ON SIMULTANEOUS LOCAL DIMENSION FUNCTIONS OF SUBSETS OF \mathbb{R}^d

Lars Olsen

Abstract. For a subset $E \subseteq \mathbb{R}^d$ and $x \in \mathbb{R}^d$, the local Hausdorff dimension function of E at x and the local packing dimension function of E at x are defined by

$$\dim_{H, \text{loc}}(x, E) = \lim_{r \to 0} \dim_H(E \cap B(x, r)),$$

$$\dim_{P, \text{loc}}(x, E) = \lim_{r \to 0} \dim_P(E \cap B(x, r)),$$

where \dim_H and \dim_P denote the Hausdorff dimension and the packing dimension, respectively. In this note we give a short and simple proof showing that for any pair of continuous functions $f, g : \mathbb{R}^d \to [0, d]$ with $f \leq g$, it is possible to choose a set E that simultaneously has f as its local Hausdorff dimension function and g as its local packing dimension function.

1. Introduction and statement of results

For a subset $E \subseteq \mathbb{R}^d$ and $x \in \mathbb{R}^d$, we define the local Hausdorff dimension function of E at x by

$$\dim_{H, \text{loc}}(x, E) = \lim_{r \to 0} \dim_H(E \cap B(x, r)),$$

where \dim_H denotes the Hausdorff dimension. The local packing dimension function of E at x is defined similarly, i.e., by

$$\dim_{P, \text{loc}}(x, E) = \lim_{r \to 0} \dim_P(E \cap B(x, r)),$$

where \dim_P denotes the packing dimension. The reader is referred to [1] for the definitions of the Hausdorff and the packing dimensions. The local Hausdorff dimension function of a set has recently found several applications in fractal geometry and information theory, cf. [2, 4]. In [3] we proved that any continuous function is the local Hausdorff dimension function of some set, i.e., if $f : \mathbb{R}^d \to$
$[0,d]$ is continuous, then there exists a set $E \subseteq \mathbb{R}^d$ such that

$$f(x) = \dim_{H,loc}(x, E)$$

for all $x \in \mathbb{R}^d$. In this note we give a short and simple proof showing that for any pair of continuous functions $f, g : \mathbb{R}^d \to [0,d]$ with $f \leq g$, it is, in fact, possible to choose the set E such that it simultaneously has f as its local Hausdorff dimension function and g as its local packing dimension function, i.e., such that

$$f(x) = \dim_{H,loc}(x, E),$$

$$g(x) = \dim_{P,loc}(x, E),$$

for all $x \in \mathbb{R}^d$. In fact, our result also provides information about the rate at which the dimensions $\dim_{H}(E \cap B(x, r))$ and $\dim_{P}(E \cap B(x, r))$ converge to $f(x)$ and $g(x)$, respectively, as $r \searrow 0$, see (1.1) below. For an arbitrary function $\varphi : \mathbb{R}^d \to \mathbb{R}$ and $x \in \mathbb{R}^d$, we let

$$\omega_{\varphi}(x, r) = \sup_{x_1, x_2 \in B(x, r)} |\varphi(x_1) - \varphi(x_2)|$$

denote the modulus of continuity of φ at x, and observe that φ is continuous at x if and only if $\omega_{\varphi}(x, r) \to 0$ as $r \searrow 0$.

Theorem 1. Let $f, g : \mathbb{R}^d \to [0,d]$ be continuous functions with $f \leq g$. Then there exists an F_σ set $E \subseteq \mathbb{R}^d$ such that

$$|f(x) - \dim_{H}(E \cap B(x, r))| \leq \omega_f(x, r),$$

$$|g(x) - \dim_{P}(E \cap B(x, r))| \leq \omega_g(x, r),$$

for all $x \in \mathbb{R}^d$ and all $r > 0$. In particular,

$$f(x) = \dim_{H,loc}(x, E),$$

$$g(x) = \dim_{P,loc}(x, E),$$

for all $x \in \mathbb{R}^d$.

2. Proof of Theorem 1

In this section we prove Theorem 1. We need the following well-known result in order to prove Theorem 1.

Lemma 2.1. Let G be a non-empty open subset of \mathbb{R}^d and $t, s \in \mathbb{R}$ with $0 \leq t \leq s \leq d$. Then there exists a compact set $E \subseteq G$ such that $\dim_{H}(E) = t$ and $\dim_{P}(E) = s$.

Proof. For a proof see, for example, [5]. In fact, the result in [5] is formulated and proved for the case where $d = 1$, but the techniques in [5] can clearly be adapted to prove the same result in the general case. \qed
We can now prove Theorem 1. We first introduce some notation. For a function \(\varphi : \mathbb{R}^d \to \mathbb{R} \) and \(x \in \mathbb{R}^d \) and positive number \(r > 0 \), write
\[
\begin{align*}
m(\varphi; x, r) &= \inf_{y \in B(x, r)} \varphi(y), \\
M(\varphi; x, r) &= \sup_{y \in B(x, r)} \varphi(y).
\end{align*}
\]

Proof of Theorem 1. Let \(0 \leq t < \sup_{x \in \mathbb{R}^d} f(x) \) and \(0 \leq s < \sup_{x \in \mathbb{R}^d} g(x) \) with \(t \leq s \). Fix \(x \in \{ t < f, s < g \} \) and \(r > 0 \). Since \(f \) and \(g \) are continuous, we conclude that the set \(B(x, r) \cap \{ t < f, s < g \} \) is open, and it therefore follows from Lemma 2.1 that we can find a compact set \(E_{t,s}(x, r) \) satisfying
\[
\begin{align*}
E_{t,s}(x, r) &\subseteq B(x, r) \cap \{ t < f, s < g \}, \\
\text{dim}_H(E_{t,s}(x, r)) &= t, \\
\text{dim}_P(E_{t,s}(x, r)) &= s.
\end{align*}
\]

Next choose a countable dense subset \(U_{t,s} \) of \(\{ t < f, s < g \} \). We now define the set \(E \) as
\[
E = \bigcup_{0 \leq t < \sup_{y \in \mathbb{R}^d} f(y)} \bigcup_{0 \leq s < \sup_{y \in \mathbb{R}^d} g(y)} \bigcup_{t \leq s} \bigcup_{x \in U_{t,s}} E_{t,s}(x, r).
\]

The set \(E \) is clearly \(\mathcal{F}_\sigma \). We will now prove that \(f \) is the local Hausdorff dimension function of \(E \) and that \(g \) is the local packing dimension function of \(E \), i.e., \(f(x) = \text{dim}_H(x, E) \) and \(g(x) = \text{dim}_P(x, E) \) for all \(x \in \mathbb{R}^d \).

Claim 1. For all \(x \in \mathbb{R}^d \) and all \(r > 0 \), we have
\[
\begin{align*}
\text{dim}_H(x, E) &\leq M(f; x, r), \\
\text{dim}_P(x, E) &\leq M(g; x, r).
\end{align*}
\]

Proof of Claim 1. Fix \(x \in \mathbb{R}^d \) and \(r > 0 \). We now have
\[
E \cap B(x, r) \subseteq \bigcup_{0 \leq t < \sup_{y \in \mathbb{R}^d} f(y)} \bigcup_{0 \leq s < \sup_{y \in \mathbb{R}^d} g(y)} \bigcup_{t \leq s} \bigcup_{x \in U_{t,s}} \left(E_{t,s}(z, r) \cap B(x, r) \right).
\]

Next observe that since \(E_{t,s}(z, r) \subseteq \{ t < f, s < g \} \), we conclude that
\[
E_{t,s}(z, r) \cap B(x, r) \subseteq \{ t < f, s < g \} \cap B(x, r) = \emptyset
\]
for \(M(f; x, r) \leq t \) and \(M(g; x, r) \leq s \). Combining (2.1) and (2.2) yields
\[
E \cap B(x, r) \subseteq \bigcup_{0 \leq t < \sup_{y \in \mathbb{R}^d} f(y)} \bigcup_{0 \leq s < \sup_{y \in \mathbb{R}^d} g(y)} \bigcup_{z \in U_{t,s}} \left(E_{t,s}(z, r) \cap B(x, r) \right).
\]
\[\subseteq \bigcup_{0 \leq t < M(f; x, r), \rho \in \mathbb{Q}^+} \bigcup_{0 \leq s < M(g; x, r) \in U_{t, s}} E_{t, s}(z, \rho). \]

Since the union in (2.3) is countable, it follows from (2.3) and the fact that the Hausdorff dimension is countable stable that
\[
\dim_H(E \cap B(x, r)) \leq \sup_{0 \leq t < M(f; x, r)} \sup_{\rho \in \mathbb{Q}^+} \dim_H(E_{t, s}(z, \rho))
\]
\[
= \sup_{0 \leq t < M(f; x, r)} \sup_{\rho \in \mathbb{Q}^+} \sup_{0 \leq s < M(g; x, r) \in U_{t, s}} t
\]
\[
= M(f; x, r)
\]
for all \(r > 0 \). Similarly, it follows that
\[
\dim_P(E \cap B(x, r)) \leq M(g; x, r)
\]
for all \(r > 0 \). This completes the proof of Claim 1. \(\square \)

Claim 2. For all \(x \in \mathbb{R}^d \) and all \(r > 0 \), we have
\[
m(f; x, r) \leq \dim_{H, \text{loc}}(x, E),
\]
\[
m(g; x, r) \leq \dim_{P, \text{loc}}(x, E).
\]

Proof of Claim 2. Fix \(x \in \mathbb{R}^d \) and \(r > 0 \). Next, let \(\varepsilon > 0 \) be such that \(m(f; x, r) - \varepsilon, m(g; x, r) - \varepsilon \in \mathbb{Q}^+ \). Write \(t = m(f; x, r) - \varepsilon \) and \(s = m(g; x, r) - \varepsilon \), and observe that \(t \leq s \). We clearly have \(x \in \{ t < f, s < g \} \), and we can therefore find \(u \in U_{t, s} \) with \(|u - x| \leq \frac{\varepsilon}{2} \). Now, pick any \(\rho \in \mathbb{Q}^+ \) with \(\rho \leq \frac{\varepsilon}{2} \). It now follows that
\[
E_{t, s}(u, \rho) \subseteq E,
\]
and that \(E_{t, s}(u, \rho) \subseteq B(u, \rho) \subseteq B(x, r) \), whence
\[
E \cap B(x, r) \supseteq E_{t, s}(u, \rho) \cap B(x, r) = E_{t, s}(u, \rho).
\]
We therefore conclude that
\[
\dim_H(E \cap B(x, r)) \geq \dim_H(E_{t, s}(u, \rho)) = t \geq m(f; x, r) - \varepsilon.
\]
Similarly, we conclude that
\[
\dim_P(E \cap B(x, r)) \geq \dim_P(E_{t, s}(u, \rho)) = s \geq m(g; x, r) - \varepsilon.
\]
Claim 2 follows from (2.4) and (2.5) by letting \(\varepsilon \searrow 0 \) through values such that \(m(f; x, r) - \varepsilon, m(g; x, r) - \varepsilon \in \mathbb{Q}^+ \). \(\square \)

Theorem 1 follows immediately from Claim 1 and Claim 2. \(\square \)
LOCAL DIMENSION FUNCTIONS OF SUBSETS OF \mathbb{R}^d

References

Department of Mathematics
University of St. Andrews
St. Andrews, Fife KY16 9SS, Scotland
E-mail address: lo@st-and.ac.uk