Sodium and rhodium complexes of a spirocyclic Te₅ dianion supported by P₂N₂ rings

Andreas Nordheider, a,b Kasun S. Athukorala Arachchige, a Alexandra M. Z. Slawin a, J. Derek Woollins a and Tristram Chivers b*

Reactions of the dianion [Te(t-BuN)P(µ-N′Bu)₂P(N′Bu)Te]²⁻ with I₂ or [Cp*RhCl₂]₂ unexpectedly produced complexes of the novel spirocyclic Te₅ dianion [{'BuN(Te)P(µ-NT₂Bu)₂P(NT₂Bu)Te}²⁻, which is N,N'-coordinated to two Na⁺ ions in the disodium derivative and adopts a Te,Te',Te''-bonding mode in the Cp*Rh complex.

The dianion [Te(t-BuN)P(µ-N′Bu)₂P(N′Bu)Te]²⁻ (1) was first reported in 2002.¹ Recently we showed that the oxidation of Li₂1 with a one-half molar equivalent of I₂ produces the dianionic ditelluride 2.² In addition, we reported that the major product is the cyclic tritelluride 3 when the oxidation is carried out using the disodium derivative Na₂1 and one molar equivalent of iodine.² In this communication we describe the isolation and structural characterisation of the disodium derivative of the novel spirocyclic Te₅-centred dianion.

The treatment of [Na(TMEDA)]₂1 with 0.5 equivalents of iodine produced a black precipitate. This product decomposes in THF or acetonitrile and has very limited solubility in n-hexane and toluene. However, a small amount of extremely air-sensitive and thermally unstable red crystals identified by a single crystal X-ray analysis as [Na(TMEDA)]₂{[‘BuN(NT₂Bu)P(µ-N′Bu)₂P(NT₂Bu)Te}²⁻ (4) (Scheme 1) were isolated from a dilute solution in n-hexane after 3 days at −40 °C.³

Scheme 1 Reaction of [Na(TMEDA)]₂1 with 0.5 eq. of I₂.

As illustrated in Fig. 1, complex 4 is comprised of a dianion with a central, spirocyclic Te₅ motif and at the two termini it is N,N'-coordinated to two TMEDA-solvated Na⁺ counter-ions. The reaction of the dianion 1 with in situ-generated cyclic tritelluride 3 is a possible source of this spirocyclic arrangement.

Fig. 1 Molecular structure of 4. Hydrogen atoms and solvate toluene molecule are omitted for clarity. Selected bond lengths (Å) and angles (°): Te1–P1 2.444(4), Te1–Te5 3.0268(17), Te2–Te5
3.0258(17), Te2–P2 2.442(4), Te3–Te5 3.0152(18), Te3–P3 2.445(4), Te4–Te5 3.0144(18), Te4–P4 2.438(4); Te5–Te1–P1 95.36(10), Te5–Te2–P2 95.54(10), Te5–Te3–P3 94.99(11), Te5–Te4–P4 94.53(11), Te1–Te5–Te2 105.61(5), Te1–Te5–Te3 74.47(4), Te1–Te5–Te4 176.80(5), Te2–Te5–Te3 176.24(5), Te2–Te5–Te4 75.85(4), Te3–Te5–Te4 103.87(5).

The dianion in 4 can be viewed as a complex of Te²⁺ coordinated to two Te⁻Te⁻’-chelating diions 1. The central Te₃ motif has several structurally characterised precedents, e.g. the polymeric species As₂Te₅⁻⁻⁴, KSnTe₃ or RhSnTe₅⁻⁵ and ([Ga(en)]₂[Ge₂Te₃])₄⁻⁶ which are considered to incorporate cross-shaped Te₅⁻⁻ units. A closer analogy to 4 is the bicyclic octatelluride dianion in [K(15-crown-5)]₂Te₇⁻. Similarly to 4, the Te₅⁻⁻ dianion is comprised of a Te²⁺ centre that chelates to two dianions, Te₅⁻⁻ and Te₅⁻⁻, to form a spirocyclic system.

The Te–Te bond distances of 3.014(2)-3.027(2) Å in 4 are comparable to the mean value of ca. 3.03 Å found for the spirocyclic Te₅⁻⁻ dianion, but significantly shorter than those observed for the neutral bonds in the cyclic tritelluride 3 (2.716(1) Å). This elongation is presumably a result of the stronger lp-bp repulsions in the pseudo-octahedral Te₅ unit of 4 compared to those in the pseudo-tetrahedral arrangement of the Te₃ moiety in 3. The geometry at Te5 in 4 is severely distorted from square-planar with mean bond angles of 75.16(4)° and 104.74(5)°. The latter value is remarkably close to that found for <Te–Te–Te (104.50(1)°) in 3.

The P–Te distances in 4 (range 2.438(4)-2.445(4) Å) are significantly shorter than those observed for the neutral tritelluride 3 (2.532(1)-2.540(1) Å) [¹³⁷P(P,Te) = 1029 Hz] and slightly longer than those in the dianion 2 (d(P–Te) = 2.418(2)-2.422(2) Å; [¹³⁷P(P,Te) = 1590 Hz]. The ³¹P NMR spectrum of the reaction mixture of I₂ oxidation of [Na(TMEDA)]₁ in toluene (Scheme 1) showed a major resonance at −73.7 ppm [¹³⁷P(P,Te) = 1198 Hz], which is tentatively attributed to 2 on the basis of the correlation between d(P–Te) and [¹³⁷P(P,Te)] for this class of compounds.

Interestingly, the Rh(III) complex [CP⁺Rh⁺⁺[μ-(BuN)(TeP)(μ-N-Bu)P(TeP)(μ-Bu)]₂] (5), which contains the same spirocyclic dianion as found in 4, was obtained as a dark reddish black solid from the attempted metathesis of [Li(TMEDA)]₁ with one-half of a molar equivalent of the dimer [CP⁺RhCl₁₂] (Scheme 2).

Scheme 2 Formation of the Rh(III) complex 5

The composition of 5 was established by the observation of the molecular ion with the appropriate isotopic composition in the electrospray mass spectrum. Recrystallisation from n-hexane at −40 °C afforded crystals of 5 in the form of red needles, which were suitable for X-ray crystallography. The molecular structural of 5 is depicted in Fig. 2 together with selected geometrical parameters involving the central Te₃ unit.

Complex 5 incorporates the same dianion as was found in 4 but, in the case of the Rh(III) derivative, the spirocyclic ligand is coordinated through three tellurium centres to the rhodium atom to give an 18-electron complex. Expectedly, this coordination mode results in rather unequal Te–Te bond lengths in 6. The Te5–Te1,2 bond distances of 2.817(1)-2.824(1) Å in the uncoordinated part of the Te₃ unit in 2 are ca. 0.46 Å shorter than the mean distances involving the three-coordinate tellurium atoms (Te3 and Te4); they are also significantly shorter by ca. 0.20 Å than those in 4 (vide supra).

Fig. 2 Molecular structure of 5. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Te1–Te5 2.8167(9), Te1–P1 2.502(2), Te2–Te5 2.8238(10), Te2–P2 2.502(2), Te3–Te5 3.2322(9), Te3–Rh1 2.6810(10), Te3–P3 2.503(2), Te4–Rh1 2.6590(9), Te4–P4 2.497(2), Te4–Te5 3.3268(9), Te5–Rh1 2.5476(9); Te5–Te1–P1 99.04(6), Te5–Te2–P2 98.74(5), Te5–Te3–Rh1 49.98(2), Te5–Te3–P3 100.64(6), Rh1–Te5–Te3 108.77(5), Rh1–Te4–P4 108.39(6), Te5–Te1–Te5 104.85(2), Te1–Te5–Te3 81.31(2), Te1–Te5–Rh1 104.22(3), Te2–Te5–Te3 159.46(3), Te2–Te5–Rh1 105.84(3), Te3–Te5–Rh1 53.70(2), Te3–Rh1–Te4 102.47(3), Te3–Rh1–Te5 76.32(3).

The Rh atom in 5 is coordinated in a pyramidal Te₆Te₅⁻Te⁻’’ mode to the Te₃ unit. The Rh–Te bond distances of 2.681(1) and 2.659(1) Å to the three-coordinate Te centres, Te3 and Te4, respectively, are significantly shorter than the value of 2.548(1) Å for the five-coordinate Te5 atom, presumably because the latter is formally a Te₅⁻⁻ centre. Although Rh coordination to three tellurium centres is rare, it has been reported before, e.g. in the rhodium (II) complex [Rh(Cp⁺⁺(CH₃CH₂CH₂TePh₃)]PF₆⁻¹ in which the Rh–Te bond distances are in the narrow range 2.602(1)-2.618(1) Å and the Rh(I) complex [Rh(COD)](Me₂CH₂TeMe₃)²⁺ with Rh–Te bond lengths of 2.692(1), 2.623(1) and 2.579(1) Å, which mirror those observed in 5 quite closely. In contrast to the variation in the Te–Te bond distances in 5, the P–Te bond lengths are in the narrow range 2.497(2)-2.503(2) Å, despite the different coordination numbers of the Te1,2 and Te3,4 pairs of Te atoms.
As expected from the solid-state structure, the 31P NMR spectrum of 5 exhibits two resonances: (a) a singlet at −123.4 ppm accompanied by 125Te satellites ($^{1}J(P,Te) = 1136 \text{ Hz}$), which is attributed to the P1,2 pair of atoms, and (b) a doublet due to coupling to 101Rh, $J = 1/2$, 100% at −126.8 ppm ($^{2}J(P,Rh) = 4.5 \text{ Hz}$ and $^{1}J(P,Te) = 1270 \text{ Hz}$) assigned to P3,4. No evidence for fluxional behaviour, e.g. exchange of the Rh atom between the P3,4 and P1,2 sites, was obtained from the NMR studies at room temperature.

In summary, we have reported the unexpected formation of a spirocyclic Te$_3$ dianion anchored by P$_2$N$_2$ rings. The multiple hard (N) and soft (Te) donor centres in this unusual ligand portend a versatile coordination chemistry as manifested by the structural determinations of the disodium and, especially, Cp*Rh(III) complexes. Further studies of main-group and transition-metal complexes are warranted. To this end the direct synthesis of 4 from the reaction of [Na(TMEDA)]$_2$1 with the cyclic tritelluride 3 will be pursued (vide supra).

We thank EPSRC and NSERC (Canada) for financial support.

Notes and references

1 School of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland. E-mail: jdw3@st-andrews.ac.uk
2 Department of Chemistry, University of Calgary, Calgary, AB, Canada T2N 1N4. E-mail: chivers@ucalgary.ca; Fax: +1 403-289-9488; Tel: +1 403-220-5741

Electronic supplementary information available: Experimental and crystallographic data in pdf format. CCDC 1029247 and 1029429 for 4 and 5. For ESI and crystallographic data in CIF or other electronic format see DOI:

3 Crystal data for 4: C$_{37}$H$_{100}$N$_{3}$Na$_{2}$P$_{4}$Te$_{5}$, $M = 1655.33$, orthorhombic, space group Fdd2, $a = 32.355(3)$, $b = 34.276(3)$, $c = 25.584(2)$, $\alpha = \beta = \gamma = 90^\circ$, $V = 28373(4) \text{ Å}^3$, $Z = 16$, $\rho_{\text{calc}} = 1.550 \text{ g cm}^{-3}$, $m = 2.173 \text{ mm}^{-1}$, $T = 93 \text{ K}$, 44221 reflections collected (θ range 2.35–25.00°), 11899 unique ($R_{\text{int}} = 0.1342$), $R_1 = 0.0508$ for 7093 reflections with $\langle \sigma(I) \rangle$ and w$R_2 = 0.0986$ (for all data).
9 Crystal data for 5: C$_{4}H_{8}N_{2}P_{2}RhTe_{3}$, $M = 1569.00$, monoclinic, space group $P_{2}1/c$, $a = 15.980(3)$, $b = 19.756(4)$, $c = 18.904(4)$, $\alpha = \gamma = 90^\circ$, $\beta = 95.606(4)^\circ$, $V = 5939(2) \text{ Å}^3$, $Z = 4$, $\rho_{\text{calc}} = 1.754 \text{ g cm}^{-3}$, $m = 2.837 \text{ mm}^{-1}$, $T = 93 \text{ K}$, 79608 reflections collected (θ range 2.062–25.326°), 10824 unique ($R_{\text{int}} = 0.1111$), $R_1 = 0.0490$ for 7456 reflections with $\langle \sigma(I) \rangle$ and w$R_2 = 0.1352$ (for all data).
The versatile coordinating ability of a novel spirocyclic, P$_2$N$_2$-supported Te$_5$ dianion is exemplified by N,N'-bonding to Na$^+$ ions and Te,Te',Te'' linkages to a Cp*Rh(III) group.