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Abstract

Ivanov, Levin, and Niederle (2010) use a common-value second-price auction

experiment to reject beliefs-based explanations for the winner’s curse. ILN’s

conclusion however stems from the misuse of theoretical arguments. Beliefs-

based models are even compatible with some observations from ILN’s experi-

ment.
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1 Introduction

Ivanov, Levin, and Niederle (2010, ILN henceforth) claim that the results from their

common-value second-price auction experiment casts a doubt on beliefs-based models

as explanations for the winner’s curse. In this note, we first argue that ILN’s theoreti-

cal arguments are misleading (Section 2). We then show that beliefs-based models do

not necessarily imply ILN’s predictions and are compatible with some observations

(Sections 3 and 4). We also discuss other points (Section 5).

2 ILN’s Experiment and Theoretical Arguments

We first describe ILN’s study. ILN’s experiment considers a common-value second-

price auction with two bidders, called the maximal game. In this auction, each bidder

receives a private signal Xi (i = 1, 2), uniformly distributed over X = {0, 1, . . . , 10}
(|X| = 11). The value of the item is given by xmax = max{x1, x2} (Xmax =

max{X1, X2}) where xi is the realization of Xi. Each player’s bid is chosen from

the set B = {0, 0.01, 0.02, . . . , 1000000.00} (|B| = 100000001). We use “max” to re-

fer to the highest possible bid, 1000000.00. A player’s strategy is a map bi : X → B.

The bidder with the highest bid wins and pays the second highest bid. Ties are bro-

ken with equal probabilities. We assume that players’ payoff functions only depend

on the monetary outcome and that players are risk neutral.1

ILN’s experiment has three treatments: Baseline, ShowBidFn, and MinBid (BL,

SBF, and MB henceforth). Each treatment has two parts, I and II, each of which

consists of 11 auctions. In each auction of part I, a subject receives a different signal

and plays against a randomly selected subject. The former allows us to observe

the pure strategy each subject chose in part I. In part II, a subject plays against a

computer which receives an i.i.d. signal from X and plays the subject’s pure strategy

from part I.2 SBF and MB are variants of BL; (i) each subject is explicitly shown

the pure strategy for the computer in part II (i.e., her part I bids) in SBF, and (ii)

the set of bids is rather {xi, xi + 0.01, . . . ,max} for each xi ∈ X in MB.

ILN focus on what they call “overbidding”, bi(xi) ∈ (xi, 10], and present the

1Although it is not explicitly stated, the proof of Proposition 3 in ILN, for example, suggests
that ILN also assume risk neutrality.

2Subjects are only informed of these features after part I.
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following two predictions:3

Q1 “... if behavior is driven by beliefs, we should observe a reduction

in overbidding (i) in part II of each treatment relative to part I and (ii)

in part I of the MinBid treatment relative to part I of the Baseline and

ShowBidFn treatments. The absence of any such reduction would cast

serious doubt on belief-based theories.” (p.1440)

ILN claim that their experiment shows no evidence supporting Q1 and reject analogy-

based expectation equilibrium (Jehiel (2005) and Jehiel and Koessler (2008), ABEE

henceforth), cursed equilibrium (Eyster and Rabin (2005), CE henceforth), and level-

k reasoning (Crawford and Iriberri (2007)) for the winner’s curse. ILN (footnote 4)

indeed claim that their study applies to any beliefs-based explanation of the winner’s

curse.

We now document ILN’s reasoning for Q1. Regarding Q1 (i), ILN state:

Q2 “Consider a subject i who overbids (for all signals) in part I of one

of the three treatments. From Proposition 1, it follows that bidding her

signal is a best response in part II. ... if i continues overbidding without

a downward correction or even starts bidding above 10 in part II, she is

clearly not best responding to her behavior from part I.” (pp.1440–1441)

Proposition 1 in ILN shows that bi(xi) = xi for each xi ∈ X is the only bid that

survives two rounds of iterated weak dominance. Regarding Q1 (ii), ILN state:

Q3 “In part I of the MinBid treatment, anything other than bidding one’s

signal is weakly dominated.” (p.1441)

Note that both arguments refer to weak dominance. They are misleading, however.

Regarding Q2, the analysis of part II requires no game theoretical argument.

Remember that each subject faces a computer as her opponent in part II which

mimics the subject’s behavior in part I. That is, each subject knows her opponent’s

strategy in part II. Thus, weak dominance necessarily corresponds to expected payoff

3For their focus on overbidding, ILN (p.1440) state that “(t)he most interesting behavior is
overbidding because it leads to a WC (as long as others are also appropriately overbidding) and
because it could potentially be explained by belief-based theories.” Overbidding is not sufficient for
the winner’s curse; e.g., if bi(xi) ∈ (xi, xi + 1) for each i and xi ∈ X\{10} and bi(10) = 10, the
winner’s curse does not arise for higher signals.
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maximization (i.e., single-person decision problem) in part II. This also suggests that

the comparison of parts I and II is irrelevant. In Section 3, we use the data from

ILN’s experiment and show that expected payoff maximization does not necessarily

imply “downward correction” and may even be consistent with bidding above 10.4

Regarding Q3, ABEE, CE, and level-k reasoning mentioned above rather assume

that players best-respond to their beliefs. It is known that weak dominance and best

response (strict dominance) may provide distinct predictions since a best response

strategy can be weakly dominated.5 To discuss ABEE, CE, and level-k reasoning,

referring to weak dominance is simply not appropriate. We show in Section 4 that

this distinction is crucial for the comparison of parts I in BL/SBF and MB.

3 Analysis of Part II

Auctions in part II are single-person decision problems. Expected payoff maximiza-

tion implies “downward corrections” in part II if bi(xi) > xi for each xi ∈ X in part I

– this is what ILN state in the parentheses in Q2. The data from ILN’s experiment

shows that it need not be the case otherwise. We select three subjects from their

experiment; #37 (BL), #133 (SBF ), and #114 (MB).6 For each of them, Table 1

lists the part I bid (PI) and the set of expected payoff maximizing bids in part II

(PMB) for each signal. Note (i) that they could choose higher bids – even “max” – in

part II than in part I for 6 (#37), 7 (#133) and 5 (#114) signals to maximize their

expected payoffs (denoted with a “∗”) and (ii) that bi(xi) = xi does not necessarily

maximize a subject’s expected payoffs in part II of BL/SBF (denoted with a “†”).

We now turn to ILN’s data analysis. ILN use a set of criteria to select subjects.

Each bid is placed into one of four categories; (i) bi(xi) < xi − 0.25, (ii) bi(xi) ∈
[xi− 0.25, xi + 0.25], (iii) bi(xi) ∈ (xi + 0.25, 10], and (iv) bi(xi) > 10.7 For each part,

each subject is classified as either (i) Underbidder, (ii) Signal Bidder, (iii) Overbidder,

or (iv) Above-10 Bidder if the majority of her bids (6 or more out of 11) fall into

4Proposition 1 in ILN uses iterated weak dominance. Best-responding to the opponent’s specific
strategy does not necessarily imply bi(xi) = xi for each xi ∈ X. This also shows that referring to
Proposition 1 is not appropriate.

5In MB, for example, while bi(xi) = xi is the weakly dominant strategy for each xi ∈ X, for each
strategy, there exists a belief to which the strategy in concern is a best response.

6They choose bi(xi) ∈ (xi + 0.25, 10] for six signals in part I (emphasized in bold face) and are
Overbidders in part I according to ILN’s classification.

7For xi = 10, (iii) is omitted and (iv) is replaced with bi(10) > 10.25.
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#37 (BL) #133 (SBF ) #114 (MB)
xi PI PMB PI PMB PI PMB

0 4 {0, . . . , 3.99} 0 {4.03, . . . , 5.01}∗,† 0 {0, . . . , 5.99}∗
1 1 {0, . . . , 3.99}∗ 3.01 {4.03, . . . , 5.01}∗,† 6 {1, . . . , 5.99}
2 4 {1.01, . . . , 3.99} 4 {4.03, . . . , 5.01}∗,† 2 {2, . . . , 5.99}∗
3 5 {1.01, . . . , 3.99} 6 {4.03, . . . , 5.01}† 3 {3, . . . , 5.99}∗
4 5 {1.01, . . . , 4.99} ∪ {6.01, . . . , 8.99}∗ 5.02 {4.03, . . . , 5.01}† 6 {4, . . . , 5.99}
5 5 {6.01, . . . , 8.99}∗,† 4.02 {6.01, . . . , 8}∗,† 6 {5, . . . , 5.99}
6 5 {6.01, . . . , 8.99}∗,† 8.01 {6.01, . . . , 8}† 8 {6, . . . , 7.99}
7 6 {6.01, . . . , 8.99}∗ 9 {8.02, . . . , 8.99}† 9 {7, . . . , 7.99}
8 9 {6.01, . . . , 8.99} 6 {8.02, . . . , 8.99}∗,† 8 {8, . . . , 8.99}∗
9 10 {6.01, . . . , 9.99} 4 {8.02, . . . ,max}∗ 10 {9, . . . , 9.99}
10 10 {9.01, . . . ,max}∗ 8.01 {9.01, . . . ,max}∗ 10 {10, . . . ,max}∗

Table 1: Three subjects from ILN’s Experiment

BL SBF MB All Treatments

Number of Subjects 62 46 26 134

Overbidder I 25 (40.3%) 18 (39.1%) 19 (73.1%) 62 (46.3%)
Overbidder I&II 14 (22.6%) 10 (21.7%) 14 (53.9%) 38 (28.4%)

Above-Signal Bidder I 44 (71.0%) 32 (69.6%) 22 (88.6%) 98 (73.1%)

Table 2: Classification

one of these four categories.8 According to this classification, 62 out of 134 subjects

(46.3%) are Overbidders in part I (Overbidder I ). Instead of focusing on their behavior

to examine the presence of “downward corrections” in part II, ILN restrict their

analysis to 38 subjects (28.4%) who are Overbidders in both parts (Overbidder I&II ).

The details are included in Table 2. Given the set of these subjects, ILN computed

the median bid for each signal, each treatment, and each part. Figures 1, 4 and 5 in

ILN plot them and show that the numbers of signals for which the median is lower

in part I than in part II are only 2 (BL), 3 (SBF ), and 1 (MB). ILN (Result 2 (b))

conclude that there is no evidence of a downward correction of the bids.

As shown above, the examination of downward corrections is irrelevant. Given

the structure of part II, while attempting to maintain ILN’s focus on Overbidders, we

examine subjects’ behavior in part II with some modifications:

8Otherwise, the subject is classified as Indeterminate. There is no Underbidder category in MB.
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1. We do not use subjects’ part II bids as a selection criterion – we (as well as ILN)

analyze subjects’ behavior in part II. We rather focus on 98 subjects, referred

as Above-Signal Bidder I ; for each of them, the majority of her bids (at least 6

out of 11) are higher than the corresponding signals in part I.9 Table 2 contains

the details.

2. We do not compare the median bids in parts I and II. Instead, we use a statistical

test to compare subjects’ part II median bid with the median of the subjects’

upper bound of the set of expected payoff maximizing bids in part II. We use

Fisher-Pitman’s permutation test for paired-samples in order to account for the

fact that a subject’s upper bound of the set of expected payoff maximizing bids

in part II is related to her bids in the part I auctions. We test the null hypothesis

that the median of the distribution of part II bids is smaller than or equal to

the median of the distribution of the upper bound of the set of expected payoff

maximizing bids in part II against the alternative that it is larger.

Using a significance level of 5%, the Fisher-Pitman permutation test for paired

samples rejects the null for 4 out of 11 signals in each of the treatments – 0, 1, 2 and

3 in BL, 0, 1, 2 and 4 in SBF, and 2, 4, 5 and 7 in MB. Therefore, the test tells us

that for 7 of the signals the median part II bid is not greater than the corresponding

upper bound of the set of the expected payoff maximizing part II bids. Therefore,

subjects are not overbidding in relation to their optimal bids for most of the signals

in all three treatments. These results are at odds with ILN’s conclusion.10

4 Comparison of Parts I in BL/SBF and MB

ILN computed the average of the bids with bi(xi) ∈ (xi + 0.25, 10] for each signal

in parts I of BL/SBF and MB. While ILN’s prediction suggests that the bids are

9We do not exclude bids above 10 and do not use ILN’s 0.25 tolerance level. For the latter, ILN
(footnote 28) claim that it does not affect their conclusion. Above-Signal Bidder I has 19 (BL), 14
(SBF ) and 3 (MB) more subjects than Overbidder I. The inclusion of bids above 10 adds 17 (BL;
one of which would also be added by dropping the tolerance level), 12 (SFB), and 3 (MB) more
subjects.

10One can focus on the subjects with bi(xi) > xi for each xi ∈ X, to whom “for all signals” in
Q2 applies. There are 12 (19.4%) in BL, 4 (8.7%) in SBF, and 5 (19.2%) in MB. The medians are
indeed lower in part II than in part I for all signals (BL), 9 signals (SBF ), and 8 signals (MB),
implying “downward corrections” for most signals.
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BL/SBF MB
xi L1 L2 L1 L2

0 5 {0, . . . , 4.99} 0 {0, . . . , 10}
1 5.09 {0, . . . , 4.99} 1 {1, . . . , 10}
2 5.27 {0, . . . , 4.99} 2 {2, . . . , 10}
3 5.55 {0, . . . , 4.99} 3 {3, . . . , 10}
4 5.91 {0, . . . , 4.99} 4 {4, . . . , 10}
5 6.36 {0, . . . , 5.08} 5 {5, . . . , 10}
6 6.91 {5.92, . . . , 6.35} 6 {6, . . . , 10}
7 7.55 {6.92, . . . , 7.54} 7 {7, . . . , 10}
8 8.27 {7.56, . . . , 8.26} 8 {8, . . . , 10}
9 9.09 {8.28, . . . , 9.08} 9 {9, . . . , 10}
10 {10, . . . ,max} {9.10, . . . , 10} {10, . . . ,max} 10

Table 3: Bid Correspondences for L1 and L2

lower in MB than BL/SBF, the comparison of these averages show that they are

“astonishingly close” (ILN p.1445). In this section, we show that beliefs-based models

do not necessarily imply their predictions and are compatible with this observation.

We first focus on the level-k model which incorporates players’ finite depth of

reasoning. We (as well as ILN) focus on random level-k (henceforth Lk) players who

best-respond to level-(k−1) players for k ∈ {1, 2, . . .} and anchor their beliefs in a L0

player who chooses her bid with equal probability from {0, 0.01, . . . , 10} in BL/SBF

and {xi, xi + 0.01, . . . , 10} in MB. Table 3 shows L1’s and L2’s bid correspondences

in each treatment.11 While L1’s bid functions are consistent with Q1 (ii), ILN’s

experimental setting allows L2 to have wide ranges of bids with which ILN’s predic-

tion cannot be uniquely deduced.12 Note also that L2’s behavior is compatible with

bi(xi) > xi for each xi ∈ X\{10} and similar behavior in all treatments.

ABEE captures the idea that players bundle states into analogy classes and best-

respond to beliefs which average the opponent’s strategy within each class. CE as-

sumes that players best-respond to beliefs which assign χ ∈ [0, 1] to the opponent’s

“average” strategy and 1 − χ to the opponent’s type-dependent strategy. If we use

(i) the private information analogy partition for ABEE and (ii) χ = 1 (fully cursed)

11L1’s bids in BL/SBF are either E[Xmax | xi] + 1 or E[Xmax | xi]− 1 for each xi ∈ X\{10}. See
also Proposition 3 in ILN. Table 4 lists the values of E[Xmax | xi] for each xi ∈ X.

12Crawford and Iriberri (2007) show that a mixture of L1s and L2s explains auction data well.
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xi E[Xmax | xi] bl(xi) ρ(xi) bh(xi) 1− ρ(xi)

0 5 5 - 5 -
1 56

11
≈ 5.091 5.09 10

11
5.10 1

11

2 58
11
≈ 5.273 5.27 8

11
5.28 3

11

3 61
11
≈ 5.545 5.54 5

11
5.55 6

11

4 65
11
≈ 5.909 5.90 1

11
5.91 10

11

5 70
11
≈ 6.364 6.36 7

11
6.37 4

11

6 76
11
≈ 6.909 6.90 1

11
6.91 10

11

7 83
11
≈ 7.545 7.54 5

11
7.55 6

11

8 91
11
≈ 8.273 8.27 8

11
8.28 3

11

9 100
11
≈ 9.091 9.09 10

11
9.10 1

11

10 10 10 - 10 -

Table 4: Equilibrium Strategy for ABEE and CE

for CE, they coincide.13 As an example, we use these specifications for part I of

BL/SBF. Table 4 shows an equilibrium strategy.14 The second column in Table 4

contains the expected value of the object given the signal. The third to the sixth

columns specify each player’s strategy: given signal xi, the player bids either bl(xi)

with probability ρ(xi), or bh(xi) with probability 1− ρ(xi). For each xi ∈ X, note (i)

bli(xi) < E[Xmax | xi] < bhi (xi) and (ii) E[Xmax | xi] = bli(xi)ρ(xi) + bhi (xi)(1− ρ(xi)).

In this equilibrium, each player chooses bi(xi) > xi for every xi ∈ X\{10}.15

To apply ABEE and CE to MB, we need to take into account that players’ action

spaces are type-dependent in MB.16 ABEE and CE assume that players’ action spaces

are fixed so that average behavior is well defined. Even if the original definitions

are modified in this regard, the type-dependence limits the specifications. MB only

allows χ = 0 for CE, which coincides with one of two possibilities for ABEE, i.e.,

the standard private information setting.17 In this case, they also coincide with

Bayesian Nash Equilibrium (BNE henceforth). While Proposition 2 in ILN shows

13Jehiel and Koessler (2008, p.539) and Eyster and Rabin (2005, p.1634).
14See also Proposition 4 of ILN, which is based on Proposition 5 of Eyster and Rabin (2005).
15Any bi(xi) < xi is “underbidding” for ILN’s theoretical argument. ILN (p.1440) state “to

explain overbidding, both the level-k model and CE require that beliefs place a positive weight on
underbidding”. L2 in BL/SBF and ABEE/CE above serve as counter-examples.

16ILN (footnote 24) acknowledge this for CE.
17Any partition finer than the standard private information setting is also allowed. Since player i’s

strategy is defined with respect to the private information player i has (as in BNE), the opponent’s
strategy is identical within each element of such finer partitions, which implies that any ABEE with
a finer partition is also a BNE.
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that the unique symmetric BNE in MB is bi(xi) = xi for each xi ∈ X, there are

other asymmetric BNE.18 The observations of bi(xi) > xi and similar behavior in all

treatments could be explained by coordination failures.19 The other possibility for

ABEE is the coarsest analogy partition which only includes the set of all states.20 In

this case, the equilibrium strategy shown in Table 4 is also ABEE for both BL/SBF

and MB, implying bi(xi) > xi for each X\{10} and similar behavior in all treatments.

5 Discussion

To further analyze subjects’ behavior in part II, Table 5 displays a relationship be-

tween the monotonicity of part I bids and the number of expected payoff maximizing

bids in part II for each treatment. The second column shows the average number of

expected payoff maximizing bids in part II.21 The third column shows the number

of subjects who exhibit part I weakly monotone bidding behavior and the fifth col-

umn shows the number of the rest. The fourth and sixth columns show the average

numbers of expected payoff maximizing bids. Two common observations to all treat-

ments; (i) a small fraction of subjects exhibit bids increasing in signals, and (ii) the

average number of expected payoff maximizing bids for such subjects is larger than

that of the rest.22

We assume that players best-respond. Camerer, Nunnari and Palfrey (2011) relax

18For example, given α ∈ X, player i chooses bi(xi) ∈ {xi, . . . , α} for xi ∈ {0, . . . , α} and bi(xi) =
xi for xi ∈ {α + 1, . . . , 10}, and player j chooses bj(xj) = xj for xj ∈ {0, . . . , α} and bj(xj) ≥ xj
for xj ∈ {α + 1, . . . , 10}. While acknowledging this, ILN (footnote 10) dismiss the possibility of
asymmetric BNE.

19Indeed, every bid is (interim) rationalizable in the maximal game.
20Jehiel and Koessler (2008, p.538)
21This also shows that SBF has the lowest average number of expected payoff maximizing bids,

implying that being explicitly informed of the opponent’s strategy did not help. A one-sided Fligner-
Policello robust rank order test rejects (with a p-value of 0.035) the null that the distribution of
subjects’ number of expected payoff maximizing bids is the same in BL and SBF. One plausible
explanation for this is that it is difficult to fully incorporate all the informational details into the
decision process. This may also explain similar behavior in parts I of BL/SBF and MB.

22A Fligner-Policello robust rank order test rejects the null hypothesis that the empirical distribu-
tions of the number of expected payoff maximizing bids of the 22 subjects whose bidding behavior
in part I is monotone and of the other 112 subjects come from the same distribution yields a p-value
of 0.00. In addition, the closer a subject’s bidding behavior in part I is to being monotone, the
larger her number of expected payoff maximizing bids; an OLS regression of a subject’s number of
expected payoff maximizing bids on her number of pairs of weakly monotone adjacent bids in part
I (i.e., for two consecutive signals) yields a positive coefficient for the independent variable (1.08,
p-value of 0.000).
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Monotone Non-monotone
PMB Subjects PMB Subjects PMB

BL 4.18 9 7.33 53 3.64
[38.0%] (14.5%) [66.7%] (85.5%) [33.1%]

SBF 3.07 7 6.86 39 2.38
[27.9%] (15.2%) [62.3%] (84.8%) [21.7%]

MB 4.73 6 8.83 20 3.50
[43.0%] (23.1%) [80.3%] (76.9%) [31.8%]

Table 5: Monotonicity

this assumption while adopting a structural approach to study how close subjects’

bids are to their best responses by relaxing the assumption that subjects best-respond.

Their analysis shows (i) that imperfect best response versions of beliefs-based models

such as the Logit QRE, Cursed Equilibrium, and Cognitive Hierarchy fit the part I

data well, and (ii) that the fitted parameters forecast part II behavior accurately.

References

[1] Camerer, C. F., S. Nunnari, and T. R. Palfrey (2011): “Quantal Response and

Nonequilibrium Beliefs Explain Overbidding in Maximum-Value Auctions,” Cal-

tech Social Science Working Paper 1349.

[2] Crawford, V. P., and N. Iriberri (2007): “Level-k Auctions: Can a Non-

Equilibrium Model of Strategic Thinking Explain the Winner’s Curse and Over-

bidding in Private-Value Auctions?” Econometrica, 75, 1721–1779.

[3] Eyster, E., and M. Rabin (2005): “Cursed Equilibrium,” Econometrica, 73,

1623–1672.

[4] Ivanov, A., D. Levin, and M. Niederle (2010): “Can Relaxation of Beliefs Ratio-

nalize the Winner’s Curse?: An Experimental Study,” Econometrica, 78, 1435–

1452.

[5] Jehiel, P. (2005): “Analogy-Based Expectation Equilibrium,” Journal of Eco-

nomic Theory, 123, 81–104.

9



[6] Jehiel, P., and F. Koessler (2008): “Revisiting Games of Incomplete Information

with Analogy-Based Expectations,” Games and Economic Behavior, 62, 533–

557.

10


