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Abstract
Fence placement is required to ensure legacy parallel programs op-
erate correctly on relaxed architectures. The challenge is to place
as few fences as possible without comprising correctness. By iden-
tifying necessary conditions for a read to be an acquire we improve
upon the state of the art for legacy DRF programs by up to 2.64x.

Categories and Subject Descriptors B.3 [Hardware]: Mem-
ory Systems; D.3.4 [Programming Languages]: Processors—
Compilers

Keywords Fence Placement, Relaxed Memory Models

1. Introduction
Modern parallel architectures employ relaxed memory models for
performance reasons. Legacy programs written assuming Sequen-
tially Consistent (SC) operation require fences to be placed to en-
sure correctness on such architectures.

The starting point of understanding the required placement of
fences is the Delay-set analysis of Shasha and Snir [8]. They ob-
served that to ensure SC, ordering all pairs of accesses is unneces-
sary. Only conflicting pairs of accesses (the delay sets) that can lead
to SC violations need to be ordered – where conflicting accesses are
two accesses to the same address, at least one of which is a write.
The memory orderings produced are then subject to fence mini-
mization [5], which seeks to minimize the number of fences used
to enforce the orderings.

Scalability issues and a reliance on alias analysis, mean that in
practice conservative approximations are used. Notably the Pen-
sieve project [3, 9], which uses thread escape analysis to determine
potential acquires and releases.

We take a fresh look at fence placement. Our point of departure
is that we do not seek to enforce SC for the general case; instead
we seek to ensure data race freedom. More specifically, we insert
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sufficient fences to ensure that those memory accesses that are
race free1 in the SC world continue to be race free in the relaxed
world. To put it succinctly, we guarantee SC behavior for race free
accesses.

Our approach is based on the realization that SC (which strongly
orders all accesses) is not an end in itself to programmers; rather it
is enough for programmers to have SC semantics only for synchro-
nization accesses (that are used to guard other data accesses from
racing). Therefore, it suffices if we identify such operations and
provide SC semantics for only those operations.

Although we do not promise SC in general, it is important to
note that our approach guarantees SC for well synchronized pro-
grams i.e., programs that do not contain data races. More formally,
we preserve only SC-allowed behaviour for the class of programs
whose behavior is characterized by values returned by only those
reads that are race-free under SC.

Our approach is similar in spirit to DRF (data-race-free) pro-
gramming models, which form the basis of recent concurrent pro-
gramming language models, such as the C11 concurrency model [1,
2] and the Java Memory Model specification [6]. This is a program-
ming model which gives semantics to only DRF programs: pro-
grams in which synchronization operations are correctly labelled
and the program is well synchronized using those operations. In
return for this discipline the system (hardware + compiler) guaran-
tees SC. However, legacy programs lack the distinction between
data and synchronization. Our approach automatically discovers
synchronization operations for such legacy program.

2. Our Approach
We aim to conservatively identify synchronization operations. If
we can be relatively precise, we can prune unnecessary orderings
found by more traditional approaches. Existing fence minimization
techniques can then be applied.

We have identified two signatures and proven [7], that at least
one must be fulfilled for a read to be an acquire:

• Control acquire: a read feeds its value to a predicate tested for
in a branch in its forward slice.

• Address acquire: a read provides the address value for the
subsequent data access that the read (acquire) protects.

1 A memory access is said to be race-free if in all legal SC executions,
it is ordered with its conflicting accesses in each execution, following
Gharachorloo [4].



While it is possible for an acquire to meet the address signa-
ture and not the control signature, we find that in practice those that
meet the address signature also meet the control signature. To re-
inforce this point we performed an empirical study of 10 common
synchronization primitives, the results of which are presented as
Table 1. These primitives represent common patterns used in syn-
chronization, indeed some underpin programs we examine later in
Section 3.

Acquires
Addr Ctrl Pure Addr

Chase Lev WSQ 3 3 8
Cilk-5 WSQ 8 3 8
CLH Lock 3 3 8
Dekker 8 3 8
Dijkstra 8 3 8
Lamport 8 3 8
MCS Lock 3 3 8
Michael Scott LFQ 3 3 8
Peterson 8 3 8
Szymanski 8 3 8

Table 1. Breakdown of the types of acquires found in common
synchronization kernels.

Having identified these signatures, we are able to build on the
Pensieve model. After identifying a conservative subset of reads as
acquires using thread escape analysis, as in Pensieve, we use our
signatures to prune the set, without compromising its conservative
nature. These sets, and analysis of the Control Flow Graph, identi-
fies a reduced set of orderings. A fence minimization algorithm is
then used to place fences and compiler directives. For example on
x86 only orderings of the form w → racq require a full fence, with
compiler directives (which have no presence in the final binary)
used to prevent incorrect reordering by the compiler.

3. Results
We implemented our analysis and the Pensieve model as an in-
traprocedural analysis pass in LLVM 3.4.1. Using a set of lock-free
programs and the SPLASH-2 [10] benchmarks, we compare both
the Fast (control acquires only) and Safe (control and address ac-
quires) variants of our approach with an implementation of Pen-
sieve using locally-optimized fence minimization (as in Fang et
al. [3]). To establish a baseline we also compare against a (mini-
mal) manual fence placement. All programs were compiled using
O2 optimizations.

The percentage of shared reads that are marked acquires by each
variant of our approach is presented as Figure 1. As we can see, the
Fast analysis greatly reduces the number of potential acquires. In
the best case (Water-NSquared), only 7% are potentially acquires.
On average2 we see 18% of the reads marked as acquires.

To examine the impact of reducing the number of fences, we
executed the programs having applied Pensieve, both variants of
our approach and normalize these against manual fence placement.
Each of the experiments was repeated 100 times and averages
taken. The results are presented as Figure 2.

On average we see that Pensieve is 1.94x slower than the base-
line, with our Fast approach being only 1.44x slower than the base-
line. The Safe approach is 1.69x slower than the baseline. In other
words, on average, our Fast approach results in a 30% speedup over
Pensieve, while the Safe approach results in executions 14% faster
than Pensieve.

2 Geometric mean is used for all normalized results.
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Figure 1. Static percentage of potentially thread-escaping reads
that our analysis marks as an acquire.
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Figure 2. Execution time with fences placed using Pensieve, Safe,
Fast and manual fence placement.
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