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Abstract

Preservation of gonadal function,is an important priority for the long-term health of cancer survivors
of both sexes and all ages at treatment.. The loss of an opportunity for fertility is a prime concern in
both male and female cancer survivors, however the endocrine consequences of gonadal damage are
also central to long-term health and wellbeing. Some fertility preservation techniques, such as
semen and embryo cryopreservation for the adult man and woman respectively, are established and
successful and the recent development of oocyte vitrification has greatly improved the potential to
cryopreserve unfertilised oocytes from women. Despite being recommended for all pubertal males,
sperm banking is not universally practised in Paediatric Oncology centres, and there are very few
‘adolescent-friendly’ facilities. All approaches to fertility preservation have particular challenges in
children and teenagers, including ethical, practical and scientific issues. For the young female,
cryopreservation of ovarian cortical tissue with later replacement has now resulted in at least 35 live
births, but is still regarded as experimental in most countries. For pre-pubertal males, testicular
biopsy cryopreservation is offered in some centres, but it is unclear how that tissue might be used in
the future, and to date there is no evidence that fertility can be restored. For both sexes these
approaches require an invasive procedure, and there is an uncertain risk of tissue contamination in
haematological and other malignancies. Decision making for all these approaches requires an
assessment of the individual’s risk of loss of fertility, and is being made at a time of emotional
distress. The development of this field requires better provision of information for patients and their
medical teams as well as improvements in service provision, to match technical and scientific

advances.

Search strategy and selection criteria

We searched Medline between Jan 1, 1990, and Sept 1, 2014, for reports published in English using

the search terms “fertility preservation”, “cancer”, “childhood cancer”, “gonadotoxic”, and “cancer
treatment” in several disjunctive and conjunctive combinations. We mainly selected publications in

English from the past 5 years, but did not exclude older, significant publications. We also checked

the reference lists of articles identified by this search strategy.

Introduction

Treatment for cancer may affect reproductive and endocrine function in both men and women, and

loss of fertility remains a major concern of patients 1. While survival rates in young people with



cancer were low in the 1960’s, major advances in treatment, particularly the use of multi-agent
chemotherapy, and in supportive care, have resulted in markedly improved rates of cure over recent
decades. Cancer affects 1 in 800 children: current data suggest that around 80% will be alive five
years from diagnosis and 70% will become long-term survivors. With increasing numbers of long-
term survivors, gonadal function and fertility have become important concerns for these young men

and women.

If the planned treatment is deemed to put gonadal function and future fertility at risk, fertility
preservation options should be considered and discussed with the patient before treatment
commences. This requires greater awareness, knowledge and willingness by oncologists to discuss
fertility issues: there is evidence that this is increasing 22 but many patients receive little
information + 2. Discussing fertility prognosis at the time of diagnosis puts an additional burden on
the treating team but for the patient and their family can have a positive psychological effect and can
be acceptable even if there are no realistic fertility preservation options available & Z. Recent years
have seen the development of new approaches for fertility preservation, with rapid translation of
some into clinical practice. Highlighting which approaches remain experimental (which should
therefore be offered only in the context of an approved clinical trial) is particularly important when
counselling patients about to commence cancer treatment. In this review we discuss the assessment
of risk to fertility, possible mechanisms of gonadal damage and propose a schema-based approach to

counselling for individual patients.

Which patients are at risk?

Consideration of the degree of risk to gonadal function in both males and females is critical for
provision of the most accurate information to the patients, and to allow examination of potential
fertility preservation strategies, which may be time consuming, invasive, and in some cases
experimental 8. The risk of infertility for some young men and women will be low, whereas others
will be facing a near certainty of loss of gonadal function. Consideration of this can be usefully
structured into intrinsic and extrinsic factors (Table 1) 2. Extrinsic factors centre on the proposed
treatment which will reflect the diagnosis and stage of disease. Treatments known to have the most
significant risk to gonadal function in both males and females include total body irradiation and
chemotherapy conditioning before bone marrow transplantation, radiotherapy to a field that includes

the gonads and some chemotherapy agents (e.g. alkylating agents) 1214,

In the female, radiotherapy to a field that includes the ovaries will cause depletion of the remaining



non-growing follicle (NGF) pool in a dose dependent manner. The dose to deplete the NGF pool by
50% (LD50) has been estimated to be less than 2Gy 1. Using our understanding of the normal
decline in the NGF pool with increasing age in healthy females 1& we have calculated the effective
sterilising dose for age at treatment. (Figure 1A). The older the patient the smaller their NGF pool
and therefore the smaller the dose required to deplete the remaining NGF pool to 1000 NGF’s or less
and therefore cause immediate premature ovarian insufficiency (POI). At the age of 12 years 18.3
Gy to the ovary furthest away from the radiation field will cause immediate POI for most females,
whereas for a 28 year old 14 Gy will be sterilising for most females. (Figure 1A). The combined
effect of age at treatment and the patients’ ovarian reserve (defined as NGF numbers in the ovary
and displayed as 25" 50" or 75" centile) is illustrated for a hypothetical patient receiving 5Gy to
her ovary (Figure 1B). For a patient aged 6 years, depending on their ovarian reserve she will
develop POI at between 24 and 32 years; if treated at age 22 years, POI is predicted at between 33
and 41 years. In Figure 1C we illustrate the same principle for a patient receiving TBI at a dose of
14.4 Gy. If treated at age 6 years she will develop POI either immediately or by 14 years, and if at

5 th

22 years, POI is predicted immediately or by 25 years if she is initially on the 75™ centile for ovarian

réserve.

For females, radiotherapy to other reproductive organs is also relevant, notably to the uterus which is
associated with a range of adverse reproductive outcomes including miscarriage, premature delivery
and stillbirth 1712, Radiotherapy may also have adverse affects on reproductive function through
damage to the hypothalamus and pituitary 2%; this may manifest in relatively subtle ovulatory
dysfunction developing with increasing time since treatment 2L, Likewise surgery may directly
impact on the specific reproductive organs or may indirectly affect fertility, for example, through
intra-abdominal adhesions impacting on ovarian and fallopian tube function. Consideration of these
issues will allow classification of the patients as being at low, medium or high risk of gonadal
dysfunction. However depending on the patient’s response to treatment, the treatment plan may be
required to change and a patient initially classified as low risk becomes high risk as e.g. radiation is

required to a field that includes the pelvis. L.

Extrinsic factors also include service provision related issues, i.e. what fertility preservation
therapies are realistic and available to the patient, and the time-scales required to achieve them.
Semen cryopreservation can be achieved with minimal delay; ovarian and testis tissue
cryopreservation may also be rapidly achievable as no pre-treatment is required, but techniques
involving ovarian stimulation require approximately 2 weeks. More than one option may be available

and potentially appropriate, highlighting the need for rapid and clear communication between



oncology and reproductive medicine services. The rapidly evolving nature of this field further
underlines the importance of seamless communication between specialties. Where fertility
preservation strategies remain experimental there are further issues such as ethical approval, funding

and staffing to consider.

Intrinsic considerations focus around the patient’s individual susceptibility to reproductive damage
from the proposed therapy, but also include psycho-social factors. These which will include
consideration of familial and cultural/religious views and beliefs. The importance of age in women
has long been recognised to be a very important determinant of the likelihood of ovarian failure after

cancer therapy 22



»23 This stratification can also be seen even in very young patients, thus adolescents were at

approximately two to three-fold higher risk of acute ovarian failure than girls under the age of 12
when treated with radiotherapy 2. Much of this effect of age is likely to reflect the progressive loss
of follicles within the ovary, with depletion resulting in POI and the menopause. Y ounger patients
may, therefore, be found to have an increased risk of POI if monitored for longer periods after
treatment. There is also a substantial variation in follicle complement between women, perhaps as
much as fifty-fold 18 which physiologically results in the near 20 year age spectrum of the normal
menopause. This has led to research investigating biomarkers of the ovarian reserve, i.e. the number
of non-growing primordial follicles in the ovary. There are no direct markers available, but recent
research has highlighted the potential value of measurement of serum anti-Miillerian hormone
(AMH) which is produced by small growing follicles, which in turn reflects primordial follicle
numbers 22, AMH in the healthy female rises to a peak at age 24.5 years then declines towards the
menopause 28 and has been proposed as an indirect marker of ovarian reserve in young women L.
AMH was first shown to be reduced in some female survivors of childhood cancer despite
preservation of regular menstrual cycles 2. In general, AMH declines rapidly during chemotherapy
in both adult women and girls and adolescents 28 22 with recovery thereafter dependant on the
treatment received 2% 2L, For example, there is little recovery of AMH levels in women who have

32,33 with a similar pattern seen in girls and adolescents 2.

received high doses of alkylating agents
Thus girls who have received high-risk therapy will often have undetectable AMH concentrations at
the end of therapy with no recovery thereafter, in contrast to the recovery seen with lower risk
therapies. In prospective analyses correlating pre-treatment reproductive biomarkers with ovarian
activity after chemotherapy, AMH has been shown to be a valuable predictor of long term ovarian
function in women with early breast cancer, although age remains an important stratifier 2436
(Figure 2). Long-term studies are needed to assess the predictive value of both pre- and post-
treatment AMH measurement in girls, to evaluate its usefulness in predicting future fertility, and for
the detection of those who do not develop POI in the immediate post-treatment period, but who none-
the-less may have a shortened reproductive lifespan and hence a reduced timeframe in which to have
children. Current evidence suggests that young women can retain fertility despite markedly reduced
ovarian reserve (as reflected in very low AMH concentrations) after cancer treatment 2Z, although

there is also evidence of increased prevalence of infertility in both adult 22 and childhood cancer

survivors 22 without POL.

Age, in relation to pubertal status, is also an important intrinsic factor for males as this will



determine the stage of testicular development for the patient which may have relevance in terms of
the susceptibility of the gonad to the effects of cancer treatment. There are three important phases of
postnatal gonadal development in males 22. During the fetal and early postnatal life the hypothalamo-
pituitary gonadal (H-P-G) axis is active and the germ cells undergo an important period of
differentiation from gonocyte to spermatogonia. This is followed by a childhood period where the H-
P-G axis is regarded as relatively quiescent. However, as demonstrated in non-human primates, the
testis is not inactive during this period with functional maturation of Sertoli cells and proliferation in
germ cells 40 Although it has been suggested that the testis is less susceptible during pre-puberty 4l
it remains sensitive to the damaging effects of chemotherapy and radiotherapy during childhood and
recent evidence indicates that the testis may even be at greater risk in the pre-pubertal period than in

42,43

adulthood as indicated by studies in non-human primates . This may relate to effects on

proliferating Sertoli cells resulting in failure of outgrowth of the seminiferous tubules 42 43

. Damage,
either direct or indirect, to the spermatogonial stem cells (SSCs) is the most important factor in
determining whether fertility will be preserved: if the SSCs are lost then establishment or restoration
of spermatogenesis will not occur. Assessment of spermatogenesis post-treatment can only be
reliably performed by semen analysis. FSH and inhibin B are both serum biomarkers of
spermatogenic function, and are of value for example in comparison of treatment effects 2.
However in assessing the individual cancer survivor, neither have sufficient accuracy for clinical

use ﬂ

Age and pubertal stage are also an important factor in terms of the potential strategies that may be
employed for fertility preservation in these patients. For pubertal patients in whom complete
spermatogenesis has occurred, there is the well established option of semen cryopreservation.
Current recommendations are that all adult men and teenage boys should be offered semen

cryopreservation 42



>4 The decision in younger patients may be aided by a clinical assessment of pubertal stage and
emotional maturity. However, for pre-pubertal patients and pubertal patients that are not able to
produce a semen sample, approaches for fertility preservation remain experimental and are only
available in a limited number of centres worldwide. Establishing whether spermatogenesis has
commenced in individual patients is important in this context because this will determine the
requirements for handling and storage of testis tissue. Although the use of age, Tanner staging,
testicular volumes and serum hormonal evaluation may provide some indication, there currently is no
definitive way to predict the likelihood of sperm in these patients. Spermarche has been shown to
occur over a wide age range and to be associated with an extremely variable testicular volume 332,
This includes individuals with testicular volumes <5ml and/or pubic hair stage I 2122, As a result it

has been suggested that intra-operative assessment of the biopsy at the time of tissue retrieval may

be useful for allocation of tissue to a particular freezing protocol 22.

The patient’s general health status may also determine the potential for fertility preservation
strategies. In some circumstances the patient may be too unwell and the need for immediate
treatment may override other considerations. The patient’s health may also impact on the likelihood
of success of fertility preservation. It has long been recognised that men with a range of cancers
often have severely impaired spermatogenesis at presentation 2% and there is now a growing body of
evidence that women with cancer also have impaired ovarian function. This translates into lower
markers of the ovarian reserve at presentation (either AMH or ultrasound based antral follicle
count), and fewer oocytes obtained than from age matched otherwise healthy infertile women 22 26,
AMH is also reduced in girls with cancer compared with age matched controls 2Z, with the deficit
related to markers of the degree of ill health. Specific health conditions that are associated with

58

compromised male reproductive function (e.g. cryptorchidism) >* may also affect the potential

success of any fertility preservation strategies.

Individual beliefs and wishes relating to the importance of fertility, and the risk/benefit of procedures
for fertility preservation, will vary between patients 22. Some patients will be extremely concerned
irrespective of the assessed risk being low, medium or high and will be keen to attempt semen
cryopreservation, while others will be less concerned and more anxious to commence treatment
without delay ¢, Informed consent is a pre-requisite for any medical intervention, and in this context
is particularly pertinent to children for whom the proposed procedure for fertility preservation
remains experimental. The interests of the young patient must always be the priority and issues
relating to consent/assent must be carefully evaluated. In adults too, accurate assessment of the

degree of risk of loss of gonadal function is central to the patient being able to make a truly informed



decision. The risks of future infertility and also of the proposed fertility preservation procedure must
be carefully balanced against the chance of future success of preserving fertility, particularly when
the options remain experimental and speculative 22. It is not in the interest of a patient with very low
risk disease to undergo a procedure if there is no real prospect of the tissue being needed for future
fertility. Undoubtedly, discussion of fertility issues that will only become apparent and relevant later
in life is important in conveying the message of anticipated long-term survival or cure, but the need
for invasive, and especially experimental, procedures must be clearly justified as being in the

individual patient’s interests.

How is fertility lost?

The infertility experienced by some patients after cancer treatment is most often due to a loss of
germ cells, but whether that loss is a primary consequence of treatment or an indirect effect is less
clear, with such information important for the design of protective treatment. With the mechanisms
of action varying across different chemotherapy drug classes, and between chemotherapy and
radiotherapy treatment, and with the majority of patients receiving combination treatments,

mechanistic examination of damage is complex.

For females, there is a substantial body of evidence pointing to a direct loss of oocytes (including
within the NGF pool) in patients who have had ovarian exposure to radiotherapy. The precise
cellular effects of chemotherapy treatment are less clear, but it is apparent that different drug types
induce different patterns of ovarian damage (Figure 3) 2. Alkylating agents directly damage oocytes
61,82 'but many other classes of chemotherapy drugs first damage ovarian somatic cells, with germ
cell death a secondary, downstream effect ¢ 3. The stage(s) of ovarian follicle most susceptible to
damage by chemotherapy treatment will also impact how fertility is affected (Figure 3). Long-term
reproductive health requires maintenance of the ovarian NGF pool, but current evidence indicates
that it is the growing ovarian follicles that are particularly susceptible to chemotherapy drug damage:
death of these developing ovarian follicles leads in turn to accelerated recruitment of primordial
follicles into the growing pool. Hence the number of NGFs decreases as a consequence of an
increased rate of growth initiation, in addition to direct primordial follicle death . Ovarian follicle
death can also occur due to initial damage to extra-follicular ovarian tissue, and stromal and blood

vessel damage in response to chemotherapy have been reported 2.

For male patients, as with females, radiotherapy and chemotherapy with alkylating agents are

particularly gonadotoxic, primarily affecting spermatogenesis (Figure 4) . In post-pubertal males,



the spermatogonia (including SSC) are particularly sensitive to chemotherapy and radiotherapy. This
is not surprising since, unlike female germ cells, these are a rapidly dividing population of cells in
the pre-pubertal testis 22. A second key difference in the function of the testis compared to the ovary
is that the endocrine function of the testis, residing in the Leydig cells, is not directly linked to
gamete generation and thus male fertility can be, and indeed generally is, adversely impacted
without effects on endocrine function. Much less is known about the specifics of damage to
prepubertal males, although this patient group is the one for which there are no established fertility

treatments ﬁ.

For both males and females, loss of fertility will often be temporary, provided there remains a
sufficient testicular population of SSCs or ovarian supply of NGFs. Crucially, where sufficient germ
cells are still present after treatment, evidence to date does not point to any long term, sustained
damage in these cases & and likewise evidence regarding potential transgenerational effects is

generally reassuring $8-7L,

Endocrine consequences of gonadal damage from cancer therapy

While the loss of fertility is a major concern in both male and female cancer survivors, the non-
fertility or endocrine consequences of gonadal damage are important for long-term health. In
females, the intimate association of the germ cell and endocrine cells of the ovary in the growing
follicle means that when one is lost or damaged, then both are. Thus, in the worst case where all
follicles are lost, the patient will experience POI and thus estrogen deficiency as well as infertility.
This will have important consequences for all estrogen dependent tissues, most obviously the
skeleton but will also impact on cardiovascular, uterine and cognitive function. Whilst estrogen
deficiency is well recognised to have adverse effects on bone density, it is also clear that
chemotherapy can have direct negative effects as well 2. The symptoms of estrogen deficiency,
including hot flushes, joint pain and potentially tiredness all contribute to a significant loss of quality
of life in these women. In general, these can be ameliorated by hormone replacement therapy that is
recommended to be taken until the age of the natural menopause, i.e. approximately age 50. Where
treatment has resulted in POI before puberty, then there will be the need for induction of puberty
with graduated sex steroid administration. As in other patients, the aim will be to mimic the timing
and key milestones of normal puberty, and the need for such therapy should be anticipated in girls
who have undergone high risk therapy 22. Transdermal estrogen replacement is increasingly used for
both pubertal induction and long term hormone replacement, and there is some limited evidence that

this may be beneficial for cardiovascular, renal, uterine and bone function 1477



The increasing data on the potential value of serum AMH measurement for predicting the
menopause in normal women may also be helpful for cancer survivors. It may be useful to use this
hormone to identify those young women with very low ovarian reserve and therefore a likely
significantly shortened reproductive lifespan 2222 28 In addition to providing patient information,
some may also wish to pursue fertility preservation techniques while they still have some ongoing

gonadal function if this was not performed pre-treatment.

The situation in men is rather different as the endocrine and gametogenic functions of the testis are
more functionally and anatomically separated. It is well accepted that the Leydig cells and thus
testosterone production are relatively resistant to chemotherapy and radiotherapy compared to
spermatogenesis £ 22, As a result, many boys treated for cancer can expect to undergo a normal
puberty and maintain normal testosterone production even though they will not be fertile as adults.
In some instances, partial Leydig cell damage may be compensated for by elevated LH
concentrations 2. Recent data suggest that Leydig cell dysfunction is under-recognised, with an
overall shift to slightly reduced testosterone concentrations in childhood cancer survivors 82,
Similarly, there is a general shift to higher LH concentrations in such men. Overall, the risk of
endocrine dysfunction in childhood cancer survivors had an odds ratio of 6.7, with some 23% of men
in a survey of 150 patients showing such evidence. This was particularly common in men who had
had radiotherapy to the testis, in which group 83% had testicular endocrine dysfunction. It was,
however, found in over 30% of men with past leukaemia or lymphoma. There are no long term
follow up data indicating whether men with a high LH and normal testosterone progressed to overt
hypogonadism over time, although it would seem likely that this does occur in a significant
proportion. As with girls anticipation of, and prompt treatment for, pubertal delay are appropriate.
Induction of puberty should be considered and implemented as for other adolescent males with

hypogonadism using escalating doses of testosterone &L 82

. Given the long-term adverse effects of
hypogonadism on bone density, patients should be assessed regularly, and testosterone replacement

initiated as for the normal treatment of the hypogonadal male 23,

What can be done?

Fertility preservation is now part of the UK National Institute for Clinical Excellence (NICE)
guidance for the management of people diagnosed with cancer 82, and some options are well
established. These include semen cryopreservation from adult men, and embryo and oocyte

cryopreservation for women. For both sexes, options for children and adolescents remain



experimental. Direct measures for fertility preservation (gamete and gonadal tissue
cryopreservation) are discussed below and outlined in Figure 5; although discussed briefly, space
precludes detailed discussion of indirect approaches including ovarian transposition or gonadal
shielding, and hormone or other drug therapy to potentially reduce gonadal toxicity; these have

recently been reviewed &.

Existing fertility preservation methods
l. Protection of the gonad in-situ

In patients who are due to undergo radiotherapy in the abdomino-pelvic region, it may be possible to
shield the gonad from the radiotherapy beam. In young males, this has been shown to preserve
testicular growth and function when used in combination with bone marrow transplantation 2.
However, in females particular care needs to be taken in children to correctly identify the position
of the ovaries 2. Recent improvements in radiotherapy techniques may also result in more specific
targeting to the tumour site of solid malignancies, which should reduce the chance of damage to
neighbouring gonadal tissue. Similarly, modifications of treatment regimen in order to reduce the
effects on fertility are also being investigated. In particular, replacing alkylating agents such as
procarbazine with alternative agents such as dacarbazine, as in the recently closed Euronet
(Euronet-PHL-C1) study for classical Hodgkin lymphoma, offers a real possibility of reducing

gonadotoxicity and preserving fertility in these patients 12,
Il. Sperm cryopreservation

Cryopreservation of semen from adult men has long been an established option. It is rapid, non-
invasive and widely available. A discussion about fertility should be included in the counselling of

all patients with cancer prior to their treatment &



>4 and should cover the potential risk of the proposed cancer treatment regimen, the options for

fertility preservation and whether these are established or experimental techniques. Facilities for
semen cryopreservation should be available to all patients prior to commencement of their treatment
48 and the subsequent use of stored semen samples for assisted reproduction (e. g. IUL, IVF with
ICSI) is well established for adults that have received treatment for cancer 86,87 There are a
number of hurdles that must be overcome before sperm storage can be achieved. The patient must be
physically and emotionally mature enough to produce a sample. Consent should be taken from the
patient to store the sample and this should include issues such as what would happen to the sample in
the event of the patient’s death. Despite the guidance advocating semen cryopreservation for
patients, the number of males who choose to store semen remains low and, even for those who do

store a sample, the number of patients who subsequently use their sample is also low 28,

I Oocyte and embryo cryopreservation

The most established method for female fertility preservation is embryo cryopreservation, a long
established and routine part of IVF treatment for infertile couples. It does, however, require time,
and although current approaches to ovarian stimulation have reduced this 28, some two to three
weeks will still be required. Importantly, the creation of embryos requires sperm and the resulting
embryos will be the joint property of the man and woman involved (unless donor sperm are used).
This will, therefore, not be ideal for women who are not in an established relationship and even
where they are, the implications of embryo formation should be very clearly discussed with the
woman and her partner beforehand. Historically, oocyte cryopreservation has been relatively
unsatisfactory with poor survival of cryopreserved oocytes, but this has markedly changed with the
development of vitrification, involving ultra-rapid freezing in high concentrations of cryoprotectant
89 With current protocols, oocyte survival is high with essentially normal developmental
competence. Thus this has now become a viable option for women and is no longer regarded as

12021 There are limited data on usage of cryopreserved oocytes and embryos: a recent

experimenta
report indicates that this may be low 22 as with men returning to use cryopreserved sperm. The
reasons underlying this, such as continuing natural fertility, are unclear but the accumulation of
samples with low likelihood of utilisation is an important practical consideration for any centre

offering this very long-term service.

Experimental approaches



I, For males

For pre-pubertal males, strategies for fertility preservation remain experimental and can be broadly
classified into those in which the gonad is protected in situ and those in which gonadal tissue is
removed for cryostorage and future use in evolving reproductive technologies. Approaches to
protecting the gonad in situ include altering the hormonal milieu to render the gonad insensitive to the
effects of cancer treatment. Whilst studies in rodents utilising GnRH analogues and/or sex steroids
offered much promise (reviewed in 22) such approaches have failed to offer protection to the gonad

23,24 and humans (reviewed in 22). Limited data from rodent studies are also available

in primates
on the use of pharmacological agents for fertility preservation in males 22. However, to date no
pharmacological intervention study has been shown to offer protection of the pre-pubertal testis from

chemotherapy and radiotherapy induced damage in humans.

The alternative approach is to remove gonadal tissue from suitable patients at high risk of infertility
(Table 2) and cryopreserve it prior to cancer treatment. This tissue would then be available for future
use in initiating/restoring fertility in these patients. Strategies for cryopreservation are required that
preserve the survival and functional capacity of the SSC and several methods have been used to
assess SSC viability 2222, Approaches that utilise such cryopreserved tissue may include

autotransplantation of the tissue or SSCs to the patient after the treatment has finished. Both of these

approaches for generating full spermatogenesis from pre-pubertal tissue have proved to be successful
100-102

in a variety of species, including non-human primates . However, in the only study to report on
the use of a SSC transplantation approach in humans, a return of fertility has not been subsequently
reported 122, An alternative method that has been utilised for generation of mature gametes involves
in vitro culture of the tissue/SSCs. These techniques have also shown promise in rodent models with
full spermatogenesis and generation of progeny described for sperm generated from culture of intact
immature testicular tissue 1%, To date this approach has not been reproduced using human tissue.
The methods described thus far involve the differentiation of immature germ cells although there has
been much recent interest in the generation of germ cells from re-programmed stem cells. However

these approaches remain very much in their infancy 1%,

Despite the progress that is being made in this rapidly expanding field, there remain a number of
important questions. Areas of significant uncertainty remain regarding the selection of patients most
likely to benefit from this service, the efficiency of both transplant related and in vitro methods, and
the safety of future use, including in vitro-generated gametes and the potential for tumour cell

contamination and inadvertent replacement.



Given the difficulties in translating the results of animal studies to humans and the relative scarcity
of pre-pubertal human testis tissue for research, it is important to establish large collaborations to
focus research efforts into key areas and prevent duplication of work. In addition there must be well
co-ordinated long term follow-up to validate patient selection criteria and the effectiveness of the

strategies for fertility preservation.
Il. For females

Ovarian stimulation is generally regarded as inappropriate in girls and at least younger adolescents
(although it has been reported in a premenarchal girl 128). The most accepted available option
remaining is ovarian tissue cryopreservation. This is highly invasive, involving general anaesthesia
and surgical removal of ovarian tissue (either ovarian cortical biopsies or sometimes oophorectomy).
Delay can be minimal, and cancer therapy started very shortly after surgery. While this technique is
the only one appropriate for very young patients, its use in adult women varies according to health
service organisation and relevant national legislation. Subsequent use of the ovarian tissue generally
requires a further surgical procedure to replace the tissue. Live births following both natural
conception and IVF have been reported, at least 35 at the time of writing & 1%, Successful
pregnancy has recently been reported following transplantation of ovarian tissue to a site outside the

pelvis, i.e. to the anterior abdominal wall 128

, although such heterotopic transplantation has
previously been less successful than replacement within the pelvis. The success rate, i.e. the chance
of live birth following replacement of ovarian tissue, remains unclear but appears to be
approximately 20%, although the majority of women will achieve some ovarian function 122, An
evidence base is thus accruing as to the usefulness of this approach in adult women, but remains at
the level of case series reports, with no robust and objective trials testing indications, techniques, or
success rates. It is regarded as experimental by professional bodies 112, and is undoubtedly so when

applied to girls and adolescents.

A key aspect of this approach that requires consideration is the potential for reimplantation of
malignant cells or tissue when the cryopreserved ovarian tissue is replaced. This risk appears high
in leukaemia, where malignant cells have been detected in a significant proportion of ovarian
biopsies analysed 1.1 1.2 The risk in other malignancies is low, although a high level of vigilance is
required: we have detected ovarian deposits of Ewing’s sarcoma in a girl without other evidence of

metastasis.

We have recently validated criteria for offering ovarian tissue cryopreservation over a 15 year

period, with a population basis including the whole of the South-East of Scotland of all paediatric



oncology patients treated at The Edinburgh Cancer Centre (a regional centre) to minimise bias 3.

The criteria, based on multidisciplinary review, are shown in Table 2; these should be regarded as a
basis for discussion of individual cases and further development. In this analysis of 410 new
referrals, ovarian tissue cryopreservation was only offered to 8% of patients, but the prevalence of
POI in that group was 35% vs 1% in those not offered it (Figure 6). This confirms that these criteria
can predict those at highest risk of POI with a high degree of accuracy, although with longer follow

up it is highly likely that more women in both groups will develop POI.

The ability of the pre-pubertal ovary to support later fertility has not been shown, although there
appears no particular reason to suggest that it cannot: replacement has shown evidence of endocrine
activity to induce pubertal development 1% 13 This indication may however be inappropriate 1
as there is rapid and uncontrolled elevation of estradiol and progesterone to adult levels, the graft
lifespan may only be short, and the use of the very scarce number of follicles and oocytes available
seems wasteful. Autologous ovarian tissue transplantation in adults for hormone replacement at a

heterotopic site may be feasible, although careful consideration of the risk of malignant

contamination is important as is the potential need for repeated transplants.

Conclusions and future directions

Recent years have seen substantial progress in the techniques and provision of fertility presevation
for young people with cancer. Semen and embryo cryopreservation and now oocyte vitrification are
established where appropriate, with the latter greatly improving the options for young women.
Ovarian tissue cryopreservation is widely used in adult women and in some children and
adolescents, although it remains experimental. It is likely to become more widely offered to girls
and adolescents, where ovarian stimulation is inappropriate, but the ethical considerations for
children are different and more challenging than those involving adults who are competent to provide
informed consent for an experimental procedure. Experimental interventions in children can only be
ethical if they can be considered to be therapeutic and in the best interests of the child. These
considerations particularly apply to the development of techniques for pre and peri-pubertal boys;

while testicular tissue can be cryopreserved, we do not at present know how to use it.

The evidence base underpinning the rapid establishment of fertility preservation remains limited,
only now progressing from case reports and series to a small number of cohort studies. The
effectiveness of the techniques being offered needs to be established, and more accurate information

about long-term fertility in cancer patients is necessary to provide the denominator for this. Most



young men and women treated for cancer do not become infertile: the challenge is to develop robust
ways to individualise that risk, allowing truly informed decision making by patients and their clinical

team at a time of considerable emotional distress.



(A)

Figure legends

Figure 1: The effective sterilising dose for age at treatment and POI prediction given age and
radiation dose. We make the conservative assumption that the remaining NGF pool declines at a

similar rate to that given by the Wallace-Kelsey model for the untreated female.

Above the grey-red boundary, doses to the ovary will cause immediate POI for most patients due to

depletion of the NGF population to below one thousand.

(B) Exemplars of the combined effects of a dose of 5 Gy and age at treatment. The green dashed
lines show the 25®, 50" and 75™ centiles of the Wallace-Kelsey age-related model of NGF
population per ovary for healthy females, with menopause (defined as an NGF population below one
thousand) occurring at 46 to 53 years for the majority of women. The blue lines show the immediate
NGF depletion for patients aged 6 years due to 5 Gy radiotherapy, and the subsequent 25" 50™ and
75" centiles of the Wallace-Kelsey model representing their ovarian reserve; in this case POI is
expected at between 24 and 32 years. The red lines illustrate the effects of the same dose on patients
aged 22 years, with POI expected to occur at between 33 and 41 years depending on their ovarian

reserve at the time of treatment.

(C) Exemplars of the combined effects of a dose of 14.4 Gy and age at treatment. The green, blue
and red lines denote the healthy population, 6 year old patients and 22 year old patients respectively
as in (B). The increased dose leads to more severe depletion of the ovarian reserve, leading to
expected POI at between 6 and 14 years for patients aged 6 years and expected POI immediately or

for those on the 75™ centile for ovarian reserve at 25 year for patients aged 22 years at treatment.

Figure 2

Classification mosaic chart for ongoing menses (M) or chemotherapy-related amenorrhoea (A) using
serum AMH and chronological age as predictor variables. The primary cut-off values are for AMH;
at intermediate AMH concentrations there is an age threshold, above which amenorrhoea is
predicted and below which ongoing menses are predicted. The classification schema has sensitivity

98-2% and specificity 80-0%. Reprinted with permission from 22,

Figure 3



(A) Cancer treatments could directly affect the resting pool of primordial follicles or the growing follicle
population. As growing follicles inhibit the recruitment of primordial follicles, the loss of this
growing population will lead to increased activation of primordial follicles and so loss of that
reserve. (B) Cancer treatments could be directly targeting the oocyte or the somatic cells. Oocyte
death would result from death of the follicular somatic cells, as the oocyte is dependant on these for

its survival. From 12,

Figure 4

Cellular targets for testicular damage following cancer treatment. A) Damage to the SSC and
subsequent SSC loss will result in permanent azoospermia. B) Damage to the differentiating germ
cells will result in transient azoospermia, however, restoration of spermatogenesis may occur from
the surviving SSC. C) Damage to the Sertoli cells may result in failure of these cells to support the
SSC and/or differentiating germ cells resulting in permanent or transient loss of fertility as described
for A) or B) respectively. D) Damage to Leydig cells following cancer treatment results in
testosterone deficiency. This usually occurs at higher doses that will also result in germ cell loss and

azoospermia.

Figure 5

Pathways to fertility preservation options for children and young adults. In prepubertal boys, prior to
the onset of spermatogenesis, testicular biopsy and cryopreservation is an option. In pubertal and
post-pubertal males, the ability to produce a sperm-containing ejaculate allows sperm
cryopreservation: prior to this, testicular biopsy with cryopreservation of sperm or tissue is required.
In prepubertal females, ovarian stimulation is inappropriate thus ovarian tissue cryopreservation can
be offered. After puberty, this remains an option but ovarian stimulation allows the recovery of
mature oocytes for cryopreservation, or of embryos after fertilisation. Distinction is made between
established and experimental options. Recovery of immature oocytes with in vitro maturation is

omitted for clarity.
Figure 6

The cumulative probabilities of not having POI in the years following diagnosis for the group offered

ovarian cryopreservation (blue line) and the group not offered ovarian cryopreservation (red line).



(15-year probability 35% [95% CI 10-53] vs 1% [0-2]; p<0.0001; hazard ratio 56.8 [95% CI 6.2—
521.6]. From 113,



Table 1
Intrinsic and extrinsic factors that should be taken into account when considering fertility

preservation strategies for children/young adults undergoing treatment (adapted from 2).

Intrinsic factors
Health status of the patient
Psycho-social factors
Consent (patient/parent)
Assessment of pubertal status

Assessment of ovarian reserve (females)

Extrinsic factors
Nature of predicted treatment
(high/medium/low/uncertain risk)
Time available

Expertise/technical options available



Table 2

The Edinburgh Selection Criteria for gonadal tissue cryopreservation. These were established with
Ethical Committee review and approval as these are experimental procedures, and should be
regarded as a starting point for future discussion, research and refinement.

Females (from 13

Age <35 years

No previous chemotherapy/radiotherapy if age >15 year at diagnosis, but mild, non gonadotoxic
chemotherapy if < 15 years is acceptable

A realistic chance of surviving five years

A high risk of premature ovarian insufficiency (>50%)

Informed consent (parent and where possible patient)

Negative HIV, Syphilis and Hepatitis serology

Not pregnant and no existing children

Males

Age 0-16 years

A high risk of infertility (>80%)

Unable to produce a semen sample by masturbation

No significant pre-existing testicular pathology (e.g.cryptorchidism)
Informed consent (parent and where possible patient)

Negative HIV, Syphilis and Hepatitis serology
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