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Using Species Proportions to Quantify
Turnover in Biodiversity

Yuan Yuan, Stephen T. Buckland, Phil J. Harrison, Sergey Foss, and
Alison Johnston

Quantifying species turnover is an important aspect of biodiversity monitoring.
Turnover measures are usually based on species presence/absence data, reflecting the
rate at which species are replaced. However, measures that reflect the rate at which indi-
viduals of a species are replaced by individuals of another species are far more sensitive
to change. In this paper, we propose families of turnover measures that reflect changes
in species proportions. We study the properties of our measures, and use simulation to
assess their success in detecting turnover. Using data on the British farmland bird com-
munity from the breeding bird survey, we evaluate our measures to quantify temporal
turnover and how it varies across the British mainland.

Supplementary materials accompanying this paper appear on-line.
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1. INTRODUCTION

Perhaps appropriately, there is a great diversity of measures for quantifying biodiversity
(Pielou 1975; Krebs 1989; Magurran 2004). Choice of measure depends both on the type
of data available and on the questions being asked. Maurer and McGill (2010) reviewed a
large number of indices to measure species diversity, and gave a list of indices to measure
different aspects of diversity, such as richness, evenness, dominance and rarity. This paper
concentrates on temporal turnover, which we define as the change in species proportions
over time, taking into account species identity. Thus, if a community is to exhibit zero
turnover, then each species should represent a constant proportion of the community. We
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propose families of turnover measures in this paper, and link some of them to the metrics
summarized by Martín-Fernández et al. (1998). We further study their properties in the
context of measuring turnover, and provide transformation and modification for general
applications. Although we focus on temporal turnover, these measures can also be used for
quantifying spatial turnover between two neighbouring locations.

Spatial turnover is closely related to the concept of beta diversity. If we consider total
diversity of a region (termed gamma diversity), we can partition it into alpha diversity, which
measures average diversity at locations within the region, and beta diversity, which reflects
spatial heterogeneity in diversity (Lande 1996). Thus, a region with high beta diversity
has a diverse range of communities, perhaps reflecting a wide variety of habitats, while a
region with low beta diversity has a relatively homogeneous community of species across
the region. We refer to spatial turnover as the dissimilarity between pairs of locations that
are neighbours, whereas beta diversity does not require this, and can be used to compare
multiple assemblages. Beta diversity covers a broader range of objectives than the spatial
turnover we discuss here. Jøst et al. (2010) reviewed a number of indices used for measuring
similarities between assemblages in the context of beta diversity. Here, we concentrate on
the dissimilarity of species composition.Measuring turnover, whether spatial or temporal, is
about assessing the changes between two species compositions, and such change ismeasured
bydissimilarity,which is also referred to as differentiation, divergence or distance in different
scientific fields, such as probability theory,mathematical geology and cluster analysis. Given
species proportions, we propose four different families of turnover measure, all of which
can be used to quantify either spatial or temporal change in diversity.

There is no simple relationship between species turnover and other measures of diversity
such as richness and evenness. For example, one assemblage can have complete turnover
(no species in common between two time points), but its evenness might stay the same (the
species proportions might remain the same, even though they relate to different species for
the two time points). The relationship between richness and turnover is more complicated;
both negative and positive relationships between spatial turnover and richness have been
observed in studies on spatial turnover using species–area relationships (Clarke and Lidgard
2000; Stevens and Willig 2002; Koleff et al. 2003; Lennon et al. 2001; Lyons and Willig
2002). Quantifying changes in species diversity over time or space provide valuable insights
into understanding biodiversity trends.

Traditionally, turnover usually refers to spatial turnover, and is usually measured from
species presence–absence data (Rodrigues et al. 2000; La Sorte and Boecklen 2005). How-
ever, if available, it is more informative to use species abundance distributions tomeasure the
compositional change over time (Magurran 2010).Measures based on the species abundance
distribution or on species proportions are more informative and sensitive to biodiversity
changes than measures based on presence/absence data. When we use species abundance
distributions to measure turnover, turnover is evaluated by quantifying the rate at which
individuals of one species are being replaced by individuals of another species.

The U.K. Breeding Bird Survey (BBS, Risely et al. 2013) has been conducted annually
since 1994 on a stratified random sample of 1 km squares. Sites are surveyed twice a year
by volunteers walking along two parallel 1 km transect lines, and recording any adult birds
detected. Harrison et al. (2014) fitted models to these data to allow estimation of abundance
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in any 1 km square on the British mainland for any species with adequate data. We use
those estimates for farmland species to estimate temporal turnover in the British farmland
bird community, and study how it varies spatially. The BBS is undertaken by the British
Trust for Ornithology (BTO) and jointly funded by the BTO, the Joint Nature Conservation
Committee and the Royal Society for the Protection of Birds. The BBS data are available
through the British Trust for Ornithology’s standard data request procedure (see http://www.
bto.org/research-data-services/data-services/data-and-informationpolicy).

2. BACKGROUND

Before introducing families of turnover measures, we briefly review indices that have
been used for, or are related to, measuring turnover. Most have been used for measuring
beta diversity, i.e. assessing compositional similarity between assemblages. Jøst et al. (2010)
gave a list of distance-based similarity measures, some of which can be expressed by the
L p distance-based measures proposed in Sect. 4.1. Some of the entropy-based similarity
measures proposed by Jøst et al. (2010) have forms similar to the one introduced in Sect. 4.4.
All of the indices that we propose can be used to measure either spatial or temporal turnover.
However, spatial and temporal turnover measures have different interpretations. As pointed
out by Magurran (2010), spatial heterogeneity (beta diversity) typically corresponds to
different subsets of individuals, whereas in temporal studies, we follow a single community
of individuals over time.

There are essentially three different methods to study turnover (Chao et al. 2006; Jøst
et al. 2010). First, incidence-based and abundance-based similarity measures are widely
used, and they usually share similar forms. Most studies that use them are in the context of
beta diversity.When there is only one assemblage and a time series of observations on it, these
indices can also be used to measure temporal change in diversity. Incidence-based indices
use presence–absence data, while abundance-based indices use counts or abundances. These
counts or abundances are often scaled to give species proportions.

Second, spatial turnover can also be evaluated by studying the species–area relation-
ship, which is the relationship between species richness (i.e. the number of species in an
assemblage) and the size of the area that the assemblage occupies. Power and logarithmic
functions have been used to estimate how the number of species increases as the size of the
sampled area increases (Conner and McCoy 1979; Lennon et al. 2001; Rosenzweig 1995).
The species–time relationship, a temporal analogue of the species–area relationship, is used
to evaluate the dependence of species richness on temporal scale (Grinnell 1922; Preston
1960; Rosenzweig 1995). Power functions (Adler and Lauenroth 2003; Hadly and Maurer
2001) and logarithmic functions (Rosenzweig 1995;White 2004) have been used to estimate
the species–time relationship and hence the temporal turnover of species.

Third, the species range shifts, i.e. changes in species’ ranges over time, are estimated
to quantify species turnover. As for incidence-based indices, presence–absence data are
typically used, and turnover is measured by modelling species ranges, thus allowing the
species extinctions and colonizations in the survey area to be estimated (Nenzén and Araújo
2011; Thuiller et al. 2005; Lawler et al. 2009). In the study of Island Biogeography theory,
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MacArthur andWilson (1967) defined species turnover as the number of species eliminated
and replaced per unit time, and focus on equilibrium state in terms of immigration and
extinction in an island population. In applications, we often take the predicted future range
of each species based on modelling climate or land use changes, and the consequent impact
on the species.

Both incidence-based and species–area relationship methods use presence–absence data.
However, ‘absence’ typically equates to ‘not recorded’, which may be a consequence of
failure to detect the species when it is present, rather than genuine absence. In addition,
rare species are more difficult to detect and may be under-represented relative to more
abundant species. For the method based on species range shifts, change in species’ ranges
tends to be slow and difficult to detect, as species are typically sparsely distributed at the
edge of their range, so that the problem of undetected presence is greater. However, species
proportions change almost continuously. Methods based on species proportions are more
sensitive to changes in the community than those based on changing ranges. We therefore
concentrate on turnover measures that use the species proportion vector, derived from the
estimated species abundance distributions over time or space. We introduce notation in
Sect. 3.1 and some key transformations in Sect. 3.2. We give a list of criteria and discuss
their importance inmeasuring turnover in Sects. 3.3 and 3.4.We then introduce four families
of turnover measure (Sect. 4).We summarize the proposed turnover measures in tables (Web
Appendix A) and compare them through a simulation study (Web Appendix B). In Sect. 5,
we apply our measures to quantify turnover in the farmland breeding bird community of the
British mainland for the period 1994 to 2011. Finally, we summarize our findings from the
simulation study (Sect. 6) and discuss the choice of different turnover measures (Sect. 7).

3. PRELIMINARY INFORMATION

3.1. NOTATION

We use p = (p1, . . . , pK ) to denote the vector of species proportions, where pk ≥ 0,
∑K

k=1 pk = 1, and K is the number of species. Note that some pk may be zero. However,
zero values are problematic for measures involving the ratio of pk’s, which includes several
of our indices. In practice, therefore, K might be taken to be the number of species for
which pk > 0. For regional surveys, we may be interested in quantifying temporal turnover
by location, so that spatial variation in temporal turnover can be assessed. In this case, even
common species are likely to have observed species proportions of zero at some locations.
In this circumstance, spatio-temporal models can be fitted to the data for each species, and
species proportions calculated from the predicted abundances at each location (Harrison et al.
2014). Temporal turnover can then be evaluated at each location using all those species with
a predicted abundance exceeding zero at that location (Harrison et al. 2015; Yuan et al.
n.d.), even though some of those species may not have been recorded at that location. The
spatio-temporal modelling also reduces the sampling error in estimated species proportions.

For simplicity, we assume pk > 0 for any species k, so that all families of turnover
measures proposed here are well defined. Therefore, p is considered in an open simplex,

denoted by P
K−1+ =

{
p1, . . . , pK

∣
∣
∣
∑K

k=1 pk = 1 and ∀k pk > 0
}
. We assume that p is a
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known probability distribution vector, although to evaluate turnovermeasures in practice, we
would need to replace it by an estimate p̂ . Turnover measures assess the difference between
two probability distribution vectors, which we denote by p1 and p2 at two different time
points. Thus pi is the species proportion vector at time point i , pi = (pi1, . . . , piK ), for
i = 1, 2. Measures can also be defined that are not a function of the species proportion
vectors. For example, we might use the species density vector. In such cases, we use p∗
to denote the vector, which is no longer a probability distribution vector: p∗

k > 0, ∀k as
before, but

∑K
k=1 p

∗
i ∈ (0,∞).

3.2. SOME USEFUL TRANSFORMATIONS

We list three transformations on the open simplex PK−1+ , and all of them are one-to-one.

1. Transform into a positive sphere In order to use the distributional theory that has
been established for the sphere (Stephens 1982; Stanley 1990), the simplex P

K−1+
needs to be transformed to a sphere, and such a transformation is denoted by S( p),

S( p) := (
√
p1, . . . ,

√
pK ). (1)

Using this transformation, PK−1+ is transformed into a positive sphere, denoted by

S
K−1+ =

{(√
p1, . . . ,

√
pK

) ∣
∣
∣ pk > 0,

∑K
k=1 pk = 1

}
. The transformed species

proportion vector is no longer a probability distribution vector after transformation
S
K−1+ , because

∑K
k=1

√
pk �= 1.

2. Transform using aweight vectorWemaywish to assign different levels of importance
to different species. Such importance can be related to, for example, the commer-
cial value of different species in the fishing industry, different functional roles in
the ecosystem, or genetic distance of a species from others in the community. The
importance of each species is represented by a weight. Let w denote the weight vec-
tor, where w ∈ P

K−1+ with
∑K

k=1 wk = 1. For any w, the weight transformation,
Fw( p), is a simplex operation (a transformation from P

K−1+ to PK−1+ ),

Fw( p) :=
(

p1w1

〈 p,w〉 , . . . ,
pKwK

〈 p,w〉
)

(2)

where 〈 p,w〉 = ∑K
k=1 pkwk is the scalar product of p and w.

Note that when combining the above two transformations S given by (1) and Fw given by
(2), we get a transformation from a simplex to a weighted positive sphere. Let Sw denote
the resulting transformation from P

K−1+ to SK−1+ using the weight vector w:

Sw( p) :=
(√

p1w1

〈 p,w〉 , . . . ,
√

pKwK

〈 p,w〉
)

. (3)

After transformation Fw( p) as defined in (2), the species proportion vector is still a proba-
bility distribution vector. However, this is not the case for Sw( p) defined in (3).
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3. Centred log-ratio (clr) transformation It can be useful to transform proportions
to the real line. The log-ratio transformation, log(pk/pK ), k = 1, . . . , K − 1, is
used to transform p in the simplex PK−1+ into data inRK−1. However, this log-ratio
transformation affects each element of p differently because of its dependence on
the (arbitrary) ordering of the specie in p. In order to obtain a one-to-one trans-
formation and a symmetric operation for all K components in p, Aitchison (1982,
page 79) proposed the clr transformation which uses the geometric mean as the

divisor. Let g( p) denote the geometric mean of p, i.e. g( p) =
(∏K

k=1 pk
)1/K

. The

clr transformation is defined as clr( p) :=
(
log p1

g( p) , . . . , log
pK
g( p)

)
. The species

proportions after applying clr( p) lie in R. Therefore, the transformed vector is not
a distribution vector.

3.3. PROPERTIES OF TURNOVER MEASURES

A turnover measure, d( p1, p2), is considered as a function from P
K−1+ × P

K−1+ → R.
Such a function can be used to measure either temporal or spatial turnover. The form of the
function stays the same but the arguments are different: for temporal turnover, pi , i = 1, 2,
is the species proportion vector at time i (in a given location or region), while for spatial
turnover, pi , i = 1, 2, is the species proportion vector at location i (at a given time point).
Whether spatial or temporal,d( p1, p2) is ametric if it satisfies the following three properties,
but the relative importance of the properties differs for the two cases.

1. Positive definiteness d( p1, p2) > 0 for any p1 �= p2, and d( p1, p2) = 0 if and only
if p1 = p2. For turnover measures, the positive definiteness means that the minimum
value of a turnover measure is zero, and a turnover measure equals zero if and only
if there is no change in species composition.

2. Symmetry d( p1, p2) = d( p2, p1), for any p1 �= p2. Symmetry is necessary when
two assemblages or communities are compared for turnover. However, symmetry is
not necessarily required for measuring temporal turnover, for which it is natural to
follow the temporal order.

3. Triangle inequality d( p1, p3) ≤ d( p1, p2) + d( p2, p3). For both spatial and tem-
poral turnover measures, it is preferred to have the triangle inequality. In the case of
temporal turnover, for example, when comparing the turnover for three consecutive
time points, the turnover between time point 1 and time point 3 should be no larger
than the sum of turnover of time point 1 versus time point 2 and of time point 2 versus
time point 3.

In addition to the above three properties, we note that permutation invariance is another prop-
erty that is important for turnover measures. For a turnover measure, permutation invariance
means that changing the sequence of the species in p does not change the result. As all
the measures discussed in this paper are permutation invariant, we do not list it above. It
is also important to consider the above three properties for a turnover measure that is not
defined on probability distribution vectors. The species proportion vector is obtained simply
by scaling a density or abundance vector. For a vector p∗, if we can find a constant c > 0
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such that p∗ = c p, we say that p∗ is equivalent to p. Given this definition, the species den-
sity vector, λ = (λ1, λ2, . . . , λK ), is equivalent to a species proportion vector, p, because
p = λ/

∑K
k=1 λk . Some measures have the above three properties not only for p, but also

for any of its equivalent vectors. When a measure is equivalently defined on p and all its
equivalent vectors p∗, we use d( p∗

1, p
∗
2) to denote the turnover measure.

3.4. FURTHER PROPERTIES OF TURNOVER MEASURES

It is important to examine the properties of turnover measures and understand the advan-
tage of having these properties in applications. Jøst et al. (2010) suggested three basic
properties for any ecologically useful measure of similarity and discussed these properties
in the context of measuring beta diversity. Aitchison (1992) gave a list of criteria for mea-
sures to assess compositional difference in geological applications. Although concerned
with a different application, their summary sheds light on the properties of turnover mea-
sures, which we discuss here. In this section, we discuss the properties of turnover measures
in the context of measuring turnover as a ‘distance’ or ‘divergence’ between two probability
distributions of frequencies specified by two different species proportion vectors p1 and
p2. In Sect. 3.3, we listed three basic properties for a turnover measure to be a metric. The
following lists another two useful properties:

4. Scale invariance d(a p1, b p2) = d( p1, p2), for any constants a > 0 and b > 0. If
a turnover measure is scale invariant, then p1 and p2 do not have to be probability
distribution vectors, i.e.

∑K
k=1 p1k and

∑K
k=1 p2k do not necessarily have to be one.

A scale invariant turnover measure remains unchanged as long as the species com-
positional vectors are proportional to the species probability vector, as is the case for
species density and abundance vectors.

5. Insensitivity to coordinate scaling d( p1, p2) = d(C ◦ p1,C ◦ p2), for any coordinate
scaling function C, which is an operation defined on vector x. Let y denote the
vector after applying C to x, then y = C ◦ x = (C1x1, . . . , CK xK ), and for each
k, yk = Ck xk . Note that for a turnover measure, if the difference between each
component in p1 and p2 is measured in the form of ratios, i.e. p1k/p2k for any
species k, then this turnover measure is insensitive to any coordinate scaling.

Scale invariance is a special case of insensitivity to coordinate scaling, as it is the same scaling
factor applied to each coordinate, i.e. Ck in the coordinate scaling function is constant for
any k. We consider properties 1 to 3 of Sect. 3.3 together with these two further properties
in the context of the proposed turnover measures (see Web Appendix A for details).

3.5. THE ADVANTAGE OF BEING INSENSITIVE TO COORDINATE SCALING FOR

TURNOVER MEASURES

It is rare to have perfect detection in wildlife abundance surveys. Therefore, we need to
apply detection probabilities to the survey data to estimate abundance. Such a process can
be considered as scaling each element in the species proportion vector p by the inverse of
the detection probability for the given species.
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The coordinate scaling function is expressed as C−1 = (C−1
1 , . . . , C−1

K

)
, where Ck is

the detection probability for species k with 0 < Ck ≤ 1. The following proves that if a
turnover measure is insensitive to coordinate scaling (which implies scale invariant), and if
the detection probability for a given species is constant, then the measure is independent
of the detection probability vector C−1. Using insensitivity to coordinate scaling and scale
invariance in the following three steps, we have d( p1, p2) = d(λ1,λ2) = d(C−1◦λ1, C−1◦
λ2) = d

(
p(c)
1 , p(c)

2

)
, where p(c), i = 1, 2, is the species proportion vector after applying the

capture probabilities. This means that for species k, we have p(c)
k = λk/Ck∑K

s=1(λs/Cs )
. Therefore,

provided that for any given species, the detection probability does not change over time,
so that C is constant, we do not need to be able to estimate detection probability for a
turnover measure that is scale invariant and insensitive to coordinate scaling. For surveys
with standardized field procedures, such as national breeding bird surveys or long-term
bottom trawl fish surveys using standard gear, it may not be unreasonable to assume that
the detection probability does not change over time.

4. DIFFERENT FAMILIES OF TURNOVER MEASURES

4.1. THE Lq -DISTANCE TURNOVER MEASURE AND ITS GENERALIZATIONS

It is natural to use distance to measure the difference between two vectors in PK−1+ . There
are different forms of distance-based similarity/dissimilarity indices, and the L1 and L2

distances are most common in biodiversity applications. Ludwig and Reynolds (1988) listed
a group of indices based onEuclidean distance for assessing similarity/dissimilarity between
two objects, and discussed their applications in measuring difference in abundance between
different sampling locations. Foster and Bills (2004) reviewed a similar group of distance-
based dissimilarity indices inmeasuring biodiversity of fungi. Champely andChessel (2002)
generated the Euclidean dissimilarity coefficient as a function of Euclidean distance, and
combined it together with principal component analysis to compare communities. Jøst et al.
(2010) reviewed different distance-based similarity measures in the context of measuring
beta diversity, and these measures are related to either L1 or L2 distance.

In contrast with the frequent use of L1 and L2 distances in measuring similarity or
dissimilarity between communities/assemblages, we find that the Lq distance with 0 <

q < 1 is rarely used in the biodiversity literature. Most of the distance-based measures can
be unified into a class of distance-based indices using the Lq norm, where q is a positive
real number. In this section, we introduce a family of measures based on the Lq distance
together with a generalization when q = 2. We use || . ||q to denote the Lq -norm of p,

|| p||q =
(∑K

k=1 |pk |q
) 1

q
, and for simplicity, || p|| = || p||2. Given the Lq -norm, we define

the Lq -distance measure, dq( p1, p2), as

dq( p1, p2) = || p1 − p2||q
|| p1||q + || p2||q

. (4)
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1. When q ≥ 1, (4) is based on the Minkowski distance. The numerator itself, || p1 −
p2||q , is a metric when q ≥ 1 (Minkowski 1896). However, (4), with the normalising
denominator to ensure dq( p1, p2) ∈ [0, 1], only obeys the triangular inequality (and
hence is only a metric) when q = 1. When q = 1, we have

d1( p1, p2) = 1

2

K∑

k=1

|p1k − p2k | = 1 −
K∑

k=1

min{p1k, p2k}. (5)

The distance measure given by (5) is known as the total variation distance between
probability measures in probability theory, and it is also known as the Manhattan
distance, city-block distance, the L1-norm or the taxicab distance when constructing
non-Euclidean geometries (Krause 1975). When q = 2, the numerator of (4) is the
Euclidean distance between p1 and p2, and

d2( p1, p2) =
√∑K

k=1(p1k − p2k)2
√∑K

k=1 p
2
1k +

√∑K
k=1 p

2
2k

. (6)

This Euclidean-distance-based index can also be applied to presence–absence data to
assess turnover. La Sorte and Boecklen (2005) used the Euclidean distance between
expected andobservedpresence–absence vectors to evaluate the level of compositional
similarity for common species in avian assemblages in North America. When q →
+∞, only the largest changes in species proportions contribute to the Lq distance
turnover measure. Clearly, lim

q→+∞
(
pq1 + · · · + pqK

)1/q = max
k

pk .

2. Clearly, pqk → 1 as q → 0, so lim
q→0

(
pq1 + · · · + pqK

)1/q = ∞ if K ≥ 0

and at least two of the pk’s are strictly positive. Instead, we may consider

lim
q→0

(
pq1 + · · · + pqK

K

)1/q

to shed some light on the properties of the Lq distance

when q ∈ (0, 1). By l’Hôpital’s rule,

lim
q→0

(
pq1 + . . . + pqK

K

)1/q

= exp

(

lim
q→0

1

q
log

(
pq1 + . . . + pqK

K

))

= exp

(

lim
q→0

K
∑K

k=1 p
q
k

K∑

k=1

pqk log pk
K

)

=
K∏

k=1

p1/Kk .

This means that if we use
(∑K

k=1 |pk |q
/
K

)1/q
as the Lq norm when 0 < q < 1,

then when q → 0, for any species k, change in pk contributes to the turnover measure
through the K th root of the absolute difference in species proportions, |p1k − p2k |1/K .
After taking the K th root of the absolute change, the difference between abundant
and rare species is much less severe compared with the limiting case when q → +∞.
Royden (1968) pointed out that the Lq distance with 0 < q < 1 is less affected by
extreme differences than the Euclidean distance and can therefore be more robust to
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outliers. In the context of measuring turnover, the outliers can be thought of as species
that contribute most to the turnover, i.e. the species that have the greatest change in
their proportion. The absolute change in proportionswill tend to be larger for abundant
species than for rare species.

3. We consider a generalization of the L2-distance measure to include similarity among
species.Wewrite (6) in a quadratic formas

√
( p1− p2)T H( p1− p2)

/ (‖ p1‖+‖ p2‖
)
,

where the matrix H is an identity matrix, i.e. hks = 1 if k = s, and hks = 0
if k �= s. Motivated by this quadratic form of (6), we incorporate the similarity
among species into (6) by using a similarity matrix Z instead of H , d2S( p1, p2) =√

( p1− p2)T Z( p1− p2)√
pT1 Z p1 +

√
pT2 Z p2

, where the similarity matrix, Z, is a K × K matrix. Z is a sym-

metric positive-definite matrix. The element in the kth row and sth column, Zks ,
quantifies the similarity between the kth and sth species, and Zks = Zsk for any k, s
∈ {1, . . . , K }. We define 0 ≤ Zks ≤ 1 with Zks = 0 meaning complete dissimilarity
and Zks = 1 meaning that two species are identical. Unlike the asymmetric similarity
matrix used by Leinster and Cobbold (2012), we take Z as symmetric positive-definite
so that the product under the square root in the numerator of d2S( p1, p2) is always
positive as long as p1 �= p2. When including the similarity information in the numer-
ator, we change the denominator accordingly by incorporating Z in the L2-norm of

the species proportion vector:
√
pT1 Z p1 is considered as an L2-norm of p1 weighted

by the similarity matrix.

4.2. THE ANGULAR TURNOVER MEASURE

In addition to the family of distance-based measures proposed in Sect. 4.1, we can also
use the angle between p1 and p2 to evaluate the species turnover. In this section, we propose
two different groups of angular turnover measures on the basis of the space in which the
angle is considered: one group is based on the angle between p1 and p2 in the PK−1+ , and
the other is based on the angle in SK−1+ after applying the transformation (1) to p1 and p2 .

1. The angle in P
K−1+ Let θ denote the angle between p1 and p2 in P

K−1+ ; see
Sect. 3.1 for the definition of P

K−1+ . The cosine of θ is calculated as cos θ =
〈 p1, p2〉

/ (‖ p1‖ ‖ p2‖
)
. To obtain a turnover measure as a monotonically increas-

ing function about θ , we use 1 − cos θ as an angular turnover measure, denoted by
dcos( p1, p2), where

dcos( p1, p2) = 1 −
∑K

k=1 p1k p2k√∑K
k=1 p

2
1k

√∑K
k=1 p

2
2k

. (7)

It follows that dcos( p1, p2) = 0 if and only if there is no turnover, and the greater the
turnover, the closer dcos( p1, p2) is to 1. Given that the angle is considered in an open
simplex (i.e. for any k, pk > 0), dcos( p1, p2) < 1. As mentioned in Sect. 3.2, some-
times it is necessary to incorporate different weights for different species in measur-
ing turnover, and this can be done by using the weight transformation (2). Given the
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weight vectorw, we obtain dw
cos( p1, p2) = 1−

∑K
k=1(p1k p2kw

2
k )√∑K

k=1(p1kwk)2
√∑K

k=1(p2kwk)2
.

It follows that (7) is a special case of dw
cos( p1, p2) when each species has equal

weight, i.e. wk = 1/K for all k.

2. The angle in S
K−1+ The transformation given by (1) is to transform p from the

simplex PK−1+ to the positive sphere SK−1+ , so that we can use the distribution theory
that has already been established for the sphere (Stephens 1982; Stanley 1990). This
section introduces the idea of using the angle in S

K−1+ because of its connection to
the Bhattacharyya divergence measure (Bhattacharyya 1943). Although the Bhat-
tacharyya divergence measure is usually referred to as a similarity measure of two
probability distributions, we find that it can be derived as the angle in the positive
sphere SK−1+ between transformed species proportion vectors.

The idea is to transform p using (1), and then use the cosine of the angle in S
K−1+ to

measure turnover. Further, we incorporate weights for each species using the weight trans-
formation given in (2). The weighting and transformation process combines (1) and (2) as

(p1, . . . , pK ) :→
(√

p1w1

〈 p,w〉 , . . . ,
√

pKwK

〈 p,w〉
)

. The cosine of the angle in S
K−1+ is then

evaluated by
∑K

k=1

√
p1kwk

〈 p1,w〉
√

p2kwk

〈 p2,w〉 , where 〈 p,w〉 = ∑K
k=1 pkwk with a weight vec-

tor w. In application, w is usually defined in the simplex P
K−1+ , i.e. for any species k,

wk > 0 and
∑K

k=1 wk = 1. However, as suggested by Aitchison (1982), it is difficult to
interpret w on the positive sphere after being transformed from P

K−1+ . Similar to (7), we

use 1 − ∑K
k=1

√
p1kwk

〈 p1,w〉
√

p2kwk

〈 p2,w〉 as a turnover measure. When using equal weights, i.e.

wk = 1/K , ∀k, we have

d∗
cos( p1, p2) = 1 −

K∑

k=1

√
p1k p2k . (8)

Neither (7) nor (8) is a metric as the triangle inequality can fail. If these angular measures
are considered as metrics, then they must be considered as directions on the positive sphere
S
K−1+ , in which case θ (rather than 1 − cos θ ) should be used for measuring turnover;

the geodesic distance on a unit sphere is 2θ . Therefore, θ , used as a turnover measure, is
a metric. We instead use 1 − cos θ because 0 then corresponds to no turnover, and 1 to
complete turnover, as for the distance-based measures introduced in Sect. 4.1.

4.3. PAIRWISE TURNOVER MEASURES

By using pairwise comparisons, we obtain indices that are more sensitive to changes in
less abundant species. We introduce two pairwise measures in this section: pairwise angular
and pairwise centred log-ratio.

The pairwise angular measure uses angles between each of the K (K − 1)/2 pairs of
species to measure the spatial or temporal changes in species composition. Let k and s
denote any two species (k, s ∈ {1, . . . , K}; k �= s). Consider their species proportions
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(pk, ps) in an x-y plot, with the x-axis corresponding to species k and the y-axis to species
s. Let θ

(ks)
1 and θ

(ks)
2 denote the angle between species k and s in time point 1 and 2,

respectively. The sine and cosine of θ(ks)
1 and θ

(ks)
2 are evaluated by sin θ

(ks)
1 = p1s

√
p21k + p21s

,

sin θ
(ks)
2 = p2s

√
p22k + p22s

, cos θ
(ks)
1 = p1k

√
p21k + p21s

, and cos θ
(ks)
2 = p2k

√
p22k + p22s

. We then

evaluate sin
(
θ

(ks)
1 − θ

(ks)
2

)
= sin θ

(ks)
1 cos θ

(ks)
2 − cos θ

(ks)
1 sin θ

(ks)
2 . If there is no turnover

between species k and s from time point 1 to time point 2, then there is no difference
between θ

(ks)
1 and θ

(ks)
2 , and it follows that sin(θ(ks)

1 − θ
(ks)
2 ) = 0. We use the number of

pairs of species, K (K − 1)/2, to scale the sum of absolute values over all unique pairs, i.e.
1
2

∑K
k=1

∑K
s=1

∣
∣
∣sin

(
θ

(ks)
1 − θ

(ks)
2

)∣
∣
∣. As a result, the measure does not depend on K , and has

range [0, 1]. The pairwise angular measure dsin is defined as

dsin( p1, p2) = 1

K (K − 1)

K∑

k=1

K∑

s=1

|p1k p2s − p1s p2k |
√
p21k + p21s

√
p22k + p22s

. (9)

Note that we can also use tangent to replace sine in (9), i.e. tan
(
θ

(ks)
1 − θ

(ks)
2

)
instead of

sin
(
θ

(ks)
1 − θ

(ks)
2

)
; we just need the trigonometric function to be monotonically increasing

between −π/2 to π/2. Whichever trigonometric function we use, it is not possible to
have the insensitivity to coordinate scaling described in Sect. 3.4. However, dsin given by
(9) does satisfy the first two properties of a metric. Given the inequality | sin(α + β)| ≤
| sin α| + | sin β| for any α and β, it is easy to prove that dsin also satisfies the triangular
inequality and therefore dsin is a metric.

The pairwise centred-log-ratio measure is based on the following metric introduced by
Aitchison et al. (2000) in statistical analysis of compositional data in geology,

dclr2 ( p1, p2) =
{

K∑

k=1

[

log
p1k

g( p1)
− log

p2k
g( p2)

]2
}1/2

(10)

=
{
1

K

∑

k<s

[

log
p1k
p1s

− log
p2k
p2s

]2
}1/2

. (11)

dclr2 can be thought of as a pairwise measure based on (11), and thus shares the sensitivity to
rare species of all pairwise measures. Based on (10), the pairwise centred-log-ratio measure
is based on the Euclidean distance between species proportions transformed by the centred
log-ratio function given in Sect. 3.2. It follows that the pairwise centred-log-ratio measure
is a metric as well. We note that K in (11) can be considered as a scalar, and dclr2 can also be

written as

{
1
2K

∑K
k=1

∑K
s=1

[
log p1k

p2k
− log p1s

p2s

]2
}1/2

. Similar to dsin given by (9), instead

of K , we suggest using the number of pairs of species, K (K − 1)/2, as the divisor. An
alternative form of dclr2 is defined as



Using Species Proportions to Quantify Turnover in Biodiversity

dclr S2 ( p1, p2) =
{

1

K (K − 1)

K∑

k=1

K∑

s=1

[

log
p1k
p2k

− log
p1s
p2s

]2
}1/2

. (12)

Using the number of pairs as divisor in both (9) and (12) can be thought of as taking the
average across all pairs of species. This ensures comparability when K varies across regions,
allowing us to compare temporal turnover at different locations. As the turnover measures
are defined for species proportion vectors of the same dimension, K is constant in (12).
Therefore, (12) still has all the properties that hold for (10).

4.4. DIVERGENCE-BASED TURNOVER MEASURE

Pearson’sχ2 and the log-likelihood ratio test are commonly used for testing the goodness-
of-fit of multinomial models. Cressie and Read (1984) considered these two tests as special
cases of power divergence statistics. Studeny et al. (2011) used the family of divergence
measures to evaluate the degree of departure from the perfectly even abundance distribution,
which serves as a null model. In this section, we derive a turnover measure based on one
case of the power divergence statistics, the Kullback–Leibler (KL) divergence measure. We
show that it has the same form as the J-divergence measure studied by Martín-Fernández
et al. (1998), which is used for hierarchical classification. The link between our measures
and those studied by Martín-Fernández et al. (1998) is given in Web Appendix A. Suppose
we wish to test whether the observed species distribution is significantly different from the
species distribution specified by a null hypothesis, denoted by π0 = (π01, . . . , π0K ), with
K species in total. Let pt = (pt1, . . . , ptK ) denote the proportion vector at t . The null
hypothesis is H0 : pt = π0 versus the alternative, H1 : pt �= π0. The family of power
divergence statistics to quantify the divergence of pt from π0 is defined as Iν( pt ;π0) =

1
ν(ν+1)

∑K
k=1 ptk

{(
ptk
π0k

)ν − 1
}
, where ν ∈ R. One advantage of using the parametric family

of divergence measures is to have a parameter ν that controls the relative weighting given
to common and rare species (Studeny et al. 2011). ν specifies different members of the test
statistic in the family. When ν → −1, Iν( pt ;π0) is known as the KL divergence measure.

For the case of species distribution vectors, we concentrate on the divergence between
two discrete distributions. Let K L( pt ; π0) denote the KL divergence of pt from π0,

K L( pt ; π0) = lim
ν→−1

Iν( pt ; π0) =
K∑

k=1

π0k log

(
π0k

ptk

)

. We think of measuring turnover

as measuring the degree of departure between two species proportion vectors, p1 and
p2. We use K L( p2; p1) to quantify the divergence of p2 from p1, K L( p2; p1) =
K∑

k=1

p1k log

(
p1k
p2k

)

, which is also known as the Kullback–Leibler information numberwhen

being used as a divergence measure between two multinomial probability distributions.

Given the inequality p1k log
(
p1k
p2k

)
≥ 1

2 p1k(p1k − p2k)2 ∀k (Rao 1973, p. 58), it follows

that K L( p2; p1) is non-negative and p1k log
(
p1k
p2k

)
= 1

2 p1k(p1k − p2k)2 if and only if
p1k = p2k ∀k ∈ {1, 2, . . . , K }. In other words, K L( p2; p1) = 0 if and only if the pro-

portion of each species stays the same, i.e. no turnover. The upper bound for p1k log
(
p1k
p2k

)
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in certain cases can be found in Sayyareh (2011). Clearly, K L( p2; p1) is not symmetric,
i.e. K L( p2; p1) �= K L( p1; p2). Symmetry is a desirable property for a turnover measure.
Therefore, we propose the following measure:

dK L( p1, p2) = 1

2

K∑

k=1

(p1k − p2k) log

(
p1k
p2k

)

. (13)

dK L( p1 , p2) does not satisfy the triangular inequality in general, and so it is not a metric.
We note that the divergence-based index dK L has the same form as the J-divergencemeasure
(Jeffreys 1946) apart from the constant 1/2.

5. APPLICATION TO THE BBS DATA

The BBS is conducted annually on a stratified random sample of 1 km squares (see Web
Appendix C for data accessibility). Line transect surveys are carried out along two parallel
1 km lines, and detected birds are assigned to one of four categories: 0–25m from the line,
25–100m,>100m, or flying over.Weuse a preference index to determinewhich species form
the farmland community (Newson et al. 2008; Renwick et al. 2012; Johnston et al. 2014).

For each species, Harrison et al. (2014) analysed the abundance data using a generalized
additive model with time point, easting, northing, elevation and habitat of each 1 km square
as covariates. The models incorporate a space-time smoother using eastings, northings and
time point, along with a separate smooth term for altitude and each habitat covariate (Har-
rison et al. 2014). We use abundance estimates of each species in each 1 km square within
its assumed range (see Harrison et al. (2014)) for each time point to evaluate the mea-
sures proposed in Sects. 4.1, 4.2, 4.3 and 4.4. The results are plotted in Fig. 1. For a more
direct comparison of the measures shown in Fig. 1, each of the nine estimated measures is
represented by a different colour in each 100 km square in Fig. 2.

Allmeasures indicate relatively high turnover in thewest of Scotland and in the south-east
of England. Harrison et al. (2015) analyse BBS data in greater depth, using three measures
(L1-distance, dcos and dclr S2 ), and include 94 species in their analyses.

6. SIMULATION STUDY

We provide details of a simulation study to assess the power of each measure for detect-
ing turnover in Web Appendix B. Our study shows that all measures but the Lq -distance
measures with q < 1 perform well in detecting turnover when there are large changes in
the community. Over-dispersion has little effect on the conclusions. The mathematical form
of the measures means that dclr S2 , dsin and d∗

cos should be more sensitive to changes among
the scarce species than are d1, d2 and dcos. Close inspection of the simulation results con-
firms this, although the differences are small. This greater sensitivity is likely to be offset
at least to some degree by lower precision for these measures (as greater weight is given to
scarce species with smaller sample sizes), and their inability to accommodate zero species
proportions.
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d1

0.03

0.13

0.22

0.32

0.42

0.52

d2

0.02

0.12

0.21

0.3

0.4

0.49

d0.5

0.03

0.13

0.23

0.33

0.43

0.53

d0.01

0.04

0.16

0.29

0.42

0.54

0.67

dcos

0

0.1

0.19

0.29

0.39

0.48

dcosEqualWeights

0

0.04

0.08

0.13

0.17

0.21

dsin

0.04

0.13

0.22

0.32

0.41

0.5

d2clrS

0.3

0.84

1.38

1.91

2.45

2.99

dKL

0

0.19

0.39

0.58

0.77

0.96

Figure 1. Turnover measures for the farmland bird community from the British breeding birds survey between
1994 and 2011. The four plots with ‘d1’, ‘d2’, ‘d0.5’ and ‘d0.01’ in the top-right corner of each plot are for the
Lq -distance measures (4) with q = 1, 2, 0.5, 0.01, respectively, ‘dcos’ for dcos given by (7), ‘dcosEqualWeights’
for dw

cos with wi = 1/K given by (8), ‘dsin’ for dsin given by (9), ‘d2clrS’ for d
clr S
2 given by (12) and ‘dKL’ dK L

given by (13). Tables 1 and 2 in Web Appendix A list all of the above measures together with their properties. For
each 100 km grid square, the radius of the blue circles indicates the size of the estimate, while 99 % confidence
limits, estimated by bootstrapping (resampling the BBS survey squares within each spatial stratum), are indicated
by red circles.
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d1

d2

d0.5

d0.01

dcos

dcosEqualWeights

dsin

d2clrS

dKL

Figure 2. Plot of the estimated 9 turnover measures listed in Sect. 4 for the farmland bird community from the
British breeding birds survey between 1994 and 2011. Each turnover measure is represented by a different colour
in each 100 km square on a map of Britain. The height of the bar for each measure is divided by the maximum
height for that measure across all the grid squares. Zero height corresponds to no turnover for all measures.

7. DISCUSSION

If a measure sensitive to changes in the scarce species is required, we recommend dclr S2 ,
which is the only measure that satisfies all five of the desirable properties of Sects. 3.3
and 3.4. If a measure that has good precision is required, and sensitivity to changes in
scarce species is not of primary interest, then we recommend d1, which satisfies four of the
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properties, and is simple, being half the sum of absolute differences in species proportions.
If greater discrimination is needed between communities showing high turnover from those
showing rather lower turnover, then measure d2 or dcos might be preferred. In practice,
given the multivariate nature of biodiversity data, we recommend applying several turnover
measures, to gain a better understanding of changes in the scarce and dominant species of
the community. When the measures are applied to the BBS data, they identify high turnover
in the west of Scotland and in the south-east of England. The measure dclr S2 differs from
the rest by also indicating high turnover in Wales.

Figure 1 shows that precision of our turnover measures is relatively poor in the west of
Scotland, reflectingpoor survey coverage.Nevertheless, the lower confidence limits for some
of ourmeasures in this area exceed the upper confidence limits formost ofBritain, supporting
our conclusion that turnover is high here. Harrison et al. (2015), in a more extensive analysis
of 94 species, also reached this conclusion, and speculated that this reflects an increase in
species that benefit from climate change. They attributed the high turnover in the south-east
of England at least in part to a decline in scarcer specialist species.
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