJ1=;.-*2%g!*+$%,"-)+.)<0%+-+16!GF!X&/Yh!
$/I>/i>G%!5="h$I%$$&Gad@'%I&&&IM$/%!

/7?% W-2-,-P-\!V%\!E%!'*N"N-2-\!-,5!V%!)-+-1-%!$RRI%!e:4<=,*1"131"=,!=C!
',C.34,D-!@"A3*!:)EM)3<.4=;A=14",!T=2;.4L4*!01A3<13A-..J!:4*42Q.",+!
)-1"#4!@"A-.!:"Q=,3<.4=;A=14",!T=A4*%g!'(&)*+$%,"-)+.)/0+-+102"-)3(&405#%6!
&?>!X$RYh!$$$>$i>>%!

/7F% W-*35-\!d%\!0%!)-P-5-\!E%!V-1=\!8%!8=J=5-\!-,5!E%!'*N"N-2-%!$RR/%!
eK=.4<3.-A!E**42Q.J!=C!',C.34,D-!@"A3*h!E**=<"-1"=,!=C!1N4!)0&!BA=14",!
Z"1N!@"A"=,!K-1A"L%g!<0%+-+16!$R?!X$Yh!&7Ri>>%!
5="h$I%$II?a#"A=%$RR/%$7F/%!

/7G% W4,\!]3"M9",+\!TN"M]3"!9"-,+\!TN3,+MW"!_3\!]4-1N4A!9%!(=AA4*1\!
E,+4.-!(4A+3*=,\!V-M8"2!TN=J\!d4A42J!d=,4*\!41!-.%!&I$$%!e]42-++.31",",M
)43A-2","5-*4!S-.-,<4!T=,C4A*!:4*;"A-1=AJMUA=;.41!8A-,*2"**"Q"."1J!=C!
1N4!B-,542"<!]$)$!',C.34,D-!@"A3*!",!(4AA41*%g!=%+2&&>0,15)+.)#(&)
!"#0+,"-):2">&46)+.)?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.):4&%02"!$IG!X/7Yh!
$7&?7i?R%!5="h$I%$IF/a;,-*%$$$$III$IG%!

/7R% W4\!w"-=DN4,\!:=Q4A1!K!VA3+\!-,5!W"DN"!d-,4!8-=%!&II?%!e8N4!
K4<N-,"*2!QJ!_N"<N!',C.34,D-!E!@"A3*!)3<.4=;A=14",!(=A2*!n."+=24A*!
-,5!S",5*!:)E%g!!"#$%&!777!XF$&&Yh!$IFGiG&%!5="h$I%$I/Ga,-13A4I>/FR%!

/>I% W4Z54..\!d=,-1N-,!_%\!-,5!_".."-2!9%!',<4%!&I$&%!e@"A=.=+J%!
(A-24*N"C1",+!1=!BEMu!',C.34,D-%g!?20&,2&)A!&B)C+%DE)!FCFG!//F!X?IR$Yh!
$?7i?>%!5="h$I%$$&?a*<"4,<4%$&&>>/R%!

/>$% W=,5=.-\!K-AP!E\!("=,-!(4A,-,54*\!E.-,!S4."<N-M@"..-,34#-\!
K4."**-!O<<4.","\!w",*N-,!6-=\!T-A=.!T-A14A\!-,5!B414A!B-.4*4%!&I$$%!
eS355",+!T-;-Q"."1J!=C!1N4!',C.34,D-!@"A3*!)43A-2","5-*4!T-,!S4!
K=53.-145!QJ!841N4A",%g!*+$%,"-)+.)<0%+-+16!G>!X?Yh!&7GIiR$%!
5="h$I%$$&Gad@'%I&$GGM$I%!

/>&% W=3,1\!d-<=Q!0\!94=,"5!6"1.",\!8N=2-*!K!K=A-,\!-,5!T-A=.",-!S!
9p;4D%!&IIG%!eKUE>!B-A1"<";-14*!",!1N4!U414<1"=,!=C!B-A-2JL=#"A3*!
',C4<1"=,!-,5!'*!H**4,1"-.!C=A!1N4!H-A.J!E<1"#-1"=,!=C!U4,5A"1"<!T4..*!",!
:4*;=,*4!1=!04,5-"!@"A3*!U4C4<1"#4!',14AC4A",+!B-A1"<.4*%g!*+$%,"-)+.)
H44$,+-+16)A/"-#04+%&E)8>FQ)RSTUG!$GI!XFYh!7R$Ii$G%!

/>/% W3-,\!B3Z4"\!K-AP!S-A1.-2\!sN"J=,+!9=3\!0N=354,+!TN4,\!d"4!sN=3\!
u"-=[",+!]4\!s=,+J-,+!9#\!41!-.%!&IIR%!eTAJ*1-.!01A3<13A4!=C!-,!E#"-,!
',C.34,D-!B=.J24A-*4!BEX)Y!:4#4-.*!-,!H,5=,3<.4-*4!E<1"#4!0"14%g!!"#$%&!
7>G!XF&7IYh!RIRi$/%!5="h$I%$I/Ga,-13A4IFF&I%!

/>7% s4Q4544\!0!9\!-,5!:!E!9-2Q%!$RGG%!e',C.34,D-!E!@"A3*!K&!BA=14",h!
K=,=<.=,-.!E,1"Q=5J!:4*1A"<1"=,!=C!@"A3*!6A=Z1N!-,5!U414<1"=,!=C!K&!",!
@"A"=,*%g!*+$%,"-)+.)<0%+-+16!?&!XGYh!&F?&iF&%!

/>>% sN-,+\!8-=\!W3N-"!S"\!]3-"J3!8"-,\!u"-=Z4,!9"\!U"!9"3\!W",+!_3\!8-=!
d",\!41!-.%!&I$7%!e]32-,!',C4<1"=,!Z"1N!',C.34,D-!@"A3*!EX]$I)GY!CA=2!
9"#4!B=3.1AJ!K-AP41*\!TN",-\!&I$7%g!74&%10,1)H,.&2#0+$5)M05&"5&5!&I!X$&Y%!
5="h$I%/&I$a4"5&I$&%$7IR$$%!

/>?% sN-,+\!u"-=-"\!]=,+24"!u3\!u"-=5-,!TN4,\!u"3[3,!9"\!u"-,[3,!_-,+\!
0N3[3,!U",+\!:4,."!sN-,+\!41!-.%!&I$7%!eE**=<"-1"=,!=C!(3,<1"=,-.!
B=.J2=A;N"*2*!",!1N4!KLE!64,4!Z"1N!03*<4;1"Q"."1J!1=!H,14A=#"A3*!F$!
',C4<1"=,%g!O$4",)L&,&#025!$//!X&Yh!$GFiRF%!5="h$I%$IIFa*II7/RMI$/M
$/?FM/%!



! G%!:4C4A4,<4*!

! &?G!

/>F% sN-,+\!W",+\!w"-,J"!sN-,+\!]3"N3"!V=,+\!W=,+;",+!d"-,+\!W3Z4"!
6-=\!63=N3-!U4,+\!d"-,DN=,+!0N"\!41!-.%!&I$/%!e]>)$!]JQA"5!@"A3*4*!
S4-A",+!&IIRa]$)$!@"A3*!64,4*!8A-,*2"1!",!63",4-!B"+*!QJ!:4*;"A-1=AJ!
UA=;.41%g!?20&,2&)A!&B)C+%DE)!FCFG!/7I!X?$/RYh!$7>Ri?/%!
5="h$I%$$&?a*<"4,<4%$&&R7>>%!

/>G% sN-=\!TN4,\!T-A".44!U4,"*=,\!d=,!K!]3"QA4+1*4\!014#4,!6J+"\!-,5!
:=Q4A1!K!VA3+%!&II>-%!e]32-,!'06$>!T=,[3+-1"=,!8-A+41*!S=1N!'()M
',53<45!-,5!T=,*1"131"#4.J!HL;A4**45!BA=14",*!(3,<1"=,",+!",!U"#4A*4!
T4..3.-A!B-1NZ-J*%g!=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)?20&,2&5)+.)#(&)
@,0#&>)?#"#&5)+.):4&%02"!$I&!X&RYh!$I&IIi&I>%!
5="h$I%$IF/a;,-*%I>I7F>7$I&%!

/>R% sN-=\!TN4,\!T-A".44!U4,"*=,\!d=,!K%!]3"QA4+1*4\!014#4,!6J+"\!-,5!
:=Q4A1!K%!VA3+%!&II>Q%!e]32-,!'06$>!T=,[3+-1"=,!8-A+41*!S=1N!'()M
',53<45!-,5!T=,*1"131"#4.J!HL;A4**45!BA=14",*!(3,<1"=,",+!",!U"#4A*4!
T4..3.-A!B-1NZ-J*%g!=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)?20&,2&5)+.)#(&)
@,0#&>)?#"#&5)+.):4&%02"!$I&!X&RYh!$I&IIi&I>%!
5="h$I%$IF/a;,-*%I>I7F>7$I&%!

/?I% sN-=\!TN4,\!8"4,MW",+!]*"-,+\!:4"M9",!V3=\!-,5!:=Q4A1!K%!VA3+%!
&I$I%!e'06$>!T=,[3+-1"=,!0J*142!8-A+41*!1N4!@"A-.!)0$!BA=14",!",!
',C.34,D-!E!@"A3*M',C4<145!T4..*%g!=%+2&&>0,15)+.)#(&)!"#0+,"-):2">&46)+.)
?20&,2&5)+.)#(&)@,0#&>)?#"#&5)+.):4&%02"!$IF!X>Yh!&&>/i>G%!
5="h$I%$IF/a;,-*%IRIR$77$IF%!

/?$% sN-=\!s"["-,+\!S."2-!(3L\!K4+-,!6==5Z",\!'.5"P=!:%!U3,-J\!U-#"5!
01A=,+\!SA"-,!T%!K"..4A\!V4,!T-5Z4..\!41!-.%!&IIG%!eE31=;N-+=*=24M
',54;4,54,1!H**4,1"-.!(3,<1"=,!C=A!1N4!E31=;N-+J!BA=14",!E1+>!",!
T4..3.-A!'223,"1J!1=!',1A-<4..3.-A!B-1N=+4,*%g!3&--)O+5#)V)802%+I&!7!X>Yh!
7>Gi?R%!5="h$I%$I$?a[%<N=2%&IIG%$I%II/%!

/?&% sN"A,=#\!n%!B%!$RRI%!e0=.3Q"."D-1"=,!=C!K-1A"L!BA=14",!K$aK!CA=2!
@"A"=,*!n<<3A*!-1!U"CC4A4,1!;]!C=A!nA1N=2JL=M!-,5!B-A-2JL=#"A3*4*%g!
<0%+-+16!$F?!X$Yh!&F7iFR%!
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Appendix. 

Appendix A. Impact of mutations on RNA structure 

During the last decade a number of studies have indicated the importance of RNA 

sequence and structure to the ability of a protein to be both functional and correctly 

folded. One of the first studies to shed light on this subject showed that a synonymous 

single nucleotide polymorphism (SNP) altered the specificity and conformation of 

MDR1 (Kimchi-Sarfaty et al. 2007). They hypothesized that this SNP introduced a 

rare codon into the mRNA and altered the timing of translation, therefore impacting 

the overall conformation of the protein. Intriguingly, another study showed that a 

synonymous mutation in the coding region of immunity-related GTPase M, altered a 

mircoRNA binding site leading to the constitutive activation of the gene during 

inflammation and explaining the relationship between this mutation and the incidence 

of Crohn’s disease (Brest et al. 2011). More recently, RNA structure within the 

coding region has been shown to be involved in the rate of translation, which can vary 

by several orders of magnitude across a single mRNA transcript as well as having 

control over the localization of the nascent RNA (Mortimer, Kidwell, and Doudna 

2014).  

 

The differences in phenotype and functionality of MxA as a result of different mRNA 

backgrounds could be due to the mRNA sequence influencing the ability of the 

mutated protein to be efficiently translated or targeted to the correct location. 

Therefore to assess the impact of these mutations on the wt mRNA, the sequences 

were analysed using mFold to identify any major differences in the predicted mRNA 

secondary structures. Fig. 4.7 shows the predicted mRNA structures and Gibbs free 

energy for each of the phenotype altering mutations.  
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Figure A.1 Predicted mRNA structures. A. The RNA sequences for wt wMxA, wt MxA, and T103A MxA were predicted through the online 
RNA structure prediction tool, mFold. The images show the most stable RNA structure for each mutant and details the Gibbs Free Energy (%G). 
The location of the mutations is indicated by the red box. 
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Figure A.1 Predicted mRNA structures. B.  The  RNA sequences for G255E MxA, D478A MxA and I376D MxA were predicted through the 
online RNA structure prediction tool, mFold. The images show the most stable RNA structure for each mutant and details the Gibbs Free Energy 
(%G). The location of the mutations is indicated by the red box. 
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The predicted mRNA secondary structures for wt MxA and wt wMxA show 

extremely different structures that differ in the Gibbs free energy required to produce 

the most stable structure. This is to be expected as shown in Fig. 4.1 there are 678 

nucleotide changes in the wobble mRNA construct, therefore it is highly unlikely that 

these two sequences would share similar secondary structure. The RNA structure for 

the wt MxA mRNA containing the T103A mutation was identical to the wt secondary 

structure possessing the exact same Gibbs free energy. The only difference was a 

single nucleotide change at nucleotide position 307 from adenosine to guanine which 

as shown in Fig. 4.7 occurs at the top of a stem loop, therefore not impacting any 

secondary structure within the mRNA sequence. Similarly, G255E is encoded by a 

point mutation at nucleotide position 764 exchanging a guanine for an adenosine. 

Although this mutation resulted in a small change in Gibbs free energy required to 

produce the most stable structure requiring 0.1 #G more than wt MxA, this mutation 

had no impact on the overall structure of the RNA as this mutation takes place within 

an asymmetric loop prior to two stem loops, which is unlikely to have an impact on 

the overall structure. 

 

However, both I376D and D478A mutations introduce nucleotide changes that have 

an impact on the predicted secondary structure of the MxA mRNA. The introduction 

of aspartic acid in place of isoleucine changed a whole codon beginning at nucleotide 

position 1126, where ATA became GAC, which not only increased the required 

Gibbs free energy but also altered the overall secondary structure of the mRNA. As 

highlighted in Fig. 4.7 the introduction of GAC completely changes the secondary 

structure from nucleotide position 996 through to 1136 compared to the wt mRNA 
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structure. This large change in predicted mRNA secondary structure suggests this 

may play a role in the altered distribution phenotype observed for MxA containing the 

I376D mutation. 

The change in mRNA secondary structure for D478A was less drastic as the aspartic 

acid to alanine mutation only required a single nucleotide mutation, swapping 

adenosine for cytosine at nucleotide position 1433. The introduction of this mutation 

actually lowered the Gibbs free energy required to produce this structure and also had 

a small impact on the predicted mRNA secondary structure. This suggests that the 

change in overall RNA structure could be responsible for the atypical localization of 

D478A MxA. 

 

The prediction of the full-length mRNA structures for each mutant revealed that both 

I376D and D478A mutations have an impact on the overall secondary structure in 

comparison to wt MxA. However, this analysis also showed that the two mutants that 

showed an aggregation phenotype, T103A and G255E, had no impact on the global 

secondary structure. To further investigate the impact of these mutations on mRNA 

structure, smaller 400-nucleotide windows, starting approximately 200 nucleotides 

away from the mutation were analysed through mFold and compared to the same 

window in wt MxA. Fig. 4.8 shows the initial 400-nucleotide window and the 

subsequent images achieved through systematically moving 50 nucleotides towards 

the introduced mutation to determine the predicted impact on localised mRNA 

structure in comparison to wt MxA. In three of the five windows (100-500 nt, 200-

600 nt and 250-650 nt) there was no difference in localised secondary structure or 

Gibbs free energy when comparing wt MxA to T103A mRNA. In all three of these 

structures, as in the full-length mRNA structure, the mutation occurred in the loop   



! E;;4,5"L!

! &F7!

 

  Output of sir_graph (©)
mfold_util 4.6

Created Sun Aug 23 09:32:23 2015

dG = -125.27 [Initially -135.90] Wt MxA 100-500nt

G G C U C
G G U G G C C G A

G
A

A
C
A
A
C

C
U

G

U
G

C
A

G
C

C
A

G
U

A
U

G
A

G
GAG

A
A
G

G
U

G
CG

C
C

C C
U

G
C

A
U

C G
A

C
C

U
C

A
U

U
G

A
C

U
C

C
C

U
G

C
G G

G
C

U
C

U
A

G
G U

G

U
G
G
A
G
C A

G G
A C

C
U

G
G

C

C
C

U
G

C
C

A
G

C

C

A
U

C
G

C
C

G

U
C A

U
C

G
G

G
G

A
C C A

G
A

G
C

U
C

G
G G

C
A

AG
A

G
C

U
C

CGUG
U

U
G

G

A
G

G C
A

CU
G

U
C

A
G

G

A

G
U
U
G

C

C
C

U
U

C
C

C
A

G
A

G
G

C
A

G C G G G A U C
G U

G
A

C
CA

GAUG
CCCGC

U
G

G
U

G
C

U
G A

A
A

C
U

G
A

A G
A

A
A

C
U

U G U
G
A

A
C G

A
A

G
AUA

A

G
UG

G
A

G
A

GGCA
A

G
G

U
C

A
G

U
UA

C
C

A
G

G
A

C
UA

C
G
A
G
A
U

U
GA

G

A
U
U
U
C
G

G

A

U
G

C
U

U
CAG

A

G
G

U
A

G
A

A
A

AG
G

A
A

A
UUAA

U
A
A

A
G C

C
C
A
G

A
A U

G
C

C
A

U
C

G
C
C
G

G
G

G
A

A
G

GAAUGGGAA
UCAGUCAUGAGCU

AA
UCA

CC
C

G U G A
G
A

U
C

A G

5’

3’

40

80

120

160

200

240

280

320

360

400

WT MxA  
100-500 nt 
#G= - 125.27 

Output of sir_graph (©)
mfold_util 4.6

Created Sun Aug 23 09:41:59 2015

dG = -120.04 [Initially -132.10] Wt MxA 150-550nt

C C
C

C
U

G
C

A U
C

G
A

C
C

U
C

A
U

U
G
A

C
U

C C C
U
G
C
G
G

G

C
U

C
U

A
G

G
U

G
U

G
G

A
G

C
A

G
G

A
C

C
U

G
G

C
C

C
U

G
C

C
A

G
C

C
A

U
C

G
C

C
G

U
C A U

C
G

G
G

G
A C C A G

A
G
C
U
C

G
G

G C
A
A

G
A
G
C
U
C

C
G
U

G

U

U
G
G

A

G
G
C
A
C
U
G
U
C
A
G
G
A
G
U
U
G
C

C
C

U
U

C
C
C
A
G
A
G G

C
A

G
C

G
G

G
A

U
C

G
U G

A
C

C
AG

A
U

GC
C

C
G

C
U

G
G
U
G
C

U
GAAAC

U
G
A
A
G

A
A

A C U U G U
G A A

C
G

A
AG

AUAAGU
G
G

A
G

A
G

G
C

A
A

G G U C
A
G

UU
ACC

A GG
ACUA

C
G

A
G

A
U U

G
AG

A
U

U
U

C
G

G

A

U
G

C
U

U
C

A

G
A

G
G

U
A

G
A

A
A

A
G

G
A

A
A

U
U
A
A
U
A
A

A
G

C
C

C
AGAAUGCCAUC

G
C

C
G

G
G

G
A

A
G

G

A
A

U
GG

G
A

A
U

C
A

G

U
C

AUG
A

G
C

U
A

A
U

C

A
C

CC
G

U
G

A G
A

U
C

A
G

C
U

C
C

C
G

A
GAU

G
U

C
C C

G
G

A
U

C
U

G
A

C
U

C
U

A
A
U

A G A C
C

U
U

C
C

U
G

G
C

A

U

A

A

C

C
A

5’

3’

40

80

120

160

200

240

280

320

360

400

WT MxA 
150-550 nt 
#G= -120.04 

WT MxA 300-
700 nt 

#G= -107.81 

WT MxA 
250-650 nt 
#G= -115.08 

WT MxA 
200-600 nt 
#G= -120.24 

Output of sir_graph (©)
mfold_util 4.6

Created Sun Aug 23 09:52:16 2015

dG = -120.24 [Initially -133.20] Wt MxA 200-600nt

A

C
C

U
G

G
C

C
C

U
G

C
CA

G
C

C
A

UCGCCGU
C

A U
C G G G G A

C
C

A
G

A
G

C
U

CG
G
G

C A
A

G
A

G
C

U
C C G U

G

U

U
G

G A

G
G

C
A

C
U

G
U

C
A

G
G A G U

U
G
C
C

C
U
U
C

C

C
A
G

A
G
G

C
A
G
C
G
G
G

A
U
C

G
U

G A C
C
A

G
A
U
G

C
C
C
G
C
U
G

G
U

G
C
U
G A

A
A

C
U G

A
A
G
A
A A

C
U

U
G

U

G
A A C

G
A

A
GA

U
A

A
G

U

G
G

A
G
A

G
G

C
A

A

G

G
U
C A

G

U U A C C A G G

A
C U A

C G A G A U
U

G
A

GAUUUCG

G
AUG

CUU

C
AG

A

GGUAG
A

A
A

A
G
G
A

A

AUUAAU
A

A
A

G
C
C
C
A
G

A
A

U
G
C
C

A
U

C
G
C
C
G
G
G

G
A
A
G
G

A
A
U

G
G
G
A
A
U
C
A
G

U
C
A

U
G
A
G
C
U
A
A
U
C

A
C

C
CGU

G
A

G
A

U
C

A
G

C
U

CC
C
G

A
G

AUG
U

C
C

C
G
G

A

U

C
U
G
A
C
U
C
UA

A
U
A
G

A
C
C
U
U

C
C
U
G
G
CA

UA
A
CC

A
G

A
GUG

G
C

U
G

U
GGG

C
A

A
U C

A
G

C
C

U
G C

U
G

A

C
A U

U
G
G
G
U

A
U

A
A

G

A

U

C
A

A
G

A
CA5’

3’

40

80

120

160

200

240

280

320

360

400

Output of sir_graph (©)
mfold_util 4.6

Created Sun Aug 23 09:58:40 2015

dG = -115.08 [Initially -124.00] Wt MxA 250-650nt

A
G

C
U
C
C

G
UG

U
U

G
G
A
G

G

C
A
C
U
G
U
C
A
G
GA

G
UUGCC

CUUC

CC
A

G

A
GGC

A
G

C
G

G
G

A
U

C

G
UG

A
C
C

A G
A

U
G C

C
C

G
C

U
G

G
U G C

U
G

AAACUG
A A GA A

ACUUGU
GAA

C
G

A A G
A U A A G U

G G A G
A G G C A A

G G
U

C

A

G

U
U

A
C

C
A

G
GAC

U
A

C
G

A
G

A
UU

G
A G

A
U

U
U

C
G G A

U
G

C
U

U

C A
G
A

G
G

U
A

G

A
A
A
A
G

G
A

A
A

U
U

A
A

U
A
A
A

G
C

C
C

A
G
A

A U G
C

C
A

U

C
G

C
C

G
G

G
G A

A
G

G

A
A

U G G
G

A
A

U
C

A
G

U
C

A U G
A

G
C

U
A

A
U

C

A
C

C C
G

U
G

AG
A

U
C

A
G

C
U

C
C

C
G

A
G A U

G
U

C
CC

G
G

A
U

C
U

G
A

C
U

C
U

A
A

U
AGAC

C
U

U

C
C

U
G

G
C
A
U
A

A
CCAGAG

U
G

G
C

U
GU

G
G

G
C

A
A
U
C
A

G

C
C

U
G

C
U G A C

A
U
U

G
G

G
U

A
U

A A G
A

U
C

A
A

G
A C

A
C

UC
A

U
C

A
A

G
AA

G

U
A

C
A

U
C

C
AG

A

G
G

C
A

G
G

A

G
A

C
A
A
U

C
AG

C
C
U
G
G
U
G
G
U
G G

U

5’

3’

40

80

120

160

200

240

280

320

360400

Output of sir_graph (©)
mfold_util 4.6

Created Sun Aug 23 10:04:09 2015

dG = -107.81 [Initially -119.20] Wt MxA 300-700nt

G
A

U
C
G
U
G

A
C
C

A
G
A

U
G
C
C

C
G

C
U
G

G
U

G
C

U
G

A
A

A

C
U

G
A

AGAA

A
C

U
U

G
U

G
AAC

G
A
A

G A
U

A
A

G
U

G
G

A
GAGGCA

A
GGU

CA
G
U

U A C C
AGG

A
C U A

CGAGAU
U

G
A

G A U U U C G
G

A
U G C U U C

A
G

A
G

G
U

A
G

A
A

A

A

G G A A A U U A A U
A

A
A

G
C
C
C
A

G
A
A
U

G
C
C
A
U

C

G
C
C
G
G
G

G
A
A
G
G

A
A
U

G
G
G
A
A
U
C
A
G

U
C
A
U

G
A

G
C

U
A

A
U

C
A

C
C

C G U
G
A

G
A
U
C
A
G
C
U
C C

C
G

A
G

A U G
U
C

C
C
G
G

A

U

C
U
G
A
C
U
C
U

A
A

U
A

G
A

C
C
U
U

C
C
U
G
G
C A U

A
A
C
C

A
GAG

U
G
G
C

U
G

U
G
G
G
C

A

A

U
C

A
G C C U G C U

G A C A U
U G G G U A U A

A G A
U C A A G A

C A
C
U

CA
UCAAGA

AG
UACAUCCA

GA

GGCAGG
A

G
A

CAA
U
C
A
G
C

C

U
G

G
U

G
G

U G

G
U

C
C

C
C

A
G
U

AA

U
G

U
G

G
A

CAU
U
G

C
C

A
C

CAC
A
G

A

G
G
C

U
C
U

C
A

G
C
A
U
G
G

C
C

C
AGG

5’

3’

40

80

120

160

200

240

280

320

360

400

T103A MxA 
100-500 nt 
#G= -125.27 

T103A MxA 
150-550 nt 
#G= -119.77 

T103A MxA 
300-700 nt 
#G= -106.49 

T103A MxA 
250-650 nt 
#G= -115.08 

T103A MxA 
200-600 nt 
#G= -120.24 

Output of sir_graph (©)
mfold_util 4.6

Created Sun Aug 23 09:35:36 2015

dG = -125.27 [Initially -135.90] T103A MxA 100-500nt

G G C U C
G G U G G C C G A

G
A

A
C
A
A
C

C
U

G

U
G

C
A

G
C

C
A

G
U

A
U

G
A

G
GAG

A
A
G

G
U

G
CG

C
C

C C
U

G
C

A
U

C G
A

C
C

U
C

A
U

U
G

A
C

U
C

C
C

U
G

C
G G

G
C

U
C

U
A

G
G U

G

U
G
G
A
G
C A

G G
A C

C
U

G
G

C

C
C

U
G

C
C

A
G

C

C

A
U

C
G

C
C

G

U
C A

U
C

G
G

G
G

A
C C A

G
A

G
C

U
C

G
G G

C
A

AG
A

G
C

U
C

CGUG
U

U
G

G

A
G

G C
A

CU
G

U
C

A
G

G

A

G
U
U
G

C

C
C

U
U

C
C

C
A

G
A

G
G

C
A

G C G G G A U C
G U

G
G

C
CA

GAUG
CCCGC

U
G

G
U

G
C

U
G A

A
A

C
U

G
A

A G
A

A
A

C
U

U G U
G
A

A
C G

A
A

G
AUA

A

G
UG

G
A

G
A

GGCA
A

G
G

U
C

A
G

U
UA

C
C

A
G

G
A

C
UA

C
G
A
G
A
U

U
GA

G

A
U
U
U
C
G

G

A

U
G

C
U

U
CAG

A

G
G

U
A

G
A

A
A

AG
G

A
A

A
UUAA

U
A
A

A
G C

C
C
A
G

A
A U

G
C

C
A

U
C

G
C
C
G

G
G

G
A

A
G

GAAUGGGAA
UCAGUCAUGAGCU

AA
UCA

CC
C

G U G A
G
A

U
C

A G

5’

3’

40

80

120

160

200

240

280

320

360

400

Output of sir_graph (©)
mfold_util 4.6

Created Sun Aug 23 09:45:24 2015

dG = -119.77 [Initially -132.80] T103A MxA 150-550nt

C C
C

C
U

G
C

A U
C

G
A

C
C

U
C

A

U

U

G
A

C U
C

C

C
U

G
C
G
G
G
C

U
C

U

A

G
G

U
G
U

G
G

A
G

C
A

G
G

A
C

C
U

G
G

C
C

C
U

G
C

C
A

G
C

C
A

U
C

G
C

C
G

U
C A U

C
G

G
G

G
A C C A G

A
G
C
U
C

G
G

G C
A
A

G
A
G
C
U
C

C
G
U

G

U

U
G
G

A

G
G
C
A
C
U
G
U
C
A
G
G
A
G
U
U
G
C

C
C

U
U
C

C
C A G A G

G
C

A
G

C
G

G G
A
U

C
G

U
G

G
C

C

A

G
A

U
G
C
C
C
G
C

U
G G U G C U G A

A A C
U G

A
A G A

A

A C U U G U
G A A

C
G

A
AG

AUAAGU
G

GAGAG
G

CA
AGG

UCAGUUACC
AG

G
A

C
U

A

C
G

A
G

A
U U

G
AG

A
U

U
U

C
G

G
A

U
G

C
U

U
C

A
G

A
G

G
U

A
G

A

A
A

A
G

G
A

A
A

U
U
A
A
U
A
A

A
G

C
C

C
AGAAUGCCAUC

G
C

C
G

G
G

G
A

A
G

G

A
A

U
GG

G
A

A
U

C
A

G

U
C

AUG
A

G
C

U
A

A
U

C

A
C

CC
G

U
G

A G
A

U
C

A
G

C
U

C
C

C
G

A
GAU

G
U

C
C C

G
G

A
U

C
U

G
A

C
U

C
U

A
A
U

A G A C
C

U
U

C
C

U
G

G
C

A

U

A

A

C

C
A

5’

3’

40

80

120

160

200

240

280

320

360

400

Output of sir_graph (©)
mfold_util 4.6

Created Sun Aug 23 09:55:30 2015

dG = -120.24 [Initially -133.20] T103A MxA 200-600nt

A

C
C

U
G

G
C

C
C

U
G

C
CA

G
C

C
A

UCGCCGU
C

A U
C G G G G A

C
C

A
G

A
G

C
U

CG
G
G

C A
A

G
A

G
C

U
C C G U

G

U

U
G

G A

G
G

C
A

C
U

G
U

C
A

G
G A G U

U
G
C
C

C
U
U
C

C

C
A
G

A
G
G

C
A
G
C
G
G
G

A
U
C

G
U

G G C
C
A

G
A
U
G

C
C
C
G
C
U
G

G
U

G
C
U
G A

A
A

C
U G

A
A
G
A
A A

C
U

U
G

U

G
A A C

G
A

A
GA

U
A

A
G

U

G
G

A
G
A

G
G

C
A

A

G

G
U
C A

G

U U A C C A G G

A
C U A

C G A G A U
U

G
A

GAUUUCG

G
AUG

CUU

C
AG

A

GGUAG
A

A
A

A
G
G
A

A

AUUAAU
A

A
A

G
C
C
C
A
G

A
A

U
G
C
C

A
U

C
G
C
C
G
G
G

G
A
A
G
G

A
A
U

G
G
G
A
A
U
C
A
G

U
C
A

U
G
A
G
C
U
A
A
U
C

A
C

C
CGU

G
A

G
A

U
C

A
G

C
U

CC
C
G

A
G

AUG
U

C
C

C
G
G

A

U

C
U
G
A
C
U
C
UA

A
U
A
G

A
C
C
U
U

C
C
U
G
G
CA

UA
A
CC

A
G

A
GUG

G
C

U
G

U
GGG

C
A

A
U C

A
G

C
C

U
G C

U
G

A

C
A U

U
G
G
G
U

A
U

A
A

G

A

U

C
A

A
G

A
CA5’

3’

40

80

120

160

200

240

280

320

360

400

Output of sir_graph (©)
mfold_util 4.6

Created Sun Aug 23 10:01:13 2015

dG = -115.08 [Initially -124.00] T103A MxA 250-650nt

A
G

C
U
C
C

G
UG

U
U

G
G
A
G

G

C
A
C
U
G
U
C
A
G
GA

G
UUGCC

CUUC

CC
A

G

A
GGC

A
G

C
G

G
G

A
U

C

G
UG

G
C
C

A G
A

U
G C

C
C

G
C

U
G

G
U G C

U
G

AAACUG
A A GA A

ACUUGU
GAA

C
G

A A G
A U A A G U

G G A G
A G G C A A

G G
U

C

A

G

U
U

A
C

C
A

G
GAC

U
A

C
G

A
G

A
UU

G
A G

A
U

U
U

C
G G A

U
G

C
U

U

C A
G
A

G
G

U
A

G

A
A
A
A
G

G
A

A
A

U
U

A
A

U
A
A
A

G
C

C
C

A
G
A

A U G
C

C
A

U

C
G

C
C

G
G

G
G A

A
G

G

A
A

U G G
G

A
A

U
C

A
G

U
C

A U G
A

G
C

U
A

A
U

C

A
C

C C
G

U
G

AG
A

U
C

A
G

C
U

C
C

C
G

A
G A U

G
U

C
CC

G
G

A
U

C
U

G
A

C
U

C
U

A
A

U
AGAC

C
U

U

C
C

U
G

G
C
A
U
A

A
CCAGAG

U
G

G
C

U
GU

G
G

G
C

A
A
U
C
A

G

C
C

U
G

C
U G A C

A
U
U

G
G

G
U

A
U

A A G
A

U
C

A
A

G
A C

A
C

UC
A

U
C

A
A

G
AA

G

U
A

C
A

U
C

C
AG

A

G
G

C
A

G
G

A

G
A

C
A
A
U

C
AG

C
C
U
G
G
U
G
G
U
G G

U

5’

3’

40

80

120

160

200

240

280

320

360400

Output of sir_graph (©)
mfold_util 4.6

Created Sun Aug 23 10:05:41 2015

dG = -106.49 [Initially -124.00] T103A MxA 300-700nt

GA
U

C
G

U
G
G
C
C
A

G
A

U
G

C
CC

G

C
U

G
G

U
G

C
UG

A
A

A
C

U
GA

A
G

A
A

A
CU

U
G

UG
A
A

C
G

A

A

G
A

U
A

A
G

U
GG

A

GAGGCA

A
GGU

CA
G
U

U A C C
AGG

A
C U A

CGAGAU
U

G
A

G A U U U C G
G

A
U G C U U C

A
G

A
G

G
U

A
G

A

A

A

A

G G A A A U U A A
U

A
A

A
G
C
C
C
A
G

A
A

U
G
C
C

A
U

C
G
C
C
G
G
G

G
A
A
G
G

A
A
U

G
G
G
A
A
U
C
A
G

U
C
A
U

G
A

G
C

U
A

A
U

C
A

C
C

C G U
G
A

G
A
U
C
A
G
C
U
C C

C
G

A
G

A U G
U
C

C
C
G
G

A

U

C
U
G
A
C
U
C
U

A
A

U
A

G
A

C
C
U
U

C
C
U
G
G
C A U A

A
C

C
A

G

A
G U G

G
C

U
G

U
G G G

C
A

AUC
A

G
C

C

U
GC

U
G

A

C
AU

U
G
G
G
U

A
U

A
A

G

A

U

C

A

A
G

A
C

A
C

U
C

A
U

C A

A

G

A

A
G

U
A

C
A
U

C
C

A
G

A

G
G

C
A

G

G
A

G
A

C
A A

U
C

AG
C

C
U G

G
U

G
G

U
G

G
U

C
C

C
C

A
G
U

AA

U
G

U
G

G

ACA
U

U G
C

C
A

C
C

A
CA

G
A

G
G

C
U

C
U

CA
G

C
AU

G
G
C
C

C
A
G

G

5’

3’

40

80

120

160

200

240

280

320

360

400

Figure A.2. A. Predicted localised mRNA structures.  The RNA secondary structures for wt 
MxA and T103A MxA were predicted through the online RNA structure prediction tool, 
mFold. The sequences were analysed in 400 nt windows for the sequence between 100-700nt. 
The images show the most stable RNA structure for each mutant and indicate the Gibbs Free 
Energy (%G). !
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Figure A.2. B. Predicted localised mRNA structures.  The RNA secondary structures for wt 
MxA and G255E MxA were predicted through the online RNA structure prediction tool, 
mFold. The sequences were analysed in 400 nt windows for the sequence between 560-1150nt. 
The images show the most stable RNA structure for each mutant and indicate the Gibbs Free 
Energy (%G). !
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region of a hairpin, therefore having no impact on complementarity. However, the A 

to G nucleotide mutation was predicted to impact the RNA structure in the windows 

depicting nucleotides 150-550 and 300-700. In the RNA structure for nucleotides 

150-550 (in each image the starting nucleotide is numbered as 1 i.e position 1 = 

nucleotide 150 in overall sequence), the mutation was found at position 157 and led to 

an extensive change in secondary structure between nucleotide position 134 and 263 

in comparison to the predicted wt mRNA structure. In the predicted 300-700 

nucleotide structure the mutation occured very early in the sequence at position 7 

which had a large impact on the overall predicted structure. Using this systematic 

approach to increase proximity to the mutations allowed an insight into the potential 

structures the RNA might take during translation. Therefore based on these predicted 

structures it appears that T103A may have more of an impact on the localised mRNA 

structures than on the global structure, which could in turn impact the rate of 

translation resulting in the aggregated distribution phenotype exhibited by this mutant. 

 

Similarly to T103A, three of the windows in the case of G255E show identical 

predicted structure to wt RNA. In the windows showing 610-1010 nt, 660-1060 nt and 

710-1110 nt the mutation occured in an asymmetric loop prior to two hairpin loop 

structures, therefore being unlikely to have an impact on the predicted secondary 

structure. However, the G255E window 560-960 nt shows a markedly different 

structure to wt MxA mRNA between nucleotides 138 and 260 as the guanine to 

adenosine mutation increased the complementarity of the RNA which increased the 

stability and therefore reduced the required Gibbs free energy to produce this 

structure. The change in secondary structure for the window depicting the nucleotide 

window 750-1150 shows the mutation occurred at position 15, and shows a much 
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more subtle change in secondary structure compared to the predicted wt mRNA. The 

mutation led to a reduction in the asymmetric loop, which in turn reduced the size of 

the following bulge in comparison to the predicted wt mRNA structure. Therefore this 

suggests that this single nucleotide change may have an increased impact on localised 

RNA secondary structure, which could be important to the rate of translation or the 

ability to bind or be recognised by RNA binding proteins. 

 

Another potential impact of these mutations is the effects they have on codon 

frequency and subsequent tRNA availability. Kimchi-Sarfaty et al. (2007) suggested 

that an SNP led to the introduction of a rare codon in the mRNA of MDR1 that in turn 

altered the rate in translation causing an altered conformation and specificity for 

substrates and inhibitors. Table 4.2 summarises the changes in codon frequency for 

the mutations leading to atypical expression patterns of MxA. The table shows the 

codon frequency per 1000 codons within a human cell showing some intriguing 

differences. Firstly, the codon change for T103A leads to an increase in codon 

frequency, with approximately 9 more alanine codons available per 1000 than 

threonine. This suggests that the corresponding transfer RNA (tRNA) could be 

recruited to the ribosome quicker leading to an increased rate in translation and 

therefore could impact the rate at which the protein folds leading to aggregation at the 

site of translation. We see a similar increase in codon frequency for G255E as the 

GAA codon appears just over 10 times more frequently per 1000 codons the original 

GGA suggesting that the aggregation phenotype seen for G255E may also be 

determined by an increased tRNA availability disrupting the rate at which the 

translating protein folds.   
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Mutation Original Codon Frequency 
(/1000) 

Mutated Codon Frequency 
(/1000) 

T103A ACC = 19.2 GCC = 28.5 

G255E GGA = 18.6 GAA = 29.0 

I376D ATA = 7.1 GAC = 26.0 

D478A GAT = 22.3 GCT = 18.6 

  

Table A.1. Codon Frequencies of MxA mutations producing atypical expression 
phenotypes.  The codon frequencies for each of the mutations were determined using the 
genscript online codon frequency usage for Homo sapiens. The codon frequencies are 
expressed as number of codons found per 1000 codons.!
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Interestingly, the I376D mutation has the largest difference in codon frequency from a 

rare codon encoding isoleucine with only 7 ATA codons per 1000 to a relatively 

frequent codon appearing 26 times per 1000 codons. This could have an impact on the 

rate of translation, however the distribution phenotype is not indicative of aggregation 

but a potentially aberrant localization that could be induced by the predicted change in 

RNA structure. Alternatively, this codon does infer a slight conformational change to 

the protein, which leads to large oligomeric structures being formed within the 

cytoplasm. The introduction of alanine at position 478 in place of aspartic acid is the 

only mutation that leads to a decrease in codon availability reducing the number 

available by approximately 4 per 1000 codons. Although this is a less drastic change 

this could also play a role in the phenotype described for D478A as slowing the rate 

of translation can also have an impact on the conformation of MxA leading to atypical 

localization. 

 

Discussion  

For the two mutants showing aggregated phenotypes, T103A and G255E, the 

nucleotide changes were predicted to take place on the end of hairpin loop structures 

(Fig. A.1), and therefore suggesting that these changes are unlikely to impact the 

overall structure of the mRNA, making it unlikely to be the cause of the aggregation. 

Whereas the mutations that introduced the I376D and D478A changes did appear to 

have an impact on the overall mRNA structure. Interestingly, mRNA coding regions 

have been suggested to be highly important for the localization of nascent RNA and 

therefore these changes in RNA secondary structure may lead to these proteins being 

trafficked to different cellular organelles, leading to the expression phenotypes 

observed here (Mortimer, Kidwell, and Doudna 2014). 
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However, although the nucleotide mutations for T103A and G255E may not have 

impacted overall RNA structure it is possible that these mutations could have had an 

impact on localised mRNA structure, as the structure is likely to change throughout 

translation while the mRNA is processed through the ribosome. The structures 

predicted by mFold suggest that this could be the case. The caveat of this analysis is 

that the predicted structures are determined based on the free energies of the RNA 

sequence being able to fold into it’s most stable structure. This is unlike the cellular 

environment which is a highly packed with a number of RNA interacting factors such 

as other RNA molecules and mRNA binding proteins like NXF1 and CRM1, which 

could alter the overall structure of the mRNA (Delaleau and Borden 2015). In fact, a 

number of recent studies have attempted to determine the accuracy of in vitro RNA 

structure predictions in comparison to RNA structure within cells. Studies in plant, 

yeast and human cells have all suggested that the RNA folds present inside the cell 

are very different to those formed under artificial conditions (Ding et al. 2014; 

Rouskin et al. 2014). Therefore, suggesting that although this analysis can offer an 

insight as to the impact of nucleotide changes on RNA structure, it is should only be 

used as a starting point for future studies in a more relevant context. 

  

Although these small changes in nucleotide sequence do not appear to have a huge 

impact on RNA structure, it is possible that these changes do impact the speed of 

translation through changes in codon frequency. The coding region is well 

documented to have an impact both on the localization of nascent RNA as well as the 

rate of translation (Mortimer, Kidwell, and Doudna 2014). Table A.1 shows the 

changes in codon frequency associated with each of the mutations. For the two 
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mutants that exhibit aggregated phenotypes and the I376D mutant, the codon 

frequency increases, which suggests that the rate of translation may change and 

impact the ability of the protein to fold correctly. This has been described for a 

number of different proteins, such as MDR1, where a synonymous mutation caused 

the protein to have increased affinities for different substrates due to a conformational 

change in the active site despite having the same primary amino acid sequence 

(Kimchi-Sarfaty et al. 2007). A more severe example is displayed in Cystic Fibrosis, 

where the CFTR gene misfolds due to a codon deletion at position 508, changing the 

rate of translation and causing the protein to be trafficked to the proteasome for 

degradation (Cheung and Deber 2008). However, to determine if codon frequency and 

subsequent tRNA availability is the cause of the aberrant protein folding in these 

MxA mutants, further work is required.  
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!"#$#%"&'$()'*+$,(-'*, ./#0,"-(-'*, ./#0,"-("1,-0"2"&'0"#-(+/#3'3"$"0456&$7)"8,(7-"97,(+,+0"1,(&#7-0:(),97,-&,(&#8,/'%,
;'+(<#-0/#$ <='"-(>?(;=,(@0/7&07/,(A2(>-(>-0"07*#/(<=BCD#*'"-CD,$,0,1(E7*'-"F,1(>-0"3#14 GHHIHH: B JKIGH:
;'+(<#-0/#$ %$70'*4$C+/#$4$C0LM>()4-0=,0'),?(")#2#/*(<L>N'(OE#*#()'+",-)P QRIRH: G HIJS:
;'+(<#-0/#$ <='"-(E?(</4)0'$(@0/7&07/,(A2(>-0"C-%2(>-0"3#14(<-0#TSHQ GHHIHH: B HIHH:
;'+(<#-0/#$ L,&M'*,U(V7$$WX%(=,'84(&='"-(YCXXX(/,%"#-(!Z; GHHIHH: B SJITH:
;'+(<#-0/#$ Z-[-#\-(]+/#0,"-(2#/(X^>_5USJKKBQB`?(+'/0"'$(OE#*#()'+",-)P QQIGH: G JIST:
;'+(<#-0/#$ "**7-#%$#37$"-(['++'($"%=0(&='"-(8'/"'3$,(/,%"#-?(+'/0"'$(OE#*#()'+",-)P GHHIHH: B HIHH:
;'+(<#-0/#$ <='"-(>?(</4)0'$(@0/7&07/,(A2(;=,(M#8,$(<#*+$,6(V#/*,1(!,0\,,-(a"-&(BC_$4&#+/#0,"-(]a'%`(>-1(./#$'&0"-(X-17&"3$,(./#0,"-(]."+`(V/#*(E7*'-(@,*"-'$(.$')*' QQIQH: G SIRH:
;'+(<#-0/#$ "**7-#%$#37$"-($'*31'(G($"%=0(&='"-(OE#*#()'+",-)P QQIGH: G STIHH:
;'+(<#-0/#$ 7--'*,1(+/#0,"-(+/#17&0(OE#*#()'+",-)P GHHIHH: B KIKT:
;'+(<#-0/#$ "**7-#%$#37$"-(['++'($"%=0(&='"-(Ybc(/,%"#-(OE#*#()'+",-)P GHHIHH: B JRIJH:
;'+(<#-0/#$ [,/'0"-?(04+,(X(&40#)[,$,0'$(GS(")#2#/*('(OE#*#()'+",-)P GHHIHH: K GdIGH:
;'+(<#-0/#$ <='"-(>?(E7*'-(@,/7*(>$37*"-(<#*+$,6,1(e"0=(^4/")0'0,(>-1(>)+"/"- GHHIHH: Gd SBIJH:
;'+(<#-0/#$ "**7-#%$#37$"-(%'**'(=,'84(&='"-(OE#*#()'+",-)P GHHIHH: B SHIBH:
;'+(<#-0/#$ >;.()4-0='),?(Ef(0/'-)+#/0"-%?(*"0#&=#-1/"'$(VG(&#*+$,6?(%'**'(+#$4+,+0"1,(G(OE#*#()'+",-)P QJIBH: G SIRQ:
;'+(<#-0/#$ >;.()4-0='),()737-"0('$+='?(*"0#&=#-1/"'$(")#2#/*('(+/,&7/)#/(OE#*#()'+",-)P GHHIHH: R GJITH:
;'+(<#-0/#$ [,/'0"-?(04+,(XX(&40#)[,$,0'$(B(,+"1,/*'$(OE#*#()'+",-)P GHHIHH: SH RdIJH:
;'+(<#-0/#$ @@>G(OE#*#()'+",-)P GHHIHH: J GHIQH:
;'+(<#-0/#$ "**7-#%$#37$"-($"%=0(&='"-(8'/"'3$,(/,%"#-?(+'/0"'$(OE#*#()'+",-)P GHHIHH: B HIHH:
;'+(<#-0/#$ >D.g>;.(0/'-)$#&'),(S(OE#*#()'+",-)P JdIGH: H GTIdH:
;'+(<#-0/#$ /"3#)#*'$(+/#0,"-(@K?(hC$"-[,1?(")#2#/*(<L>N'(OE#*#()'+",-)P QKIQH: G SISd:
;'+(<#-0/#$ /"3#)#*'$(+/#0,"-(@J?(")#2#/*(<L>N3(OE#*#()'+",-)P QQIGH: G TIJH:
;'+(<#-0/#$ [,/'0"-?(04+,(X(&70"&7$'/(E'G(OE#*#()'+",-)P QQIGH: G TIBG:
;'+(<#-0/#$ 7--'*,1(+/#0,"-(+/#17&0(OE#*#()'+",-)P GHHIHH: Q KGIJH:
;'+(<#-0/#$ [,/'0"-(GH(],+"1,/*#$40"&(=4+,/[,/'0#)")i([,/'0#)")(+'$*'/")(,0(+$'-0'/")`?(")#2#/*(<L>N3(OE#*#()'+",-)P GHHIHH: SJ JdISH:
;'+(<#-0/#$ <='"-(>?(E7*'-(E,'/0(bCb'&0'0,(D,=41/#%,-'),(E(<='"-?(;,/-'/4(<#*+$,6(e"0=(M'1=(>-1(A6'*'0, QQIGH: G SIRH:
;'+(<#-0/#$ "**7-#%$#37$"-(=,'84(&='"-(8'/"'3$,(/,%"#-(OE#*#()'+",-)P GHHIHH: B KBITH:
;'+(<#-0/#$ &#'0#*,/()737-"0(3,0'(OE#*#()'+",-)P QQIGH: G GIGJ:
;'+(<#-0/#$ 0/'-)*,*3/'-,(+/#0,"-(SS(OE#*#()'+",-)P QdIdH: G KIdR:
;'+(<#-0/#$ "**7-#%$#3"-(=,'84(&='"-(OE#*#()'+",-)P GHHIHH: B KHISH:
;'+(<#-0/#$ +/#0,"-(@GHHC>T(OE#*#()'+",-)P GHHIHH: B GQIdH:
;'+(<#-0/#$ <='"-(>?(@,*"C560,-1,1(@#$70"#-(@0/7&07/,(A2(E7*'-(^4,$#*'(X**7-#%$#37$"-(D(D,0,/*"-,1(!4(<#-)0/'"-,1(hCL'4(@&'00,/"-% QdIQH: G JKITH:
;'+(<#-0/#$ 7--'*,1(+/#0,"-(+/#17&0(OE#*#()'+",-)P QQIGH: G JIGQ:
;'+(<#-0/#$ "**7-#%$#37$"-(=,'84(&='"-(8'/"'3$,(/,%"#-(OE#*#()'+",-)P QdIBH: G BTIBH:
;'+(<#-0/#$ "**7-#%$#37$"-(['++'($"%=0(&='"-(8'/"'3$,(/,%"#-(OE#*#()'+",-)P GHHIHH: S RGIdH:
;'+(<#-0/#$ *#-#&$#-'$(X%^('-0"3#14($"%=0(&='"-(OE#*#()'+",-)P QQIGH: G JSIdH:
;'+(<#-0/#$ &#'0#*,/()737-"0(%'**'CG(OE#*#()'+",-)P QQIGH: G GIQJ:
;'+(<#-0/#$ "**7-#%$#37$"-(%'**'(B(=,'84(&='"-(8'/"'3$,(/,%"#-(OE#*#()'+",-)P GHHIHH: B SQIBH:
;'+(<#-0/#$ 7--'*,1(+/#0,"-(+/#17&0(OE#*#()'+",-)P GHHIHH: K KBIGH:
;'+(<#-0/#$ <='"-(>?(L,2"-,1(@#$70"#-(@0/7&07/,(A2(E7*'-(<4)0'0"-(> QQIGH: G TIGK:
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!"#$%&'()&* +,#&)(-'./$-0&1&)2$3$45&2&$0"#-+'06 3778779 37 3:8779
!"#$%&'()&* -22;'&<*&=;*-'$*-<>($?>"-'$45&2&$0"#-+'06 3778779 / @A8@79
!"#$%&'()&* -22;'&<*&=;*-'$B$>+"CD$?>"-'$C")-"=*+$)+<-&'E$#")(-"*$45&2&$0"#-+'06 3778779 / 78779
!"#$%&'()&* -22;'&<*&=;*-'$C")-"=*+$)+<-&'$45&2&$0"#-+'06 3778779 F /@8A79
!"#$%&'()&* (;=;*-'$=+("./G$?>"-'$4H;0$2;0?;*;06 3778779 / @38@79
!"#$%&'()&* %>"-'$IE$%)D0("*$J();?(;)+$K1$G)&"L*D$M+;()"*-N-'<$B'(-=&LD$%)O7/7$G&;'L$!&$!>+$P'1*;+'N"$B$5Q$5+2"<<*;(-'-' 3778779 A @O8O79
!"#$%&'()&* #&*D#D)-2-L-'+$()"?($=-'L-'<$#)&(+-'$3E$-0&1&)2$%RBS=$45&2&$0"#-+'06 FF8379 3 A8QT9
!"#$%&'()&* -22;'&<*&=;*-'$*-<>($?>"-'$C")-"=*+$)+<-&'$45&2&$0"#-+'06 3778779 / @/8379
!"#$%&'()&* "?(-'E$=+("E$#")(-"*$45&2&$0"#-+'06 3778779 T 3O8@79
!"#$%&'()&* U+)"(-'$3A$45&2&$0"#-+'06 3778779 3O @78O79
!"#$%&'()&* -22;'&<*&=;*-'$V"##"$?>"-'$C")-"=*+$)+<-&'$45&2&$0"#-+'06 3778779 3 /:8F79
!"#$%&'()&* -22;'&<*&=;*-'$V"##"$?>"-'$C")-"=*+$)+<-&'$45&2&$0"#-+'06 3778779 / AF8@79
!"#$%&'()&* +,#&)(-'.3$45&2&$0"#-+'06 3778779 33 3@8/79
!"#$%&'()&* RBM$=-'L-'<$#)&(+-'$@E$-0&1&)2$%RBS=$45&2&$0"#-+'06 3778779 3 38:F9
!"#$%&'()&* +*&'<"(-&'$1"?(&)$3."*#>"$3$45&2&$0"#-+'06 3778779 F Q38779
!"#$%&'()&* P<$*"2=L"$?>"-'$.$>;2"' 3778779 / @38@79
!"#$%&'()&* -22;'&<*&=;*-'$V"##"$>+"CD$?>"-'$45&2&$0"#-+'06 3778779 / @38779
!"#$%&'()&* PW5X$#)&(+-'$45&2&$0"#-+'06 3778779 Q @/8@79
!"#$%&'()&* -22;'&<*&=;*-'$V"##"$*-<>($?>"-'$YIZ$)+<-&'$45&2&$0"#-+'06 3778779 Q A78T79
!"#$%&'()&* ;''"2+L$#)&(+-'$#)&L;?($45&2&$0"#-+'06 3778779 O A78F79
!"#$%&'()&* %>"-'$IE$%)D0("*$J();?(;)+$K1$[?(&L&2"-'$Q$K1$!>+$P*.3Q$R+?+#(&)$B*#>"3$P'$%&2#*+,$\-(>$B$5;2"'$M+;()"*-N-'<$H&'&?*&'"*$B'(-=&LD$])"<2+'( 3778779 / 78779
!"#$%&'()&* V+)"(-'$3$45&2&$0"#-+'06 3778779 A/ T@8@79
!"#$%&'()&* *;#;0$I"$#)&(+-'$45&2&$0"#-+'06 3778779 @ 3A8@79
!"#$%&'()&* %>"-'$GE$%)D0("*$J();?(;)+$K1$!>+$5;2"'$M&(?>3$M+<"(-C+$R+<;*"(&)D$R+$G&;'L$!&$!>+$]"=$])"<2+'($K1$B'$B'("<&'-0($B'(-=&LD FF8379 3 /A8:79
!"#$%&'()&* -22;'&<*&=;*-'$B$>+"CD$?>"-'$C")-"=*+$)+<-&'E$#")(-"*$45&2&$0"#-+'06 FF8379 3 78779
!"#$%&'()&* )-=&0&2"*$#)&(+-'$J:E$-0&1&)2$%RBS"$45&2&$0"#-+'06 FF8F79 3 3/8F79
!"#$%&'()&* R;CG.*-V+$3$45&2&$0"#-+'06 3778779 A 3Q8O79
!"#$%&'()&* -22;'&<*&=;*-'$V"##"$*-<>($?>"-'$YIZ$)+<-&'$45&2&$0"#-+'06 3778779 / AQ8@79
!"#$%&'()&* +#-L-LD2-0$*;2-'"*$#)&(+-'$/3A$45&2&$0"#-+'06 3778779 : 78779
!"#$%&'()&* %>"-'$%E$J&*;(-&'$J();?(;)+$K1$5;2"'$P22;'&<*&=;*-'$H 3778779 : A@8379
!"#$%&'()&* %>"-'$5E$H+?>"'-020$K1$M+;()"*-N"(-&'$K1$B$5;2"'$B'(-."*#>"$!&,-'$B'(-=&LD 3778779 / 78779
!"#$%&'()&* %>"-'$IE$5+)Q$[,()"?+**;*")$^&2"-'$P'$%&2#*+,$\-(>$]"=$])"<2+'($K1$H&)7FO/@ 3778779 / 78779
!"#$%&'()&* "'(-.JBRJ.%&Y$J$#)&(+-'$-22;'&<*&=;*-'$V"##"$*-<>($?>"-'$45&2&$0"#-+'06 3778779 / T/8379
!"#$%&'()&* %>"-'$%E$%)D0("*$J();?(;)+$K1$H_@$]"=E$B$W+)2*-'+$B'(-=&LD$Y")-"'($K1$B'(-.5;2"'$%D(&2+<"*&C-);0$B'(-=&LD$O1F 3778779 A O78379
!"#$%&'()&* %>"-'$GE$%)D0("*$J();?(;)+$K1$!>+$M&C+*$%&2#*+,$]&)2+L$G+(`++'$a-'?$/.W*D?&#)&(+-'$ba"<c$B'L$d)&*"?(-'$P'L;?-=*+$d)&(+-'$bd-#c$])&2$5;2"'$J+2-'"*$d*"02" 3778779 Q Q@8T79
!"#$%&'()&* P<$*"2=L"$?>"-'$.$>;2"'$b1)"<2+'(c FF8F79 3 AT8@79
!"#$%&'()&* %>"-'$5E$%)D0("*$J();?(;)+$K1$RC3AA.+*-?-(+L$B'(-=&LD$%>@F$P'$%&2#*+,$\-(>$Y/$d+#(-L+ 3778779 / 78779
!"#$%&'()&* %>"-'$BE$5+#?-L-'.]"=$%&2#*+, 3778779 Q TA8A79
!"#$%&'()&* ';?*+&#>&02-'$-0&1&)2$3$45&2&$0"#-+'06 FF8379 3 Q87T9
!"#$%&'()&* -22;'&<*&=;*-'$C")-"=*+$)+<-&'$45&2&$0"#-+'06 3778779 Q F8AF9
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!"#$%&'()&* +,,-'&.*&/-*+'$01"23450"+'$6-/.)&-#$7888$7494:$)1.+&';$#")(+"*$<=&,&$6"#+1'6> ?@@A@@B C DDAD@B
!"#$%&'()&* +,,-'&.*&/-*+'$01"23$50"+'$2")+"/*1$)1.+&'$<=&,&$6"#+1'6> ?@@A@@B C EFAG@B
!"#$%&'()&* +,,-'&.*&/-*+'$H"##"$*+.0($50"+'$2")+"/*1$)1.+&'$<=&,&$6"#+1'6> ?@@A@@B C EEAE@B
!"#$%&'()&* I$51**$"'(+/&J3$01"23$50"+'$2")+"/*1$)1.+&'$<=&,&$6"#+1'6> KKA?@B ? KADCB
!"#$%&'()&* +,,-'&.*&/-*+'$H"##"$*+.0($50"+'$<=&,&$6"#+1'6> ?@@A@@B C ECAG@B
!"#$%&'()&* "'(+4(1("'-6$(&L&+J$+,,-'&.*&/-*+'$*+.0($50"+'$2")+"/*1$)1.+&'$<=&,&$6"#+1'6> ?@@A@@B D MKAF@B
!"#$%&'()&* %0"+'$N;$%)36("*$O()-5(-)1$PQ$=+24?$R1-()"*+S+'.$T'(+/&J3$%0@E ?@@A@@B D U?AE@B
!"#$%&'()&* +,,-'&.*&/-*+'$*",/J"$*+.0($50"+'$7N:$)1.+&'$<=&,&$6"#+1'6> ?@@A@@B C MEAF@B
!"#$%&'()&* -''",1J$#)&(1+'$#)&J-5($<=&,&$6"#+1'6> ?@@A@@B E GA?EB
!"#$%&'()&* 0%VC@?UCM@;$+6&Q&),$%WTX5$<=&,&$6"#+1'6> ?@@A@@B C FAFUB
!"#$%&'()&* T!Y4J1#1'J1'($WRT$01*+5"61$T$<=&,&$6"#+1'6> KKA?@B ? @AKMB
!"#$%&'()&* +,,-'&.*&/-*+'$V$01"23$50"+'$2")+"/*1$)1.+&'$<=&,&$6"#+1'6> ?@@A@@B C CUA@@B
!"#$%&'()&* %0"+'$T;$%)36("*$O()-5(-)1$PQ$!01$I)&"J*3$=+24?$R1-()"*+S+'.$Z"/$[M$T($?AK@$T'.6()&,$W16&*-(+&' ?@@A@@B C EKAD@B
!"#$%&'()&* +,,-'&.*&/-*+'$01"23$50"+'$<=&,&$6"#+1'6> ?@@A@@B C EDAC@B
!"#$%&'()&* (-/-*+'$"*#0"4?I$50"+'$<\-6$,-65-*-6> ?@@A@@B C? UUAM@B
!"#$%&'()&* !0+6$%9O$Q1"(-)1$+6$+'5*-J1J$(&$60&]$(01$()"'6*"(+&'$&Q$(01$5&))16#&'J+'.$7X)1.+&'A$Y)161'(*3$()"'6*"(+&'$^-"*+Q+1)6$&'$7X)1.+&'$Q1"(-)16$")1$+**1."*;$#")(+"*$<=&,&$6"#+1'6> ?@@A@@B C DCAD@B
!"#$%&'()&* !-/-*+';$/1("$C%$<=&,&$6"#+1'6> ?@@A@@B M G@A?@B
!"#$%&'()&* 01"($60&5H$G@$H9"$#)&(1+'$?T_?I$<=&,&$6"#+1'6> ?@@A@@B ?K EUAU@B
!"#$%&'()&* 01(1)&.1'1&-6$'-5*1")$)+/&'-5*1&#)&(1+'$=?$`=a;$+6&Q&),$%WTX/$<=&,&$6"#+1'6> KCAG@B ? EA@GB
!"#$%&'()&* %0"+'$T;$b'-6-"*$!]+''+'.$8'$%)36("*6$PQ$!01$%+(6$I+'J+'.$T'(+/&J3$Z"/$Z)".,1'($ZD#E ?@@A@@B C UMAU@B
!"#$%&'()&* c1)"(+';$0"+);$/"6+5;$?$<=&,&$6"#+1'6> KKA?@B ? DAGUB
!"#$%&'()&* )+/&6&,"*$#)&(1+'$O?F;$+6&Q&),$%WTX5$<=&,&$6"#+1'6> KKAG@B ? UACMB
!"#$%&'()&* -''",1J$#)&(1+'$#)&J-5($<=&,&$6"#+1'6> ?@@A@@B G ECA?@B
!"#$%&'()&* YWd98%!d9e$)-2I4*+H1$C$+6&Q&),$[?$<=&,&$6"#+1'6> KFAU@B ? @A@@B
!"#$%&'()&* %0"+'$N;$%)36("*$O()-5(-)1$PQ$Z"/$9L4CKD@$8'$%&,#*1L$f+(0$=-,"'$Y*"6,"$c"**+H)1+'$T($CAE$T'.6()&,$W16&*-(+&' ?@@A@@B E @A@@B
!"#$%&'()&* +,,-'&.*&/-*+'$*+.0($50"+'$<=&,&$6"#+1'6> KFA?@B ? M?AK@B
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