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Abstract 

Single-stranded DNA binding proteins (SSB) bind to single-stranded DNA (ssDNA) 

that is generated by molecular machines such as helicases and polymerases. SSBs 

play crucial roles in DNA translation, replication and repair and their importance is 

demonstrated by their inclusion across all domains of life. The homotetrameric E. 

coli SSB and the heterotrimeric human RPA demonstrate how SSBs can vary 

structurally, but all fulfil their roles by employing oligonucleotide/oligosaccharide 

binding (OB) folds. Nucleofilaments of SSB proteins bound to ssDNA sequester the 

ssDNA strands, and in doing so protect exposed bases, keep the ssDNA in 

conformations favoured by other proteins that metabolise DNA and also recruit other 

proteins to bind to ssDNA.  

 

This thesis focuses on the SSB from the archaeon S. solfataricus (SsoSSB), and has 

found SsoSSB to be a monomer that binds cooperatively to ssDNA with a binding 

site size of 4-5 nucleotides. Tagging ssDNA and SsoSSB with fluorescent labels 

allowed the real time observation of single molecule interactions during the initial 

nucleation event and subsequent binding of an adjacent SsoSSB monomer. This was 

achieved by interpreting fluorescent traces that have recorded combinations of 

FRET, protein induced fluorescent enhancement (PIFE) and quenching events. This 

novel analysis gave precise measurements of the dynamics of the first and second 

monomers binding to ssDNA, which allowed affinity and cooperativity constants to 

be quantified for this important molecular process. 
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SsoSSB was also found to have a similar affinity for RNA, demonstrating a 

promiscuity not found in other SSBs and suggesting further roles for SsoSSB in the 

cell - possibly exploiting its capacity to protect nucleic acids from degradation. The 

extreme temperatures that S. solfataricus experiences and the strength of the 

interaction with ssDNA and RNA make exploring the application of SsoSSB for 

industrial uses an interesting prospect; and its rare monomeric structure provides an 

opportunity to investigate the action of OB folds in a more isolated environment than 

in higher order structures. 
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Introduction 

1. Introduction 

1.1.  Double-stranded DNA 

All cellular life depends on DNA – a macromolecule that is used as a code for an 

organism’s genomic information. Its structure was famously solved by Franklin, 

Watson and Crick in 1953 which sparked a rapid gain in knowledge about biological 

systems, and the central dogma of biology of ‘DNA makes RNA makes proteins’ 

was soon coined.
1, 2

  

 

The DNA molecule itself is a polymer and usually exists in a conformation that 

comprises two strands woven around each other creating a double helix. The most 

common form is B-DNA: a right handed double helix has a pitch of 34 Å and a 

radius of 10 Å. Each DNA polymer consists of monomer units called nucleotides, 

which are conjugated together through a sugar phosphate backbone that run around 

the outside of the double stranded molecule. The covalent bonds that run through one 

nucleotide to the next pass through the 3’ and 5’ carbon of the sugar ring, giving a 

single strand of DNA an asymmetric characteristic and thus directionality. The 

strands in the double helix run in opposite directions to each other, which allows 

more efficient packing of the molecule. 
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Figure 1.1: Crystal structure of B DNA. 
The crystal structure of B DNA is shown on the left (pdb: 1bna) with the cartoon on the right showing 
the chemical structure of adenine, thymine, cytosine and guanine with hydrogen bonds between 
complementary base pairs drawn as dashed lines. 

 

In the centre of the two strands lie aromatic bases that project inwards and lie normal 

to the direction propagated by the backbones. The bases make up a four letter 

alphabet that code for an organism’s genome, and in DNA they are cytosine (C), 

guanine (G), thymine (T) and adenine (A). These bases may pair through specific 

hydrogen bonds so that G-C and A-T pairs are formed. The complementary base 

pairing contributes to holding the two strands together, and facilitates the replication 

of genetic material – a fact that had not ‘escaped the notice’ of Watson and Crick in 

1953.
1
 It since been shown that complementary base pairing of nucleic acids is also 

integral in transcription, translation and repair processes. 

 

1.2.  DNA damage and mutations 

The role of DNA in the cell is to faithfully store genomic information, however this 

information also needs to be accessible, which requires the macromolecule to present 

the sequence of bases during replication and transcription. This allows mistakes to be 
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made during replication and gives opportunities for damaging reagents to interact 

with DNA. 

 

Naturally occurring reagents such as reactive oxygen, nitrogen, or carbonyl species 

as well as lipid peroxidation products and alkylating reagents can produce abnormal 

chemical structures of DNA which can disrupt and stall DNA replication and 

transcription.
3
 Hydrolytic processes in the cell cause breakages in DNA strands 

which can also be fatal for the cell.
4
 Mispaired bases, insertions and deletions can 

arise from faulty DNA replication or spontaneous degradation and can also result in 

irregular conformations of DNA, where bases can be partially flipped out of the 

double helix.
5
 Exogenous causes of DNA damage include mutagenic chemicals, 

toxins, thermal disruption and exposure to UV, X-ray and gamma radiation.
3
  

 

A mutation is a heritable alteration to the original nucleotide sequence of a genome - 

either through an insertion, deletion or substitution of one or more nucleotides. This 

can occur through spontaneous molecular degradation of DNA; through error prone 

translesion synthesis where replication proteins that can bypass DNA damage also 

tend to offer low fidelity as they process along undamaged templates; through faulty 

DNA repair; and through mutagenic chemicals and UV light. 

 

1.3.  DNA repair 

Each day there could be up to 1 million events that damage DNA in a single human 

cell.
6
 This still only affects a small fraction of the genome; however the damage to 

DNA could potentially be fatal if left unchecked. Cells have evolved the ability to 
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repair DNA in multiple pathways to cope with the variation in types of damage.
7
 

These pathways can be classed as either direct reversal of the DNA damage or 

excision repair. Direct reversal of the chemical steps that occurred during DNA 

damage can be more efficient than excision repair, however it is only possible to 

repair a few particular types of damage using a direct reversal pathway. Examples of 

direct reversal pathways include the removal of alkyl adducts from guanine bases 

and the reversal of pyrimidine dimer formation, by methyl guanine methyl 

transferase proteins and photolyases respectively.
8, 9

 Humans do not possess a 

photolysase enzyme and rely on excision repair pathways to correct for these and 

other damaged DNA structures.
8
 

 

During excision repair processes the damage to the DNA is recognised, the damaged 

DNA is removed and replaced with newly generated DNA. The three types of 

excision repair are base excision repair (BER), nucleotide excision repair (NER) and 

mismatch repair (MMR). As their names suggest BER involves the removal of a 

damaged base, NER includes the removal of a damaged nucleotide and MMR 

corrects undamaged but mismatched base pairs. The roles of each pathway overlap 

with each other and as a result they can cooperate to keep the genomic information 

faithful. 
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Figure 1.2: A simple diagram showing the pathways and the main intermediates of BER, NER and 
MMR.  
The damage or mismatch (arrow) is first recognised and a repair patch containing the damage is 

removed from DNA. The non-damaged strand is used as a template to re-synthesise the missing patch 

of DNA and the repair of DNA is completed by the ligation of the nascent patch to the DNA backbone 

of the now repaired strand. Figure modified from Cline and Hanawalt.
10  

 

1.4.  Single-stranded nucleic acids 

The planar arrangement of the aromatic bases in a dsDNA double helix lends itself to 

π-π stacking where the overlap of the p orbitals contribute to the stability of the 

double helix.
11

 The arrangement of the sugar-phosphate backbone on the outside of 

the double helix provides a barrier between the bases and potential damaging agents, 

which gives a certain amount of protection and ensures the fidelity of the genetic 

information. For example, hydrolytic deamination of cytosine occurs three orders of 

magnitude slower in dsDNA than ssDNA as the double helix structure prevents 

solvent access to the bases.
12

 Unfortunately, the arrangement of dsDNA also presents 

a barrier for proteins that are involved in essential processes that metabolise DNA. In 
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order to complete these vital processes, the two strands may have to be separated to 

expose the bases and allow access to the genetic code.  

 

Single-stranded nucleic acid (ssNA) are more flexible and, unlike double stranded 

DNA, a helix is no longer the lowest energy conformation.
13

 A single strand of NA 

collapses into less defined forms, but still adopts conformations that minimise like 

charge interactions along the phosphate backbone.
14, 15

 As a result, a single strand of 

NA will generally be more compact in high salt concentrations, allowing the 

phosphates to exist in closer proximity to each other since ions in solution can shield 

the electrostatic repulsion along the sugar phosphate backbone. Depending on the 

sequence of the bases, complementary pairing between bases on the same strand may 

be possible and this coupled with base stacking and the ions in solution could result 

in the molecule being able to fold up to give a more defined structure. This allows 

certain ssNA’s to perform cellular functions, as is the case for riboswitches, tRNA 

and other hairpins and pseudoknots.
16, 17

 

 

ssNA are present in the cell as single-stranded DNA (ssDNA) or RNA. RNA has a 

similar structure to DNA and it is thought that RNA pre-dated DNA as a genomic 

material in an earlier RNA/protein world.
18

 Each RNA nucleotide also consists of a 

sugar-base nucleoside conjugated to a monophosphate, however, the sugar has an 

extra hydroxyl group at the 2’ carbon of the ribose sugar. The base thymine is not 

present in RNA which uses uracil (U) instead. The differences between the two NA 

strands result in RNA being a shorter, stiffer polymer than its ssDNA analogue due 

to increased base stacking and sugar pucker effects, as shown in Figure 1.3.
14
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Figure 1.3: The structures of RNA 
(a) The difference between ribose and deoxyribose sugars is the 2’ hydroxyl group. ssDNA can 

interconvert relatively easily between the C3’ endo and C2’ endo conformations. (b) RNA shows 

more of a preference towards the C3’ endo as shown by the 3D structure. The inset shows the clash 

between the 2’ hydroxyl and the phosphate group whilst the RNA adopts the C2’ endo conformation. 

(c) The increased base stacking due to the presence of uracil rather than thymine, and the barrier for 

the ribose sugar adopting the C2’ endo ring pucker results in polymers of RNA being shorter and 

stiffer than ssDNA analogues. This was observed by Chen et al. who measured the distance between 

fluorescence dyes (green and red stars) conjugated to the 3’ and 5’ ends of ssDNA and RNA.
14

 

 

1.5.  Single-stranded DNA binding proteins 

The propensity of ssDNA to fold and adopt compact conformations could potentially 

cause fatal stalls of molecule machinery involved in DNA repair, replication and 

transcription.
19

 Breakages in ssDNA occur more frequently than in dsDNA and are 

extremely disruptive to cellular life.
20

 Specialist proteins named single stranded DNA 

binding proteins (SSB) are expressed to protect the ssDNA,
21

 to sequester the strands 

and to remove any secondary structure of the ssDNA in order to help maintain a 
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conformation of the polymer that is conducive to other proteins that metabolise or 

manipulate DNA.
22

  

 

By definition SSBs have a high affinity for ssDNA and they form filaments that 

decorate the single strands through sequence independent binding,
23, 24

 allowing them 

to provide an essential role in a large number of processes. The high affinity of SSBs 

for ssDNA rather than dsDNA or RNA, automatically gives the cell a marker for 

ssDNA if it can somehow detect and exploit SSB’s presence on ssDNA.
25, 26

 This 

potentially could enhance the efficacy of essential DNA processes as proteins with 

lower affinity to ssDNA than SSB as an initial interaction with the SSB, rather than 

the DNA, could increase the rate of binding and stabilise the protein DNA 

interaction. SSBs must also be removed readily from ssDNA at some point in DNA 

metabolism, either to allow other proteins access to the genetic code or simply for the 

regeneration of the double helix at the end of replication, transcription or repair. 

There are a great range of SSBs varying in structure and function, from monomers to 

pentamers.
27-32

  

 

Here a brief overview is presented of some of the common features shared amongst 

SSBs as well as short overviews on two of the more well known SSBs: the human 

replication protein A (RPA) and the SSB from E. coli (EcoSSB.) These two proteins 

can both alternate between different ssDNA binding modes, to allow the re-

distribution of proteins along a nucleofilament, and also engage with other proteins 

metabolising ssDNA – however, the different structures of these two SSBs define the 
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different strategies which each protein employs in order to carry out the same 

functions.  

 

1.5.1. Oligonucleotide/oligosaccharide binding folds. 

SSBs are ubiquitous in all cellular life and there are also examples of viral SSBs,
33

 

which reflects the vital roles these proteins fulfil.
34

 SSB sequence and overall 

structure vary greatly between organisms but all bind to ssDNA through similar 

oligonucleotide/oligosaccharide binding (OB) folds.
35, 36

 These folds all consist of 

loops that can interact with the ssDNA as it enters the OB fold, forming hydrogen 

bonds with the sugar phosphate backbone, anchoring the ssDNA in place. Aromatic 

residues in the heart of the OB fold act like teeth in a zip, stacking between the bases 

on the DNA strand, thus cementing the position of the OB fold along the strand.
35

  

 

OB folds are not restricted to SSBs. Evolution has produced OB folds that have been 

reported to be involved in inorganic pyrophosphatases in yeast, archaea and bacteria 

to bind to a host of ligands - including RNA in anti-codon binding domains, 

oligosaccharides in AB5 bacterial toxins, and proteins in superantigens.
37, 38

. A 

schematic of an OB fold is shown in Figure 1.4, where the core of the OB fold is 

made up of five β sheets typically forming a barrel with a Greek key motif, 

sometimes capped by an α helix. This topology is conserved throughout nucleic acid 

binding proteins and a total of sixteen Structural Classification of Proteins (SCOP) 

superfamilies.
39

 This has led to the suggestion that OB folds are an example of an 

ancient topology that is highly capable of withstanding a range of mutations, 

enabling proteins to evolve to accommodate a different ligand.
37

 Mutations in OB 
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folds can be tolerated in residues that are not integral to the structure of the β sheets, 

away from the hydrophobic core. There is a wide variety observed in the length and 

sequence of the hydrophilic loops that link the β sheets together that could account 

for the exploitation of similar OB fold cores to fulfil a range of different functions. 

The OB folds from the nucleic acid binding superfamily have been subjected to a 

level of evolutionary pressure to remain unchanged since before the existence of the 

last universal common ancestor, before the divergence of bacteria, eukaryotes and 

archaea which could account for the similarity of these OB folds across all domains 

of life.
37

  

 

 

 

Figure 1.4: Cartoon of an OB fold 
Five β sheets in Greek key topology (left) and folded to produce a cartoon example of an OB fold 

(right). 

 

1.5.2. Loops 

The rigid β strands of the OB fold barrel are linked via flexible hydrophilic loops, 

which do not interfere with the hydrophobic core of the OB fold. Mutations in these 

residues would not require the rearrangement of a significant number of atomic 

contacts and are not as crucial during the folding of the protein structure.
40

 As a 

result, a large variation is observed due to adaptations to the loops on the periphery 
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of the β sheets, where the extension and sequence of the loops can determine which 

ligand the OB fold may bind and therefore help define the protein’s function and 

superfamily.
36, 41

 One example is seen in human RPA, where the L12 and L45 loops 

are flexible enough to move closer to the ssDNA in order to form strong interactions, 

shown in Figure 1.5.
35

  

 

 

Figure 1.5: The structure of an OB fold from RPA. 
 (a) Crystal structure of an OB fold from RPA showing the bound ssDNA as a green stick model. 

Aromatic residues are shown in red that take part in base stacking with the ssDNA. (b) Two Cα traces 

from crystal structure of RPA OB fold in DNA binding domain A (DBD-A) which is bound (yellow) 

and unbound (green) to ssDNA. The flexible loops L12 and L45 change position in order to interact 

with the ssDNA, and the distance moved by each loop is labelled in red. Figure modified from 

Bochkarev et al.
35

 

 

A variety of loops can be seen in members of the same group of proteins in the same 

superfamily, and is exemplified by SSBs where loops are explicitly involved in 

protein-protein interfaces and protein-ssDNA contacts outside the OB fold. As a 

result, loops between β sheets are heavily implicated in determining the ssDNA 

binding modes, the multimeric state of the SSB and the processes in which the SSB 

is able to participate in.
27, 32
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1.5.3. Human replication protein A 

A well studied example of a eukaryotic SSB is the Homo sapiens replication protein 

A (RPA). No entire crystal structure of human RPA has been solved, however 

structure containing the four OB folds`of an analogue RPA from Ustilago maydis, 

bound to 32 nt ssDNA as shown in Figure 1.6(a).
30

 Crystal structures of truncated 

human RPA have been solved, showing the first two OB folds from the bound to 

ssDNA.
42

 The heterotrimer of RPA consists of six OB folds in separate ssDNA 

binding domains (DBD) spread across the three different subunits, as shown in 

Figure 1.6(c). Each subunit is connected covalently to the next through flexible 

linkers, and each is named RPA70, RPA32 and RPA14 to reflect their molecular 

weight. Four OB folds are distributed around RPA70, one in RPA32 and another in 

RPA14. There also is a winged helix-turn-helix (HtH) domain in RPA32 that assists 

in binding to ssDNA but is primarily involved in protein-protein interactions.
43, 44

  

 

RPA subunits bind sequentially to ssDNA in a 5’-3’ direction beginning with the two 

OB folds found in ssDNA binding domain A (DBD-A) and DBD-B respectively, to 

form the complex shown in Figure 1.6(b).
42, 45, 46

 DBD-A binds initially and is 

tethered to DBD-B through a flexible loop, which results in the binding of DBD-B 

quickly following DBD-A. NMR data suggest that these two domains tumble 

independently of each other in solution and a thermodynamic analysis shows that 

they bind to ssDNA in a non-cooperative fashion.
47, 48

 The tethering effectively 

increases the concentration of ssDNA in DBD-B’s local environment and results in 

an increased rate of binding once DBD-A has bound.
47

 RPA then binds ssDNA 

cooperatively using two other OB-folds, DBD-C and DBD-D, found in the subunits 

RPA70 and RPA32 respectively, again following a 5’-3’ direction. Binding of DBD-
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C occurs with a conformational change in the RPA structure where the zinc ribbon in 

DBD-C stabilises the trimeric core and the interaction with ssDNA. The 

conformational change also allows DBD-D to bind with ssDNA, with the whole 

protein occluding 27 nt in the fully bound state. RPA14 and the OB fold found in the 

N terminus of RPA70 lack two phenylalanines, the aromatic residues found that are 

conserved in the other OB folds that are used to stack in between the bases of 

ssDNA, and it is known the RPA14 does not contribute to ssDNA binding, and 

participates in heterotrimer formation,
49

 but there is some controversy surrounding 

the N terminus of RPA70 and its role in ssDNA binding.
50

 

 

 

Figure 1.6: The structure and domain organisation of RPA. 
(a) The RPA from Ustilago maydis, bound to 32 nt ssDNA, showing the U-shaped conformation that 

the ssDNA is held in as it is bound to the RPA. (b) The crystal structure of the truncated human RPA, 

showing the two OB folds that are found in DBD-A and DBD-B bound to 8 nt ssDNA that initiates 

RPA binding. (c) The distribution of ssDNA binding domains and OB folds throughout the three 

subunits of human RPA. Figures are modified from Fan et al. and pdb: 1jmc.
30, 42
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The different binding domains of RPA exhibit different affinities for ssDNA, with 

the overall complex binding to ssDNA with a dissociation constant (Kd) that ranges 

from picomolar to low nanomolar depending on the experimental conditions and 

sequence and length of ssDNA,
51, 52

 which is two to three orders of magnitude lower 

than DBD-A.
47

 The result of the conformational change when binding in the fully 

bound state can be observed as the protein holds the ssDNA along a U-shaped path 

through the four OB folds, as shown in Figure 1.6(a).
30

 Multiple trimers of RPA are 

known to only bind to ssDNA with low cooperativity,
52

 which could be a result of 

the high abundance of the protein inside the cell that negates any requirement for the 

heterotrimers to prefer to bind adjacently to each other.
52

 The overall conformation 

of an RPA-ssDNA nucleofilament is therefore relatively unordered, with kinks of 

bare ssDNA in between the heterotrimers.
53

  

 

A nucleofilament needs to both protect ssDNA and also allow other parts of the 

cellular machinery access to the ssDNA. The proteins in the nucleofilament therefore 

need to be easily redistributed or removed once they interact with other proteins 

involved in transcription, replication or repair processes. The fully bound RPA is in 

equilibrium with a partially bound state where only 8-10 nt are in contact with DBD-

A and DBD-B, which are the two DBDs with the highest affinity for ssDNA.
42

 These 

two binding modes are shown in Figure 1.7, as well as a model of how they could be 

exploited during the exchange of RPA heterotrimers. The different affinities of 

RPA’s binding domains allow the protein to bind to ssDNA with different modes and 

fulfil different roles in the cell, facilitating diffusion along ssDNA, melting dsDNA, 

and also exchange with other proteins recruited to ssDNA by RPA.
54, 55

 This can be 
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somewhat controlled through phosphorylation of RPA32, which can favour a 

conformation of RPA that promotes the 8-10 nt binding mode over the fully bound 

mode. RPA32 can be phosphorylated at a number of sites. The extent of 

phosphorylation varies depending on the cell’s stage in mitosis and also in response 

to different levels of DNA damage, leading to different affinities for ds and ssDNA.
43

 

 

The winged helix and DBD-F primarily form contacts with other proteins in order to 

fulfil RPA’s role to recruit proteins to ssDNA. The N terminus of RPA70 has been 

shown to directly interact with proteins involved in DNA damage repair and 

processes at replication checkpoints including p53, ATRIP, Mre11 and Rad9.
56

 

RPA’s name comes from its role in replication that was identified when it was first 

purified in 1988.
57

 In the initial replication phases, RPA’s high affinity for ssDNA 

and its ability to melt dsDNA is used to initiate and recruit helicase and polymerase 

alpha activity.
58

 During elongation, RPA recruits the polymerases delta and epsilon 

to DNA through contacts with PCNA, as well as interacting with Dna2 during 

Okazaki fragment processing.
59, 60

 Removal of RPA also allows FEN1 access to 

cleave the remaining flap left by Dna2.
60
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Figure 1.7: A cartoon of RPA binding to ssDNA and exchanging its position with another RPA 
protein. 
The different affinities for ssDNA of the different domains of RPA are exploited during exchange 

with other RPA heterotrimers and other proteins. The strength of RPA affinity increases with the 

number of DBDs bound to ssDNA. The affinity of each domain also differs, with DBD-A and DBD-B 

exhibiting the strongest affinity for ssDNA. RPA is modelled as dissociating from ssDNA as a 

sequence of microscopic dissociations of individual DBDs, shown on the left by the green protein. 

Similarly, the mechanism of RPA binding to ssDNA can also be broken down into the microscopic 

binding of each DBD. The exchange of two RPA proteins (one green, the other purple) can also be 

viewed in stages of DBDs binding and unbinding. As each green DBD dissociates, this exposes an 

increasing number of nucleotides available for other proteins to bind to, increasing the strength of 

interaction between the purple RPA and ssDNA as the affinity for ssDNA of the green RPA is 

weakened. Figure modified from Gibb et al.
61

 

 

RPA also has roles in DNA repair, contributing towards NER, BER, MMR and 

double strand break repair. For example, RPA displays a weaker affinity towards 

damaged DNA, therefore during NER RPA preferentially binds to the undamaged 

strand, protecting it from endonucleases (Figure 1.8).
62, 63

 The binding polarity, 

coupled with the weaker affinity for damaged sites, helps to position the RPA to the 

5’ side of the damaged strand which allows RPA to specifically recruit the nucleases 

XPG to the 3’ end and also XPA and XPF-ERCC1 to the 5’ end site of damage.
46, 63, 
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64
 Following the removal of the damaged section of DNA, RPA is poised to recruit 

polymerases involved in DNA replication similar to the processes described above.
65

 

The phosphorylation of RPA32 in response to DNA damage decreases RPA’s 

affinity for ssDNA, which prevents RPA melting unnecessary lengths of dsDNA, 

regulating and containing the nucleofilament structure around the DNA lesion. The 

weakened binding also facilitates the removal of RPA by DNA polymerases at the 

end of the repair process.
66

 

 

RPA’s role in BER is less understood; however, its involvement is certainly critical 

since substitution of mutants for wild-type RPA increases sensitivity to methyl 

methane sulfonate, a lesion repaired through BER.
67

 Interactions between RPA and 

DNA glycosylases, its capacity to enhance primer extension, unwind the downstream 

strand at the 5’ end, and stimulate DNA ligase I all reinforce the importance of 

RPA’s contributions to BER.
68, 69

 

 

During MMR, RPA protects the template strand and has a role in stimulating and 

regulating the nuclease activity that removes the mismatched base.
70

 The 

phosphorylation of RPA32 leads to a decrease in RPA’s affinity for ssDNA, inducing 

a conformation change where RPA32 interacts with DBD-F, moving DBD-C and D 

away from the ssDNA.
43, 71

 Phosphorylation occurs before the re-annealing of DNA 

and facilitates the removal of RPA by polymerase delta similar to NER.
66
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Figure 1.8: A schematic of the main steps involved NER.  
A repair response is triggered by the stalling of a transcription complex when it encounters damage or 

through global genomic repair (GGR) when a lesion is present on non-transcribed DNA. In 

transcription-coupled repair (TCR), the damage is encountered by the RNA polymerase II complex 

and the initiation of NER is carried out by CSB (also known as ERCC6). In GGR the lesion is 

detected by xeroderma pigmentosum complementation group E (XPE, also known as DDB1) or by 

XPC. RPA or XPA are involved in pre-incision events that precede the unwinding of a repair bubble 

by transcription factor II human (TFIIH). XPF and XPG are recruited to either side of the damage and 

incisions are made sequentially, initially by XPG at the 3’ site of the damage followed by XPF at the 

5’ site. The section of nucleotides containing the lesion is then removed, with RPA able to assist in 

recruiting DNA polymerase (Polδ) and proliferating cell nuclear antigen, PCNA, with Polε to fill the 

gap with undamaged nucleotides. DNA ligase I (LIG1) is then able to complete the repair process by 

conjugating the new nucleotides to the original DNA strand. Figure modified from McKinnon.
72

 

 

 After 3’ overhangs are generated in response to a double strand break, RPA binds to 

the ssDNA to protect and to prevent the formation of any unwanted secondary 

structures.
73

 RPA recruits RAD52 through an interaction between the C terminus of 

RPA32, stabilising the nucleoprotein complex, possibly through RAD52 interacting 

with DBD-A and B, and ensuring stoichiometric interactions.
69, 74

 The interaction 
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with RAD52, coupled with the phosphorylation of RPA32 and subsequent change in 

RPA conformation and resulting shift to the 8-10 bt binding mode, aids the exchange 

between RAD51 and RPA on ssDNA.
55, 75

 

 

1.5.4. Bacterial SSB 

E. coli SSB (EcoSSB) is arguably the most intensively studied SSB with many 

extensive reviews detailing its structure, functions and roles.
76

 It displays a well 

characterised homotetramer structure with each 19 kDa monomer consisting of a 

single OB fold, surrounded by extended loops that support contacts between the 

monomers and other tetramers in addition to guiding the ssDNA around the 

tetramer.
32, 77, 78

 Each monomer also has an acidic C terminal tail that has been shown 

to be involved in protein recruitment, and also has a possible role in binding to 

ssDNA although there are conflicting reports to the extent of its contribution.
78-81

 The 

homotetramer structure is shown in Figure 1.9 which also displays the four 

intrinsically disordered C terminal tails and the sequence of the acidic tips. 

 

Similar to RPA, the multiple sites EcoSSB employs to bind to ssDNA allow the 

diffusion and re-distribution of tetramers in a nucleofilament. Coupled with many 

possible protein-protein interactions, this allows EcoSSB to assist in many different 

roles in the cell. EcoSSB can wrap ssDNA around all four of its monomers, using 

multiple points along the surface of EcoSSB both in and around the OB folds.
32

 

These contacts provide both electrostatic and base stacking interactions, contributing 

to a strong overall affinity towards the ssDNA. EcoSSB has multiple binding modes 

that are dependent on monovalent salt concentration, pH, divalent and multivalent 
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cation concentrations, temperature and protein concentrations, with the (SSB)35 and 

(SSB)65 modes being the two most prevalent, which are shown in Figure 1.10.
82, 83

 

The number of nucleotides occluded is dependent on whether two or four monomers 

are involved in binding, with each respective mode binding to 35 and 65 nt, thus 

giving the different modes their name. The (SSB)35 mode is favoured under low salt 

conditions and high EcoSSB concentrations, showing highly cooperative binding 

between tetramers along a strand of ssDNA.
84

 The (SSB)65 mode has a limited 

cooperativity producing beads consisting of two tetramers bound on ssDNA, 

resulting from low protein concentrations and high salt concentrations.
32

 

 

 

Figure 1.9: A cartoon showing the tetrameric structure of EcoSSB bound to ssDNA. 
The four monomers are coloured blue, green, yellow and white with the four unstructured C terminal 

tail modelled as grey ribbons and the acidic C terminal residues are shown in red. The ssDNA in the 

(SSB)65 binding mode is represented as a red ribbon wrapped around the tetramer. Figure adapted 

from Kozlov et al.
85

 

 

The interaction of SSB with other proteins as well as ssDNA is clearly advantageous, 

yet modifications to an OB fold to achieve this must be done without destabilising 

the hydrophobic core that is occupied with providing a strong interaction with the 
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ligand. Loops that act as linkers between β sheets are more likely to be involved in 

ssDNA contacts and with neighbouring SSB monomers in the SSB filament.  

  

Many SSBs have developed an intrinsically disordered C terminal tail that is 

characteristically acidic towards its extreme end, including EcoSSB which has one 

unstructured tail per monomer shown in Figure 1.9.
31, 81, 86, 87

 This hydrophilic tail is 

thought to be able to recruit other proteins to ssDNA by protruding out from the SSB 

as it is bound to ssDNA, which provides a surface for an electrostatic interaction with 

positively charged areas of other proteins that are involved in DNA processes, such 

as transcription, replication and DNA repair.
26, 29, 86, 88

 For example, EcoSSB 

interacts directly with the clamp loader within DNA polymerase III holoenzyme (Pol 

III HE), which assists clamp loading, aids processivity and allows the efficient 

removal of tetramers from ssDNA that could potentially upset the polymerases 

efficiency during DNA replication.
89

 EcoSSB’s association with E. coli primase 

strengthens the primase’s interaction with the nascent RNA primer.
90

 Dissociation of 

EcoSSB from the primase also destabilises the primase’s hold on ssDNA, and allows 

the clamp assembly to occur. During DNA recombination, EcoSSB stimulates RecQ 

helicase activity via interactions with the EcoSSB C terminal tail.
91

 EcoSSB also has 

a role in stabilising the binding and promoting the activities of the exonuclease 

RecJ,
92

 and the RecG helicase,
93

 as well as mediating the formation of RecA 

filaments through interactions with RecO.
94
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Figure 1.10: A cartoon showing two of EcoSSBs binding modes. 
EcoSSB is shown binding to ssDNA where (a) wraps 65 nt ssDNA around all four monomers and (b) 

where only 35 nt ssDNA is wrapped around two EcoSSB monomers. (c) The fully cooperative 

binding of three tetramers (the middle tetramer has its four monomers colour coded to match the 

tetramers in (a) and (b)) to ssDNA produced by (SSB)35, with strong interactions between proteins 

assisted by the L45 loop. Figure modified from Raghunrathan et al.
32

  

 

In DNA repair processes, EcoSSB recruits the exonuclease E. coli ExoI during 

MMR,
95

 and interacts with Uracil DNA glycosylase during BER.
96

 DNA polymerase 

II (pol II) is involved in a variety of responses to damaged DNA and requires 

EcoSSB to process efficiently along DNA and to stimulate pol II-associated nuclease 

activity.
97

 Pol II was the first protein to be identified that interacted with EcoSSB, 
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being co-purified in 1972.
26

 Their interaction is also shown by the formation of a pol 

II/SSB complex in the absence of ssDNA.
22, 97

 

 

1.6.  Archaea 

The domains of life were historically classed as simply either plants or animals; 

however this grouping could not take into account fungi, protists or bacteria. A new 

classification attempt in the mid-20
th

 century split five kingdoms into two domains 

distinguishing between prokaryotic and eukaryotic organisms. This was again 

revised following an analysis of ribosomal RNA which led to the discovery of a third 

domain in 1977 by Woese and Fox.
98

 At the time they named this new domain the 

archaeabacteria, which was eventually shortened to archaea to further distinguish the 

domain from the bacteria.  

 

Archaea are unicellular organisms that lack a nucleus but typically possess a singular 

circular chromosome, similar to bacteria. Common characteristics of eukaryotes can 

also be found when comparing their molecular machinery, where protein complexes 

involved in processes such as transcription, DNA replication and translation share 

the same fundamental features.
99

 Yet a clear genetic distinction of archaea from both 

other domains can be seen through their 16S (18S) rRNA, which is present 

throughout all types of self-replication systems and changes slowly over time so that 

any link between distant species can be made. 

 

The archaea was split further into Crenarchaeota and Euryarchaeaota, and additional 

phyla were distinguished as the Korarchaeota, Thaumarchaeota and Aigarchaeota, as 
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shown in Figure 1.11.
100

 It has also been suggested that the Nanoarchaea could be 

classed as a separate phylum, however this has been countered with the proposal that 

they are a rapidly evolving branch of the Euryarchaeaota.
100

 The Euryarchaeatoa 

consists of the methanogens and their relatives, namely extreme halophiles, sulfate-

reducing species and thermophiles and also methangenic species, whereas the 

Crenarchaeaota include (hyper)thermophiles, thermoacidophiles, eocytes and sulfur-

dependent archaea.
101

 The capacity of many archaea to survive in extreme 

temperatures suggests their last common ancestor also was a thermophile; and it is 

their tolerance for harsh conditions which makes them a desirable and viable 

alternative to eukaryotes for use in research. 
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Figure 1.11: Phylogenetic tree showing the distinction between the 16SRNA sequences of the 
archaea.  
This- shows the established phyla (−ota), major orders (−ales), and two classes of methanogens. 

Figure modified from Godde.
100  
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1.6.1. Archaeal SSB 

SSBs from archaea show a large variation in structure and sequence, displaying 

common features with both eukaryote and prokaryote SSBs, typically employing OB 

folds. The euryarchaeon Methanosarcina acetivorans has three SSBs that all show 

similarities to human RPA, and each has the capacity to form homomultimeric 

complexes.
102

 These three proteins alone exhibit different binding modes and differ 

in their molecular weight, multimeric state and the number of OB folds and zinc 

fingers. Other methanogenic species that exhibit SSBs again show a range of 

different ratios of OB folds and zinc fingers, including Methanopyrus kandleri,
103

 

Methanocaldococcus jannaschii,
104

 and Methanothermobacter 

thermautotrophicus.
103

 Proteins from non-methanogenic species of euryarchaea also 

show similar zinc fingers and OB folds, including examples from Haloferax 

volcanii,
105

 Ferroplasma acidarmanus,
106

 Thermoplasma volcanium,
107

 and 

Pyrococcus furiosus.
108

 Examples of SSBs from crenarchaea are not present or 

unknown, the most well studied being from Sulfolobus solfataricus and a biophysical 

analysis of this protein is presented in chapter 3 of this thesis. 

 

1.6.1.1. Sulfolobus solfataricus SSB 

The SSB from Sulfolobus solfataricus (SsoSSB) was identified by Wadsworth and 

White, after purification from a cell extract.
109

 The mass of a monomer was 

measured as 16.184 kDa, and in gel filtration of the recombinant protein was eluted 

with an estimated size of 20 ± 4 kDa. The Kd for ssDNA-monomer complex was 

shown to be in the low nanomolar region, and fluorescent titrations saturated ssDNA 
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strands with SSB monomers at a ratio of a single SSB monomer to approximately 4-

5 nt of ssDNA, which was independent of the length of the ssDNA.
109

 

 

 

Figure 1.12: The crystal structure of a SsoSSB monomer and the relative electrostatic charges on its 
surface. 
(a) Cartoon of SsoSSB monomer with unstructured C terminal tail modelled on to the crystal 

structure. (b) Electrostatic surface generated on top of the structure shown in (a), clearly showing the 

acidic nature of the residues at the C terminus. (pdb: 1o7i) 

 

The crystal structure of a truncated SsoSSB was solved as a monomer and is shown 

in Figure 1.12(a). Crystals were produced from a construct where the highly flexible 

C-terminal tail was removed by proteolytic digestion, at residue P115.
27

 This is 

consistent with previous attempts to crystallise EcoSSB where the acidic terminal tail 

had to be removed before the first structures were solved.
110

 A subsequent structure 

of the full length E.coli protein could not provide any structure for the tail, 

confirming its disordered nature.
81

 Previous work in the White lab has shown that 

SsoSSB is expected to exist primarily as a monomer and multi-angle laser light 

scattering experiments completed by Gamsjaeger et al. agree with SsoSSB adopting 

a monomeric arrangement in solution.
109

 However Haseltine et al. also characterised 

this protein and reported a mixture of dimeric, tetrameric and monomeric species 

present during gel filtration.
111

 Further electrophoresis analysis by Haiyan Shi et al. 
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also suggested that this SSB is a tetramer, so clearly there is some debate in the 

literature as to what multimeric form this protein takes.
112

 

 

 

Figure 1.13: Part of the OB fold from SsoSSB. 
An image of part of the crystal structure of SsoSSB showing the three aromatic residues (W56, W75 

and F79) that can stack in between the bases of ssDNA. The loops that interact with the sugar 

phosphate backbone of ssDNA are also labelled as L12 and L45. 

  

The crystal structure of SsoSSB shows the presence of a single OB fold, producing a 

hydrophobic core for the binding of a single strand of DNA. Inside the core lie three 

aromatic residues (W56, W75 and F79) which are involved in stacking between 

bases, providing a major contribution to ssDNA binding, and are labelled in Figure 

1.13. W75 appears to be both involved with base stacking and interacting with the 

phosphate backbone.
27, 113

 SsoSSB has also been shown by Gamsjaeger et al. to bind 

to ssDNA with a defined polarity identical to RPA.
114

 In the case of RPA, this plays 

a crucial role in directing molecular traffic along ssDNA and SsoSSB could 

potentially exploit this directionality in a similar vein.     

 

The loop linking the β strands 1 and 2 (L12) and between 4 and 5 (L45) are expected 

to close around ssDNA as it enters the OB fold, which is typical of other OB folds.
27

 

L23 and L45 are not as extended in SsoSSB compared to EcoSSB, which suggests that 
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protein-protein interactions are weaker and supports the idea SsoSSB is not as 

capable of forming multimeric states which exploit the loops to strengthen the 

interaction between monomers and guide the ssDNA around sets of monomers.
27

 

 

The C terminal tail of SsoSSB has been shown to interact with RNA polymerase, 

showing that SSB has the capacity to recruit RNA polymerase and/or initiate 

transcription.
86

 SSB has been also shown to be able to substitute for the TATA 

binding protein (TBP) and assist transcription factor II B (TFB) dependent 

transcription.
86

 Proteolytic removal of the tail does not prevent SSB binding to 

ssDNA but stops any interaction with other proteins and the deletion of the tail is 

expected to cause severe repair-deficient phenotypes, similar to those seen in 

EcoSSB.
109

 

 

The level of SsoSSB expression in vivo only increases by a modest amount after 

exposure to UV radiation, but has been shown to be able to selectively unwind 

damaged dsDNA in vitro making SsoSSB a candidate for signalling DNA damage. 

88, 115
  

 

It seems that SsoSSB is arguably one of the simplest SSBs structurally and yet it 

contains all the necessary ingredients that an SSB requires to fulfil its role. A detailed 

analysis of this stripped down model could provide a benchmark for answers to be 

extrapolated into how other SSBs containing multiple OB folds bind to ssDNA and 

facilitate essential cellular processes. It is clear that a nucleofilament must be a 

highly dynamic environment, and that sensitive experiments are required in order to 
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capture the subtleties of how SsoSSB persists on ssDNA. Fluorescence microscopy 

is capable of resolving single molecules and could provide the necessary level of 

detail to be able to reach reliable conclusions about how SsoSSB and ssDNA 

interact, and it is with these objectives in mind that single molecule techniques are 

discussed for the remainder of the introduction.  
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1.7.  Single molecule assays 

Achieving single molecule resolution allows the observer to simply look at the 

structure and movement of individual molecules, which allows the observation of 

temporal and spatial details that are otherwise lost in ensemble averaging. Difficult 

ensemble experiments studying dynamic processes are made much easier as 

synchronisation is not required when studying each molecule individually. Many 

single molecule experiments can be completed quickly with ease producing large 

amounts of data that can be used to construct frequency histograms, which are 

effectively probability distribution functions. The shape and position of these 

histograms not only give the ‘average’ result but can also reveal identify transient 

states and heterogeneous behaviours that are difficult to observe with conventional 

ensemble techniques.
116

 

 

‘It is very easy to answer many of these fundamental biological questions; you just 

look at the thing!’  

Richard Feynman, ‘There’s plenty of room at the bottom,’1959
117

 

 

Feynman was famously referring to electron microscopy in the quote above, but 

there are a number of other single molecule techniques used to study biological 

systems. A non-exhaustive list includes manipulation techniques (eg. atomic force 

microscopy,
118

 scanning tunnelling microscopy,
119

 optical tweezers
120

 and magnetic 

tweezers
121

), nanopore technology, and spectroscopic techniques such as surface 

enhanced Raman spectroscopy
122

 and fluorescence microscopy, which is the primary 

technique used in this thesis. 
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The resolution of an optical microscope is usually limited to the diffraction limit of 

the wavelength of light used to illuminate the sample, typically around 200 nm. This 

is defined by the Abbe diffraction limit, which is given in equation 1.1 and describes 

the diameter of a spot observed by microscope ( ) in terms of the wavelength of light 

( ) that is travelling through a medium with a refractive index ( ) and converges at a 

point at an angle ( ). The numerical aperture of a microscope is further defined as 

         . 

 
  

 

      
 

 

     
 

(1.1) 

 

Observing two points that are separated by shorter distances than the diffraction limit 

requires some form of super-resolution microscopy. It is essential for these types of 

microscopy that individual fluorophores are excited sequentially so that the point 

spread function of each emitter does not overlap with another. Once one fluorophore 

has bleached or deactivated, another may be excited and the process repeated. This 

type of technique has been exploited by a number of different types of super-

resolution microscopies, including PALM,
123

 STORM,
124

 STED
125

 and PAINT.
126

 

Super-resolution techniques have the potential to resolve features that are separated 

by approximately less than 20 nm,
127

 however they sometimes require hours of 

exposure to achieve this scale of resolution, and is therefore problematic when trying 

to study interactions on a millisecond time scale.
128

  

 

Other techniques that use the intensities of fluorophores to directly report on their 

microenvironment, are used to deduce structural changes below the diffraction limit.  

Fluorescence is a very dynamic process, with some fluorophores emitting tens of 
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thousands of photons per second.
129

 Emission of radiation is one of many possible 

processes that an excited fluorophore can go through. The probability that a molecule 

does emit a photon is very sensitive to subtle changes in the local environment. For 

example, changes in temperature, the surrounding solution’s viscosity and transfers 

of energy to nearby molecules all vary the rate of fluorescence from a fluorophore.
130

 

This can be exploited to provide other methods to resolve structural details below the 

diffraction limit, and track any changes in real time on a millisecond time scale. 

 

1.8.  Fluorescence 

According to atomic and molecular orbital theory, electrons can exist in distinct 

orbitals that surround the nuclei of the atom(s).
131

 The energy of an electron depends 

on the shape of the orbital and its proximity to a nucleus. The lowest energy 

electronic arrangement of a molecule or atom is named the ground state, but excited 

states are available where electrons occupy higher energy orbitals.  

 

To enter an excited state, an electronic transfer can be caused through the absorption 

of a photon that has the same energy as the difference in energy between the two 

energy levels involved in the transition. The probabilities of these transitions are 

subjected to the Franck-Codon principle, which is described briefly as follows.
131

 

The ground and excited states of a molecule can be written as initial and final 

wavefunctions respectively (   and   ), and the transition dipole moment (   ) can 

be modelled where the initial wavefunction is perturbed by the transition dipole 

moment operator (  ). The Franck-Condon principle follows the Born-Oppenheimer 

approximation, which states that electrons move much faster than nuclei.
131

 The 

electronic transition can be viewed as a vertical transition without movement of the 
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nuclei during the transition in Figure 1.14, which shows an energy diagram of 

different vibrational and electronic states with respect to the coordinates of the 

nuclei. The overall wavefunctions can therefore be represented as products of the 

vibrational, electronic and spin wavefunctions and the electronic shown in equation 

1.3 and  transition dipole moment operator can also be approximated by splitting it 

into electronic and vibrational parts, shown in equations 1.4.  

 

                 

 

(1.2) 

where:                  (1.3) 

                     

 

       

 

 

 

(1.4) 

therefore:                                              

 

                         
                  

 

 

(1.5) 

 

 

As a result of the Born-Oppenheimer approximation, the transition probability can be 

written as shown in equation 1.5, where the zero term arises at the start of the second 

term of three integrals because different electronic states are orthogonal to each other 

               . This leaves the first term, whose magnitude is governed by the 

vibrational overlap integral called the Franck-Condon factor and the orbital and spin 

selection rules. As a result, an electronic transition is more likely to occur without a 
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change in the spin state (    ) between states that have a large vibrational overlap 

that are not symmetrically equivalent (     ).
131

   

 

 

Figure 1.14: A plot of the molecular potential energy against the internuclear separation during an 
electronic transfer to an excited state. 
The Born-Oppenhiemer approximation assumes an electronic transition occurs at speeds fast enough 

to neglect the movement of the nuclei involved, therefore is represented above by a vertical transition 

from the ground state to an excited state. The Franck Condon factor describes how transitions with the 

most overlap between the integral of the respective vibrational wavefinctions are more likely to occur, 

shown above. Figure modified from Atkins’ Physical Chemistry.
131

 

 

Once a molecule enters an excited state there are number of processes that could 

happen. It is possible to absorb another photon and be excited to a further higher 

electronic state, or go through processes that do not change the energy of a system 

such as intersystem crossing and internal conversion.
132

 Alternatively the molecule 

could relax back to the ground state, by finding a way to transfer its excess energy. 

This relaxation can be done in a number of ways which include collisions with other 

molecules, vibrational relaxations, chemical reactions, phosphorescence and 

fluorescence. All these different vertical and horizontal pathways compete with one 
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another to be the most efficient and they can be described by a Jablonski plot, such as 

the one shown in Figure 1.15. 

 

 

Figure 1.15: A simple Jablonksi plot.  
The absorption of a photon is followed by vibrational relaxation to the lowest vibrational energy level 

of the excited singlet state. This in turn is then either followed by the emission of radiation in the form 

of fluorescence or by internal conversion back to the ground singlet state which relaxes to the ground 

vibrational state non-radiatively. More complex Jablonksi plots could also include transitions to and 

from states of higher multiplicities including intersystem crossing and phosphorescence, as well as the 

absorption and emission of multiple photons. 

 

Fluorescence is the emission of radiation during the transition of a system to a lower 

energy electronic state of the same multiplicity as the higher energy state.
132

 The 

fluorescence lifetime,   , of a molecule is the average time the molecule spends in its 

excited state before emitting a photon, and in the absence of any other quenching 

processes is defined as:  

 

 
   

 

  
 

(1.6) 

 

 

The lifetime can be used to define the quantum yield of fluorescence which can be 

viewed as a measure of how efficient fluorescence is compared to all the other 
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competing processes available to an excited molecule. The quantum yield of 

fluorescence,   , is therefore the proportion of photons a molecule absorbs that result 

in a photon being emitted due to fluorescence.
132

 

 

 
    

  

   
 

(1.7) 

 

1.9.  FRET 

Förster radiative energy transfer (FRET) is a non-radiative transfer of energy from a 

donor molecule to an acceptor, through a long range dipole-dipole interaction. The 

efficiency of the transfer process greatly depends on the distance between the two 

species and has therefore been used in experiments that are designed to report on the 

relative positions of two labelled macromolecules. It is named after Theodor Förster, 

who provided a fully quantum mechanical explanation of energy transfer in series of 

papers, starting from 1946.
133-135

 Again it can be described using a Jablonski plot as 

seen in Figure 1.16, where the acceptor molecule is capable of fluorescing once 

excited by the transfer of energy. 
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Figure 1.16: A Jablonski plot showing FRET between a donor and an acceptor, which is capable of 
fluorescing once excited.  
The coupled transitions show resonance between the energy levels involved. Figure modified from 

Förster’s 1948 paper.
133

 

 

1.9.1. A brief history 

Förster’s seminal papers that successfully outlined the theory behind FRET were 

published in the 1940’s and 50’s, however the idea that molecules could donate and 

accept energy at distances beyond their collision cross section was well established 

and was first observed experimentally shortly after 1900. Below is a short account 

that briefly mentions some of the major events and people involved in understanding 

how FRET came to be understood; a more in depth analysis is beyond the scope of 

this thesis but is given by Clegg.
135

 

 

The foundation of the theory describing FRET relies on an electromagnetic 

interaction between two species and requires the notion of an electromagnetic field. 

The movement of objects as a result of magnetism is an ancient knowledge, and has 

been used practically in navigation for centuries. A link between electricity and 

magnetism had been suspected since before the 1800’s, however the first mention in 

the literature that describes communication between two places via electromagnetic 

interactions was published in 1822, when Ampère observed wires would attract or 
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repel each other once currents were passed through them. Later Faraday’s 

experiments on magnetic lines of force enabled Maxwell to piece together his 

famous mathematical description of an electromagnetic field. It is his equations that 

are familiar to all physics students and were used by Hertz to derive a mathematical 

description of an electromagnetic field emanating from a vibrating electric dipole. 

These experiments were published in 1889 and the Hertzian oscillating dipole serves 

as a beginning point for the classical description of fluorescence and energy 

transfer.
135

 

 

The emergence of quantum theory was evident at the turn of the 20
th

 century. Plank 

had solved the blackbody radiation problem, by suggesting energy changes in matter 

could only take place through well defined leaps, before Einstein then suggested light 

itself could be quantified, by using wave-particle duality to explain the photoelectric 

effect.
135

 In 1913 Bohr managed to piece together many of these ideas as well as 

others, including notable contributions from Conway, to present his atomic model. 

Electromagnetic interactions of an electron orbiting an atomic nucleus provided a 

cornerstone for spectroscopy, and its extension to multi-electron systems was made 

possible through Heisenberg’s and Schrödinger’s work on quantum mechanics 

during the 1920’s. This was in turn was applied by Kallman and London, F. Perrin 

and ultimately Förster to describe transfers of energy in vapours and solution.
136, 137

 

 

The first observation of energy transfer was recorded as the emission of radiation 

from thallium atoms that were indirectly stimulated through the excitation of 

mercury atoms. A comparison between the atomic radii and the calculated 
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‘spectroscopic’ cross section showed that the donor and acceptor species were too far 

apart to transfer energy through collisions. Cario and Franck published this sensitised 

luminescence in the 1920’s,
138

 and the dependence on the resonance between the 

energy levels of the sensitiser and acceptor was demonstrated by Beutler and Josephi 

shortly afterwards through spectroscopic studies of many pairs of acceptors and 

donors.
139

   

 

Many classical theories of energy transfer involving dipole interactions were being 

developed in 1920’s and some were arriving at the     distance dependence typical 

of Förster long range dipole coupling. Kallman and London published the first 

quantum explanation of energy transfer in vapours in 1928,
136

 which was the basis 

for F. Perrin’s quantum theories on energy transfer in condensed systems in 1932 and 

1933.
137

 Both explanations were impractical to use, and F. Perrin overestimated the 

distances involved, but laid the foundations for Förster to extend and improve a 

theory of energy transfer after World War II.  

 

Like many, Förster was partly motivated to study energy transfer by the supposedly 

overly efficient mechanism for plant photosynthesis. The surface area of ‘reaction 

centres’ on a leaf where electron transfer reactions took place was considered small 

when compared to the number of photons being absorbed. It was reasoned that the 

larger surrounding area was capable of absorbing photons and transferring energy to 

the reaction centre.
135
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Oppenheimer, also interested in photosynthesis, arrived at a correct solution and 

actually published before Förster. However, due to the short length of the abstract he 

did not arrive at an expression for general energy transfer and because it was placed 

in a relatively obscure journal during the war, the publication was largely ignored by 

the spectroscopic community.
140

  

 

What sets Förster’s work apart is that he managed to integrate experimentally 

observable spectra into his theory. Kallman and London included unrealistically 

sharp spectra which did not take in to account spectral broadening due to the 

fluorphores’ interaction with the environment and therefore made any practical use 

of their theory difficult.
136

 Both J. and F. Perrin, using classical and quantum 

mechanical explanations respectively, again only looked at sharp spectra from over 

simplified and identical acceptor and donor species which gave exact resonance and 

overestimated the distance required for energy transfer between the pairs as a result. 

Broadening of the spectra through collisions in solution was considered by F. Perrin 

and did bring his distance closer to Förster’s but it was still too large.
135, 137

 

 

Förster realised that broadening of the spectra of the donor and acceptor species 

reduced the chances of resonance between the two species, and that he could use 

statistics to calculate the number of pairs that were well matched in energy at any one 

time. The probability that a pair is in perfect resonance with each other can be 

calculated from the spectral overlap between emission of the donor and the 

absorption of the acceptor, and is known as the overlap integral ( ). This probability 

is typically much less than one, and so dramatically shortens the required distance for 
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energy transfer to occur. Förster also included a dependence on the orientation of the 

two dipoles into his expression for the rate of energy transfer, which in solution can 

be average due to molecular tumbling of the donor and acceptor. Overall, Förster 

pieced together a theory and used a fully quantum mechanical approach to produce 

expressions that used experimentally obtainable values in its derivation which made 

it both accessible and extremely useful.
133

 

 

1.9.2. FRET theory 

The original quantum mechanical derivation of Förster’s expression for energy 

transfer between donor and acceptor molecules was described by Förster in German 

in 1948 and an English translation was published by Knox in 1993.
133, 134

 The 

analysis presented below follows van der Meer’s interpretation that was published in 

2013.
141

 There can be found more detailed accounts of the theory behind FRET 

including discussions on the classical descriptions, the overlap integral, the 

orientation factor and the units used in the different forms of the equation. 

 

Atoms consists of electrons that are essentially elastically bound to a nucleus. As 

electrons and the nucleus both carry charge, the movement of the electrons relative to 

the ‘stationary’ nucleus creates an oscillating electric dipole. The electrical dipoles of 

two interacting molecules (a donor and acceptor) can be approximated as two ideal 

dipoles if the distance between the two molecules is large compared to the radius of 

the spheres containing all the individual donor and acceptor dipoles respectively. 

This can be shown as vectors similar to the ones in Figure 1.17, and these dipoles 
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should be viewed classically as oscillating dipoles, and as transition dipoles in 

quantum mechanics. 

 

 

Figure 1.17: Vectors that describe the transition dipoles involved in FRET between donor and 
acceptor molecules. 

 

According to quantum mechanics, there are only discrete levels of energy that are 

available to an electron in a confined volume. Similarly, donor and acceptor 

molecules can only exist in energy states that do not form a continuous spectrum. A 

transfer of energy from an excited donor to an acceptor in its ground state,        , 

may take place that returns the donor to its ground state and leaves the acceptor in an 

excited state,        , through a dipole dipole interaction,  . This can be expressed 

using the refractive index of the medium,  , the distance between the donor and 

acceptor,    , the vector pointing from the donor to the acceptor,   , and the dipole 

moment vectors of the donor and acceptor charge distribution,         and         

respectively.  

 

 
  

 

         
 

                                            (1.8) 

 



44 

Introduction 

According to time-resolved perturbation theory, the rate transfer in terms of the 

energies of the donor and acceptor molecules,         , in the ‘very weak 

coupling’ limit defined by Förster is given in equation 1.9. The very weak coupling 

limit is defined where the interaction energy between the dipoles is much less than 

the vibronic bandwidth of the donor, which would make the requirement of 

resonance extremely rigorous. In practice however, solvent effects broaden the 

vibrational levels and FRET in the very weak limit tends to be very common.
142

 

 

 
         

 

 
                (1.9) 

 

As a result of the Born-Oppenheimer approximation, the expectation value of 

equation 1.9 can be expressed in terms of electronic transition dipole moments only, 

          and          for the donor and acceptor respectively, which can be written in terms of 

their magnitudes,     , and their directions,   , to give                   and          

      . The integrand can therefore be written including an orientation factor,  : 

 

 
             

    
   

 

            
   

   
  (1.10) 

   

where                         (1.11) 

or                     (1.12) 

 

The    factor represents the overlap integral between the initial vibrational donor 

state with energy   
  and the final state   

   , and the    factor similarly 
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represents the overlap integral between the initial vibrational acceptor state with 

energy    and the final state     . The energy level diagram in Figure 1.16 

shows the resonance between coupled transitions as energy is transferred from the 

donor to the acceptor. 

 

By multiplying equation 1.10 by suitable Boltzmann factors,      
     

  and 

        ,  integrating over all   
  and   , and changing the integration variable 

from energy,  , to frequency,  , the following expression for energy transfer can be 

obtained: 

 

 

         
  

            
              

 

 

 (1.13) 

where: 
        

       
    

    
    

        
  (1.14) 

 
        

         
               (1.15) 

 

The probability of an emission of a photon with energy between   and     , 

from an excited state with energy   
 ,  is given by Einstein’s spontaneous emission 

theory and can linked to the fluorescence properties of the donor. The coefficient of 

spontaneous emission ( ) is given in equation (1.16), where   is Einstein’s 

coefficient of stimulated emission. As a result equation 1.14 can be re-written in 

terms of the donor lifetime,   , the quantum yield of the donor,   , and its 

fluorescence spectrum,      . 
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(1.16) 

 

  
     

 

     
 

 

(1.17) 

 
      

                 

         
 (1.18) 

 

Similarly the second integral, equation1.15, is related to the absorption spectrum of 

the acceptor,      , and can be re-written as below. 

 

 
      

                     

      
 (1.19) 

 

 

Substitution of these expressions for       and       into equation 1.13 yields 

Förster’s expression for   . 

 

   
             

              
  

          

  

 

 

   (1.20) 

 

 

   is defined as the distance between a donor and an acceptor at which the 

probability of the excited donor fluorescing is equal to the probability of a transfer of 

energy to the acceptor, and can be expressed as: 

 

 
  

   
            

         
 (1.21) 
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where: 

     
          

  

 

 

   (1.22) 

 

This simplifies Förster’s expression for   : 

 

 
   

 

  
 

  

   
 

 

 (1.23) 
 

 

Similar to the definition of the quantum yield, the efficiency of this transfer can be 

given as a function as the rate of energy transfer over the total of all of the rates of 

the processes that can occur once a donor species has absorbed an electron. 

 
  

  

   
 (1.24) 

 

    

Substituting in                   (1.25)  

 

Since the lifetime of a donor in the absence of an acceptor,   , is defined as     
 

  
 

the efficiency of energy transfer can also be written as: 

  

 
  

  

       
 

  
 

  
     

  
 

   
   
  

 
  

(1.26) 

 

1.9.3. FRET as a spectroscopic ruler 

The     dependence of FRET and its sensitivity to changes in distance typically 

ranging in between 10-80 Å, means that it is ideal to be used as a reporter to changes 



48 

Introduction 

in protein structure and the kinetics of binding to other biological molecules. This is 

shown in Figure 1.18 where the changes in intensities of donor and acceptor 

molecules with         were modelled using equation 1.19 in Figure 1.18, where 

   is plotted with respect to distance, in terms of nm and numbers of nucleotides in a 

straight ssDNA. Conventional FRET experiments involve the labelling of proteins on 

specific locations of interest and using ensemble or single molecule spectroscopy to 

measure the FRET efficiency and calculate the inter-dye distances. One of the first 

examples of using FRET as a ruler was Stryer and Haugland in 1967, who 

determined the length of poly-L-proline oligomers using organic chromophores.
143

 In 

their publication they also acknowledge the work done by Latt, Cheung, and Blout 

who used FRET to study an inflexible steroid.
144

  

 

Since then many more FRET pairs of fluorescence dyes have been developed to 

study a wide range of biological systems, with the first FRET observed from a single 

pair of molecules by Ha et al. in 1996.
145

 By observing individual pairs of dyes, it 

easily allowed the genuine donor-acceptor pairs to be distinguished from the donor-

donor pairs and the donor molecules paired with bleached acceptor dyes that would 

distort any FRET value calculated from an ensemble. Single molecule FRET 

(smFRET) has been successfully used to study many protein and nucleic acid 

structures and dynamics from measuring the movement of helicases to elucidating 

the structures of riboswitches.
17, 146
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Figure 1.18: A schematic showing how the relative intensities of donor and acceptor fluorescent 
dyes, with R0 = 6 nm, change with respect to distance.  
The distance has been presented in terms of both nanometres and the number of nucleotides of a 

ssDNA where the length of a single nucleotide was taken as 0.63 nm, which was calculated from five 

different crystal structures.
15

 

 

1.10. TIRF microscopy 

The fluorescence intensity from a single molecule is obviously much weaker than the 

cumulative intensity of an ensemble of fluorophores, and therefore requires more 

sensitive methods of detection that provide a greater signal to noise ratio. There are 

several techniques available, including confocal microscopy, where lenses are used 

to limit the volume that is illuminated thus reducing the intensity of fluorescence 

originating from the bulk solution enabling the detection of single molecules.
147

 This 

can be applied to viewing molecules on a surface but also allows the observation of 

freely diffusing molecules and restricts the time of observation to the duration of 

time that the molecule of interest spends diffusing through the excitation volume. 

  

An alternative is total internal reflection fluorescence (TIRF) microscopy, where a 

laser is directed on to a surface at a critical angle that sets up an evanescent wave 

propagating into the sample solution.
132, 148

 An evanescent wave is defined as a near 

field wave that has an intensity that has an exponential decay that is dependent on the 
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distance the wave has travelled from the boundary it has been created from.
132

 

Normally, as light travels into a medium with a lower refractive index, (     , 

shown in Figure 1.19) refraction occurs and a certain proportion of light is reflected 

back off the interface between the two media. At a certain critical angle, θc, total 

internal reflection occurs and only the evanescent wave propagates into the medium 

of the lower refractive index. The critical angle can be calculated by rearranging 

Snell’s law, where θ1= θc and θ2=90°. 

 

 

Figure 1.19: A schematic to show how light refracts as it travels into a medium with a lower 
refractive index (n1>n2.)  
θi is the angle to the normal of the surface. 

 

Snell’s law:                 (1.27) 

   

          
  

  
  (1.28) 

 

This is exploited in TIRF microscopy to only illuminate the volume next to the 

surface of the sample chamber, typically with a depth of 200 nm.
132

 The intensity of 

an evanescent wave (  ) decays exponentially as it propagates into a medium, as 
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described by equation 1.29, and this only excites a small fraction of fluorophores, 

reducing the levels of noise recorded from the bulk solution. The penetration depth is 

represented by    and the incident intensity by   . Using an excitation wavelength of 

532 nm, which is used to excite Cy3 fluorescence dyes,   = 77 nm. 

 

 
      

 
 

   (1.29) 

where: 
   

 

     
          

 
 

 

 

A cartoon of prism type TIRF microscopy is shown in Figure 1.20, where light 

passes through a quartz prism before the evanescent wave is established at the 

boundary between the quartz slide and the solution in the sample chamber. The 

molecules of interest can be specifically immobilised to the surface to stop them 

from diffusing away from the excitation volume, maximising their exposure time. 

Dichroic mirrors are used to distinguish the fluorescence emitted from the donor and 

acceptor fluorophores and the intensities of each dye are recorded and the FRET 

between the two dyes can be calculated. By reducing the concentration of the target 

molecule to the picomolar regime, only one fluorophore is present in each pixel 

recorded and single molecule resolution is achieved.  

 

Electron multiplied charge coupled device (EMCCD) cameras are widely used since 

they offer a high signal to noise ratio to detect single fluorophores.
149

 Photons are 

detected by a metal oxide semiconductor capacitor that acts as a photodiode and 

storage device. The amount of stored charge is linearly dependent on the number of 
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photons detected, and after an allotted exposure time the charge is released to 

produce an image calculated by computer software. The dark noise is minimised by 

cooling the EMCCD to -80 ºC and higher quantum efficiency is achieved through 

using a back illuminated CCD chip.
149

 

 

 

Figure 1.20: Schematic of a prism based FRET microscope.  
(a) Cartoon of prism sat on top of a quartz slide positioned above an objective. The quartz slide has 

been modified to produce four flow chambers. (b) A cartoon showing how the fluorescence from each 

dye travels down the objective and is then split up by a dichroic mirror and aligned into two separate 

beams of light for the emission of each dye to be imaged separately. (c) A schematic of an evanescent 

wave only illuminating a volume within 200 nm of the surface of the quartz due to the exponential 

decay of the laser throughout the aqueous medium. Contaminants in the bulk solution are not 

illuminated, increasing the signal to noise ratio. 

 

1.11. Surface modifications 

The boundary where the evanescence wave is created in TIRF microscopy is usually 

the interface between the quartz surface of a microfluidic device and the solution 
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inside the sample chamber.
150

 When proteins and other biological molecules are 

loaded into the sample chamber, there is a tendency for them and contaminants in 

solution to non-specifically stick to the quartz surface itself. In order to decrease the 

likelihood that unwanted fluorophores bind to the surface, the quartz is modified with 

a self-assembled monolayer (SAM) to produce a dense molecular brush that 

passivates the surface and prevents access to the quartz and therefore any non-

specific binding.  

 

A suitable molecule to use in a SAM is made up of an anchoring group, a backbone 

and a terminal group. The anchoring group should form a strong covalent bond 

between the tether and surface. The backbone is usually a hydrocarbon chain and 

will ideally produce a dense closely packed surface as a result of either cross linking 

or van der Waal’s interactions between chains. The terminal group is chosen to either 

specifically bind a target molecule to surfaces or to provide an electrostatic repulsion 

to any charged protein surfaces which also helps minimise non-specific interactions. 

Usually the composition of the SAM is designed to produce a dispersion of anchors 

for the specific immobilisation of the target molecule amongst a crowd of repulsive 

head groups, as depicted in Figure 1.21. Examples of SAM’s include alkylthiols on 

gold and silver and alkylsilanes on glass and quartz. Chemical modifications of 

SAM’s can produce monolayers such as alkyls, alcohols, carboxylic acids, amines, 

azides, or alkynes that can securely attach a plethora of substrates to a surface.
151, 152
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Figure 1.21: A schematic of a surface being passivated with a SAM. 
SAMs can provide a specific binding point for molecules of interest as well as presenting a dense 

brush of repulsive head groups to minimise non-specific binding of molecules to the surface. 

 

There are many examples of single molecule fluorescence experiments that employ a  

quartz surface that has been functionalised with silanes, which in turn has been 

modified to produce a uniform surface of poly(ethylene glycol), PEG.
146, 153-155

 A 

common approach has been to use the interaction between biotin and avidin to 

exclusively bind biomolecules of interest to the PEG surface.
146, 156

 Although this 

interaction is non-covalent it still has a dissociation constant approximately 1 fM and 

therefore provides a secure and specific anchor for adsorbates.
157

 Figure 1.22 shows 

how ssDNA can be modified with a biotin at the 5’ terminus and how this can be 

used to bind to a streptavidin molecule. By cross-linking branched PEG molecules, a 

denser layer of hydrocarbons is achieved and fewer non-specific binding events 

occur. This allows decreased levels of contamination on a surface used in single 

molecule experiments.
151, 158
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Figure 1.22: ssDNA can be specifically immobilised on a quartz slide through a biotin with an eight 
carbon linker to the 5’ end.  
(a) The crystal structure of biotin which interacts with hydrophobic and hydrophilic residues to 

produce an extremely strong interaction. (b) The crystal structure of streptavidin bound to four biotin 

molecules, one per monomer. (c) A cartoon of C8 ssDNA bound to streptavidin via a 5’ biotin 

modification with an eight carbon linker. (Pdb 1mep and 1jmc) 

 

Other common materials used to modify a surface are lipid molecules.
159, 160

 Lipid 

molecules spontaneously form a layer and adhere to a surface as a result of 

arrangement of the molecules to optimise favourable interactions between 

hydrophobic chains, hydrophilic terminal groups and solution molecules. The lipid 

layer is a 2D fluid bound to a surface that can be made less viscous by using different 

lipids or by the addition of cholesterol. This provides a static anchor for the 

immobilisation of an adsorbate. One different and elegant solution to reducing the 

movement of lipid molecules on a surface has been pioneered by Greene.
161

 A score 

is made into the quartz slide and a flow is supplied over the surface. As the lipids are 
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pushed along the surface, the score acts as a barrier and the lipid molecules are 

trapped in position against the score. Attached to the lipid molecules are strands of 

DNA which are pushed flat against the surface, producing a curtain of DNA that is 

within range of an evanescent wave in a TIRF experiment. It is therefore possible to 

directly view the action of DNA motors on a micrometre scale or the binding of SSB 

like proteins to view nucleofilaments such as RPA, as shown in Figure 1.23.
162

 

 

 

Figure 1.23: DNA curtains imaged using RPA tagged with m-Cherry.  
(a) A schematic showing the experimental setup to produce (b) images of individual ssDNA 

molecules lying flat against the surface of a slide. Figure modified from Gibb et al.
163

 

 

Single molecule experiments that investigate proteins that have low affinity to their 

substrate cannot usually be immobilised by a standard tether, since the 

concentrations of labelled substrate or protein would saturate the camera at the 

concentrations required to observe binding events. While an ensemble experiment 

would just increase the concentration of the proteins or substrate to compensate for 

large dissociation constants, this is unsuitable for single molecule experiments as it 
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would lead to large numbers of fluorophores that are not participating in binding 

events, essentially increasing the background fluorescence. Trapping the protein and 

its substrate inside a vesicle with a volume of a few attolitres effectively increases 

the concentrations required for binding to occur, but also localises the areas of high 

concentrations so that individual binding events can still be resolved.
154, 159, 160, 164

 It 

provides a more natural environment in which to study single molecules since the 

protein and substrate are still in solution and do not interact with the surface. This 

bypasses any issues that may occur with the orientation or position that the adsorbate 

adopts as it binds to the surface. The vesicles are unilamellar and are typically 50 nm 

in diameter. The walls of these nanocontainers can be made porous either through 

hydrophobic/hydrophilic interactions of the membrane with the solution,
164

 or 

through the introduction of membrane proteins that act as a molecular transport 

channel as shown in Figure 1.24.
159

 

 

 

Figure 1.24: Schematics of RecA binding to ssDNA inside a porous lipid nanocontainer.  
(a) A DMPC lipid nanopore is immobilised on a PEG surface through biotin/neutravidin interactions. 

Inside the nanopore are RecA proteins and a dual labelled ssDNA. (b) α-hemolysin in the DMPC 

membrane allow the passage of ATP and ATPγS across the membrane which influences the binding 

of RecA to ssDNA. Figure adapted from Cisse et al.
159
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1.12. Protein & DNA labelling 

Conjugating fluorophores to a protein or nucleic acid requires a labelling reaction 

that is specific and efficient under relatively mild conditions. This requires a careful 

selection of the chemistry involved to avoid over or under labelling and also the 

position of the label must be considered as the presence of a dye must not interfere 

with the action of the target molecule. 

 

A common technique is to express a fluorescent protein such as green fluorescent 

protein (GFP) on to the terminus of a protein.
132

 This has been smartly exploited by 

Chen et al. who have managed to track the movement of telomeres in vivo by tagging 

a Cas9 mutant with GFP and infecting the cells with the appropriate guide siRNA 

that is complementary to the telomere base sequence and results in the protein 

forming a stable complex with the telomeres.
165

 Another example is the relatively 

new method that includes unnatural amino acids to the protein’s primary structure. 

These can be fluorescent themselves,
166

 or provides new sites for the dyes to 

conjugate to.
167

 This increases the chemistry available so that the specificity and 

efficiency of the labelling processes can be increased. By introducing an alkyne to 

the protein surface, copper free click chemistry can be used to bind a dye with an 

azide group.
168

 This can be done with high specificity and selectivity since other 

unnatural amino acids can be incorporated into the protein structure that can bind to 

other fluorescent dyes via different covalent linkages. 

 

As with unnatural amino acids, site targeted mutagenesis (STM) can also be used to 

include naturally occurring amino acids that can act as a linker for a fluorophore to 

bind to. Cysteine residues provide a thiol that can be conjugated to a maleimide 
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groups on a fluorophore.
146

 Cysteines  occur at a relatively low frequency in a protein 

structure and the reaction can be controlled through the pH of the reaction buffer that 

ensures the dye reacts specifically and selectively with the cysteines and no lysine 

residues are labelled.
169

  

 

Similarly nucleic acids can be labelled utilising amine modifications on the nucleic 

acid and activated ester groups on the fluorophore, such as N-HydroxySuccinimide 

(NHS) and sulfo-NHS esters.
170

 Other dyes are capable of labelling dsDNA such as 

YOYO-1,
24

 and there are also examples of unnatural fluorescent bases that can be 

incorporated in to nucleic acid sequence.
171

 

 

1.13. Fluorophores 

To be useful in single molecule experiments a fluorophore must have a high quantum 

yield and be stable with respect to blinking and photobleaching. Blinking is the 

temporary switching of a molecule between fluorescent and non-fluorescent states 

under constant excitation, whilst photobleaching of a dye is the photo-destruction of 

a fluorescent dye that permanently prevents any further emission from that molecule. 

 

Examples of intrinsic fluorophores that are naturally occurring in protein wild type 

structures are fluorescent amino acids such as tryptophan,
109

 tyrosine and 

phenylalanine; and fluorescent co-factors, including flavin and NADH.
132

 The 

appearance of these fluorophores are commonly exploited in ensemble experiments 

but are not usually suitable for single molecule experiments which require artificial 

dyes that are more photostable under the illumination of a laser. 
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The acronym laser stands for ‘light amplification by stimulated emission of 

radiation’ and a laser produces a highly concentrated beam of light that therefore 

achieves high irradiance and increases the rate of photons that are emitted by any 

fluorophores it excites compared to excitation by other light sources. This increases 

the fluorescence intensity of the fluorophores but also shortens the time before a dye 

is bleached, since bleaching is a stochastic process that can occur each time a 

fluorophore is excited.  

 

Common extrinsic fluorophores used are quantum dots, fluorescent proteins and 

aromatic dyes. Quantum dots are nanocrystals that confine their excitons in all three 

dimensions.
172

 They exhibit a bright fluorescent intensity and relatively long 

lifetimes before they are bleached. Their composition and size are changeable which 

allows them to be tuned to emit a range of emission profiles, as well as giving them a 

potential to be modified with a variety of surfaces and tethered to many different 

substrates. This gives them advantages over other fluorophores in situations where 

their size and toxicity are not an issue, however their increased rate in blinking limits 

their application in smTIRF but makes them more suited to uses in super resolution 

microscopy.
173

 Fluorescent proteins have the advantage of their versatility since they 

have virtually zero cytotoxocity and mutations to GFP have produced fluorescence 

proteins that span the entire visible range. They are certainly widely used in vivo 

single molecule studies but again their size means that they are not suitable in 

crowded environments and their photostability can also limit their use in single 

molecule experiments. 
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Smaller organic molecules whose fluorescence originates from their aromaticity have 

been developed since the 19
th

 century to improve their photostablilty and 

brightness.
132

 They are easily conjugated to a wide range of biomolecules and there 

is a wide range of different fluorophores to choose from to match an experiment’s 

requirements. A range of cyanine dyes derived from two semi saturated indole rings 

connected by an alkene, whose length determines the optical properties, are widely 

used due to their greater water solubility, photostability, pH tolerance and high 

quantum yields compared to other synthetic fluorescent dyes such as rhodamine. The 

wide range of cyanine dyes allows two or more dyes to be paired together for use in 

FRET experiments. In general they show sensitivity towards external conditions such 

as temperature, pH, salt concentration and also display different behaviours such as 

auto-quenching and dimer formation at high concentrations.
130

 A common pairing is 

Cy3 and Cy5, whose structures are shown in below. The    of this pair has been 

found to be approximately 60 Å and the efficiency of the energy transfer is therefore 

sensitive to changes in distances between 20-80 Å.  

 

 

Figure 1.25: The structure of Cy3 and Cy5 dyes.  
Their names are derived from the number of carbons that link the two indole rings. The R group can 

be a functional group used to conjugate these dyes to molecules of interest, usually with an aliphatic 

chain acting as a spacer between the dye and the molecules surface. 
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1.14. Single molecule fluorescence investigations into SSBs 

ssDNA is easily immobilised on to a microscope slide and SSBs’ high affinity for 

ssDNA allows fluorescence experiments to still observe binding events at relatively 

low protein concentrations, which is ideal for single molecule research. There are 

various single molecule experiments that are presented in the literature that describe 

the behaviour of SSBs from a range of organisms. FRET has been employed to 

report on the end-to-end distance of ssDNA overhangs during the filament growth of 

EcoSSB and other homotetramer SSBs from Plasmodium falciparum and Thermus 

thermophilus, whilst the 1D diffusion of the homotetramer SSBs and also RPA have 

also been characterised using similar techniques.
61, 174-177

 The growth of EcoSSB 

filaments has also been observed on lambda DNA by applying a flow to the sample 

chamber and exposing the DNA to fluorescently labelled SSB. These techniques 

have also been applied to other proteins that produce similar nucleofilaments, 

notably RecA, RAD51 and Brca2.
24

 

 

It is the purpose of this thesis to use similar single molecule techniques to investigate 

the binding of SsoSSB to ssDNA and how SsoSSB forms nucleofilaments. SsoSSB’s 

monomeric structure gives a unique opportunity to focus on the interaction between 

individual OB folds and ssDNA, which could be extrapolated to uncover details 

about the behaviour of SSBs that contain multiple OB folds.  

 

Following this introduction, a guide to how these studies were completed is given in 

the material and methods chapter, before the ensemble results are initially presented 

to investigate the binding of SsoSSB to ssDNA that were both labelled with 

fluorescent dyes. SsoSSB’s preference to adopt a monomeric structure was 
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confirmed using fluorescence and pulsed electron-electron double resonance 

(PELDOR) experiments while dissociation and cooperativity constants were 

quantified from a number of different fluorescent titrations. These showed how the 

presence of proteins and other fluorescent dyes were able to affect the photophysical 

properties of a dye molecule as its own microenvironment changes. FRET, protein 

induced fluorescent enhancements and fluorescent quenching were all observed in 

different ensemble titrations to characterise SsoSSB’s affinity for ssDNA. These 

concepts were then built upon in the next chapter which presents how single 

molecule experiments allowed a new in-trace analysis which combined all three 

fluorescence phenomena. The analysis was developed to accurately determine the 

dwell times of the first individual SsoSSB monomers binding to ssDNA, which 

confirmed and complemented the conclusions made from the ensemble data. Studies 

into SsoSSB’s promiscuity are given in chapter 5, which describes how analogous 

ensemble and single molecule fluorescence experiments were used to show the 

SsoSSB has a comparable affinity for RNA as it does for ssDNA, suggesting 

extended roles for SsoSSB in the cell. Future experiments are then suggested to 

investigate how SsoSSB tolerance for high temperatures and extreme salt 

concentrations could be applied commercially before the conclusions are summarised 

in the final chapter.      
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2. Materials and methods 

2.1. SSB expression & purification 

Wild-type SSB and variant A114C from S. sulfolobus were transformed and 

expressed as described previously.
8
 They were transformed by addition of 50 ng of 

of DNA to 50  l of C43 competent cells. These were plated on to plates containing 

kanamycin and incubated upside down overnight at 37 °C. A single colony was 

extracted and grown overnight in 100 ml Luria-Bertani (LB) medium with 

kanamycin (final concentration 35 µg/ml) at 37 °C with shaking. 15 ml of the culture 

was used to inoculate 1 L of LB and 35μg/ml kanamycin for approximately 3 hr at 37 

°C with shaking. Once the optical density at 600 nm was between 0.6 and 0.8, IPTG 

was introduced to a final concentration of 0.4 mM to induce expression of SSB for a 

further 4 hr at 37 °C. The cells were pelleted by centrifugation (Beckmann, JLA 

8.1000 rotor) at 4°C, 5000 rpm for 20 min and frozen at -20 °C until required. 

 

Buffer A was made from 20 mM Tris-HCl (pH 7.40), 1 mM EDTA and 1 mM DTT; 

buffer B was made from buffer A and 1 M NaCl; gel filtration buffer was made from 

buffer A and 500 mM NaCl; and lysis buffer from buffer A, 500 mM NaCl, 1 tablet 

of protease inhibitors (EDTA free, Roche, cOmplete), and 0.1 % Triton x-100 

detergent. 

 

Lysis buffer was used to re-suspend the thawed pellet up to a volume of 50 ml and 

immediately sonicated (Soniprep 150, MSE (UK) Ltd) at 4 °C for 6 x 30 sec with 30 

s cooling between each sonication. The pellet was heat treated at 70 °C for 20 min 
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and the denatured proteins were precipitated by centrifugation (Beckman, JA 25.50 

rotor) at 4 °C, 20000 rpm for 20 min. The supernatant was diluted with an equivalent 

volume of buffer A, to reduce the NaCl concentration below 250 mM, and filtered 

(Millex, 0.22 µm). 

 

The solution was passed through two 5 ml heparin-Sepharose column (GE 

Healthcare) equilibrated with buffer A. The protein was eluted off the column along 

a concentration gradient of buffer B and the protein was collected in fractions. The 

fractions containing protein were concentrated down to below 10 ml and passed 

through a HiLoad 26/ 60 Superdex 200 size exclusion column (GE Healthcare) 

equilibrated with gel filtration buffer. To remove any remaining impurities, the 

protein was passed through a 5 ml sepharose column (GE Healthcare) equilibrated 

with buffer A, and eluted with buffer B. The protein concentration in each fraction 

was monitored using UV-vis absorption at 260 nm and proteins peaks were 

investigated using an SDS-PAGE gel (Invitrogen, precast NuPAGE 4-12% Bis-Tris, 

200 V for 35 min).  

 

The concentration of pure SsoSSB in solution was determined using a Cary Varian 

UV-vis spectrophotometer and an extinction coefficient of 12660 cm
-1

M
-1

. All 

binding experiments were carried out in 50 mM Tris-HCl (pH7.5), 50 mM KCl 

unless stated otherwise. 

2.2. Protein Labelling 

SSB A114C was labelled with maleimide derivatives of Alexa 647 (equivalent to the 

Cy5 dye). The thiol group on the A114C variant was exploited to conjugate the dyes 
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to the protein, the mechanism of which is shown below in Figure 2.1. The labelling 

was carried out by unfolding the protein in 8 M urea and reducing the cysteine 

groups in a 9 molar excess of TCEP that had been purged of air by flowing nitrogen 

through the solution for 30 min. The protein was added to the eppendorf tube, given 

a blanket of nitrogen and left to incubate at room temperature for 20 min. A 10 molar 

excess of maleimide functionalised dye was added to the solution and the eppendorf 

tube was again flushed with nitrogen. This was left at room temperature overnight. 

The solution was diluted with buffer A (see protein purification of SSB) to re-fold 

the protein and loaded on to a heparin column before being eluted off by a 

concentration gradient of buffer B. 

 

 

Figure 2.1: Curly arrow mechanism for the maleimide thiol coupling used for attaching fluorescent 
dyes to exposed thiol groups on cysteine residues on the surface of proteins. 
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2.3. Labelling and annealing DNA 

Single stranded DNA (ssDNA) was labelled with Cy3 and Cy5 dyes (GE Healthcare) 

via NHS-ester linkages. Initially the dry pellet of DNA was dissolved in deionized 

water to a concentration of 25 µg/µl. The dye (either Cy3 or Cy5), 1mg, was 

dissolved in 60 µl of DMSO, split into 4 tubes and dried in the SpeedVac system 

(several hours) before re-suspending each pellet in 14 µl of DMSO. In the vial with 

DMSO and the dye 4 µl a solution of 25 µg/µl oligonucleotide, 7 µl of deionized 

water and 75 µl of labeling buffer (0.1 M sodium tetraborate, pH 8.5) was added. 

These were incubated at room temperature overnight wrapped in aluminum foil. The 

DNA was precipitated by adding 10 µl of 3M of sodium acetate in 100 µl of labeling 

reaction, which was mixed by pipetting. Absolute ethanol was added and mixed 

gently by inversion. The tube was wrapped in aluminium foil and incubated 

overnight at -20  . The mixture was then spun at 13000 rpm for 1 hour. The 

supernatant was removed and the pellet dissolved in 50 mM Tris-HCl pH 7.5. The 

DNA was separated from any unbound dye using a denaturing polyacrylamide gel 

12% with 7 M urea, 300 µl of APS (ammonium persulfate), and 30 µl of TEMED 

with a total gel volume of 50 ml. The gel was run for 1 hour in TBE before the DNA 

was loaded in 50% of formamide at 18 W with a set temperature threshold of 25 °C. 

Following electrophoresis the band was cut from the gel, transferred to a vial, 

chopped and re-suspended in 400 ml 50 mM Tris pH 7.5. The DNA was incubated 

overnight wrapped in aluminium foil in a shaker. The DNA was then spun at 13000 

rpm for 10 min, and the supernatant retrieved using a micro spin column. The 

concentration was measured on Cary Varian UV-vis spectrophotometer. If it was 

required, ssDNA was annealed by mixing 200 pmoles of each strand in 50 mM Tris-
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HCl, 1mM EDTA and 50mM KCl buffer. The DNA was put into a water bath pre-

heated to 70 °C and then switched off overnight. This was then run through a native 

12% polyacrylamide gel (as before without urea) and the DNA was retrieved using 

the crush and soak method. This was then precipitated a final time. 

2.4. Fluorescence experiments 

All bulk fluorescent experiments were carried out on a Cary Varian 

spectrophotometer. 

2.4.1. Ratio A 

Förster resonance energy transfer (FRET) is a dipole-dipole interaction between a 

donor and acceptor that has r
-6

 dependence, where r is distance between the two dyes. 

It also has a dependence on the spectral overlap of the emission of the donor and the 

absorbance of the acceptor. Cy3 and Cy5 have appropriate optical properties to act as 

a donor and acceptor respectively, as well as their capacity to act as stable, long lived 

fluorophores. The relative intensities of these dyes can therefore be tracked so FRET 

can be used as an optical ruler to measure the distance between the dyes as SSB 

binds to ssDNA. Figure 2.2 shows the relationship between the efficiency of the 

energy transfer from Cy3 to Cy5. R0 is the distance where the energy transfer is 50%, 

and for Cy3 and Cy5 this occurs when the separation between the dyes is 5.6 nm.  

 

The efficiency of the energy transfer between the two dyes may be tracked by 

measuring the changes in the intensity of the acceptor peaks. RatioA is the ratio 

between the integrals of the Cy5 peaks that arise due to energy transfer from Cy3 and 

excited directly. There is an overlap with the Cy3 peak which has to be subtracted to 

obtain a true intensity of Cy5. 
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Figure 2.2: Four fluorescence spectra to illustrate how the Ratio A value is calculated.  
During the experiment the emission spectrum is recorded using excitation wavelengths 550 nm and 

640 nm which excite the Cy3 and Cy5 dyes respectively. Cy3 emits at 570 nm and Cy5 emits at 660 

nm. The Cy5 peak of the 550 nm spectrum (red) also contains a small intensity peak from the Cy3 

peak (black), which has to be subtracted to give a true intensity of the Cy5 peak. The area underneath 

the curve with the Cy3 subtrated (blue) is then divided by the area of the Cy5 peak that is excited at 

640 nm (green) to give the Ratio A value. 

 

2.5. Binding to a one dimensional lattice 

2.5.1. 1:1 binding 

The strength of how tightly a protein NA complex is held together can be described 

by the dissociation constant (Kd). This can be modelled for a general reaction, shown 

below, since the rate of any reaction at equilibrium is zero. 

 

             

at equilibrium        

  
                                (2.1)  

 
    

     

     
 

(2.2)  
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 (2.3)  

 

For a 1:1 binding where      , an expression that can be used practically in the 

form of equation 2.4, since      can be obtained using the relationships that 

                 and                 . For lattices that were able to 

accommodate more than one SsoSSB monomer, the total concentration of ssDNA 

was multiplied by the number monomers able to bind simultaneously to an individual 

strand of ssDNA. 

 

 
     

                                       
               

 
 (2.4)  

 

2.5.2. Cooperative binding 

All binding events are considered to be equal and independent in the above equation; 

however a model of ligands (proteins) binding to a finite one dimensional lattice such 

as ssDNA or RNA will require an account of overlapping binding sites, cooperative 

binding and end effects. Below is a summary of the model that outlines ligands 

binding to a finite lattice as described by Epstein.
178

 

 

The majority of proteins that bind to ssNA will occupy a binding site of more than a 

single nucleotide. Therefore the size of the binding site ( ), which includes the area 

rendered inaccessible to other proteins through steric clashes in addition to those 

directly bound to the protein, as well as the length of the ssNA ( ) can all be 

measured in nucleotides. If binding along a ssNA strand is non-specific according to 
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the sequence of bases a protein can bind to, a protein has         number of 

binding sites that overlap with each other, as depicted in Figure 2.3. 

 

 

Figure 2.3: Schematic of ssNA with a length of 7 nt (M=7) where a protein that has a binding site of 
5 nt (n=5), gives a total of 3 possible overlapping binding sites. 

 

Binding sites on the same lattice are not identical, for example ligands may be more 

or less likely to bind to a binding site adjacent to an already occupied site. This could 

be due to protein protein interactions, or a distortion of ssNA resulting in a more or 

less favourable conformation of ssNA for binding to occur. The number of 

adjacencies ( ) on a lattice defines the number of times a protein binds directly next 

to another on a single lattice. The number of proteins on the lattice is denoted as   

and is shown in Figure 2.4. 

 

 

Figure 2.4: Schematic of two proteins with binding sites of 2 nt on a lattice of length 7 nt.  
The arrangement on the left shows the two proteins occupying adjacent binding sites whereas on the 

right the proteins are bound to the lattice in an arrangement that gives no adjacencies (n=2, M=7, k=2 

and a) j=1 and b) j=0.) 
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The cooperativity factor,  , is an equilibrium parameter that helps define the 

equilibrium constant where a free ligand binds to a site adjacent to an already 

occupied site. The equilibrium constant becomes    for single contiguous regions 

shown in Figure 2.5(a) and     for doubly contiguous regions, such as (b). 

 

 

Figure 2.5: Schematic showing a free ligand binding to a) a singly and b) a doubly contiguous 
binding site (n=2, M=6 and for (a) k=2,j=1 and (b) k=3, j=2.) 

 

The greatest integer, less than or equal to,     is the maximum number of proteins 

(   that bind to a lattice at any one time. When the lattice is as fully decorated with 

proteins as possible, the number of nucleotides remaining ( ) can be defined as 

      . Futhermore, the concentration of free ligand (protein) is written as  , 

and can be calculated from the total ligand concentration,   , and the fraction of 

change in signal measured, as shown below.  
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(2.5)  

 

End effects must also be taken into account as realistic lattices are finite which can 

limit the binding of proteins depending on the position of bound proteins. For any 

arrangement of ligands on a lattice       and    , which produces an 

increasing number of possible arrangement of   ligands as the length of the lattice 

increases. The relative probability of a single arrangement is        , where the 

relative unit probability of a set of       is set to a naked lattice. 

 

The total number of arrangements in each set of   and   values can be denoted as 

        and can be calculated using a combinatorial analysis. The number of runs of 

ligands on a lattice can be given by    , and in order to keep those runs separate 

      sites that are ‘attached’ to the right hand side of each run must be left 

vacant. The remaining unattached vacant sites (  ) are therefore: 

 

                 (2.6)  

 

The number of possible configurations of runs and unattached vacant sites is denoted 

   and given by equation 2.7. 

 

 
   

         

         
 

(2.7)  
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Run lengths will not be identical in non-ideal situations and different lengths in runs 

(  ) must be multiplied by the number of ways the run lengths can be arranged (  ) 

in order to calculate         (equation 2.10), which represents the number of ways 

    may be split up into positive integers. This is given by: 

 

 
   

      

          
 

 

(2.8)  

               

 

(2.9)  

therefore 
         

               

                           
 

(2.10)  

 

        can be used to calculate   , the average number of ligands on a lattice at a 

given concentration of free ligands. 

 

 
   

             
   

 
          

            
   

 
   

       
 

(2.11)  

 

This in turn can be used to calculate the fraction of occupied sites (   on the lattice 

which is directly proportional to experimental changes in fluorescence: 

 

 
  

   

 
 

(2.12)  
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2.6. Wormlike chain model 

Unless any significant complementary base pairing is possible, ssDNA and RNA can 

be considered to behave as disordered polymers. In an ideal polymer each monomer 

is free to position itself in any degree of rotation relative to the other monomers in 

the polymer. The average length between the two ends of ideal polymers is zero as a 

result. A single nucleotide has constraints placed on it due to the sterics of being 

bound to the rest of the chain which gives the strand at least a vague directionality. 

Electrostatic interactions and π-π stacking result in certain conformations being more 

favourable energetically and deviations away from these conformations costs energy. 

ssNA therefore cannot be described as an ideal polymer. An appropriate model for 

ssNA is the wormlike chain model which takes into account the energy costs that are 

required to change conformations.
15

 An impression of the flexibility of a wormlike 

chain can be described using the persistence length, (  ) which is a measure of the 

average length of each ‘link’ in the chain and can be calculated from probability 

function of the end-to-end distance (      ), given below in terms of the end-to-end 

distance ( ) and contour length ( ) expressed in multiples of persistence length 

(      ).
15

 

 

RatioA to FRET: 
   

      

      
     

      

      
  

 

(2.13)  

FRET to distance: 
     

 

    
 

   

 

 

(2.14)  
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Persistence 

length: 

       
     

         
     

  

       
  

 

  
                   

       
  

      
 

  
        

 

(2.15)  

   

Where A is a normalisation constant,   is the end-to-end distance and        

represents the absorption coefficient of the acceptor or donor at the wavelength 

corresponding to the direct excitation of the acceptor or donor. 

 

2.7. Single molecule experiments 

2.7.1. Cleaning of slides 

Holes were drilled into the microscope slide to create what would become 4 channels 

per slide. Slides were cleaned manually using kimwipes and acetone then methanol. 

They were then immersed in etchant solution (1:1 of H2O2 and HCl) for 2 x 30 min 

before being washed in a sonicator bath for periods of 15 min immersed in detergent 

(2% Alconox in Millipore water), acetone, 1 M KOH, methanol, and finally 1 M 

KOH. In between each step the slides were rinsed with Millipore water and then 

washed in fresh Millipore water in the sonicator bath for 5 min. 

2.7.2. Aminosilation of glass 

The slides are cleaned as described above and coverslips are cleaned using the 

sonication bath only. A slide was dried under a stream of nitrogen then immediately 

burnt, each side of the slide being held under a blue flame for 2 min. The slide was 
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cooled under nitrogen and stored in a falcon tube. A coverslip was also dried and 

burnt, but only held in the flame for less than a second. The slides and coverslips 

were placed in clean jars and 2.5 ml of acetic acid and 200  l of aminosilane was 

added. The jar was placed in a sonicator bath for no more than10 min before the 

slides and coverslips were rinsed with methanol, water and methanol again before the 

slides and coverslips were dried under nitrogen. 

2.7.3. PEGylation of amino-covered slides 

1.5 mg of biotinylated PEG was added to 320  l of PEG buffer (100 mM sodium 

bicarbonate pH 8.5). This solution was placed on the slide where it was to be used as 

a channel, and a coverslip was placed on top. The ensemble was placed in a humidity 

box and left for between 1.5 and 2 hours. The coverslip and slide were separated and 

again rinsed with methanol, water and methanol before being dried and put back 

together creating a microchannel as described below. 

2.7.4. Microchannel preparation 

Double sided tape was applied either side of the region of the slide to be used as the 

channel. A coverslip was placed on top of the tape and pressure was applied with a 

pipette tip to remove any air bubbles. Araldite epoxy (50:50 mix) was smeared to the 

corners of the coverslip to close the channel. This was left to dry for 5 min before the 

channel was loaded. 

2.7.5. TIRF experiments 

Single molecule experiments were carried out using a custom built prism type total 

internal reflection fluorescence (TIRF) microscope. In all solutions an imaging buffer 

was used in order to exclude oxygen and other known fluorescence quenchers. This 
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consisted of 50 mM Tris-HCl pH 7.5, 6% glucose, glucose oxidase, catalase and 

Trolox. Neutravidin was used to bind biotinylated oligos to biotinylated PEG 

molecules at a concentration so that a single oligo could be resolved with a 60x 

magnification lense. Fluorescence intensities of Cy3 and Cy5 could be 

simultaneously measured by an electron multiplied charge coupled device (EMCCD) 

camera and recorded and analysed on a computer. The fluorescent intensities were 

analysed using IDL and MATLAB custom written scripts. 

2.7.6. Rate analysis 

Dwell times were measured from the single molecule traces. For example, a 

histogram was created from the dwell times that a single SsoSSB monomer spent 

bound to ssDNA. The histogram was then fitted to single exponential equation to 

calculate the rate constant,  . 

: 

             

 

(2.16)  

where: 
      

 

     

      

 

(2.17)  

 
       

 

      
 

 

(2.18)  

where   is the first or second monomer or dimer.  
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2.8. Nucleic acid sequences 

All nucleic acids were purchased from Integrated DNA technologies (IDT) and their 

sequences are given below, where 5Biosg, 5AmMC6T, 3AmMC6T and 3Cy3sp are 

abbreviations used by IDT to represent 5’ biotin, 5’ amino linker C6 dT, 3’ amino 

linker C6 dT and 3’ Cy3 modifications. 

Table 2.1: Names and sequences of nucleic acids used. 

Name 5’                                                                                                   3’                 

ssDNA C20 /5Biosg/CC CCC CCC CCC CCC CCC CCC /3AmMC6T/ 

ssDNA C12 /5Biosg/ CCC CCC CCC CCC /3AmMC6T/ 

SSBbind1 /5Biosg/ AGC GAC GGT ATT CGT ATC GA /3AmMC6T/ 

SSBbind2 /5AmMC6T/ TT TTT TTT TTT TCG ATA CGA ATA CCG TCG CT 

SSBbind3 /5AmMC6T/ TT TTT TTT TTT TTT TTT CGA TAC GAA TAC CGT 

CGC T 

RNA 6-FAM /56-FAM/CUU UCA AUU CUA UAG UAG AUU AGC 

RNA C20 /5Biosg/CC CCC CCC CCC CCC CCC CCC /3AmMC6T/ 

HeAc1 /5Biosg/TT TTT TTT TTT TTT TTT TTT TCG ATA CGA ATA CCG 

TCG CT/5AmMC6T/ 

Trac1 /5AmMC6T/T TTT TTT TTT TTT TTT TTT CG ATA CGA ATA CCG 

TCG CT /3Cy3sp/ 

 

2.9. Exosome degradation 

200 nM RNA labelled with fluorescein (RNA-FAM) at the 5’ end was incubated 

with wild type SSB (concentrations from 0 – 480 µM) for 5 min at room temperature 

in 20 mM HEPES (pH 7.9), 0.1 mM EDTA, 60 mM KCl, 8 mM MgCl2, 2 mM DTT, 

10 mM K2HPO4. To each aliquot, 0.5 µl Sulfolobus solfataricus Rrp41-Rrp42 

hexameric ring and 0.4 µl Rrp4 protein was added. Both the Rrp41-Rrp42 and 
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hexameric ring were kindly donated by Dr Elena Evguenieva-Hackenberg. The total 

volume of each aliquot was 10 µl. The reaction was left to incubate at 60 °C for 1 

hour. 10 µl of each sample was added to acid phenol (Ambion) and mixed 

thoroughly, then spun at 13000 rpm for 1 min. 5 µl from the resulting bubble formed 

was added to 5 µl formamide (Promega) and loaded on to a denaturing gel (25 % 

polyacrylamide, 7 M urea, 300 µl of ammonium persulfate (APS), and 30 µl of 

TEMED, 5 ml TBE, total volume 50 ml) run at 85 W with a temperature threshold of 

50 °C for 2.5 hr. The image was scanned using a FLA Typhoon 5000 and analysed 

using ImageJ software.  
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3. Ensemble studies of SsoSSB 

3.1. Introduction 

SSBs were originally perceived as relatively simple proteins that only took on a role 

as a caretaker of ssDNA. However more thorough reviews of SSBs’ interaction with 

ssDNA highlight some of the more subtle aspects involved in controlling the growth 

of a nucleofilament. A high affinity for ssDNA is critical for the formation of 

SSB/ssDNA complexes; however an SSB too tightly bound to ssDNA prevents 

access to the base sequence of the ssDNA and is essentially a road block to 

replication, repair and transcription. SSBs’ binding to areas of DNA damage also 

assist in melting the double helix to provide a large enough bubble for DNA repair 

machinery to act upon.
88

 However the size of this nucleofilament must be controlled 

so that the resulting bubble is not unnecessarily large, and the binding of SSB 

monomers must be weak enough to allow the substitution of SSBs with the 

appropriate nucleases and polymerases.
86

 This is clearly demonstrated by the 

multiple binding modes of RPA, where the weaker 8-10 nt binding mode helps 

regulate the size of the repair bubble.
66

 It is clear that SSBs’ affinity for ssDNA must 

compromise between being strong enough for any nucleofilament to offer effective 

protection against insults, as well as being weak enough for the protein to be 

removed at the appropriate time. This suggests that the nucleofilament is a more 

sophisticated and dynamic environment than originally thought and that the strength 

of binding must be finely balanced in order to carry out the many roles that SSBs 

undertake. 
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SsoSSB stands out as a model protein in the literature because it has been reported to 

be a monomer in solution and could therefore present a unique opportunity to study 

individual OB folds binding to ssDNA.
114

 Its similarities to the binding domains in 

both RPA and EcoSSB allow comparisons to be made to more established models, 

and possibly some details of SsoSSB binding can be extrapolated to explain the 

behaviour of these more complex arrangements of SSBs. The following chapter will 

discuss how ensemble fluorescence and other techniques can be used to explore the 

validity of the claims in the literature that SsoSSB is a functional monomer and how 

it is possible to follow the initial stages of building a nucleofilament through a novel 

single molecule combination of FRET, quenching and enhancement events. 

 

3.2. Expression and purification 

The purification of wild type and variant SsoSSB were followed by UV-vis and 

SDS-PAGE analysis. The gel filtration step only reported a single peak, shown in 

Figure 3.1(a), that coincided with where a protein with a molecular mass of 

approximately 16 kDa was expected to elute from the column, in agreement with 

previous experiments by Wadsworth et al.
109

 A single band from SDS-PAGE 

analysis shown in Figure 3.1(b), which indicated that the purification produced a 

sample of suitably pure protein for ensemble and single molecule use, after the 

heparin, sepharose and size exclusion column. MALDI-TOF mass spectrometry 

carried out by Dr Catherine Botting’s group, University of St Andrews, confirmed 

that the variant A114C carried a molecular mass of 16.170 kDa, compared to 

16.1699 kDa calculated from the total molecular weight of the sum of amino acids. 
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Figure 3.1: The purification of wild type SsoSSB. 
Only a single peak from the absorption at 280 nm was observed during size exclusion chromatography 

after the purification of SsoSSB. Following a further purification step with a Sepharose affinity 

column, SDS-PAGE indicated that the purification produced a pure protein sample, with a monomer 

mass between 15-20 kDa.   

 

3.3.  Tryptophan quenching 

Tryptophan is a naturally occurring residue that has the capacity to fluoresce after 

excitation to either the 
1
La or 

1
Lb states. Upon excitation to 

1
La the electronic density 

shifts from the pyrrole to the benzene ring, which produces a relatively polar 

arrangement of electronic charge that can be stabilised through hydrogen bonding to 

polar solvent molecules such as water, which positions the 
1
La energy level below the 

1
Lb. Experimentally, tryptophan is excited at a wavelength of 295 nm, which 

predominately excites tryptophan residues over other fluorescent residues such as 

phenylalanine and tyrosine. This will generally produce a spectrum that has 

combination of characteristics from the fluorescence of both 
1
La and 

1
Lb states, 

depending on the extent of solvation of the tryptophan residues. 
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SsoSSB uses two tryptophan residues and a single phenylalanine residue to stack in 

between the bases of ssDNA and the presence of a strand of DNA in the OB fold 

excludes water molecules from surrounding these aromatic residues.
114

 This in turn 

raises the energy level of the tryptophan 
1
La state relative to the ground state, and an 

excitation of 295 nm no longer produces an excited state of tryptophan with the same 

optical properties. The 
1
Lb state is now lower in energy than the 

1
La, which is less 

sensitive to changes in polarity, and a decrease in fluorescence emitted at 350 nm is 

observed. 

 

Naturally occurring fluorescent residues that can report on ssDNA binding can be 

convenient tools in order to analyse SSBs in ensemble experiments; however they 

are not ideal fluorophores in terms of quantum yield and photostability for more 

sensitive techniques such as single molecule microscopy. Synthetic dyes are 

designed to emit photons at a higher rate and to be less susceptible to blinking or 

photobleaching. They can be tethered to ssDNA and SsoSSB to gain detailed reports 

on their relative positions, and therefore elucidate the mechanisms of binding of 

these proteins to their substrates. 

 

3.4. Dimensions of SSB/ssDNA complexes 

The affinity of SSBs for ssDNA have resulted in dwell times for bound states that 

persist for several seconds, however the dynamics of proteins in nucleofilament have 

shown structural changes separated by microseconds.
155, 179

 To study SSB complexes 

it is therefore necessary to have a technique capable of a high temporal resolution but 

which also has the capacity to follow longer lived complexes. The lifetime of excited 
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states capable of fluorescing are normally in the range of nanoseconds and therefore 

reliably report any changes in the environment of the protein in real time. The use of 

fluorescence microscopy is therefore suitable to track the initial stages of the 

formation of a nucleofilament. The intensities of fluorescent dyes are also 

particularly sensitive to changes in their local environment, which again makes them 

well suited to watching SSB monomers binding to ssDNA.  

 

 

Figure 3.2: A cartoon to show the volumes that fluorescent dyes can occupy bound to ssDNA. 
The fluorescence dyes are tethered to the biomolecules of interest and are able to rotate. The volumes 

which these dyes can occupy are shown in the 3D representations on the right, which are clearly larger 

than the points in space that the 2D representations on the left show. These volumes have to be taken 

into consideration when measuring distances between dyes, and have been used in this figure by 

Tomescu et al. to determine the structure of a vRNA promoter (a) before and (b) after binding to RNA 

polymerase.
180

 

 

In order to avoid steric clashing between the bulky dye structure and the protein 

surface which would potentially prevent efficient labelling of proteins and possibly 
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affect the activity of the proteins, the functional group used to conjugate the dye to 

the protein is usually attached to the dye via a flexible carbon chain tether. The 

particular fluorescent dyes used in this thesis employ a maleimide or NHS anchoring 

group at the end of a 6 carbon linker, in order to bind to a cysteine residue at the 

surface of the protein’s structure or a primary amine at a modified nucleotide 

respectively. The volume that the fluorescent dye could possibly occupy is relatively 

large as a result, shown in Figure 3.2. This allows the dyes to interact with other 

molecules that also occupy the same volume, such as residues at the surface of other 

proteins, base stacking with nucleotides and other fluorescent dyes. A scale model of 

two SsoSSB monomers labelled with Cy5, bound to adjacent sites on ssDNA 

labelled with Cy3, is presented in Figure 3.3. This model was created by Dr Jose 

Peregrina and clearly shows that the distance between the Cy3 and Cy5 dyes would 

be approximately 35-65 Å and would therefore result in an efficient energy transfer 

from the donor (Cy3) to an acceptor dye (Cy5) wherever the SsoSSB binds to the 

ssDNA. The Cy3 carbon linker is also long enough for the dye to interact with the 

protein surface, potentially influencing the molecular conformation of the dye. The 

Cy5 labels also have linkers that give a large volume that the dye can potentially 

occupy, allowing the possibility of the dyes experiencing short range interactions 

with each other and possibly also the protein surfaces. As more proteins bind to 

ssDNA and lengthen the nucleofilament, the more crowded the molecular 

environment will become and this will be reflected in the relative fluorescence 

intensities of the donor and acceptor dyes. This indicates that the fluorescent 

labelling of SsoSSB is likely to provide a detailed description of how 

nucleofilaments are formed on ssDNA. 
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Figure 3.3: Minimum energy model of two SsoSSB monomers, each bound to 10nt ssDNA Cy3 with 
a gap of a single nucleotide between the two proteins.  
The dyes have been introduced to the model using Pymol and the distances between the dyes are 

labelled as 43.8, 35.5 and 65.8 Å respectively, which give an approximate indication that the distances 

between them are relatively small. The ssDNA was modelled into the structures of SsoSSB monomers 

by aligning the protein structures to DBD-A and DBD-B domains from RPA bound to ssDNA.
42

 

Additional nucleotides were added and a energy minimisation was completed using VMD.
181

 Figure 

adapted from Dr Jose Peregrina. 

 

3.5.  ssDNA Labelling 

The results from experiments involving multiple interactions between the 

biomolecules and fluorescence dyes are potentially complicated by heterogeneities 

and impure samples. In order to minimise these influences, several steps were taken 

to ensure that homogeneous samples of labelled proteins and ssDNA were obtained. 

A pure sample of labelled ssDNA was achieved by passing the labelling mixture 

containing labelled and unlabelled ssDNA through acrylamide denaturing gels. The 

labelled ssDNA was separated from the unlabelled ssDNA upon identification by UV 

shadowing and extraction of the appropriate gel band. The extent of labelling was 
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analysed through UV-vis spectroscopy and was typically found to be in excess of 

90%. 

 

3.6.  Protein induced fluorescence enhancement 

Changes in the local environment of fluorescent dyes are reflected in their quantum 

yield and therefore the intensity of their fluorescence. The fluorescence intensities of 

cyanine dyes are dependent on the conformation of the double bonds that link the 

two aromatic indole rings - and the interconversion between E and Z conformations 

can modulate the dye between two fluorescent and non-fluorescent states 

respectively, shown in Figure 3.4(a). 

 

The viscosity of the medium surrounding the dye influences the energy barrier to 

rotation of its double bonds and an increase in viscosity can effectively trap the dye 

in the fluorescent E state, and an increase in fluorescence intensity would be 

observed as a result. The increase in viscosity can be mimicked by the proximity of a 

protein, and the same increase in fluorescence is observed.
182

 This short range 

interaction can therefore be exploited to report on the presence and position of 

proteins along a strand of DNA labelled with a cyanine dye such as Cy3. This protein 

induced fluorescence enhancement (PIFE) has been previously used in a variety of 

systems and has been developed as an alternative and complementary method to 

FRET to report on proteins that bind to DNA, as exemplified by BamHI and 

RecA.
182

 The binding of SsoSSB to labelled ssDNA also enhances the fluorescence 

intensity of Cy3 and Cy5 by a factor of two, as shown in Figure 3.4(b-c), which was 

comparable to the enhancement observed by Hwang.
182

 It has been shown that PIFE 
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is able to report with higher sensitivity the binding of proteins at distances 1 to 10 

nucleotides from the position of the dye. Thus, PIFE complements FRET 

measurements as a molecular ruler with short range sensitivity. However, in order to 

observe FRET from the donor Cy3 on ssDNA, an acceptor dye must be present on 

SsoSSB therefore the protein itself must also be labelled. 

 

 

Figure 3.4: The viscosity of the solution is a barrier to the  rotation around the double bond in the 
alkyl chain between the E and Z conformations cyanine dyes can adopt.  
(a) shows the fluorescent and non-fluorescent conformations of Cy3. The proximity of a protein 

surface can result in a similar barrier to rotation, trapping out the fluorescent E conformation. Since 

there is no more interconversion between E and Z a protein induced fluorescent enhancement (PIFE) 

is observed. This is shown in (a) and (b) where 40 nM SsoSSB induces a two to threefold increase in 

fluorescence to 10 nM ssDNA labelled at the 3’ end with Cy3 and Cy5 dyes respectively. 
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3.7. Protein labelling 

In order to ensure high levels of purity were reached with protein samples; the 

labelling mixture was passed through a heparin affinity column where the labelled 

and unlabelled proteins were observed as two separate peaks, as seen in Figure 3.5 

The labelled protein exhibited a slightly weaker binding to the column and eluted off 

at a lower NaCl concentration than the unlabelled protein. The SDS-PAGE gel 

showed that the two peaks produced two identical bands and MALDI-TOF and UV-

vis confirmed that all the protein in the labelled fractions was bound to a single 

fluorescent dye. The efficiency of labelling was increased by adding urea to a final 

concentration of 8 M to the labelling mixture. Urea is a known reagent used for 

denaturing and unfolding protein structures, which was used in this case to further 

expose the cysteine residues during the labelling reaction. The increase in the yield 

of the labelling reaction can be viewed qualitatively in the ratio of labelled and 

unlabelled UV-vis peaks of Figure 3.5. The respective fractions collected from the 

affinity column were again analysed by SDS-PAGE electrophoresis, UV-vis 

spectroscopy and MALDI-TOF mass spectrometry and a sample of approximately 

100% labelled protein was obtained. 
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Figure 3.5: Labelling of SsoSSB with Alexa 647 in the presence of 8 M urea increases the efficiency 
of the labelling reaction. 
The UV-vis absorption of the fractions at 280 nm is shown in (a) as the the blue line. The labelled and 

unlabelled SsoSSB monomers elute from the heparin column at different salt concentrations (black 

line) and can be resolved by tracking the UV-vis absorption at 280 nm. The UV-vis absorption 

spectrum of the labelled SsoSSB is shown in (b), where the relative peak heights show that the dye 

and SsoSSB monomers are present at a 1:1 ratio. Note that the urea concentration was diluted to 4 M 

before passed through the column, as stated in materials and methods. 

 

3.8. FRET 

The experimental details and theory concerning FRET experiments have been 

discussed in the introduction, and FRET has been employed in many published 

experiments to investigate the binding of SSBs and similar proteins to ssDNA. The 

results presented in this chapter show ensemble experiments that confirm that the 

Alexa 647 dye bound to SsoSSB can be indirectly excited via an energy transfer 

from an excited Cy3 dye conjugated to ssDNA. This confirmed that FRET is an 

appropriate method of detecting SsoSSB bound to ssDNA, and was also observed 

during single molecule experiments.  
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In the absence of an acceptor, the emission spectrum of Cy3 appears as a single peak 

at 565 nm with a broad shoulder at 615 nm as shown by the black line in Figure 

3.6(a). The spectrum of Cy3 in the proximity of Alexa 647 showed an additional 

peak in the red line in Figure 3.6(b) that was centred at 665 nm, which corresponded 

to the sensitised emission of the acceptor dye. The FRET efficiency was calculated 

by the ratioA, the ratio of the integral of this additional peak and the integral of the 

Alexa 647 directly excited at 640 nm, as described in the materials and methods. 

 

 

Figure 3.6: FRET can be used to track SsoSSB binding to ssDNA by using ensemble spectroscopy. 
The respective decrease and increase of the peaks at 565 nm and 665 nm before and after ssDNA Cy3 

was introduced to SsoSSB Alexa647, is shown in (a). The SsoSSB binding to the ssDNA and the 

energy transfer from the Cy3 dye (green) to the Alexa 647 dye (red) can be visualised in the cartoon in 

(b). 

 

3.9. Quenching 

In order to fully characterise the fluorescent properties of the labelled proteins, 

labelled SsoSSB was introduced to ssDNA without the donor dye. From section 3.4 

it is clear that two labelled SsoSSB monomers bound adjacent to one another also 

place their fluorescent dyes in close proximity to one another. This was observed as a 

quenching of the fluorescence from the Alexa 647 and is discussed in more detail in 

paragraph 3.14. The quenching provides another method of tracking SsoSSB binding 
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to ssDNA in ensembles; however it is difficult to utilise this in single molecule 

experiments since this quenching would resemble reversible blinking events and 

would also confuse bleaching experiments that are used to count monomers bound to 

ssDNA. 

 

3.10. PELDOR 

Although the crystal structure of SsoSSB heavily implies that it exists as a monomer 

in solution, there is still a dichotomy in the published literature as to whether the 

protein predominately exists as a monomer or a tetramer. In order to address this, the 

variant A114C (the A114 residue is situated on the surface of the protein at edge of 

OB fold) was labelled with the spin label MTSSL and purified by size exclusion. The 

masses of unlabelled and MTSSL labelled SsoSSB were investigated by Dr 

Catherine Botting and her group, using MALDI-TOF and the extent of labelling was 

verified to be approximately 100%, shown in Figure 3.7. The interaction between 

spin labels was then analysed by PELDOR spectroscopy, carried out by Dr Bela 

Bode. 
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Figure 3.7: MALDI-TOF analysis of A114C SsoSSB before (top) and after (bottom) labelling with spin 
label MTSSL.  
The peak on the bottom has shifted by 182 Da, corresponding to the molecular weight of a single spin 

label. 

 

Pulsed electron-electron double resonance (PELDOR) is a pulsed electron 

paramagnetic resonance (EPR) spectroscopic technique that is generally used to 

measure the interaction between unpaired electrons more than 2 nm apart.
183, 184

 

Unpaired electrons are rarely found in native proteins and spin labels are generally 

conjugated to specific amino acids, much like fluorescent labelling. Upon applying 

pulses of microwaves to the sample the spin state of the unpaired electrons can be 

switched, and the relaxation back to its original state is measured as a spin echo in a 

PELDOR experiment. Dipolar coupling to a second unpaired electron is represented 

by a modulation and an increase in the depth of the exponential decay of the echo 

intensity compared to a lone unpaired electron. These effects are dependent on the 
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distance between the two paramagnetic centres and their relative orientation, 

analogous to the FRET observed between two fluorescent dyes. Previous distances 

have been used to investigate the structure of Influenza A Virus NS1, the structure of 

which is shown Figure 3.8(a) with possible conformations of the spin label shown as 

red and blue balls.
183

 The interaction between the two labels is shown in Figure 

3.8(b) as an exponential decay that exhibits a sigmoidal modulation. This can be used 

to calculate the distance distribution between the two labels, shown in the lower 

panel of Figure 3.8(b), which can be compared to calculations made in silico.
183

 

 

 

Figure 3.8: PELDOR can be used to verify the structure of proteins such as Influenza A Virus NS1. 
(a) MTSL Wizard is able to map the conformations of the spin label (red and blue cones) that are 

bound to specific residues on the protein surface. (b) shows the modulation of the spin echo produced 

through the dipolar coupling of the two paramagnetic species (top) and the comparison of the 

distances measured experimentally and those calculated from the in silicomodel. Figure modified 

from Kerry et al.
183

 

 

The spin labelled SsoSSB in solution did not produce any modulation in the absence 

of ssDNA, as shown in Figure 3.9(a), which indicates that SsoSSB predominately 
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exists as independent monomers in solution without forming any other higher order 

structures at a concentration of 100 μM. The depth of the decay increased upon 

addition of 50 μM ssDNA was consistent with a broad distribution of distances 

between spin labels centred around 3-4 nm. This increase in depth observed upon the 

introduction of ssDNA also supports the possibility that a single SsoSSB monomer 

only comes into proximity with other monomers once they are bound to the same 

strand of ssDNA. The distance calculated by PELDOR roughly agrees with the 

distances predicted by the model of two SsoSSB monomers at adjacent binding sites 

on ssDNA (4 nm) but the broad distribution does not imply that there was an 

overwhelming preference for SsoSSB monomers to bind snugly next to each other; 

however further investigations are necessary to confirm this conclusion as there are 

many factors that could produce this broadening other than low cooperative binding 

to ssDNA.  
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Figure 3.9: PELDOR data from SsoSSB MTSL experiments.  
(a) and (b) show the uncorrected data before and after SsoSSB MTSL was introduced to 12C ssDNA. 

(c) demonstrates the increase in the depth of modulation observed when ssDNA was added to SsoSSB 

MTSL. The depth of modulation from SsoSSB alone suggested that 90% of the species under 

observation were monomers, while the data from the addition of ssDNA was consistent with the 

formation of dimers that made up approximately 40% of the SsoSSB in solution. This was translated 

as a broad distribution of distances centred around 3-4 nm, as shown in (d). Below shows the MTSSL 

wizard applied to the model used in section 3.4, which gives a mean distance between the possible 

configurations of MTSSL dyes of 4.1 nm. 
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3.11. Persistence length of naked and decorated ssDNA 

The shape of a nucleofilament is largely dependent on the quaternary structure of a 

SSB, and the binding mode that is being employed by the proteins. The end-to-end 

distance of ssDNA bound to proteins is often an indication to what binding mode a 

protein employs. For example, the change in distance between the 3’ and 5’ ends of 

ssDNA has been used to follow the (SSB)65 and (SSB)35 binding modes of EcoSSB 

in single molecule FRET experiments.
155

 The conformation of ssDNA has been 

studied in solution and comparisons to Monte Carlo simulations in silico by Chen et 

al. have shown that the wormlike chain model is a suitable model to describe single 

stranded nucleic acids.
14

 This means that the end-to-end distance can also be used to 

quantitatively measure the degree of flexibility of ssDNA.  

 

The end-to-end distance of a 39 nt ssDNA was calculated from the FRET observed 

from 3’ and 5’ terminal ends labelled with Cy3 and Cy5 dyes respectively, shown in 

Figure 3.10. The sensitised emission decreased upon addition of SsoSSB, which was 

shown by the ensemble fluorescence spectra in (a). The ratioA was calculated from 

the spectra and the average values from three titrations are shown in Figure 3.10(b), 

which exhibited a decrease in ratioA as SsoSSB was added to the ssDNA in solution. 

This corresponded to an increase in the distance between the two dyes and the 

RatioA, the FRET value, and end-to-end distance were used to calculate the 

persistence length of the polymer, which in turn described the stiffness of the 

ssDNA, effectively measuring the length of the rigid links in the chain.  
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Figure 3.10: Ensemble FRET spectra of 50 nM 39 nt ssDNA Cy3 Cy5 in the absence and presence of 
SsoSSB showing a decrease in ratioA, that is consistent with the ssDNA being straightened and 
increasing the end-to-end distance.  
(a) Shows reduced intensity of the peak representing the sensitised emission of the acceptor dye. The 

ratioA was measured as increasing concentrations of SsoSSB was introduced to the ssDNA, which was 

repeated in triplicate, and the mean values are plotted in (b) with the standard error as error bars. The 

red line holds no significance and is meant to help guide the eye. The inset shows the ratioA changes 

as KCl is titrated into the same oligo.  

 

The average contour length of a single nucleotide from crystal structures has been 

shown to be 0.63 nm, so if a 39 nt ssDNA was perfectly rigid and straight, its end-to-

end distance would be approximately 24.5 nm, which would also match its 

persistence length. On the other hand, if each nucleotide had complete rotational 

freedom from its neighbours the persistence length would equal half the length of a 

single nucleotide. In reality, ssDNA is capable of adopting compact conformations 

but must also minimise like charge interactions along the phosphate sugar backbone, 

which prevents the polymer from completely compacting. 

 

For the 39 nt ssDNA, the persistence length was calculated as 1.76 nm (2.79 nt) and 

1.01 nm (1.63 nt) in 0 mM and 650 mM KCl concentrations respectively as control 

experiments for the SsoSSB titrations. The ratioA values are shown in the inset of 

Figure 3.10. This correlates to an end-to-end distance of 9.16 nm and 7.16 nm 

respectively. This agreed with the persistence lengths of other oligonucleotides in the 
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literature and confirmed that this was a reliable technique to use to investigate the 

persistence length of nucleofilaments.
15

 SsoSSB was titrated against ssDNA in a 100 

mM KCl solution, and an increase in end-to-end distance and persistence length was 

observed to give a final end-to-end distance of 11.38 nm and persistence length 2.67 

nm (4.24 nt). 

 

The distances calculated from the SsoSSB nucleofilaments seem to suggest a linear 

arrangement of SsoSSB monomers on ssDNA. In solution ssDNA naturally curls up 

on itself but still maintains at least some directionality, as shown by the middle 

cartoon in Figure 3.11(a) rather than the rigid linear structure shown on top. The 

ssDNA appeared to be straightened out by the binding of SsoSSB but retained a 

degree of flexibility seen in the bottom cartoon. This is in contrast to the globular 

assembly observed from similar experiments with EcoSSB, which wraps the ssDNA 

around itself, shown in Figure 3.11(b). This produced an increase in FRET as 

EcoSSB bound to ssDNA brings the two ends nearer to each other in both the 

(SSB)35 and (SSB)65 binding modes. The SsoSSB nucleofilament does not appear to 

be a rigid rod but keeps a degree of flexibility between monomers, rather like a 

beaded chain in which length of each link in the chain is one SSB monomer in 

length, possibly similar to RPA where each protein holds the ssDNA in a U-shaped 

conformation, shown in Figure 3.11(c) but produces an overall beaded 

nucleofilament due to the low cooperativity of binding between each protein. 
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Figure 3.11: From the data from PELDOR and end to distance measurements this suggests that 
SsoSSB binds as a monomer and produces a relatively unordered nucleofilament.  
This is shown in (a), where cartoons show the difference between perfectly rigid ssDNA (top), a 

collapsed naked ssDNA with persistence length approximately 2 nt (middle) and a strand of ssDNA 

decorated with SsoSSB with a persistence length of approximately 4 nt (bottom). The binding of 

SsoSSB to at ssDNA sequence of approximately 40 nt can be compared to EcoSSB and RPA binding 

to similar lengths of ssDNA in (b) and (c) respectively. Figures adapted from Fan et al., Raghunathan 

et al. (pdb: 1jmc.)
30, 32, 42

 

 

 

3.12. Dissociation constants and occupancy 

The affinity of SsoSSB for ssDNA has previously been shown to be in the low 

nanomolar range by isothermal calorimetery (ITC), fluorescence anisotropy, 

BioLayer Interferometry and quenching of the tryptophan fluorescence.
27, 109, 114, 185

 

The dissociation constants presented in the literature were generally calculated 

through a 1:1 binding model shown in materials and methods. The stoichiometry of 

SsoSSB binding to ssDNA has also been investigated and one monomer has been 

found to occupy approximately 4-5 nt,
109

 drawing similarities to the RPA crystal 

structure which showed two OB folds in DBD-A and DBD-B bound to 10 nt. The 
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NMR structure of SsoSSB bound to ssDNA indicates that the aromatic residues stack 

with 3 nt, that are spread over a region of 4 nt.
114

 Since the aromatic residues are 

located in the middle of the OB fold, it is unlikely that monomers in a nucleofilament 

would only occupy 4 nt each.
113

 The model of two SsoSSB monomers aligned with 

the RPA does suggest that there could be steric clashing between neighbouring 

proteins that only bind to 4 nt, therefore it seems intuitive that a slightly larger 

stoichiometry would be more realistic.  

 

The quenching of tryptophan has been used in the literature to report on the 

stoichiometry of SsoSSB binding to the oligonucleotides and was used to confirm 

binding by SsoSSB alongside the PIFE, FRET and Alexa 647 quenching assays. The 

concentration of SsoSSB used was a least an order of magnitude above the 

dissociation constant in order to achieve efficient binding of SsoSSB to the oligos. 

The fluorescence emission from the tryptophan residues taken from a titration where 

ssDNA was added to SsoSSB is shown in Figure 3.12(a), and the average degree of 

quenching from three experiments was plotted against total ssDNA concentration in 

(b), showing that 80% of the initial tryptophan emission was quenched by SsoSSB 

binding to ssDNA. These titrations can be plotted against ssDNA concentration in 

terms of nt per SsoSSB monomer in Figure 3.12(c), which shows that the 

stoichiometry is approximately 5 nt and independent of the length of ssDNA, 

consistent with other values in the literature.  
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Figure 3.12: Tryptophan quenching due to SsoSSB binding to ssDNA.  
An example of a titration where 21T ssDNA is added to 500 nM SsoSSB unlabelled wildtype where 

the quenching of fluorescence from the 
1
La can be visualised by the decrease in fluorescence at 350 

nm (λex = 295 nm) shown in (a). The fluorescence from the 
1
Lb state can be seen at 330 nm which 

remains relatively constant as ssDNA occupies the OB fold and excludes water moelcules. The 

quenching can be plotted against the total concentration of ssDNA, as shown for 21T ssDNA in (b). 

This was repeated in triplicate and the mean values were plotted with the standard errors displayed as 

error bars. The quenching can also be plotted as nucleotides per SsoSSB monomer, and was repeated 

for 12C and 6T ssDNA. The mean values are plotted in (c) with the error bars omitted for clarity. The 

stoichiometry remains approximately 5 nt ssDNA per SsoSSB monomer for all three lengths of 

ssDNA. (d) shows the NMR structure from Gamsjaeger et al. showing the three aromatic residues as 

stick models, base stacking with three nucleotides of ssDNA.
114

 The tryptophans that fluoresce in the 

absence of ssDNA are labelled as W56 and W75. 

 

Approximate dissociation constants for SsoSSB can be calculated for the various 

lengths of ssDNA from 1:1 binding models fitted to the average quenching values 

from the titrations, and are shown in Table 3.1, which show a modest decrease as the 

length of the ssDNA grows to accommodate up to four monomers on the same strand 

of ssDNA. The difference between dissociation constants from nucleofilaments of 
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one monomer and four monomers is over an order of magnitude, which is 

comparable to the cooperativity of RPA but these experiments alone do not 

necessarily confirm a cooperative binding mechanism between SsoSSB monomers. 

Further investigation is required to quantify this cooperativity, but it is highly likely 

given the reports in the literature and this evidence that SsoSSB only demonstrates a 

limited cooperativity compared to proteins such as EcoSSB or bacteriophage T4 gene 

32 protein, whose cooperativity factors can be multiple orders of magnitude.
186

   

 

Table 3.1: Dissociation constants from tryptophan quenching experiments with increasing lengths 
of ssDNA that can respectively allow up to 1, 2 and 4 monomers to bind to them at any one time. 
Dissociation constants were calculated from a modified one to one binding model. 

ssDNA Kd (nM) 

6T 91 ± 4.0 

12C 15 ± 3.0 

21T 5.2 ± 0.7 

 

 

As a fluorophore, tryptophan does not exhibit a quantum yield high enough for it to 

be used at low nanomolar concentrations, making it impractical to use at 

concentrations around SsoSSB’s dissociation constant and also at a single molecule 

level. As a result, alternative methods were used that exploit artificial dyes whose 

fluorescent intensities are more suitable for applications at lower concentrations.  

 

Titrations of unlabelled SsoSSB against ssDNA Cy3 were conducted in order to 

confirm that PIFE was a suitable method for following the binding of SsoSSB. An 

approximate two fold enhancement of 10 nM 12C ssDNA Cy3 was observed up to a 
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concentration of 20 nM SsoSSB, indicating that two monomers were able to persist 

on 12 nt ssDNA, agreeing with the tryptophan quenching experiments shown in 

Figure 3.12(c). Enhancement of cyanine dyes are reported to be a short range 

phenomenon, as the protein surface has to be close enough to exert a steric hindrance 

to the rotation of the indole groups.
182

 In the literature this has been seen up to 12 

base pairs away, and the spectra in Figure 3.13 seem to suggest that a protein binding 

to C12 ssDNA was sufficiently close to the dye to influence its local environment 

and produce a two fold enhancement. The intensity of Cy3 fluorescence allowed the 

concentration of ssDNA to be reduced down to approximately 10 nM, which was a 

more appropriate concentration to be investigating dissociation constants. From 

Figure 3.13(b) a dissociation constant of 8.1 ± 0.2 nM was calculated for two 

SsoSSB monomers binding to ssDNA which agrees with the previously calculated 

Kd values. 
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Figure 3.13: Enhancement of the fluorescence from 10 nM ssDNA Cy3 was measured at different 
concentrations of unlabelled SsoSSB, and a two fold increase in the intensity was observed.  
The fluorescence emission spectra are presented in (a) and the intensities were used to calculate the 

fraction of nucleotides bound to SsoSSB monomers, with the arrow representing increasing SSB 

concentration.The results were completed in triplicate and the mean values were plotted in (b) with the 

standard error as error bars. This was fitted to a one-site binding curve and a Kd = 8.1 ± 0.2 nM was 

calculated. A cartoon is shown below of two SsoSSB monomers bound to ssDNA Cy3. 

 

By adding a fluorophore to the SsoSSB that was capable of accepting energy from 

the Cy3, the possibility that FRET could be used to track binding was explored. 

FRET was observed from a 10 nM C12 ssDNA Cy3, as shown in Figure 3.14(a), but 

the curve plotting the ratioA in (b) clearly did not agree with the observed occupancy 

from the literature or the tryptophan and PIFE experiments. The ratioA plateaued 

significantly before the expected 2:1 ratio of SsoSSB monomers to strands of 

ssDNA, therefore the fluorescence of the acceptor was investigated in more detail in 

order to try and explain this observation. 
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Figure 3.14: Ensemble FRET titrations were also completed adding a SsoSSB Alexa 647 to 10 nM 
ssDNA Cy3, as shown in the cartoon.  
The spectra from a typical titration are plotted in (a), and the mean ratioA values from triplicate 

experiments are plotted in (b) with the standard error plotted as error bars. The data was plotted to one 

to one binding site model and an apparent Kd of 1.5 ± 0.3 nM was calculated. The data suggested that 

only approximately a tenth of the ssDNA could accommodate SsoSSB, which did not agree with the 

tryptophan and PIFE titrations, where higher concentrations of SsoSSB resulted in the SsoSSB 

completely decorating the ssDNA. A cartoon is shown below of an SsoSSB Alexa 647 monomer 

bound to ssDNA Cy3. 

 

 

In section 3.9 the quenching of Alexa 647 was described when SsoSSB was bound to 

a length of ssDNA that was long enough to accommodate up to two monomers. This 

interaction was also exploited in order to define an occupancy and dissociation 

constant. The results from the titration of ssDNA to SsoSSB Alexa 647 are presented 

in Figure 3.15, and again they indicated that two monomers could persist on 12C 

ssDNA with a dissociation constant of 10.5 ± 0.3 nM. This also demonstrates that the 

presence of the dyes in the nucleofilament did not significantly affect the binding of 
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SsoSSB, since tryptophan quenching, PIFE and Alexa 647 quenching all produced 

similar dissociation constants.  

 

 

Figure 3.15: A reverse titration adding ssDNA to 50 nM SsoSSB Alexa 647 was completed in 
triplicate. 
The mean values are plotted in (b) with the standard error. The spectra from a typical experiment is 

plotted in (a). This was fitted to one to one binding model and a Kd = 11 ± 0.3 nM was calculated, and 

a total of two SsoSSB monomers were able to bind per strand ssDNA, as shown in the cartoon. 

 

3.13. Cooperativity parameters 

Since PIFE reports on binding to ssDNA at low nanomolar concentrations, it was 

used in ensemble experiments to explore to what extent SSB binding to ssDNA is a 

cooperative process, as shown in Figure 3.16. The experiments used ssDNA strands 

that were a maximum of 20 nt in length, with a binding site set at 5 nt. A model that 

accounts for binding to a finite lattice rather than an infinite lattice was used. The 

free protein concentration   was calculated from the fraction of the total 
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enhancement of fluorescence, and the reciprocal of the dissociation constant from the 

SsoSSB tryptophan quenching in the presence of 6T ssDNA was used as  . The 

short length of the ssDNA negated any cooperative effects of binding and this finite 

lattice model gave a dissociation constant of 90.4 ± 10.9 nM, agreeing with the 1:1 

binding model used in section 3.12. A dissociation constant of 90 nM was therefore 

used following the method described in materials and methods, in order to obtain a 

value of 100 ± 16 for the cooperativity factor,  , which describes a modest 

cooperative binding. 

 

 

Figure 3.16: PIFE titrations could also be fitted to Epstein’s model that describes the cooperative 
effects of SsoSSB binding to adjacent sites along ssDNA, taking into account overlapping binding 
sites and the end effects of a short oligo.  
The spectra from the fluroescence scans are shown in (a) and the mean values are plotted in (b) with 

the standard errors shown as error bars. The cooperative parameter to the equilibrium constant was 

found to be 100 ± 16, which indicated a modest positive cooperativity. 
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3.14. Quenching suggests monomeric structure 

The ssDNA was shortened to 6T which could only support a single SsoSSB Alexa 

647 monomer, and the quenching of Alexa 647 was not observed, as shown in Figure 

3.17. The binding of the protein was still tracked by the quenching of tryptophan, 

which suggested that the cause of the quenching was due to the proximity of two 

monomers. 

 

 

Figure 3.17: Quenching of Alexa 647 fluorescence. 
Quenching of Alexa 647 was not observed in (a) when the oligonucleotide was shortened to 6T, which 

could not support two monomers at any one time. The binding to ssDNA was tracked using 

tryptophan quenching as shown in (b), which was approximately 80% compared to the negligible 

quenching observed for Alexa 647. Below is a cartoon of a single monomer of SsoSSB Alexa 647 

bound to 6T ssDNA. 

 

The fluorescence intensity of SsoSSB Alexa 647 was quenched by approximately 

80% when introduced to 12C ssDNA, shown in Figure 3.15(b). If SsoSSB did form 

any higher order structures, such as a tetramer, it is unlikely that the same extent of 
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quenching of Alexa 647 would have been observed as the monomers would already 

be in contact with each other without ssDNA. 

 

From this experiment, it was deduced that the origin of the Alexa 647 quenching was 

due the presence of a second labelled monomer. The similarity in the UV-vis spectra 

of SsoSSB Alexa 647 in the presence and absence of ssDNA suggested that the 

Alexa 647 molecules do not form a non-fluorescent dimer and that the quenching 

was achieved through some other mechanism. This could be explained by the 

flexibility of the nucleofilament observed in the previous FRET experiment, which 

would allow the fluorescent dyes to avoid contacting each other. Cyanine dyes have 

been shown to predominately self-quench through an energy transfer mechanism, 

even when dimer formation is possible. Furthermore, the nature of the protein 

surface interactions with the dyes in crowded environments could also have played a 

role in the decreased fluorescence intensity of the Alexa 647. 

 

3.15. Discussion 

In these ensemble studies, Sulfolobus solfataricus SSB binding to ssDNA was 

primarily investigated through changes in fluorescence intensity of artificial dyes that 

were conjugated to the protein and ssDNA. The oligomeric state of SsoSSB is a topic 

debated in the literature and the evidence presented here strongly suggests that this 

SSB exists primarily as a monomer in solution, which was also addressed by 

Gamsjaeger.
114

 The labelling process was optimised so that approximately 100% of 

the protein monomers were conjugated to either a fluorescent dye or spin label, 

which was confirmed by mass spectrometry and optical absorbance where 
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appropriate. Any unlabelled proteins were removed by ion exchange and size 

exclusion columns, so that no unlabelled proteins could cause any artefact signals. 

Gel filtration, PELDOR and ensemble FRET and quenching experiments all failed to 

observe any significant interactions between monomers in solution which agree with 

the published crystal structure. The addition of ssDNA to these experiments showed 

clear evidence that the monomers were typically only in proximity to one another 

when they were bound to the same strand of DNA. 

 

The distribution of distances obtained from PELDOR was too broad to confirm the 

model depicted in Figure 3.3. The low signal to noise ratio meant that the data 

collected could not determine if one or multiple distances were measured. Results 

from Gamsjaeger et al. suggested that it was likely that SsoSSB monomers did have 

an orientation relative to the ssDNA, so a more defined distance would have been 

resolved if all SsoSSB monomers were bound in a strict, rigid nucleofilament.
114

 

Protein dynamics would be minimal at the low temperatures that these experiments 

were completed; therefore any poorly defined distances could be a result from either 

a wide range of distances present or artefacts from other unbound species in solution. 

A weak protein protein interface could produce a large variation in the degree of 

rotational freedom that the proteins experience whilst bound to the ssDNA. Also, 

weak protein protein interaction could also result in anti-, non-, or only mildly 

cooperative behaviour that would generate a wide range of distances between the 

dyes on the SsoSSBs bound to ssDNA as well as increasing the noise from unbound 

proteins in solution. 
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Alone, the PELDOR results did not point towards a strong protein protein interface. 

Even with the stabilising presence of ssDNA the results seemed to discount the 

formation of rigid filaments. This was somewhat intuitive given the steric clashing 

expected if SsoSSB monomers were forced together. However, the quality of the 

PELDOR data was not credible enough on its own. The end-to-end distance 

calculated also implied that there was some degree of flexibility between monomers 

on a 39 nt ssDNA, since the persistence length matched reasonably well with the 

binding site of a SsoSSB monomer. These results were not under the stringent 

restrictions that programs such as MTSSL Wizard apply, however these conclusions 

have taken into account the length and flexibility of the dyes’ tethers. A qualitative 

analysis of the ratioA values measured clearly showed that SsoSSB increases the end-

to-end distance of ssDNA, and that the final distance was much too long for a 

ssDNA stabilised E.coli like tetrameric arrangement of monomers and also certainly 

too short to be a fully extended strand. Coupled with the distribution of distances of 

SsoSSB monomers bound to ssDNA measured by PELDOR, these studies imply that 

the SSB/ssDNA complex was a reasonably flexible linear filament. Together the 

large distribution of distances between monomers and the short persistence length 

suggested that there was a degree of freedom as to where SsoSSB monomers bind 

relative to each other and that they bind without a strongly defined protein protein 

interface. 

 

Previous experiments investigated the effect SsoSSB had on staining the ssDNA with 

ethidium bromide. These experiments concluded that an SsoSSB nucleofilament 

effectively covered the ssDNA and prevented the intercalation of ethidium bromide 
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between the ssDNA bases.
109

 The strands of ssDNA used were hundreds of 

nucleotides long which could not have given much indication of the action of a 

single monomer with respect to its neighbours; therefore the complete decoration 

could have been an example of cooperative binding or a result of the vast excess of 

protein, since the concentration of SsoSSB was well above the reported dissociation 

constants of 10 to 100 nM. To investigate both cooperativity factors and dissociation 

constant in more detail, the length of ssDNA was reduced to observe a maximum of 

four monomers binding at any one time as well as reducing the concentration of 

SsoSSB to examine binding at low nanomolar concentrations. 

 

The binding of SsoSSB monomers was initially investigated by the quenching of the 

fluorescence from the tryptophan residues. The apparent decrease in dissociation 

constant of SsoSSB observed as the length of ssDNA was increased to allow up to 

four monomers to bind on the same strand was indicative of a binding mechanism 

that displayed a modest cooperativity. 

 

SSBs typically bind to ssDNA in a nonspecific manner with regard to nucleotide 

sequence and results in multiple overlapping binding sites for SSBs to bind on 

ssDNA, as described in Materials and Methods. The McGhee-von Hippel model for 

cooperative binding to infinite lattices has been widely used to describe cooperative 

proteins binding to a one dimensional lattice, including EcoSSB and bacteriophage 

T4 gene 32 protein binding to DNA.
186

 It has also been shown to be unsuitable for 

cooperative binding to small lattices and so Epstein’s model was used as an 

alternative.
178

 This fully describes overlapping binding sites, end effects of a finite 
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lattice and cooperative binding; however this was more appropriate for a forward 

titration where protein is added to ssDNA – which is impractical when measuring the 

quenching of protein fluorescence.  

 

Binding of two SsoSSB monomers to 12 nt ssDNA was also followed using PIFE, 

which allowed the concentration of ssDNA and SsoSSB to be reduced closer to the 

Kd, and therefore to investigate binding isotherms in more detail. The addition of 

protein to ssDNA allowed the use of Epstein’s finite lattice model that was not 

possible for reverse titrations such as those observed for tryptophan quenching 

experiments. The forward PIFE titration again showed that SsoSSB can exhibit 

modest cooperative binding to ssDNA, which ensures that the nucleofilaments are 

effective at completely decorating and protecting the ssDNA from insults. The limit 

on the cooperativity value observed could be a result of the high concentration of 

SsoSSB in vivo which negates the necessity for highly cooperative factors that would 

efficiently coat the ssDNA with a limited numbers of proteins. 

 

FRET and Alexa 647 quenching both showed measurable changes upon the addition 

of ssDNA. The change in signal of FRET was over a smaller concentration than 

expected which prompted a closer look at the acceptor dye during SsoSSB binding. 

The quenching was only observed upon the addition of ssDNA long enough to 

accommodate two SsoSSB monomers, so was attributed to the presence of a second 

SsoSSB monomer in the nucleofilament. Alexa 647 is structurally similar to Cy5 and 

both exhibit non-fluorescence states brought about by aggregation, resonance energy 

transfer, photoisomersiation, intersystem crossing and photo-induced charge 
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transfers. The lack of any change to the profile of the UV-vis absorption discounted 

the formation of non-fluorescent dimers, possibly as a result of the flexibility 

between monomers in the nucleofilament. However, in a nucleofilament the Alexa 

647 molecules were still in a crowded environment, and despite the ambiguity of the 

explanation of the quenching, the proximity of charged protein surfaces and other 

fluorescent molecules clearly had a significant effect on the optical properties of the 

dyes.  

3.16. Conclusions 

This chapter has focused on how the photophysics of the cyanine dyes in crowded 

environments can be attributed to relatively small proteins binding to ssDNA. 

Significant quenching and enhancement of the fluorescence intensities of Cy3 and 

Alexa 647 due to the relative positions and orientation of the labelled monomers of 

SsoSSB have been exploited to confirm the tight binding of SsoSSB to ssDNA in 

addition to providing evidence that suggested a monomeric structure for the SsoSSB 

protomer and a moderately cooperative binding mechanism that resulted in a loosely 

linear nucleofilament.  

 

There have been no results observed that strongly support a well defined interface 

between SsoSSB monomers, either free in solution or bound to ssDNA. In contrast, 

the ensemble data strongly implied that SsoSSB is a monomeric species in solution, 

and that once bound to ssDNA the monomers still experienced a degree of rotational 

freedom from each other and did not produce an inflexible linear nucleofilament. The 

lack of a defined and favourable protein-protein interaction suggested that the 

cooperativity observed could also be due to the nature of ssDNA itself rather than an 



117 

Ensemble studies of SsoSSB 

overriding energetic preference to make contact between monomers. The nucleotides 

of ssDNA neighbouring a monomer of SsoSSB already bound are likely to behave 

differently to a completely free ssDNA, rendering them more accessible for another 

SsoSSB monomer. The opposite trend was noticed for EcoSSB, whose OB folds are 

in a well defined position and orientation relative to each other and the binding of the 

second EcoSSB OB fold was identified as anti-cooperative due to energetic penalties 

of constraining ssDNA in that manner. 

 

The FRET, quenching and enhancements detailed in this chapter rather 

serendipitously provided the basis for a novel single molecule fluorescent assay. 

Using a combination of the three different fluorescence processes was advantageous 

in that it was clearly able to distinguish between nucleation and filament growth, 

which provided a precise method of studying the initial stages of OB folds forming a 

nucleofilament.  
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4. Single molecule analysis of SsoSSB 

TIRF microscopy allowed the observation of single molecules of fluorescently 

labelled ssDNA immobilised on a quartz slide. This technique measures the 

fluorescence intensity of fluorophores and any binding of proteins to the ssDNA has 

to be inferred from the changes in the rate of photons emitted from the fluorescent 

dyes. A series of filters, mirrors and dichroic mirrors allows the fluorescence from 

two different dyes to be separated and measured simultaneously, so that any transfer 

of energy between the two dyes can be calculated. The fluorescence of the two 

different dyes are reflected onto different halves of a EM-CCD camera, giving two 

images of the same slide, viewing the donor and acceptor dyes respectively. These 

were 2D representations of the slide, so ideally a fluorophore resembled a singular 

bright spot on a dark background, so the ssDNA was immobilised on to the slide at 

approximately low picomolar concentrations in order for each fluorophore to be 

resolved separately. 

 

Single molecule results are commonly presented as traces of the fluorescent 

intensities of the two fluorescent dyes plotted against time. In the absence of an 

acceptor dye and other external quenchers, the donor dye should fluoresce at a 

constant intensity for the duration of the experiment, until photobleaching of the 

donor molecule occurs, which results in the fluorescence intensities effectively 

becoming zero. An example of this is a single ssDNA molecule immobilised to a 

quartz slide labelled with Cy3 dye at the 3’ end, shown in Figure 4.1(a). This is 

compared to that of multiple fluorophores where discrete steps clearly show distinct 
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photobleaching events of more than one fluorescent dye. Traces showing multiple 

donor dyes were excluded from further analysis to ensure that conclusions made 

were from the fluorescence emitting from a single ssDNA. Throughout this thesis 

Cy3 was used as donor dye and its fluorescence intensity is represented by the green 

trace. Similarly, Alexa 647 was employed as the acceptor dye and is represented by 

red traces.  

 

 

Figure 4.1: The fluorescence intensities from single molecules of 12C ssDNA Cy3 molecules.  
Donor and acceptor emission are represented by the green and red traces respectively, and this will be 

consistent throughout all figures. Top trace (a) shows a single photobleaching step at 40 s, whilst (b) 

shows two at 10 s and 17 s. This double photobleaching suggested that there were two fluorescent 

molecules present in a single spot and the data from traces showing similar behaviour are disregarded 

to avoid confusion. The near zero intensity of the fluorescence from the 640 nm channel (acceptor 

channel) suggested that there were no acceptor dyes present for FRET to occur. 

 

Similar to the ensemble experiments, single molecule binding events are viewed as 

increases in FRET, where an anti-correlation of the donor and acceptor dyes show a 

transition to an increase in acceptor intensity coupled with a decrease in donor 
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intensity. Many of these events are examined from numerous molecules of ssDNA in 

various experimental conditions to build a comprehensive picture of the mechanism 

SsoSSB employs to bind to ssDNA. 

 

4.1. Non-specific binding to the slide 

Initially SsoSSB labelled with Alexa 647 was washed on and off the PEG surface of 

the microscope slide to ensure that any signals received in later experiments were not 

due to unspecific surface interactions. The number of spots observed on the surface 

that persisted after washing was comparable to a clean surface, as shown in Figure 

4.2. The change in fluorescent intensity before and after the addition of SsoSSB 

Alexa 647 was also compared and the affinity of SsoSSB for the surface of the slide 

seemed insignificant, demonstrated by the facile removal of SsoSSB from the PEG 

surface, also shown in Figure 4.2. This was compared with the spots observed after 

the addition of ssDNA modified with biotin and Cy3 at the 5’ and 3’ ends 

respectively, where the specific immobilisation of the ssDNA meant that the 

presence of ssDNA persisted through multiple washes. Subsequent single molecule 

studies showed the same changes in the fluorescent intensity of the dyes that had 

been seen in the ensemble experiments, and the FRET, PIFE and quenching events 

were therefore attributed to specific interactions with ssDNA.  
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Figure 4.2: Images taken from TIRF microscope of a clean PEG slide before and after loading 100 
nM SsoSSB labelled with Alexa 647 on to the surface.  
The SsoSSB was subsequently washed off the surface of the slide. This is compared with trying to 

wash off ssDNA that has been immobilised by biotin/neutravidin interactions.  

 

4.2. PIFE 

The fluorescence from ssDNA alone was relatively constant until photobleaching 

occured, when the fluorescence intensity was totally and irreversibly quenched. No 

enhancements were observed under these conditions and a typical trace in the 

absence of SsoSSB is shown in the bottom trace of Figure 4.3. The single molecule 

traces were normalised so that fluorescence intensity from the Cy3 in the absence of 

SsoSSB equalled one. This state was assumed to be the average fluorescence 

intensity of the lowest level of fluorescence before photobleaching, and histograms 
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were produced to quantify the fluorescence increase due to presence of SsoSSB. 

Upon the addition of unlabelled SsoSSB, PIFE was observed as a 2-3 fold increase in 

the intensity of fluorescence of Cy3 conjugated to molecules of ssDNA, clearly 

shown in the other traces in Figure 4.3. There the normalised traces are also shown 

from a range of SsoSSB concentrations. The frequency of transitions between low 

and high fluorescence intensities exhibited a positive correlation with the 

concentrations of SsoSSB, which suggested that these were the PIFE binding events 

observed by ensemble experiments. SsoSSB concentrations approaching 50 nM 

resulted in constant enhancement of the recorded Cy3 fluorescence, indicating either 

a continuous presence of the same monomers on ssDNA or a rapid exchange of 

proteins that is too fast to resolve (on and off binding below 33 ms).   
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Figure 4.3: The intensities of the fluorescence emitted from single molecules of 12C ssDNA Cy3 
immobilised on quartz slide have been normalised and plotted against time.  
These traces show binding events as a 2-3 fold increase in fluorescence. The proportion of time the 

unlabelled SsoSSB was bound to ssDNA increased with protein concentration so that at 50 nM the 

ssDNA was always decorated with proteins. The histograms to the right of the traces show the 

frequency distribution of the fluorescence intensities, again showing an increase in enhancement 

increasing with protein concentration. Below is a cartoon of unlabelled SsoSSB bound to ssDNA, 

inducing a fluorescence enhancement of the Cy3 dye (green.) 

 

The histograms from approximately 1000 traces are shown Figure 4.4, where in the 

absence of SsoSSB only a single peak is observed centred at the normalised value of 

1. A second peak was observed upon addition of SsoSSB which indicated a two-fold 

increase in fluorescence and which became increasingly pronounced with increasing 

concentrations of SsoSSB, representative of the increasing fraction of time that 

ssDNA was bound by SsoSSB monomers. 



124 

Single molecule analysis of SsoSSB 

  

 

Figure 4.4: Histograms, each from approximately 1000 single molecule traces, which show the 
fluorescence intensity of immobilised 12C ssDNA Cy3 on a quartz slide being exposed to increasing 
concentrations of unlabelled SsoSSB.  
Upon the addition of SsosSSB a two-fold increase in the fluorescence intensity of Cy3 was observed. 

This two-fold increase became increasingly dominant with the increasing concentrations of SsoSSB, 

coupled with the relative decrease in size of the original peak at 0 nM SsoSSB. 

 

The lack of binding dynamics at an SsoSSB concentration of 50 nM could have been 

potentially confusing when trying to identify when the fluorescence was enhanced; 

therefore after traces at 50 nM were recorded, imaging buffer was washed through 

the sample chamber to reduce the SsoSSB concentration, as depicted in the cartoon 

in Figure 4.5(a). The histograms in Figure 4.5(b) from the washed ssDNA showed an 

additional peak, approximately half the intensity of the ssDNA Cy3 in the presence 

of 50 nM SsoSSB and the traces from the washed ssDNA exhibited clear dissociation 

and association events as a result of reducing the protein concentration, shown in 

Figure 4.5(c). This indicated that fluorescence intensity observed at high protein 
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concentrations was constantly enhanced due to the presence of SsoSSB monomers 

bound to ssDNA.  

 

 

Figure 4.5: Histograms and a single molecule trace to show that at high concentrations of SsoSSB 
the traces showed no dynamics but were approximately twice the intensity of 12C ssDNA Cy3 in 
the absence of protein.  
To ensure that the fluorescence observed at 50 nM was increased by protein binding to ssDNA, the 

sample chamber was washed with imaging buffer to remove the unbound protein from the bulk 

solution, lowering the protein concentration. This enabled the bound protein to dissociate from the 

ssDNA and allowed the fluorescence intensity to return to its previous intensity. Figure (a) shows a 

schematic of the process, (b) is a frequency histogram of fluorescence intensities from ssDNA Cy3 in 

the prescence of 50 nM SsoSSB and from after washing with imaging buffer, and (c) is an example of 

a trace showing the fluorescent intensity of ssDNA Cy3 after washing with buffer. The three 

intensities clearly show that the ssDNA now spends most of its time undecorated with protein, but 

also shows enhancements consistent with SsoSSB binding events. The near zero intensity was a result 

of photobleaching of the dye, the one step profile of these photobleaching events suggested that these 

traces were recorded from single molecules.   

 

The broadness of the peaks which represent the enhanced fluorescent intensity can be 

attributed to the flexible nature of the ssDNA leading to transient interactions with 

the protein surface. This meant that it was difficult to differentiate overlapping 

binding sites that the SsoSSB could bind to along ssDNA. The enhancement due to 
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protein binding has been shown to be distance dependent, and that it is possible to 

discriminate between binding positions of RecA, which occupies only 3 nt per 

monomer.
182

 SsoSSB proteins bind to a total of 5 nt along the same length of ssDNA. 

This resulted in only subtle changes in fluorescence intensity and the increased noise 

observed during PIFE did not allow the unambiguous discrimination between 

enhancements from different numbers of monomers bound to ssDNA. The difference 

between the levels of noise recorded from decorated and undecorated ssDNA is 

shown more clearly by the histograms in Figure 4.6. The full width at half maximum 

heights (FWHM) are also presented and the presence of SsoSSB on the ssDNA 

caused approximately a three-fold increase in the FWHM. This was most likely to 

due, as previously stated, to the transient nature of the interaction between the protein 

surface and the dye, leading to fluctuations in the strength of the interaction between 

the dye and protein surface. 

 

Figure 4.6: Gaussian peaks fitted to histograms showing the frequency distribution of the 
fluorescence intensity of 12C ssDNA Cy3 at 0 nM and 1 nM unlabelled SsoSSB for approximately 
200 molecules.  
The table shows the centre and full width at half maximum height (FWHM) values for the Gaussian 

peaks representing the fluorescence intensities for undecorated ssDNA and for when SsoSSB was 

bound to the ssDNA. The intensities were normalised so that undecorated ssDNA gave a fluorescence 

intensity centred at 1. At 1 nM the ssDNA still clearly spent a significant proportion of its time 

undecorated but the fluorescence intensity also was enhanced approximately two fold due to the 

presence of SsoSSB. The FWHM values increased upon SsoSSB binding, demonstrating the dynamic 

interaction between the dye and protein surface. 
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4.3. FRET 

When SsoSSB Alexa 647 was introduced to 12C ssDNA Cy3 immobilised on a 

quartz slide, a very efficient energy transfer was observed, with    typically adopting 

values close to 1. These were attributed to SsoSSB binding to ssDNA and typical 

traces showing only changes in FRET are shown in Figure 4.7(a). The frequency of 

the bursts of high FRET intensity were again positively correlated with increasing 

SsoSSB concentration similar with the PIFE binding events, which confirmed that 

the observed FRET was due to labelled SsoSSB Alexa 647 interacting with ssDNA. 

Approximately 350 binding events were analysed and gave a frequency distribution 

of    that yielded two states centred at    = 0.11 and 0.97, shown in Figure 4.7(b), 

which were assigned to undecorated ssDNA and a single monomer bound to ssDNA 

respectively. A non-zero    value for the unbound ssDNA was most likely due to 

cross-talk between the donor and acceptor channels rather than the presence of an 

acceptor dye. FRET is generally insensitive to changes below 4 nm, and the 

overlapping binding sites and the flexibility of the ssDNA again did not give 

significantly different    values in order to indentify where on the ssDNA SsoSSB 

was bound. These binding events persisted with an approximate lifetime of 200 ms, 

which was a short period of time compared to the reported dwell times of EcoSSB 

and RPA on ssDNA, which were found to be able to maintain 400 and 5 seconds of 

contact with ssDNA respectively.
187

  

 

The quenching of the acceptor fluorescence when a second monomer binds to the 

ssDNA, as seen in the ensemble titrations, was potentially problematic and the 
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overall kinetics of the initial growth of a filament, including nucleation is discussed 

in the next section of this chapter.  

 

 

Figure 4.7: Single molecule traces showing SsoSSB Alexa 647 monomers binding to 12C ssDNA Cy3 
as bursts of increased acceptor fluorescence accompanied by quenching of the donor intensity, 
typical of highly efficient FRET events.  
Figure (a) shows an increasing rate of binding as SsoSBB Alexa 647 concentration was increased, and 

(b) shows a frequency histogram of the FRET values from approximately 200 binding events, giving a 

low and high FRET values that correspond to ssDNA undecorated and decorated with SsoSSB Alexa 

647 respectively. (b) also shows a cartoon of SsoSSB Alexa 647 bound to ssDNA Cy3 demonstrating 

the short inter-dye distances.  
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4.4. Full in-trace interpretation 

This thesis has used FRET, PIFE and self-quenching to individually describe 

SsoSSB and its mechanism of binding to ssDNA. They were, however, not mutually 

exclusive techniques in this instance. PIFE and self-quenching also influenced the 

fluorescence intensities of donor and acceptor dyes in the single molecule FRET 

experiments. Many traces exhibited all three behaviours, as shown in Figure 4.8. In 

this exemplary trace, an instance of high FRET is labelled, as is a section which 

showed quenching of the acceptor with a simultaneous enhancement of the donor 

dye emission. These were interpreted as a single monomer binding to ssDNA and a 

second monomer binding to ssDNA respectively. 

 

The aim of these experiments was to characterise the binding of SsoSSB to ssDNA 

and the length of the ssDNA was initially kept at 12 nt in order to only view a small 

number of monomers binding, ideally simplifying the interpretation of the traces. 

The flexibility of ssDNA and its short length meant that when the first SsoSSB Alexa 

647 monomer bound to ssDNA, the protein surface disturbed the local environment 

of the donor dye regardless of which binding site the protein was bound to. The 

resultant enhancement of the donor fluorescence was not observed due to the 

efficient energy transfer to the acceptor dye, which stimulated the acceptor 

fluorescence but quenched the donor fluorescence and demonstrated the anti-

correlation that is typical of pairs of fluorescence dyes capable of FRET. These 

periods of high FRET efficiency were attributed to the presence of a single labelled 

monomer, and an example of these events is shown by the region labelled high FRET 

in Figure 4.8. 
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Figure 4.8: An example of a single molecule trace showing the changes in fluorescence when one 
SsoSSB Alexa 647 monomer and two monomers bind to 12C ssDNA Cy3.  
A single monomer bound to ssDNA was shown by an increase in acceptor fluorescence (Alexa647, 

red) and a simultaneous decrease in donor emission (Cy3, green), typical of a highly efficient FRET. 

There are four instances in the inset where a single monomer has bound to the ssDNA, the second of 

which has been labelled. If a second monomer binds, the acceptor fluorescence is quenched however 

the interaction of the donor dye with the protein surface results in an enhancement of fluorescence 

(PIFE.) Similarly there are three instances where two SsoSSB monomers are bound shown in the 

inset, the final one is labelled. 

 

These periods of high FRET efficiencies were relatively brief, and were either 

immediately followed by the donor and acceptor dyes returning to intensity levels 

that were characteristic of undecorated ssDNA, or by a period of a 2-3 fold 

enhancement of the donor fluorescence intensity which was concomitant with the 

quenching of the acceptor fluorescence. The return to typical levels of fluorescence 

was distinctive of the single monomers dissociating from ssDNA, as seen in the 

previous paragraph 4.3. The regular occurrences of these periods of enhancement, 

the low percentage of unlabelled protein in the sample and the observations of self-

quenching during ensemble experiments suggest that it was most likely that these 
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high PIFE, acceptor quenching events were a result of a second SsoSSB Alexa 647 

monomer binding to ssDNA, and are represented by the area labelled PIFE in Figure 

4.8. This novel in-trace analysis has allowed the binding of the first SsoSSB 

monomer to be unambiguously separated from the sequential binding of further 

monomers during growth of the filament. An example of how these FRET, PIFE and 

quenching events can be used to track the number of monomers on 12C ssDNA Cy3 

is given in Figure 4.9. This technique was used to characterise the differences in 

affinities for ssDNA of monomers that are binding to ssDNA as an individual 

monomer or adjacently to other proteins already bound. 

 

Figure 4.9: An example of how the FRET, quenching and PIFE events can be interpreted in terms of 
the number of SsoSSB Alexa 647 monomers bound to 12C ssDNA Cy3.   
One and two monomers bound are represented by high FRET and high PIFE regions respectively. The 

top trace shows the raw data taken from a typical single molecule trace where the donor and acceptor 

fluorescence intensities are given by green and red traces respectively. The second plot (top black 

line) is a trace the FRET calculated from the intensities of the donor and acceptor, while the third plot 

(blue line) is the sum of the donor and acceptor intensities. The bottom plot shows the number of 

SsoSSB monomers bound to the ssDNA, and shows how the high FRET events correspond to a single 

monomer bound to ssDNA. The PIFE can be clearly shown in the changes to the total intensity of the 

two dyes, and was concomitant with quenching of the acceptor dye. 
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4.5. Binding kinetics 

This unique way of clearly observing the nucleation of SsoSSB on a single strand of 

12C ssDNA Cy3, allowed the dwell times of the first and second monomer to be 

measured. Binding events can be viewed using the scheme in Figure 4.10, where 

SSB1 and SSB2 refer to the first SsoSSB monomers to bind to the ssDNA. The rates 

that each monomer binds to ssDNA can be calculated from measuring the times that 

monomers of SsoSSBs dwell on ssDNA. For example, the observed rate of the first 

SsoSSB monomer to bind to ssDNA,      , is proportional to the inverse of the time 

it takes for that SsoSSB monomer to bind      , ie. the time the ssDNA spends 

undecorated. Similarly, the observed rate of the dissociation of the first monomer, 

      , is related to the inverse of the time the first monomer is bound the ssDNA 

before it is to released,       . These events are described pictorially in Figure 4.11. 

 

 

Figure 4.10: Two SsoSSB monomers can bind to or dissociate from ssDNA either sequentially or 
simultaneously.  
The SSB1 and SSB2 represent the first and second monomers to bind to ssDNA respectively. 

 

The duration of approximately 300-400 binding events were measured and the rate of 

binding on and off from ssDNA was calculated by fitting single exponential decays 

to frequency distribution histograms of the dwell times. The histograms for the first 
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monomer binding on and off across a concentration range 0.05 - 10 nM are given in 

Figure 4.12 and the rate constants are given in Table 4.1. There clearly was a 

concentration dependence on the rate of the first monomer binding to ssDNA, which 

suggests that these FRET events are caused by the SsoSSB Alexa 647 interacting 

with ssDNA Cy3. The dissociation of the first monomer was largely independent of 

protein concentration, which was in agreement with a rate equation that is first order 

with respect to protein concentration. Approximately 85% of binding occurred as an 

individual monomer, which suggested that SsoSSB predominately behaved as a 

monomer in solution in agreement with PELDOR and work published by 

Gamsjaeger.
114

 

 

 

Figure 4.11: The rates of koff and kon for the a single monomer binding to 12C ssDNA Cy3 were 
calculated by measuring the time (a) immediately before a single monomer binding to or (b) 
dissociating from ssDNA. 
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Figure 4.12: The dwell times of approximately 200 events showing a single SsoSSB Alexa 647 
monomer binding to 12C ssDNA Cy3 were measured at each concentration (0.05, 2.5 and 10 nM) 
and plotted as histograms.  
Single exponential curves were fitted and rate constants were calculated. The fitting was not improved 

by including a second exponential term. The histograms from (a) were overlaid on top of each other in 

(b) to clearly show that increasing the concentration of SsoSSB increases the rate at which monomers 

bind to ssDNA but the time before dissociation remains relatively constant. 
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The binding events of the second monomer were analysed in a similar manner, where 

the rate of binding of the second monomer,      , corresponded to the time it took 

from the binding of the first monomer until a second SsoSSB bound adjacently to the 

first, causing a quenching of the acceptor dyes’ fluorescence and inducing a high 

donor intensity due to PIFE. The length of this enhancement represented the duration 

the ssDNA accommodated two SsoSSB monomers, and was generally followed by 

both SsoSSB monomers dissociating from the ssDNA with the fluorescence 

intensities of the donor and acceptor returning to low FRET, no PIFE states. These 

histograms are shown in Figure 4.14. It was not uncommon to observe two 

monomers bound to ssDNA to dissociate separately however it was more frequent to 

see the synchronised dissociation of both monomers. The rate constant for the second 

monomer binding to ssDNA showed a slight increase with the protein concentration, 

but was not as pronounced as the first monomer, whereas the rate of dissociation of 

the second monomer was largely independent of protein concentration. The rate of a 

monomer dissociating from a nucleofilament of two monomers was approximately 

two to three times slower than a single monomer dissociating from ssDNA. This 

pointed towards a cooperativity constant of approximately 10-100, roughly in 

agreement with the ensemble titrations. 
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Table 4.1: Table of observed association constants for the first and second SsoSSB monomers and 
dimers to bind to ssDNA, represented as kon,1, kon,2 and kon,1.2 respectively. 

[SsoSSB] (nM) kon,1 (s
-1

) kon,2 (s
-1

) kon,1.2 (s
-1

) 

0.05 0.06 ± 0.005 1.75 ± 0.1 0.09 ± 0.001 

2.5 0.1 ± 0.01 2.55 ± 0.2 0.12 ± 0.008 

10 0.32 ± 0.04 3.37 ± 0.3 0.15 ± 0.003 

 
 
Table 4.2: Table of observed dissociation constants for the first and second SsoSSB monomers and 
dimers to bind to ssDNA, represented as koff,1, koff,2 and koff,1.2 respectively. 

[SsoSSB] (nM) koff,1 (s
-1

) koff,2 (s
-1

) koff,1.2 (s
-1

) 

0.05 1.6 ± 0.12 0.22 ± 0.01 0.33 ± 0.03 

2.5 1.41 ± 0.10 0.31 ± 0.02 0.31 ± 0.003 

10 1.56 ± 0.15 0.30 ± 0.008 0.36 ± 0.003 

 

 

Figure 4.13: The rates of koff and kon for a second monomer binding to 12C ssDNA Cy3 were 
calculated by measuring the time (a) immediately before the second monomer bound to or (b) 
dissociated from ssDNA. 
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Figure 4.14: The dwell times of approximately 200 events showing a second SsoSSB Alexa 647 
monomer binding to 12C ssDNA Cy3 were measured at each concentration (0.05, 2.5 and 10 nM) 
and plotted as histograms.  
Single exponential curves were fitted and rate constants were calculated. The fitting was not improved 

by including a second exponential term. Again the histograms from (a) were overlaid on top of each 

other in (b) to show that increasing the concentration of SsoSSB slightly increased the rate at which 

the second monomer bound to ssDNA but the time before dissociation remained relatively constant. 
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4.6. Discussion 

There are numerous examples of how single molecule fluorescence microscopy has 

been employed to observe proteins such as EcoSSB and RecA form nucleofilaments 

in real time.
24, 179

 Strands of ssDNA were captured and moved in and out of channels 

in a microfluidic device, and the rates of binding and dissociation were calculated 

after essentially fishing for proteins. Other assays are more similar to those described 

in this thesis, measuring the FRET or PIFE resulting from the binding of the labelled 

or unlabelled protein, respectively.
179, 182

 

 

PIFE compared to FRET demonstrates a greater sensitivity to changes in a closer 

range to a fluorescent dye’s environment. This had been shown by Myong et al. who 

showed that FRET was unresponsive to changes below 4 nm whereas the PIFE 

showed a clear distance dependence in that regime.
182

 This was more evident on 

dsDNA than ssDNA, since the more rigid double helix holds the dye in a more fixed 

position compared to ssDNA - whose innate flexibility leads to larger movements of 

the dye and therefore greater noise being recorded in the fluorescence signal.
182

 The 

different enhancements following the action of a total of four RecA monomers could 

be distinguished upon binding to 13 nt ssDNA.
182

 RecA preferentially builds a 

nucleofilament in a direction towards the 3’ end of DNA, allowing a clear 

progression of enhancement to be viewed as the nucleofilament steadily advances 

along DNA closer to the dye. RecA is also a relatively large protein that binds to a 

small number of nucleotides compared to SsoSSB, presenting a larger protein surface 

for more significant interactions with the dye and therefore producing larger 

enhancements in the fluorescent intensity. RPA is also a much larger protein than 
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SsoSSB and PIFE has been attributed to changes in the protein’s position due to RPA 

sliding along the ssDNA, again showing the capacity to use PIFE as a tool to track 

events occurring close to the fluorescent dye.
54

 These much larger proteins have 

produced much more noticeable changes in the enhancement of fluorescent dyes than 

were observed with SsoSSB. Monomers of SsoSSB binding to ssDNA did effect the 

conformation of the dye sufficiently to produce a visible enhancement, however this 

technique could not make a distinction between different number of monomers 

bound to each strand or the position of a monomer along the ssDNA since, in this 

case, PIFE did not display any dependence on the distance between the dye and the 

protein surface.  

 

RPA and EcoSSB have been shown to be able to diffuse along ssDNA, and similar 

PIFE experiments have been used to characterise RPA’s movement along ssDNA.
54, 

177
 RPA and EcoSSB both contact ssDNA at multiple sites on their protein surfaces, 

which possibly allows the protein to slide along nucleotides without fully 

dissociating.
176

 SsoSSB only employs a single OB fold and is less likely to be able to 

partially disengage from ssDNA to allow 1D diffusion and the larger fluctuations 

observed in Cy3 intensity were therefore attributed to the flexibility of ssDNA and 

the hydrocarbon chain linking Cy3 to ssDNA, producing a dynamic interaction with 

SsoSSB monomers. SsoSSB is adept at recruiting other proteins through its acidic 

terminal tail and it was possible that the constant PIFE observed at 50 nM was due to 

rapid exchange of unlabelled monomers that was unresolved in the experiment.  

 



140 

Single molecule analysis of SsoSSB 

The procedure used to label the protein was optimised to promote the efficiency of 

the labelling reaction and the separation of labelled and unlabelled protein, which 

produced samples of approximately 100% labelled SsoSSB monomers. Ensemble 

experiments suggested that the quenching events were due to an interaction between 

labelled SsoSSB monomers brought into proximity to each other by binding to 

adjacent sites on the same strand of ssDNA. Self-quenching of cyanine dyes is well 

reported in the literature and examples of non-fluorescent dimers and resonance 

energy transfer between like dyes have both been shown to reduce the fluorescence 

of Cy5and Alexa 647, who share very similar structures.
130, 188

 The small size of 

SsoSSB monomers bound to neighbouring sites placed these acceptor dyes within 3 

nm of each other, which clearly had a profound effect on their optical properties. The 

fluorescence emission from SsoSSB Alexa 647 can be directly excited by using a 

continuous wave laser with a wavelength at 642 nm. This allows the fluorophores to 

be imaged on the slide and can be used as a method to count proteins localised on a 

surface; however this was an impractical method to monitor SsoSSB binding kinetics 

to ssDNA. Firstly, all observed fluorophores would have to be assumed to be 

SsoSSB Alexa 647 monomers specifically interacting ssDNA rather than adhering 

non-specifically to the slide. Secondly, the quenching observed upon the binding of a 

second adjacent monomer would have been indistinguishable from loss of 

fluorescence following the dissociation of the first monomer before a second could 

bind. These difficulties would therefore make it impossible to reliably interpret these 

traces and draw any unambiguous conclusions and alternative methods were used to 

describe SsoSSB Alexa 647 binding to ssDNA. 
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Dye-dye interactions can possibly complicate single molecule fluorescent 

experiments, and great care is required to choose appropriate dyes that do not give 

potentially confusing results.
130, 189, 190

 In this instance, serendipitous dye-dye 

interactions gave different relative fluorescence intensities of donor and acceptor 

dyes that could be used to deduce whether a single or multiple monomers were 

bound to ssDNA. As a result of two labelled SsoSSB monomers bound to the same 

ssDNA molecule, the fluorescence from the acceptor dyes was quenched and the 

donor dye fluorescence was reinstated to a level of intensity consistent with the 

presence of a protein bound to ssDNA, observed in the PIFE experiments. This 

unique method of observing SsoSSB binding to ssDNA was used to characterise the 

initial stages of assembling nucleofilaments and was used to find that 

nucleofilaments which consisted of a single monomer did not persist as long as 

nucleofilaments that were two or more monomers in length. This suggested a degree 

of cooperativity is involved in SsoSSB binding to ssDNA, which was supported by 

the ensemble results. 

 

From these single molecule experiments, approximately 85% of all binding events 

observed showed the separate binding of SsoSSB monomers to ssDNA. This 

indicated that SsoSSB predominately exists as a monomer in solution, and was 

supported by PELDOR data and other articles in the literature.
114

 The 15% of 

binding events that showed two SsoSSB monomers binding simultaneously could 

have easily resulted from poor temporal resolution and it was difficult to confidently 

assign them to any pre-organisation of a multimeric protein. The crystal structure of 

SsoSSB, despite its similarities to EcoSSB, does not imply that a strong protein 
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protein interaction exists between monomers and any such cooperative binding was 

therefore more likely a result of a reduced entropic penalty for a monomer binding to 

a position on ssDNA adjoining an occupied site, possibly due to the conformations of 

nucleotides neighbouring a proteinbeing restricted compared to undecorated 

ssDNA.
27, 191

 A cooperative binding process is probably more heavily relied on at 

increased temperatures,
84

 and would result in a more tightly packed nucleofilament 

providing a more secure protection in an environment that increases the rate insults 

to ssDNA. 

 

The acidic tail of EcoSSB and other bacterial SSBs has been shown to be involved in 

determining the extent of cooperativity through interactions with OB folds, and there 

is a possibility that the SsoSSB flexible tail also plays a role in recruiting other 

monomers and maintaining a stable nucleofilament.
192, 193

 There is a debate in the 

literature to the extent of the interaction between OB folds and flexible acidic tails 

which is likely to vary between SSBs.
85, 109

 It is improbable that these acidic tails 

interact strongly enough with OB folds to compete with ssDNA binding; however, 

the strength of their interaction could be enough to influence the binding of other 

SsoSSB monomers on to ssDNA.
80

 Clearly a nucleofilament is a highly dynamic and 

carefully balanced environment, where SSBs are required to bind to ssDNA but are 

also removed at the appropriate time. The strength of the interactions between SSB 

monomers and the oligonucleotides involved in a nucleofilament are dictated by 

contributions from base stacking between OB fold residues and bases on ssDNA, 

electrostatic attractions between ssDNA phosphates and loops on the OB fold, 

potential interactions between protein surfaces, any entropic and enthalpic penalties 
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experienced by ssDNA as it is contorted to fit the shape of the nucleofilament, and 

the proximity of flexible acidic tails potentially recruiting proteins to ssDNA who 

also show a slight affinity for OB folds.
192, 194

 Changing the pH, salt concentration, 

protein concentration, temperature, or modifying the structure of DNA could alter 

how one or many of these factors determine the binding modes of SSBs.
82, 195

 It is 

this subtle balance that allows SSBs to bind strongly enough to protect ssDNA but 

also be removed easily upon the completion of DNA repair or replication. This 

chapter primarily supports the conclusions made in the previous one, and lends 

credence to the observation that SsoSSB monomers bind to ssDNA in a cooperative 

manner. It is also probably accurate to say that there was evidence to show that the 

dissociation of SsoSSB monomers was also a cooperative process, since a high 

proportion of filament dissociation occurred by the simultaneous dissociation of both 

monomers bound to ssDNA. The removal of a neighbouring monomer could 

possibly weaken the interaction of other monomers with ssDNA through cumulative 

effects from steric clashing, the disappearance of a potentially stabilising protein 

protein interface and increased movement of ssDNA. 

 

The decreased affinity of a single monomer could also be related to the weaker 

binding mode of RPA, where this attenuated affinity restricts the binding of RPA 

proteins to the region of damaged DNA and prevents the unnecessary melting of 

large sections of dsDNA and allows the substitution of RPA for nucleases, 

polymerases and other proteins that metabolise DNA. The RPA 8-10 nt binding 

mode is regulated by phosphorylation of RPA32 and only employs two OB folds.
43

 

These OB folds are tethered together to increase the strength of the protein binding to 
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ssDNA and are structurally remarkably similar to the SsoSSB’s OB fold.
27, 42

 The 

monermeric nature of SsoSSB could be a result of an adaption to the high 

temperatures that are typical in to S. solfataricus’ environment, since DNA would  

less likely be tolerant of being restricted to the path that a protein with many DNA 

binding domains would try and impose on its confirmation. SsoSSB also takes 

advantage of a third aromatic residue to increase the strength of the base stacking 

interaction, and this combined with the limited cooperativity observed in SsoSSB 

could be an alternative to the tethering of OB folds and the phosphorylation of 

multimeric structures that is more effective in regulating SSB association with 

ssDNA and is therefore more efficient at fulfilling the roles of an archaeal SSB at 

elevated temperatures. 

 

4.7. Conclusions 

Single molecule TIRF microscopy has been used to supplement ensemble 

experiments characterising the binding of SsoSSB to ssDNA. Observing single 

proteins binding on and off DNA may sound trivial given the availability of single 

molecule techniques - however there were several complicating factors that had to be 

taken into account to come to an understanding of how this protein fulfils its 

function; notably, the small size of the protein demanded a closer investigation of the 

photophysics of the dyes in crowded environments. 

 

Single molecule traces showed FRET, PIFE and quenching events which were 

similar when compared to ensemble experiments and were interpreted to describe the 

SsoSSB monomers binding to ssDNA. An efficient FRET from the donor dye on the 



145 

Single molecule analysis of SsoSSB 

ssDNA to the acceptor dye on the first SsoSSB monomer to bind was observed and it 

was subsequently quenched upon the binding of a second labelled monomer. The 

second SsoSSB to bind to the ssDNA also allowed the PIFE to be clearly observed 

and therefore the combination of FRET, quenching and PIFE distinctly showed the 

first monomer binding to the ssDNA, followed by a second. To the best of the 

author’s knowledge, this is the first time that PIFE, FRET and quenching have been 

used in this manner. The dwell times of zero, one and two monomers were measured 

and the rate of an initial monomer binding to ssDNA increased as the concentration 

of SSB increased. The lifetime of a single monomer was independent of the protein 

concentration and a similar concentration dependence was observed with the rate of 

second monomer binding. Two monomers on a single strand of ssDNA were 

significantly more stable on ssDNA than a single monomer, signifying that SsoSSB 

exhibited a cooperative behaviour when binding to ssDNA. This cooperativity 

between independent OB folds possibly indicated a method of producing effective 

nucleofilaments at high temperatures and highlighted how the structural differences 

between SSBs influence how they employ similar OB folds to fulfil similar roles 

maintaining the integrity and regulating the metabolism of ssDNA in different 

organisms. 
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5. SsoSSB binds to RNA 

It was unsurprising, given its name, to find that SsoSSB binds to ssDNA. SsoSSB’s 

high affinity towards ssDNA and the cooperative binding mechanism it employs 

permit a stable and protective filament to form along a strand of ssDNA. Its unusual 

monomeric structure weakens the interaction with ssDNA by limiting the number of 

contact points each protein has with other proteins and the ssDNA; therefore 

allowing each OB fold to be removed, giving other proteins access to the genetic 

code. It is this rare monomeric structure coupled with SsoSSB’s high affinity for 

nucleobases and its capacity to withstand extreme temperatures make it a candidate 

for further roles in nature and in the laboratory outside cellular DNA replication and 

repair. 

 

ssDNA is not the only single stranded nucleic acid present in S. solfataricus cells, 

and the high temperatures this organism commonly experiences due its lifestyle also 

puts similar stress on RNA as well as ssDNA.
196

 The high concentration of SsoSSB 

in the cell would make it an ideal chaperone for RNA if SsoSSB’s affinity for RNA 

is comparable for its affinity for ssDNA. There are many examples of OB folds that 

bind specifically to RNA, such as the ones found in the RNA polymerase subunit 

RBP8, anitcodon binding domains and RNA capping enzymes,
37

 however it is 

uncommon for SSBs and OB folds in general to be able to tightly bind to both RNA 

and ssDNA.  
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The structure of RNA results in a slightly stiffer polymer than that of ssDNA, due to 

the introduction of the 2’ hydroxyl group accompanied by the substitution of the base 

thymine for the pyrimidine uracil, which essentially results in the loss of methyl 

groups along the polymer. These changes affect the ring puckering of RNA and 

increase the base stacking of RNA compared to ssDNA analogues as discussed 

previously.
14

 

 

Since the interaction between monomers of SsoSSB appears to be minimal in 

solution, it is anticipated that the cooperative binding is largely due to the restricted 

freedom of ssDNA at sites adjacent to an already bound SsoSSB.
27, 191

 The nearest 

nucleotides to a bound SsoSSB monomer experience a larger number of steric 

clashes during changes in conformation, reducing the number of low energy 

conformations and possibly also raising the energetic penalties in transferring 

between them. This decrease in movement of the ssDNA would lower the entropic 

cost of a second monomer binding to these adjacent nucleotides, and facilitate a 

cooperative binding mechanism.
191

 

 

This could only be an advantage for monomeric species since pre-organised dimers, 

trimers and tetramers would require the polymer to be guided around the protein to 

interact with the static OB folds. This would be extremely energetically expensive 

since the enthalpy gained due to the OB fold binding to the nucleotides must 

compete with the loss of entropy and any enthalpic penalties accrued in positioning 

the polymer in high energy conformations. This is observed in EcoSSB where the 

binding of the second OB fold to ssDNA is an anti-cooperative process due to the 
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increased repulsion experienced by the phosphate group along the backbone of 

ssDNA.
197

 These penalties could be even more pronounced as the stiffness of the 

polymer is increased, and could contribute to the reason why multimeric SSBs 

frequently demonstrate a diminished affinity for RNA compared to ssDNA.  

 

SsoSSB’s atypical monomeric structure identified it as a candidate for an SSB that 

also shows a strong affinity for RNA; however its OB fold also needed to be 

inspected to see if it was suitable to accommodate ribonucleotides. Other OB folds 

have been adapted to primarily bind only to ssDNA and the presence of the extra 

hydroxyl groups on RNA causes steric clashes and again weakens the overall 

interaction with OB fold.
198

 Similarly, in some specialised OB folds, thymine 

produces a stronger hydrophobic interface than that of uracil and binding to RNA 

leaves vacancies due to the absence of methyl groups, decreasing the strength of the 

OB fold’s association with RNA.
198

 Significant binding of SSBs to RNA would 

therefore require an OB fold promiscuous enough to not discriminate between 

ssDNA and RNA. Isothermal calorimetry was used by Dr Lisa Cubbedu to confirm 

that SsoSSB can bind to RNA and the heat affect from introducing ssDNA and RNA 

to a solution of SsoSSB can be seen in Figure 5.1. 
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Figure 5.1: The results from ITC, performed by Dr Lisa Cubbedu, showing the interaction of SsoSSB 
with ssDNA and RNA: with 21dA (a) and 21dU (b).  
The figure shows heat effects from injection of ssDNA and RNA, respectively, into buffer. A lower 

reference power used in these experiments yielded small exothermic peaks at the end of the titration 

(representing heats of dilution) and no reversion to endothermic peaks. 

 

The residues involved in ssDNA and RNA binding were compared by Dr Roland 

Gamsjaeger using 15N HSQC NMR spectroscopy and the changes in chemical shifts 

of residues observed upon binding to RNA were similar to the shifts observed due to 

binding to ssDNA and are shown in Figure 5.2. The residues involved in RNA and 

ssDNA binding were mapped onto the crystal structure of SsoSSB and it is clear that 

ssDNA and RNA interact with similar areas on the surface of the protein. 
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Figure 5.2: NMR analysis of SsoSSB binding to RNA and ssDNA by Dr Roland Gamsjaeger.  
Figure (a) shows a section of a 15N HSQC spectrum of ~0.8-1 mM SsoSSB alone (solid lines) and a 

1:1 mixture of SsoSSB with 6U ssRNA (dotted lines) as well 6T ssDNA (dashed lines). Assignments 

and directions of movement are indicated. B/D. Weighted backbone chemical shift changes of HN and 

N, 
199

  for SsoSSB upon binding to ssRNA (b) and ssDNA (c), respectively. Residues exhibiting 

changes larger than the average (binding residues) are coloured in green for RNA and salmon for 

DNA. Space-filling representation of the crystal structure of SsoSSB (PDB 1O7I) with binding 

residues coloured in green for RNA (b) and salmon for DNA (c). Note the high similarity of the 

binding site for RNA compared to DNA.   
 

 

Gamsjaeger also produced a low energy model of SsoSSB bound to RNA from the 

NMR structure of SsoSSB bound to ssDNA and there was no suggestion that the 2’ 

hydroxyl group causes any significant clashes within the OB fold. Models of ssDNA 
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and RNA interacting with the OB fold can be seen in Figure 5.3 and SsoSSB clearly 

can accommodate the 2’ hydroxyl groups without disrupting the position of the 

nucleic acid inside the OB fold. The dynamics of this system were investigated in 

this chapter to confirm that SsoSSB employs an equivalent binding mechanism when 

interacting with RNA to the mechanism observed with ssDNA. 

 

Figure 5.3: Molecules of ssDNA and RNA bound to the OB fold of SsoSSB. Figure made by Dr 
Roland Gamsjeager. 
(a) Energy-lowest NMR structure (PDB ID 2MNA) (Gamsjaeger, Kariawasam et al. 2014) of 

SsoSSB-DNA complex structure. (b). Model of SsoSSB-RNA structure based on DNA-bound 

structure. The location of the 2’ hydroxyl groups are indicated by arrows. 

 



152 

SsoSSB binds to RNA 

5.1. Ensemble fluorescence results 

Tryptophan quenching and PIFE were used to track SsoSSB binding to 12C RNA 

Cy3 in investigations that were designed to be analogous to the ensemble 

experiments described in chapter 3. Again the fluorescence intensity recorded from 

the tryptophan residues decreased with increasing SsoSSB concentration until the 

total concentration of RNA was half the total concentration of SsoSSB. The results 

from this titration can be seen in Figure 5.4(a) as well as titrations of SsoSSB against 

20C RNA which showed a similar level of quenching that demonstrated a plateau at 

around a concentration a quarter of the total concentration of SsoSSB. In Figure 

5.4(a), the x-axis has been scaled with respect to the number of nucleotides per 

SsoSSB monomer present, with each curve indicating that each monomer occupies 

approximately 5 nt when bound to ssDNA or RNA, irrespective of the length. A 

modified single binding model was fitted to the titrations and dissociation constants 

of 3.2 ± 0.3 and 0.9 ± 0.1 nM were calculated for 12C and 20C RNA Cy3 

respectively, which were again similar to the dissociation constant previously found 

for ssDNA and were in agreement with the ITC data.  

 

Similarly, PIFE was used to follow SsoSSB binding to 12C RNA Cy3 and the 

intensity of Cy3 fluorescence increased with SsoSSB concentration in a study 

comparable to the previous ssDNA titration, as shown in Figure 5.4(b). The increase 

in Cy3 fluorescence halted at twice the concentration of RNA and the final Cy3 

intensity was again approximately twice the initial value in the absence of SsoSSB. 

Again this suggested that this length of RNA could only accommodate two SsoSSB 

monomers and that PIFE was a viable method of tracking SsoSSB binding to RNA. 
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The dissociation and cooperativity constants for SsoSSB binding to RNA were 

calculated from fitting the PIFE titration results to the Epstein’s finite lattice model, 

and gave a dissociation constant of 94 ± 6.4 nM and a cooperativity constant of 121 

± 19 which were similar to the dissociation and cooperation constants for ssDNA. 

This also supported the ITC and NMR data and suggested that SsoSSB uses a similar 

mechanism to bind to RNA. 

 

Figure 5.4: Ensemble fluorescence titrations describing the similarities between SsoSSB binding to 
RNA and ssDNA.  
All titrations were completed in triplicate and the mean values are plotted with the standard errors 

shown as error bars. Figure (a) shows the quenching of the tryptophan residues as 20C RNA, 12C 

RNA and 12C ssDNA are introduced to SsoSSB in a reverse titration. The x-axis is scaled to show 

how the quenching of the tryptophan fluorescence was related to the number of nucleotides present 

per SsoSSB monomer and the data are fitted to a modified single site binding model. Figure (b) shows 

the PIFE observed as SsoSSB was added to 50 nM 12C RNA Cy3 compared to the titration with 12C 

ssDNA Cy3. The data is plotted with respect to the concentration of free SsoSSB present in solution 

and is fitted to Epstein’s finite lattice cooperative binding model. 
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5.2. Single molecule fluorescence results 

Single molecule TIRF experiments were carried out to follow the binding of SsoSSB 

monomers labelled with Alexa 647 to 12C RNA Cy3 immobilised on to a 

microscope slide passivated with PEG, again similar to the investigation of SsoSSB 

binding to ssDNA. The observation of brief bursts of high acceptor intensity was 

coupled with an almost complete quenching of the donor fluorescence - typical of a 

high FRET state representing the temporary presence of a labelled monomer of 

SsoSSB bound to the RNA. The average durations of these high FRET states were 

similar to those measured with ssDNA and were independent of protein 

concentration. The frequency of these binding events plainly increased with 

increasing protein concentration, which also suggested that SsoSSB binds to RNA in 

a similar manner as it does to ssDNA. The frequency of the FRET events can be seen 

increasing with protein concentration in Figure 5.5(a), where traces from single 

molecules of 12C RNA Cy3 are presented from SsoSSB Alexa 647 concentrations of 

1, 20 and 40 nM respectively. Approximately 200 binding events were measured and 

average dwell times and observed rate constants were calculated from fitting single 

exponential curves to the resulting histograms. The average dwell times of the 

unbound state can be clearly seen to decrease in the green bar charts below the 

traces, whilst the dwell time of a SsoSSB Alexa 647 monomer on RNA remains 

constant and is represented by the red bars. Similar traces and bar charts are 

presented for 12C ssDNA for comparison, and are interpreted to suggest that SsoSSB 

binds to RNA in a similar manner to ssDNA. The corresponding observed rate 

constants for RNA binding are given in Table 5.1. 
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Figure 5.5: Single molecule traces from (a) 12C ssDNA Cy3 and (b) 12C RNA Cy3 immobilised on to a 
microscope slide in the presence of SsoSSB monomers labelled with Alexa 647. 
Single molecule traces displayed an increasing frequency of FRET events typical of SsoSSB Alexa 

647 binding specifically to ssDNA or RNA. Below the traces are bar charts showing the average dwell 

times that represent the times before SsoSSB binds to the oligos (green) and the average time an 

SsoSSB monomer spends bound to ssDNA or RNA (red). 

 

Table 5.1: The observed rate constants for SsoSSB monomers binding to RNA. 

 RNA 

[SsoSSB] (nM) kon (s
-1

) koff (s
-1

) 

1 0.11 ± 0.02 4.13 ± 1.6 

20 0.56 ± 0.06 7.63 ± 1.8 

40 0.61 ± 0.05 6.37 ± 1.5 
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5.3. Possible roles for RNA binding 

SsoSSB has been shown to form filaments on ssDNA to protect its structure whilst it 

is exposed during DNA metabolism. The previous chapters have demonstrated 

SsoSSB’s capacity to melt the secondary structure of ssDNA and form a linear like 

filament. As a result, the end-to-end distance of the oligo increases, which was 

followed using ensemble FRET experiments detailed in chapter 3. SsoSSB was 

introduced to a 26 nt RNA oligo designed to form a hairpin structure with Cy3 and 

Cy5 dyes conjugated at each end.The structure of a possible hairpin which it could 

adopt is shown in Figure 5.6(c). The spectrum of the Cy3 fluorescence at the 

beginning and end of the titration and the single site binding curve  fitted to the data 

are shown in Figure 5.6(a), again showing a decrease in FRET correlating with 

increasing SsoSSB concentration. The curve indicates that the fraction of RNA 

melted reached a maximum at an SsoSSB concentration that is roughly five times the 

concentration of RNA. 

 

The image in Figure 5.6(b) is of the fluorescence recorded from an electrophoresis 

gel where RNA labelled with fluorescein was exposed to a S. solfataricus exosome. 

The activity of the Rrp41-Rrp42 hexameric ring and Rrp4 protein on the RNA can be 

observed by comparing the RNA in the absence of the exosome in the control lane 

and in the adjacent lane, which shows the difference in the length of the fully 

digested RNA after it has been introduced to the exosome in the absence of SsoSSB. 

Increasing the concentration of SsoSSB decreased the concentration of fully digested 

RNA and produced increasingly concentrated fluorescent signals that were 

representative of only partially digested RNA strands which can be observed in the 
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other lanes. This was an example of how SsoSSB could possibly protect RNA 

molecules against damage and improve the stability of RNA molecules.  

 

 

Figure 5.6: SSoSSB binding to RNA may suggest a role in vivo such as acting as a chaperone of RNA 

during transport or metabolism.  

This was explored by investigating SsoSSB’s capability to melt RNA hairpins. Figure (a) shows the 

results from ensemble fluorescence experiments, following the FRET from 10 nM doubly labelled 

hairpin as SsoSSB bound to and removed the secondary structure to form a roughly linear filament. 

The experiment was completed in triplicate, the standard errors are plotted and a 1:1 binding curve 

was fitted to the data. Figure (b) shows an image from polyacrylamide gel which was used to 

determine if SsoSSB could protect RNA from degradation by an archaeal exosome. The 200 nM 25 nt 

RNA labelled with fluorescein shown in the absence of the exosome in the control C, was fully 

digested by the archaeal exosome, but is increasingly inhibited as the SsoSSB concentration is 

increased from 0, 10, 120, 240, 360, 420 to 480 μM. A cartoon of a possible hairpin conformation and 

the sequence of the RNA hairpin is shown in (c) as well as a schematic of a linear SsoSSB/RNA 

nucleofilament. 
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5.4. Discussion 

Ensemble and single molecule fluorescence SsoSSB has been used to show that 

SsoSSB displays a similar affinity to RNA and ssDNA, which has been supported by 

ITC and NMR data from collaborators. Comparable dissociation constants and 

cooperative constants suggested that SsoSSB forms analogous nucleofilaments along 

RNA as it does along ssDNA. Fluorescence intensities from single molecules 

showed that single monomers persisted on RNA for similar dwell times as ssDNA 

which again supports SsoSSB interacting with RNA in an equivalent manner to 

ssDNA. 

 

The double helix is the predominant form that DNA adopts due to its increased 

stability, and therefore cellular ssDNA only appears transiently, for example, as an 

intermediate between damaged and repaired DNA. In contrast, RNA is more 

omnipresent throughout the cell and many mesophilic organisms employ SSBs that 

discriminate against binding to the more abundant RNA. This maintains a high level 

of SSBs in the cell that are available to protect the ssDNA when it is exposed and it 

avoids risking a deficit of SSB due to any unnecessary occupation of SSBs along 

strands of RNA. The unwanted removal of vital RNA secondary structures at 

moderate temperatures through SSB binding would also be minimised by the specific 

SSB binding to ssDNA. Hyperthermophiles, such as S. solfataricus, have been 

known to express specialised RNA binding proteins that are able to assist the RNA in 

maintaining secondary structures at temperatures approaching and above the melting 

point of the RNA.
200

 This would hinder SSBs access to RNA and prevent them from 
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interfering with critical RNA molecules that rely on their structures, which would in 

part negate the necessity to employ an SSB that only binds to ssDNA. 

 

The high temperatures that S. solfataricus endure also induce higher rates of damage 

to unstructured RNA throughout the cell and it appears that SsoSSB is equipped to 

form protective filaments along ribopolynucleotides in addition to 

deoxypolynucleotides. The half-life of mRNA has been shown to be greater in S. 

solfataricus than in bacteria, possibly as a result of interactions with proteins such as 

SsoSSB. The levels of SsoSSB constitute approximately 0.1% of total soluble 

protein,
201

 potentially high enough to cater for both roles protecting ssDNA and RNA 

but it seems unlikely that SsoSSB is the only RNA binding protein that acts as a 

chaperone for unstructured RNA molecules. S. sulfolobus also expresses a protein 

named alba, which has been to shown to bind to RNA and is thought to be also 

employed by the cell to protect nucleic acids in vivo.
200

 SsoSSB has also 

demonstrated its ability to melt RNA hairpins and the presence of more than one 

protein fulfilling similar roles raises the possibility that SsoSSB belongs to a 

collection of proteins that is responsible for maintaining the integrity of unstructured 

RNA. Molecules of RNA are employed throughout the cell in various processes and 

the strain on the workload of SsoSSB would be lightened by different proteins 

contributing towards protecting RNA at specific points in the lifetime of the 

riboxyoligonucleotides. 

 

This affinity towards RNA could also be an advantageous feature of OB folds that 

could have been initially developed in a pre-DNA world rather than a result of 
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specific evolution to survive in extreme temperatures. There is evidence that RNA 

pre-dates DNA, 202  and there are many examples of OB folds that selectively bind to 

RNA such as tRNA binding proteins described as chaperones to protect bacterial 

tRNAs 
203, 204

, N-terminal anti-codon binding domains of various class II tRNA 

synthetases 
203, 205

, translational initiation factors and bacterial and archaeal 

ribosomal proteins.
206

 

 

SsoSSB has already been shown to interact with RNA polymerase via SsoSSB’s 

acidic C terminal tail and stimulate transcription in vitro,
86

 and is a likely candidate 

to protect mRNA but it remains to be seen if SsoSSB is involved in shielding other 

unstructured RNA strands from damage. It is certainly possible that SsoSSB interacts 

with other proteins that metabolise RNA, such as RNA helicases, but whether or not 

SsoSSB is involved in processes such as ribosome biogenesis requires further 

investigation. 

 

5.5. Conclusions 

SsoSSB has been shown by a number of techniques to bind to RNA with an affinity 

and mechanism that is comparable to SsoSSB’s binding to ssDNA. SsoSSB’s OB 

fold was shown to be able to accommodate the differences between the molecular 

structures of ssDNA and RNA through in silico models and NMR experiments in 

vitro. Ensemble fluorescence results were supported by ITC to show that SsoSSB 

demonstrated similar dissociation constants and cooperative constants when binding 

to ssDNA and RNA. SsoSSB monomers were observed binding to RNA, displaying 

similar dwell times to those measured on ssDNA. This pointed towards filaments 
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being formed on RNA, which were observed by the extension of end-to-end 

distances of RNA hairpins being melted by SsoSSB seen by ensemble fluorescence 

experiments and were analogous to those that had been observed on ssDNA. 

SsoSSB’s role as a chaperone was further highlighted by SsoSSB’s ability to retard 

the activity of an exosome that digests unstructured RNA, again demonstrating the 

formation of protective SsoSSB nucleofilaments along the length of RNA.  
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6. Further work 

6.1. Applications in high temperature and salt concentrations 

It has already been established that SsoSSB has a high affinity for ssDNA,
27, 86, 109

 

and that it can withstand temperatures as high as 95 ºC without loss of structure or 

function.
112

 SSBs from other organism have previously been used to bind to ssDNA 

during nucleotide synthesis, as biomarkers for ssDNA on Au surfaces and it would 

be likely that SsoSSBs structure would allow it to be used in similar roles.
207

 Its 

ability to withstand high temperatures could possibly lend SsoSSB certain 

advantages over other SSBs, possibly in improving the efficiency of PCR in a similar 

manner to other SSBs.
208

 

 

Many other SSBs only use two aromatic residues in their OB folds to bind to ssDNA. 

By employing a phenylanaline and two tryptophans residues, SsoSSB’s OB fold is 

probably less reliant on electrostatic interactions to anchor the ssDNA in place and it 

would also experience a greater contribution from π-π stacking during binding 

events.
114

 As a result, SsoSSB’s OB fold could offer some resistance to any increases 

in salt concentrations that would adversely affect binding to ssDNA.
209

  

 

One avenue of research that could potentially be explored could be sequencing of 

single molecules of DNA. Nanopore technology is highly competitive and can 

produce potentially very lucrative projects and SsoSSB’s robustness could make it a 

reasonable candidate for use in these experiments.
210

 The movement of nucleic acids 

passing through nanopores can allow observations to be made about the DNA’s 
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sequence, structure and the proteins bound on that strand.
211

 Nanopores can be 

produced in a variety of membranes, and one particular route of fabricating them is 

through controlling the dielectric breakdown of a membrane to produce nanopores of 

a defined size.
212

 The salt concentration used throughout this thesis was 5 mM; 

however, for SsoSSB to be useful in the development of these laboratory practices it 

needs to be able to operate in LiCl concentrations of 1.5 M and above. 

 

6.1.1. Ensemble fluorescence 

PIFE was used to assess if SsoSSB can still bind to ssDNA in high LiCl 

concentrations and Figure 6.1 shows an approximately two fold enhancement 

indicating that there was still significant binding of SsoSSB in a buffer containing 

1.5 M LiCl. This was only achieved binding to 20C ssDNA and not to 12C. The 

binding of SsoSSB should be independent of the length of oligonucleotide with a 

non-cooperative binding mechanism, and previous experiments have shown that 

SsoSSB monomers do not express any anti-cooperative behaviour on 12C ssDNA; 

therefore the stronger affinity for a longer ssDNA again supports a cooperative 

binding mechanism given SsoSSB’s monomeric structure.  



164 

Further work 

 

Figure 6.1: The enhanced fluorescence from 50 nM 20C ssDNA Cy3 was observed upon the addition 
of unlabelled SsoSSB in 1.5 M LiCl.  
The 2.3 fold increase in fluorescence plateaus at approximately 200 nM. In contrast, similar additions 

of SsoSSB to 12C ssDNA indicated that SsoSSB could not bind to shorter lengths of ssDNA at high 

salt concentrations. The titrations were completed in triplicate and the mean values are plotted with 

the standard error shown as error bars. 

 

Ensemble fluorescence experiments were also used to demonstrate that an increase in 

temperature also weakened SsoSSB’s affinity for ssDNA. Figure 6.2 compares the 

fluorescent enhancement observed upon SsoSSB binding to 12C ssDNA Cy3 at 25 

°C and 65 °C. At both temperatures SsoSSB was still able to induce a two-fold 

increase in fluorescence by binding to the ssDNA, however the titration clearly 

suggested that SsoSSB’s affinity for ssDNA was weakened at the elevated 

temperature. 
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Figure 6.2: PIFE was used again to study SsoSSB binding at temperatures closer to the native 
environment of S. solfataricus.  
65 °C was chosen as a compromise so that the fluorescence dyes were not significantly affected by the 

increase in temperature. Titrations at both temperatures showed an approximately 2 fold enhancement 

when unlabelled SsoSSB was added to 10 nM 12C ssDNA, however the SsoSSB exhibited a weaker 

binding at the elevated temperatures. 

 

6.1.2. Discussion 

The enhancement of the fluorescence observed upon SsoSSB binding to the longer 

ssDNA suggested that SsoSSB monomers bind tighter to longer strands of ssDNA. 

SsoSSB has been found to bind to ssDNA as a monomer with a footprint of 

approximately 5 nt, to form linear-like filaments. Increasing the length of ssDNA 

allowed more than two SsoSSB monomers to bind to the oligo at any one time. This 

permitted SsoSSB monomers to contact more than one other monomer whilst bound 

to ssDNA, since there was sufficient room on either side of monomers binding to the 

middle of the strand for another monomer to bind at an adjacent binding site. The 
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difference between binding to 12C and 20C oilgos was very similar in low salt 

environments, however SsoSSB’s high affinity for ssDNA in solutions with low 

ionic strengths and the relative sensitivity of ensemble fluorescence techniques could 

have masked any difference between binding events to the different oligos. 

Increasing the salt concentration shielded electrostatic charges, weakening the 

attraction between the sugar-phosphate backbone of ssDNA and the OB fold, and 

also increased the number of cations that are condensed during binding, again 

diminishing SsoSSB’s overall affinity for ssDNA.
209

 This could have possibly 

exaggerated the differences between SsoSSB binding to 12C and 20C, exhibiting a 

tighter binding to the longer oligo. This hinted at an applied role in vitro for SsoSSB 

in high salt environments, and together with SsoSSB’s tolerance of high 

temperatures, these results could make SsoSSB a candidate as a substitute for other 

SSBs that are already applied in more moderate conditions. Regardless of future uses 

of SsoSSB, further studies at different salt concentrations, with monovalent and 

multivalent cations, and temperatures are required to guarantee that the binding 

behaviour observed in this thesis is an accurate portrayal of SsoSSB’s native activity. 
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6.2. The role of the acidic C terminal tail 

SsoSSB shares structural features with both bacterial and eukaryotic SSBs. The OB 

fold is a common motif found throughout all SSBs, whereas the acidic flexible C 

terminal tail is more frequently seen in examples from bacteria. There is no doubt 

that these unstructured domains play a crucial role in recruiting other proteins to 

ssDNA - SsoSSB alone has been shown use its own tail to interact with RNA 

polymerase.
86

 There is also a debate in the literature that suggests further roles for the 

C terminal tail, implying that the acidic tip of the flexible tails could also engage 

with positively charged OB folds on SSBs in addition to interacting with other 

proteins.
79, 85, 192

 These mechanisms are shown in Figure 6.3, and propose that C 

terminal tails directly compete with ssDNA to occupy the OB fold, which facilitates 

dissociation from ssDNA and also regulates the extent of cooperative binding 

through interactions with OB folds on adjacent proteins.  

 

Figure 6.3: Cartoons of the four C terminal tails of EcoSSB.  
Left shows the four monomers coloured in blue, green, yellow and white and the four intrinsically 

disordered (ID) linkers ending in an acidic tip. The acidic residues are shown in red font at the end of 

each tail (MDFDDDIPF) and the path of ssDNA being wrapped around the four OB folds is shown as 

a red line. Top right shows how the C terminal tails (grey, red tip) are displaced by ssDNA (yellow 

line) as it binds to the four OB folds. In this arrangement the C terminal tails now protrude out in to 

solution and are available to interact with and recruit other proteins to ssDNA. Bottom right shows 

how the C terminal tail, made up of the ID linker (grey) and the conserved acidic tip (red) influences 

cooperative binding through interactions with the OB folds (blure) on the adjacent tetramers bound to 

ssDNA (yellow). Figures modified from Kozlov et al. (2010) and Kozlov et al. (2015)
85, 192
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EcoSSB is the classic model used to study interactions between C terminal tails and 

OB folds, but the extent of the interaction varies between SSBs. Other examples 

include SSBs from Plasmodium falciparum, Klebsiella pneumonia, Salmonella 

enteric, Pseudomonas aeruginosa and Thermus thermophilus.
175, 192, 193

 The last eight 

to ten amino acids of the C terminal tail are generally acidic, whereas the intrinsically 

disordered linker varies in length and composition. The sequences of the final 

residues at the C terminal from several SSBs are shown in Figure 6.4 and 

demonstrate the conserved acidic nature of the tip of the disordered tail. The overall 

lengths of the tails from different SSBs have been recorded between 25-135 amino 

acids, and their sequence defines whether the polymer is more likely to adopt 

globular or more extended formations.
192

 This also influences the strength of the 

interaction between C terminal tails and OB folds, which has been shown to govern 

which binding mode the SSB employs and influences the level of cooperativity those 

binding modes exhibit.
192

 Attempting to predict the function or behaviour of 

disordered peptide chains from their sequence is extremely challenging and even 

with the support of empirical evidence there are opposing views to the degree of 

interaction these C terminal tails have with OB folds.   
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Figure 6.4: The end sequence of C terminal tails from the SSBs from various organisms, showing 
that the acidic residues (D and E) are commonly found at the tip of the disordered tails. 

 

The contact of the tails with the OB fold must be transient by definition, since a too 

strong affinity for C terminal tails would impede OB folds from effectively binding 

to ssDNA and would inhibit SSB’s efficiency at fulfilling its roles. Crystal structures 

of the full length EcoSSB do not indicate that its C terminal tail adopts a rigid 

position, and its inherent flexibility suggests that any interaction with OB fold is 

likely to be dynamic and/or disordered.
81

 Sensitive experimental techniques must 

therefore be used in attempting to define the extent of the role that the C terminal tail 

plays with the OB fold in binding to ssDNA. A truncated SsoSSB, whose tail has 

been removed at A114 through trypsin digestion, showed comparable behaviour to 

the full length protein at the ensemble level.
109

 Wadsworth observed similar binding 

kinetics by following the quenching of tryptophan produced by the addition of 

ssDNA to the truncated and full length SsoSSBs. The fluorescence emission from 

tryptophan residues is possibly too weak to observe any subtle changes in binding 

behaviour and further enquiries are needed to review what level, if any, the C 

terminal tail has an effect on SsoSSB’s binding to ssDNA.  
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6.2.1. In silico model of SsoSSB tail binding to the OB fold 

As an initial investigation, an in silico model was produced to explore whether or not 

the binding of the tail was viable. Autodock Vina and MGLTools were used to 

visualise possible low energy conformations that the tip of the C terminal tail could 

occupy within the OB fold.
213

 The length of the full terminal tail (33 amino acids) is 

comfortably long enough to allow the interaction between the tip and the OB fold 

without placing the tail under steric stress, which is shown pictorially in Figure 6.5. It 

was therefore reasonable to treat the tip of the tail as an independent ligand and the 

final eight residues of the tail were placed in box of water (28 x 38 x 32 Å) that was 

positioned around the surface of the OB fold. An energy minimisation gave a number 

of possible conformations and Figure 6.5 shows the lowest energy conformations 

available to the final eight residues that the acidic tail can adopt inside the OB fold as 

determined by Autodock Vina.
213

 This was used to find nine different low energy 

conformations of the C terminal tail inside the OB fold, with binding affinities 

ranging from     -6.4 to -5.9 kcal/mol. These can be translated into dissociation 

constants,   , simply using the relationship            , and on average were 

found to be approximately 40 μM at          K and where        cal/(mol.K.)  
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Figure 6.5: Left shows how SsoSSB has a 33 amino acid C terminal tail that is long enough to allow 
the acidic tip to interact with the OB fold. Right shows a model produced by Vina Autodock and 
MGL Tools. 
The figure displays the lowest energy conformation available to the 8 amino acids from the acidic tip 

of the C terminal tail inside a 28 x 38 x 32 Å box surrounding the OB fold. The colours blue to red 

show the negative and positive nature of the electrostatic surface of the OB fold respectively. 

 

6.2.2. Ensemble measurement of koff 

The truncated and full length SsoSSBs were introduced to 12C ssDNA Cy3 and an 

increase in fluorescence was observed in both cases that were typical of SsoSSB 

binding. An excess of unlabelled 12C ssDNA was then added to the solution and a 

decrease in enhancement was observed as more SsoSSB monomers dissociated from 

the labelled ssDNA and bound to the more abundant unlabelled oligo. This decrease 

of fluorescence was followed over time and fitted to a single exponential, shown in 

Figure 6.6. The truncated SsoSSB exhibited a slightly slower rate of dissociation 

from the labelled ssDNA, possibly hinting towards a mechanism where the tail does 

play a role in facilitating the dissociation from ssDNA. 
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Figure 6.6: The decrease in PIFE was used to track the dissociation of 50 nM unlabelled SsoSSB 
from 25 nM 12C ssDNA Cy3 as it binds to a 1000 times excess of unlabelled 12C ssDNA.  
The truncated SsoSSB (red) had its C terminal tail removed by proteolytic digestion and shows a 

similar behaviour to the full length protein (black.) The protein was allowed to bind to the 12C Cy3 

before the addition of the excess unlabelled oligos at t=0. 

 

6.2.3. Discussion 

The evidence for a significant electrostatic interaction between SsoSSB’s OB fold 

and the tip of its C terminal tail appears to be weak. Any affinity that the OB fold had 

for the C terminal tail only had a minor effect on the binding of ssDNA. The OB 

fold’s affinity for the tip of the C terminal seemed to be three orders of magnitude 

weaker than the affinity demonstrated for ssDNA. This comparison was made 

between an in silico model and in vitro studies which are not equivalent, since the in 

silico model has to make many assumptions in order to minimise the atomic 

positions, yet show a distinct difference in the strength of interactions. Further in 

silico experiments to calculate the binding affinities of ssDNA with OB folds from 
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SsoSSB and other SSBs would give more trustworthy conclusions and possibly 

quantify the relative affinities of the OB fold for the competing molecules. 

 

Ensemble fluorescence studies displayed a slight increase in the average times it took 

for truncated SsoSSB to dissociate from ssDNA compared to the full length SsoSSB, 

hinting at a possible role in removing SsoSSB monomers. The OB fold’s affinity for 

the acidic tip on the same monomer was possibly only strong enough to have a slight 

influence when SsoSSB dissociated from the ssDNA - thus playing a limited role, if 

any, in the binding mechanism to ssDNA. 

 

Single molecule techniques provide powerful tools used to investigate proteins. The 

results from the single molecule studies from chapter 5 appeared to show that 

SsoSSB binding was a positively cooperative process. There single molecule 

fluorescence traces were used to distinguish whether a monomer had bound adjacent 

to an existing monomer on the ssDNA, by investigating FRET, PIFE and quenching 

events. It has been suggested that EcoSSB uses interactions between C terminal tails 

and the OB folds on different tetramers to ensure that binding to ssDNA is highly 

cooperative.
192

 Further investigations at the single molecule level with the truncated 

SsoSSB could be completed using the analysis in chapter 5 to measure the dwell 

times of two monomers on ssDNA and delineate the C terminal’s role in determining 

the extent of cooperative binding between monomers.  

 

This could also be applied to the C terminal’s role in dissociation since many traces 

showed the dissociation of two monomers within 33 ms of each other. Due to the 
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limited temporal resolution of the microscope, these events could not be defined as 

two monomers leaving simultaneously or as two separate events that occurred in 

very quick succession. Investigating the relative frequencies of simultaneous and 

sequential dissociation for truncated and full length SsoSSBs could explore whether 

these events are truly cooperative dissociation and how much of a role the C terminal 

tail has. 

 

This work could be extended to investigate the effect salts have on ssDNA binding 

since the electrostatic interaction between the OB fold and the C terminal tail is 

highly dependent on the ionic strength of its environment.
209

 If C terminal tails were 

having an effect on adjacent monomers, this could be partially responsible for 

SsoSSB’s cooperative binding and dissociation to and from ssDNA. There are many 

other factors that govern the binding behaviour of SsoSSB, but with analogous C 

terminal tails potentially having large effects on other SSBs there possibly are 

unanswered questions surrounding the level of responsibility that the C terminal tail 

has in determining how SsoSSB binds to ssDNA. 

 

If the C terminal is found to be effectively a tether that recruits other monomers to 

ssDNA, it would be potentially interesting to explore whether mimicking RPA and 

covalently linking SsoSSB monomers together would affect the binding of ssDNA. 

There are no examples in the literature of studies involving this type of mutant of 

SsoSSB, and a more detailed investigation on correlating the oligo length with 

SsoSSB’s affinity for ssDNA could determine how controlling the size of a 
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nucleofilament could be used to potentially tune the strength of binding to an oligo 

and any possible applications that this could be used in. 
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6.3. Conclusions for further work 

S. solfataricus is an extremophile, surviving in temperatures of 95 °C and a pH of 

2.0.
214

 It has adapted to living in harsh environments by employing specialised 

protein machinery, that can perform their functions at elevated temperatures in order 

to survive in such a harsh environment.
215

 EcoSSB experiences weaker affinities for 

ssDNA at high temperatures and its binding mechanism can shift to rely on a more 

cooperative binding mechanism to effectively form complete nucleofilaments.
84

 This 

thesis has focused on demonstrating that SsoSSB can exhibit cooperative binding to 

ssDNA, but further work is required to fully understand if similar effects are truly 

implemented at temperatures more similar to those experienced by S. solfataricus in 

its natural environment. 

 

The kinetics of SsoSSB binding to ssDNA has been explored in chapters 3 and 4, 

which has been used along with other reports in the literature to paint a more 

complete picture of how many factors influence the association between SsoSSB and 

ssDNA. There has been a focus on how the electrostatic and base stacking 

interactions between ssDNA and the OB fold provide an enthalpic driving force for 

the SsoSSB to bind to ssDNA,
194

 and how the presence of the OB fold on ssDNA 

distorts neighbouring nucleotides and possibly permits cooperative binding between 

monomers.
27, 193

 The C terminal tail has been designated a largely non-binding 

role;
109

 however, this could possibly need to be re-addressed in the light of other 

reports that suggested a possible role in ssDNA binding in other organisms. SSBs 

from different organisms demonstrate varying extents of how much the electrostatic 

interactions, base stacking and C terminal tail are involved in binding to ssDNA,
192
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and further work is required to fully characterise SsoSSB’s binding mechanism, and 

whether the degree of influence the OB fold and C terminal tail have on that binding 

mechanism changes when in vitro studies are performed in conditions more 

comparable to those experienced in vivo. 

 

Once these binding mechanisms are better understood, the application of SsoSSB in 

extreme temperatures and possibly high salt concentrations could be explored. There 

are already examples of other SSBs that are employed in PCR and nucleotide 

synthesis reactions,
208

 and it would be interesting to see what future roles that 

SsoSSB could take on.  

 

The novel in-trace analysis of FRET, PIFE and quenching events could possibly help 

in quantifying the more subtle details of SsoSSB binding to ssDNA highlighted 

above. Single molecule fluorescence is a powerful technique capable of providing 

comprehensive information on the kinetics of molecular systems. It is also allows a 

closer look at the molecular behaviour of the fluorescence dyes themselves, and there 

are many examples of how the photophysical properties of fluorescent dyes are 

perturbed through events such as dye-dye interactions, base stacking and 

photoisomerisation.
182, 190

 The work in this thesis has been able to exploit the 

behaviour of dyes in crowded environments and it would be interesting to further 

define the physical origin of the quenching as well as exploring other potential 

molecular systems where this combination of techniques can be used. There are other 

examples of monomeric SSBs to which this technique could be applied as well as 
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systems that exhibit self assembly, aggregation or structural changes that would 

place more than two fluorescence dyes in proximity with each other.  
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7. Conclusions 

This thesis has largely described the process of how SsoSSB binds to ssDNA and has 

discussed how this relates to its function of maintaining the structure of intermediate 

ssDNA during vital processes such as DNA repair, replication and transcription. 

SsoSSB was shown as a predominately monomeric protein capable of binding to 

ssDNA to form linear-like nucleofilaments. The duration of time that SsoSSB 

monomers were bound to ssDNA was measured in real time at single molecule 

resolution and also at an ensemble level. It was found that SsoSSB demonstrated a 

moderately cooperative binding mechanism when associating with ssDNA. SsoSSB 

was also shown to be capable of binding to RNA in an analogous manner to ssDNA 

which indicated a parallel role for SsoSSB acting as a chaperone for RNA in addition 

to its responsibilities preserving the integrity of ssDNA. 

 

SsoSSB’s monomeric structure presented a rare opportunity to examine single OB 

folds binding to ssDNA. The higher order tertiary structures of other SSBs place 

their OB folds in more well defined positions relative to one another and the 

relatively weak protein protein interactions observed for SsoSSB showed the 

relatively diminished affinity of a single monomer compared to the cumulative 

strength of multiple OB folds bound to ssDNA. This enhanced stability of more than 

one SsoSSB monomer appears to originate predominately from the perturbation of 

oligonucleotides upon the presence of OB folds however the affinity for ssDNA is 

governed by a balance between other factors including protein protein interactions, 

the flexibility of the ssDNA, base stacking and electrostatic interactions between the 
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ssDNA and OB folds and also the extent of the role of C terminal tails in ssDNA 

binding. The relative importance of these factors varies across the wide range of 

SSBs and all are in turn influenced by the structure of the SSB, salt concentration, 

temperature, pH and protein concentrations.  

 

This all points towards SSBs bound to ssDNA in a filament being a highly dynamic 

and subtly balanced environment rather than a simplistic static nucleofilament. 

Monomers of SSBs may in fact only have relatively transient interactions with 

ssDNA which allows SSBs with higher order structures capable of multiple contacts 

along ssDNA to slide along oligos. The presence of other proteins could disturb a 

number of the factors that influence SSB affinity for ssDNA mentioned above and 

could facilitate the substitution of SSB for other proteins that are involved in 

metabolising DNA. 

  

An investigation into the photophysics of fluorescent dyes was also undertaken and a 

novel analysis of fluorescent intensities from single molecules was developed that 

combined FRET, PIFE and self-quenching. The fluorescence properties of dyes 

report on their microenvironment and remain a powerful tool used to investigate the 

movement of molecules from nanomachines to protein complexes. In this thesis, this 

was exploited to unambiguously interpret single molecule data to show sequential 

SsoSSB monomers binding to ssDNA. This type of analysis has the potential to be 

used by the single molecule community to take advantage of behaviour of 

fluorescent dyes in crowded environments and deduce the dynamics of similar 

biologically relevant systems.  
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